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ABSTRACT: Chiral sugar derivatives are potential cyclitol surrogates in the Ca2+-mobilizing intracellular messenger D-myo-inositol 

1,4,5-trisphosphate [Ins(1,4,5)P3]. Six novel polyphosphorylated analogues derived from both D- and L-glucose were synthesized.  

Binding to Ins(1,4,5)P3 receptors [Ins(1,4,5)P3R] and abilities to release Ca2+ from intracellular stores via type 1 Ins(1,4,5)P3Rs were 

investigated. β-D-Glucopyranosyl 1,3,4-trisphosphate, with similar phosphate regiochemistry and stereochemistry to Ins(1,4,5)P3 and 

α-D-glucopyranosyl 1,3,4-trisphosphate are full agonists, being equipotent and 23-fold less potent than Ins(1,4,5)P3 respectively in 

Ca2+-release assays, and similar to Ins(1,4,5)P3 and 15-fold weaker in binding assays. They can be viewed as truncated analogues of 

adenophostin A and refine structure-activity relationship understanding for this Ins(1,4,5)P3R agonist. L-Glucose-derived ligands, 

methyl α-L-glucopyranoside 2,3,6-trisphosphate and methyl α-L-glucopyranoside 2,4,6-trisphosphate are also active, while their 

corresponding D-enantiomers, methyl α-D-glucopyranoside 2,3,6-trisphosphate and methyl α-D-glucopyranoside 2,4,6-trisphosphate, 

are inactive. Interestingly, both L-glucose-derived ligands are partial agonists: they are amongst the least efficacious agonists of 

Ins(1,4,5)P3R yet identified, providing new leads for antagonist development.
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INTRODUCTION

D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3, 1] is a second messenger that binds to tetrameric D-myo-inositol 

1,4,5-trisphosphate receptors [Ins(1,4,5)P3Rs] on the endoplasmic reticulum. Ins(1,4,5)P3Rs are Ca2+ channels 

that open to release Ca2+ to the cytosol.1,2 The resulting local or global increases in cytosolic Ca2+ concentration 

regulate diverse cellular processes, including mitochondrial metabolism, cell proliferation, differentiation, 

smooth muscle contraction, secretion, exocytosis and ion channel opening.3

Ins(1,4,5)P3 (Figure 1a) binds to the Ins(1,4,5)P3-binding core (IBC; residues 224-604) close to the N-terminus 

of each of the four Ins(1,4,5)P3R subunits (Figure 1b, c). The IBC consists of an α-helical domain and a β-trefoil 

domain, between which there is a cleft rich in basic amino acid residues. Ins(1,4,5)P3 binding within the cleft 

allows phosphates at positions 1 and 5 to interact with the α-domain, while the 4-phosphate interacts with the β-

domain (Figure 1c).4 As Ins(1,4,5)P3 interacts with both domains, it pulls the two sides of the clam-like IBC 

together.5,6 The clam closure leads to channel opening, possibly by re-arranging Ca2+-binding sites such that 

Ca2+ can bind to the Ins(1,4,5)P3R and trigger conformational changes that lead to opening of the Ca2+-permeable 

pore.1,5,6
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Figure 1. Structures of Ins(1,4,5)P3R and its agonists (a) Structure of Ins(1,4,5)P3 (1). (b) Binding mode of 1 to the IBC of 

Ins(1,4,5)P3R with key amino acid residues involved in binding labelled. (c) Crystal structure of the IBC of type 1 InsP3R with 

Ins(1,4,5)P3 (1) bound (PDB: 1N4K). The α-domain is shown in green and the β-domain in yellow. (d) Structure of the 

Ins(1,4,5)P3R agonist adenophostin A (AdA). panel B indicates schematically how 1 binds to the IBC of Ins(1,4,5)P3R with the 

key amino acid residues involved in binding labeled, panel C shows the structure of the Ins(1,4,5)P3R agonist adenophostin A 

(AdA) and panel D shows a  crystal structure of the IBC of type 1 InsP3R with Ins(1,4,5)P3 (1) bound (1N4K). The α-domain is 

shown in green and the β-domain in yellow. 

Modulators of Ins(1,4,5)P3R activity are highly sought after, and many studies have examined structure-activity-

relationship (SARs) of ligands binding to Ins(1,4,5)P3R attempting to identify partial agonists or antagonists.7–9 

Synthetic analogues have played a key role in this process, including the potent glyconucleotide 

adenophostins4,10 (Figure 1d), with a recent synthetic study reporting the effects of replacing the glucose moiety 

of adenophostin A (AdA) with a chiro-inositol core.11 This highlights developing interest in examining less 

explored isomers of inositol than the myo-form.12 
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The phosphates attached to the 4- and 5-positions of Ins(1,4,5)P3 (Figure 1a) are thought to be essential to agonist 

activity as each interacts with a different domain of the IBC. 13,14 The 1-phosphate increases affinity, but it is not 

essential for receptor activation.4 The hydroxyl group attached to the 6-position of Ins(1,4,5)P3 appears to be 

important for optimal activity but it is not essential,15 while hydroxyl groups attached to the 2- and 3-positions 

are less involved in ligand binding.16 

A few Ins(1,4,5)P3R antagonists have been identified, but these suffer major drawbacks including poor target 

selectivity, cell impermeablility (heparin),17 inconsistent effectiveness in assays (2-aminoethoxydipheylborane, 

2-APB),17 low potency (caffeine),17,18 and disputed activity (xestospongins).17 For decades, analogues of 

Ins(1,4,5)P3 have been synthesized and investigated in attempts to discover a selective antagonist for 

Ins(1,4,5)P3R that could be rendered, at least temporarily, cell-permeable with enzymatic- or photo-labile 

protecting groups.19,20 To date, however, only a small number of analogues of Ins(1,4,5)P3 with minor structural 

modifications have been identified as partial agonists or antagonists at Ins(1,4,5)P3R. Most of these compounds 

demonstrate that conservative modifications to the phosphates attached to positions 4 and 5 and the hydroxyl 

group attached to position 3 can lead to degrees of antagonist activity. 21–24 However, many analogues of 

Ins(1,4,5)P3 with modifications to the same regions are inactive.25 Attaching a bulky substituent to the axial 2-

position hydroxyl can also lead to partial agonist activity26 and interestingly even using a simple benzene ring 

as a surrogate for inositol in a benzene polyphosphate approach, as a dimer or biphenyl, can provide low-affinity 

antagonists.27,28

Stimulated in part by the discovery of the adenophostins,4,9,29 there have been a number of studies to investigate 

polyphosphates of D-glucose and of other sugars,29–33 as inositol phosphate analogues (see below).34 By using 

such carbohydrates, the need for optical resolution of protected cyclitol precursors or resulting phosphate 

regioisomers is bypassed, as chiral starting materials are readily available. Also, the structural features of 

carbohydrates offer additional opportunities for synthetic versatility. In this study, we return to and expand upon, 

the use of D-glucose to try to identify novel Ins(1,4,5)P3R ligands. We also investigate, perhaps counter-

intuitively, the use of L-glucose as a starting material.
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Although several studies have generated D-glucose-based ligands of Ins(1,4,5)P3R,29,30,33 no ligands based on 

the L-glucose enantiomer have been synthesized and nor is it known whether ligands with this scaffold would 

bind to Ins(1,4,5)P3R. In a previous study,4 Ins(4,5)P2 [albeit a low-affinity Ins(1,4,5)P3R ligand] was effectively 

mimicked by a D-Gluc(3,4)P2 surrogate. We noted that both D- and L-glucose offer three hydroxyl groups of the 

requisite relative configuration that could in principle be used to mimic the 4,5,6-hydroxyl groups in myo-

inositol. Thus, we anticipated that we could use this similarity (Figure 2, highlighted in red), alongside intrinsic 

structural differences of L- and D-glucose to prepare diverse chiral ligands with appropriately located phosphates 

These would present different structural motifs to the Ins(1,4,5)P3R and allow further investigation of the binding 

site and perhaps identify novel activity. With this in mind we designed and synthesized six novel ligands based 

on L-glucose and D-glucose (Figure 3) and evaluated their activity at Ins(1,4,5)P3R. 
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Figure 2: Structures of methyl -D-glucopyranoside and methyl -L-glucopyranoside relative to myo-inositol with the shared 

stereochemistry of the hydroxyl groups highlighted in red.
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Figure 3. Structures of Ins(1,4,5)P3 (1) analogues: methyl -L-glucopyranoside 2,3,6-trisphosphate (2) and methyl -L-glucopyranoside 

2,4,6-trisphosphate (3), methyl -D-glucopyranoside 2,3,6-trisphosphate (4) and methyl -D-glucopyranoside 2,4,6-trisphosphate (5), -D-

glucopyranosyl 1,3,4-trisphosphate (6), -D-glucopyranosyl 1,3,4-trisphosphate (7). 

We ensured that the designed ligands retained structures equivalent to the critical 4,5-bisphosphate motif of Ins(1,4,5)P3 

and had no major structural modifications in regions believed to be necessary for ligand binding; modifications in regions 

equivalent to the 2-O position were permitted, as these were expected to remain outside the binding pocket. We 

hypothesized that the L-glucose-based ligands [methyl -L-glucopyranoside 2,3,6-trisphosphate (2) and methyl -L-

glucopyranoside 2,4,6-trisphosphate (3)] might have sufficiently conservative structural changes relative to Ins(1,4,5)P3 

that they could still bind to Ins(1,4,5)P3R, possibly with novel activity. The D-glucose-based ligands [methyl -D-

glucopyranoside 2,3,6-trisphosphate (4) and methyl -D-glucopyranoside 2,4,6-trisphosphate (5)] were not expected to 

adopt orientations that position the phosphate groups in appropriate regions of the IBC (see Supporting Information for 

details of all possible predicted binding modes). Their bioassay was designed to enable confirmation of 

enantioselectivity. From a practical standpoint, the synthesis of ligands 4 and 5 was optimized first with D-glucose before 

the commercially available, but considerably more costly, L-glucose was used to make the respective L-enantiomers, 2 

and 3. We anticipated that the two ligands with phosphates at the anomeric carbon, -D-glucopyranosyl 1,3,4-

trisphosphate (6) and -D-glucopyranosyl 1,3,4-trisphosphate (7), would help to elucidate the basis for the high affinity 

of AdA.4,11,35 We expected both novel truncated analogues to be agonists due to their structural similarity to Ins(1,4,5)P3, 

but were interested to compare their activities with AdA and the previously analysed truncated analogue, Glu(3,4)P2.4 
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RESULTS

Chemistry

Methyl -L-glucopyranoside 2,3,6-trisphosphate (2) was synthesized in a five-step route from readily available L-glucose 

(Scheme 1). Refluxing L-glucose in an acidic methanol solution resulted in protection of the anomeric hydroxyl with a 

methyl group. Multiple recrystallizations from ethanol afforded methyl -L-glucopyranoside 8 in 45% yield. The 4- and 

6-position hydroxyls were protected with a benzylidene group to form 9 in 91% yield. This benzylidene group was 

reduced regioselectively, opening to form methyl 4-O-benzyl--D-glucopyranoside (10). The benzylidene reduction was 

first attempted with borane-THF and AlCl3, but this was found to be insufficiently regioselective and produced 

inseparable regioisomers. The reaction was successfully carried out with borane-THF and La(Tf)3 following the method 

of Shie et al.36 to yield 10 in 31% yield following purification. The hydroxyl groups in triol 10 were then phosphitylated 

with dibenzyl diisopropylphosphoramidite and subsequent oxidation with mCPBA formed 11 in 86% yield. The benzyl 

protecting groups on phosphates and O-4 were then removed by stirring a solution of 11 with Pearlman’s catalyst under 

hydrogen overnight. After filtration to remove catalyst and evaporation of the solvent, 2 was collected as the 

triethylammonium salt in 53% yield. 
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Scheme 1. Synthesis of L-glucose-derived ligands: methyl -L-glucopyranoside 2,3,6-trisphosphate (2) and methyl -L-

glucopyranoside 2,4,6-trisphosphate (3)a
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aReagents and conditions: (a) MeOH, reflux, 5d (b) (1) TMSCl, py, 22h (2) DCM, benzaldehyde, FeCl2
.6H2O, MeCN, triethylsilane, 0°C - 

room temperature, 1.5h (c) MeOH, H2O, 1M HCl(aq), reflux, 3h (d) (1) DCM, 5-phenyl-1H-tetrazole, (BnO)2PN(iPr)2, 20h (2) mCPBA, -

78°C to room temperature (e) MeOH:H2O (10:1 v/v), cat. Pd(OH)2/C, H2, 24h (f) MeCN, benzaldehyde dimethyl acetal, cat. CSA, 24h (g) 

BH3-THF, La(Tf)3, 7d.

Methyl -L-glucopyranoside 2,4,6-trisphosphate (3) was also synthesized in five steps from L-glucose, diverging from 

the synthesis of 2 after the first methylation step. Methyl α-L-glucopyranoside (8) was protected in a regioselective one-

pot reaction that involved persilylation followed by FeCl2-catalyzed benzylidene protection as described by Bourdreux 

et al.37 to yield 12 in 79% yield. The acid-labile benzylidene group was removed through reflux with HCl(aq) to form 13 

in 93% yield. Phosphorylation using standard phosphoramidite methodology38 was then employed to give 14 in 40% 

yield. After debenzylation with hydrogen and Pearlman’s catalyst and filtration and evaporation of the solvent, the final 

product, 3, was collected as its triethylammonium salt in 90% yield. 
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Scheme 2. Synthesis of ligands with phosphate groups at the anomeric carbon: -D-glucopyranosyl 1,3,4-trisphosphate (6) and -D-

glucopyranosyl 1,3,4-trisphosphate (7)a
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aReagents and conditions: (a) MeOH, cat. PdCl2, 6h (b) (1) DCM, 5-phenyl-1H-tetrazole, (BnO)2PN(iPr)2, 20h (2) mCPBA, -78°C to room 

temperature (c) MeOH:H2O (10:1 v/v), cat. Pd(OH)2/C, H2, NaHCO3, 24h. 

Both -D-glucopyranosyl 1,3,4-trisphosphate (6) and -D-glucopyranosyl 1,3,4-trisphosphate (7) were synthesized via a 

divergent route, starting with allyl 2,6-di-O-Bn--D-glucopyranoside (15). Palladium chloride-catalyzed deallylation 

yielded 16, although purification of this compound was found to be very difficult at this step and purification after 

phosphorylation proved to be much more effective. Thus, slightly impure 16, was phosphorylated to yield a pure, partially 

separable mixture of the epimeric phosphates 17 and 18 (56% yield total: 14% 17, 19% 18, 23% mixed epimers). It was 

unclear how stable 17 and especially the phosphorylated -epimer 18 would be, as there are reports of compounds with  

phosphate groups at the anomeric carbon atom being unable to survive purification by silica column chromatography in 

some cases and not in others.39–41 

We found in this case that both compounds survived silica gel chromatography, although 18 showed slight degradation 

by 31PNMR over time (approx. 30%. after three weeks at 4C). Catalytic hydrogenolysis of both compounds 18 and 19 

was carried out in the presence of sodium bicarbonate to prevent acidic hydrolysis of the potentially labile  C-1 

phosphates. The final products 6 and 7 were purified by reverse phase ion pair chromatography and collected as their 

triethylammonium salts. 
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Scheme 3: Synthesis of D-glucose-derived ligands: methyl -D-glucopyranoside 2,3,6-trisphosphate (5) and methyl -D-

glucopyranoside 2,4,6-trisphosphate (4)a
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aReagents and conditions: (a) MeOH, reflux, 5d (b) (1) TMSCl, py, 22h (2) DCM, benzaldehyde, Fe(II)Cl2
.6H2O, MeCN, triethylsilane, 0°C 

- Room temperature, 1.5h (c) MeOH, H2O, 1M HCl (aq), reflux, 3h (d) (1) DCM, 5-phenyl-1H-tetrazole, (BnO)2PN(iPr)2, 20h (2) mCPBA, -

78°C -Room temperature (e) MeOH:H2O (10:1 v/v), cat. Pd(OH)2/C, H2, 24h (f) MeCN, benzaldehyde dimethyl acetal, cat. CSA, 24h (g) 

BH3-THF, La(Tf)3, 7d.

Methyl -D-glucopyranoside 2,3,6-trisphosphate (4) and methyl -D-glucopyranoside 2,4,6-trisphosphate (5) were 

synthesized using the same methods as described for their enantiomers (1 and 2) starting the route with D-glucose 

(Scheme 3).

The relative stabilities of α-D-glucopyranosyl 1,3,4-trisphosphate (6) and β-D-glucopyranosyl 1,3,4-trisphosphate (7) 

were first investigated by allowing each compound (as triethylammonium salts) to remain in a solution of D2O at room 

temperature at pH 7. Over the course of two months, neither isomer showed any sign of degradation. Following this, a 

mixture of the compounds in a known starting ratio was exposed to increasingly harsh conditions and relative isomer 

degradation was monitored through 1H NMR spectroscopy (see Supporting Information). From the results of the 

hydrolysis study, we determined that the β-epimer (7) degraded more readily than the corresponding α-epimer (6). Both 
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compounds were surprisingly durable though and required strongly acidic conditions to be fully hydrolyzed while 

strongly basic conditions only produced limited degradation. We are therefore confident that both compounds remained 

intact during the near neutral conditions of the biological assays. All final compounds were assessed by HPLC (see 

Supporting Information).

Biology

Permeabilized HEK-Ins(1,4,5)P3R1 cells were used to determine the ability of compounds 2-7 (with Ins(1,4,5)P3 and 

AdA as controls) to evoke Ca2+ release from intracellular stores (Figure 4 and Table). Maximally effective concentrations 

of Ins(1,4,5)P3, -D-glucopyranosyl 1,3,4-trisphosphate (6) or -D-glucopyranosyl 1,3,4-trisphosphate (7) released the 

same fraction (ca. 80%) of the intracellular Ca2+ stores, suggesting that these two epimeric compounds are both full 

agonists (Figure 4). Compound 7 was equipotent with Ins(1,4,5)P3 and 6 was ca. 20-times less potent than Ins(1,4,5)P3.

The L-glucose-based ligands methyl -L-glucopyranoside 2,3,6-trisphosphate (2) and methyl -L-glucopyranoside 2,4,6-

trisphosphate (3) were much less potent than Ins(1,4,5)P3 (Figure 4), while their enantiomers methyl -D-

glucopyranoside 2,3,6-trisphosphate (4) and methyl -D-glucopyranoside 2,4,6-trisphosphate (5) were, as predicted, 

inactive. The Ca2+ release evoked by maximally effective concentrations of 2 or 3 was only ca. 70% of that evoked by 

Ins(1,4,5)P3, suggesting that 2 and 3 are partial agonists. Since partial agonists bind to Ins(1,4,5)P3Rs, but activate them 

less effectively than full agonists, a partial agonist must bind to more Ins(1,4,5)P3Rs than a full agonist to evoke 

comparable Ca2+ release. We performed equilibrium competition binding assays using [3H]-Ins(1,4,5)P3 and the active 

ligands to examine relationships between ligand binding and functional responses. The affinities of 6 and 7 for 

Ins(1,4,5)P3R aligned with their potencies in functional assays, with 7 having an affinity indistinguishable from that of 

Ins(1,4,5)P3, while 6 had ca. 15-fold lower affinity (Figure 5, Table). The EC50/Kd values for Ins(1,4,5)P3, AdA, 6 and 7 

were similar, consistent with each being a full agonist (Table). Comparison of the concentrations of 2 and 3 required to 

occupy 50% of binding sites (Kd) and to evoke release of 39% of the Ca2+ stores (EC39, i.e. the Ca2+ release evoked by a 

half-maximally effective Ins(1,4,5)P3 concentration) confirmed that 2 and 3 are weak partial agonists: their EC39/Kd 

values (132 and 462, respectively) were much greater than that of Ins(1,4,5)P3 (17). HPLC was used to confirm the purity 

of the compounds used in the biological assays (details in the Supporting Information). 
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Table 1. Receptor binding and Ca2+ Release by Ins(1,4,5)P3R mediated by Ins(1,4,5)P3, AdA and compounds 2-7a

aEffects of ligands on Ca2+ release from the intracellular stores of permeabilized HEK-Ins(1,4,5)P3R1 cells and on [3H]-Ins(1,4,5)P3 

binding to cerebellar membranes are summarized. Results from functional assays are means ± SEM (pEC50 (-log of the half-maximally 

effective concentration), Ca2+ release (%) and Hill coefficient, h) and means (EC50) from 5-11 independent experiments, each performed in 

duplicate. Results from binding experiments are means ± SEM (pKd (-log of the equilibrium dissociation constant) and h) and means (Kd) 

from 3 independent experiments. The pKd values for Ins(1,4,5)P3 and AdA have been published (Mills et al.)42 and are reproduced with 

permission. Final columns show EC50/Kd or (for partial agonists and Ins(1,4,5)P3) EC39/Kd (mean and 95% CI). ND, not determined. *P < 

0.05 relative to Ins(1,4,5)P3.

#Ca2+ release evoked by 300 µM of the ligand

$Specific binding of [3H]-Ins(1,4,5)P3 in presence of 30µM of competing ligand

 Ca2+ release  Binding    
 pEC50

EC50

Release
(%)

h  pKd

Kd (nM)
h  EC50/Kd

^EC39/Kd

Ins(1,4,5)P3

6.90 ± 0.12
126nM

78.8 ± 1.3  
0.7 ± 0.1

 8.06 ± 0.03
8.7

 
1.1 ± 0.2

 14
(5 - 46)

 
17

(5 - 63)

2 4.06 ± 0.09*

87.7µM
56.2 ± 2.6* 1.4 ± 0.2  5.91 ± 0.03*

1230
0.9 ± 0.1  71

(34 – 148)
132

(49 – 355) 

3 3.98 ± 0.04*

104µM
53.1 ± 5.0* 1.3 ± 0.2  6.26 ± 0.07*

549
0.9 ± 0.1 191*

(123 – 295)
462*

(128 – 1667)

4 ND 4.3 ± 2.1# ND  48 ± 12$ ND  ND  

5 ND 5.9 ± 2.1# ND  53 ± 3$ ND  ND  

6 5.53 ± 0.20*

2.96µM
78.8 ± 3.0 0.9 ± 0.2  6.89 ± 0.09*

129
0.7 ± 0.1  23

(5 - 105)
 

 
7

7.09 ± 0.18
80nM

75.2 ± 1.4  
1.0 ± 0.1

 7.95 ± 0.05
11.2

 
1.1 ± 0.2

 7
(2 - 29)

 

AdA 7.62 ± 0.12*

24nM
77.8 ± 4.5 0.8 ± 0.1  8.86 ± 0.14*

1.4
1.2 ± 0.2  17

(5 – 51)
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^EC39 reports the concentration of ligand required to evoke the same Ca2+ release (39% of the intracellular stores) as evoked by a half- 

maximally effective concentration of Ins(1,4,5)P3.
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Figure 4. Concentration-dependent effects of Ins(1,4,5)P3 
and related ligands on Ca2+release from intracellular stores of permeabilized HEK-

Ins(1,4,5)P
3
R1 cells. Results are mean ± SEM from 5-11 independent experiments, each with duplicate determinations. 
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Figure 5. Equilibrium-competition binding to cerebellar membranes using [3H]- Ins(1,4,5)P
3
 (1.5nM) and the indicated concentrations of 

competing ligands.  Results are means ± SEM from 3 independent experiments. The results for Ins(1,4,5)P3 
and AdA have been published 

(Mills et al.)42.
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DISCUSSION

Of the glucose polyphosphates considered in this study, the two that bound to Ins(1,4,5)P3R with highest affinity were 

-D-glucopyranosyl 1,3,4-trisphosphate (6) and -D-glucopyranosyl 1,3,4-trisphosphate (7). Both compounds, which 

can be considered as truncated analogues of adenophostin A (AdA, Figure 6),43 were found to be full agonists of 

Ins(1,4,5)P3R, and the -epimer (7) was equipotent with Ins(1,4,5)P3.

Compounds containing a phosphate group attached to the anomeric carbon atom, as featured in 6 and 7, have not been 

investigated as Ins(1,4,5)P3R ligands, presumably due to concerns over their stability, at least in the case of the β–

epimer.30 Nevertheless, we found that both α-D-glucopyranosyl 1,3,4-trisphosphate (6) and -D-glucopyranosyl 1,3,4-

trisphosphate (7) were surprisingly durable as their triethylammonium salts and neither compound showed signs of 

degradation after two months in neutral aqueous solution at room temperature (see Supporting Information for details). 

Both 6 and 7 were eventually degraded under strongly acidic conditions, and HPLC traces were taken to confirm their 

hydrolysis to glucose 3,4-bisphosphate (details in the Supporting Information).
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Figure 6. Structural comparison of Ins(1,4,5)P3 (1), AdA and some of its truncated analogues including -D-glucopyranosyl 1,3,4-

trisphosphate (6) and  -D-glucopyranosyl 1,3,4-trisphosphate (7). The conserved regions of the structures involved in binding are drawn in 

blue while the differing auxiliary phosphate is shown in red. 

Previous studies using synthetic analogues of AdA29–33,44 demonstrated that the adenine moiety significantly increases 

potency of the agonist, the vicinal phosphates are crucial to activity, and minor adjustments to the placement of the 

auxiliary phosphate can be tolerated.4,33 The general consensus for AdA binding has been that the ligand interacts with 

the binding site of Ins(1,4,5)P3R with the 3″, 4″ and 2′ phosphates mimicking the 4, 5 and 1 phosphates of Ins(1,4,5)P3 

respectively.26,45 However, these previous studies employed analogues which differed from Ins(1,4,5)P3 in several ways 

and it has therefore been difficult to isolate the specific impact of replacing the myo-inositol ring with D-glucopyranose. 

This has implications for the possible mode of action of AdA and related compounds. Indeed, a cryo-EM study46 of 

tetrameric Ins(1,4,5)P3R1 has recently proposed that AdA interacts with the IBC in a completely different way to 

Ins(1,4,5)P3, with the two domains of the IBC being pulled together by the 3″- and 4″-phosphate groups of AdA 

interacting with one domain and the adenine moiety interacting with the other.46 In this model of AdA binding to 

Ins(1,4,5)P3R, the glucose bisphosphate structure of AdA only coincidentally resembles the myo-inositol 4,5-

bisphosphate of Ins(1,4,5)P3 and there is no structural correspondence between the glucose ring of AdA and the inositol 

ring of Ins(1,4,5)P3. However, this conclusion does not support the observed activities of the compounds in this study 

and other Ada analogues; it should therefore be viewed with caution.11,46

In the present study, we found that the closest possible glucose-containing analogue of Ins(1,4,5)P3, namely compound 

7, is effectively indistinguishable from Ins(1,4,5)P3 in our assays of Ins(1,4,5)P3R binding and Ca2+ release. This is 

entirely consistent with the idea that, in the Ins(1,4,5)P3-binding site, the glucopyranoside ring of 7 is closely analogous 

to the myo-inositol ring of Ins(1,4,5)P3 (Figure S2). In turn, this establishes that the flexible Ins(1,4,5)P3-binding site can 

accommodate the equatorial glucopyranoside hydroxymethyl (CH2OH) group and pyranoside ring oxygen in place of 

the myo-inositol 3-OH group and C-2, respectively, with no impact on activity. The -epimer 6 is approximately 27-fold 

less potent than -epimer 7 in Ca2+ release. This shows that the axial phosphate group in 6 can still contribute to binding 

[Gluc(3,4)P2 is much less potent] and is also consistent with an earlier report that D-chiro-Ins(1,3,4)P3, the C-1 epimer 

of Ins(1,4,5)P3 having an axial 1-phosphate group, had 25-fold lower potency than Ins(1,4,5)P3.34,47 
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Thus, the effects of trisphosphates 6 and 7 provide strong support for the argument that compounds containing the D-

glucopyranosyl 3,4-bisphosphate structure mimic Ins(1,4,5)P3 due to the direct structural analogy between 

glucopyranosyl and myo-inositol rings depicted in Figures 2 and 6. In such compounds, it is highly likely that the glucose 

3,4-bisphosphate structure simply pulls together the two domains of the IBC in the manner proposed for the inositol 4,5-

bisphosphate motif of Ins(1,4,5)P3. We recently reported studies in which the glucose ring of AdA11 and ribophostin42 

was replaced by D-chiro-inositol, leading to both modest and significant increases in biological activity respectively. It 

therefore remains to be conclusively established whether the additional components present in the AdA molecule can, 

counter-intuitively, induce a completely unrelated role for the glucose bisphosphate component of AdA itself, as 

suggested in the cryo-EM study.46  

Previous studies of C-glycosidic truncated analogues of AdA with different chain lengths tethering the third, auxiliary 

phosphate group (Figure 6) have demonstrated that positioning of this phosphate has a significant effect on the affinity 

of the agonist.29–33 It has been observed that the Ca2+-releasing potency of these analogues at Ins(1,4,5)P3R decreases as 

the length and flexibility of the linkage to the auxiliary phosphate increases.33 The orientation of the linkage also plays 

a role, with axial linkages usually resulting in more potent compounds. However, even the most potent of these 

compounds [Figure 6, Terauchi et al.30 axial linkage, n = 2] is still weaker than Ins(1,4,5)P3 and compound 7.
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P
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Figure 7. Ins(1,4,5)P3 (1) and analogues methyl α-L-glucopyranoside 2,3,6-trisphosphate (2) and  methyl α-L-glucopyranoside 2,4,6-

trisphosphate (3) with their structural differences contribute to their Ins(1,4,5)P3R partial agonist activity in dark red.

Methyl -L-glucopyranoside 2,3,6-trisphosphate (2) was found to be a partial agonist of Ins(1,4,5)P3R1, while its D-

glucose-based enantiomer, compound 4, was inactive. This supports the structural alignment of trisphosphate 2 with 

Ins(1,4,5)P3 shown in Figure 7 and in our molecular modeling in Figure S3. No such alignment is possible for compound 

4 because it does not possess a vicinal bisphosphate motif whose stereochemistry matches that of Ins(1,4,5)P3.

In the predicted binding conformation of methyl α-L-glucopyranoside 2,3,6-trisphosphate (2) (Figure S3), the axial 

methyl group is positioned in a region of the binding site normally occupied by the  3-hydroxyl of Ins(1,4,5)P3. In the 
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design of 2, we further anticipated that the phosphate group at C-6 of L-glucose would mimic the auxiliary 1-phosphate 

of Ins(1,4,5)P3 to some extent as there is evidence from previous studies showing that the Ins(1,4,5)P3R can accommodate 

more sterically demanding groups in this region of the binding site.4,48–50 A very recent example of this is that replacement 

of the Ins(1,4,5)P3 1-phosphate by a pyrophosphate, which increases both charge and steric bulk, does not affect 

activity.37 In addition, trisphosphate 2 contains an hydroxyl group appropriately placed to mimic the important 6-OH 

group of Ins(1,4,5)P3. 

In studies of Ins(1,4,5)P3 analogues as partial agonists, it has been shown that perturbations in the equivalent of the 3-

hydroxyl of Ins(1,4,5)P3 can result in partial agonist activity,51 especially when this disruption occurs in conjunction with 

a modification to the vicinal phosphate pair or other region of the ligand.18,21,24,51 It has been observed in  multiple studies 

that limited, equatorial extension of substituents from the 3 position equivalent can be tolerated,52–54 but larger groups 

hinder binding55,56 and inversion of the 3-hydroxyl to axial results in a slight decrease in ligand activity.21,57–59  Figure 7 

therefore suggests that the axial O-methyl group is the most likely component of 2 that causes it to display partial agonist 

activity, perhaps by interfering with the ligand binding to the β-domain of the IBC or by reducing the extent of domain 

closure.

Methyl α-L-glucopyranoside 2,4,6-trisphosphate (3) was designed to bind to the Ins(1,4,5)P3R in a manner that would 

potentially satisfy the essential binding requirements by positioning the pyranoside ring oxygen in place of the non-

essential 3-OH group of Ins(1,4,5)P3 while the axial 1-methoxy group occupied the place of the unimportant 2-OH group 

of Ins(1,4,5)P3 (Figure 7 and S4). In this binding mode, the L-glucose 6-phosphate group would enter the region of the 

binding site usually occupied by the 4-phosphate of Ins(1,4,5)P3. 

In previous studies, it has been shown that conservative modifications to the phosphates attached to the 4 and 5 equivalent 

positions (and sometimes in conjunction with a modification to the 3 position equivalent) can produce partial agonists 

and even low-affinity antagonists.21–24,51,55,60 Bello et al.25 hypothesized that if a ligand could bind to only one side of the 

IBC (through disruption of the interactions of either the 4 or 5 equivalent phosphates), it would be unable to pull the 

clam-like structure of the binding site closed and would therefore be unable to activate the receptor. Thus, a suitable 

modification to the 4-phosphate of Ins(1,4,5)P3 might weaken the important interaction with the β-domain of the clam-

shell structure and induce sub-optimal activation of Ins(1,4,5)P3R. However previous studies attempting to generate 

partial agonists with modifications solely to the 4-phosphate have failed to identify any active Ins(1,4,5)P3 analogues.25
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Pleasingly, our assays show that L-glucose trisphosphate 3 also behaves as a partial agonist of Ins(1,4,5)P3R1, with 

improved binding affinity and higher EC50/Kd ratio than partial agonist 2. The fact that the D-enantiomer 5 is inactive 

supports the structural alignment of 3 with Ins(1,4,5)P3 depicted in Figure 7. The "extended" 4-phosphate group 

equivalent in 3 may thus disrupt the interaction of the ligand with the -domain of the IBC as theorized.25 It is likely that 

the absence in 3 of an equivalent to the 3-OH group in Ins(1,4,5)P3 also contributes to a decreased interaction between 

the -domain of the IBC and the ligand. Indeed, activity for 3-deoxy-Ins(1,4,5)P3 at Ins(1,4,5)P3R has been reported to 

drop to up to 40 fold.9

The two partial agonists, -L-glucopyranoside 2,3,6-trisphosphate (2) and -L-glucopyranoside 2,4,6-trisphosphate (3), 

indicate that perturbations of the ring structure of the ligand are sufficient to induce partial agonism. Both ligands suffer 

from low affinity and as a result, structurally related compounds are currently being developed that will incorporate 

similar structural differences to Ins(1,4,5)P3 and hopefully maintain the desired decreased efficacy while increasing 

affinity. The most promising avenue seems to be adapting the structure of 3 by generating other ligands with extended 

4-position phosphate equivalents. This could hypothetically be continued with L-glucose, but inositol could also prove 

to be a useful starting material as ligands could be synthesized with a similar extension of the 4-position hydroxyl without 

loss of an equivalent hydroxyl to position 3 in Ins(1,4,5)P3, perhaps thereby improving ligand affinity while retaining 

partial agonist activity. Such work is in progress.

CONCLUSIONS

We have synthesized four novel active ligands for the Ins(1,4,5)P3R based on both D-glucose and L-glucose templates as 

inositol surrogates. The two ligands based on L-glucose, namely methyl α-L-glucopyranoside 2,3,6-trisphosphate (2) and 

methyl α-L-glucopyranoside 2,4,6-trisphosphate (3), are low-affinity, low-efficacy partial agonists of Ins(1,4,5)P3R, 

while their respective D-glucose-based enantiomers 4 and 5 are inactive. Two further synthetic D-glucose-based 

trisphosphates, -D-glucopyranosyl 1,3,4-trisphosphate (6) and -D-glucopyranosyl 1,3,4-trisphosphate (7) can be 

regarded as close analogues of Ins(1,4,5)P3 but they are also related structurally to the naturally-occurring 

glyconucleotide Ins(1,4,5)P3R agonist adenophostin A (AdA). They can therefore further our understanding of how AdA 

binds to Ins(1,4,5)P3R. Both 6 and 7 were found to be full agonists of Ins(1,4,5)P3R, with the perhaps surprisingly stable 
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-epimer 7 being equipotent to Ins(1,4,5)P3 itself and potentially useful as a chemical biology tool under physiological 

conditions (with degradation induced under extremes of pH). The potency of 7 demonstrates that the structural 

differences between myo-inositol and D-glucose need not result in any decrease in ligand activity. This is consistent with 

the D-glucopyranosyl 3,4-bisphosphate moiety of AdA directly mimicking the D-myo-inositol 4,5-bisphosphosphate 

structure of Ins(1,4,5)P3 at the binding site of Ins(1,4,5)P3Rs.

Partial agonists 2 and 3 are the first L-glucose-derived ligands that have been synthesized for Ins(1,4,5)P3R. Both 

compounds provide evidence for the viability of generating partial agonists and potential antagonists of Ins(1,4,5)P3R by 

deliberately disrupting the crucial moieties involved in binding to the IBC clam shell and pulling the domains together 

upon ligand binding. We hypothesize that the axial O-methyl group of compound 2 and the extended phosphate in the 

equivalent of the 4-position phosphate in Ins(1,4,5)P3 of compound 3 cause the partial agonist activity of these 

compounds by either disrupting the interactions of the ligand with the β domain of the IBC or by preventing complete 

closure of the IBC upon binding. These partial agonists could prove to be interesting starting points to generate 

structurally similar compounds with even lower efficacy and higher affinity that could result in the generation of 

improved partial agonists or antagonists. 

EXPERIMENTAL 

General Synthesis

Chemicals were purchased from Sigma-Aldrich, Acros, or Alfa Aesar. Anhydrous solvents were purchased from Sigma-

Aldrich. TLC was performed on precoated plates (Merck Aluminum sheets silica 60 F254, art No. 5554). Chromatograms 

were visualised under UV light and by dipping plates into phosphomolybdic acid in EtOH, followed by heating. Flash 

column chromatography was performed using RediSep Rf disposable flash columns on an ISCO CombiFlash Rf 

automated flash chromatography machine. Reverse phase chromatography was performed on LiChroprep RP-18 (25-40 

µm, Merck) using a BioLogic LP system (BioRad), eluting at 5 mL/min with a gradient of 0−10% MeCN in 0.05 M 

triethylammonium bicarbonate (TEAB) buffer, collecting 7 mL fractions. Fractions containing the target polyphosphate 

were identified using a modification of the Briggs phosphate assay.61 The purity of all of the final compounds used in 

biological assays were assessed by HPLC and found to be >95% pure (vide infra and HPLC data in Supporting 
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Information). Proton 1H NMR and COSY spectra were recorded on a Bruker Avance III (400 MHz) spectrometer. Proton 

chemical shifts are reported in ppm (δ) relative to internal tetramethylsilane (TMS, δ 0.0 ppm) or with the solvent 

reference relative to TMS employed as the internal standard (CDCl3, δ 7.26 ppm; CD3OD, δ 3.31 ppm). The following 

abbreviations are used to describe the multiplicity of the chemical shifts: br, broad; s, singlet; d, doublet; dd, double 

doublet; q, quartet; m, multiplet; t, triplet. 13C and HSQC spectra were recorded on a Bruker Avance III (100 MHz) 

spectrometer with complete proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with the 

respective solvent resonance as the internal standard (CDCl3, δ 77.0 ppm, d4-MeOH, δ 49.0 ppm). 31P NMR spectra were 

recorded on a Bruker Avance III (162 MHz) spectrometer with complete proton decoupling. Phosphorus chemical shifts 

are reported in ppm (δ) relative to an 85% H3PO4 external standard (H3PO4, δ 0.0 ppm). All NMR data were collected at 

25 °C. Optical rotations were measured at ambient temperature using an Optical Activity Ltd. AA-10 polarimeter in a 

cell volume of 5 cm3, and specific rotation is given in 10−1 deg cm3 g−1. Melting points were determined using a Stanford 

Research Systems Optimelt MPA100 automated melting point system and are uncorrected. Mass spectra were recorded 

on a Thermo Orbitrap Exactive Mass Spectrometer. All reactions were carried out under an argon atmosphere employing 

oven-dried glassware unless stated otherwise. 

Methyl 3-O-benzyl-4,6-O-benzylidene-α-L-glucopyranoside (12) Methyl α-L-glucopyranoside (8) (93 mg, 0.480 

mmol) was dissolved in dry pyridine (1 mL) and put under argon. To this solution, trimethylsilyl chloride (0.30 mL, 2.39 

mmol, 5 equiv) was added dropwise. The solution was allowed to stir for 22 h at room temperature. The reaction was 

then diluted with EtOAc and washed with water (2 x 30 mL). The organic phase was dried over MgSO4 and concentrated 

in vacuo to yield the per-silylated glucopyranoside crude product. The per-silyslated product was not purified, but NMR 

was used to confirm that the reaction had proceeded to completion. The per-silyslated product was dissolved and co-

evaporated twice with toluene before being dissolved in dry DCM (0.7 mL) and put under argon. To this solution, 

benzaldehyde (0.15 mL, 1.42 mmol, 3 equiv) was added and the reaction was cooled in an ice bath. To this chilled 

solution, iron (III) chloride hexahydrate (3.4 mg, 0.013 mg, 0.026 equiv) dissolved in MeCN (0.12 mL) was added 

dropwise. Triethylsilane (0.08 mL, 0.528 mmol, 1.1 equiv) was then added dropwise and the reaction was allowed to 

warm to room temperature and stir for 1.5 h. After this time, the solution was diluted with EtOAc (50 mL), washed with 

sat. NaHCO3 solution (50 mL), and extracted from the aqueous phase twice more with EtOAc (2 x 30 mL). The combined 

organic phases were dried over MgSO4 and concentrated in vacuo to yield the crude product. The product was purified 
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with flash chromatography (petroleum ether/EtOAc, 0-100%) to yield the pure product as a white solid (140.7 mg, 0.378 

mmol, 79% yield); mp 184.0-185.3 °C; [α]21
D -87.5 (c= 1.00, CHCl3); 1H NMR (CDCl3, 400 MHz): δ 7.51-7.27 (m, 

10H, Ar), 5.57 (s, 1H, H-7), 4.97 (d, J = 11.6 Hz, 1H, CH2Ph), 4.82 (d, J= 3.9 Hz, 1H, H-1), 4.79 (d, J = 11.6 Hz, 1H, 

CH2Ph), 4.30 (dd, J= 4.3, 9.8 Hz, 1H, H-6), 3.87-3.71 (m, 4H, H-2, H-3, H-5, H-6), 3.65 (t, J = 9.2 Hz, 1H, H-4), 3.45 

(s, 3H, OMe), 2.29 (d, J= 7.2 Hz, 1H, OH); 13C NMR (CDCl3, 100 MHz): δ 138. 6 (Ar), 137.5 (Ar), 129.1 (Ar), 128.6 

(Ar), 128.4 (Ar), 128.2 (Ar), 127.9 (Ar), 126.2 (Ar), 101.4 (C-7), 100.0 (C-1), 82.1 (C-4), 79.0 (C-2 or 3 or 5), 75.0 

(CH2Ph), 72.6 (C-2 or 3 or 5), 69.2 (C-6), 62.7 (C-2 or 3 or 5), 55.6 (OMe); HRMS (ESI): m/z calcd [M+Na]+ for 

C21H24O6: 395.14651, found: 395.14658.

Methyl 3-O-benzyl-α-L-glucopyranoside (13) Methyl 3-O-benzyl-4,6-O-benzylidene-α-L-glucopyranoside (12) (135.7 

mg, 0.364 mmol) was dissolved in MeOH (3 mL). To this solution, water (0.15 mL) and 1 M HCl (aq) (0.3 mL) were 

added. The reaction was heated to reflux for 3 h. After this time, the reaction was quenched with the addition of NaHCO3 

(aq) (25.2 mg in 5 mL water). The solution was concentrated in vacuo and the residue was dissolved and co-evaporated 

with toluene twice to yield the crude product. The product was purified with flash chromatography (pet ether/EtOAc, 0-

100%) to yield the pure product as a white solid (96.3 mg, 0.339 mmol, 93% yield). mp 91.2- 93.8 °C; [α]22
D -89.5 (c= 

0.93, CHCl3); 1H NMR (CDCl3, 400 MHz): δ 7.39-7.29 (m, 5H, Ar), 5.03 (d, J= 11.5 Hz, 1H, CH2Ph), 4.76 (d, J= 3.9 

Hz, 1H, CH2Ph), 4.73 (d, J= 11.5 Hz, 1H, H-1,), 3.88-3.75 (m, 2H, H-6 x2), 3.70-3.52 (m, 4H, H-2, H-3, H-4, H-5), 3.44 

(s, 3H, OMe), 2.30 (d, J= 2.4 Hz, 1H, OH), 2.14 (d, J= 9.2 Hz, 1H, OH), 1.93 (dd, J= 5.7, 7.2 Hz, 1H, OH); 13C NMR 

(CDCl3, 100 MHz): δ 138.6 (Ar), 128.8 (Ar), 128.1 (Ar), 99.7 (C-1), 82.8 (C-3), 75.1 (CH2Ph), 72.9 (C-2), 71.1 (C-5), 

70.2 (C-4), 62.5 (C-6), 55.5 (OMe); HRMS (ESI): m/z calcd [M+Na]+ for C14H20O6: 307.11521, found: 307.11515.

Methyl 3-O-benzyl-α-L-glucopyranoside 2,4,6-tris(dibenzyl phosphate) (14) Methyl 3-O-benzyl-α-L-

glucopyranoside (13) (96.3 mg, 0.339 mmol) was dissolved in dry DCM (4 mL) and the solution was put under argon. 

5-Phenyl-1H-tetrazole (297 mg, 2.03 mmol, 6 equiv) was added to the solution, followed by dibenzyl 

diisopropylphosphoramidite (0.55 mL, 1.52 mmol, 4.5 equiv). The reaction was allowed to stir at room temperature 

overnight. The next day, after the confirmation of successful phosphitylation with 31PNMR, the reaction flask was cooled 

to -78°C and mCPBA (502 mg, 70% purity, 2.03 mmol, 6 equiv.) was added. The reaction was allowed to stir at room 

temperature for 10 min before the solution was diluted with EtOAc (50 mL), washed with 10% Na2SO3 solution (2 x 30 

mL), dried over MgSO4 and concentrated to yield the crude product. The crude product was purified with flash 

chromatography (pet ether/EtOAc, 0-100%) to yield the pure product as a colorless oil (144.2 mg, 0.135 mmol, 40% 
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yield). [α]21
D -38.8 (c= 1.01, CHCl3); 1H NMR (CDCl3, 400 MHz): δ 7.34-7.08 (m, 35H, Ar), 5.03 (s, 2H, CH2Ph x2), 

5.01 (s, 2H, CH2Ph x2), 4.98 (d, J= 3.2 Hz, 1H, CH2Ph), 4.96 (d, J= 3.2 Hz, 1H, CH2Ph), 4.94-4.85 (m, 6H, H-1, CH2Ph 

x5), 4.80-4.75 (m, 3H, CH2Ph x3), 4.42-4.18 (m, 4H, H-2, H-3, H-6 x2), 3.98 (t, J= 9.4 Hz, 1H, H-4), 3.86 (dd, J= 10.0, 

5.2 Hz, 1H, H-5), 3.28 (s, 3H, OMe); 31P NMR (CDCl3, 162 MHz): δ -0.99, -1.74, -1.86; 13C NMR (CDCl3, 100 MHz): 

δ 138.1 (Ar), 136.0 (Ar), 135.9 (Ar), 135.8-135.6 (m, Ar), 128.7-128.5 (m, Ar), 128.3 (Ar), 128.0 (m, Ar), 127.9 (Ar), 

127.7 (Ar), 127.5 (Ar), 97.6 (C-1), 78.4-78.3 (m, C-4), 76.8-76.7 (m, C-2 or 3), 75.1 (C-2 or 3, CH2Ph), 69.8-69.4 (m, 

CH2Ph), 69.0-68.9 (m, C-5), 66.1 (d, J= 5.1 Hz, C-6), 55.7 (OMe); HRMS (ESI): m/z calcd [M+H]+ for C56H59O15P3: 

1065.31396, found: 1065.31280.

Methyl α-L-glucopyranoside 2,4,6-trisphosphate triethylammonium salt (3) Methyl 3-O-benzyl-α-L-

glucopyranoside 2,4,6-tris(dibenzyl phosphate) (14) (141.9 mg, 0.133 mmol) was dissolved in MeOH (7.1 mL). 

Ultrapure water (0.71 mL) was added dropwise to the solution, ensuring that the precipitate formed upon addition was 

able to dissolve back into solution. Pd(OH)2/C (20% , ≥50% wet, 71.0 mg) was added to the solution and the reaction 

flask was flushed with hydrogen. The reaction was allowed to stir at room temperature for 24 h, after which the catalyst 

was filtered off and the collected filtrate was evaporated to yield the product as a free acid. No purification steps were 

deemed to be necessary, but triethylamine was added to sharpen the phosphorus NMR signals and to convert the product 

from the free acid into the triethylammonium salt. The product was concentrated in vacuo, lyophilised and collected as 

a colorless glass (96.1 mg, 0.120 mmol, 90% yield). [α]22
D -46.5 (c= 0.88, MeOH); 1H NMR (CD3OD, 400 MHz): δ 4.90 

(d, J= 3.0 Hz, 1H, H-1), 4.29-4.18 (m, 2H, H-3, H-6), 4.05-3.97 (m, 3H, H-2, H-4, H-6), 3.68 (d, J= 10.0 Hz, 1H, H-5), 

3.38 (s, 3H, OMe), 3.14 (q, J= 7.3 Hz, approx. 18H, TEA CH2CH3), 1.30 (t, 7.3 Hz, approx. 27H, TEA CH2CH3); 31P 

NMR (CD3OD, 162 MHz): δ 1.90, 1.71, 1.28; 13C NMR (CD3OD, 100 MHz): δ 100.2 (d, J= 4.0 Hz, C-1), 76.3 (d, J= 

5.1 Hz, C-2 or 4), 74.6 (d, J= 4.0 Hz, C-2 or 4), 73.5 (d, J= 4.9 Hz, C-3), 71.0-71.2 (m, C-5), 63.9 (d, J= 4.7 Hz, C-6), 

55.6 (OMe), 46.9 (TEA CH2CH3), 9.4 (TEA CH2CH3). HRMS (ESI): m/z calcd [M-H]- for C7H17O15P3: 432.97075, 

found: 432.97065. 

Methyl 4-O-benzyl-α-L-glucopyranoside 2,3,6-tris(dibenzyl phosphate) (11) Methyl 4-O-benzyl-α-L-

glucopyranoside (10) (65.5 mg, 0.230 mmol) was dissolved in dry DCM (2 mL) and put under argon. 5-Phenyl-1H-

tetrazole (202 mg, 1.38 mmol, 6 equiv) was added to the solution followed by dibenzyl diisopropylphosphoramidite 

(0.36 mL, 1.04 mmol, 4.5 equiv). The reaction was allowed to stir at room temperature overnight. The following day, 

the reaction was cooled to -78°C and mCPBA (70% pure, 342 mg, 1.38 mmol, 6 equiv) was added. The reaction was 
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allowed to stir for 10 min at room temperature before it was diluted with EtOAc (50 mL) and washed twice with 10% 

Na2SO3 solution (2 x 30 mL). The organic layer was dried over MgSO4 and concentrated to yield the crude product. The 

residue was purified with flash chromatography (petroleum ether/EtOAc, 0-100%) to yield the pure product as a colorless 

oil (210.5 mg, 0.198 mmol, 86% yield). [α]21
D -42.3 (c= 1.06, CHCl3); 1H NMR (CDCl3, 400 MHz): δ 7.33-7.09 (m, 

35H, Ar), 5.05-4.81 (m, 15H, H-1, H-3, CH2Ph x13), 4.46 (d, J= 10.7 Hz, 1H, CH2Ph), 4.25 (ddd, J=13.3, 6.2, 3.6 Hz, 

1H, H-2), 4.19-4.16 (m, 2H, H-6), 3.75 (dq, J= 10.0, 2.3 Hz, 1H, H-5), 3.50 (t, J= 9.5 Hz, 1H, H-4), 3.24 (s, 3H, OMe); 

31P NMR (CDCl3, 162 MHz): δ -0.76, -1.32, -2.01; 13C NMR (CDCl3, 100 MHz): δ 137.6 (Ar), 136.1-135.7 (m, Ar), 

128.7-127.8 (m, Ar), 97.6 (C-1), 78.4 (dd, J= 8.7, 6.5 Hz, C-3), 76.2 (C-4), 75.3 (dd, J= 4.7, 3.2 Hz, C-2), 74.6 (CH2Ph), 

69.8 (d, J= 5.6 Hz, CH2Ph), 69.6-69.4 (m, CH2Ph), 69.1 (d, J= 8.3 Hz, C-5), 65.8 (d, J= 5.6 Hz, C-6), 55.5 (OMe); 

HRMS (ESI): m/z calcd [M+H]+ for C56H59O15P3: 1065.31396, found: 1065.31297.

Methyl α-L-glucopyranoside 2,3,6-trisphosphate triethylammonium salt (2) Methyl 4-O-benzyl-α-L-

glucopyranoside 2,3,6-tris(dibenzyl phosphate) (11) (60 mg, 0.056 mmol) was dissolved in MeOH (3 mL). To this 

solution, ultrapure water (0.3 mL) was added dropwise, ensuring that the white precipitate that formed returned to 

solution. Pd(OH)2/C (30 mg, 20% wt) was added to the solution and the flask was flushed with hydrogen. The reaction 

was left to stir under hydrogen at room temperature overnight. The palladium catalyst was filtered off with a PTFE filter 

and the solution was concentrated to yield the product as a free acid. No purification was deemed necessary. The free 

acid was converted to the triethylammonium salt through the addition of triethylamine to the free acid followed by 

concentration in vacuo. The product was lyophilised and collected as a colourless glass (44.5 mg, 0.056 mmol, 100% 

yield). [α]21
D  -37.6 (c= 1.00, MeOH); 1H NMR (CDCl3, 400 MHz): δ 4.92 (d, J= 3.6 Hz, 1H, H-1), 4.35 (q, J= 8.7 Hz, 

1H, H-3), 4.17 (ddd, J= 11.1, 5.2, 2.0 Hz, 1H, H-6), 4.07-3.98 (m, 2H, H-2, H-6), 3.73-3.68 (m, 1H, H-5), 3.55 (dd, J= 

9.8, 8.7 Hz, 1H, H-4), 3.39 (s, 3H, OMe), 3.09 (q, J= 7.3 Hz, approx. 18H, TEA CH2CH3), 1.27 (t, J= 7.3 Hz, approx. 

27H, TEA CH2CH3); 31P NMR (CDCl3, 162 MHz): δ 2.50, 1.53, 1.15; 13C NMR (CDCl3, 100 MHz): δ 100.5 (C-1), 78.5 

(C-3), 75.5 (C-2), 72.4 (d, J= 8.7 Hz, C-5), 72.0 (C-4), 65.7 (d, J= 4.9 Hz, C-6), 55.4 (OMe), 47.0 (TEA CH2CH3), 9.4 

(TEA CH2CH3). HRMS (ESI): m/z calcd [M-H]- for C7H17O15P3: 432.97075, found: 432.97067.

2,6-Di-O-benzyl-D-glucopyranose (16) Allyl 2,6-di-O-benzyl-D-glucopyranoside (15) (60 mg, 0.133 mmol) as 

synthesized in the method outlined by Jenkins et al.29 was dissolved in dry MeOH (1.54 mL). To this solution, PdCl2 

(6.2 mg, 0.03 mmol, 0.25 equiv) was added and the reaction was allowed to stir at room temperature for 6 hours with a 

drying tube affixed to the flask. After this time, the reaction was quenched with the addition of excess NaHCO3 and 
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allowed to stir for 5 minutes before being filtered through celite and concentrated to yield the crude product. The product 

of this reaction could not be successfully purified, although following phosphorylation (see below), the products could 

be successfully isolated. 

2,6-Di-O-benzyl-α-D-glucopyranosyl 1,3,4-tris(dibenzylphosphate) (17) and 2,6-di-O-benzyl-β-D-glucopyranosyl 1,3,4-

tris(dibenzylphosphate) (18) 2,6-di-O-benzyl-D-glucopyranose (16) (154.7 mg, 0.429 mmol) was added to dry DCM (4.5 

mL). To this suspension, 5-phenyl-1H-tetrazole (376 mg, 2.58 mmol, 6 equiv) was added, followed by dibenzyl 

diisopropylphosphoramidite (0.67 mL, 1.93 mmol, 4.5 equiv). The reaction was allowed to stir under argon at room 

temperature overnight, after which it was cooled to -78°C and mCPBA (70% purity, 636 mg, 2.58 mmol, 6 equiv) was 

added. The reaction was then diluted with EtOAc (100 mL) and washed twice with 10% Na2SO3 solution (2 x 30 mL). 

The organic phase was dried over MgSO4 and concentrated to yield the crude product. The product was purified using 

flash chromatography (petroleum ether/EtOAc, 0-100%). The stereoisomers of the product were partially isolated and 

collected as colorless oils (total: 276.6 mg, 0.242 mmol, 56% yield; α-epimer: 70.4 mg, 0.062 mmol, 14% yield; β-

epimer: 92.4 mg, 0.081 mmol, 19% yield; remaining unseparated mix of epimers: 113.8 mg, 0.100 mmol, 23% yield).

2,6-Di-O-benzyl-α-D-glucopyranosyl 1,3,4-tris(dibenzylphosphate) (17): Rf (EtOAc) 0.63; [α]20
D 2.68 (c= 1.01, 

chloroform); 1H NMR (CDCl3, 400 MHz): δ 7.35-7.09 (m, 40H, Ar), 5.91 (dd, J= 3.3, 7.0 Hz, 1H, H-1α), 5.07-4.81 (m, 

13H, H-3, CH2Ph x12), 4.72-4.61 (m, 3H, H-4, CH2Ph x2), 4.44 (d, J= 12.0 Hz, 1H, CH2Ph), 4.31 (d, J= 12.0 Hz, 1H, 

CH2Ph), 3.96 (dq, J= 10.0, 1.6 Hz, 1H, H-5), 3.70 (dd, J= 11.2, 3.9 Hz, 1H, H-6), 3.65 (dt, J= 9.7, 3.1 Hz, 1H, H-2), 3.54 

(dd, J= 11.2, 1.8 Hz, 1H, H-6); 31P NMR (CDCl3, 162 MHz): δ -1.66, -2.31, -2.50; 13C NMR (CDCl3, 100 MHz): δ 138.0 

(Ar), 137.0 (Ar), 136.2-135.6 (m, Ar), 128.6-127.6 (m, Ar), 94.8 (d, J= 5.6 Hz, C-1), 77.9-77.8 (m, C-3), 77.0 (m, C-2), 

73.7-73.6 (m, C-4), 73.3 (CH2Ph), 73.0 (CH2Ph), 71.6 (C-5), 70.0-69.9 (m, CH2Ph), 69.7-69.6 (m, CH2Ph), 69.5-69.4 

(m, CH2Ph), 67.5 (C-6); HRMS (ESI): m/z calcd [M+Na]+ for C62H63O15P3: 1163.32720, found: 1163.32495.

2,6-Di-O-benzyl-β-D-glucopyranosyl 1,3,4-tris(dibenzylphosphate) (18): Rf (EtOAc) 0.57; [α]21
D  35.7 (c= 0.71, 

chloroform); 1H NMR (CDCl3, 400 MHz): δ 7.31-7.03 (m, 40H, Ar), 5.31 (t, J= 7.2 Hz, 1H, H-1β), 5.04-4.87 (m, 11H, 

CH2Ph x11), 4.81-4.60 (m, 5H, C-3, C-4, CH2Ph x3), 4.42 (d, J= 12.0 Hz, 1H, CH2Ph), 4.31 (d, J= 12.0 Hz, 1H, CH2Ph), 

3.77-3.55 (m , 4H, C-2, C-5, C-6 x2); 31P NMR (CDCl3, 162 MHz): δ -1.90, -2.22, -2.59; 13C NMR (CDCl3, 100 MHz): 

δ 138.0 (Ar), 137.7 (Ar), 136.1-135.4 (m, Ar), 128.6-127.6 (m, Ar), 98.6 (C-1), 80.1 (m, C-3 or 4), 79.7-79.6 (m, C-2 or 

5), 74.5 (d, J= 3.5 Hz, C-3 or 4), 74.1 (CH2Ph), 74.0-73.9 (m, C-2 or 5), 73.3 (CH2Ph), 70.0 (d, J= 5.8 Hz, CH2Ph), 69.8-
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69.7 (m, CH2Ph), 69.6-69.5 (m, CH2Ph), 68.1 (C-6); HRMS (ESI): m/z calcd [M+Na]+ for C62H63O15P3: 1163.32720, 

found: 1163.32505.

α-D-Glucopyranosyl 1,3,4-trisphosphate triethylammonium salt (6) α-D-glucopyranosyl 1,3,4-trisphosphate was 

prepared with 2,6-di-O-benzyl-α-D-glucopyranosyl 1,3,4-tris(dibenzylphosphate) (17) (31.9 mg, 0.028 mmol) using the 

same hydrogenation method as described for the synthesis of β-D-glucopyranosyl 1,3,4-trisphosphate (6). The crude 

sodium salt of the product was purified by ion pair column chromatography on RP18 and lyophilised to yield the 

triethylamine salt of the product as a colorless glass (8.0 mg, 0.011 mmol, 39% yield). [α]20
D 33.9 (c=0.97, methanol); 

1H NMR (CD3OD, 400 MHz): δ 5.58 (dd, J= 7.0, 3.6 Hz, 1H, H-1), 4.45 (q, J= 9.0 Hz, 1H, H-3), 4.12 (q, J= 9.8 Hz, 1H, 

H-4), 3.98-3.91 (m, 2H, H-5, H-6), 3.76-3.72 (m, 1H, H-6), 3.61 (ddd, J= 9.5, 3.5, 2.4 Hz, 1H, H-2), 3.16 (q, J= 7.3 Hz, 

approx. 18H, TEA CH2CH3), 1.31 (t, J= 7.3 Hz, approx. 27H, TEA CH2CH3); 31P NMR (CD3OD, 162 MHz): δ 2.06, 

2.06, -0.62; 13C NMR (CD3OD, 100 MHz): δ 96.3 (d, J= 5.4 Hz, C-1), 79.2-79.1 (m, C-3), 73.8-73.6 (m, C-2, C-4, C-

5), 62.1 (C-6), 47.3 (TEA CH2CH3), 9.2 (TEA CH2CH3). HRMS (ESI): m/z calcd [M-H]- for C6H15O15P3: 418.9551, 

found: 418.95422.

β-D-Glucopyranosyl 1,3,4-trisphosphate triethylammonium salt (7) 2,6-di-O-benzyl-β-D-glucopyranosyl 1,3,4-

tris(dibenzylphosphate) (18) (23.3 mg, 0.020 mmol) was dissolved in MeOH (1.5 mL). To this solution, ultrapure water 

(0.15 mL) was added dropwise, ensuring that the precipitate that formed upon addition returned to solution. NaHCO3 

(5.15 mg, 0.061 mmol, 3 equiv) was then added, followed by 20% Pd(OH)2/C (≥50% wet, 11.7 mg). The reaction flask 

was flushed with hydrogen and left to stir at room temperature for 24 h. The catalyst was then filtered off and the collected 

filtrate was evaporated to yield the crude product as a sodium salt. The product was purified by ion pair column 

chromatography on RP18 and lyophilised to yield the triethylamine salt of the product as a colorless glass (6.7 mg, 0.008 

mmol, 40% yield). [α]21
D  3.76 (c=0.61, methanol); 1H NMR (CD3OD, 500 MHz): δ 4.98 (t, J= 7.6 Hz, 1H, H-1), 4.23 

(q, J= 8.8 Hz, 1H, H-3), 4.08 (q, J= 9.8 Hz, 1H, H-4), 3.89 (dd, J= 12.7, 4.4 Hz, 1H, H-6), 3.84 (dd, J= 12.7, 2.1 Hz, 1H, 

H-6), 3.43-3.38 (m, 2H, H-2, H-5), 3.13 (q, J= 7.0 Hz, approx. 18H, TEA CH2CH3), 1.29 (t, J= 7.2 Hz, approx. 27H, 

TEA CH2CH3); 31P NMR (CD3OD, 162 MHz): δ 1.38, 1.06, -0.77; 13C NMR (CD3OD, 125 MHz): δ 99.3 (C-1), 81.4 

(C-3), 77.9 (C-2 or 5), 76.2 (C-2 or 5), 73.8 (C-4), 62.4 (C-6), 47.2 (TEA CH2CH3), 9.3 (TEA CH2CH3). HRMS (ESI): 

m/z calcd [M-H]- for C6H15O15P3: 418.9551, found: 418.95425.
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Methyl 4-O-benzyl-α-D-glucopyranoside 2,3,6-tris(dibenzyl phosphate) (22) Methyl 4-O-benzyl-α-D-

glucopyranoside (21) (50 mg, 0.176 mmol) was dissolved in dry DCM (2 mL) and the solution was put under argon. 5-

Phenyl-1H-tetrazole (154 mg, 1.06 mmol, 6 equiv) was added to the solution followed by dibenzyl 

diisopropylphosphoramidite (0.27 mL, 0.792 mmol, 4.5 equiv). The reaction was allowed to stir at room temperature 

overnight. The following day, the reaction was cooled to -78°C and mCPBA (70% pure, 261 mg, 1.06 mmol, 6 equiv) 

was added. The reaction was allowed to stir for 10 min at room temperature before it was diluted with EtOAc (50 mL) 

and washed twice with 10% Na2SO3 solution (2 x 30 mL). The organic layer was dried over MgSO4 and concentrated to 

yield the crude product. The product was purified with flash chromatography (1. petroleum ether/EtOAc, 0-100% and 2. 

DCM/EtOAc, 0-100%). The pure product was collected as a colourless oil (81.9 mg, 0.077 mmol, 44% yield). [α]22
D 

35.7 (c= 1.00, CHCl3); 1H NMR (CDCl3, 400 MHz): δ 7.33-7.09 (m, 35H, Ar), 5.05-4.82 (m, 15H, H-1, H-3, CH2Ph 

x13), 4.47 (d, J= 10.7 Hz, 1H, CH2Ph) 4.26 (ddd, J= 9.6, 6.2, 3.6 Hz, 1H, H-2), 4.19-4.16 (m, 2H, H-6 x2), 3.76 (dq, J= 

9.6, 2.7 Hz, 1H, H-5), 3.50 (t, J= 9.4 Hz, 1H, H-4), 3.25 (s, 3H, OMe); 31P NMR (CDCl3, 162 MHz): δ -0.76, -1.32, -

2.01; 13C NMR (CDCl3, 100 MHz): δ 137.6 (Ar), 136.1-135.7 (m, Ar), 128.7-128.0 (m, Ar), 97.6 (C-1), 78.5-78.4 (m, 

C-3), 76.2 (C-4), 75.4-75.3 (m, C-5), 74.6 (CH2Ph), 69.8 (d, J= 5.6 Hz, CH2Ph), 69.6-69.4 (m, CH2Ph), 69.1 (d, J= 8.1 

Hz, C-5), 65.8 (d, J= 5.5 Hz, C-6), 55.5 (OMe); HRMS (ESI): m/z calcd [M+H]+ for C56H59O15P3: 1065.31396, found: 

1065.31364.

Methyl α-D-glucopyranoside 2,3,6-trisphosphate triethylammonium salt (4) Methyl 4-O-benzyl-α-D-

glucopyranoside 2,3,6-tris(dibenzyl phosphate) (22) (55.5 mg, 0.052 mmol) was dissolved in MeOH (2.8 mL). To this 

solution, ultrapure water (0.28 mL) was added dropwise, ensuring that the white precipitate that formed returned to 

solution. 20% Pd(OH)2/C (≥50% wet, 27.8 mg) was added to the solution and the flask was flushed with hydrogen. The 

reaction was left to stir under hydrogen at room temperature overnight. The palladium catalyst was filtered off with a 

PTFE filter and the solution was concentrated to yield the product as a free acid. No purification was deemed necessary. 

The free acid was converted to the triethylammonium salt through the addition of triethylamine to the free acid followed 

by concentration in vacuo. The product was lyophilised and collected as a colourless glass (24.8 mg, 0.034 mmol, 65% 

yield). [α]22
D 38.2 (c= 1.00, MeOH); 1H NMR (CD3OD, 400 MHz): δ 4.91 (d, J= 3.6 Hz, 1H, H-1), 4.35 (q, J= 8.7 Hz, 

1H, H-3), 4.17 (ddd, J= 11.0, 5.2, 2.0 Hz, 1H, H-6), 4.07-3.98 (m, 2H, H-2, H-6), 3.72-3.68 (m, 1H, H-5), 3.54 (dd, J= 

9.8, 8.8 Hz, 1H, H-4), 3.39 (s, 3H, OMe), 3.11 (q, J= 7.3 Hz, approx. 18H, TEA CH2CH3), 1.28 (t, J= 7.3 Hz, approx. 

27H, TEA CH2CH3); 31P NMR (CD3OD, 162 MHz): δ 2.21, 1.25, 0.94; 13C NMR (CD3OD, 100 MHz): δ 100.2 (C-1), 
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78.5 (t, J= 5.7 Hz, C-3), 75.3 (t, J= 4.9 Hz, C-2), 72.2 (d, J= 8.3 Hz, C-5), 71.7 (C-4), 65.6 (d, J= 5.2 Hz, C-6), 55.5 

(OMe), 47.2 (TEA, CH2CH3), 9.1 (TEA, CH2CH3). HRMS (ESI): m/z calcd [M-H]- for C7H17O15P3: 432.97075, found: 

432.97076.

Methyl 3-O-benzyl-α-D-glucopyranoside 2,4,6-tris(dibenzyl phosphate) (25) Methyl 3-O-benzyl-α-D-

glucopyranoside (24) (51.9 mg, 0.183 mmol) was dissolved in dry DCM (2 mL) and the solution was put under argon. 

5-Phenyl-1H-tetrazole (160 mg, 1.10 mmol, 6 equiv) was added to the solution, followed by dibenzyl 

diisopropylphosphoramidite (0.30 mL, 0.82 mmol, 4.5 equiv). The reaction was allowed to stir at room temperature 

overnight. The next day, after the confirmation of successful phosphitylation with 31PNMR, the reaction flask was cooled 

to -78°C and mCPBA (270.7 mg, 70% purity, 1.10 mmol, 6 equiv.) was added. The reaction was allowed to stir at room 

temperature for 10 min before the solution was diluted with EtOAc (50 mL), washed with 10% Na2SO3 solution (2 x 30 

mL), dried over MgSO4 and concentrated to yield the crude product. The product was purified with flash chromatography 

(petroleum ether/EtOAc, 0-100%) to yield the pure product as a colourless oil (138.1 mg, 0.130 mmol, 71% yield). [α]21
D 

41.4 (c= 0.61, CHCl3);  1H NMR (CDCl3, 400 MHz): δ 7.35-7.08 (m, 35H, Ar), 5.03 (s, 2H, CH2Ph x2), 5.01 (s, 2H, 

CH2Ph x2), 4.98 (d, J= 3.2 Hz, 1H, CH2Ph), 4.97 (d, J= 3.2 Hz, 1H, CH2Ph), 4.94-4.85 (m, 6H, H-1, CH2Ph x5), 4.81-

4.75 (m, 3H, CH2Ph x3), 4.43-4.18 (m, 4H, H-2, H-3, H-6 x2), 3.98 (t, J= 9.3 Hz, 1H, H-4), 3.86 (dd, J= 10.0, 5.2 Hz, 

1H, H-5), 3.28 (s, 3H, OMe); 31PNMR (CDCl3, 162 MHz): δ -0.98, -1.73, -1.85; 13C NMR (CDCl3, 100 MHz): δ 138.1 

(Ar), 136.0 (Ar), 135.9 (Ar), 135.8-132.6 (m, Ar), 128.7-128.5 (m, Ar), 128.3 (Ar), 128.0 (m, Ar), 127.8 (Ar), 127.7 

(Ar), 127.5 (Ar), 97.6 (C-1), 78.3 (m, C-4), 76.7 (m, C-2 or 3), 75.0 (C-2 or 3, CH2Ph), 69.6 (m, CH2Ph), 69.4 (m, 

CH2Ph), 68.9 (m, C-5), 66.1 (m, C-6), 55.7 (OMe); HRMS (ESI): m/z calcd [M+H]+ for C56H59O15P3: 1065.31396, found: 

1065.31336.

Methyl α-D-glucopyranoside 2,4,6-trisphosphate triethylammonium salt (5) Methyl 3-O-benzyl-α-D-

glucopyranoside 2,4,6-tris(dibenzyl phosphate) (25) ( 132.4 mg, 0.124 mmol) was dissolved in MeOH (6.6 mL). 

Ultrapure water (0.66 mL) was added dropwise to the solution, ensuring that the precipitate formed upon addition was 

able to dissolve back into solution. 20% Pd(OH)2/C (≥50% wet, 66.2 mg) was added to the solution and the reaction 

flask was flushed with hydrogen. The reaction was allowed to stir at room temperature for 24 h, after which the catalyst 

was filtered off and the collected filtrate was evaporated to yield the product as a free acid. No purification steps were 

deemed to be necessary, but triethylamine was added to sharpen the phosphorus NMR signals and to convert the product 

from the free acid into the triethylammonium salt. The product was concentrated in vacuo before being lyophilised and 
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collected as a colourless glass (86 mg, 0.10 mmol, 94% yield). [α]22
D 39.3 (c= 0.43, MeOH); 1H NMR (CD3OD, 400 

MHz): δ 4.91 (d, J= 2.8 Hz, 1H, H-1), 4.26-4.16 (m, 2H, H-3, H-6), 4.05-3.98 (m, 3H, H-2, H-4, H-6), 3.70 (brd, J= 9.8 

Hz, 1H, H-5), 3.39 (s, 3H, OMe), 3.12 (q, J= 7.5 Hz, approx. 18H, TEA CH2CH3), 1.29 (t, J= 7.5 Hz, approx. 27H, TEA 

CH2CH3); 31PNMR (CD3OD, 162 MHz): δ 1.99, 1.75, 1.32; 13C NMR (CD3OD, 100 MHz): δ 100.2 (C-1), 76.3 (d, 5.6 

Hz, C-2 or 4), 74.6 (d, 3.4 Hz, C-2 or 4), 73.5 (d, 5.5 Hz, C-3), 71.1 (m, C-5), 63.9 (C-6), 55.6 (OMe), 47.0 (TEA 

CH2CH3), (TEA, CH2CH3) 9.3. HRMS (ESI): m/z calcd [M-H]- for C7H17O15P3: 432.97075, found: 432.97063.

HPLC. For analysis and stability experiments, the sugar phosphates were resolved by anion exchange HPLC on a 3x250 

mm CarboPac PA200 column (Dionex) fitted with 3x50 mm guard cartridge of the same material. Compounds were 

eluted with a gradient derived from buffer reservoirs containing water (A) and 0.6 M methanesulfonic acid (B) delivered 

at a flow rate of 0.4 mL min-1 according to the following schedule: time (min), % B; 0, 0; 20, 80; 21, 0; 31, 0. Compounds 

were detected with the phosphate detection reagent of Phillippy and Bland, 1988.62  For this purpose, the column eluate 

was mixed in a mixing Tee with a solution of 0.1% (w/v) ferric nitrate nonahydrate in 2% (w/v) perchloric acid delivered 

at a flow rate of 0.2 mL min-1 and passed through a 0.192 mL internal volume knitted reaction coil before transfer to a 

UV detector set at 290 nm. Typically, samples of 40 μL of 500 μM solutions in water were injected. Data were exported 

from the ChromNav2 software as x,y data files and redrawn in GraFit.v7.63 

Biology methods 

Materials. HEK-293 cells with all three Ins(1,4,5)P3R subtypes disrupted using CRISPR/Cas9 technology (HEK-3KO)64 

were from Kerafast (Boston, USA). Dulbecco's modified Eagle’s medium/nutrient mixture F-12 with GlutaMAX 

(DMEM/F-12 GlutaMAX) and Mag-fluo-4 AM were from ThermoFisher. TransIT-LT1 transfection reagent was from 

Geneflow (Elmhurst, Lichfield, UK). Most chemicals and foetal bovine serum (FBS) were from Sigma-Aldrich 

(Gillingham, UK). Cyclopiazonic acid (CPA) was from Tocris (Bristol, UK). G418 was from Formedium (Norfolk, UK). 

Half-area 96-well black-walled plates were from Greiner. Ins(1,4,5)P3 was from Enzo (Exeter, UK). [3H]-Ins(1,4,5)P3 

was from Perkin Elmer. 

Cell Culture and Transfection. HEK cells were cultured in DMEM/F-12 GlutaMAX medium supplemented with 10% 

FBS (37°C in 95% air and 5% CO2). Cells were either passaged or used for experiments when they reached confluence. 
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HEK cells expressing only Ins(1,4,5)P3R1 (HEK-Ins(1,4,5)P3R1) were generated by transfecting HEK-3KO cells with 

the gene encoding rat Ins(1,4,5)P3R1 (lacking the S1 splice site)26 cloned into pcDNA3.1(-)/Myc-His B plasmid65 using 

TransIT-LT1 reagent following the manufacturer’s instructions. To generate stable cell lines, cells were passaged 48 h 

after transfection in medium with G418 (1 mg/mL). Selection was maintained for 2 weeks, and medium was changed 

every 3 days. Monoclonal cell lines were selected by plating cells (~1 cell/well) into 96-well plates in medium containing 

G418 (1 mg/mL). After 4 days, wells with only one cell were identified and the cells were allowed to reach confluence. 

These cell lines were then expanded and their expression of Ins(1,4,5)P3R1 was confirmed by western blot using an anti-

Ins(1,4,5)P3R1 antibody.26

Ca2+ Release Assays. The free [Ca2+] within the lumen of the endoplasmic reticulum (ER) was measured using the low-

affinity Ca2+ indicator Mag-fluo-4.66,67 The ER of HEK-Ins(1,4,5)P3R1 cells was loaded with the Ca2+ indicator by 

incubating cells (2.4 x 107 cells/mL, 1 h, 22 °C) in HEPES-buffered saline (HBS; 135 mM NaCl, 5.9 mM KCl, 11.6 mM 

HEPES, 1.5 mM CaCl2, 11.5 mM glucose, 1.2 mM MgCl2, pH 7.3) supplemented with BSA (1 mg/mL), Pluronic F127 

(0.4 mg/mL) and Mag-fluo-4 AM (20 M). Cells were then suspended in Ca2+-free cytosol-like medium (CLM: 20 mM 

NaCl, 140 mM KCl, 1 mM EGTA, 20 mM Pipes, 2 mM MgCl2, pH 7.0) and permeabilized with saponin (10 µg/mL, 3 

min, 37 °C). Permeabilized cells were centrifuged (650 xg, 3 min), and incubated in CLM (7 min, 37 °C) to allow the 

Ca2+ stores to empty. Cells were then centrifuged (650 xg, 3 min) and re-suspended in CLM without Mg2+, but 

supplemented with 375 M CaCl2 to give a final free [Ca2+] of 220 nM after addition of 1.5 mM MgATP. Cells (~4 x 

105/well) were added to poly-L-lysine-coated half-area 96-well black-walled plates. Fluorescence was recorded at 20 °C 

at intervals of 1.44 s using a FlexStation III plate-reader (Molecular Devices, Sunnyvale, CA, USA) with excitation and 

emission wavelengths of 485 nm and 520 nm, respectively. MgATP (1.5 mM) was added to initiate Ca2+ uptake, and 

when the ER had loaded to steady-state (~2.5 min), cyclopiazonic acid (CPA, 10 µM) was added to inhibit the ER Ca2+ 

pump. Ins(1,4,5)P3 or other ligands were added after a further 60 s. The amount of Ca2+ released was calculated as a 

percentage of the fluorescence signal from fully loaded stores (Ffull) minus the signal from non-loaded stores (Ffull – 

Fempty).

[3H]-Ins(1,4,5)P3 binding to cerebellar membranes. Cerebellar membranes, rich in Ins(1,4,5)P3R1 were obtained from 

cerebella of adult Wistar rats as previously described.26 Equilibrium-competition binding assays (4ºC, 5 min) were 

performed in medium comprising 50 mM Tris, 1 mM EDTA, pH 8.3 with [3H]-Ins(1,4,5)P3 (19.3 Ci/mmol, 1.5 nM), 

Page 29 of 36

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



cerebellar membranes, and competing ligands.26 Bound and free ligand were separated by centrifugation. Non-specific 

binding, determined by addition of 10 µM Ins(1,4,5)P3 was always <10% of total binding.

Biological data analysis is present in Supporting Information.
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ABBREVIATIONS

AdA, Adenophostin A; ATP, adenosine triphosphate; COSY, correlation spectroscopy; mCPBA, meta-chloroperoxybenzoic acid; ; CPA, 

cyclopiazonic acid; cryo-EM, cryogenic electron microscopy; CSA, camphorsulfonic acid; DCM, dichloromethane; EDTA, 

ethylenediaminetetraacetic acid; ER, endoplasmic renticulum; FBS, fetal bovine serum; HBS, HEPES buffered saline; HEK, human 

embryonic kidney; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HPLC, high performance liquid chromatography; HRMS, 

high resolution mass spectrometry; HSQC, heteronuclear single quantum coherence; IBC, Ins(1,4,5)P3 binding core; Ins(1,4,5)P3, D-myo-

inositol 1,4,5-trisphosphate; Ins(1,4,5)P3R, D-myo-inositol 1,4,5-trisphosphate receptor; NMR, nuclear magnetic resonance; SAR, structure-

activity relationship; THF, tetrahydrofuran; TMS, tetramethylsilane.
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