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Abstract: Hydro power can provide a source of dispatchable low-carbon electricity and a storage
solution in a climate-dependent energy mix with high shares of wind and solar production. Therefore,
understanding the effect climate has on hydro power generation is critical to ensure a stable energy
supply, particularly at a continental scale. Here, we introduce a framework using climate data to model
hydro power generation at the country level based on a machine learning method, the random forest
model, to produce a publicly accessible hydro power dataset from 1979 to present for twelve European
countries. In addition to producing a consistent European hydro power generation dataset covering
the past 40 years, the specific novelty of this approach is to focus on the lagged effect of climate
variability on hydro power. Specifically, multiple lagged values of temperature and precipitation
are used. Overall, the model shows promising results, with the correlation values ranging between
0.85 and 0.98 for run-of-river and between 0.73 and 0.90 for reservoir-based generation. Compared to
the more standard optimal lag approach the normalised mean absolute error reduces by an average of
10.23% and 5.99%, respectively. The model was also implemented over six Italian bidding zones to also
test its skill at the sub-country scale. The model performance is only slightly degraded at the bidding
zone level, but this also depends on the actual installed capacity, with higher capacities displaying
higher performance. The framework and results presented could provide a useful reference for
applications such as pan-European (continental) hydro power planning and for system adequacy and
extreme events assessments.

Keywords: hydro power generation; random forest; climate variable; lagged effect

1. Introduction

Hydro power is the largest renewable energy resource in Europe, accounting for 325,000 GWh
of generation in 2017, equivalent to approximately 42% of EU renewable energy generation or 10.8%
of European total net electricity generation [1]. Hydro power, in particular through reservoir-based
power plants, plays a critical role in providing flexibility to the European power systems. With the EU
renewable energy target of 32% by 2030 [2], the role of hydro power will be even more important in
a low-carbon scenario, where the capacity of non-dispatchable electricity sources (mostly wind and
solar) will be much higher than today [3].

Like wind and solar power, hydro power is a climate-dependent energy source. To date, its power
generation has been mostly modelled by means of physical models with technical parameters specified
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for individual power plants. There are several explanations for this approach: (i) modelling tends to
be thought of as a bottom-up approach, therefore starting from individual power plants (to e.g., assist
with their operations) rather than at the entire country or pan-European level; (ii) the impacts of climate
variables on hydro power are varied and complex, and many factors contribute to these impacts
such as watershed characteristics, the river flow rate, the evaporation process, and human factors,
and hence, using only climate data is not sufficient to predict hydro power generation at the desired
accuracy for plant-level operational purposes; (iii) hydro power generation at the European level has
only recently started to become publicly available (as further discussed below); (iv) the quality of
climate data as provided by reanalysis (i.e., climate reconstructions), and particularly precipitation,
has been improving significantly only in recent years.

Wind and solar power play an increasingly important role in a low-carbon energy plan. However,
their weather-dependent nature requires a more stable energy source, together with storage solutions,
to cope with climate variability. Hydro power is a good candidate with its ability to dispatch or store
electricity according to demand. For example, [4] showed that integrating run-of-river power with
wind and solar power, for 12 European areas, increases the penetration rate of wind and solar power
by a few to several percentage points.

Moreover, understanding and predicting hydro power generation at a scale larger than individual
power plants could be beneficial to Transmission System Operators (TSOs)—the primary role of which
is to ensure the balance of power networks at a large scale. Thus, understanding the impacts of
climate variability on hydro power can assist with ensuring a stable pan European electricity network
in time. In addition, other specialists such as energy traders require and utilize large-scale power
production estimations for their bidding. An accessible homogenous hydro power dataset for Europe
over several decades, by extending the short periods (normally a few years) of publicly available power
generation data, would therefore provide an invaluable input to pan-European network assessment
and planning. This is one of the goals of the Copernicus Climate Change Service (C3S) for the Energy
Sector (C3S Energy) [5].

Here, we introduce a dataset of hydro power generation for 12 European countries using a
machine learning model, the random forest. While the model we propose is highly simplified and
uses only two climate variables (2 metre temperature and precipitation) as predictors, it is capable
of reproducing with high accuracy observed power generation data at the country level and at the
sub-country level (snow depth was also used for testing purposes as described later, but it is not
included in the final model). One of the features of this model is that instead of their instantaneous
values (for temperature) or daily accumulated values (for precipitation), we mimic the latency of
the system by using their lagged values. The lag time is designed to account for processes which
usually take longer than the daily timescale to produce an effect on electricity generation, e.g., snow
melting, river run-off and underground water processes. In the case of reservoir-based hydro power
production, these relationships are even more complex due to human intervention, which controls
electricity demand as well as for other competing uses of water (agricultural, domestic, etc.). In this
paper, two methods of lag calculation—optimal lag and multiple lags—are compared to each other
and against a baseline model with daily climate values.

Two types of hydro power generation are considered: (i) reservoir-based generation, where water
is stored behind a dam to be dispatched when needed; (ii) run-of-river generation, where there is no or
minimal storage mechanism. Hydro pump storage was not considered as it contributes only a very
small proportion and heavily depends on human management rather than climate conditions. Since
energy generation data for specific hydro power plants in Europe are not publicly available, we used
the aggregated publicly available data obtained from the European Network of Transmission System
Operators for Electricity (ENTSO-E) Transparency Platform [6]. The focus here is mainly at the country
level, a large enough spatial scale to cover relevant climate characteristics such as precipitation or
snow contributing to hydro power plants. The country average level is also a relevant scale for many
applications (European-scale optimisation models for instance), including adequacy outlooks run by
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TSOs and European-level investments studies. Naturally, however, the countries considered have
different sizes, and hence our model provides an indirect measure of its ability to reproduce hydro
power generation at different scales. In addition, however, an explicit sub-country test for Italy is
also presented.

This paper is structured as follows. Section 2 describes the data used in this work and how
the machine learning model was setup. Section 3 shows the model results, including a comparison
with measured power data and further validation tests with independent datasets. Finally, Section 4
presents a summary together with a discussion on how to use the model and dataset efficiently.

2. Materials and Methods

2.1. Data

The data used in this work meet two requirements. Firstly, they should be publicly accessible as
the C3S Energy service output will be made publicly available; and secondly, they should span a long
period and cover as many European countries as possible in a homogenous and consistent manner.
Considering these two criteria, we selected European Centre for Medium-Range Weather Forecasts
(ECMWEF) reanalysis dataset ERA5 (ECMWEF Re-Analysis fifth generation) [7] for the climate data and
the European Network of Transmission System Operators for Electricity (ENTSO-E) Transparency
Platform [6] for the energy data.

The data from the ENTSO-E Transparency Platform includes many variables for different purposes
in the energy sector starting from 2015. For this study, we used the Aggregated Generation Per Type
product [Product number 16.1.B&C], and specifically reservoir-based and run-of-river hydro power
generation. The original data are available at hourly resolution for European countries that report
data to ENTSO-E. Since hydro electricity does not normally vary that much at hourly timescales at the
country level, we aggregated the data to daily resolution to also reduce computation time. Twelve
countries with significant power generation were selected for the study. Their installed capacities are
shown in Table 1.

Table 1. List of 12 countries selected in this study with their country code (ISO 3166) and their
installed capacities (in MW) in 2019 (from the European Network of Transmission System Operators
for Electricity (ENTSO-E) Transparency Platform, accessed on March 2020).

Country Country Code Reservoir Run of River
Austria AT 2440 5558
Switzerland CH 5419 635
Germany DE 1298 3983
Spain ES 19,146 1156
Finland FI - 3148
France FR 8279 10,955
Italy IT 3857 10,650
Norway NO 27,683 992
Portugal PT 1515 2858
Romania RO 3373 2770
Sweden SE 16,301 -
Slovakia SK 418 1208

As the focus of this study is the impact of climate variability on hydro power generation, we
assume that the installed capacity for all countries is constant throughout the training period (2015-2019)
as well as the simulated period (1979 to present). In other words, the installed capacity is assumed to
be constant over the whole period (1979-2019) because this allows us to isolate and assess the effect of
climate variability on hydro power generation. If one were interested in reconstructing the actual hydro
power production, this can be achieved by dividing our estimates by the installed capacity (as given in
Table 1) and multiplying by the actual installed capacity. Attention is also drawn to the fact that the
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installed capacities reported in the ENTSO-E dataset can be different from the actual installed capacities
provided by national authorities and it might be inconsistent with the generation time series in the
Transparency Platform. This inconsistency, for example, may lead to capacity factors (actual generation
divided by installed capacity) larger than 1 (this can be the case for German reservoir-based and
Norwegian run-of-river generation for instance). A description of the ENTSO-E Transparency Platform
and its limitations can be found in [6]. Since this inconsistency derives from the process of reporting
data which we cannot intervene, we decided to use the data as provided by ENTSO-E without any
pre-processing. In any case, the installed capacity of hydro power has changed only marginally in the
selected countries, and so we can assume that the observed variability of generation mainly reflects the
natural variability of the climatic inputs.

ERAS [7] is a reanalysis climate dataset developed by the ECMWF within the framework of
the C3S programme. ERA5 provides essential climate variables at hourly resolution back to 1979
globally at approximately 32 km spatial horizontal resolution. To make climate data temporally and
spatially corresponding to generation data, ERA5 data were also aggregated to daily values and
country averages for the twelve countries considered. Temperature and precipitation were selected as
predictors for the model since hydro power generation variability is sensitive to changes in these two
climate variables [8]. Snow has an important role in providing water through rivers when melting,
and so snow depth was also taken into consideration.

2.2. Model Setup

We selected random forest to model hydro power generation using climate variables as predictors.
We opted for the random forest model for its versatility to adapt any input data, robustness against
outliers, and the availability of implementations in many programming languages.

Random forest is a machine learning method developed by [9], combining an ensemble of tree
decisions and a feature bootstrap aggregation (bagging) method. Bootstrap aggregation is a combination
of bootstrap, i.e., sampling at a smaller size with replacement multiple times, and aggregation, i.e., fitting
the model using their average output for numerical variables (regression) or largest vote for categorical
variables (classification) [10]. The random forest model enables growing multiple decision trees on
various subsets of the data. The use of subsets ensures that there are always some data left out of
the training. Thus, even when each individual decision tree can learn irregular patterns, this effect is
expected to cancel out on average. Therefore, this technique helps avoid overfitting and lower variance
of the model [11]. The same methodology is applied to both reservoir-based and run-of-river hydro
power and for all countries, but the specific predictors that characterize each country normally differ,
as described in Section 2.2.3.

The variables used in this random forest model are 2-metre temperature, precipitation and snow
depth—all in daily values and country averages. Ideally, inflow data would also be an important
variable to consider as a predictor to model hydro power plant generation availability (as for instance
done in [12]). However, river flow data is not available in the ERA5 dataset (as well as other common
climate datasets). Therefore, here, we attempt to capture the variability of inflow indirectly with snow
depth, precipitation and temperature.

Although it might be clear why precipitation and snow depths could impact the hydro power
generation, their effect might not be instantaneous. Snow accumulates in mountainous areas in winter
and takes time to melt and contribute to river flow in spring and summer; precipitation over a large area
also takes time to become run-off or underground water and eventually flow into rivers, depending
on the characteristics of individual water catchments. To this end, we have applied two different
methodologies to model this non-instantaneous time relationship, using both optimal lag and multiple
lags of temperature and precipitation variables. This lag approach is also meant to provide a proxy for
snow depth effects, as confirmed by our results (Section 3).
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2.2.1. Optimal Lag Approach

With the optimal lag (see also [13]), generation at a given time is modelled using the precipitation
and temperature data at the same time, plus a single lagged precipitation and temperature. The optimal
lag is defined as the lag that yields the highest correlation between the modelled and actual generation.
While the optimal lag approach provides a relatively simple methodology to improve the simple
straight daily average predictors used in our random forest model, the local correlation maxima in
general are not robust with respect to the length of the dataset (the optimal lag can be considerably
different whether the reference dataset is a few years rather than several years). This is also due to the
fact that there are normally several local maxima, which may not be distinctly different from each other.
This is why we introduce an extension to the optimal lag approach here, called multiple lag approach.

2.2.2. Multiple Lag Approach

Multiple lags are multiple and regular instances of the lagged-averaged predictors, computed
with increments of 5 days (using less than 5 days yields negligible differences). These different lag
times are then used as predictors to the random forest model. To reduce their number, and especially to
understand which lags are more critical for simulating hydro power generation, we evaluate the model
output through a process of selecting important predictors implemented in the two-step random forest
model; further explanation is given in Section 2.2.3. Lag selection is automatic and adapts each time
the training dataset is updated. In terms of construction, this method is more robust than the optimal
lag approach, which is based on one single criterion.

Formally, lagged precipitation is calculated as the sum of all precipitation within the lag range,
while lagged temperature and snow depth are average values. Calculating lagged snow depth as the
average rather than accumulated may be debatable but considering snow can melt during long periods
of up to several months, accumulating daily values is likely to lead to inaccuracies in the way snow
effect is accounted for. The maximum lag of snow depth and precipitation is up to 200 days, whereas
temperature has a smaller maximum lag of 100 days, as autocorrelations decrease to negative values
after approximately six and three months, respectively (not shown). Comparisons between the two
models are shown in Section 3.1.

2.2.3. The Two-Step Random Forest Model

One common problem with statistical models is overfitting, where the model mistakenly captures
noises as underlying features when too many predictors are used. Although with random forest the
issue of overfitting due to collinearity of predictors is considerably reduced, or even eliminated [8],
to mitigate possible overfitting issues as well as to reduce the number of input variables into the final
model, we implement a two-step approach.

In step 1—preliminary model—all of the available lags ([0, 5, 10 ... 200] days for precipitation
and snow depth and [0, 5, 10 ... 100] days for temperature) are used to train the model; then these
predictors are arranged in order of decreasing dropout loss value (the reduced amount calculated by
loss function when “ignoring” one variable; for further reading, see [14]). We assume in this selection
process that those lagged periods within a range of 30 days would have the same effect on hydro
power production at the country level. Those in the top ten highest dropout loss values not closer
than 30 days to any other lags, called the most important lags, are selected as final predictors in the
main model (Step 2). The method of selecting important lags applied for different countries results
in models with different predictors, specific to each country and each hydro power type. Figure 1
illustrates how the two-step approach is implemented.

The two most important tuning parameters in the random forest model are the number of trees
(how many times the subset is sampled and trained) and the node size (when the decision tree stops
splitting). In this model, the number of trees is kept at the default value of 500, since our pre-tests
showed no significant difference when increasing this parameter. Step 1 (preliminary) with all possible
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lag sequences is computational demanding and thus uses a greater node size of 10, while step 2 requires
a better fitting model so the trees would be fully grown (node size of 1).

Climate data ERAS
(temperature, precipitation,
snow depth)

Energy data ENTSO-E Step 1: Multiple lags
All lags
Reservoir and run-of- Preliminary RF model

river generation

Highest drop-out-loss

Step 2: Important lags

Main RF model

Hydro power simulation
and reconstruction

Figure 1. Processes in the two-step random forest model with multiple lags.
3. Results

Our methodology is tested in three different ways. Firstly, a 5-fold cross-validation is applied to
compare the optimal lag and multiple lag approaches in modelling hydro power generation. Secondly,
the selected best model from the previous test is assessed against independent and longer datasets for
three countries (France, Sweden, and Finland) to examine the robustness of the model and its ability to
extrapolate in time. Thirdly, the model is also implemented at the sub-country level using the Italian
bidding zones to test our methodology at a more local, regional scale.

3.1. The 5-Fold Cross-Validation

The 5-fold cross-validation approach was used to evaluate the performance of the model for
reservoir-based and run-of-river generation separately, using five configurations: (1) daily data
of temperature, precipitation, and snow depth (Baseline_TATPSD); (2) daily and optimal lags of
temperature and precipitation (Opt_TATP); (3) daily and optimal lags of temperature, precipitation,
and snow depth (Opt_TATPSD); (4) daily and multiple lags of temperature and precipitation
(Mult_TATP); (5) daily and multiple lags of temperature, precipitation, and snow depth (Mult_TATPSD);
see Table 2.

In examining the performance of these five model configurations we also address the following
two questions: (1) Could lag times of climate factors improve performance of hydro power model
compared to daily values? (2) Can snow depth data be replaced by lagged series of temperature
and precipitation?

Figure 2 shows the normalised mean absolute error (NMAE) of the five model configurations under
consideration. The normalisation is done by dividing the MAE by the average of all observed data.
Firstly, we can see that run-of-river (lower panel) is reproduced better than reservoir-based generation
(upper panel). This is expected, as run-of-river generation is influenced less by human intervention
and management due to limited or none water storage. On the contrary, reservoirs are operated with
optimization tools depending on situational factors such as energy market prices. Reservoir-based
generation is also mechanically more difficult to simulate when considering only climate variables.
The effect of climate variability, e.g., the North Atlantic Oscillation, on reservoir-based hydro power
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generation is weaker than on inflows due to power plant design and operator decision [15]. This
impact is expected to be higher in run-of-river generation. For the same reason, snow depth impacts
are more prominent in run-of-river than in reservoir-based hydro power generation.

Table 2. The five model configurations (TA = 2 metre temperature, TP = precipitation, and
SD = snow depth).

Configuration (1) (2) 3) 4) (5)

. . Optimal Lag Optimal Lag Multiple Lags Multiple Lags
Variable Name Baseline TA, TP TA, TP, SD TA, TP TA, TP, SD
Temperature
- Daily v v v 4 v
- Optimal lag - 4 v - -
- Multiple lags - - - 4 v
Precipitation
- Daily v v v v v
- Optimal lag - v/ v - -
- Multiple lags - - - v v
Snow depth
- Daily v - v - v
- Optimal lag - - v - -
- Multiple lags - - - - v

a) Reservoir

60 I
40

E I

=

=z

'l
I = b "
I
o ™ 1
AT CH DE ES Fl FR IT NO PT

RO SE SK

b)  Run-of-river

I

2? ’EL}I!-:FEPJE

Country

NMAE

SE SK

Data Baseline TATPSD [l Opt TATP [ Opt_ TATPSD [l Mult TATP [l Mult_ TATPSD

Figure 2. The normalised mean absolute error and 95% confidence interval for reservoir (a) and
run-of-river (b) types of the five models using inputs from k-fold cross-validation as follows: (1) baseline
with daily temperature, precipitation, and snow depth in grey; (2) optimal lag of temperature and
precipitation in blue; (3) same as second model + optimal lag of snow depth in orange; (4) multiple lags
of temperature and precipitation in green (selected model); (5) same as (4) + multiple lags of snow
depth in red. (TA = 2 metre temperature, TP = precipitation, and SD = snow depth.)

Second, it is also noticeable that using lagged values, both optimal lag and multiple lags, improves
the model performance in all cases, confirming that climate factors have a delayed effect on hydro
power generation.
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Figure 2 also shows that adding snow depth (orange bars) improves the optimal lag (blue bars)
model significantly in most countries, except for Sweden reservoir-based generation. However, in the
multiple lag approach case, snow depth (red bars) improves the model performance only marginally,
and in less than half of the countries, compared to when only temperature and precipitation data are
used (green bars). Overall, the performance of the multiple lag configuration is essentially the same in
most countries regardless of whether snow depth is included or not (statistical significance test results
are shown in Table 3).

With only temperature and precipitation data, the multiple lag approach outperforms the optimal
lag approach, even when snow depth is used (Figure 3). This result indicates that a combination of
important multiple lags of temperature and precipitation can efficiently serve as a proxy for the effect of
snow melting, and at the same time, importantly, yield a good simulation of hydro power production,
as further discussed below.

Table 3. Statistical significance test between model configurations with and without snow depth
(see Figure 2 for abbreviations used). The results are divided into three categories based on p-value:
significantly different (p < 1072 in red), different (107 < p < 0.05 in orange), and not different (p > 0.05
in pale yellow). The white colour indicates no available data.

Country Reservoir Run of River
Opt_TATP vs. Mult_TATP vs. Opt_TATP vs. Mult_TATP vs.
Opt_TATPSD Mult_TATPSD Opt_TATPSD Mult_TATPSD

—_ p>005
<p<0.05 p>0.05

10 <p <0.05
p > 0.05 1023 <p <0.05

ES 10%< p <0.05 p>0.05

FI p > 0.05

FR p > 0.05 p > 0.05

IT 107 < p < 0.05 p>0.05

NO 103 < p < 0.05 10 < p <0.05 p>0.05

PT p > 0.05 p > 0.05

p >0.05 p>0.05

_ S O poov 0o

Since the multiple lags approach is more robust than the optimal lag approach with respect
to the length of the training dataset, and since multiple lags of temperature and precipitation are

able to capture the impact of snow on hydro power, we retain the multiple lags of temperature and
precipitation as our final model (model (4)—green bars in Figure 2). This is also considering that
in the second phase of the C3S Energy service, the same model is applied to climate projections
and seasonal forecast, for which snow depth is not always available (and in any case, snow depth
quality in long-range predictions is worse than temperature and precipitation). Table 4 presents the
correlation coefficient of the modelled versus observed generation values with the chosen model,
resulting from the 5-fold cross-validation process (the cross-validation columns). The mean correlation
among all twelve countries is 0.81 for reservoir-based generation, with a range of [0.73; 0.90]; and
0.95 for run-of-river generation, with a range of [0.85; 0.98]. Table 4 also shows the NMAE decrease
with respect to the optimal lag model (model 2). The average improvement is 5.99% and 10.22%,
respectively, for reservoir-based and run-of-river generation.
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Figure 3. Scatter plots of hydro power generation for reservoir-based (a) and run-of-river (b) generation
comparing ENTSO-E data on the x-axis and model reconstructed values on the y-axis for models
(2) and (4): multiple lags of temperature and precipitation (green dots) and optimal lag (blue dots).
In general, the multiple lags approach (Mult_TATP) performs better with less deviation and gives a
larger improvement for run-of-river generation, while the optimal lag model (Opt_TATP) has a larger

bias for extreme values.
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Table 4. Results of the 5-fold cross-validation multiple lags model with temperature and precipitation:
Pearson’s correlation coefficient with respect to ENTSO-E data, and NMAE decrease (in %) compared
to the performance of the optimal lag model.

Reservoir Run-of-River
Cross-Validation Leave One Out Cross-Validation Leave One Out
Country
NMAE . NMAE . NMAE . NMAE .
Decrease (%) Correlation Decrease (%) Correlation Decrease (%) Correlation Decrease (%) Correlation

AT 4.68 0.79 1.34 0.39 9.30 0.95 0.86 0.72
CH 291 0.73 -1.00 0.43 19.74 0.95 3.84 0.27
DE 9.46 0.84 -6.73 0.24 6.03 0.97 1.39 0.72
ES 8.91 0.90 2.14 0.63 8.40 0.98 5.32 0.84
FI - - - - 5.14 0.85 449 0.37
FR 4.02 0.83 -0.56 0.67 10.30 0.98 7.60 0.86
IT 2.33 0.84 1.22 0.64 457 0.96 1.49 0.80
NO 0.56 0.85 -1.10 0.72 7.05 0.97 0.59 0.64
PT 14.21 0.88 7.46 0.63 13.30 0.96 2.81 0.77
RO 432 0.73 -2.04 0.10 12.84 0.95 7.16 0.77
SE 0.99 0.78 0.87 0.50 - - - -

SK 13.47 0.77 426 0.22 15.82 0.93 5.90 0.64

Furthermore, a leave-one-out test was also implemented in order to assess the model performance
using an alternate assessment procedure. Each year in the period 2015-2019 was left aside for validating
the model trained on the rest of the dataset. The average results of this leave-one-out test are presented
in Table 4 and are compared to the 5-fold cross-validation method. Overall, the model performance
is considerably lower when using the leave-one-out test, and again lower in reservoir-based than
in run-of-river generation, with an average correlation of 0.47 and NMAE decrease of 0.53% for
reservoir-based, and 0.67 and 3.77% for run-of-river generation, respectively. Nevertheless, some
countries are more robust than the others. For example, Spain and Italy perform well under the
leave-one-out test. This highlights the fact that not only can the hydrological and climate regimes
vary from year to year, but the interannual variability in hydro power generation strongly depends on
non-climate factors related to power-dispatching decisions which depend on a variety of factors such
as electricity price, competing water usage, and power plant maintenance regimes. Further discussion
on the ability of our model to extrapolate hydro power beyond the training dataset using independent
datasets is presented in Section 3.2.

In order to produce a dataset of hydro power generation for the twelve countries of interest,
country-specific models were trained again with the full observed ENTSO-E dataset for the period
2015-2019 using model 4 (multiple lags with temperature and precipitation). The model was then used
with the full ERAS time series data to extend the hydro power generation simulation to the historical
period from 1979 to present—so called reconstructed data. While the focus of this paper is on the
historical reconstruction over the past ca. 40 years, it is worth noting that the C3S Energy service
is also developing similar datasets for two other cases: seasonal forecasts, up to six months ahead,
and projections, up to 2100. The same model developed for the historical period is implemented in
both of these cases.

Figure 4 illustrates time series of reconstructed hydro power generation using our selected
model configuration compared against data from ENTSO-E for the four countries selected as
representatives. The output data show similar patterns of seasonality as ENTSO-E data but somewhat
smoother, especially in the case of reservoir-based generation, due to operation regulation according
to electricity demand. However, we are confident that the main features of hydro power generation
are well reproduced, in particular high- and low-generation events corresponding to low-frequency
precipitation variability.
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Figure 4. Result of the model for the four countries with largest installed capacity, Spain (ES), France
(FR), Italy (IT), and Norway (NO): 7 day rolling mean of reconstructed hydro power generation (GW)
for reservoir-based (a) and run-of-river (b) generation for the period 1979-2019, namely a subset of the
reconstructed dataset 1979-2019. Red line: reconstructed data; blue line: ENTSO-E data. As the model
was trained for the period 20152019, the blue curve appears as overlapping with the red curve over
this period.

3.2. Validation with Independent Datasets

Although the two-step random forest model showed good performance, especially for Spain
(Pearson’s correlation coefficient of 0.90 for reservoir-based and 0.98 for run-of-river generation from
5-fold cross-validation), this validation method usually gives optimistic results [16]. One possible
explanation is that despite being randomly permuted, the validation dataset in each cross-validation is
still an average of multiple random samples from the same dataset, and thus the prediction is not totally
independent of the training set. As the model’s skill for extrapolation is important in producing historical
(and eventually seasonal forecast, and projections) data, we conducted further tests with additional
datasets from Réseau de Transport d'Electricité (RTE) for French hydro power generation in 2013-2014,
and from Open Power System Data (OPSD) [17] data for Finland and Sweden in 2010-2014 (Figure 5).
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Figure 5. Time series of observed (blue) and reconstructed (red) hydro power production of Swedish
reservoir-based (a) in 2010-2014, French reservoir-based (b) and run-of-river (c) in 2013-2014 and Finnish
run-of-river (d) in 2010-2014) generation. The dash-dotted vertical lines indicate 1 January 2015, marking
the separation between the historical reconstruction (red curve left of the line) and the simulated
data over the training period 2015-2019 (red curve right of the line). Note that observed data come
from different sources: in the period 2010-2015, data are from non-ENTSO-E sources, e.g. Réseau de
Transport d’Electricité (RTE) for France, and Open Power System Data (OPSD) for Finland and Sweden;
while in the period 2015-2019, data are from ENTSO-E—the same source as the training period for the
model, and hence the good agreement between red and blue curves over this period.

Considering that the model only uses climate data and does not include any power plant
information, these reconstructed time series show very encouraging results (see correlation coefficient
indicated on each subplot). Specifically, the reconstruction for run-of-river generation captures the
year-to-year variability in hydro power production remarkably well, with relatively high correlations
(0.65 for FI, and 0.83 for FR) and relatively low NMAE values (13.7 for FI, and 10.2 for FR). While
the performance is lower for reservoir-based hydro power generation, the difference is not large and,
in any case, it is in line with that seen during the training period. The fact that our model is able to
reconstruct the interannual variability of hydro power production reasonably well can be a very useful
piece of information for system adequacy and extreme events assessments.
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We can again see that the model performs better for run-of-river compared to reservoir-based
generation here in the case of France. Reservoir time series have noticeably higher short-term variations.
This is most likely due to reservoir operations managed by plant dispatchers to account for daily energy
market dynamics. A model based on only climate data cannot capture these features, and hence the
smoother predicted time series. However, the model is able to simulate the upward and downward
trends of both hydro power generation types quite well, but it tends to underestimate the amplitude of
the signal. As with every statistical model, it can only reproduce features that are embedded in the
training period and, as such, it is limited in its ability to reproduce more extreme episodes. This is a
common limitation of non-physical models which do not perform well in extreme cases.

3.3. The Sub-Country Level

One limitation of modelling hydro power is that averaging over a large domain such as country-size
can smooth the characteristics of hydro power generation and neglect many physical aspects of the
relevant water pathways. For instance, the river flow providing water for a given hydro power plant
may come from a river basin in a neighbouring country and is therefore not considered. In addition,
we consider country average temperature and precipitation, which could be a rough approximation,
as a particular power plant will receive only water falling in the surrounding area, and not from
the entire country. However, it is also the case that these considerations are very much country
dependent, and different extensions and orography would need to be properly assessed in order to
draw stronger conclusions.

To estimate the impact of geographical scales on our model, here, we test the model using the
six Italian geographical bidding power zones. A geographical bidding zone is defined by ENTSO-E
as a geographical area where market participants are able to exchange energy without transmission
capacity allocation. Generation data at the bidding zone level is also available on the ENTSO-E
Transparency Platform.

We chose Italy due to several factors. Firstly, only a few European countries have multiple bidding
zones (for most of the countries, the bidding zone coincides with the country borders). Secondly,
the Italian bidding zones provide a good mix of different installed hydro power capacities, orographic
features, climatic characteristics, and zone sizes.

Italian bidding zones can be represented with an aggregation of nomenclature of territorial
units for statistics [18] (NUTS) level 2 (or NUTS-2) regions. Since temperature and precipitation are
provided at NUTS-2, these are first averaged (using a simple average; area-weights are assumed to be
second-order effects) according to the bidding zone aggregation (see Table 5). To assess the spatial scale
effect, we aggregated the bidding zones into regions and country level and trained model accordingly
to test its performance in these cases. The regional scale, i.e., North (IT_North in Table 5) and South
Italy (the remaining 5 zones in Table 5), is based on geography and especially the different distribution
of hydro power plants in Italy, with the North of Italy presenting the majority of the hydro power
production. One of the corollaries is that the North and South of Italy are also considered as the
main geographical subdivision of Italy as used in power trading (a discussion on the configuration of
Italian bidding zones can be found at the following URL: https://docstore.entsoe.eu/Documents/cep/
implementation/BZ/A4_BZR_ED_CSI_SQ.pdf). Areas corresponding to bidding zones as well as to
regions and their average generation are shown in Table 5.
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Table 5. Average hydro power generation for the six Italian bidding zones, as well as for North and
South Italy for the period 2015-2019.

Region Bidding Zone NUTS-2 Area Code Daily Average Generation (MWh)

Reservoir Run of River
North IT_North ITC 1-4,ITH 1-5 1231.13 5486.23
IT_CNOR IT11-3 71.40 464.23
IT_CSUD ITF1 & 3,1T14 50.58 536.16
South IT_SUD ITF 2, 4-6 122.02 233.23
IT_SICI ITG 1 8.08 21.40
IT_SARD ITG2 33.48 12.65

Figure 6 shows the NMAE of the model implemented in these spatial scales. In general,
the performance of the model for individual bidding zones is comparable to, or slightly worse than,
that at the country level. Notable differences are for IT_SUD and IT_SICI, but especially for IT_SARD,
for run-of-river generation. The main reason for this low performance is the very low installed
capacities in these zones. Noting that the model performance at the country average level is very good
(NMAE less than 10%) and therefore it is difficult to improve on it. It is also interesting to see that
when bidding zones are aggregated in North and South Italy, the results are similar to the country
average. These sub-country results demonstrate that a highly simplified hydro power model such
as that used in our study has the potential to effectively simulate hydro power, therefore offering a
credible complement to much more sophisticated physical models.
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Figure 6. The normalised mean absolute error of the two-step random forest model applied to the six
Italian bidding zones, as well as at the two regional aggregation areas (North and South), and at the
country level for the period 2015-2019.
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4. Summary and Discussion

We developed a new dataset of hydro power generation for reservoir-based and run-of-river
generation using only two essential climate variables—temperature and precipitation—and a machine
learning methodology, based on random forests, selected for its flexibility and accuracy. Model training
was performed over the period 2015-2019. The reconstruction dataset was then developed for the
historical period from 1979 to present, corresponding to the available period of the ERA5 climate
reanalysis dataset (it will also be extended to seasonal forecast and climate projections). Snow melt
has an important impact on river flow and, thus, on hydro power generation, but it is generally
not available in seasonal climate forecast or climate projection outputs. Therefore, an approach was
suggested using lagged values of temperature and precipitation to replace snow depth in the model.
After testing two approaches with the optimal lag and multiple lags of temperature and precipitation,
we found that multiple lags with a two-step approach to select the most important variables for each
country and each hydro power type produced the best performance.

In general, the multiple lag approach yields better results than the optimal lag approach,
particularly for run-of-river hydro power generation. In this case, we obtained a high average
correlation of 0.95 and an average NMAE decrease of 10.23% compared to the optimal lag approach.
Meanwhile, the model performance is expectedly lower in the case of reservoir hydro power generation,
but still with a high correlation of 0.81 and an NMAE decrease of 5.98%. We also demonstrated that
the inclusion of snow depth as an additional predictor does not, in general, lead to statistically better
results. This model is inevitably subject to limitations.

An important limitation is that our methodology assumes constant installed capacities in all
countries—both during training and reconstructed periods. This assumption does not take into account
the periods in which plants are not available (e.g., for maintenance or due to temporary failures):
in those periods, the actual generation data shows a drop that is not caused by meteorological factors.
This information would be necessary to achieve better training of the machine learning models, thus
for improving the simulation of the generation. In particular, in a cross-validation approach like that
detailed in Section 3.1, this may explain some differences between the training and validation periods.
Assuming constant installed capacity also ignores variations in other sources of energy. For instance,
anewly installed wind farm might make the operator reduce electricity generated from a reservoir, but
this effect is not captured by our model as it is not weather driven.

In addition, due to the complexity of hydro power plants, a statistical model cannot outcompete a
physical model, especially when extrapolating to periods with climate characteristics outside of the
observed range. Further, in our case, the training period is relatively short with five-year data for the
period 2015-2019. In any case, one should keep in mind that the primary objective, developed in the
context of C3S Energy is to provide a realistic method which can be readily implemented with publicly
accessible datasets such as ENTSO-E. For example, [19] has produced a time series of reservoir-based
generation in China using basin and power plant information. However, it is the first time a dataset of
hydro power, which is also complemented by electricity demand, wind and solar power, has been
produced at the European scale for both historical and future periods [20]. It is important to emphasize
that the approach taken by C3S Energy is to model electricity demand and power generation over the
ca. 40 year period, 1979 to present, assuming a fixed EU energy system based on available power data,
which normally cover the last several years. From this dataset, actual energy generation and demand
can be derived using simple arithmetic to rescale mean energy demand and generation based on actual
installed capacity and annual energy consumption.

In terms of data quality, there is confidence in the model’s input data: [21] shows that precipitation
and temperature variables from the ERA5 dataset can produce results equivalent to observational
data in hydrological modelling from North-American catchments; [6] on the ENTSO-E dataset also
highlights that it is the most ambitious global open source dataset for energy data.

Hydro power depends strongly on water availability, for which five years of training data could
not accurately represent all the impacts of interannual climate variability. Bootstrap aggregation in
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random forest helps to avoid high-variance estimators from decision trees, i.e., a small change in input
can alter the prediction results. Nonetheless, the fact that the model simulates hydro power production
well (relatively low NMAESs and high correlations), especially over the extended periods available
for France, Sweden and Finland, demonstrates that even a simple model, trained over a relatively
short period, can capture essential (interannual) variability processes. It is also planned to update the
models on a yearly basis, when an additional year of ENTSO-E data becomes available. This extension
of the model training period is expected to improve the quality of the models over time.

Although random forest is known for its robustness against outliers, this feature reduces its ability
to extrapolate to extreme events or to values outside of the training dataset, as shown in Section 3.2.
In addition, when input variable deviation is large compared to their mean value, it is more difficult to
differentiate between signal and noise, hence the lower performance in countries with smaller installed
capacity such as run-of-river generation in Switzerland or both hydro power types in Slovakia.

Nevertheless, the model performance is encouraging, considering its simplicity and versatility.
The presented results will be available in the C3S Climate Data Store later in 2020 and can serve as a
benchmark for further studies on the impact of climate variability on hydro power.
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