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Abstract 

Despite the wide use of genomics to investigate the molecular basis of rare congenital 

malformations, a significant fraction of patients remains bereft of diagnosis. As part of our 

continuous effort to recruit and perform genomic and functional studies on such cohorts, we 

investigated the genetic and mechanistic cause of disease in two independent consanguineous 

families affected by overlapping craniofacial, cardiac, laterality, and neurodevelopmental 

anomalies. Using whole exome sequencing, we identified homozygous frameshift CCDC32 

variants in three affected individuals. Functional analysis in a zebrafish model revealed that 

ccdc32 depletion recapitulates the human phenotypes. Because some of the patient phenotypes 

overlap defects common to ciliopathies, we asked if loss of CCDC32 might contribute to the 

dysfunction of this organelle. Consistent with this hypothesis, we show that ccdc32 is required 

for normal cilia formation in zebrafish embryos and mammalian cell culture, arguing that ciliary 

defects are at least partially involved in the pathomechanism of this disorder. 
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Introduction 

Discovered in 1675, cilia were among the first described cellular organelles and are now 

understood to be present near ubiquitously in vertebrate cells.  However, it is only in the last two 

decades that intensive genetic and molecular discovery has revealed the extent of the influence of 

cilia on human development and health (1-3). Cilia are complex microtubule-based appendages 

that provide both motile force and mediate reception and transduction of extracellular signals. 

Mutations that affect cilia structure and/or function can impair embryogenesis and underlie a 

constellation of congenital diseases, unified under the broad ciliopathy umbrella(4). These 

disorders often share phenotypic features (e.g. craniofacial, laterality, cerebral, retinal, renal, 

skeletal, and fertility abnormalities), but vary in their clinical presentation and severity (2, 3, 5). 

 

Cilia production and function are complex and regulated, requiring the coordinated action of 

proteins and cellular processes(1, 6). While the contribution of ciliary dysfunction to human 

disease is clear, the heterogeneity of cilia genetics, structure, and function challenges our 

understanding of disease mechanism, and hampers our ability to diagnose affected families. 

Thus, the continued discovery of ciliary genes and disease variants is a critical step in improving 

our ability to identify and treat ciliopathies.  

 

Here, we examined individuals from two independent consanguineous families affected by 

overlapping clinical features suggestive of a ciliopathy that include craniofacial, cardiac, 

laterality and neurodevelopmental anomalies. We report that both individuals carry homozygous 

frameshift variants in CCDC32, a locus hitherto unknown to be involved with human pathology. 

Furthermore, we show that CRISPR–Cas9 mediated deletion of ccdc32 in zebrafish impaired 
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embryonic cilia formation and recapitulated key human phenotypes. Together, our data extend 

the causal recessive loci for this group of disorders to include variants in CCDC32.  

 

Results 

Family A (Figure 1A, Table S1), a consanguineous Arab Muslim pedigree (first cousins, once 

removed), includes a six-year-old female (Individual A-II-1) who presented with global 

developmental delay, feeding difficulties in infancy, and congenital anomalies including cleft lip 

and palate, atrioventricular (AV) canal defect, and abdominal situs inversus with asplenia. 

Physical examination revealed borderline microcephaly (3
rd

-5
th

 percentile), height at 80
th

 

percentile, and weight at 32
nd

 percentile. Dysmorphic features included hypotelorism, upslanting 

palpebral fissures, a stiff upper lip, missing teeth attributed to the clefting, vaulted palate with 

cleft, prominent ears, underdeveloped helices, and micrognathia. She had mild kyphosis and nail 

clubbing; abnormal dermatoglyphics, bilateral camptodactyly, and clinodactyly of the fifth 

fingers. Brain MRI revealed hypoplastic cerebellar tonsils. Ophthalmology, audiology and renal 

evaluations were within normal limits. A sibling fetus in Family A (A-II-2) had bilateral cleft lip, 

vermian hypoplasia, hypoplastic pons, and abnormal cisterna magna that were detected by 

ultrasound, and the pregnancy was terminated electively. No heart defect was detected in the 

fetus. Chromosomal microarray (CMA) of both individuals was normal. 

 

We also independently consulted Family B, which included a three-year-old male individual 

born to first cousins of Iranian-Isfahan descent (Individual B-II-1) with no known family history 

of congenital anomalies. At birth, individual B-II-1 weighed 3.1kg and presented with bilateral 

cleft lip, cleft palate, ventricular septal defect and pulmonary valve stenosis. He had severe 
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feeding difficulties, moderately delayed motor and language development, and hyperactivity. 

Physical examination revealed microcephaly (Z score -2.5), height at 97
th

 percentile, and weight 

at 64
th

 percentile. Dysmorphic features included brachydactyly, hypertelorism, epicanthal folds, 

broad nasal root, a prominent large nose, and malformed protruded ears. The individual had 

clinodactyly; nail aplasia on thumbs and toes; and cryptorchidism. Other evaluations, including 

ophthalmology, electroencephalogram (EEG), and renal ultrasound were normal. Detailed 

clinical findings of all affected individuals are summarized in Supplemental Table 1. 

 

With informed consent from each of our institutions, probands from Family A and Family B 

(Figure 1A) underwent whole exome sequencing (WES) in search of an underlying molecular 

diagnosis. Genomic DNA samples from Family A were collected using the SureSelect Human 

All Exon 50 Mb V5 Kit (Agilent Technologies), while samples from Family B were captured 

with Nextera Rapid Capture Exome and Expanded Exome Kits. DNA libraries from families A 

and B were sequenced on HiSeq2500 and HiSeq2000 platforms (Illumina), respectively. Reads 

were aligned to the reference human genome assembly hg19 (GRCh37) and the mean coverage 

was 71X for Family A and 58X for Family B. Variants were called as described(7, 8) and in 

accordance with GATK recommendations. For Family A, variants were filtered out if the total 

read depth was less than 7X, and if they were off-target, synonymous, or had minor allele 

frequency (MAF) >0.01 in the in-house and dbSNP databases, or MAF >0.005 in the GnomAD 

database. Nine homozygous variants survived filtering (Supplemental Table 2).  For Family B, 

Runs of Homozygosity (ROH) were detected from WES data with H3M2(9), and the analysis 

focused on homozygous variants within large regions of homozygosity (ROH >= 1.5 Mb) which 

are the most likely to be identical by descent(10). We retained only variants predicted to affect 
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protein function (nonsynonymous, nonsense, splicing and small indels), and we filtered out 

variants with a minor allele frequency greater than 0.01 or that appeared to be homozygous in the 

gnomAD, EVS, 1000 Genomes or in the Bologna in-house database, including about >1000 

additional WES samples. Analysis of WES data was made on the assumption of a recessive 

inheritance pattern on the basis of consanguinity (families A and B), and multiple affected 

members (family A). No biallelic variants were identified in genes known to cause Mendelian 

diseases overlapping the affected individuals’ phenotypes. Validation and segregation studies of 

variants of interest was performed by Sanger sequencing.  

 

Homozygous frameshift variants in CCDC32, which encodes a 194 amino acid polypeptide of 

unknown function, were identified in both families. In Family A, a homozygous frameshift 

variant (chr15:g.40855188dupA [hg19]; NM_001080791.2: c.54dupT, p.(Thr19Tyrfs*12)), 

mapping within a ~9.06Mb ROH, segregated with the disease in available family members 

(Figure 1A). This variant is predicted to produce a premature termination codon (PTC) at 

position 30 and was absent from gnomAD, TOPMed, Geno2MP, and the GME Variome. In 

Family B, only one homozygous variant survived the aforementioned bioinformatic filtering: a 

homozygous dinucleotide insertion (chr15:g.40855052dupCC; NM_001080791.2; 

c.189_190dupGG: p.Glu64Glyfs*12), mapping within a 5.23 Mb ROH. The frameshift insertion 

was confirmed by Sanger sequencing as bi-allelic with each allele segregating from one of the 

parents (Figure 1A). Discovery of these two families was facilitated by GeneMatcher(11).  

 

As the biological role of CCDC32 is unknown, we next used CRISPR-Cas9 technology to model 

ccdc32 depletion in vivo and to further investigate its potential contribution to the observed 
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clinical phenotype. Zebrafish is a useful model for such studies as each mating produces 

hundreds of genetically tractable, externally developing embryos, allowing rapid and efficient 

investigation of gene function in development and initial testing of causality of newly-discovered 

disease loci at a scale and cost that is able to address the needs of genomic discovery (12). For 

example, aspects of craniofacial, neurological and cardiac development can readily be assessed 

within three days of manipulating fertilized eggs and they have been paired to our discovery 

sequencing studies of congenital structural defects of unknown etiology (13-18). A single 

ortholog of CCDC32 exists in the zebrafish genome (46% identity, 64% similarity). We designed 

two distinct single guide (sg)RNAs (sgRNA1 and sgRNA2) targeting non-overlapping regions of 

exon 2 of ccdc32 and injected each into zebrafish embryos at the one cell stage, along with Cas9 

protein. We evaluated the efficacy of our ccdc32 gene editing by heteroduplex analysis, cloning, 

and sequencing of sgRNA targeted regions(13, 15, 19), which revealed an average of 85% 

(sgRNA1) and 70% (sgRNA2) mosaic alterations in F0 crispants (Supplemental Figure 1).  

 

As all three affected individuals exhibited overlapping craniofacial and neurodevelopmental 

abnormalities, including microcephaly, midline facial defects, and cerebellar hypoplasia, we first 

examined the development of analogous structures in our zebrafish model. Editing of ccdc32 

with either sgRNA resulted in a significant reduction in head size at 3 dpf compared to either 

uninjected or sgRNA-only (no CAS9 protein) injected controls, recapitulating the human 

microcephaly phenotype (Figure 2A). Furthermore, ccdc32 crispants exhibited significant, 

reproducible alterations in facial skeletal morphology compared to controls, as measured by the 

angle of the bilateral ceratohyal cartilages (Figure 2B).  Immunostaining with anti--acetylated 

tubulin also revealed hypoplastic cerebella in ccdc32-depleted larvae (Figure 2C). Importantly, 
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development of the CRISPR modified larvae was not globally delayed as no reduction in overall 

body length was detected (Supplemental Figure 2), a finding consistent with our recent 

observations of trivial background off-target mutations in mosaic crispants (20).  

 

Congenital heart anomalies were patent in both probands, and individual A-II-1 exhibited 

heterotaxy. To test whether ccdc32 is required for embryonic axis development, we examined 

left/right development in our crispant embryos. In vertebrates, left/right symmetry is first broken 

at an organizing center: the node in mouse or Kupffer’s vesicle (KV) in zebrafish(21, 22). Here, 

motile cilia produce a directional fluid flow across the organizer which is subsequently translated 

by primary cilia into asymmetric expression of developmentally important genes and normal 

organ placement(5, 21-26). Organ situs, in particular cardiac looping, can be examined readily in 

zebrafish embryos due to their optical transparency, availability of transgenic reporters, and 

external development. Depletion of ccdc32 using either of our sgRNAs disrupted cardiac looping 

at 2 dpf (Figure 3A), demonstrating that ccdc32 plays a required and conserved role in 

vertebrate left - right symmetry breakage. We further noted that expression of southpaw (spaw), 

a key left/right patterning transcript, was impaired in our ccdc32 crispants at the 18 somite stage 

(Figure 3B), suggesting that ccdc32 functions at an early stage of axis development. Consistent 

with this notion, ccdc32 transcripts were detected as early as one hour post fertilization in 

zebrafish development, and were particularly localized to the developing head and neural tube 

throughout embryogenesis, including the KV region (Supplemental Figure 3).  

 

To explore a potential role for ccdc32 in KV development, we next examined ccdc32 

requirements in cilia formation in the zebrafish KV. Immunostaining with anti--acetylated 
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tubulin revealed that KV cilia were reduced significantly in both number and length in crispants 

at the 10 somite stage (Figure 4A). Cilia formation was similarly impaired in ciliated mouse 

inner medullary collecting duct cells with GFP labelled cilia (IMCD3 5-HT6-GFP) following 

siRNA-mediated knockdown of Ccdc32 (Figure 4B). Together, these data suggest that ccdc32 

plays an evolutionarily conserved role in the formation and/or maintenance of cilia in the 

vertebrate left/right organizing center and is required for normal left/right axis development. 

 

Discussion 

Our clinical and animal modeling data demonstrate that homozygous mutations in CCDC32 

likely cause a congenital syndrome characterized by craniofacial, cardiac and 

neurodevelopmental anomalies. These variants segregate in an autosomal-recessive paradigm in 

the pedigrees examined in this study.  

 

Cilia fulfil diverse motility and sensory functions in embryogenesis, including the mediation of 

critical signaling pathways such as Shh, Ca
2+

, and PCP (2, 3). Unsurprisingly, a broad range of 

developmental phenotypes are commonly associated with impaired cilia function, including 

craniofacial, laterality, cerebral, and splenic abnormalities (4). Our functional analyses in 

zebrafish reveal that ccdc32 depletion impairs cilia formation and demonstrate a contribution of 

ccdc32 in craniofacial, brain and left/right axis development, broadly recapitulating our patient 

phenotypes. While the reduction in KV cilia patent in our CRISPR targeted embryos is mild, this 

might reflect the mosaic nature of our F0 knockdown and/or the persistence of maternal 

transcript at early stages. In future studies it will be of interest to examine the severity of the cilia 

phenotype in later developmental contexts, as well as in null zebrafish lines. While we cross-
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validated the cilia phenotype in a mammalian cell line, production of a complimentary 

mammalian model would enable a more complete model of the clinical phenotypes which are 

challenging to recapitulate in the zebrafish model (cleft lip and palate, certain cardiac 

malformations and digit abnormalities). Finally, we note that, while there is variation in the 

number and length of KV cilia, our findings are comparable in severity with previous zebrafish 

studies that link modest impairment of ciliogenesis to defective left/right patterning (27-29).  

Together, our data suggest an evolutionary conserved role for CCDC32 in cephalic and left/right 

axis development and support a ciliary contribution to the pathomechanism of the patient 

phenotypes. Whether this molecule also performs non-ciliary roles relevant to the human 

pathology remain unclear. 

 

While our data suggests a role for CCDC32 in ciliogenesis, the molecular function of the 

encoded protein remains undefined. CCDC32 has been reported to interact with the C-terminal 

of annexin A2, a calcium-dependent phospholipid-binding protein involved in myriad cellular 

process including membrane-cytoskeleton interactions, membrane trafficking, signal 

transduction and proliferation (30-32), however the functional significance of this interaction is 

unknown. We and others have also reported previously that CCDC proteins are enriched in the 

ciliary proteome (33-35), and we note that other CCDC genes have been associated with cilia 

function and disease. For example, mutations in CCDC39 [MIM 613798], CCDC40 [MIM 

613799], CCDC103 [MIM 614677], and CCDC114 [MIM 615038] affect cilia motility and 

cause primary ciliary dyskinesia [MIM 244400] (36-41). This is consistent with our functional 

hypothesis that CCDC32 contributes to a ciliary function and with the clinical presentation of 

features pathognomonic of ciliopathies. At the same time, some of the hallmark ciliopathy 
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pathologies were absent from the described individuals, such as cystic renal disease and 

polydactyly. These observations might be explained either by the specificity of CCDC32 

function or the presence of cis and trans allele-specific exacerbating or suppressive genetic 

interactions that are well-documented for this group of disorders (42). Further investigation is 

required to test a direct function for CCDC32 in cilia formation and advance our understanding 

of the human syndrome. 

 

Materials and Methods 

Human Subjects Recruitment and Ethics 

Informed consent was obtained from Family A for participation in the research study, according 

to IRB-approved protocol 0306-10-HMO, and for Family B according to IR-MUI-MED-REC 

protocol. 

 

Exome analysis 

Family A: Following informed consent, whole exome sequencing (WES) was pursued on DNA 

extracted from whole blood of individual II-1 of Family A (Fig. 1A). Exonic sequences of DNA 

were enriched with the SureSelect Human All Exon 50 Mb V5 Kit (Agilent Technologies, Santa 

Clara, California, USA). Sequences were generated on a HiSeq2500 (Illumina, San Diego, 

California, USA) as 125-bp paired-end runs. Read alignment and variant calling were performed 

with DNAnexus (Palo Alto, California, USA) using default parameters with the human genome 

assembly hg19 (GRCh37) as reference. Exome analysis of the probands yielded 48.6 million 

mapped reads, with a mean coverage of 71X. Candidate genes were entered into 
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GeneMatcher(11), a freely accessible website designated to facilitate collaboration between 

clinicians and researchers with an interest in the same gene.  

Family B: Subject II-1 of Family B (Fig. 1A) underwent WES as part of a cohort of ~60 

children with suspected genetic disorders and consanguineous parents. Following informed 

consent, DNA from whole blood was captured using the Nextera Rapid Capture Exome and 

Expanded Exome Kits (Illumina Inc., San Diego, CA, USA) and sequenced as 100 bp paired-end 

reads on an Illumina HiSeq2000 platform (Illumina Inc., San Diego, CA, USA). Generated reads 

were treated following a general workflow for variant calling as elsewhere reported(7). 

Generated reads were checked with FastQC 

(http://www.bioinformatics.babraham.ac.uk/publications.html) and aligned with BWA(43) to the 

reference genome hg19. Aligned reads were treated for realignment and base quality score 

recalibration with GATK(44) and for duplicate removal with PicardTools 

(http://picartools.sourceforge.net). Alignment statistics were collected by SAMtools(45) and 

GATK. Coverage statistics over the targeted regions were calculated with GATK. Variant calling 

and filtering by quality were performed by GATK. Variants passing quality filters were 

annotated with Ensembl Variant Effect Predictor (VEP) (http://www.ensembl.org/). Sanger 

sequencing was used to confirm the identified variants and test the carrier status of unaffected 

family members. H3M2(9) was used for the identification of ROHs from WES alignments. 

 

Segregation analysis 

Amplicons containing the CCDC32 variants were amplified by conventional PCR of genomic 

DNA, and analyzed by Sanger dideoxy nucleotide sequencing. 

Fish breeding and maintenance 
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All zebrafish experiments where performed in accordance with Duke University 

institutional animal care and use committee (IACUC) protocols. Embryos were obtained by 

natural mating of adult zebrafish of the ZDR background or carrying the -1.4col1a1:egfp 

transgenic reporter. Embryos were grown in egg water (0.3 g/L NaCl, 75 mg/L CaSO4, 

37.5 mg/L NaHC03, 0.003% methylene blue) at 28°C until collected at 1 or 3 days post-

fertilization [dpf]. 

 

CRISPR/Cas9 genome editing in zebrafish embryos 

To deplete ccdc32, we used CHOPCHOP to identify 2 guide RNA (gRNA) first 5’-

GCTAAAGTTAGCAGCTCTGG-3’ and second 5’-ACCCACGCGGCCCGATCTAG-3’ 

targeting exon 2. gRNA was transcribed in vitro using the GeneArt precision gRNA synthesis kit 

(Thermo Fisher Scientific) according to the manufacturer's instructions. 1 nl of injection cocktail 

containing 100 pg/nl gRNA and 200 pg/nl Cas9 protein (PNA Bio, Thousand Oaks, CA) was 

injected into the cell of embryos at the 1-cell stage. To determine targeting efficiency in founder 

(F0) mutants, we extracted genomic DNA from 2 day post-fertilization (dpf) embryos and PCR 

amplified the region flanking the gRNA target site using primers firstF: 5’-

TACGCGTGTAAACAGCAAACTT-3’ and firstR: 5’-CAGGGTACCATGCACTTACAAA-3’ 

and secondF: 5’-TTACGCGTGTAAACAGCAAACT-3’ and secondR: 5’-

CAGGGTACCATGCACTTACAAA-3’. PCR products were denatured, reannealed slowly and 

separated on a 20% TBE 1.0-mm precast polyacrylamide gel (Thermo Fisher Scientific), which 

was then incubated in ethidium bromide and imaged on a ChemiDoc system (Bio-Rad, Hercules, 

CA) to visualize hetero- and homoduplexes. To estimate the percentage of mosaicism of ccdc32 

F0 mutants (n = 5/condition), PCR products were gel purified (Qiagen, Germantown, MD), and 

cloned into the pCR8/GW/TOPO-TA vector (Thermo Fisher Scientific). Plasmid was prepped 
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from individual colonies (n=10–12 colonies/embryo) and Sanger sequenced according to 

standard procedures.  

 

In Situ Hybridization 

In-situ hybridization was performed as described
7
. The RNA probe for ccdc32 was designed to 

detect a 557 bp region, including the 3’ UTR. Sense and antisense reverse-transcription template 

DNA was created by PCR amplifying WT zebrafish cDNA using primers that added T7 and T3 

RNA polymerase promoters (underlined) to the 5’ and 3’ ends 

(F:5’TAATACGACTCACTATAGGGAGATTTGATCAGAGTGCTTTGGAGC3’; 

R:5’AATTAACCCTCACTAAAGGGAGATTCATGGATGCACCGTTTAGC3’). RNA probes 

were synthesized to include digoxigenin (Roche #11745816910) using either T3 (Roche 

#11031163001) or T7 (Promega # P2075) RNA polymerase, and detected using standard anti-

digoxigenin (Roche #11093274910), NBT/BCIP detection (Roche # 11681451001). 

Digoxingenin labeled anti-sense RNA probe for spaw riboprobes (a kind gift from Drs Kenneth 

D Poss and Michel Bagnat, Duke University) was made using a T7 mMessage mMachine 

transcription kit (Ambion #AM1344).  

 

Whole Mount Immunostaining 

Immunostaining was performed as described previously. 3 dpf embryos were fixed overnight in 

Dent’s solution (80% methanol, 40% DMSO), dehydrated in methanol, and rehydrated through a 

graded series of PBST in methanol washes. They were bleached for 10 min in 9mL PBST + 1mL 

H2O2 + 0.05 g KOH and washed three times for 10 min each in PBST. Embryos were 

permeabilized with proteinase K for 10 min, then incubated overnight in primary antibody (anti-
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α-acetylated tubulin, 1:1,000 Sigma-Aldrich, T7451). Following three washes in PBST, embryos 

were incubated with secondary antibody (Alexa Fluor 488 goat anti-rabbit IgG, 1:500, Thermo 

Fisher Scientific, A11001) for 2 h and washed three times with immunofluorescence (IF) buffer 

(1% BSA in PBST). 

 

Automated zebrafish imaging  

3 dpf zebrafish -1.4col1a1:egfp transgenic embryos were collected and automatic imaging was 

conducted with an AxioScope.A1 microscope and Axiocam 503 monochromatic camera 

facilitated by Zen Pro software (Zeiss), to capture dorsal images of GFP signal. Larval batches 

were positioned and imaged live using the Vertebrate Automated Screening Technology (VAST; 

software version 1.2.5.4; Union Biometrica) BioImager. Larvae from each experimental 

condition were anesthetized with 0.2 mg/mL Tricaine prior to being loaded into the sample 

reservoir. Dorsal and lateral image templates of uninjected controls and experimental larvae were 

created and we acquired images at a >70% minimum similarity for the pattern-recognition 

algorithms. Larvae were rotated to 180° to acquire ventral images via a 10x objective and 

fluorescent excitation at 470nm to detect GFP to capture fluorescent images of the pharyngeal 

skeleton. ImageJ software (NIH) was used to measure the angle of the ceratohyal cartilage. All 

experimental conditions were normalized to uninjected controls and set to 100 degrees. 

Statistical comparisons were performed using one-way ANOVA with Tukey’s test (GraphPad 

Prism). 

 

Ccdc32 knockdown in mIMCD3 cells 
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Mouse inner medullary collecting duct cells containing fluorescent cilia (mIMCD3 5-HT6-GFP) 

were maintained in DMEM/F12 media (Gibco # 1133003), supplemented with 10% FBS and 

allowed to attach for 24 hours. When they reached 70% confluency, they were transfected with 

siRNAs against Ccdc32 or a nontargeting control (Silencer Select siRNAs ID:s203118, Ambion 

#4390771, UCACUUGACUGAUCCAUUCta; Silencer Select Negative Control No. 1 siRNA 

#4390843) at 5nM final concentration. 24 hours after transfection, the media was replaced with 

serum-free media to induce ciliogenesis. After 24 hours of serum starvation, the cells were either 

fixed in 10% formalin for imaging (10 minutes, room temperature) or harvested in TRIzol 

Reagent (Invitrogen #15596026) for gene expression data. qRT-PCR was performed using three 

sets of primers spanning the exon 1-2 junction (Pair1 F: GCTGGGCAGCTCCAGATGA, R: 

TGCTGTATGGCTTTCCCCTG; Pair2 F: CTGCTGGGCAGCTCCAGAT, 

R:GCTGCTGCTGTATGGCTTTC: Pair3 F: CTGGGCAGCTCCAGATGA, R: 

AGTCTGCTGCTGCTGTATGG), and the results were averaged using three technical replicates 

and three biological replicates. Nontargeted siRNA and siCCDC32 values are normalized to 

untreated control cells. Fluorescent cilia were imaged on a Zeiss LSM 880 confocal microscope, 

and cilia length was measured manually using ImageJ. A total of 4 replicates were imaged for 

each condition, greater than 500 cells per replicate were imaged, and more than 1000 cilia were 

measured for each condition. The person imaging and measuring the cilia was blinded to 

experimental condition. 

 

Statistical analysis 

Embryos were selected randomly from a fertilized population and utilized for injections, scoring 

or collection. We estimated 20–25 samples per experimental condition were necessary for 
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statistical significance given the magnitude of the changes expected, and sample size is reported 

for each experiment. Each experiment was performed a minimum of 3 times. The statistical 

significance of each experiment in figure 2 was examined using a one-way ANOVA with Tukey’s 

test (GraphPad Prism).  
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Figure Legends 

 

Figure 1: Pedigree and molecular analysis of affected individuals 

 (A) Pedigrees of both families, indicating segregation of the CCDC32 variant in each family 

(c.54dupT in Family A, and c.189_190dupGG in Family B). (B) Sanger traces of individuals 

with homozygous (upper panels) and heterozygous (lower panel) CCDC32 variants.  
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Figure 2. ccdc32 depletion impairs craniofacial and neural development in zebrafish.  

(A) Quantification of head size in ccdc32 depleted embryos. (B) Representative ventral images 

of 3dpf uninjected control (UC), sgRNA1 only (100 pg gRNA), and sgRNA1 & Cas9 injected -

1.4col1a1:egfp zebrafish larvae are shown in panels on left. Anterior is to the left. Dotted yellow 

line represents ceratohyal angle. Graph displays quantitative assessment of the CH angle 

following injection of either sgRNA + Cas9. (C) Representative dorsal images of anti-acetylated-

tubulin stained embryos. Cerebellum is indicated with a red arrow in UC image. Cerebellar size 

is reduced in ccdc32 crispants. In all graphs the data are represented as the mean ±s.e.m.; 

*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 vs uninjected controls. Tukey’s test was 

applied following a significant one-way ANOVA. 
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Figure 3. ccdc32 is required for left – right development in zebrafish.  

(A) Representative images of normal, midline and reversed cardiac looping in control and 

ccdc32 depleted embryos. Graph displays % of embryos with each phenotype following injection 

with either sgRNA in the presence or absence of Cas9. (B) Sided expression of spaw is abnormal 

in ccdc32 targeted embryos. spaw is normally expressed on the left. Depletion of ccdc32 results 

in abnormal bilateral or right sided expression. 
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Figure 4. Cilia formation is impaired by ccdc32 depeletion 

(A) The number and length of cilia in Kupffers vesicle is decreased following ccdc32 depletion. 

Representative images of cilia in the KV of uninjected control, sgRNA1 only, and sgRNA1 + 

Cas9 injected embryos assayed by IF using anti -acetylated tubulin antibody. Graphs describe 

the quantification of cilia number and length in each experimental condition. The data are 

represented as the mean ±s.e.m.; *P<0.05, and ***P<0.001 vs uninjected controls. Tukey’s test 

was applied following a significant one-way ANOVA. (B) Representative images from GFP-

labelled cilia in control and siCcdc32 cells. scale: 20um; inset scale: 5um. Graph on lower left 

depicts reduction of Ccdc32 expression as assayed by qRT-PCR (mean ±s.e.m.). Middle and 

right graphs quantify % of ciliated cells (mean ±s.e.m.) and cilia length (mean ±s.d.), 

respectively. Statistical significance is calculated by t-test. *P<0.05, **P<0.01, and ***P<0.001. 
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