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Abstract 

The capability to simultaneously measure changes of mass and charge of electroactive materials 

during a redox process makes Electrochemical Quartz Crystal Microbalance (EQCM) a powerful 

technique to monitor stoichiometric changes during reversible electrochemical processes. In principle, 

quantitative resolution of the stoichiometry of the electroactive sample during electrochemical cycling 

can be obtained by solving the system of equations for the EQCM mass and charge balance. Such 

system of equations couples the measured changes in mass and charge through the stoichiometry of the 

redox process. Unfortunately, whenever more than two chemically inequivalent species are involved in 

the redox process, the system of equations is mathematically undetermined, having more variables 

(stoichiometric coefficients) than equations. In these cases, current best practice is the arbitrary 

reduction of the number of variables in the mass and charge balance equation, by using chemical 

intuition to set some of the stoichiometric coefficients to fixed values. For layered ion-intercalation host 

materials, widespread practical approximations are the use of arbitrarily defined solvation numbers for 

the intercalating ions or the neglect of ion-induced displacement of structural solvent inside the host. 

Here, we propose an alternative approach based on the use of Density Functional Theory (DFT) to 

sample and screen, on an energy basis, the whole unreduced spectrum of stoichiometric coefficients 

compatible with EQCM measurements, leading to DFT energy-assisted resolution of stoichiometric 

changes during cycling. We illustrate the approach by taking nickel hydroxide Ni(OH)2 as a case system 

and studying its ion-intercalation-driven phase transformations in the presence of different LiOH, 
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NaOH, and KOH electrolytes. Quantitative resolution of the Ni(OH)2 stoichiometry during 

electrochemical cycling unambiguously reveals ion-intercalation to displace structural water from the 

layered host, promoting electrochemical degradation and aging of the material. The process is found to 

be strongly dependent on the size of the electrolyte cation, with larger cations displacing larger amounts 

of structural water and resulting in faster degradation rates. 
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1. INTRODUCTION 

Reversible, electrochemical ion intercalation into a host material is one of the fundamental 

processes available for electrochemical energy storage and conversion.1-3 The efficiency (and 

reversibility) of such a process is ruled not only by the way ions intercalate, but also by the structural 

response of the host material. Although this complex interplay has been extensively studied for many 

decades,3 a deeper understanding of the fundamental mechanisms is required for the implementation of 

improved solutions of existing battery technologies and the rational design of new materials for future 

energy applications. 

 

The capability to simultaneously measure changes of mass and charge of electroactive materials during 

the redox process makes Electrochemical Quartz Crystal Microbalance (EQCM)4-8 a powerful 

technique to gain quantitative atomistic insights into redox processes. Interpretation of EQCM 

measurements is possible, in principle, via the mass and charge balance equations that couple the 

measured changes in mass and charge with the stoichiometry of the redox process. Analytically, the 

number of independent variables in this system of equations depends on the proposed stoichiometry of 

the redox process. Thus, if the stoichiometry of the redox process involves more than two chemically 

different species, the system of the (two) mass and charge balance equations contains more independent 

variables (the stoichiometric coefficients) than equations and is, as a result, underdetermined. 

Consequently, and perhaps unfortunately, whenever the stoichiometry of the redox process involves 
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more than two chemically different species, their stoichiometric coefficients cannot be unequivocally 

determined by solving the system of equations for the balance of the EQCM-measured mass and charge 

changes.  

 

This shortcoming is routinely bypassed by arbitrarily reducing the number of independent variables 

(the stoichiometric coefficients) in the mass and charge balance equation using chemical intuition. In 

the case of ion intercalation into layered host materials, widespread practical approximations are the 

use of chemically educated guesses on the degree of solvation for the intercalated cations inside the 

host based on bulk solvent-phase estimates and/or the neglect of possible changes in structural solvent 

contained in the host material.5 However, to the best of our knowledge, the validity of these 

approximations has never been corroborated quantitatively in the available literature neither 

experimentally nor computationally. This in turn legitimates doubts on their quantitative value and, 

inevitably, interpretation of EQCM data. Prompted by these considerations, here we scrutiny current 

best practice in the interpretation of EQCM measurements, and propose an alternative approach based 

on i) the substitution of chemical intuition by computation of Density Functional Theory (DFT) 

formation energies, and ii) the use of DFT to screen, on an energy basis, the whole unreduced spectrum 

of stoichiometries compatible with EQCM measurements. In spite of its simplicity, to the best our 

knowledge, such approach is unprecedented in the available EQCM literature.  
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As a case-system, we focus on nickel hydroxide, Ni(OH)2, and revisit, via EQCM and complementary 

approaches, the electrochemical intercalation of alkali metal ions (Li+, Na+ and K+). Ni(OH)2 is a layered 

material that provides the typical environment for ion (de)intercalation via redox reactions, and has 

been studied for a variety of electrochemical applications, including nickel-based batteries,9-11 

supercapacitors,12-14 electrochromic devices15-17 and electrocatalysts.18-20 Redox transitions for this 

material are generally described with the diagram of Figure 1a, typically referred to as the Bode 

diagram.8, 21  

 

Two phases  (violet, bottom) and  (orange, bottom) are found for Ni(OH)2. The  phase is composed 

of disordered nickel hydroxides with randomly oriented layers, separated by intercalated water 

molecules/ions.22 In contrast, the  phase is thermodynamically more stable, and exists in nature as 

theophrastite mineral with a layered structure free of intercalated water. These  and  Ni(OH)2 phases 

are understood to be oxidized (upon charging) to -Ni(OH)2 (green) and -NiOOH (lighter orange, top) 

phases, respectively. This in turn defines two possible redox couples: -Ni(OH)2/-Ni(OH)2 and -

NiOOH/-Ni(OH)2. Although, in principle, -Ni(OH)2 could also be formed by overcharging of the -

NiOOH phase, the large differences in the inter-slab distances between the two phases (4.8 Å for -

NiOOH vs. 7 Å for -NiOOH) leads to large mechanical deformations and subsequent material 

degradation in contrast to the -NiOOH/-Ni(OH)2 couple. In addition, the change of average nickel 

oxidation state between -NiOOH/-Ni(OH)2 indicates this redox reaction involves transfer of more 
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than one electron per Ni atom, while the -NiOOH/-Ni(OH)2 undergoes transfer of only one electron 

during the redox process. Thus, the -NiOOH/-Ni(OH)2 couple exhibits lower charge capacity in 

comparison with the -NiOOH/-Ni(OH)2,8, 23 and the -Ni(OH)2 phase is usually preferred for energy 

storage applications (e.g., rechargeable batteries and asymmetric supercapacitors).14, 23, 24 Unfortunately, 

the reversibility of the -NiOOH/-Ni(OH)2 redox couple is compromised by a gradual conversion of 

-Ni(OH)2 to -Ni(OH)2 during either consecutive potential cycling25 or treatment in highly 

concentrated electrolytes (6M KOH at 50 °C)26. This process is commonly referred to as ‘aging’ in the 

literature.27, 28 The far from conclusive understanding of the atomistic mechanisms of this degradation 

process prevents definition of viable strategies to stabilize -Ni(OH)2 and, ultimately, take up of the 

substrate as technologically viable material for energy storage applications.  

 

To reduce this knowledge gap, here, we present a simple, yet to date unprecedented approach to 

quantitatively interpret the evolution of -Ni(OH)2 during the initial stages of electrochemical cycling. 

DFT-energy based screening of the stoichiometries compatible with the EQCM measurements reveals 

an unexpected role for intercalated alkali ions in displacing the structural water molecules from the 

layered host structure, promoting the irreversible collapse of the -Ni(OH)2 phase into -Ni(OH)2. 

EQCM, in situ Raman and DFT results demonstrate that the degradation rate of -Ni(OH)2 is directly 

related to the size of the intercalated ion, with larger ions displacing larger amount of water, thus 

accelerating the -Ni(OH)2 to -Ni(OH)2 aging process.  
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More generally, we believe our combined EQCM-DFT (transferable) approach for quantitative 

resolution of the stoichiometry of electroactive materials during cycling constitutes a beneficial addition 

to the set of tools currently used for fundamental research in electrochemical energy storage.  
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Figure 1 (a) Bode diagram revealing the correlations between various phases of Ni(OH)2 (b) Proposed 

modification of the Bode diagram with the disordered γ-Ni(OH)2 phase obtained from the oxidation of 

α-Ni(OH)2. Numbers in parenthesis indicate the average oxidation state for nickel. 
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2. EXPERIMENTAL AND COMPUTATIONAL DETAILS 

2.1. Experimental setup 

For EQCM measurements, nickel hydroxide samples were prepared by cathodic deposition from a 

bath consisting of 40 mM NaNO3 and 20 mM NiCl26H2O onto Au/Ti-sputtered quartz crystal 

(CHI125A, CH Instruments Inc.) at room temperature. Further EQCM experimental parameters can be 

found within Section 7 of the Supporting Information. The cathodic current for Ni(OH)2 deposition was 

fixed to 20 µA for 500 s. Samples were vacuum dried overnight before EQCM measurements. EQCM 

experiments were carried out for 20 cycles by varying the potential between 0 and 0.45 V. To identify 

and quantify the role of kinetics effects in the electrochemical cycling of the materials, we used a voltage 

scan rate of 5 mV s-1 for the first 10 cycles and 10 mV s-1 for the following 10 cycles. The reference 

and counter electrodes were Ag/AgCl (Argenthal, 3 M KCl, 0.207 V versus SHE at 25 oC) and a 

platinum wire, respectively. All the EQCM responses were measured by an electrochemical analyzer 

(CHI4053a, CH Instruments Inc.) The alkaline electrolytes were LiOH (TEDIA, USA), NaOH 

(SHOWA, Japan), and KOH (SHOWA, Japan) in one molar (1 M) concentration. All solutions used in 

this work were prepared with deionized water produced by a reagent water system (Milli-Q SP, Japan) 

at 18 M cm. The alkaline electrolytes used for electrochemical characterization was degassed with 

purified N2 for 25 min before measurements. 

The as-deposited α-Ni(OH)2 powders were collected from a graphite electrode surface (Nippon 

Carbon EG-NPL, N.C.K.) after cathodic deposition. The pretreatment of graphite electrodes followed 
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the protocol of previous work29. The formation of α phase was corroborated by powder X–ray 

diffraction (PXRD) (CuKɑ, Ultima IV, Rigaku) (Figure S1 of the SI). Thermal properties were analyzed 

by thermogravimetric analysis (TGA, SDT Q600, TA Instruments) with a heating rate of 5 oC min-1 in 

N2 atmosphere (Figure S5).  

 

In situ Raman spectra were recorded with a Raman microscope (Renishaw inVia), using a He-Ne laser 

(632.8 nm) focused through an inverted microscope (Leica) via a 50 objective lens (Leica). Chemically 

synthesized Ni(OH)2 was prepared30 and characterized as α-Ni(OH)2 by PXRD (Figure S1b) and Raman 

(Figure S20) experiments. Then, the material was cast onto a nickel electrode for in situ Raman 

experiments.  Again, we used Ag/AgCl (Argenthal, 3 M KCl, 0.207 V versus SHE at 25 oC) as the 

reference electrode and a platinum wire as the counter electrode. In situ Raman spectra were recorded 

every 10 cyclic voltammetry (CV) cycles at rest condition (i.e., without applied voltage) just after 

potential cycling (10 mV s-1) between 0 and 0.45 V in the three alkaline electrolytes described above. 

For each spectrum, the acquisition time is 50 s in the range of 3400–3800 cm−1 with five accumulations. 

Via an appropriate filtering, the power of the laser was set below 3.7 mW. 

 

 

2.2. Computational methods 
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All the DFT simulations were spin-polarized using the projector augmented wave method31 

together with periodic boundary conditions (PBCs) as implemented in the VASP code.32-34 Following 

previous computational work on the phase stability of nickel hydroxides and oxyhydroxides,35 the 

electronic exchange-correlation was treated according to the GGA-PW91 approximation36 with the 

interpolation formula of Vosko et. al.37 To improve the description of Ni 3d electrons, we used the 

DFT+U method38-41 with the Hubbard Coulomb term U spherically averaged42 and equal to 6.0 eV, 

whereas the exchange term J was set to zero. Based on the benchmark calculations of J. Zaffran et. al.,43 

we did not included van der Waals corrections. All the calculations were carried out assuming 

ferromagnetic ordering. We have used 550 eV for the plane-wave energy cutoff. The Brillouin zone 

sampling was based on the Monkhorst-Pack scheme.44 Images of the simulated models have been 

created with the VESTA visualization program.45 Further details are provided in Section S8 of the 

Supporting Information (SI).  
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3. RESULTS AND DISCUSSION  

3.1. In situ Raman evolution of Ni(OH)2 

In situ Raman spectroscopic experiments were first carried out to investigate the phase evolution of -

Ni(OH)2 with cycling. The Raman spectrum of the pristine Ni(OH)2 sample (bottom black curves in 

Figure 2) exhibits a band intensity in the range of 3550-3680 cm-1, which corresponds to the turbostratic 

α phase.46, 47 The broad responses can be fitted by convolution of Lorentzian functions centred at 3590, 

3620, 3645, and 3665 cm-1 (Figure S22a, Table S8), which are related to O-H vibrational mode of lattice 

OH and structural water inside α-Ni(OH)2 host.47, 48 Based on the fitting results, the 3620 cm-1 peak has 

the strongest intensity among them, which is later used as an indicator of α-Ni(OH)2. After 10 cycles in 

LiOH (Figure 2a), there are no qualitative differences with respect to the pristine sample, indicating that 

the β-Ni(OH)2 phase cannot be observed via Raman at this stage. On the other hand, the subtle changes 

of Raman spectra obtained in NaOH (Figure 2b) and KOH (Figure 2c) can be convoluted by Lorentzian 

peak fitting (Figure S22d and S22e), as the peak at 3580 cm-1 corresponding to A1g O−H stretching 

mode of β-Ni(OH)2 emerges.30, 46 The intensity ratio (Iβ/Iα) between the most representative peaks of β 

(3580 cm-1) and α-Ni(OH)2 (3620 cm-1) is introduced to provide quantitative information on the phase 

transformation from α to β-Ni(OH)2 over CV cycling. The Iβ/Iα of Ni(OH)2 in NaOH and KOH after 10 

CV cycles is determined as 0.33 and 0.35, respectively. The results indicate the α-Ni(OH)2 undergoes 

electrochemical aging within the first 10 CV cycles in NaOH and KOH, but not in LiOH. As for 30 

cycles in KOH (Figure 2c), the β-Ni(OH)2 responses become more prominent, and the most intense 
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peak is at 3580 cm-1with Iβ/Iα increased to 1.85. The peak at 3601 cm-1 has been assigned to (O-H) in 

disordered β-Ni(OH)2,27, 46 which is commonly found in electrochemically induced β-Ni(OH)2 from 

repeated CV cycling of the α phase, presumably owing to the residual cations and water molecules 

inside the structure. In contrast, for both LiOH (Iβ/Iα = 0.35) and NaOH (Iβ/Iα = 0.40) the peak at 3580 

cm-1 also manifests but with a much lower intensity. Upon further cycling to 150 cycles, the Iβ/Iα 

drastically increases to 2.24 and 5.42 for NaOH and KOH, indicating predominant β-Ni(OH)2 presence 

in the sample for both electrolytes at this stage. Conversely, the β-Ni(OH)2 signals in LiOH displays a 

much lower intensity (Iβ/Iα = 0.49). The predominant presence of β-Ni(OH)2 can be observed in LiOH 

after 200 cycles, although the Iβ/Iα for LiOH (1.81) is lower than that of NaOH (3.86) and KOH (5.45). 

Complementary Raman results are reported in Section S11 of the SI.  

 

Based on the in situ Raman results, the starting material, α-Ni(OH)2, undergoes electrochemical aging 

process leading to gradual formation of -Ni(OH)2 in the electrode. These findings demonstrate a 

variation in the transformation from the  to  phase that is dependent on the alkali metal cation used 

within the electrolyte. With larger size of electrolyte cation, the degradation rate is faster. In addition, 

careful analysis of the Raman spectra highlights the coexistence of both the  and  phases during 

repeated CV cycling, which is in agreement with previous work.7, 49  
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Figure 2 In situ Raman spectra of Ni(OH)2 recorded after 10, 30, 150, and 200 CV cycles at 10 mV s−1 

in 1 M (a) LiOH, (b) NaOH, (c) and KOH. The additional numeric labels (0.33-5.45 range) in the figures 

reports the intensity ratio (Iβ/Iα) between the most representative peaks of the Lorentzian functions used 

for the β and α-Ni(OH)2 phases. Raman spectra with detailed fitting curves are shown in section S11 of 

the SI.  

 

 

Although the in situ Raman results provide informative characterization of the material and its changes 

upon CV cycling, they offer no direct quantitative insights into the stoichiometric changes and atomistic 

mechanisms involved in the degradation of the α-Ni(OH)2 phase. However, as we show below, such 

quantitative insights can be provided by (DFT) energy screening of the whole spectrum of 

stoichiometric solutions compatible with the EQCM measurements via the mass and charge balance 

equations. 

3.2 Determination of the stoichiometry for the as-prepared -Ni(OH)2 film 

We prepared the α-Ni(OH)2 film by cathodic deposition at room temperature. The diffraction pattern of 

the as-prepared material (Figure S1a) can be correlated to the PXRD pattern of α-Ni(OH)2 from the 
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database (JCPDS CARD 22-0444). Thus, the pristine material for the EQCM studies is characterized 

as α-Ni(OH)2. 

Ahead of the EQCM study of the evolution of α phase with electrochemical cycling, we focus on the 

stoichiometry of the as-prepared, electrochemically deposited, α-Ni(OH)2 film. From combined 

thermogravimetric analysis (TGA) and DFT simulations (Section S5 of SI) we determine a unitary 

stoichiometric coefficient for the structural water inside the α-Ni(OH)2 layers, in the absence of any 

intercalated cation. Thus, we determine that the formula unit for the α phase is -Ni(OH)2(H2O), which 

is in agreement with previous findings in the literature.50 It is important to remark this result contradicts 

the assumption of no intercalated H2O in the pristine α phase (i.e., -Ni(OH)2) used in a seminal EQCM 

study of this material.5  

 

3.3 γ/α redox couple 

Extensive research in electrochemical oxidation of α-Ni(OH)2 has resulted in proposition of several 

different intercalation mechanisms, depending on the chemical nature of the cation in the electrolyte 

and its pH8. Based on the chemical reaction proposed in literature5, we assume that oxidation reaction 

(charging) of the α phase into the γ one involves x water molecules (H2O), y electrolyte cations (M+ = 

Li+, Na+ or K+), and z protons (H+) as follows:  

𝛼[𝑁𝑖(𝑂𝐻)2(𝐻2𝑂)] + 𝑦𝑀+(𝐻2𝑂)𝑥/𝑦 + (2 − 𝑧)𝑂𝐻− → 

𝛾[𝑀𝑦𝐻𝑧(𝐻2𝑂)1+𝑥𝑁𝑖𝑂2] + (2 − 𝑧)(𝐻2𝑂) + (2 − 𝑧 − 𝑦)𝑒−    (1) 
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The stoichiometric coefficient x, y, and z in (1) are related via the mass (mox) and charge (Qox) change 

balance equations: 

Δ𝑚𝑜𝑥 = 𝑛[𝑦𝐴𝑊𝑀+ + 𝑥𝑀𝑊𝐻2𝑂 − (2 − 𝑧)𝐴𝑊𝐻+]           (2) 

𝑄𝑜𝑥 = 𝑛𝐹(2 − 𝑧 − 𝑦)                                 (3) 

 

mox and Qox in Eqs. (2)-(3) are measured by EQCM during the oxidation process (See Fig S6). AWM+ 

and AWH+ are the atomic weights of cations (M+) and protons (H+), respectively. MWH2O is the molecular 

mass of water. F is the Faraday constant, and n is total number of moles (of the pristine α phase) 

involved in the reaction.  

Under the assumption that Ni(OH)2(H2O) is the only product formed during galvanostatic deposition, 

and that the whole deposited film participates in the reaction, n can be calculated from the EQCM mass 

(mf) of the electrochemically deposited α-Ni(OH)2(H2O) film (of molecular weight 𝑀𝑊[𝑁𝑖(𝑂𝐻)2(𝐻2𝑂)]) 

as: 

𝑛 =
𝑚𝑓

𝑀𝑊[𝑁𝑖(𝑂𝐻)2(𝐻2𝑂)]
.                                   (4) 

Before proceeding, we reiterate that owing to the presence of intercalated water in α-Ni(OH)2(H2O), 

neglected in Ref. 5 and affecting the number of α-phase moles actually deposited, the system of 

equations (2)-(3) is bound to provide results different from assuming no intercalated water as postulated 

in Ref. 5. In the following, we quantify such deviations. 
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Having three independent variables (x, y, and z) the system of two linear equations (2)-(3) is 

mathematically underdetermined. This results in an infinite number of possible solutions for the 

stoichiometric coefficient of water (x) and its ratio to cation content (x/y) as a function of the value of z 

(stoichiometric coefficient for protons in Eqn. 1). For this reason, quantitative interpretation of EQCM 

experiments can only be put forward based on chemically educated assumptions that enable setting one 

of the three independent variables (x, y, and z) to a fixed value, leaving a system of two equations for 

two variables. For example, Cordoba-Torresi et al.5 used the information on bulk-phase solvation 

number for cations to set the (x/y) ratio equal to 3 and 1 for inserted Li+ and K+, respectively. This 

assumption, in turn, enabled determination of the remaining y and z coefficients, thence redox 

stoichiometry, based on the acquired EQCM data and Eqn. (2)-(4).5 However, the evidently different 

local environment for the cations of the electrolyte between the Ni(OH)2 layers and in the bulk-solvent 

region (Eq. 1) raises legitimate questions about the correctness of this assumption, prompting further 

(DFT-energy based) scrutiny, which we provide in the next sections.  

 

3.4 β-NiOOH/β-Ni(OH)2 redox couple 

In contrast to the α phase, β-Ni(OH)2 undergoes intercalation/de-intercalation of protons through a 

simpler redox reaction process:  

𝛽[𝑁𝑖(𝑂𝐻)2] ⇆ 𝛽[𝑁𝑖𝑂𝑂𝐻] + 𝐻+ + 𝑒−                     (5) 
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with a small change of the interlayer distance (see Fig 1a). Previous EQCM experiments for Ni(OH)2 

show that the / redox couple exhibits an opposite mass change response with respect to -Ni(OH)2/-

NiOOH.4-8 For the former, the intercalation of external cations from the electrolyte into Ni(OH)2 host 

structure during oxidation leads to mass increase, following a mass decrease from cation de-

intercalation during reduction. Conversely, protons removed from -Ni(OH)2 during oxidation lead to 

a mass decrease of the host electrode, followed by a mass increase when proton are (re)-intercalated 

into -NiOOH upon reduction. 

 

3.5 Electrochemical and EQCM characterization 

Figure 3a shows the CV measurements for the pristine α phase deposited on the EQCM electrodes 

for the first cycle. The CV profiles exhibit the typical voltammetric response of the γ/α redox couple 

with well-defined electrolyte dependent redox peaks at ca. 0.35 and 0.25 V (vs. Ag/AgCl), respectively. 

The order of cations with respect to position of the oxidation peak potential is Li+ > Na+ ≈ K+. We 

attribute the positive shift of the peak in 1 M LiOH with respect to NaOH and KOH to a Nernstian 

potential-pH effect. In fact, previous experiments demonstrate that the concentration of OH- plays an 

important role on the redox behavior of the γ/α couple.51 Here, we attribute these differences to a 

relatively lower pH of the 1 M LiOH solution in comparison with 1 M NaOH and KOH electrolytes 

(Section S2 of the SI).  
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The corresponding mass change profiles (m-E) are shown in Figure 3b. The onset of the mass 

gain is at ca. 0.32 V in the positive sweep for the oxidation of the  phase into the  one.5-7 In contrast, 

mass loss is observed at ca. 0.28 V during reduction. The order of electrolytes with respect to decreasing 

the mass change in the redox process is KOH > NaOH > LiOH. This trend correlates to the atomic 

weight of cations (i.e., K+ > Na+ > Li+), in agreement with the work of G. T. Cheek and W. E. O'Grady 

52. However, this trend is different from the findings of Cordoba-Torresi et al.5 and Bernard et al.53, 

where the mass uptake during oxidation is found to be practically independent of the cation species. 

Unfortunately, we are unable to unambiguously explain the origin of such a stark qualitative difference. 

One can only speculate that they may be attributed to differences in sample preparation and/or EQCM 

setup. As further elaborated in the SI (discussion of Figure S9), we suggest that EQCM-derived 

Δm/ΔQ calibrations could be very meaningfully started to be used as unambiguous fingerprints for the 

deposited electroactive material. This in turn would greatly benefit future comparison and discussion 

of independent experiments and results on expectedly the same material. 
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Figure 3 (a) cyclic voltammograms and (b) mass change profiles of α-Ni(OH)2(H2O) deposited on the 

EQCM gold electrodes during the first cycle in 1 M LiOH, NaOH and KOH (scan rate: 5 mV s−1). 

 

The role of the electrolyte cation for the details of the electrochemical aging is unambiguously revealed 

by the EQCM-measured (Δm−E) traces under continuous potential cycling. Figure 4 shows both CV 

and mass change profiles for selected cycles at 10 mV s−1 following 10 initial cycles. For the LiOH 

electrolyte (Figures 4a and 4d), the EQCM profiles exhibit the typical response of the / redox couple 

although the magnitude of the current (Figure 4a) and the mass peaks (Figure 4d) slightly decrease 

with cycling. For NaOH and KOH (Figures 4b and 4c), the reduction and oxidation peak currents 

remain consistent between CV 11th and 20th cycle. Conversely, the mass change profiles (Figures 4e 
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and 4f) show a drop followed by the gain of mass during the oxidation of the  phase from 0.35 to 0.38 

V on the positive sweeps, which is attributed to the oxidation of -Ni(OH)2 to -NiOOH during which 

protons are removed, as shown in Eqn. (5).6 The reduction of -NiOOH is manifested by a minor mass 

gain at ca. 0.27 V due to the insertion of proton. Such a mixed electrochemical response demonstrates 

the coexistence of the γ/α and β/β redox couples that are found to start at 6th cycle (NaOH) and 7th cycle 

(KOH), see Figure S3 in the SI. In contrast to LiOH, we obtain a net mass gain upon CV cycling, ca. 

12 and 17.5 ng per CV cycle for NaOH and KOH, respectively, suggesting that intercalated Na+ and K+ 

ions are not fully removed from the host structure during reduction, thus increasing the amount of 

residual mass at the end of each CV cycle. EQCM results were also investigated by massograms, which 

reports the rate of mass change (dΔm/dt) as a function of the electrode potential (Figure S2). In LiOH, 

we observe a pair of peaks (one for charge and one for discharge) characteristic of the / redox 

transition. In contrast, we observe two pairs of peaks (two for charging and two for discharging) when 

cycling the samples in NaOH and KOH, which indicate the coexistence of the / to / redox couples. 

In addition, while the magnitude of the peaks corresponding to the / transition decreases with the 

cycles, the opposite is observed for the / response, thus demonstrating the  
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Figure 4 (a−c) cyclic voltammograms and (d−f) mass change profiles of α-Ni(OH)2(H2O) deposited on 

EQCM gold electrodes for various cycles measured at 10 mV s−1 following 10 initial cycles at 5 mV s−1 

(see Figures 3 and S3) in (a, d) in 1 M LiOH, (b, e) NaOH and (c, f) KOH. Values for Δm are referred 

to the accumulated mass at the beginning of 11th cycle.  

 

occurrence of the phase transformation and ensuing electrochemical aging of the material. By 

measuring the change in the magnitude of the massograms peaks with cycling, the rate of phase 

transformation from / to / is the fastest by means of potential cycling in KOH, while the absence 

of / signal for LiOH demonstrates the best retention ability. These results indicate that the Ni(OH)2 

phase transformation is strongly dependent on the electrolyte cation species with the degradation rate 

decreasing as K+ > Na+ > Li+, in agreement with the general trend as observed for the in situ Raman 

spectroscopic results. 
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3.6 DFT-energy assisted EQCM stoichiometric resolution during cycling.  

The results in the previous two Sections demonstrate that the degradation of the α phase takes place 

during the first 10 cycles only when the material is cycled in either NaOH or KOH. However, owing to 

the stoichiometry of the redox process, the EQCM measurements and the mass and charge balance 

equations (2)-(3) cannot provide any unambiguous quantitative insight on the change of stoichiometry 

(x,y,z) for the electroactive material during cycle, leaving the atomistic mechanisms of the degradation 

unquantified.  

Below we illustrate a procedure to efficiently sample and screen, on a DFT-energy basis, the 

complete set of stoichiometric coefficients (x, y, z) that are solution to the mass and charge balance 

equations (2)-(3) for different electrochemical cycling. The advantage of available EQCM 

measurements is self-evident in that DFT energy screening of the possible stoichiometry for the 

electroactive material during cycling does not need to be carried out for any arbitrary composition in 

Eq. (1). Instead, it is limited only to those stoichiometric coefficients (x, y, z) that are compatible with 

the EQCM measurements, greatly reducing the sampling and computational efforts.  

 

3.6.1 Initial oxidative charging 

Figure 5a and 5b shows the (infinite) possible solutions for y and x/y, respectively, as a function of the 

number of protons z that are compatible, via Eqs. (2)-(3), with the  
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Figure 5 The EQCM-derived (infinite) possible solutions (dashed lines) for (a) the stoichiometric 

coefficients of cations (y), and (b) the water/cation (x/y) ratio as a function of the amount of protons (z) 

in -MyHz(H2O)1+xNiO2 (M=Li+, Na+, K+) following the first charge process. The empty symbols mark 

the stoichiometries used for the DFT-energy screening. The bracketed numbers label the models as in 

Table S6. (c) Computed DFT formation energies per formula unit of NiO2 as a function of the 

water/cation (x/y) ratio. Same labelling as in (b).  
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measured Δm and Δq values for α-Ni(OH)2(H2O) during the first oxidation. It is worth noting that since 

the α→γ oxidation requires intercalation of cations [M+ in Eq. (1)] of stoichiometric coefficient y, we 

discarded any negative solution for y (y<0). Consistent with this choice, the sampling of z (the 

stoichiometric coefficient for protons, H+, inside the γ phase in Eq. 1) was limited to the range between 

0 (no protons inside the γ phase) and ~0.5 (largest z compatible with a y>0 value).  

In contrast to chemical intuition, negative values of x/y (x<0, y>0) are also possible solutions to the 

system of equations (2)-(3). Note that, since y>0, a negative value of the x/y ratio indicates that x moles 

of structural water in the pristine α-Ni(OH)2(H2O) are substituted by y moles of intercalated cations 

during the oxidation (charging) process. That is, cation intercalation displaces structural water inside 

the host. Surprisingly, this regime of perhaps counter-intuitive, yet mathematically sound, solutions to 

Eqs. (2)-(3) has so far been overlooked in the specialized literature.  

 

By selecting 5-6 stoichiometries (symbols in Figure 5) among the infinite possible solutions of the mass 

and charge balance equations (Eqs. 2-3) for the first oxidation cycle, it is possible to define 

corresponding atomistic models for -MyHz(H2O)1+xNiO2 (see Section S8 in the SI for details). 

Computed DFT formation energies for these models as a function of x/y (Figure 5c) reveal that, 

regardless of the electrolyte, the energetically favored stoichiometries correspond to z = 0 and the lowest 

possible x/y ratio (Li+: 0, Na+: -0.6, K+: -1.34). These results suggest that whereas insertion of Li+ ions 

occurs without H2O removal from the α-Ni(OH)2(H2O) host, displacement of structural H2O from the 
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host during intercalation of Na+ and K+ ions is energetically favored. They also indicate that full 

deprotonation upon charging (z=0 in Eq. 1) is energetically favored. Identification of the energy favored 

stoichiometric coefficients x, y, and z following the first oxidation, leads directly to the atomistic 

mechanism for the first charging process, that is presented in detail in Section S9 of the SI.  

 

It is worth noting that, in spite of the different voltage scan rate (5 mV s-1 here, 10 mV s-1 in Ref. 5), 

negative x/y ratios are solution also to the charge and mass balance equations for the EQCM 

measurements in Ref. 5 (refer to Figure 4 in Ref. 5). However, such a range of solution was overlooked 

as deemed electrochemically unsound.5 The existence of negative x/y solutions for two set of EQCM 

experiments acquired with different voltage scan rates indirectly suggests that, at least qualitatively, the 

mechanism for ion intercalation in the two set of experiments should be similar with a contained role 

for kinetics aspects. Detailed analysis of the EQCM results for two different voltage scan rates (5 and 

10 mV s-1, Figure S7 to S11 in the SI) reiterates this point.  

 

3.6.2 Initial discharge and successive charge-discharge cycles 

In principle, DFT-energy screening of the solutions compatible with EQCM measurements and 

charge and mass balance equations can be applied also to the reductive discharge from the γ to the α 

phase and successive γ/α electrochemical cycling.  
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In practice, however, the task is complicated by two factors. First, the lack of atomically-resolved 

characterization of the sample at each cycle prevents direct quantification of the amount of electroactive 

material participating in the (de)intercalation reaction [needed in Eqs. (2)-(4)]. Second, as shown by the 

EQCM measurements in Figure 4 and Section S6 in the SI, the redox processes studied are not fully 

reversible. Such partial reversibility, manifesting in different mass and charge changes between 

oxidation and reduction, leads to an overall accumulation of material upon cycling. As a result, strictly, 

we lack of a fully quantitative way to determine both the amount of moles involved in the reaction [Eq. 

(4)] and differences in the moles of active material between oxidation and reduction. Although the 

measured Coulomb Efficiency (CE, Table S3) in the 85-68% range is noticeably lower than 100%, it 

changes by no more than 8% between consecutive cycles (KOH cycle 10 to 11 in Table S3), in line 

with the trends visible in Fig. S7 and S8 for the same electrochemical cycles. 

 

Given the complexity of the problem, and the contained changes of CE between consecutive cycles, to 

a first approximation we opted for a conservative description and assumed that (i) the amount of moles 

(n) of the electroactive material remains the same during cycling. That is, the residual accumulated mass 

following one charge-discharge cycle (Figure S10 in the SI) remains in the charged γ-phase and, 

accordingly, does not participate in the next oxidative process. (ii) Charges responsible for the charge 

and discharge processes are the same (i.e. no current leakage is present), and (iii) as per Eqn. (1), the 

computed x/y ratio following the previous oxidation is maintained during the reduction process. We 
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refer the interested reader to Section S10 in the SI for an extensive description of the iterative procedure 

used to define the stoichiometry of the electroactive material during the first six charge-discharge 

cycles. Finally, to reduce the computational costs, and based on the calculated energy favorability of 

the absence of protons (z = 0) inside the γ phase following oxidation (Figure. 5c), a z=0 coefficient was 

used for all the models of the charged γ phase at successive electrochemical cycles. 

 

Figure 6a shows the energetically favored stoichiometries for the charged γ phase. Although the 

amount of intercalated Li+ ions (y) increases with the cycle number, the amount of structural water (x) 

remains practically unchanged. Conversely, for Na+ and K+ ions, the increase in intercalated ions (y) 

with cycle number is accompanied by a parallel reduction of structural water (x) in the host structure. 

The computed effect is larger going from Na+ to K+ ions.  

 

 

Figure 6b shows the energetically favored stoichiometries for the discharged α phase as a function of 

the cycle number. The amount of residual hosted cations (y) increases with the cycle number. Increase 

of the cation content (y) is accompanied by reduction in the amount of protons (z) in the host materials. 

Whereas the amount of structural water (x) remains practically the same for Li+ during electrochemical 

cycling, it gradually decreases for Na+ and K+. The progressive increase in the number of intercalated 

cations (y) is balanced by a decrease in the amount of protons (z) in order to maintain the average nickel 
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oxidation state equal to two. This feature further demonstrates that charge/discharge of the / couple 

in NaOH and KOH electrolytes is not completely reversible.  
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Figure 6 Energy-favored stoichiometries for (a) charged γ-My(H2O)1+xNiO2 and (b) discharged α-

HzMy(H2O)1+xNiO2 for the first six cycles. M= Li+, Na+ or K+. (c) Formation energy per formula unit at 

charged (filled symbols) and discharged (empty symbols) states for the 1st, 3rd and 6th cycle. The 

numerical labels (0.03 to 1.03) indicate the energy-favored amount of structural water (1+x) in the host 

structure. The magenta empty circle and the dashed orange line mark the formation energy of the 

pristine -Ni(OH)2 (H2O) and β-Ni(OH)2, respectively. 

 



31 
 

 

The computed lowest formation energy per formula unit for the first, third and sixth cycles are 

shown in Figure 6c. Formation energies for the initial charged γ state are lowest for insertion of Li+ and 

highest for K+, with intermediate values for Na+. This trend is maintained for all the cycles considered. 

 

Turning to the discharged α state, the formation energy of the structure containing Li+ remains 

practically constant due to the similar content of residual Li+. On the other hand, the formation energy 

decreases gradually with the cycle number for Na+ and K+, due to the increase of residual cations (y) in 

the structure (Figure 6b). The x/y ratio remains practically equal to zero for Li+, while it gradually 

increases for Na+ and K+ with the cycle number (see Figure S17a). Moreover, the energy-favored 

stoichiometries of the charged states indicate a tendency for the average oxidation state of nickel atoms 

to be reduced with the cycle number (see Figure S17b). This is due to a loss in capacity for the material 

as the measured accumulated charge decreases with the cycle number (see Table S3 and Figure S8).    

 

Although the DFT modelling has been carried out resting on the aforementioned assumption (i)-

(iii), the energy favorability of progressive cation-induced water displacement with cycling is clearly 

visible, pointing to irreversible removal of structural water being the dominant factor in the 

degradation and aging of the α-phase. Furthermore, the presented EQCM-compliant DFT results 

clearly demonstrate that, pending the approximation used (Section S10 in the Supporting 
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Information), the EQCM-measured mass-changes do not match the amount of ions intercalated. 

Instead, they include also the amount of H+ and structural H2O displaced, in an irreversible manner, 

by the intercalation process.  

 

SEM images take of the deposited Ni(OH)2 onto the EQCM Au quartz crystal are shown in Figure 

S18. Little variation in morphology is observed on the pristine coating, however severe cracks are 

observable after cycling in all LiOH, NaOH, and KOH media, which is caused by the generated shear 

stress upon volume change during potential cycling. These results are in line with the calculated 

progressively larger structural changes between the γ and α phases going from LiOH to NaOH, to KOH 

(Figure S19). 

 

3.6.3 Amended redox phase diagram for Ni(OH)2 

Based on the experimental and computational results, we propose a modified version of the Bode 

diagram for the different phases of Ni(OH)2 (Figure 1b). Starting with the / redox couple, first the 

solvated cations are driven to the electrode surface under the applied potential. Second, the hydration 

sphere of water molecules around the alkali metal cation is stripped away prior to insertion into the host 

structure, as previously suggested by Cheek et al.52 Third, the inserted cations induce the displacement 

of structural water molecules from the inter-layer region, accompanied by removal of all the protons 

(H+) from the host to form water (following combination with available OH-). Conversely, the 
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mechanism for reduction process is proposed to take place through the removal of cations from the host 

structure followed by the re-insertion of water molecules into the inter-layer regions of the host. 

Overall, the experimental and DFT results leads to the conclusion that the stability of the / redox 

couple is governed by the retention of structural water following electrochemical (de)intercalation of 

cations. As detailed above, such retention is found to be strongly dependent on the nature of the 

intercalated cation, that is, electrolyte used. On this basis, the structural water molecules between the 

α–Ni(OH)2 layers can be seen as an ‘amorphous glue’ needed to preserve the stability of the randomly 

stacked α phase structure.22 Therefore, removal of structural water molecules from the α-Ni(OH)2 

structure during the charge/discharge process appears to be the driving factor for the phase 

transformation (aging) into the β-Ni(OH)2 phase.  

 

Since the water content inside the host structure remains almost unchanged following 

insertion/removal of Li+ in the first six cycles, the stability of the / redox couple in LiOH is larger 

with respect to (structural water displacing) NaOH and KOH electrolytes.  

At the charged γ state in the sixth cycle, the amount of structural water in the host (x) is reduced 

to 0.47 for Na+ and to almost zero for K+ (0.03, Figure 6c). Clearly, if water molecules cannot be re-

inserted back quickly enough into the nickel structure once the cations are removed, the structure will 

be prone to collapse, leading to the transformation into the β Ni(OH)2 phase. Consistent with the larger 

amount of water displaced from the host, degradation is found to be more severe as the cation size and 
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cation to removed water ratio (x/y in Fig. S17) increases. Based on these results, synthetic routes to 3D-

porous (rather than layered) Ni(OH)2 substrates or exploration of hydrogen-bonding forming agents, 

chemically or electrochemically inserted among Ni(OH)2 layers to prevent their collapse, emerge as 

potentially rewarding directions for follow up studies.   
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4. CONCLUSIONS 

By development and application of a new approach combining in situ Raman and DFT-energy 

assisted interpretation of EQCM measurements, we have investigated the changes in stoichiometry, and 

ensuing degradation, for α-Ni(OH)2(H2O) during electrochemical cycling in different LiOH, NaOH, 

KOH electrolytes. Quantitative resolution of the stoichiometric changes for the electroactive material 

during cycling enables unambiguous identification of a hitherto overlooked mechanism leading to 

displacement of structural water and protons from the layered host upon electrochemical intercalation 

of the electrolyte cation. The partially irreversible nature of the redox process leads to progressive 

depletion of structural water from the host upon continued cycling, promoting the collapse of the 

pristine α structure into the electrochemically less active β phase. Due to the larger amount of water 

displaced from the host per intercalated ion, the degradation process is found to become faster and more 

severe as the size of the electrolyte cation increases (Li+ < Na+ < K+). The presented experimental and 

computational results significantly extend the available atomistic understanding of electrochemical 

phase transformations of α-Ni(OH)2(H2O), pointing the way for new research in improved solutions 

based on stabilization of the substrate. We anticipate the new approach presented, findings, and 

generated insight to be readily transferable to the research in electrochemical applications and, more 

generally, to the many ion-intercalation hosts presently investigated for electrochemical energy storage 

and conversion applications.  
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