

For peer review only. Do not cite.

Craniodental and postcranial characters of non-avian Dinosauria often imply different trees

Journal:	Systematic Biology
Manuscript ID	USYB-2018-207
Manuscript Type:	Regular Manuscript
Date Submitted by the Author:	25-Sep-2018
Complete List of Authors:	Li, Yimeg; University of Bath, Biology and Biochemistry Ruta, Marcello; University of Lincoln, School of Life Sciences Wills, Matthew; University of Bath, Biology and Biochemistry
Keywords:	Dinosauria, Partition homogeneity, Homoplasy

SCHOLARONE[™] Manuscripts

1 2	Craniodental	and postcranial characters of non-avian Dinosauria often imply different trees
3		
4		Yimeng Li', Marcello Ruta ² , & Matthew A. Wills'
5		
6 7	Author Affiliations	The Milner Centre for Evolution, The University of Bath, The Avenue, Claverton Down, Bath BA2 7AY, UK
8 9		² School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
10		
11 12	Correspondence:	Matthew A. Wills
13		The Milner Centre for Evolution
14		The University of Bath
15		The Avenue
16		Claverton Down
17		Bath BA2 7AY
18		United Kingdom
19		
20		Telephone: 01225 383504
21		Fax: 01225 386779
22		E-mail: m.a.wills@bath.ac.uk
23		
24		
25	Submitted:	25 th August, 2018
26		
27		

28 Craniodental and postcranial characters of non-avian Dinosauria often imply

29 different trees

30

31 Yimeng Li, Marcello Ruta, Matthew A Wills*

32 *Corresponding author

33

34 Abstract

Despite the increasing importance of molecular sequence data, morphology still makes an important 35 36 contribution to resolving the phylogeny of many groups, and is the only source of data for most 37 fossils. Most systematists sample morphological characters as broadly as possible on the principle of 38 total evidence. However, it is not uncommon for sampling to be focussed on particular aspects of 39 anatomy, either because characters therein are believed to be more informative, or because 40 preservation biases restrict what is available. Empirically, the optimal trees from partitions of 41 morphological data sets often represent significantly different hypotheses of relationships. Previous 42 work on hard-part versus soft-part characters across animal phyla revealed significant differences in 43 about a half of sampled studies. Similarly, studies of the craniodental versus postcranial characters 44 of vertebrates revealed significantly different trees in about one third of cases, with the highest 45 rates observed in non-avian dinosaurs. We test whether this is a generality here with a much larger 46 sample of 81 published data matrices across all major dinosaur groups. Using the incongruence 47 length difference (ILD) test and two variants of the incongruence relationship difference (IRD) test, 48 we found significant incongruence in about 50% of cases. Incongruence is not uniformly distributed 49 across major dinosaur clades, being highest (63%) in Theropoda and lowest (25%) in Thyreophora. 50 Our partition tests are not sensitive to the size of the tree, to differences in partition size, to the 51 amount of missing data in the matrix, difference in the amount of missing data between partitions or 52 the difference in levels of homoplasy between partitions. Incongruence must therefore reflect 53 differences in *patterns* of homoplasy between partitions, which may itself be a function of

- 54 modularity and mosaic evolution. Finally, we implement new tests to determine which partition
- 55 yields trees most similar to those from the entire matrix. Despite no bias across dinosaurs overall,
- 56 there are striking differences between major groups, with the craniodental characters of
- 57 Ornithischia and the postcranial characters of Saurischia yielding trees most similar to the 'total
- 58 evidence' trees derived from the entire matrix.

59 Introduction

- 60 The fossil record is notoriously incomplete, not only in terms of diversity and species richness
- 61 (Verriere et al., 2016; Davies et al., 2017; Tutin and Butler, 2017), but also with respect to
- 62 stratigraphy (Maxwell and Benton, 1990; Dunhill et al., 2012; Brocklehurst and Froebisch, 2014;
- 63 O'Connor and Wills, 2016b; Verriere et al., 2016) palaeobiogeography (Lieberman, 2002; Ksepka and
- 64 Boyd, 2012; Davies et al., 2017), palaeoecology (Stanley et al., 1989; Jablonski, 2005) and behaviour
- 65 (Hsiang et al., 2015; Daley and Drage, 2016; Fan et al., 2017). However, it is organismal
- 66 incompleteness the selective preservation of tissues and body regions that impinges most
- 67 directly on attempts to infer phylogeny (Kearney and Clark, 2003; Cobbett et al., 2007; Sansom,
- 68 2015). The fossil record of non-avian dinosaurs mostly comprises bones and other hard parts (Wills
- 69 et al., 2008a; Mannion and Upchurch, 2010), but there are further biases towards the preservation
- of more heavily mineralised and massive elements (e.g., limb bones) at the expense of more
- 71 frangible and delicate structures (e.g., skulls). Inferred relationships may differ substantially
- 72 depending upon which subsets of characters are used, but palaeontologists may nonetheless wish to
- infer the relationships of dinosaurs described from partial skeletal material.

74 We therefore address four related questions using a sample of 81 cladistic taxon-character matrices

- 75 published between 2011 and 2017, each comprising both craniodental and postcranial characters.
- 76 Firstly we determine whether levels of homoplasy differ between characters of the skull and
- dentition on one hand and characters pertaining to the body on the other. Any such difference
- 78 might be used to argue for the superiority of one body region over the other for phylogenetic

79	inference (Pettigrew, 1991; Sanchez-Villagra and Williams, 1998; Williams, 2007; Song and Bucheli,
80	2010; Mounce et al., 2016; Parker, 2016). Secondly we use established (incongruence length
81	difference, ILD; Farris et al., 1994) and more recent (Mounce et al., 2016; Sansom et al., 2017) tests
82	to determine whether the most parsimonious trees inferred from craniodental and postcranial
83	character partitions are significantly different (Mounce et al., 2016; Sansom et al., 2017). Thirdly, we
84	ask whether there are differences in the incidence of significant craniodental/postcranial
85	incongruence across major taxonomic groups. Fourthly, we present a novel test to determine
86	whether the tree(s) inferred from craniodental characters or the tree(s) derived from
87	postcraniodental characters are more similar to those derived from the entire matrix, with the latter
88	being used as a proxy for the 'true' phylogeny. We do this by resampling from the partitions and the
89	entire matrix in order to control for differences in the number of characters in each partition.
90	
01	What is the rationals for comparing the signals within partitions of characters?
91	what is the rationale for comparing the signals within partitions of characters?
91 92	Suites of morphological characters are often functionally and developmentally integrated into
91 92 93	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to
91 92 93 94	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to different selection pressures and consequently evolve at different speeds (J, 1993; Lue et al., 2010;
91 92 93 94 95	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to different selection pressures and consequently evolve at different speeds (J, 1993; Lue et al., 2010; Parker, 2016). This has consequences for the rate at which new character states are utilised and the
91 92 93 94 95 96	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to different selection pressures and consequently evolve at different speeds (J, 1993; Lue et al., 2010; Parker, 2016). This has consequences for the rate at which new character states are utilised and the subsequent exhaustion of character space (Wagner, 1995; Wagner, 1997; Oyston et al., 2015;
91 92 93 94 95 96 97	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to different selection pressures and consequently evolve at different speeds (J, 1993; Lue et al., 2010; Parker, 2016). This has consequences for the rate at which new character states are utilised and the subsequent exhaustion of character space (Wagner, 1995; Wagner, 1997; Oyston et al., 2015; Oyston et al., 2016), resulting in different levels of homoplasy. For example, it has been shown that
91 92 93 94 95 96 97 98	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to different selection pressures and consequently evolve at different speeds (J, 1993; Lue et al., 2010; Parker, 2016). This has consequences for the rate at which new character states are utilised and the subsequent exhaustion of character space (Wagner, 1995; Wagner, 1997; Oyston et al., 2015; Oyston et al., 2016), resulting in different levels of homoplasy. For example, it has been shown that the dental characters of mammals are particularly labile and prone to convergence/reversal
91 92 93 94 95 96 97 98 99	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to different selection pressures and consequently evolve at different speeds (J, 1993; Lue et al., 2010; Parker, 2016). This has consequences for the rate at which new character states are utilised and the subsequent exhaustion of character space (Wagner, 1995; Wagner, 1997; Oyston et al., 2015; Oyston et al., 2016), resulting in different levels of homoplasy. For example, it has been shown that the dental characters of mammals are particularly labile and prone to convergence/reversal (Sanchez-Villagra and Williams, 1998; Sansom et al., 2017), which is explicable in terms of the strong
91 92 93 94 95 96 97 98 99 99 100	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to different selection pressures and consequently evolve at different speeds (J, 1993; Lue et al., 2010; Parker, 2016). This has consequences for the rate at which new character states are utilised and the subsequent exhaustion of character space (Wagner, 1995; Wagner, 1997; Oyston et al., 2015; Oyston et al., 2016), resulting in different levels of homoplasy. For example, it has been shown that the dental characters of mammals are particularly labile and prone to convergence/reversal (Sanchez-Villagra and Williams, 1998; Sansom et al., 2017), which is explicable in terms of the strong functional and biomechanical constraints upon the form and arrangement of teeth. This particular
91 92 93 94 95 96 97 98 99 100 101	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to different selection pressures and consequently evolve at different speeds (J, 1993; Lue et al., 2010; Parker, 2016). This has consequences for the rate at which new character states are utilised and the subsequent exhaustion of character space (Wagner, 1995; Wagner, 1997; Oyston et al., 2015; Oyston et al., 2016), resulting in different levels of homoplasy. For example, it has been shown that the dental characters of mammals are particularly labile and prone to convergence/reversal (Sanchez-Villagra and Williams, 1998; Sansom et al., 2017), which is explicable in terms of the strong functional and biomechanical constraints upon the form and arrangement of teeth. This particular bias is unfortunate given the predominance of teeth in the mammal fossil record. More generally,
91 92 93 94 95 96 97 98 99 100 101 102	Suites of morphological characters are often functionally and developmentally integrated into modules (Clarke and Middleton, 2008; Klingenberg, 2008; Lue et al., 2010) that can be subject to different selection pressures and consequently evolve at different speeds (J, 1993; Lue et al., 2010; Parker, 2016). This has consequences for the rate at which new character states are utilised and the subsequent exhaustion of character space (Wagner, 1995; Wagner, 1997; Oyston et al., 2015; Oyston et al., 2016), resulting in different levels of homoplasy. For example, it has been shown that the dental characters of mammals are particularly labile and prone to convergence/reversal (Sanchez-Villagra and Williams, 1998; Sansom et al., 2017), which is explicable in terms of the strong functional and biomechanical constraints upon the form and arrangement of teeth. This particular bias is unfortunate given the predominance of teeth in the mammal fossil record. More generally, the craniodental and postcranial characters of vertebrates have been shown to contain significantly

104	incongruence is partly a function of the extent to which the skull and the rest of the body are
105	biomechanically decoupled (Ji, Q. et al. 1999). Fishes (lacking a functional neck) typically show
106	integration, while the most striking incongruence has been observed in some of the long-necked
107	dinosaur groups.
108	As a prerequisite for combining data in early, multi-gene molecular analyses, systematists commonly
109	checked for homogeneity of signal across loci using a variety of partition tests (Templeton, 1983;
110	Rodrigo et al., 1993; Farris et al., 1994). This practice is rarely implemented nowadays, and for
111	principally three reasons (Cunningham, 1997). Firstly, as analyses of increasingly large numbers of
112	genes graded into phylogenomic studies, the concept of the contingent inclusion of individual genes
113	became largely obsolete. Secondly, more advanced analytical methods were developed that allow
114	heterogeneous rates across sites and branches to be modelled rigorously (Damgaard, J. 2012).
115	Thirdly, a consensus emerged amongst systematists in favour of the simultaneous analysis of all
116	available character data, on the principle of 'total evidence' (Kluge, 1989), not least because of
117	'hidden support'. This is the phenomenon whereby signals that are weak within particular partitions
118	of the data may be common to many (or all) such partitions, such that they become the dominant
119	signal when all partitions are analysed together (Kluge, 1989; Gatesy et al., 1999; Gatesy and
120	Arctander, 2000; Wahlberg et al., 2005; O'Leary and Gatesy, 2008; Padial et al., 2010; Damgaard,
121	2012; Mounce et al., 2016).
122	Despite the ascendance of molecular phylogenetics, morphological character data can still
123	contribute to our understanding of the relationships of many groups (Houde, 1994; Wiens, 2004;
124	O'Leary and Gatesy, 2008; Nicolalde-Morejon et al., 2009; Gainett et al., 2014; Lopardo and
125	Hormiga, 2015). Moreover, for extinct and particularly for fossil groups, morphology is usually the
126	only direct source of phylogenetic data, notwithstanding exceptional cases utilising sub-fossil DNA
127	(Dabney et al., 2013; Shapiro and Hofreiter, 2014; Orlando et al., 2015).

128

129 Materials & Methods

130 Datasets

131	The character matrices utilised here were obtained from peer-reviewed papers published between
132	2000 and 2017. We utilised Graeme Lloyd's online compilation of matrices (Lloyd, 2018) and
133	searches of Web of Science using the keywords phylog* and evolution* in combination with any
134	higher taxonomic name of non-avian dinosaurs. We sought to sample all major dinosaur groups,
135	including matrices of varying dimensions sampled at different taxonomic levels. We initially included
136	104 matrices, but these were further checked for overlap since systematists often repurpose data or
137	otherwise add modest numbers of novel taxa and sometimes characters to existing studies. In order
138	to remove any such pseudoreplication from our sample, each data set was compared with every
139	other, and for each pair the number of matrix cells in common (replicated taxa and characters) was
140	expressed as a percentage of the total number of cells in the smaller of the two matrices. For pairs
141	with 20% or more overlap, the least inclusive (or otherwise the oldest) was removed from
142	consideration, reducing our sample to 81 data sets (See Supplementary Materials 1 for the
143	percentage of character and species overlap between all pairs). Character lists were then used to
144	define partitions. The "craniodental" partition included all characters pertaining to the skull and
145	dentition. The "postcranial" partition encompassed all characters of the vertebral column, girdles
146	and limbs.
147	Poorly known taxa, or those that are otherwise scored for only a small number of characters, can be
148	highly mobile within parsimony trees. This, in turn, can result in large numbers of MPTs, prohibitively
149	extending search times, and yielding poorly resolved consensus trees (Wilkinson, 1995; Mounce et

al., 2016). Where such complications were found in our analyses, the matrix was edited by removing

151 taxa with more than 40% of characters scored as missing ("?") or non-applicable ("-") in either

- 152 partition. Any characters rendered uninformative or invariant by this process were also deleted
- 153 (Wiens, 1998). On average, 20 taxa and 18 characters were removed from each dataset in this way,

154 equating to 33% of taxa and 7% of characters. For a list of characters and taxa discounted, see

- 155 Supplemenary Materials 2. Matrices were manipulated using Mesquite Version 3.04 (build 725) for
- 156 Macintosh. The resulting sample of 81 matrices contained an average of 26 taxa scored for a mean
- 157 of 115 craniodental and 133 postcranial characters.

158 Measuring homoplasy

- 159 The ensemble Consistency Index (CI)(Kluge and Farris, 1969) is a commonly used and well-
- 160 characterised index of homoplasy, and was calculated here to compare levels of homoplasy across
- 161 partitions. However, the CI suffers from well-documented drawbacks, notably its correlation with
- 162 the number of characters and taxa in the dataset (Archie, 1989; Mounce et al., 2016). We remove
- 163 these biases empirically here, using the residuals from regression analyses of CI on both matrix
- 164 dimensions. In addition, we report the ensemble Retention Index (RI)(Kluge and Farris, 1969) as a
- 165 measure of retained synapomorphy. All indices were calculated in PAUP* 4.0a.154 for Macintosh
- 166 (Swofford, 2017).

167 Statistical tests for congruence

166	(Swofford, 2017).
167	Statistical tests for congruence
168	The Incongruence Length Difference (ILD) test (Mickevich and Farris, 1981; Farris et al., 1995) is a
169	widely implemented partition homogeneity test based upon the difference in most parsimonious
170	tree length for a matrix when analysed as a whole, and the sum of MPT lengths for the partitions of
171	the matrix analysed in isolation (MPTs) (Norman et al.) More formally, the ILD for a bipartitioned
172	matrix is given by $L_{AB} - (L_A + L_B)/L_{AB}$, where L_{AB} is the optimal tree length (in steps) from the analysis of
173	the entire matrix (the total evidence analysis), and L_{A} and L_{B} are the optimal tree lengths for
174	partitions A and B analyzed independently (Figure 1). This ILD is compared with a distribution of ILD
175	values (here, 999) for random bipartitions of the matrix in the same proportions as the original, and
176	a p value is derived from the fraction of these as large or larger than the original. The ILD test has
177	been criticized on philosophical grounds, and because it has a high Type I error rate(Dolphin et al.,
178	2000; Barker and Lutzoni, 2002; Ramirez, 2006; Sansom et al., 2017). However, it remains very

widely applied (Mounce et al., 2016) and is used here as a measure of matrix partition incongruencerather than as a criterion for combining those partitions.

181	In addition to the ILD test, we also implemented the incongruence relationship difference (IRD) test
182	of Ruta & Wills (2016) and Mounce et al. (2016). This is analogous to the ILD test in that a measure
183	of incongruence for the original data partition is compared with a distribution of incongruence
184	values for a large number of random partitions. However, whereas for the ILD incongruence is
185	measured in terms of additional tree length, a tree-to-tree distance metric is used for the IRD. Many
186	such metrics are available, but here we used the symmetrical-difference (RF) distance
187	(IRD _{RF})(Robinson and Foulds, 1981) and matching (MD) distance (IRD _{Matching}) (Lin et al, 2012). The RF
188	distance is well characterised and widely applied but prone to saturation, while the matching
189	distance has a particularly favourable distribution and other theoretically desirable properties. It is
190	unusual for a single most parsimonious tree (Norman et al.) to result from a parsimony search, and
191	we therefore followed Mounce et al. (2016) in calculating the mean nearest neighbour distance
192	(NND) between each tree resulting from one partition and the most similar tree in the other
193	partition. In addition, we calculated the distances between strict, semi-strict and 50% majority rule
194	(plus compatible groupings) trees for the two partitions, although we caution that these offer poor
195	or summaries of the differences between sets of trees (Mounce et al., 2016). IRD tests were initially
196	based upon 99 random partitions of the data (c.f. 999 for the computationally much faster ILD).
197	However, in those cases where p≤0.10, we re-ran the test for that matrix using 499 random
198	partitions).
199	All parsimony searches were implemented using 25 random additions of taxa, followed by tree
200	bisection and reconnection branch swapping, and retaining 10 trees at each step. We also
201	condensed the resulting most parsimonious trees by collapsing branches with a minimum length of
202	zero (Goloboff's 'amb-') and removing all but one of any consequently identical trees. To expedite
203	the searches, we limited the number of trees stored in memory to 100,000, and for the IRD tests we

calculated nearest neighbour tree-to-tree distances based upon no more than 1,000 most
parsimonious trees (MPTs) from each partition (1,999,000 tree-to-tree distances calculated for each
metric in order to find the minima). We further checked that fewer than 1,000 MPTs were found
from the analysis of the original partitions, and from no more than 5% of the randomised partitions.
Consensus trees were calculated from all MPTs, up to the 100,000 limit. All analyses were carried
out in PAUP* 4.0a.154 for Macintosh (Swofford, 2017), and with the use of scripts (see ESM) that
produced batch files for PAUP* and summarised it's logged output.

211

212 Determining whether craniodental or postcraniodental characters yield trees more similar to

213 those from the entire data matrix

214 In cases where the tree(s) inferred from craniodental and postcranial characters differ (and 215 especially where these differences are significant), it is reasonable to ask which tree is likely to be 216 most accurate. Unfortunately, there are no objective tests of phylogenetic accuracy, except in those 217 exceptional cases where phylogeny is known (e.g., laboratory cultures or simulated data sets). One 218 approach for extant taxa (Sansom et al., 2017) is to determine the congruence of suites of 219 morphological characters with a robustly supported molecular tree for the same taxa (an 220 independent data source). However, this assumes that the molecular tree is likely to offer the best 221 approximation of the truth: a standpoint defended in many guarters (Scotland et al., 2003; Olmstead 222 and Scotland, 2005; Wortley and Scotland, 2006; Zou and Zhang, 2016). For fossil taxa, stratigraphic 223 congruence may be used as an ancillary criterion for choosing between alternative trees (Wills, 224 1998; Wills et al., 2009; O'Connor and Zhou, 2013; O'Connor and Wills, 2016a), but this is only 225 defensible where the fossil record is relatively complete, or at least where the order of first 226 occurrences for lineages is preserved with reasonable fidelity (Wills et al., 2008b; Wills et al., 2009). 227 Here, we ask whether trees from the craniodental or postcranial data partition are most similar to 228 those derived from the entire data matrix, with the underlying assumption that the total evidence

229	tree is likely to be the most accurate (Kluge, 1989; Gatesy et al., 1999; Gatesy and Arctander, 2000).
230	A straightforward approach would be to calculate mean nearest neighbour tree-to-tree distance
231	metrics for the craniodental to entire tree sets versus the postcranial to entire tree sets. However,
232	all other things being equal, a larger partition contributes more characters to the entire matrix than
233	a smaller one. In cases where the optimal trees for the two partitions differed, the larger partition
234	might therefore be expected to yield trees more similar to those from the entire data set. The
235	difference in character numbers in the partitions could be overcome by differential weighting of
236	characters, but the tree-to-tree distance metrics utilised here are sensitive to the reductions in
237	resolution that are likely as the character:taxon ratio declines (and this is not overcome by
238	weighting). We therefore adopted a resampling approach, repeatedly jack-knifing characters at the
239	sample size of the smallest partition (n) from both the larger partition and the entire matrix. For the
240	entire matrix, we randomly jack-knifed the same number of characters $(n/2)$ from both the
241	craniodental and postcranial partition, such that neither was favoured with a larger sample size.
242	Where <i>n</i> was an uneven number, we alternately sampled the 'additional' character from either
243	partition. For each of 100 resamplings, we then calculated the mean nearest neighbour distance
244	between craniodental and entire trees, and the mean nearest neighbour distance between
245	postcranial and entire trees. We report the median of these 100 comparisons (which partition is
246	closest to the entire), as well as Mann-Whitney test results to approximate a p value at which to
247	reject the null that the medians of these distances are the same.

248 **Results**

249 1. Craniodental and postcranial characters contain similar levels of homoplasy and retain similar 250 amounts of synapomorphy

- 251 Statistics and test results for all data sets are given in Table 1, and we distil these further in Table 2
- and Figure 2. We found no significant difference in the level of craniodental/postcranial ensemble
- 253 consistency index (CI) across all 81 data sets (Wilcoxon test paired V = 3453, p = 0.5645). Despite

254	remarkably similar medians (100 and 97) and overall distributions, the median number of
255	craniodental and postcranial characters differed non-significantly (V = 3112.5, p = 0.5747). We
256	therefore compared the residual CI values from a linear regression of CI on the log of the number of
257	characters and the log of the number of taxa, plus their interaction. This model was significant
258	overall (p < 2.2e-16), but none of the individual slope terms was significant (p > 0.1 in all cases).
259	Residuals from this model likewise showed no significant difference between partitions (paired t =
260	0.38211, p = 0.7032). Likewise, we found no significant difference in the level of
261	craniodental/postcranial ensemble retention index (RI) across all 81 data sets (V = 3717.5, p-value =
262	0.1437). Similarly, the residuals from the regression of RI onto the number of taxa, number of
263	characters and their interaction (p = 3.668e-12 overall, but with no significant slopes for individual
264	terms) also showed no difference between partitions. Neither partition of the data can be deemed
265	superior on the basis of these ensemble indices of internal consistency.
266	

267 <u>2. Half of craniodental and postcranial data partitions yield significantly different trees</u>

268 Previous work on a broad sample of tetrapod matrices revealed significant incongruence between 269 craniodental and postcranial character partitions about one time in three, as measured by both the 270 incongruence relationship difference (IRD) test of Ruta & Wills (2016) and the incongruence length 271 difference (ILD) test (Mickevich and Farris, 1981; Farris et al., 1995). Here, we report that 50% of 272 dinosaur matrices yielded significantly (p<0.05) incongruent trees according to the IRD test for 273 nearest neighbours using matching distances (IRD_{NND+matching}) and 54% for the IRD test using the RF distances (Robinson and Foulds, 1981) (IRD_{NND+RF}). Moreover, the IRD_{NND+matching} and IRD_{NND+RF} values 274 275 were closely correlated ($r_s = 0.649$, p = 8.999e-14). We note that analyses of partitions reached the 276 limit of 1,000 trees for nearest neighbour (NND) computations in 47% of runs (see Supplementary 277 Materials 3). We therefore also report the results of IRD tests using majority rule consensus trees 278 derived from up to 10,000 optimal source trees. Inevitably, consensus trees cannot reflect accurately

279	the diversity of relationships within a set of source trees (Mounce et al., 2016) but they do permit
280	tests that incorporate all source trees more readily. The consensus results were closely similar to
281	those for the nearest neighbour tests: 63% of matrices were significantly incongruent using
282	$IRD_{MR+matching}$ and 60% were incongruent using IRD_{MR+RF}). Moreover, the consensus results were
283	strongly and significantly correlated with the NND results for both the $IRD_{MR+matching}$ ($r_s = 0.688$, p =
284	7.31e-16) and IRD _{MR+RF} (r_s = 0.560, p = 6.412e-10). The rate of significance (33% at p < 0.05) for the
285	ILD test was lower than that for variants of the IRD, and similar to that observed for tetrapods
286	overall (Mounce et al., 2016). Nevertheless, we found significant correlation between the ILD p value
287	and the p values for both the IRD _{matching} (r_s = 0.308, p = 0.001) and the IRD _{RF} (r_s = 0.297, p = 0.002)
288	using NNDs.
289	Mounce et al. (2016) tested empirically whether the rate of null rejection was influenced by several
290	data matrix parameters. Here we used logistic regression to determine the outcome of each of our
291	five partition homogeneity tests (significant or not with p < 0.05) as a function of the overall number

of taxa, overall number of characters (both partitions), the interaction between characters and taxa,

the difference in partition size (scaled relative to the total number of characters), total amount of

missing data, the difference in the percentage of missing data between partitions and the higher

295 taxonomic group. Results are summarised in the supplementary materials. For IRD_{NND+RF}, only the

total number of characters and total number of taxa were retained in a minimum adequate model

297 (McDonald et al., 2012) selected using the AIC. For IRD_{MR+RF}, these parameters plus their interaction

and the difference in partition size (number of characters) was retained in the MAM. Hence, as

299 reported by Mounce et al. (2016), tests based upon symmetrical differences (Robinson and Foulds,

300 1981) are influenced, at least in part, by data matrix dimensions. By contrast, for the IRD_{NND+matching}

301 (based upon nearest neighbour matching distances), no matrix parameters were retained in the

302 MAM, but higher taxonomic group was highly significant. Similarly, taxonomic group was highly

303 significant for the IRD_{MR+matching} (based upon majority rule matching distances), and the difference in

304 partition size was also retained by the AIC (although p>0.05).

С	n	E.
3	υ	Э

306 3. Levels of incongruence vary significantly across major dinosaur groups

307	Of our 46 saurischian matrices, 31 (67%) showed significant (p < 0.05) incongruence using
308	IRD _{NND+matching} , compared with 9 from 35 (26%) ornithischian matrices: a significant difference in the
309	rate of null rejection (G = 20.1841, p = 0.00046). A similarly significant difference was observed for
310	the IRD _{MR+matching} (G = 19.3857, p = 0.00066). For the IRD using Robinson Foulds distances, by
311	contrast, differences across saurischian and ornithischian matrices were non-significant (IRD _{NND+RF} G
312	= 6.7962, p = 0.14706: IRD _{MR+RF} G = 5.4241, p = 0.24648). At a finer taxonomic level (specifically
313	assigning trees to Theropda (e.g., Fig. 2), Sauropodomorpha (e.g., Fig. 3), Cerapoda, Ornithopoda,
314	and Thyreophora) there were highly significant differences in the rate of null rejection using the
315	matching distance (p = 0.00046 for the $IRD_{NND+matching}$: p = 0.00066 for $IRD_{MR+matching}$) no difference
316	using the symmetrical difference (RF) variants of the tests (Table 2) (Fig. 4). This difference between
317	'RF' and 'Matching' variants of the IRD test is consistent with that observed for the modelling of
318	outcomes above (i.e., taxonomic group was significant in determining the binary outcome of
319	$IRD_{matching}$ variants, but not for the IRD_{RF}). Rates of partition incongruence are relatively high in the
320	Sauropoda (53% for the IRD _{NND+matching}), Theropoda (66%) and Ceropoda (43%) compared with the
321	Ornithopoda (20%) and Thyreophora (14%). A similar hierarchy of outcomes pertained for the other
322	tests.

323

4. Craniodental and postcranial characters produce trees equally similar to the entire data set, but with strong biases across major groups

Our second set of tests sought to determine whether the most parsimonious trees from the entire
 matrix were more similar to those from the craniodental or postcranial partitions. The results from

328 these were in strong agreement. Considering the NNDs for matching distances across all 81 matrices,

329	42 were closer (using the matching distances for nearest neighbours: NND+matching) to the
330	postcranial partition, while 39 were closer to the craniodental partition (a non-significant bias:
331	binomial test p = 0.8243). Within Saurischia and Ornithischia, however, the biases were highly
332	significant, but in opposite directions (G = 6.42421, p = 0.01126). For Saurischia, trees from the
333	entire data set were most often more similar to those from the postcranial partition 29 cases) than
334	to those from the cranium (17 cases) (binomial p = 0.1038). For Ornithischia, by contrast, trees from
335	the whole data set were more often most to those from the craniodental partition (22 cases) than to
336	those from the postcranium (13 cases) ($p = 0.1755$). When partitioned into five groups as above,
337	there was also a significant difference in which partition was most similar to the entire matrix across
338	groups (G = 8.7347, p = 0.006209), with the bias for Sauropoda (13 postcranial verus 4 craniodental)
339	being the most striking. Similar findings were made for the other three tests (Tables 1 and 2).
340	These biases were much less marked if comparisons were restricted to only those data sets
341	for which there was a significant difference ($p < 0.05$) between the distributions of distances (entire
342	to craniodental versus entire to postcraniodental) according to the Mann-Whitney U test.
343	Considering NND+matching distances, 31 data sets favoured the craniodental partition and 33 the
344	postcranial partition (binomial p = 0.9007). Moreover, there was no longer a significant bias in favour
345	of postcranial characters for the Saurischia (23 out of 33: $p = 0.0308$) or in favour of craniodental
346	characters for the Ornithischia (17 out of 31: p = 0.7201) (overall G = 3.98451, p = 0.04592).
347	However, for the partition into Theropda, Sauropodomorpha, Cerapoda, Ornithopoda and
348	Thyreophora, we still marginally rejected the null that groups behave identically (G = 9.29294, p =
349	0.05418027). Similar findings for the other three tests are summarised in Table 2.
350	
351	

352

353 **Discussion**

354 Implications for dinosaur phylogeny

355 Our analyses of 81 published matrices demonstrate empirically that the relationships of dinosaurs 356 inferred from craniodental or postcranial characters in isolation differ significantly (p < 0.05) from 357 each other about half of the time. This is much more often than similar partitions for tetrapods in 358 general (about 1 in 3: (Mounce et al., 2016). At the same time, we find similar levels of homoplasy (as 359 measured by the ensemble consistency index: CI) and retained synapomophy (RI) in craniodental 360 and postcranial character partitions across all dinosaurs. Similarly, when character sample sizes are 361 controlled, the relationships inferred from either partition are equally congruent with those from 362 the entire matrix. Hence, there is no reason to prefer characters sampled from one partition versus 363 another across dinosaurs as a whole, and we concur with general recommendations to sample 364 characters widely from all anatomical regions in accordance with the principle of total evidence 365 (Kluge, 1989; Gatesy et al., 1999; Gatesy and Arctander, 2000; Mounce et al., 2016). However, we 366 also observe marked differences in levels of incongruence across major dinosaur groups, being 367 significantly higher in Ornithischia than Saurischia. 368 Homoplasy is always a problem for phylogenetic inference, but is least troublesome when 369 homoplastic states approximate to a random distribution across taxa (in which case it largely 370 contributes noise). Homoplasy is more problematic when it is correlated across complexes of 371 characters, especially when this occurs at higher frequencies. The morphological phylogeny of 372 mammals appears to have been subject to such problems. Phylogenomic trees (Dolphin, K. et al. 373 2000,) overturned many of the groups (e.g., Ungulata and Insectivora) that had emerged from nearly 374 all previous analyses of morphological characters over the preceding decades. Most problematic of 375 all are cases where correlated homoplasy is concentrated within a particular region of the body, and 376 especially where available data are limited to such regions. The teeth of mammals appear to be 377 subject to such convergence (Goswami A et al. 2011), with many aspects of their form changing in

378	concert and being controlled by a relatively small number of genes (Castelin et al., 2017). This is
379	singularly unfortunate for those studying mammalian evolution, since the high preservation
380	potential of teeth means that they dominate the fossil record. The fossil record of dinosaurs is also
381	biased, with sauropodomorphs and theropods being known predominantly from their postcranial
382	remains (skulls are often fragmentary or not recovered), and ceratopsians being more often
383	described from their much more massive skulls (Evans, D.C. and Ryan, M.J. 2015,). Our sample of
384	matrices suggest that the number of coded characters strongly reflects these differences. However,
385	it remains unclear whether this is solely a function of the available material, or whether systematists
386	preferentially code or more finely atomise characters from these regions. Whatever the case, we do
387	not find a higher concentration of homoplasy in either partition, whether across all dinosaurs or
388	within major clades. Moreover, although craniodental and postcranial characters often yield
389	significantly conflicting trees, we find no evidence that one partition is more likely to be congruent
390	with the "total evidence" tree than the other.
391	Interpreting incongruence
392	The inference of significantly different trees from craniodental and postcranial character partitions
393	can be understood in terms of divergent selective pressures operating on different regions of the
394	body (Gould and Gould, 1977; J, 1993; Kemp and Kemp, 2005; Lue et al., 2010). This results in

- different rates and patterns of character evolution (Mitteroecker and Bookstein, 2007; Klingenberg,
- 2008), in addition to distinct patterns of homoplasy. Anatomical modules are commonly recognised
- in studying the evolution of form (Mitteroecker and Bookstein, 2007; Cardini and Elton, 2008;
- 398 Klingenberg, 2008; Lue et al., 2010; Goswami et al., 2011; Hopkins and Lidgard, 2012; Cardini and
- Polly, 2013; Goswami et al., 2015), and it is reasonable to suppose that such modules will contain
- 400 phylogenetic characters that are more congruent with one another than with characters from other
- 401 modules (Clarke and Middleton, 2008)

. .

402 The tetrapod skull is variously decoupled from the skeleton of the body, both biomechanically and in 403 terms of the selective pressures operating upon it (Ji et al., 1999; Koski, 2007; Mitteroecker and 404 Bookstein, 2007). However, this decoupling is particularly marked in the non-avian dinosaurs 405 (Mounce et al., 2016). The long necks of sauropodomorphs effect the greatest biomechanical 406 decoupling between the skull and the body, and sauropods unsurprisingly have one of the highest 407 levels of significant incongruence. Ornithischia, by contrast, show much lower levels of incongruence 408 overall: especially low (14%) in the thyreophorans. 409 Anatomical modules are typically envisaged as comprising physically proximate sets of characters or 410 aspects of form. However, particular selective pressures might result in the coordinated evolution of 411 suites of characters widely distributed across the body (Gardiner et al., 2011; Abourachid and

412 Hoefling, 2012; Godefroit et al., 2013). For example, a mode of predation or scavenging favoured by many theropods entailed bracing a carcass with a back leg whilst ripping with powerful jaws and a 413 414 strong neck (Rayfield, 2004). This manner of feeding evolved in at least three large theropod clades, 415 and entailed coordinated changes in the limbs and skull (Snively et al., 2006; Snively and Russell, 416 2007a; Snively and Russell, 2007b; Hone and Rauhut, 2010). Similarly, the massive skulls of many 417 ceratopsians were braced into the body and pectoral girdle consistent with their ability to face and 418 ward off predators, and this may have effected other coordinated changes in the vertebral column 419 and back limbs.

In the infancy of molecular phylogenetics, trees were often inferred from single genes (Gatesy, J. and
Arctander, P. 2000), and it was not uncommon for the trees derived from different genes to be
strikingly at odds (Gatesy, J. and Arctander, P. 2000). In addition, molecular trees often differed
markedly from those inferred from morphology. A more cautious, combinatorial approach initially
evolved, therefore, along with partition tests designed to ensure homogeneity of signal (Mounce,
R.C.P. et al. 2016). This agglomerative approach may have been a function of the manner in which
data originally became available, with systematists exploring incongruent signals at a fine level of

427	granularity. The ascendance of phylogenomic analyses has brought its own bioinformatic challenges,
428	but all approaches seek to derive trees from increasingly inclusive data sets. More philosophically, a
429	consensus has emerged in favour of the principle of total evidence (Kluge, 1989): the procedure by
430	which all available character data are combined into a single matrix and analysis. One reason for this
431	is the phenomenon of 'hidden support' (Gatesy et al., 1999; Gatesy and Arctander, 2000), whereby
432	signals that are weak and therefore hidden within individual character partitions become dominant
433	when all data are analysed together. Various tests for partition homogeneity (Farris et al., 1994,
434	1995; Dolphin et al., 2000) will tend to return significant results in precisely those circumstances in
435	which support is hidden, and such tests are therefore no longer commonly used to preclude the
436	combination of data sources in this manner (Kluge, 1989; Gatesy et al., 1999; Gatesy and Arctander,
437	2000; Wahlberg et al., 2005; O'Leary and Gatesy, 2008; Padial et al., 2010; Damgaard, 2012; Mounce
438	et al., 2016). However, while molecular systematics has retained and elaborated the notion that
439	different suites of characters within large molecular matrices might be most effectively modelled
440	with different rate parameters (e.g., different sets of genes, and different codon positions),
441	morphological data are rarely treated in this manner. Moreover, there is relatively little quantitative
442	empirical data on the sorts of morphological characters that might be most useful for resolving
443	relationships at different hierarchical levels within a phylogeny, or for radiations of different ages.
444	This is partly because morphology is less likely to be constrained to evolve in a clock-like manner
445	throughout a tree (or to change it's rate in a manner amenable to modelling), and partly because
446	there are no standard repositories for morphological characters that enable data to be archived,
447	retrieved, coded and compared in a uniform manner. Despite this, trees are often inferred from
448	relatively restricted character sets (Sanchez-Villagra and Williams, 1998; Arratia, 2009; Song and
449	Bucheli, 2010; Mounce et al., 2016). In fossil taxa, this may reflect preservational biases, particularly
450	those favouring hard part preservation (Sansom et al., 2010; Sansom and Wills, 2013; Pattinson et
451	al., 2015; Sansom et al., 2017).

452

453 **Conclusions**

- 1. Across our sample of 81 data sets, practitioners have abstracted slightly fewer characters from the
 skull (mean 115, median 100) than the rest of the skeleton (mean 132 and median 97) overall.
 However, this masks particular biases in major dinosaur groups: markedly and significantly (p<0.02
 in all cases) in favor of postcranial characters in Sauropodomorpha and Theropoda and in favor of
 postcranial characters in Ornithopoda, Thyreophora and Cerapoda.
- 459 2. The overall frequency of significant (p<0.05) incongruence between dinosaur trees inferred from
- 460 craniodental and postcranial characters was about 50% for variants of the Incongruence Relationship
- 461 Difference (IRD) test (Ruta and Wills, 2016); (Mounce et al., 2016). This was substantially higher than
- that previously reported (30%) for tetrapod clades in general. The Incongruence Length Difference
- 463 Test (ILD) reported significant incongruence in 33% of cases: comparable to the level seen across
- 464 tetrapods hitherto (Mounce et al., 2016).
- 3. Despite the high frequency of incongruence overall, rates of significance were heterogeneously distributed across major dinosaur groups, being highest (a mean of 48% for variants of the IRD) in Theropoda and lowest (25%) in Thyreophora. A number of factors have been purported to influence the outcome of the IRD test, notably the data matrix dimensions, relative partition sizes and the amount and distribution of missing entries (Mounce et al., 2016). We nevertheless found similar heterogeneity in rates of significant incongruence across groups when these variables were modelled out.

4. Tests to determine which partition (craniodental or postcranial) were most congruent with trees
inferred from the entire character set were equivocal overall: equal numbers favoured the two
partitions once differences in sample size were controlled for. However, there were significant
asymmetries in many groups, with the bias for Sauropoda (13 postcranial verus 4 craniodental) being
the most striking.

477	5. We show that our partition tests are not sensitive to the size of the tree (number of terminals), to
478	differences in partition size (differences in the number of characters), to the overall amount of
479	missing data in the matrix, the difference in the amount of missing data between partitions or the
480	difference in levels of homoplasy or retained synapomorphy between partitions. We also
481	demonstrate that there are similar levels of homoplasy and retained synapomorphy between
482	partitions overall. Incongruence therefore reflects differences in <i>patterns</i> of homoplasy between
483	partitions, which may itself be a function of modularity and mosaic evolution. We note that
484	incongruence is greatest in those groups (Sauropodomorpha and Theropoda) in which the
485	biomechanical decoupling between head and body is greatest.
486	6. Our results demonstrate clearly that phylogenies of dinosaurs inferred from craniodental and
487	postcranial characters differ significantly much more often than expected. We therefore make the
488	straightforward recommendation that characters should be sampled as broadly as possible from
489	across all body regions. This accords with the theoretical principle of total evidence (Kluge, 1989;
490	Gatesy et al., 1999; Gatesy and Arctander, 2000), as well as our empirical findings for tetrapods in
491	general (Mounce et al., 2016) and mammals in particular (Sansom and Wills, 2017).
492	
493	References

References 493

494 Abourachid A, Hoefling E. 2012. The legs: a key to bird evolutionary success. Journal of Orr	ithology,
--	-----------

495 153:S193-S198.

- 496 Allain R, Xaisanavong T, Richir P, Khentavong B. 2012. The first definitive Asian spinosaurid
- 497 (Dinosauria: Theropoda) from the early cretaceous of Laos. Naturwissenschaften, 99:369-377.
- 498 Araujo R, Castanhinha R, Martins RMS, Mateus O, Hendrickx C, Beckmann F, Schell N, Alves LC. 2013.
- 499 Filling the gaps of dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with embryos
- 500 from Portugal. Scientific Reports, 3.

501	Arbour VM, Burns ME, Sullivan RM, Lucas SG, Cantrell AK, Fry J, Suazo TL. 2014. A new ankylosaurid
502	dinosaur from the Upper Cretaceous (Kirtlandian) of New Mexico with implications for
503	ankylosaurid diversity in the Upper Cretaceous of western North America. PLoS One,
504	9:e108804.
505	Arbour VM, Currie PJ. 2013. Euoplocephalus tutus and the Diversity of Ankylosaurid Dinosaurs in the
506	Late Cretaceous of Alberta, Canada, and Montana, USA. PLoS ONE, 8:1-39.
507	Archie JW. 1989. Homoplasy Excess Ratios - New Indexes for measuring levels of Homoplasy in
508	Phylogenetic Systematics and a Critique of the Consistency Index. Systematic Zoology, 38:253-
509	269.
510	Arratia G. 2009. Identifying patterns of diversity of the actinopterygian fulcra. Acta Zoologica,
511	90:220-235.
512	Barker FK, Lutzoni FM. 2002. The utility of the incongruence length difference test. Systematic
513	Biology, 51:625-637.
514	Barrett PM, Butler RJ, Mundil R, Scheyer TM, Irmis RB, Sanchez-Villagra MR. 2014. A
515	palaeoequatorial ornithischian and new constraints on early dinosaur diversification.
516	Proceedings of the Royal Society B-Biological Sciences, 281.
517	Boyd CA. 2015. The systematic relationships and biogeographic history of ornithischian dinosaurs.
518	Peerj, 3.
519	Boyd CA, Pagnac DC. 2015. Insight on the anatomy, systematic relationships, and age of the Early
520	Cretaceous ankylopollexian dinosaur Dakotadon lakotaensis. Peerj, 3.
521	Brocklehurst N, Froebisch J. 2014. Current and historical perspectives on the completeness of the
522	fossil record of pelycosaurian-grade synapsids. Palaeogeography Palaeoclimatology
523	Palaeoecology, 399:114-126.
524	Brown CM, Boyd CA, Russell AP. 2011. A new basal ornithopod dinosaur (Frenchman Formation,
525	Saskatchewan, Canada), and implications for late Maastrichtian ornithischian diversity in
526	North America. Zoological Journal of the Linnean Society, 163:1157-1198.

527 Brusatte SL, Benson RBJ. 2013. The systematics of Late Jurassic tyrannosauroid theropods from 528 Europe and North America. Acta Palaeontologica Polonica, 58:47-54. 529 Brusatte SL, Lloyd GT, Wang SC, Norell MA. 2014. Gradual Assembly of Avian Body Plan Culminated 530 in Rapid Rates of Evolution across the Dinosaur-Bird Transition. Current Biology, 24:2386-531 2392. 532 Burns ME, Currie PJ. 2014. External and internal structure of ankylosaur (dinosauria, ornithischia) 533 osteoderms and their systematic relevance. Journal of Vertebrate Paleontology, 34:835-851. 534 Burns ME, Currie PJ, Sissons RL, Arbour VM. 2011. Juvenile specimens of Pinacosaurus grangeri 535 Gilmore, 1933 (Ornithischia: Ankylosauria) from the Late Cretaceous of China, with comments on the specific taxonomy of Pinacosaurus. Cretaceous Research, 32:174-186. 536 537 Butler RJ, Jin L, Chen J, Godefroit P. 2011. The postcranial osteology and phylogenetic position of the 538 small ornithischian dinosaur Changchunsaurus parvus from the Quantou Formation 539 (Cretaceous: Aptian-Cenomanian) of Jilin Province, north-eastern China. Palaeontology, 540 54:667-683. 541 Carballido JL, Pol D, Parra Ruge ML, Padilla Bernal S, Paramo-Fonseca ME, Etayo-Serna F. 2015. A 542 new early Cretaceous brachiosaurid (Dinosauria, Neosauropoda) from northwestern Gondwana (Villa de Leiva, Colombia). Journal of Vertebrate Paleontology, 35:c980505-543 544 c980505. 545 Carballido JL, Rauhut OWM, Pol D, Salgado L. 2011. Osteology and phylogenetic relationships of 546 Tehuelchesaurus benitezii (Dinosauria, Sauropoda) from the Upper Jurassic of Patagonia. 547 Zoological Journal of the Linnean Society, 163:605-662. 548 Carballido JL, Sander PM. 2014. Postcranial axial skeleton of Europasaurus holgeri (Dinosauria, 549 Sauropoda) from the Upper Jurassic of Germany: implications for sauropod ontogeny and 550 phylogenetic relationships of basal Macronaria. Journal of Systematic Palaeontology, 12:335-551 387.

_ _ _

...

_.

. .

...

.

Systematic Biology

...

. . .

.

. . .

. .

552	Cardini A, Elton S. 2008. Does the skull carry a phylogenetic signal? Evolution and modularity in the
553	guenons. Biological Journal of the Linnean Society, 93:813-834.
554	Cardini A, Polly PD. 2013. Larger mammals have longer faces because of size-related constraints on
555	skull form. Nature Communications, 4.
556	Castelin M, Williams ST, Buge B, Maestrati P, Lambourdiere J, Ozawa T, Utge J, Couloux A, Alf A,
557	Samadi S. 2017. Untangling species identity in gastropods with polymorphic shells in the genus
558	Bolma Risso, 1826 (Mollusca, Vetigastropoda). European Journal of Taxonomy, 288:1-21.
559	Cau A, Dalla Vecchia FM, Fabbri M. 2013. A thick-skulled theropod (Dinosauria, Saurischia) from the
560	Upper Cretaceous of Morocco with implications for carcharodontosaurid cranial evolution.
561	Cretaceous Research, 40:251-260.
562	Choiniere JN, Clark JM, Forster CA, Norell MA, Eberth DA, Erickson GM, Chu H, Xu X. 2014. A juvenile
563	specimen of a new coelurosaur (Dinosauria: Theropoda) from the Middle Late Jurassic
564	Shishugou Formation of Xinjiang, People's Republic of China. Journal of Systematic
565	Palaeontology, 12:177-215.
566	Clarke JA, Middleton KM. 2008. Mosaicism, modules, and the evolution of birds: Results from a
567	Bayesian approach to the study of morphological evolution using discrete character data.
568	Systematic Biology, 57:185-201.
569	Cobbett A, Wilkinson M, Wills MA. 2007. Fossils impact as hard as living taxa in parsimony analyses
570	of morphology. Syst Biol, 56:753-766.
571	Coria RA, Moly JJ, Reguero M, Santillana S, Marenssi S. 2013. A new ornithopod (Dinosauria;
572	Ornithischia) from Antarctica. Cretaceous Research, 41:186-193.
573	Cunningham CW. 1997. Can three incongruence tests predict when data should be combined?
574	Molecular Biology and Evolution, 14:733-740.
575	D'Emic MD. 2013. Revision of the sauropod dinosaurs of the Lower Cretaceous Trinity Group,
576	southern USA, with the description of a new genus. Journal of Systematic Palaeontology,
577	11:707-726.

578	Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, Valdiosera C, Garcia N, Paeaebo
579	S, Arsuaga J-L, et al. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene
580	cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National
581	Academy of Sciences of the United States of America, 110:15758-15763.
582	Daley AC, Drage HB. 2016. The fossil record of ecdysis, and trends in the moulting behaviour of
583	trilobites. Arthropod Structure & Development, 45:71-96.
584	Damgaard J. 2012. Phylogeny of the semiaquatic bugs (Hemiptera-Heteroptera, Gerromorpha).
585	TreeBASE.
586	Davies TW, Bell MA, Goswami A, Halliday TJD. 2017. Completeness of the eutherian mammal fossil
587	record and implications for reconstructing mammal evolution through the
588	Cretaceous/Paleogene mass extinction. Paleobiology, 43:521-536.
589	Dolphin K, Belshaw R, Orme CDL, Quicke DLJ. 2000. Noise and incongruence: Interpreting results of
590	the incongruence length difference test. Molecular Phylogenetics and Evolution, 17:401-406.
591	Dunhill AM, Benton MJ, Twitchett RJ, Newell AJ. 2012. Completeness of the fossil record and the
592	validity of sampling proxies at outcrop level. Palaeontology, 55:1155-1175.
593	Eddy DR, Clarke JA. 2011. New Information on the Cranial Anatomy of Acrocanthosaurus atokensis
594	and Its Implications for the Phylogeny of Allosauroidea (Dinosauria: Theropoda). Plos One, 6.
595	Evans DC, Ryan MJ. 2015. Cranial Anatomy of Wendiceratops pinhornensis gen. et sp nov., a
596	Centrosaurine Ceratopsid (Dinosauria: Ornithischia) from the Oldman Formation (Campanian),
597	Alberta, Canada, and the Evolution of Ceratopsid Nasal Ornamentation. Plos One, 10.
598	Evans DC, Schott RK, Larson DW, Brown CM, Ryan MJ. 2014. The oldest North American
599	pachycephalosaurid and the hidden diversity of small-bodied ornithischian dinosaurs (vol 4,
600	3289, 2013)). Nature Communications, 5.
601	Evers S, Rauhut OWM, Milner AC, McFeeters B, Allain R. 2015. A reappraisal of the morphology and
602	systematic position of the theropod dinosaur Sigilmassasaurus from the "middle" Cretaceous
603	of Morocco. PeerJ, 3.

604	Fan R-Y, Uchman A, Gong Y-M. 2017. From morphology to behaviour: Quantitative morphological
605	study of the trace fossil Helminthorhaphe. Palaeogeography Palaeoclimatology Palaeoecology,
606	485:946-955.
607	Fanti F, Cau A, Cantelli L, Hassine M, Auditore M. 2015. New Information on Tataouinea hannibalis
608	from the Early Cretaceous of Tunisia and Implications for the Tempo and Mode of
609	Rebbachisaurid Sauropod Evolution. Plos One, 10.
610	Fanti F, Currie PJ, Badamgarav D. 2012. New Specimens of Nemegtomaia from the Baruungoyot and
611	Nemegt Formations (Late Cretaceous) of Mongolia. Plos One, 7.
612	Farke AA, Maxwell WD, Cifelli RL, Wedel MJ. 2014. A Ceratopsian Dinosaur from the Lower
613	Cretaceous of Western North America, and the Biogeography of Neoceratopsia. Plos One, 9.
614	Farke AA, Ryan MJ, Barrett PM, Tanke DH, Braman DR, Loewen MA, Graham MR. 2011. A new
615	centrosaurine from the Late Cretaceous of Alberta, Canada, and the evolution of parietal
616	ornamentation in horned dinosaurs. Acta Palaeontologica Polonica, 56:691-702.
617	Farke AA, Sertich JJW. 2013. An Abelisauroid Theropod Dinosaur from the Turonian of Madagascar.
618	Plos One, 8.
619	Farris JS, Kallersjo M, Kluge AG, Bult C. 1994. Testing significance of incongruence. Cladistics, 10:315-
620	319.
621	Farris JS, Kallersjo M, Kluge AG, Bult C. 1995. Constructing a significance test for incongruence.
622	Systematic Biology, 44:570-572.
623	Foth C, Tischlinger H, Rauhut OWM. 2014. New specimen of Archaeopteryx provides insights into the
624	evolution of pennaceous feathers. Nature, 511:79-U421.
625	Gainett G, Sharma PP, Pinto-da-Rocha R, Giribet G, Willemart RH. 2014. Walk it off: predictive power
626	of appendicular characters toward inference of higher-level relationships in Laniatores (
627	Arachnida: Opiliones). Cladistics, 30:120-138.
628	Gardiner JD, Codd JR, Nudds RL. 2011. An association between ear and tail morphologies of bats and
629	their foraging style. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 89:90-99.

630	Gatesy J, Arctander P.	2000. Hidden	morphological	support for t	the phylogenetic	placement of

631 Pseudoryx nghetinhensis with bovine bovids: A combined analysis of gross anatomical

evidence and DNA sequences from five genes. Systematic Biology, 49:515-538.

- 633 Gatesy J, O'Grady P, Baker RH. 1999. Corroboration among data sets in simultaneous analysis:
- 634 Hidden support for phylogenetic relationships among higher level artiodactyl taxa. Cladistics,
- 635 15:271-313.
- 636 Godefroit P, Cau A, Hu D-Y, Escuillie F, Wu W, Dyke G. 2013. A Jurassic avialan dinosaur from China
- 637 resolves the early phylogenetic history of birds. Nature, 498:359-362.
- 638 Gorscak E, Connor PMO, Stevens NJ, Roberts EM. 2014. The basal titanosaurian Rukwatitan
- 639 bisepultus (Dinosauria, Sauropoda) from the Middle Cretaceous Galula Formation, Rukwa Rift
- 640 Basin, southwestern Tanzania. Journal of Vertebrate Paleontology, 34:1133-1154.
- 641 Goswami A, Binder WJ, Meachen J, O'Keefe FR. 2015. The fossil record of phenotypic integration and
- 642 modularity: A deep-time perspective on developmental and evolutionary dynamics.
- 643 Proceedings of the National Academy of Sciences of the United States of America, 112:4891-
- 644 4896.
- 645 Goswami A, Milne N, Wroe S. 2011. Biting through constraints: cranial morphology, disparity and
- 646 convergence across living and fossil carnivorous mammals. Proceedings of the Royal Society B-
- 647 Biological Sciences, 278:1831-1839.
- 648 Gould SJ, Gould SJ. 1977. Ontogeny and phylogeny.

649 Han F-L, Barrett PM, Butler RJ, Xu X. 2012. Postcranial anatomy of Jeholosaurus shangyuanensis

- 650 (Dinosauria, Ornithischia) from the Lower Cretaceous Yixian formation of China. Journal of
- 651 Vertebrate Paleontology, 32:1370-1395.
- 652 He Y, Makovicky PJ, Wang K, Chen S, Sullivan C, Han F, Xu X. 2016. A New Leptoceratopsid
- 653 (Ornithischia, Ceratopsia) with a Unique Ischium from the Upper Cretaceous of Shandong
- 654 Province, China. Figshare.

655	Hone DWE, Rauhut OWM. 2010. Feeding behaviour and bone utilization by theropod dinosaurs.
656	Lethaia, 43:232-244.
657	Hopkins MJ, Lidgard S. 2012. Evolutionary mode routinely varies among morphological traits within
658	fossil species lineages. Proceedings of the National Academy of Sciences of the United States
659	of America, 109:20520-20525.
660	Houde P. 1994. Evolution of the Heliornithidae - reciprocal illumination by morphology,
661	biogeography and DNA hybridization (Aves, Gruifiormes) Cladistics, 10:1-19.
662	Hsiang AY, Field DJ, Webster TH, Behlke ADB, Davis MB, Racicot RA, Gauthier JA. 2015. The origin of
663	snakes: revealing the ecology, behavior, and evolutionary history of early snakes using
664	genomics, phenomics, and the fossil record. Bmc Evolutionary Biology, 15.
665	Hu H, O'Connor JK, Zhou Z. 2015. A New Species of Pengornithidae (Aves: Enantiornithes) from the
666	Lower Cretaceous of China Suggests a Specialized Scansorial Habitat Previously Unknown in
667	Early Birds. Plos One, 10.
668	Ignacio Canale J, Emilio Novas F, Pol D. 2015. Osteology and phylogenetic relationships of
669	Tyrannotitan chubutensis Novas, de Valais, Vickers-Rich and Rich, 2005 (Theropoda:
670	Carcharodontosauridae) from the Lower Cretaceous of Patagonia, Argentina. Historical
671	Biology, 27:1-32.
672	Ignacio Ruiz-Omenaca J, Ignacio Canudo J, Cuenca-Bescos G, Cruzado-Caballero P, Manuel Gasca J,
673	Moreno-Azanza M. 2012. A new basal ornithopod dinosaur from the Barremian of Galve,
674	Spain. Comptes Rendus Palevol, 11:435-444.
675	J MS. 1993. The theory of evolution, CHAPTER?
676	Jablonski D. 2005. Evolutionary innovations in the fossil record: the intersection of ecology,
677	development, and macroevolution. J. Exp. Zool., 304B:504-519.
678	Ji Q, Luo ZX, Ji SA. 1999. A Chinese triconodont mammal and mosaic evolution of the mammalian
679	skeleton. Nature, 398:326-330.

- 680 Kearney M, Clark JM. 2003. Problems due to missing data in phylogenetic analyses including fossils:
- 681 A critical review. Journal of Vertebrate Paleontology, 23:263-274.
- 682 Kemp TS, Kemp TS. 2005. The origin and evolution of mammals.
- 683 Klingenberg CP. 2008. Morphological Integration and Developmental Modularity. Annual Review of
- 684 Ecology Evolution and Systematics, p. 115-132.
- 685 Kluge AG. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among
- 686 Epicrates (Boidae, Serpentes). Systematic Zoology, 38:7-25.
- 687 Kluge AG, Farris JS. 1969. Quantitative phyletics and evolution of anurans. Systematic Zoology, 18:1-
- 688

32.

- 689 Koski K. 2007. The mandibular complex. Eur. J. Orthod, 29:118-123.
- 690 Ksepka DT, Boyd CA. 2012. Quantifying historical trends in the completeness of the fossil record and
- 691 the contributing factors: an example using Aves. Paleobiology, 38:112-125.
- 692 Lacovara K. 2014. Supplementary Figure 18, Dreadnoughtus hind limb Lacovara et al., 2014, A
- 693 Gigantic, Exceptionally Complete Titanosaurian Sauropod Dinosaur from Southern Patagonia,
- 694 Argentina, Scientific Reports. Figshare.
- Lamanna MC, Sues H-D, Schachner ER, Lyson TR. 2014. A New Large-Bodied Oviraptorosaurian
- 696 Theropod Dinosaur from the Latest Cretaceous of Western North America. Plos One, 9.
- 697 Lee MSY, Cau A, Naish D, Dyke GJ. 2014. Data from: Morphological clocks in palaeontology, and a
- 698 mid-Cretaceous origin of crown Aves. Dryad.
- 699 Li L-G, Li D-Q, You H-L, Dodson P. 2014. A New Titanosaurian Sauropod from the Hekou Group
- 700 (Lower Cretaceous) of the Lanzhou-Minhe Basin, Gansu Province, China. Plos One, 9.
- 701 Lieberman BS. 2002. Phylogenetic biogeography with and without the fossil record: gauging the
- 702 effects of extinction and paleontological incompleteness. Palaeogeography Palaeoclimatology
- 703 Palaeoecology, 178:39-52.
- 704 Lloyd GT. 2018. Graeme T Lloyd morphological matrices.

705	Loewen MA, Irmis RB, Sertich JJW, Currie PJ, Sampson SD. 2013. Tyrant Dinosaur Evolution Tracks
706	the Rise and Fall of Late Cretaceous Oceans. Plos One, 8.
707	Longrich NR. 2011. Titanoceratops ouranos, a giant horned dinosaur from the late Campanian of
708	New Mexico. Cretaceous Research, 32:264-276.
709	Longrich NR. 2014. The horned dinosaurs Pentaceratops and Kosmoceratops from the upper
710	Campanian of Alberta and implications for dinosaur biogeography. Cretaceous Research,
711	51:292-308.
712	Lopardo L, Hormiga G. 2015. Out of the twilight zone: phylogeny and evolutionary morphology of
713	the orb-weaving spider family Mysmenidae, with a focus on spinneret spigot morphology in
714	symphytognathoids (Araneae, Araneoidea). Zoological Journal of the Linnean Society,
715	173:527-786.
716	Lu J, Yi L, Brusatte SL, Yang L, Li H, Chen L. 2014. A new clade of Asian Late Cretaceous long-snouted
717	tyrannosaurids. Nature Communications, 5.
718	Lue J, Unwin DM, Jin X, Liu Y, Ji Q. 2010. Evidence for modular evolution in a long-tailed pterosaur
719	with a pterodactyloid skull. Proceedings of the Royal Society B-Biological Sciences, 277:383-
720	389.
721	Mannion PD, Upchurch P. 2010. Completeness metrics and the quality of the sauropodomorph fossil
722	record through geological and historical time. Paleobiology, 36:283-302.
723	Mannion PD, Upchurch P, Barnes RN, Mateus O. 2013. Osteology of the Late Jurassic Portuguese
724	sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary history of basal
725	titanosauriforms. Zoological Journal of the Linnean Society, 168:98-206.
726	Maxwell WD, Benton MJ. 1990. Historical tests of the absolute completeness of the fossil record of
727	tetrapods. Paleobiology, 16:322-335.
728	McDonald AT. 2012. Phylogeny of Basal Iguanodonts (Dinosauria: Ornithischia): An Update. Plos
729	One, 7.

730	McDonald AT, Espilez E, Mampel L, Kirkland JI, Alcala L. 2012. An unusual new basal iguanodont
731	(Dinosauria: Ornithopoda) from the Lower Cretaceous of Teruel, Spain. Zootaxa:61-76.
732	McGarrity CT, Campione NE, Evans DC. 2013. Cranial anatomy and variation in Prosaurolophus
733	maximus (Dinosauria: Hadrosauridae). Zoological Journal of the Linnean Society, 167:531-568.
734	McPhee BW, Bonnan MF, Yates AM, Neveling J, Choiniere JN. 2015. A new basal sauropod from the
735	pre-Toarcian Jurassic of South Africa: evidence of niche-partitioning at the sauropodomorph-
736	sauropod boundary? Scientific Reports, 5.
737	Mickevich MF, Farris JS. 1981. The implications of congruence in Menidia. Systematic Zoology,
738	30:351-370.
739	Mitteroecker P, Bookstein F. 2007. The conceptual and statistical relationship between modularity
740	and morphological integration. Systematic Biology, 56:818-836.
741	Mounce RCP, Sansom R, Wills MA. 2016. Sampling diverse characters improves phylogenies:
742	Craniodental and postcranial characters of vertebrates often imply different trees. Evolution,
743	70:666-686.
744	Nicolalde-Morejon F, Vergara-Silva F, Gonzalez-Astorga J, Vovides AP, Espinosa de los Monteros A.
745	2009. Reciprocal illumination of morphological characters upon a molecular hypothesis
746	supports the proposal of a new species of cycad from Mexico. Systematics and Biodiversity,
747	7:73-79.
748	Norman DB. 2015. On the history, osteology, and systematic position of the Wealden (Hastings
749	group) dinosaur Hypselospinus fittoni (Iguanodontia: Styracosterna). Zoological Journal of the
750	Linnean Society, 173:92-189.
751	Norman DB, Crompton AW, Butler RJ, Porro LB, Charig AJ. 2011. The Lower Jurassic ornithischian
752	dinosaur Heterodontosaurus tucki Crompton & Charig, 1962: cranial anatomy, functional
753	morphology, taxonomy, and relationships. Zoological Journal of the Linnean Society, 163:182-
754	276.

755	Novas FE, Agnolín FL, Ezcurra MD, Porfiri J, Canale JI. 2013. Evolution of the carnivorous dinosaurs
756	during the Cretaceous: The evidence from Patagonia. Cretaceous Research, 45:174-215.
757	O'Connor A, Wills MA. 2016a. Measuring Stratigraphic Congruence Across Trees, Higher Taxa, and
758	Time. Systematic Biology, 65:792-811.
759	O'Connor A, Wills MA. 2016b. Measuring stratigraphic congruence across trees, higher taxa, and
760	time. Systematic Biology, 65:792-811.
761	O'Connor JK, Zhou Z. 2013. A redescription of Chaoyangia beishanensis (Aves) and a comprehensive
762	phylogeny of Mesozoic birds. Journal of Systematic Palaeontology, 11:889-906.
763	O'Leary MA, Gatesy J. 2008. Impact of increased character sampling on the phylogeny of
764	Cetartiodactyla (mammalia): combined analysis including fossils. Cladistics, 24:397-442.
765	Olmstead RG, Scotland RW. 2005. Molecular and morphological datasets. Taxon, 54:7-8.
766	Orlando L, Gilbert MTP, Willerslev E. 2015. Aplications of next-generation sequencing -
767	Reconstructing ancient genomes and epigenomes. Nature Reviews Genetics, 16:395-408.
768	Osi A, Prondvai E, Butler R, Weishampel DB. 2012. Phylogeny, Histology and Inferred Body Size
769	Evolution in a New Rhabdodontid Dinosaur from the Late Cretaceous of Hungary. Plos One, 7.
770	Oyston JW, Hughes M, Gerber S, Wills MA. 2016. Why should we investigate the morphological
771	disparity of plant clades? Annals of Botany, 117:859-879.
772	Oyston JW, Hughes M, Wagner PJ, Gerber S, Wills MA. 2015. What limits the morphological disparity
773	of clades? Interface Focus, 5.
774	Padial JM, Miralles A, De la Riva I, Vences M. 2010. The integrative future of taxonomy. Frontiers in
775	Zoology, 7.
776	Parker WG. 2016. Revised phylogenetic analysis of the Aetosauria (Archosauria: Pseudosuchia);
777	assessing the effects of incongruent morphological character sets. Peerj, 4.
778	Parsons WL, Parsons KM. 2015. Morphological Variations within the Ontogeny of Deinonychus
779	antirrhopus (Theropoda, Dromaeosauridae). Plos One, 10.

780	Pattinson DJ, Thompson RS, Piotrowski AK, Asher RJ. 2015. Phylogeny, paleontology, and primates:
781	do incomplete fossils bias the tree of life? Systematic Biology, 64:169-186.
782	Pettigrew JD. 1991. Wings or brain - convergent evoluton in the origins of bats. Systematic Zoology,
783	40:199-216.
784	Pol D, Garrido A, Cerda IA. 2011a. A New Sauropodomorph Dinosaur from the Early Jurassic of
785	Patagonia and the Origin and Evolution of the Sauropod-type Sacrum. Plos One, 6.
786	Pol D, Rauhut OWM, Becerra M. 2011b. A Middle Jurassic heterodontosaurid dinosaur from
787	Patagonia and the evolution of heterodontosaurids. Naturwissenschaften, 98:369-379.
788	Porfiri JD, Novas FE, Calvo JO, Agnolin FL, Ezcurra MD, Cerda IA. 2014. Juvenile specimen of
789	Megaraptor (Dinosauria, Theropoda) sheds light about tyrannosauroid radiation. Cretaceous
790	Research, 51:35-55.
791	Prieto-Marquez A, Dalla Vecchia FM, Gaete R, Galobart A. 2013. Diversity, Relationships, and
792	Biogeography of the Lambeosaurine Dinosaurs from the European Archipelago, with
793	Description of the New Aralosaurin Canardia garonnensis. Plos One, 8.
794	Prieto-Marquez A, Wagner JR. 2013. A new species of saurolophine hadrosaurid dinosaur from the
795	Late Cretaceous of the Pacific coast of North America. Acta Palaeontologica Polonica, 58:255-
796	268.
797	Ramirez MJ. 2006. Further problems with the incongruence length difference test:
798	"hypercongruence" effect and multiple comparisons. Cladistics, 22:289-295.
799	Rauhut OWM, Carballido JL, Pol D. 2015. A diplodocid sauropod dinosaur from the late Jurassic
800	Canadon Calcareo formation of Chubut, Argentina. Journal of Vertebrate Paleontology,
801	35:c982798-c982798.
802	Rayfield EJ. 2004. Cranial mechanics and feeding in Tyrannosaurus rex. Proceedings of the Royal
803	Society B-Biological Sciences, 271:1451-1459.
804	Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees. Mathematical Biosciences, 53:131-

800	Rodrigo AG, Kellyborges M, Bergquist PR, Bergquist PL. 1993. A randomization test of the null
807	hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree. New
808	Zealand Journal of Botany, 31:257-268.
809	Rubilar-Rogers D, Otero RA, Yury-Yanez RE, Vargas AO, Gutstein CS. 2012. An overview of the
810	dinosaur fossil record from Chile. Journal of South American Earth Sciences, 37:242-255.
811	Ruta M, Wills MA. 2016. Comparable disparity in the appendicular skeleton across the fish-tetrapod
812	transition, and the morphological gap between fish and tetrapod postcrania. Palaeontology,
813	59:249-267.
814	Saegusa H, Ikeda T. 2014. A new titanosauriform sauropod (Dinosauria: Saurischia) from the Lower
815	Cretaceous of Hyogo, Japan. Zootaxa, 3848:1-66.
816	Sanchez-Hernandez B, Benton MJ. 2014. Filling the ceratosaur gap: A new ceratosaurian theropod
817	from the Early Cretaceous of Spain. Acta Palaeontologica Polonica, 59:581-600.
818	Sanchez-Villagra MR, Williams BA. 1998. Levels of homoplasy in the evolution of the mammalian
819	skeleton. Journal of Mammalian Evolution, 5:113-126.
819 820	skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of
819 820 821	skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266.
819 820 821 822	 skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266. Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in
819820821822823	 skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266. Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797-800.
 819 820 821 822 823 824 	 skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266. Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797-800. Sansom RS, Wills MA. 2013. Fossilization causes organisms to appear erroneously primitive by
 819 820 821 822 823 824 825 	 skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266. Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797-800. Sansom RS, Wills MA. 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports, 3.
 819 820 821 822 823 824 825 826 	 skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266. Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797-800. Sansom RS, Wills MA. 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports, 3. Sansom RS, Wills MA. 2017. Differences between hard and soft phylogenetic data. Proceedings of
 819 820 821 822 823 824 825 826 827 	 skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266. Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797-800. Sansom RS, Wills MA. 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports, 3. Sansom RS, Wills MA. 2017. Differences between hard and soft phylogenetic data. Proceedings of the Royal Society B-Biological Sciences, 284.
 819 820 821 822 823 824 825 826 827 828 	 skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266. Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797-800. Sansom RS, Wills MA. 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports, 3. Sansom RS, Wills MA. 2017. Differences between hard and soft phylogenetic data. Proceedings of the Royal Society B-Biological Sciences, 284. Sansom RS, Wills MA, Williams T. 2017. Dental Data Perform Relatively Poorly in Reconstructing
 819 820 821 822 823 824 825 826 827 828 829 	 skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266. Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797-800. Sansom RS, Wills MA. 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports, 3. Sansom RS, Wills MA. 2017. Differences between hard and soft phylogenetic data. Proceedings of the Royal Society B-Biological Sciences, 284. Sansom RS, Wills MA, Williams T. 2017. Dental Data Perform Relatively Poorly in Reconstructing Mammal Phylogenies: Morphological Partitions Evaluated with Molecular Benchmarks.
 819 820 821 822 823 824 825 826 827 828 829 830 	 skeleton. Journal of Mammalian Evolution, 5:113-126. Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology, 64:256-266. Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797-800. Sansom RS, Wills MA. 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports, 3. Sansom RS, Wills MA. 2017. Differences between hard and soft phylogenetic data. Proceedings of the Royal Society B-Biological Sciences, 284. Sansom RS, Wills MA, Williams T. 2017. Dental Data Perform Relatively Poorly in Reconstructing Mammal Phylogenies: Morphological Partitions Evaluated with Molecular Benchmarks. Systematic Biology, 66:813-822.

- 831 Santucci RM, De Arruda-Campos AC. 2011. A new sauropod (Macronaria, Titanosauria) from the
- 832 Adamantina Formation, Bauru Group, Upper Cretaceous of Brazil and the phylogenetic

833 relationships of Aeolosaurini. Zootaxa:1-33.

- 834 Scotland RW, Olmstead RG, Bennett JR. 2003. Phylogeny reconstruction: The role of morphology.
- 835 Systematic Biology, 52:539-548.
- 836 Senter P, Kirkland JI, DeBlieux DD. 2012a. Martharaptor greenriverensis, a New Theropod Dinosaur
- 837 from the Lower Cretaceous of Utah. Plos One, 7.
- 838 Senter P, Kirkland JI, DeBlieux DD, Madsen S, Toth N. 2012b. New Dromaeosaurids (Dinosauria:
- Theropoda) from the Lower Cretaceous of Utah, and the Evolution of the Dromaeosaurid Tail.
 Plos One, 7.
- 841 Shapiro B, Hofreiter M. 2014. A Paleogenomic Perspective on Evolution and Gene Function: New
- 842 Insights from Ancient DNA. Science, 343.
- 843 Shibata M, Jintasakul P, Azuma Y, You H-L. 2015. A New Basal Hadrosauroid Dinosaur from the Lower
- 844 Cretaceous Khok Kruat Formation in Nakhon Ratchasima Province, Northeastern Thailand.

845 Plos One, 10.

- 846 Snively E, Henderson DM, Phillips DS. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs:
- 847 Implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica,
- 848 51:435-454.
- 849 Snively E, Russell AP. 2007a. Functional variation of neck muscles and their relation to feeding style
- 850 in tyrannosauridae and other large theropod dinosaurs. Anatomical Record-Advances in
- 851 Integrative Anatomy and Evolutionary Biology, 290:934-957.
- 852 Snively E, Russell AR. 2007b. Craniocervical feeding dynamics of Tyrannosaurus rex. Paleobiology,

853 33:610-638.

854 Song H, Bucheli SR. 2010. Comparison of phylogenetic signal between male genitalia and non-genital

characters in insect systematics. Cladistics, 26:23-35.

856	Stanley SM, Roughgarden J, May RM, Levin SA. 1989. Fossils, macroevolution, and theoretical
857	ecology.
858	Swofford D. 2017. PAUP*: Phylogenetic Analysis Using Parsimony, Version 4.0a.154.
859	Templeton AR. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with
860	particular reference to the evolution of humans and the apes. Evolution, 37:221-244.
861	Thompson RS, Parish JC, Maidment SCR, Barrett PM. 2012. Phylogeny of the ankylosaurian dinosaurs
862	(Ornithischia: Thyreophora). Journal of Systematic Palaeontology, 10:301-312.
863	Tortosa T, Buffetaut E, Vialle N, Dutour Y, Turini E, Cheylan G. 2014. A new abelisaurid dinosaur from
864	the Late Cretaceous of southern France: Palaeobiogeographical implications. Annales De
865	Paleontologie, 100:63-86.
866	Tschopp E, Mateus O. 2013. The skull and neck of a new flagellicaudatan sauropod from the
867	Morrison Formation and its implication for the evolution and ontogeny of diplodocid
868	dinosaurs. Journal of Systematic Palaeontology, 11:853-888.
869	Tutin SL, Butler RJ. 2017. The completeness of the fossil record of plesiosaurs, marine reptiles from
870	the Mesozoic. Acta Palaeontologica Polonica, 62:563-573.
871	Verriere A, Brocklehurst N, Froebisch J. 2016. Assessing the completeness of the fossil record:
872	comparison of different methods applied to parareptilian tetrapods (Vertebrata: Sauropsida).
873	Paleobiology, 42:680-695.
874	Wagner PJ. 1995. Testing evolutionary constraint hypotheses with early Palaeozoic gastropods.
875	Paleobiology, 21:248-272.
876	Wagner PJ. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology,
877	23:115-150.
878	Wahlberg N, Braby MF, Brower AVZ, de Jong R, Lee MM, Nylin S, Pierce NE, Sperling FAH, Vila R,
879	Warren AD, et al. 2005. Synergistic effects of combining morphological and molecular data in
880	resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society B-
881	Biological Sciences, 272:1577-1586.

882 Wang	√, Li D, O'Connor	JK, Zhou Z, You H. 20	15a. Second species o	enantiornithine bird from the
----------	-------------------	-----------------------	-----------------------	-------------------------------

883 Lower Cretaceous Changma Basin, northwestern China with implications for the taxonomic

diversity of the Changma avifauna. Cretaceous Research, 55:56-65.

- 885 Wang M, Zheng X, O'Connor JK, Lloyd GT, Wang X, Wang Y, Zhang X, Zhou Z. 2015b. The oldest
- record of ornithuromorpha from the early cretaceous of China. Nature Communications, 6.
- 887 Wiens JJ. 1998. Does adding characters with missing data increase or decrease phylogenetic
- 888 accuracy? Systematic Biology, 47:625-640.
- 889 Wiens JJ. 2004. The role of morphological data in phylogeny reconstruction. Systematic Biology,
- 890 53:653-661.
- 891 Wilkinson M. 1995. Coping with abundant missing entries in phylogenetic inference using parsimony.

892 Systematic Biology, 44:501-514.

- 893 Williams BA. 2007. Comparing levels of homoplasy in the primate skeleton. Journal of Human
- 894 Evolution, 52:480-489.
- 895 Wills MA. 1998. A phylogeny of recent and fossil Crustacea derived from morphological characters.

896 Systematics Association Special Volume Series, 55:189-209.

- 897 Wills MA, Barrett PM, Heathcote JF. 2008a. The modified gap excess ratio (GER*) and the
- 898 stratigraphic congruence of dinosaur phylogenies. Systematic Biology, 57:891-904.
- 899 Wills MA, Barrett PM, Heathcote JF. 2008b. The Modified Gap Excess Ratio (GER*) and the
- 900 Stratigraphic Congruence of Dinosaur Phylogenies. Systematic Biology, 57:891-904.
- 901 Wills MA, Jenner RA, Dhubhghaill CN. 2009. Eumalacostracan Evolution: Conflict between Three
- 902 Sources of Data. Arthropod Systematics & Phylogeny, 67:71-90.
- 903 Wilson JA, Allain R. 2015. Osteology of Rebbachisaurus garasbae Lavocat, 1954, a diplodocoid
- 904 (Dinosauria, Sauropoda) from the early Late Cretaceous-aged Kem Kem beds of southeastern
- 905 Morocco. Journal of Vertebrate Paleontology, 35:e1000701-e1000701.
- 906 Wortley AH, Scotland RW. 2006. Determining the potential utility of datasets for phylogeny
- 907 reconstruction. Taxon, 55:431-442.

- 908 Xing H, Wang D, Han F, Sullivan C, Ma Q, He Y, Hone DWE, Yan R, Du F, Xu X. 2014. A New Basal
- 909 Hadrosauroid Dinosaur (Dinosauria: Ornithopoda) with Transitional Features from the Late
- 910 Cretaceous of Henan Province, China. Plos One, 9.
- 911 Xing L, Miyashita T, Currie PJ, You H, Zhang J, Dong Z. 2015. A new basal eusauropod from the
- 912 Middle Jurassic of Yunnan, China, and faunal compositions and transitions of Asian
- 913 sauropodomorph dinosaurs. Acta Palaeontologica Polonica, 60:145-154.
- 914 Zanno LE, Makovicky PJ. 2013. Neovenatorid theropods are apex predators in the Late Cretaceous of
- 915 North America. Nature Communications, 4.
- 916 Zhou S, Zhou Z, O'Connor J. 2014. A new piscivorous ornithuromorph from the Jehol Biota. Historical
- 917 Biology, 26:608-618.
- 918 Zou Z, Zhang J. 2016. Morphological and molecular convergences in mammalian phylogenetics.
- 919 Nature Communications, 7.
- 920

922 Table 1. Summary of all tests and statistics for all 81 partitioned data sets

923

D-6	Craniodental	Postcranial		Таха				IRD Match	IRD Match		Craniodental	Postcranial	Craniodental	Craniodental	Postcranial	Postcranial
Allain etal 2012a-Bc	74	94	20	removec *	0.140	0.11	0.04	0.07	0.04	4.19E-09	16.22	19.47	0.5172	0.6667	0.585	0.7615
Araujo_etal_2013a-Bc	159	187	22	42	0.011	0.01	0.01	0.03	0.03	3.12E-02	30.16	26.15	0.5064	0.6025	0.5899	0.729
Brusatte_et_Benson_2013a-Bc	200	107	18	16	0.164	0.01	0.01	0.02	0.05	2.20E-16	23.67	34.53	0.6809	0.8353	0.6648	0.846
Brusatte_etal_2014a-Bc	368	473	56	95	0.054	0.01	0.01	0.01	0.01	0.1693	49.53	39.33	0.4584	0.7616	0.4219	0.5781
Canale_etal_2015a-Bc	100	55	16	1	0.610	0.01	0.21	0.05	0.07	2.20E-16	35.8	39.27	0.6667	0.7617	0.6239	0.6583
Cau_etal_2012a-Bc Choinioro_etal_2014ba_Bc	338	443	29	8	0.031	0.03	0.03	0.02	0.01	3.18E-08	38.32	45.39	0.3934	0.4944	0.4329	0.5189
Evers etal 2015a-Bc	152	290	36	22	0.001	0.01	0.01	0.01	0.01	0.0001219	46.63	40.83	0.2892	0.5817	0.3029	0.0013
Eddy et Clarke 2011a-Bc	95	66	19	3	0.032	0.18	0.23	0.11	0.11	0.002423	26.93	35.35	0.6294	0.6702	0.7048	0.7304
Fanti etal 2012a-Bc	109	69	17	2	0.001	0.01	0.02	0.03	0.03	2.20E-16	31.41	37	0.75	0.8442	0.5548	0.5988
Farke_et_Sertich_2013a-Bc	81	106	18	12	0.998	0.02	0.01	0.01	0.01	0.01551	46.52	43.64	0.7328	0.8558	0.5867	0.6773
Foth_etal_2014a-Bc	177	357	53	89	0.001	0.01	0.01	0.01	0.08	0.2493	39.2	35.9	0.4114	0.7684	0.392	0.7412
Godefroit_etal_2013b-Bc	373	614	27	28	0.001	0.01	0.01	0.01	0.01	8.94E-01	41.22	47.8	0.4647	0.5216	0.5207	0.5776
Hu_etal_2015a-BC	41	1/1	27	35	0.231	0.63	0.76	0.02	0.02	5.02E-02	57.18	33.1 45.4	0.6761	0.783	0.4815	0.6337
Lee etal 2014b.Bc	130	181	20	15	0.165	0.35	0.68	0.03	0.02	3.50E-10 3.58E-11	37.5	33.5	0.6901	0.8211	0.6144	0.7315
LIZ etal 2014a-Bc	45	162	16	20	0.372	0.84	0.85	0.67	0.7	0.003983	30.42	16.51	0.5446	0.6085	0.4641	0.5339
Loewen_etal_2013a-Bc	297	196	40	0	0.122	0.08	0.06	0.05	0.12	5.72E-07	29.69	29.96	0.4093	0.7603	0.4239	0.7713
Longrich_etal_2011a-Bc	46	163	26	20	0.002	0.01	0.01	0.01	0.03	2.58E-02	42.5	21.53	0.8154	0.9084	0.6353	0.7913
Lu_etal_2014ab-Bc	203	107	20	5	0.233	0.01	0.01	0.01	0.01	2.20E-16	25.15	38.78	0.663	0.8345	0.6536	0.8438
Novas_etal_2013aa-Bc	91	188	21	24	0.475	0.03	0.05	0.01	0.09	0.03884	21.4	30.37	0.4823	0.6528	0.514	0.6661
Parsons_et_Parsons_2015a-BC	254	188	28	90	0.016	0.01	0.01	0.03	0.02	3.49E-02	24.41	23.74	0.5523	0.7823	0.6348	0.8331
Sanchez-Hernandez et Benton 2014a-BC	122	78	17	14	1.000	0.04	0.04	0.38	0.51	3.28F-08	35.25	37.49	0.3989	0.8655	0.4371	0.6875
Senter etal 2012b-Bc	153	229	79	31	0.021	0.04	0.06	0.01	0.01	2.20E-16	20.73	17.83	0.6583	0.8601	0.6196	0.8179
Tortosa_etal_2014a-Bc	118	177	16	24	0.017	0.01	0.01	0.01	0.01	6.80E-11	44.6	34.03	0.7822	0.8327	0.6022	0.6613
Wang_etal_2015b-Bc	40	185	17	41	0.018	0.18	0.51	0.17	0.13	3.83E-04	43.38	30.84	0.7121	0.7841	0.6546	0.7103
Zanno_et_Makovicky_2013a-Bc	148	190	36	26	0.080	0.05	0.23	0.05	0.04	3.44E-15	42.59	33.81	0.4474	0.6555	0.4725	0.7113
Zhou_etal_2014a-Bc	46	149	15	18	0.001	0.02	0.20	0.03	0.12	5.59E-02	26.96	15.84	0.7746	0.8571	0.7462	0.8107
DEmic_2013a-Ba	15	96	13	12	0.018	0.05	0.06	0.03	0.08	6.40E-05	23.6	18.2	0.7273	0.8065	0.7769	0.8585
Santucci et Arruda-Campos 2011a-Ba	76	145	22	13	0.074	0.02	0.02	0.02	0.01	7.63E-15	32.2	21.36	0.0087	0.7611	0.0081	0.7557
Tschonn et Mateus 2013a-Ba	66	96	14	0	0.131	0.12	0.29	0.04	0.32	1.06E-07	47.29	30.73	0.6964	0.6634	0.5824	0.6181
Wilson et Allain 2015a-Ba	66	80	13	0	0.263	0.01	0.01	0.01	0.01	2.20E-16	31.47	15.38	0.8675	0.9106	0.6641	0.7676
Carballido & Sander-Bb	99	223	22	52	0.002	0.10	0.09	0.17	0.16	8.80E-13	33.47	29.03	0.6628	0.7852	0.5704	0.6525
Carballido_etal_2015a-Bb	95	231	18	55	0.041	0.05	0.08	0.04	0.05	6.60E-02	29.07	20.06	0.6467	0.7204	0.5859	0.5983
Fanti_etal_2015a-Bb	72	126	20	0	0.466	0.01	0.01	0.16	0.11	2.88E-10	41.32	27.18	0.7105	0.8187	0.5153	0.6333
Lacovara_etal_2014a-Bb	100	226	22	53	0.009	0.03	0.03	0.01	0.02	0.2951	34.4	27.82	0.6667	0.7765	0.5744	0.6679
Mannion etal 2012a Rh	99	220	21	22	0.020	0.54	0.24	0.26	0.28	1.225.01	32.13	20.02	0.0080	0.7778	0.5752	0.6555
McPhee etal 2015a-Bb	117	233	32	22	0.496	0.04	0.20	0.16	0.15	2.20E-16	30.9	20.53	0.4227	0.6924	0.3894	0.6524
Rauhut etal 2015a-Bb	102	216	29	43	0.677	0.01	0.01	0.01	0.01	2.20E-16	47.63	26.48	0.6031	0.7475	0.476	0.7051
Rubilar-Rogers_etal_2012a-Bb	68	150	22	8	0.080	0.01	0.01	0.01	0.01	2.20E-16	46.19	24.94	0.7064	0.7867	0.6614	0.8009
Xing_etal_2015b-Bb	101	237	28	17	0.096	0.01	0.01	0.01	0.01	2.20E-16	22.6	32.69	0.5566	0.7135	0.4812	0.6628
Pol_etal_2011a-Bb	102	160	38	12	0.120	0.52	0.58	0.37	0.29	7.14E-03	37.59	36.12	0.625	0.7931	0.6667	0.7978
Saegusa_et_ikeda_2014a-BD	15	99	13	16	0.025	0.06	0.04	0.01	0.03	2 205 16	23.6	18.41	0.7273	0.8065	0.7803	0.8585
Evans-Aa Farke etal 2011-A	48	46	24	2	0.078	0.04	0.03	0.01	0.01	2.20E-16 0.07588	29.17	43.00	0.7391	0.8200	0.8519	0.8519
Farke etal 2014ba-Aa	103	43	14	19	0.082	0.04	0.22	0.03	0.01	5.04E-08	20.94	20.59	0.75	0.8413	0.746	0.8367
Han_etal_2015a-Aa	162	47	18	19	0.207	0.02	0.62	0.22	0.93	5.45E-03	17.18	20.8	0.5938	0.7784	0.68	0.831
Longrich_2011aa-Aa	90	23	19	3	1.000	0.47	0.45	0.43	0.41	4.79E-07	17	27	0.7983	0.8983	1	1
Longrich_2014a-Aa	159	32	16	19	0.727	0.05	0.09	0.02	0.31	8.64E-04	17.33	33.98	0.7449	0.8098	1	1
Boyd_2015a-Ab	128	99	34	65	0.814	0.85	0.74	0.59	0.6	4.24E-05	40.72	31.7	0.37	0.6056	0.4206	0.6477
Boyd_et_Pagnat_2015a-AD	90	41	28	40	0.028	0.07	0.01	0.02	0.01	0.7277	25	27.44	0.5714	0.7894	0.5481	0.7991
Evans etal 2013a-Ab	28	10	12	6	0.993	0.02	0.40	0.07	0.38	0.2078	15.18	46.7	0.6792	0.7302	0.9167	0.9091
Godefroit etal 2012b-Ab	100	46	19	2	0.108	0.02	0.01	0.02	0.02	2.20E-16	18.84	30.32	0.6875	0.7766	0.6782	0.7667
He_etal_2015a-Ab	191	144	34	27	0.007	0.68	0.49	0.83	0.71	0.1416	22.16	24.04	0.4275	0.6648	0.4595	0.6855
McDonald_etal_2012a-Ab	91	41	42	25	0.285	0.04	0.03	0.13	0.15	1.60E-09	21.89	24	0.5955	0.7977	0.596	0.8113
McGarrity_etal_2013a-Ab	102	46	20	2	0.202	0.01	0.01	0.01	0.01	2.20E-16	19.12	33.8	0.6759	0.7727	0.6782	0.7667
Norman_2015a-Ab	68	37	23	4	0.772	0.97	0.98	0.97	0.96	0.6486	10.29	17.63	0.5914	0.781	0.6542	0.8405
Norman_etal_2011a-Ab	155	57	13	1	0.090	0.12	0.23	0.11	0.15	2 205 01	12.82	18.89	0.5659	0.5591	0.6311	0.5481
Prieto-Marquez_20140-Ab	194	91	34	17	0.303	0.69	0.68	0.39	0.37	0.02466	21.35	20.49	0.5737	0.8063	0.4843	0.7587
Prieto-Marguez etal 2013a-Ab	143	66	26	8	0.475	0.01	0.03	0.14	0.43	0.0001373	27.65	29.37	0.5971	0.78	0.5577	0.6849
Shibata_etal_2015a-Ab	68	37	23	28	0.760	0.95	1.00	0.96	1	0.0393	10.29	17.62	0.5914	0.781	0.6542	0.8405
Xing_etal_2014a=Ab	233	111	32	30	0.645	0.16	0.60	0.06	0.21	9.42E-08	14.06	11.09	0.6359	0.8806	0.5991	0.8791
Arbour_et_Currie_2013c-Ac	70	56	17	1	0.436	0.11	0.73	0.58	0.83	0.04001	20.84	29.05	0.5692	0.72	0.7093	0.7642
Arbour_etal_2014b-Ac	57	66	19	1	0.460	0.14	0.31	0.11	0.08	7.00E-07	22.9	44.82	0.5455	0.7207	0.6729	0.7569
Barrett_etal_2014a-Ac	130	94	35	19	0.240	0.06	0.05	0.29	0.25	4.075.05	22.54	29.28	0.4531	0.6841	0.5194	0.7324
Burns et Currie 2014-A	45	33	23	0	0.002	0.01	0.01	0.09	0.09	4.97E-05	13.04	45.85	0.4522	0.8261	0.6818	0.7312
Burns etal 2011a-Ac	45	16	23	0	0.426	0.29	0.08	0.05	0.61	0.05312	12.8	36.76	0.5484	0.7103	0.7143	0.7838
Butler etal 2011b-Ac	124	93	31	20	0.234	0.03	0.04	0.51	0.69	0.000465	22.11	23.93	0.4964	0.6745	0.5381	0.7217
Coria_etal_2013a-Ac	130	97	28	24	0.022	0.03	0.15	0.17	0.22	3.14E-02	19.86	20.95	0.5199	0.6787	0.5567	0.7463
Godefroit_etal_2014a-Ac	130	94	31	24	0.041	0.02	0.02	0.38	0.48	0.01808	19.35	21.17	0.4814	0.6585	0.512	0.6973
Han_etal_2012a-Ac	127	94	38	24	0.137	0.07	0.04	0.24	0.12	1.79E-01	18.06	18.56	0.5112	0.6881	0.5323	0.7134
Osi_etal_2012ab-Ac	132	97	40	18	0.313	0.03	0.03	0.01	0.02	4.74E-02	18.56	18	0.4354	0.6708	0.5094	0.707
Pol_etal_2011b-Ac	129	97	42	9	0.020	0.01	0.03	0.09	0.11	0.01531	19.92	26.08	0.5238	0.6692	0.5567	0.7362
Thompson etal 2012a-Ac	130	94	35	10	0.041	0.04	0.01	0.23	0.05	6.95E-09	20.08	35.8	0.4545	0.08/2	0.5347	0.7307

924 IRD tests are based either upon the mean tree-to-tree distances between nearest neighbours (NND) 925 or the distance between majority rule (plus compatible grouping) trees (MR). The tree-to-tree 926 distance metric used is either the Robinson Foulds (symmetrical difference) distance (RF) or the 927 Matching distance (Match). Sources: (Brown et al., 2011; Burns et al., 2011; Butler et al., 2011; 928 Carballido et al., 2011; Eddy and Clarke, 2011; Farke et al., 2011; Longrich, 2011; Pol et al., 2011a; 929 Pol et al., 2011b; Santucci and De Arruda-Campos, 2011; Allain et al., 2012; Fanti et al., 2012; Han et 930 al., 2012; Ignacio Ruiz-Omenaca et al., 2012; McDonald, 2012; Osi et al., 2012; Rubilar-Rogers et al., 931 2012; Senter et al., 2012a; Senter et al., 2012b; Thompson et al., 2012; Araujo et al., 2013; Arbour 932 and Currie, 2013; Brusatte and Benson, 2013; Cau et al., 2013; Coria et al., 2013; D'Emic, 2013; Farke 933 and Sertich, 2013; Godefroit et al., 2013; Loewen et al., 2013; Mannion et al., 2013; McGarrity et al., 934 2013; Novas et al., 2013; Prieto-Marquez et al., 2013; Prieto-Marquez and Wagner, 2013; Tschopp 935 and Mateus, 2013; Zanno and Makovicky, 2013; Arbour et al., 2014; Barrett et al., 2014; Brusatte et 936 al., 2014; Burns and Currie, 2014; Carballido and Sander, 2014; Choiniere et al., 2014; Evans et al., 937 2014; Farke et al., 2014; Foth et al., 2014; Gorscak et al., 2014; Lacovara, 2014; Lamanna et al., 2014; 938 Lee et al., 2014; Li et al., 2014; Longrich, 2014; Lu et al., 2014; Porfiri et al., 2014; Saegusa and Ikeda, 939 2014; Sanchez-Hernandez and Benton, 2014; Tortosa et al., 2014; Xing et al., 2014; Zhou et al., 2014; 940 Boyd, 2015; Boyd and Pagnac, 2015; Carballido et al., 2015; Evans and Ryan, 2015; Evers et al., 2015;

- 941 Fanti et al., 2015; Hu et al., 2015; Ignacio Canale et al., 2015; McPhee et al., 2015; Norman, 2015;
- Parsons and Parsons, 2015; Rauhut et al., 2015; Shibata et al., 2015; Wang et al., 2015a; Wang et al.,
- 943 2015b; Wilson and Allain, 2015; Xing et al., 2015; He et al., 2016)
- 944

945 Table 2. Summary of matrix partitions and results of tests

	All matrices	Theropoda	Sauropoda	Cerapoda	Ornithopoda	Thyreophora	W or G	р
No. Matrices	81	29	17	6	15	14	-	-
Median Number Craniodental/Postcranial Characters	100/97	122/177	95/160	96.5/37.5	100/53	125.5/93.5	-	-
Median Craniodental/Postcranial CI	0.5971/0.5867	0.6294/0.585	0.6686/0.5824	0.742/0.8079	0.5914/0.5991	0.5038/0.5474	-	-
Median Craniodental/Postcranial RI	0.7711/0.7307	0.7684/0.7103	0.7778/0.6679	0.8182/0.84795	0.7766/0.7667	0.68765/0.7318	-	-
*Craniodental/Postcranial most similar to entire (NND+Matching)	39/42	13/16	4/13	5/1	10/5	7/7		
f p<0.05 ILD	27	14	7	0	2	4	11.3810	0.0226
f p<0.05 IRD NND+RF	45	21	9	3	5	7	6.7962	0.1471
f p<0.05 IRD MR+RF	39	17	9	1	5	7	5.4241	0.2465
f p<0.05 IRD NND+Matching	40	19	12	4	3	2	20.1841	0.0005
f p<0.05 IRD MR+Matching	35	19	9	3	3	1	19.3857	0.0007

947 *Craniodental/Postcranial most similar to entire (NND+Matching). Both partitions and the entire 948 matrix were repeatedly (x100) resampled at the sample size (number of characters) of the smaller 949 partition, and most parsimonious trees were inferred from all three samples of characters. For each 950 resampling, the mean matching distance between nearest neighbours was used to determine which 951 partitioned tree(s) (craniodental or postcranial) were most similar to the tree(s) from the 952 subsampled entire matrix. The mean of these distances across all random re-samplings was then 953 used to determine which partition (craniodental or postcranial) yielded trees mot similar to that 954 from the entire matrix overall. The last five rows of the table indicate the frequency with which 955 partitions yield trees that are significantly different (with p < 0.05) for the ILD and variants of the IRD 956 test. IRD tests are based either upon the mean tree-to-tree distances between nearest neighbours 957 (NND) or the distance between majority rule (plus compatible grouping) trees (MR). The tree-to-tree 958 distance metric used is either the Robinson Foulds (symmetrical difference) distance (RF) or the 959 Matching distance.

960

961

963

964 Figure 1. Calculation of the Incongruence Length Difference (ILD) and the Incongruence Relationship 965 Difference (IRD) for the cranial and postcranial character partitions in the data of Fanti et al., 2012. 966 Parsimony analysis of all 178 characters together yields a single most parsimonious tree (MPT) of 967 328 steps. Analysis of 109 craniodental characters alone yields an MPT length of 172 steps, 968 while 69 postcranial characters alone yield an MPT length of 146 steps. The sum of these partitioned 969 lengths (172+146 = 318) is less than the length of the global MPT by 10 steps (328-318 = 10). This 970 discrepancy is the incongruence length difference (ILD = 10). The partitioned trees imply different 971 relationships, and the magnitude of this difference can be measured using a diversity of tree-to-tree 972 distance metrics. The Robinson Foulds (RF) or symmetrical difference distance (Robinson and Foulds, 973 1981) is among the most widely applied, and is calculated as the sum of the number of internal tree 974 nodes that are present in one tree but not the other. The IRD_{RF} is therefore the incongruence 975 relationship difference measured using the RF distance. The RF distance has the disadvantage that it 976 can saturate guickly. Numerous other tree-to-tree distance metrics are available, and we also 977 implement the matching distance here (MD) (Lin et al, 2012), to yield the IRD_{Matching}. The 978 ILD, IRD_{RF} and IRD_{Matching} each enables a test of incongruence, implemented by randomly partitioning 979 the data set into character sets of the same size as the original (here, 109 and 69) and 980 recalculating the metric. This is repeated a large number of times to yield a null distribution for 981 randomised metric values, and the value for the original partition is compared with this in order 982 to yield an empirical p value. Because the ILD, IRD_{RF} and IRD_{MD} all measure different things (tree 983 length versus different aspects of tree shape and relationships), the results of these tests do not 984 invariably coincide.

985

987 Figure 2. Exemplary tanglegrams for two groups of Saurischia. All trees are majority rule trees, plus 988 compatible groupings. We do not necessarily recommend the use of majority rule trees in calculating 989 IRD statistics (although we summarise these IRD_{MR} calculations in Tables 1 and 2), because they can 990 be far from the centroid of tree space (Mounce et al., 2016). Rather, we advocate the use of mean 991 distances between nearest neighbours in the two sets of trees for comparison. The left hand tree in 992 each panel is derived from craniodental characters, while the right hand tree is derived from 993 postcranial characters. Circled internal nodes are those present in one tree but not the other, and 994 are tallied to give the Robinson Foulds (RF) or symmetrical difference distance (Robinson and Foulds, 995 1981). A. Tanglegram for Theropoda using data from Tortosa et al., (2014). (ILD p=0.017; IRD_{NND+RF} 996 p=0.01; IRD_{NND+Matching} p=0.01; IRD_{MR+RF} p=0.01; IRD_{MR+Matching} p=0.01). B. Tanglegram for Sauropoda 997 using data from Gorscak et al., 2014. (ILD p=0.074; IRD_{NND+RF} p=0.02; IRD_{NND+Matching} p=0.02; IRD_{MR+RF} 998 p=0.02; IRD_{MR+Matching} p=0.01).

Figure 3. Exemplary tanglegrams for two groups of Ornithischia. All trees are majority rule trees, plus 1001 1002 compatible groupings. We do not necessarily recommend the use of majority rule trees in calculating 1003 IRD statistics (although we summarise these IRD_{MR} calculations in Tables 1 and 2), because they can 1004 be far from the centroid of tree space (Mounce et al., 2016). Rather, we advocate the use of mean 1005 distances between nearest neighbours in the two sets of trees for comparison. The left hand tree in 1006 each panel is derived from craniodental characters, while the right hand tree is derived from 1007 postcranial characters. Circled internal nodes are those present in one tree but not the other, and 1008 are tallied to give the Robinson Foulds (RF) or symmetrical difference distance (Robinson and Foulds, 1009 1981). A. Tanglegram for Ceratopsia using data from Evans and Ryan, (2015). (ILD p=0.078; IRD_{NND+RF} 1010 p=0.04; IRD_{NND+Matching} p=0.01; IRD_{MR+RF} p=0.03; IRD_{MR+Matching} p=0.01). B. Tanglegram for Hadrosaurida 1011 using data from Prieto and Marquez, 2014. (ILD p=0.088; IRD_{NND+RF} p=0.34; IRD_{NND+Matching} p=0.12; 1012 IRD_{MR+RF} p=0.83; IRD_{MR+Matching} p=0.37).

1014 1015

1016 Figure 4. Summary of results of Incongruence Length Difference (ILD) and variants of the 1017 Incongruence Relationship Difference (IRD) tests, partitioned by major taxonomic group. Bars 1018 denote the percentage of data sets for which p<0.05. 'RF' in the subscript denotes IRD tests utilising 1019 the symmetrical-difference distance of Robinson and Foulds (1981), while 'Match' in the subscript 1020 denotes tests utilising the Matching distance of Linn et al. (2012). Comparisons are either made 1021 using majority rule consensus trees (MR), or the mean nearest neighbour distance between each 1022 tree in one set and its nearest neighbour in the other. CZ ONI 1023

Data file(s): Nexus files and partition data Basic script for performing IRD tests in conjunction with PAUP* PARTRELAT is a Basic script for determining which of two character matrix partitions (e.g., craniodental or postcranial) yields trees most similar to those derived from the entire matrix. Supplemenatry Materials 1 - Table of overlap between matrices

Thank you for submitting your data package to Dryad for journal review. Please read the following information carefully and save it for future reference.

(1) Your data package is temporarily available to journal editors and reviewers via a private review link (see below).

(2) It has been assigned a Digital Object Identifier (DOI), but this DOI will not work until/unless your manuscript is accepted for publication and your data package is approved by our curators.

(3) If/when your manuscript is accepted, please make sure that the DOI, and NOT the review link, is included in the published article. More information about citing your data is below.

(4) If you need to modify your submission, please see the instructions below. Do not create multiple Dryad submissions associated with the same manuscript.

(5) If you were asked to enter a credit card number, your card will not be charged unless/until your manuscript is accepted and your submission is approved. You will receive a confirmation when your card is charged.

YOUR TEMPORARY REVIEW LINK:

https://datadryad.org/review?doi=doi:10.5061/dryad.05961bm

(for journal access prior to manuscript acceptance only, DO NOT link in your manuscript)

YOUR DRYAD DOI:

doi:10.5061/dryad.05961bm

(for inclusion in the published article)

to perperience