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Propagation and impact of two and three dimensional
bores generated by breaking of a water reservoir is stud-
ies by use of three theoretical models. These include
the Reynolds-Averaged Navier-Stokes (RANS) equations, the
Level I Green-Naghdi (GN) equations and the Saint-Venant
(SV) equations. Two types of bore generations are consid-
ered, namely (i) bore generated by dam-break, where the
reservoir water depth is substantially larger than the down-
stream water depth, and (ii) bore generated by an initial
mound of water, where the reservoir water depth is larger but
comparable to the downstream water depth. Each of these
conditions correspond to different natural phenomena. This
study show that the relative water depth play a significant
role on the bore shape, stability and impact. Particular atten-
tion is given to the bore pressure on horizontal and vertical
surfaces. Effect of fluid viscosity is studied by use of different
turbulence closure models. Both two and three dimensional
computations are performed to study their effect on bore dy-
namics. Results of the theoretical models are compared with
each other, and with availably laboratory experiments. In-
formation is provided on bore kinematics and dynamics pre-
dicted by each of these models. Discussion is given on the
assumptions made by each model and differences in their re-
sults. In summary, SV equations have substantially simplified
the physics of the problem, while results of the GN equations
compare well with the RANS equations, with incomparable
computational cost. RANS equations provide further details
about the physics of the problem.
Keywords: Dam break, initial mound of water, Reynolds-
Averaged Navier-Stokes equations, Green-Naghdi equations,
Saint Venant equations
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1 Introduction
Bore is generated due to the collapse of a block of fluid.

The block of fluid maybe initially at rest (in the case of bores
generated by collapse of a reservoir) or in the form of a stable
moving wave (in the case of bores generated by solitary wave
breaking) [1–3]. Many studies have focused on the bore im-
pact on (a) the downstream wall at the end of tank [2, 4–9]
(b) structures in the middle of the tank [10–13] and (c) the
upstream wall and side walls [14–19]. Few works have been
carried out to study the dynamics of bore. Bore dynamics
depend on the generation mechanisms and the downstream
conditions. Dam-break and initial mound of water are two
examples of bore generation due to a reservoir. The differ-
ence between these two cases is the level of the downstream
water depth, which results in different bore behaviours.

Propagation of water surging over dry or wet beds is
studied as dam-break problems. Examples of dam-break
problems are the flash flood caused by dam failure, debris
flow surges and tsunami bore runup on a dry land. Due to
the large inertia and impact of the sudden interaction of the
body of fluid with structure in a dam-break, immense dam-
ages may occur.

There are many examples of the vast damages made by
dam-break impact. On December 1, 1923, one buttress of the
Gleno Dam in Italy was destroyed and about 4500000m3 of
water rushed out from the reservoir behind the dam from an
elevation of about 1535mabove the sea level to the valley be-
low. 356 lives were lost in this disaster, see [20]. On June 5,
1976, due to the piping and internal erosion at the foot of the
Teton Dam in the United States, the right-bank of the main
dam wall disintegrated. At a flow rate of 57000m3/s, muddy
water run off the reservoir into the Teton River canyon. The
damage was estimated at 2 billion USD and 11 people died
in this disaster, see [21]. Due to the epicentre off the west
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coast of Sumatra, Indonesia, on 26 December 2004, a series
of devastating tsunamis, with a height of about 30m, arrived
at coastal communities, see [22]. With about 250000 killed
in 14 countries, the tsunami is recorded as one of the deadli-
est natural disasters in the history, see [23] for further details.

Perhaps one of the first studies on dam break flows
is that of [24], who introduced theoretical solution of dam
break flows based on the shallow water theory. More re-
cently, numerous studies on dam break flows have been car-
ried out, but the dynamics of dam break flows have not been
thoroughly studied before 1999. The constrained interpola-
tion profile (CIP) method is adopted by [25] for their CFD
model to study the pressure on the downstream wall of a
dam-break case. The numerical simulation results of pres-
sure are compared with experiments. Good agreement is
achieved by their CIP-based method. [26] present a series of
numerical results of dam-break pressure, based on Glimm’s
method. [27] studied the problem by use of volume of fluid
method to determine the pressure closer to the horizontal
bed. [28] carried out a similar study but their simulations are
focused on examining sloshing physics. Dam-break experi-
ments are carried out by [29] to study the bore propagation
and magnitude of the pressure on the downstream wall. More
works are required to understand the bore propagation and
impact.

Another form of bore generation is due to the breaking
of an initial mound of water. The fundamental difference
between dam-break and initial mound of water is due to the
ratio of the reservoir depth to the downstream water depth.
In the dam-break problems, this ratio is larger than 2 (ap-
proximately) while this ratio is smaller than 2 for the initial
mound of water. This difference in downstream water depth
results in different form of flow generation.

Shown by [30], solitons, a train of solitary waves, are
generated by the breaking of an initial mound of water. The
first description of solitary wave is given by [31]. After that,
many [32–35], have studied solitary wave. [36] provides an
exact integral equation to evaluate some properties of the
solitary wave, including pressure on the seafloor. [37, 38]
provide pressure functions derived from linear wave theory
which is not suitable for nonlinear waves, including solitary
waves. In the theory given by [39], the pressure variation
over the water column of solitary wave is linear.

In this work, we will study both types of bores, gen-
erated by a dam-break and by an initial mound of water.
Although many works have focused on estimating the bore
pressure distribution, the descriptions of that of bore on the
downstream wall and floor are still not very clear. It is im-
portant to find an appropriate model which can calculate the
bore pressure correctly, both for engineering and scientific
applications. Our goal in this work is to study the bore pres-
sure of a dam break and initial mound of water on vertical
and horizontal surfaces, using both linear-based and nonlin-
ear approaches.

This study is concerned with the calculation of bore
generation and pressure on the horizontal floor and vertical
walls. Three theoretical approaches are used to study this
problem, including the Reynolds-Averaged Navier-Stokes

equations, the Green-Naghdi equations and the Saint Venant
equations. Our goal is to determine whether these models
can provide acceptable results of the bore propagation and
pressure, and to provide discussion on their limitations and
restrictions. The models are discussed first, followed by re-
sults for the dam-break and initial mound of water.

2 The Theories
Three sets of equations are used in this study, namely the

Reynolds-Averaged Navier-Stokes (RANS) equations, the
Green-Naghdi (GN) equations and the Saint Venant (SV)
equations. These are discussed in this section. We adopt
a right-handed three dimensional (3D) Cartesian coordinate
system, withx1 pointing to the right,x2 pointing vertically
opposite to the direction of the gravitational acceleration
(x2 = 0 corresponds to the sea-floor), andx3 pointing into
the paper. Indicial notation and Einstein’s summation con-
vention are used. Subscripts after comma indicate differenti-
ation.

Reynolds-Averaged Navier-Stokes Equations
For a homogeneous, Newtonian and incompressible

fluid, the three dimensional RANS equations are given by the
following conservation of mass and momentum equations:

ūi,i = 0, i = 1,2,3 (1)

ū j ,t +(ūiū j +u′iu
′
j),i = g j −

1
ρ

p̄, j +νū j ,ii , i, j = 1,2,3 (2)

where f̄ (x1,x2,x3, t) is the time-averaged value of the fluc-
tuating variable,~u= ui~ei is the velocity vector, and~ei is the
unit normal vector in thei direction.ρ is the density of fluid,
ν is kinematic viscosity,~g = (0,−g,0) is the gravitational
acceleration andp is the pressure.

There are two commonly used turbulence models for
the RANS equations, namely, thek−ω model and thek− ε
model. [40] have discussed that dissipation is needed in equi-
librium turbulent flows,i.e., whose rates of producing and
destruction are in near balance. For the energy equation, the
relation between the dissipation,ε, and the turbulent kinetic
energy,k, and length scale,L, can be written as

ε ≈ k
3
2

L
. (3)

Substitutingε into the momentum equation, Eq. (2)
gives

(ρε),t +(ρu jε),xj =Cε1Pkε,k−ρCε2ε2
,k+(µt ,σεε,xj ),xj , (4)

2 Copyright c© by ASME
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where the eddy viscosityµt = ρCµ
√

kL = ρCµ
k2

ε , and the
five parameters usually are given as:Cµ = 0.09, Cε1 =
1.44, Cε2 = 1.92, σk = 1.0 andσε = 1.3, see [40]. The model
based on Eqs. (3) and (4) is calledk− ε model.

In thek−ω model, the kinematic viscosity is related to
the turbulent kinetic energy and dissipation. [41] introduced
the relation as

νt =
ω
ρk

, (5)

whereνt is the eddy-viscosity,k is the thermal conductivity
andω is the specific turbulence dissipation rate. The value of
ω is related to the turbulence kinetic energy and turbulence
dissipation rate, see [41] and [42] for more details about the
k−ω model used here.

There are two advantages of using thek−ω model for
the bore impact problems: the model is applicable to variable
pressure gradients, and it is more sensitive to free surface
problems, seee.g. [43] for discussions. The pressure on the
downstream wall is sensitive to the shape of the bore, see
[44].

Volume of Fluid method (VOF method), originally in-
troduced by [45], is used to determine the free surface be-
tween air and water. A scale function is used to represent the
volume of fluid in each cell, see [45].

OpenFOAM is used for the computations of the RANS
equations. Boundary conditions used in this study are pre-
sented in Table 1. Details of these boundary conditions can
be found ine.g. [46] and [47].

The Green-Naghdi Equations

The GN equations are originally obtained by use of the
directed fluid sheets theory introduced by [48], and [49].
They are applicable to unsteady, nonlinear flows of inviscid
and incompressible fluids. The GN equations satisfy the non-
linear boundary conditions exactly, and postulate the integral
balance laws. [50] showed that the GN equation can be ob-
tained from the exact 3D governing equations of an incom-
pressible and inviscid fluid by making a single assumption
about the distribution of the vertical velocity along the fluid
sheet. The resulting equations satisfy exactly the nonlinear
boundary conditions, the mass conservation, and the inte-
grated momentum and moment of momentum, see e.g. [51]
for details. The GN equations are classified based on their
levels, corresponding to the function used for the distribution
of the vertical velocity along the water column. In this study,
we use the Level I GN equations (or the original GN equa-
tions). A linear distribution of vertical velocity is assumed in
the Level I equations.

The GN equations are used here in two dimensions and
in the form first given by [51]:

ζ,t +[(h+ ζ−α)u1],1 = 0, (6)

u̇1+gζ,1+
p̂,1
ρ

=− 1
6
[(2ζ+α),1 α̈

+(4ζ−α),1 ζ̈

− (h+ ζ−α)
(

α̈+2ζ̈
)

,1
],

(7)

whereh is the water depth.ζ is the free surface elevation
measured from the still water level (SWL),α is the elevation
of the bottom surface, and ˆp is the pressure on the top surface
of the fluid sheet. The superposed dot denotes the material
time derivative, and double dot is the second order material
derivation.

The GN equations have been applied to many problems
of unsteady flow impact on structures, seee.g. [52–55] for
wave scattering and impact on horizontal surfaces, and [56]
and [57] for wave diffraction and impact on vertical surfaces.

Information about high-level GN equations can be found
in e.g. [30,58–60]

The GN equations (6) and (7), in the form used here,
are only applicable to single phase fluids with continuous
top and bottom surfaces. Hence, the GN equations are not
applicable to the dam-break cases where wave breaking and
air entrapment may occur. The GN equations are only used
for the initial mound of water cases.

Saint-Venant Equations

The SV equations, whose 3D form is called Shallow Wa-
ter equations, are derived from Eqs. (1) and (2) with three as-
sumptions: (i) the viscous terms are negligible, (ii ) pressure
is only hydrostatic, and (iii ) the fluid flows in one dimension
only (x1 direction), whereu2 is small enough to be omitted,
and u1 is assumed to be constant inx2−direction. In the
absence of viscous terms, the effect of viscosity is approxi-
mated by use of empirical terms and the body force. Hence
the SV equations read as, (see [61] and [62]),

u1,t +u1u1,1 =−gh,1+gS−gSf , (8)

whereS(x1) = −α,x1 is the bed slope,Sf (x1, t) = τ
ρgR is the

friction slope,τ(x1, t) is the shear stress along the wetted
perimeterpw(x1, t) at locationx1 andR(x1, t) = A

pw
is the hy-

draulic radius, whereA(x1, t) is the cross-sectional area of
the flow. The shear stress is given by Manning’s equation,
see [63].

To determine the pressure, we use the unsteady
Bernoulli equation. For small-amplitude oscillations, the un-
steady Bernoulli equation is given by (seee.g. [64]):

φ,t +
p
ρ
+gx2 =C, (9)

3 Copyright c© by ASME
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Table 1: Boundary conditions used in the RANS model. For definition of the boundary conditions, seee.g. [46] and [47].

Boundary β p u

bottom zeroGradient zeroGradient fixedValue (0,0,0)

front and back walls zeroGradient zeroGradient fixedValue (0,0,0)

upstream and downstream walls empty empty empty

atmosphere inletOutlet totalPressure pressureInletOutletVelocity

whereφ is the velocity potential,C is a constant andp is the
pressure. By substitutingdφ = u1dx1+u2dx2 in Eq. (9), by
definition, we obtain

(
∫

u1dx1+
∫

u2dx2),t +
p
ρ
+gx2 =C, (10)

and hence the pressure is determined by:

p(x1,x2, t) =−
(

ρgx2+ρ(
∫

u1dx1+

∫
u2dx2),t

)

. (11)

3 Numerical Solutions
The three governing equations are solved numerically

using various techniques. These are introduced here.
The RANS equations are solved by use of a

finite-volume approach. The integral form of the RANS
equations, Eqs. (1) and (2) over time and space can be writ-
ten as:

∫ t+∆t

t
[

∫∫
ū j ,tdxidxj +

∫∫
(ūi ū j +u′iu

′
j),idxidxj ]dt

=
∫ t+∆t

t
[
∫∫

g jdxidxj

−
∫∫

1
ρ

p̄, jdxidxj

+
∫∫

νū j ,ii dxidxj ]dt,(i, j = 1,2,3),

(12)
seee.g. [65] for more information.

To solve the pressure-velocity coupling in Eq. (12),
there are three commonly used algorithms that can be em-
ployed, namely the Pressure Implicit Splitting Operator
(PISO) algorithm, the Semi-Implicit Method for Pressure-
Linked equations (SIMPLE) algorithm and the PISO-
SIMPLE (PIMPLE) algorithm. In PIMPLE algorithm, the
SIMPLE algorithm is employed to iteratively calculate pres-
sure from velocity component in the Navier-Stokes (RANS)
equations and the PISO algorithm is employed to revise the
results, see [66] and [40]. The PIMPLE algorithm is of-
ten computationally more efficient because a larger Courant
number can be used. PIMPLE do not show too much ad-

vantages in simple cases and flow patterns. For more com-
plicated geometries, skewed, non-orhogonal meshes, PIM-
PLE can stabilize the simulations whereas the case may fail
or cost more computational effort with PISO and SIMPLE,
see [67].

For the RANS model, the free surface is determined by
use of the volume of fluid method. The computations are
carried out using an open source computational software,
namely OpenFOAM.

The GN equations are solved by use of a central differ-
ence scheme, second order in space, and by use of modified
Euler’s method for time marching. See [51] and [68] for dis-
cussion on the solution of the Level I the GN equations as
used here. In the GN equations, the functionζ (surface el-
evation) is single-valued. Hence, the GN equations are not
applicable to the cases with wave breaking, such as the dam-
breaking cases and cases with dry downstream.

The SV equations are solved by use of a finite volume
method. The integral form of Eq. (8) over time and space
can be written as:

∫ t+∆t

t

∫
u1,tdx1+

∫
u1∂u1,1dx1]dt =

∫ t+∆t

t
[
∫

−gh,1dx1

+

∫
gS−gSfdx1]dt.

(13)
Details of the computational model of the SV equations

as used here can be found in [69].

4 Numerical Setup
Results are given in dimensionless form usingρ, g and

H or h as a dimensionally independent set. For the dam-
break problems,p′ = p/ρgH andt ′ = t

√

g/H, whereH is
the initial dam height, shown in Fig. 1. For the initial mound
of water problem,p′ = p/ρgh andt ′ = t

√

g/h, whereh is
the downstream water level.

A grid convergence study is performed to determine the
appropriate grid for the computations. Here, we only present
the grid convergence of the RANS equations. The conver-
gence test of the GN and the SV equations can be found in
e.g. [30] and [69], respectively. For the grid convergence
study of the RANS model, we consider the experiment of
[29].

In the experiments of [29], a tank 1,610mm long,
600mmhigh and 150mmwide is used. The reservoir is on

4 Copyright c© by ASME
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Table 2: Grid information of the convergence tests of the 2D
RANS equations.

Grid ID ∆x1/h ∆x2/h
number of cells

Computation
x1 x2 duration(hr)

1 0.0008 0.0008 2013 750 2.74

2 0.001 0.001 1610 600 1.12

3 0.0012 0.0012 1342 500 0.51

4 0.0014 0.0014 1150 429 0.29

the left, and the gate is 600mmaway from the upstream wall
of the tank, as shown in Fig.1. The initial dam height is
H = 300mm. The gate opens att ′ = 0, and bore propagates
toward downstream. Five pressure sensors are placed at the
downstream wall to record the bore pressure. The locations
of the sensors,S1-S5, are shown in Fig. 2. More details about
the experiment is given in the following sections.

For the RANS computations, two IntelR©Xeon E5-
2697A v4 processor (16 cores, 40 M Cache, 3.00GHz)
are used. Maximum Courant Number is 0.25 and average
Courant Number is 0.0086. Four uniform grids are con-
sidered in this part which are summarized in Table 2. The
RANS model for the grid convergence study is preformed in
two dimensions only.k−ω model is used for the grid con-
vergence study.

Pressure on the downstream wall are recorded in five
pressure sensors for these grids. Comparisons of pressure
time series on the downstream wall of the four grids are
shown in Fig. 3.

Shown in Fig 3, results of Grids 1, 2 and 3 are in good
agreement with each other. In Fig. 3 (a), the peak pres-
sures provided by Grids 1, 2 and 3 are higher than the exper-
imental data and that of Grid 4 is lower than the experimen-
tal data. These results show that finer grids provide slightly
higher pressure peak. This is mainly due to the sensitivity of
the peak pressure to specialised time discretization, and the
numerical setup. The bore’s propagation speed (or arrival
time at the downstream wall), when pressure was recorded
by Sensor 1 reaches its peak, and its error is compared with
experimental data are presented in Table 3. Also given in
Table 3 is the peak pressure at Sensor 1 of the different grid
configurations, and the associated error when compared with
laboratory measurements.

In Table 3, the peak pressure error of Grid 3 is the small-
est. The error of propagation speed of Grid 3 is acceptable.
We determine that Grid 3 (∆x1/h= ∆x2/h= 0.0012) can be
used in this problem as the peak pressure given by Grid 3 is
closer to the experimental data than that of Grids 1 and 2.
The grids used by all models for the problems studied here
are listed in Table 4.

Next, we shall determine the appropriate turbulence
model for the RANS computations of this problem. We con-
sider three turbulence models, namely thek−ω, k− ε and
laminar model. All boundary condition remain the same be-

tween the models. The mesh configuration Grid 3 is used in
all turbulence models. The CPU computational time of these
turbulence models are 46.67min for thek−ω, 46.02min for
thek− ε and 43.67min for the laminar models, all solved in
2D.

Same case as that of [29], shown in Fig. 1, is used
for this comparison. The upstream, downstream and bot-
tom walls are set to no-slip boundary conditions in both 2D
and 3D studies. The upstream and downstream walls are
set with the no-slip boundary conditions in the 3D studies
and slip boundary conditions for the 2D studies. Grid 3,
∆x1/h= ∆x2/h= 0.0012 is chose for the 2D and 3D RANS
models here.

Figure 4 shows the comparison of results of the surface
elevation studied by use of the laminar,k−ω andk−ε mod-
els. Results of the laminar and thek−ω models are in close
agreement with the experimental data, while the bore pre-
dicted by thek− ε model propagates slower and arrives to
the wall about 0.2s later. The differences of the bore speed of
these three models are due to the solution of the eddy viscos-
ity terms of each model. Aside from the time difference, re-
sults of the laminar and turbulence models are in good agree-
ment with the laboratory measurements for the peak pressure
recorded at the sensors. Exception is in sensorS1, where
k− ε model has slightly underestimated the peak pressure.
This difference is smaller in other sensors.

From these results, we determine that thek−ω turbu-
lence model (which shows more sensitivity and closer agree-
ment to laboratory experiment than the laminar model) is ap-
propriate for the cases studied here. This is in agreement
with the finding of [42].

5 Results and Discussion
Bores generated by breaking of a dam and initial mound

of water are studied here. The fundamental difference be-
tween these cases is the downstream water depth; in the dam
break problem, down stream is either dry or the water depth
is much smaller than the initial mound of water. We first
consider the dam break case and the experiments carried out
by [29]. The RANS and SV equations are used to study the
dam break problem. This is followed by discussion of the
initial mound of water problem, where downstream water
depth is larger than the initial height of the reservoir (above
the SWL). The RANS, GN and SV equations are used for the
initial mound of water cases.

Bore Generated by Dam Break
Simulations of the three dimensional experiment of [29]

is first presented. The tank used in the experiment is shown
in Fig.1. The initial dam height isH = 300mm. There are
five pressure sensors at the downstream wall. The locations
of the sensors,S1-S5, are shown in Fig. 2, and discussed in
the Section 4.

Shown in Fig. 2, sensor S3 is used to study the three
dimensionality effect. All results are presented in dimen-
sionless form. The experimental data of [29] are given in

5 Copyright c© by ASME
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Fig. 1: Schematic of the dam-break experimental tank of [29]used for the comparison purposes. The unit is in mm.

Table 3: Error of propagation speed and peak pressure of different grid configurations when compared to the laboratory
experiments of [29].

Grid ID 1 2 3 4 Lab. Experiments

Bore arrival time (t ′) 2.4215 2.4209 2.4238 2.4288 2.457

Error 1.44% 1.47% 1.35% 1.14%

Peak pressure (p′) 4.6642 4.2909 3.1971 2.8747 3.0517

Error 52.84% 40.62% 4.76% 5.80%

Fig. 2: A front view of the impact wall downstream the tank
showing the location of pressure sensors. The unit is in mm.

dimensionless quantities with respect to the constant initial
dam height (H), water density (ρ), and the gravitational ac-
celeration (g).

The RANS computations are carried out in both 2D and
3D, for comparison purposes. The grid size inx1 and x2

directions of the 3D computations, used for the 3D RANS

Table 4: Grid size of the cases studied in this work. N/A
stands for not applicable.

Model ∆x1/h ∆x2/h

RANS 0.0012 0.0012

GN 0.03 N/A

SV 0.001 N/A

equations, are the same with that of the 2D RANS equations,
see Table 2. The grid size inx3 (into the page) is∆x3/h =
0.0012 and the number of cells inx3 direction is 125. The
3D RANS computations were completed in about 478 hours,
while the 2D RANS computations only cost about 14 hours.

Snapshots of the bore propagations, determined by the
3D RANS equations, are presented in Fig. 5 for 10 times:
Figs. 5 (a)-(e) show the bore propagating before impinging
at the downstream wall, and Figs. 5 (f)-(j) show the bore
evolution along the downstream wall.

In Fig. 6, snapshots of pressure and velocity field of
the dam-break bore at(a)t ′ = 2.29,(b)t ′ = 2.63,(c)t ′ = 2.86
are shown. The bore arrives at the downstream wall att ′ =
2.29, pressure is zero and the velocity field of bore is mainly
horizontal, shown in Figs. 6 (a) and (d).

In Figs. 6 (b) and (e), the bore has arrived at the wall
and runs up along the wall att ′ = 2.63. The bore changes

6 Copyright c© by ASME
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Fig. 3: The grid convergence study of the RANS equations:
comparisons of pressure recorded by SensorsS1, S2, S4 and

S5 computed by the RANS equations vs laboratory
measurements of [29].

its velocity direction from horizontal to vertical at the foot
of the downstream wall. The flow field is complex at this
time. Air bubbles are formed and an area withp′ = 0 is
found around the foot of the downstream wall. In Figs. 6
(c) and (f), the bore almost reaches the highest point att ′ =
2.86. The velocity vectors of some part of the bore along
the downstream wall point backward towards upstream. A
negative (gauge) pressure area is found, forming cavitation
at that area.

The pressure on the downstream wall computed by the
3D RANS equations, the 2D RANS equations and SV equa-
tions are compared with the experimental data in Fig. 7.

Figure 7(a) shows the pressure at SensorS1 has a sud-
den jump to the highest value when the bore arrives at the
downstream wall and decreases gradually after that. Good
agreement is observed between the 2D and the 3D RANS
equations and the experimental data. The pressure at Sensor
S1 computed by the SV equations jumps to the highest value
when the bore arrives at the downstream wall, and drops to
a small value and increases slowly with fluctuations before
t ′ = 3.0. The bore speed determined by the SV equations is
smaller than others, and the maximum pressure magnitude
is underestimated. The difference of the results between the
SV equations and others is due to the assumptions made in
deriving the SV equations. The bore propagation along the
downstream wall, is underestimated by the SV equations, so
the pressure computed by the SV equations drop to a small

0

2

4

0

2

4

0

2

4

2.4 3.2 4
0

2

4

Fig. 4: Comparisons of pressure recorded by SensorsS1, S2,
S4 andS5 computed by the RANS equations with the

laminar model,k− ε model andk−ω model, respectively,
vs laboratory measurements of [29].

value.
The bore, computed by 2D and the 3D RANS equations,

reach SensorS1 att ′= 2.415 andt ′= 2.421, respectively, and
at t ′ = 2.592 by the SV equations and att ′ = 2.445 for the
experiments. The slight difference between the 2D RANS
equations and 3D RANS equations in bore propagation speed
is due to the effect of the front and back walls of the tank in
the 3D RANS equations. The SV equations have underes-
timated the bore propagation speed and pressure, due to the
assumptions made.

Figures 7(b) and 7(c) show the pressures of SensorsS2

andS4, respectively. At SensorsS2 andS4, pressure of the
laboratory experiments and the pressure computed by the 2D
RANS equations and 3D RANS equations increases to high-
est value then decreases gently, while the pressure computed
by the SV equations increases with large fluctuations before
and at a later timet ′ = 3.0.

There is little difference between the pressure of the 2D
RANS equations and 3D RANS equations beforet ′ = 3.0.
After that time, some differences can be seen in Figs. 7(b)
and 7(c). In the snapshots shown in Fig. 5(i), taken att ′ =
2.86, the bore almost reaches the highest level on the wall
and is going to returns towards upstream. Larger differences
are seen between the pressure of the 2D RANS equations and
3D RANS equations at this point, as the resistance from the
upstream and downstream walls on the bore is significant.
Hence, it appears that the 2D RANS equations model can be

7 Copyright c© by ASME
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Fig. 5: Snapshots of the dam-break bore at(a) t ′ = 0, (b) t ′ = 0.57,(c) t ′ = 1.14,(d) t ′ = 1.72,(e) t ′ = 2.29,( f ) t ′ = 2.40,
(g) t ′ = 2.52,(h) t ′ = 2.63,(i) t ′ = 2.86 and( j) t ′ = 3.09.

safely used to study the pressure on downstream wall before
the bore reaches the highest level.

Figure 7(d) shows the pressure at SensorS5. At this sen-
sor, the pressure of the experiments and the pressure com-
puted by the 2D RANS equations and 3D RANS equations
increase gently without experiencing a peak. This is because
the horizontal bore speed is smaller at the position of Sen-
sor S5, when compared to the other sensors. The pressure
computed by the SV equations increase with fluctuations.

At t ′ = 4, the pressure given by the RANS equation
agree well with the experimental data at SensorS1, while
slight difference is observed at SensorS2 and the difference
increases at SensorS4. The differences between results of
different models at SensorS1, S2 andS4 is likely due to the
formation of air bubble and partially surface tension. In ex-
periments, the breaking of air bubbles formed in the bore
should result in larger pressure on the wall.

To study the three dimensionality effect on the bore pres-
sure, recordings of sensorsS2 andS3 are compared with each
other and shown in Fig. 8. In this figure, results of the 2D
and 3D RANS equations are also included. The results of 3D
RANS equations atS2 on top of SensorS3.

Shown in Fig. 8, the 2D and 3D RANS results agree

well with the experiments on that there is little to no differ-
ence of the peak pressure of sensorsS2 andS3, i.e. there is no
3D effect on the peak pressure. The computational models,
however, seem to predict very slightly faster bore peaks.

Some small differences between the computational
models and laboratory experiments are observed in the pres-
sure after the peak, where the models have slightly underes-
timated the pressure. The underestimation should be due to
the surface tension effects as the water leaves the wall, and
formation of the air bubbles and wall friction. Again, thereis
little to no difference between the 2D and 3D models, reveal-
ing that the three dimensionality does not play any noticeable
role in this problem.

Overall, the pressures on the downstream wall computed
by the 2D RANS equations and 3D RANS equations agree
well with the pressure peak measured by the five sensors in
the laboratory experiment of [29] .

Bore Generated by Initial Mound of Water
In this section, we study the bore generation, propaga-

tion and pressure due to an initial mound of water. The sig-
nificant difference of this case, when compared to the dam-
break problem, is due to the downstream water depth. Com-

8 Copyright c© by ASME
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Fig. 6: The snapshots of pressure and velocity field of the dam-break bore at different times.
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Fig. 7: Comparisons of bore pressure time series of
laboratory measurements of [29], the 2D RANS equations,

3D RANS equations and SV equations at Sensors (a)S1,
(b)S2 (c)S4 and (d)S5.

putations of this section is in two dimensions.
A schematic of the numerical tank is shown in Fig. 9.

Note that in the case of an initial mound of water,A < h,

2.4 3.2 4

1

2

3

4

Fig. 8: Comparisons of bore pressure time series of
laboratory measurements of [29], the 2D RANS equations

and 3D RANS equations at SensorsS2 andS3.

whereA is the water amplitude (above the SWL) at the reser-
voir. The RANS, GN and SV models are used in this sec-
tion. Results of the GN equations have been validated by
many others for various hydrodynamic problems, seee.g.
[30,70,71], where excellent agreement between results of the
GN equations and laboratory experiments for soliton fission
and loads are observed. The length of the computational do-
main is defined such that the computations stop before waves
arrive at the downstream boundary.

At time t ′ = 0, water is at rest. After that, gate atx1 =
L is removed instantly and completely. Several solitons are
generated and move towards downstream without significant

9 Copyright c© by ASME
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Fig. 9: Schematic of the numerical tank of the initial mound of water problem and location of the wave gauges and the
pressure sensors. Figure not to scale.

change in wave amplitude, details can be seen ine.g. [30].
We consider a case with initial mound amplitudeA = 0.4h,
and initial lengthL= 12h. Six pressure sensors and six wave
gauges are located on the tank floor to measure the pressure
on the base. Locations of the gauges and sensors are shown
in Fig. 9.

The GN computations are carried out for dimensionless
variables with respect to the downstream water depth. The
downstream water depthh = 1m is constant in the RANS
and the SV computations.

Snapshots of the surface elevation computed by the
RANS equations, the GN equations and the SV equations
at t ′ = 30, 50, 70 are shown in Fig. 10. The vertical axis
shows the surface elevation of water. The results of the com-
putational models are in close agreement for the leading soli-
tons, but the results of the SV equations lose the details and
has only provided the average.

The pressures on the tank floor computed by the RANS
equations and the SV equations are compared with that of the
GN equations in Fig. 11. The bore pressure is recorded by
six sensors on the tank floor shown in Fig. 9. Also shown in
Fig. 9 is the wave gauges, located exactly above the pressure
sensors, used to measure the surface elevation.

In Fig. 11, the left column shows the surface elevation,
and the right column is the bottom pressure at the same loca-
tions. Figures 11(a) and 11(g) show the surface elevations of
gaugeG1 and the pressure at SensorS1, respectively, com-
puted by the GN equations, RANS equations and SV equa-
tions. Overall, results of the RANS and GN equations are in
close agreement, while the SV equations have simplified the
solution. The surface elevation and pressure computed by
the GN equations show larger fluctuations than the results of
the RANS equations. This is due to the numerical fluctuation
found near the gate of the GN model, see Fig.10.

Figures 11(b)-11(f) and 11(h)-11(l) show the surface el-
evations of GaugesG2−G6 and pressures of SensorsS2−S6,
respectively, computed by the GN equations, RANS equa-
tions and SV equations. Results are in good agreements, ex-

-0.2

0

0.2

0.4

-0.2

0

0.2

0.4

0 12 24 70
-0.2

0

0.2

0.4

Fig. 10: Snapshots of the computational model at different
times. (A= 0.4h, L = 12h).

cept for the SV equation, which mainly show average value.
The results of the GN equations do not show the fluctuations
any more for the gauges and sensors are far from the gate.

In Fig. 12, the total pressure and hydrostatic pressure
at SensorS6 is compared for the (a) RANS, (b) GN and (c)
SV equations, respectively. The mean value of total pressure
agree well with that of hydrostatic pressure for these three
equations, revealing that hydrodynamic pressure is dominant
in these cases. Figure 12 (c) shows that the SV equations
cannot provide the hydrodynamic pressure as it only consid-
ers hydrostatic pressure.

Overall, the surface elevation and pressure computed by
the GN equations show good agreement with results of the
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Fig. 11: Comparison of the results of RANS, GN and SV equations for surface elevations of an initial mound of water at
Gauges (a)G1, (b)G2, (c)G3, (d)G4, (e)G5 and , (f)G6 and pressures at Sensors (g)S1, (h)S2, (i)S3, (j)S4, (k)S5 and (l)S6

(A= 0.4h, L = 12h).
.

RANS equations, while the SV equations only provide av-
erage information. The SV equations and GN equations ap-
pear to show less sensitivity to the pressure than the RANS
equations. The bottom pressure shows close relation with the
free-surface fluctuations. Hence hydrostatic pressure is the
main component of the bottom pressure in the initial mound
of water problem.

6 Concluding Remarks
The 2D RANS equations, the 3D RANS equations and

the SV equations are used to study the dam-break problem,
where initial height of the water is much larger than the
downstream water depth. The pressure on the downstream
wall of these three models are compared with laboratory ex-
periments.

To study the effect of viscosity, laminar,k− ε andk−ω
models are used. The bore propagation speed of these three
models are slightly different because of the differences in

the solution of the eddy viscosity terms in each model. It is
found that thek−ω model provides better agreement with
the laboratory measurements of the dam break problem.

Pressures computed by the 2D RANS equations and 3D
RANS equations agree well with each other before the bore
reaches the highest point on the downstream wall. Some
slight difference are observed, mainly due to the effect of
the front and back walls, and the possibility of the flow into
the page in the 3D model. As the 3D model is computation-
ally more costly, 2D model is suggested when the interest is
confined to the pressure before bore approaches the highest
point on the downstream wall.

Pressure computed by the SV equations agrees well with
the RANS equations and experimental data when the pres-
sure sensor is high enough on the wall, as in SensorS5. But
the SV equations underestimate the bore height and speed
and hence shows less sensitivity with the sudden change of
water height. In the SV equations, pressure distribution is

11 Copyright c© by ASME
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Fig. 12: Comparison of the total pressure with the
hydrostatic pressure of initial mound of water of the (a)

RANS, (b) GN and (c) SV equations at SensorS6 (A= 0.4h,
L = 12h).

simplified by hydrostatic distribution and the momentum di-
rection is restricted to one dimension.

The pressure peaks computed by 2D and the 3D RANS
equations agree well with the experimental data, although
there are slight differences in the time of the pressure peak.
The maximum pressure results provided by the RANS equa-
tions seems to be acceptable for engineering applications.

The RANS equations, GN equations and SV equations
are used to study the generation, propagation and pressure of
an initial mound of water. The equations show close agree-
ment for the generation and propagation of bore of initial
mound of water. The results of the SV equations has signifi-
cantly lost the details.

Overall, close agreement is observed between the results
of the RANS equations, GN equations. In the GN equations,
the functionζ (surface elevation) is single-valued. Hence,
application of the GN equations is limited to cases that do not
involve wave breaking or dry seabed. Given that the compu-
tational cost of the GN equations (often less than a minute)
is much less than that of the RANS equations, the GN equa-
tions appear to be a good substitute to the RANS equations
in these cases.
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