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Abstract 

The Discrete Element Method (DEM) has been employed in recent years to simulate flexible protection 
structures undergoing dynamic loading due to its inherent aptitude for dealing with inertial effects and 
large deformations [1]. The individual structural elements are discretized with an arbitrary number of 
discrete elements, connected by spring-like remote interactions. In this work, we implement this 
approach using the parallel bond contact model [2] and compare the numerical results at different 
discretization intervals with the analytical solutions of classical beam theory. Successively, we use the 
same model to simulate the punching test of a steel wire mesh and quantify the influence of a different 
number of elements on the macroscopic response.  
Key words: Mesh sensitivity; Discrete Element Method; Remote Interactions, Flexible protection 
system 

 

1. Introduction 
Flexible structures are the most widespread and economical passive protection measure against natural 
hazards such as rockfalls, avalanches and debris flows. These systems are essentially composed by a 
steel mesh attached to fence posts, with strand ropes transmitting the impact force to the anchorage. In 
recent years, numerical models have been developed to aid their development and optimization, by 
reducing the required number of expensive field tests [3] and enabling the investigation of complex 
loading conditions, that can be difficult to reproduce experimentally [4]. For efficiency, the mesh panel 
is typically simulated using a multi-scale approach, in which the local scale response (i.e. elasto-
plasticity) is implemented into structural elements such as truss beams, which constitute the mesh [5]. 
The Discrete Element Method (DEM) [6] has the advantage of efficiently solve the required set of 
problems, such as large deformations, inertial effects and contact interactions [7], [8] . Additionally, 
DEM allows the simulation of both the natural hazard and the barrier inside the same framework (i.e. 
debris flows [9]). The desired small-scale behaviour is introduced in the remote contact interaction 
between two DEM particles [1]. Typically, the contact behaviour follows the truss [10] or beam [11] 
formulation, whereas wires are constituted by a series of connected particles [12]. Although multiple 
approaches exist to improve the external contact detection (i.e. between wires and particles, see [13]), 
the necessary spatial discretization (i.e. the number of beams in a wire) to obtain the correct wire 
internal behaviour is typically not investigated.  

The behaviour of steel wires is equivalent to that of a thin beam. Therefore, we investigate the mesh 
discretization effects by comparing the analytical solution for Bernoulli beams [14] with numerical 
DEM results. Successively, the same mesh resolution analysis procedure is carried out for the quasi-
static response of a strand-rope mesh to punch tests. Since strand ropes are significantly less stiff than 
steel beams, for simplicity the DEM bond bending stiffness is set to a fraction of that required to 
simulate cylindrical beams of equivalent section area, following the sensitivity analysis presented in 
[15]. Finally, the response of a double-twisted mesh, represented with the remote contact bond approach 
[10] is compared at different discretization intervals. 

2. Numerical setup 
For the analytical model, a two meters long, 10 cm thick cylindrical beam is employed. The Young 
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modulus is set to 200 GPa and the Poisson ratio is 0.3. For tensile and compressive tests, one end of the 
beam is clamped (encastré), while the other end is loaded with a constant compressive/tensile force of 
10 kN. The same boundaries and load magnitudes are employed in the tip-load bending test. For the 
three-point bending test, both ends are subject to a constant bending moment of 10kNm, in opposite 
directions. Since the test is quasi-static, a local damping coefficient of 0.8 is applied to the DEM 
elements to lower the residual inertial effects and decrease the simulation time. A sensitivity analysis 
(not reported here for brevity) has been carried out and the damping parameter does not appear to affect 
the results. All tests are carried out with force-control and cycled until equilibrium (the ratio of 
unbalanced to balanced forces is lower than 1e-4). The beam discretization is carried out with 2, 3, 5, 
7, 11 and 15 DEM spherical elements, also referred to as particles. 

The square mesh punch test is carried out on a 3x3 meters mesh panel, with a square pattern of 30 cm 
side, constituted of 1 cm thick strand rope. The ratio between bending stiffness and that of an equivalent 
section beam is set to 0.01. The same material parameters of the analytical beam test are employed. 
Each mesh square side is discretized with the same number of particles as the beam tests. No material 
plasticity is introduced in the square mesh following [15], [16]. On the other hand, for the double-
twisted mesh, a 3x3 meters mesh panel is employed, with a wire thickness of 2.7 mm, hexagon size of 
100x80 mm (see Figure 2b) and  the elasto-plastic hardening model of [10] is adopted. Three tests are 
carried out, one in which the wire is discretized with three particles and possesses the bending stiffness 
of a beam of equivalent section (Study 1), one in which it is discretized with two particles and presents 
zero bending stiffness (Study 2), following [10] and the last one in which the wire is discretized with 
two particles and the bond possess the beam-equivalent bending stiffness (Study 3). 

For the punch tests, more details can be found in [15]. All simulations were carried out using the 
software PFC3D 6.0 [17]. 

3. Results 
The numerical results for the different loading tests of a steel beam are listed in  Table 1. The error is 
calculated from the displacement of the loaded particle, following Bernoulli’s theory for thin beams 
[14]. No difference was found in the results of compressive and tensile uniaxial tests. The most 
significant result is the large error encountered for the 2 balls tip loading bending test. This is because 
the beam bending response is implemented through a roto-translation of the bond, which, being a line 
between two points, can only change in length. The same is valid for cylinder-based models. Therefore, 
the numerical error of the bond rotation is magnified at the other end of the beam, resulting in a large 
error. While it is not possible to compute the displacement of the beam center in the 2-balls model for 
the three-point bending test, we expect that the error would be much lower than the one for the tip-load 
bending, due to the change in contact branch length. We explain the increase in error with the number 
of balls for the tip-load bending test with the simulation setup: since the DEM formulation is dynamic, 
once force is applied to the beam end, it starts oscillating until the local damping reduces the unbalanced 
energy (i.e. inertial effects) below the prescribed threshold. Increasing the number of particles, the 
number of oscillating beams increases, and an additional damping effect is introduced by the sum of 
these out-of-phase signals. This causes the model to reach the energy threshold for a lower number of 
iterations, obtaining a less accurate solution (see Figure 1). The same phenomenon is also observed in 
the other tests (Figure 1b), but with less influence on the results (i.e. it is hidden by the greater accuracy 
inherent to the larger number of particles) as the system is less prone to oscillation due to the different 
boundary conditions.  
 
Table 1: Relative error of the numerical results in comparison to the analytical solution. 

  ERROR (%) 
Number of particles 2  3  5  7  11  15  

Uniaxial loading 3.80E-09 1.41E-10 9.90E-11 2.28E-11 1.73E-11 2.20E-11 
Tip load bending 24.88 0.765 1.18 1.26 1.31 1.32 

Three-point bending / 1.46 1.46 0.588 0.144 0.0213 
 



Regarding the square-mesh punch test (Figure 2a), the 2 particles discretization simulation shows a 
significantly stiffer response, consistent with the results obtained for the beam bending tests. N 
significant difference in the results is observed starting from the three-particles wire onwards, except 
for the initial portion of the curve, where an increase in the number of particles causes the cone-wire 
contact detection to happen at lower displacement values. We assume this to be caused by the choice 
of simulating the wire with spheres and it could be overcome by transitioning into a cylinder-based 
beam representation [13]. Finally, the results for the double-twist mesh punch-test (Figure 2b) show a 
similar trend, with the 2-balls hexagon contact (Study 3) exhibiting a stiffer response. For most of the 
tests the difference between the force-displacement curves for a 3-balls beam and a 2-balls beam with 
no bending stiffness (Study 1 and 2, respectively) appears to be minimal, as the wires still behave mostly 
in tension. Toward the end, when the out of plane component becomes significant, the stiffness of the 
3-balls beam model increases, following the same trend as study 3. 

 
Figure 1: a) Evolution of the ratio of unbalanced forces (i.e. inertial) to balanced forces in the systems for different spatial 
discretization. b) Decrease in simulation time with the number of elements. Time is normalized by the minimum and maximum 
simulation times for the test type (roughly 1.5e4 and 3.5e4 seconds). 

 
Figure 2: a) Force-displacement curves for the cone punch-test on the square mesh. b) Force-displacement curves for the 

platter punch-test on the double-twist hexagonal mesh. The 2 and 3 particles wire models are shown in the hexagons sketch. 

4. Conclusions 
A series of mesh sensitivity analyses for the response of a system of bonded DEM particles and 
compared were carried out and the numerical results with the corresponding analytical solution, with 
overall good fitting and positive correlation between the number of particles and the model accuracy. 
A potential pitfall of this type of DEM analysis is shown, in which the mesh resolution-accuracy relation 
appears to change trend due to assumptions employed to obtain quasi-static results. The two balls 
models showed a significant error in the comparison with the analytical results, as the fixed conditions 



on the first ball make the system prone to rounding errors magnification. The flaw propagates to the 
macro-scale response, where 2-partilce systems exhibited a significant stiffer behaviour compared to 3-
particle systems. The requirement of a third particle for the discretization of bending beams is a 
criterium which is ignored in literature, where two-particles are typically used for beams of non-zero 
bending stiffness [18][13]. As shown herein, this causes a non-physical stiffer response under quasi-
tensile loading conditions. No significant variation is shown for tensile conditions and in that case a 2-
particles model with no bending stiffness should be adopted instead, as done by [10]. 
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