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ABSTRACT

This thesis uses climate, glacio-hydrological models (GHMs) and groundwater models

to advance understanding of: 1) twenty-�rst century climate change impacts on glacier-

fed river �ow regime and proglacial groundwater dynamics at the Virkisjökull Glacier

Observatory in Iceland; and 2) uncertainties associated with model projections which

underpin this understanding. The research is split into three studies. Study 1 tests

a novel, signature-based Limits of Acceptability framework for constraining structural

uncertainties in GHMs. The framework successfully identi�es de�ciencies in di�erent melt

and runo�-routing model structures, but cannot identify a population of acceptable model

structures. Study 2 uses an ensemble of regional climate projections and GHMs to project

changes in 25 characteristics (signatures) of river �ow regime up to 2100. The results show

that the magnitude, timing and variability of river �ow are sensitive to climate change and

that projection uncertainties stem from incomplete knowledge of future climate and glacio-

hydrological processes. The dominant uncertainty source, however, is signature-speci�c.

Study 3 includes a proglacial groundwater model into the climate-GHM model chain

and shows that climate change will perturb intra-annual groundwater level timing and

variability leading to changes in groundwater-surface water interactions. Uncertainties in

groundwater projections primarily stem from future climate uncertainty.
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CHAPTER 1:

INTRODUCTION

1.1 Background and rationale

Mountain watersheds are referred to as the worlds water towers (Viviroli and Weingartner,

2004; Viviroli et al., 2007), partly because they receive large quantities of precipitation

relative to adjacent lowlands, but also because they regulate runo� through the accumula-

tion and melt of snow and ice, providing a stable source of fresh water to downstream end

users. It is estimated that more than one-sixth of the Earth's population uses meltwater

from mountain glaciers and snow for their water supply (Barnett et al., 2005). Of these,

370 million people live in river basins where glacier meltwater alone contributes at least

10% of seasonal river discharge (Schaner et al., 2012).

Meltwater from the Himalayas contributes 60% of surface runo� to the Indus River

basin, providing energy (hydroelectric power) and food (irrigation) security to the basin's

215 million inhabitants (Immerzeel et al., 2010). Glacial meltwater from the tropical

Andes provides 15% of the total domestic and industrial water supply to the urban centres

of La Paz and El Alto in Bolivia and Huaraz in Peru (Buytaert et al., 2017; Soruco et

al., 2015). It has also facilitated the development of the large-scale Chavimochic and

Chinecas agricultural projects which receive more than 50% of their water supply from

glacier melt during 10-year return period rainfall droughts (Buytaert et al., 2017; Carey

et al., 2014). In the European Alps and Northern Europe, hydroelectric dams are used to

exploit the reliable supply of mountain runo� provided by the seasonal melt of snow and

ice. In Norway and Iceland, meltwater contributes 20% and 91% of the total hydroelectric

output respectively (Milner et al., 2017). Glaciers also provide an important water source

in regions where water-related tensions between upstream and downstream users are high,

such as in the central Asian states of the Aral Sea basin where meltwater from the Tian

Shan and Pamir mountains underpin regional food and energy security (Orlove, 2009).
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Meltwater rivers emanating from glaciated mountain systems also house some of the

world's most pristine freshwater ecosystems which include diverse populations of micro-

bial and algal communities, macroinvertebrates and �sh (Jacobsen et al., 2012; Milner et

al., 2017). These rivers typically have a high beta-diversity (along stream) and gamma-

diversity (regional) due to the combined water inputs from snow and ice melt and other

water sources such as rainfall and groundwater which result in highly heterogeneous phys-

iochemical water properties (Brown and Hannah, 2008; Brown et al., 2006; Ward et al.,

1999). In the Gulf of Alaska, the World's most productive wild salmon �sheries are de-

pendent on the bu�ering e�ect of seasonal meltwater runo� inputs to rivers which help

to maintain river �ow regulate water temperature during the summer months (Beamer

et al., 2017; Schoen et al., 2017).

Given the pivotal role of meltwater in providing socio-economic and ecological well-

being to downstream communities and ecosystems, there is rising concern over the poten-

tial impacts of projected glacier and snow line retreat over the twenty-�rst century (Carey

et al., 2016). The most recent analysis of global glaciological and geodetic datasets showed

that between 2006 and 2016, the mass balance of glaciers has consistently been negative

with a global glacier mass loss of 335 ± 144 Gt y-1 (equivalent to 0.92 ± 0.39 mm y-1 sea

level rise) (Zemp et al., 2019). Snow coverage is also receding globally, with the largest

reductions in the Northern Hemisphere where June snow coverage receded by almost 15%

per decade between 1979 and 2012 (Vaughan et al., 2013). This global snow and ice

retreat is directly linked to rising air temperature and the most recent Intergovernmental

Panel on Climate Change (IPCC) assessment indicates that mean global surface air tem-

perature will be 0.6-4.4 ◦C warmer by the end of the century compared the recent past

(1986 and 2005) (Collins et al., 2013). Air temperature rises are expected to be up to

4.5 times the global average in high-latitude regions due to reductions in surface albedo

near the poles as snow and ice continue to retreat (Gosseling, 2017). Recent global glacier

projection studies indicate that total global glacier volume will reduce by 25-64% by 2100

(Huss and Hock, 2015; Radi¢ et al., 2014; Shannon et al., 2019).

A priority for the scienti�c community, therefore, is to facilitate the development of
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appropriate adaptation strategies that reduce vulnerability and increase resilience of pop-

ulations and ecosystems that will be a�ected by changes in water cycling due to glacier and

snow line retreat over the coming decades (Vuille, 2015). Key to developing these strate-

gies is an ability to forecast probable changes in strategically important hydrological stores

and �uxes e.g. snow, ice, river �ow and groundwater storage over equivalent timescales

which must be underpinned by a sound scienti�c understanding of the processes driving

changes in glaciated river basin water cycles (Buytaert and Domzalski, 2015). Mathemat-

ical computer models of global climate (IPCC, 2018) and models that simulate glacial and

hydrological (glacio-hydrological) processes (Schae�i et al., 2014; Schulla, 2015) provide

a means to generate these forecasts with mathematical equations that are based on our

best approximation of system behaviour. Climate and glacio-hydrological model projec-

tions are at the forefront of industrial (IHA, 2019; Thorsteinsson and Björnsson, 2012)

and intergovernmental water resource planning for glaciated mountain regions (ICIMOD,

2010; UNESCO, 2017). Typically, climate model projections are used as boundary con-

ditions to drive glacio-hydrological models (GHMs) that simulate the accumulation and

ablation of snow and ice as well as catchment water cycling (e.g. Garee et al., 2017; Huss

and Hock, 2018; Shea and Immerzeel, 2016). These model projections underpin current

understanding of glaciological and hydrological change in glaciated watersheds, but this

understanding remains incomplete. For example, almost all projection studies in glaciated

regions have focussed on projecting changes in surface runo� and downstream river dis-

charge, but ignore how the propagation of meltwater through the wider hydrosphere might

impact other potentially important hydrological stores such as groundwater even though

these are known to form an important component of water cycling in glaciated catchments

(Buytaert et al., 2017; Vincent et al., 2019). Additionally, though, these projections of

glacial and hydrological change are subject to considerable uncertainty due to inadequa-

cies in the formulation, parameterisation and boundary conditions of the models, yet these

are rarely quanti�ed adequately which undermines their robustness and prevents the dis-

semination of uncertainties to decision makers (Buytaert and Domzalski, 2015; Vuille,

2015).
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This thesis aims to address these challenges by utilising state-of-the-art climate pro-

jections with numerical GHMs and groundwater models to project twenty-�rst century

glacial and hydrological change at the Virkisjökull glacier observatory (VGO), a glaciated

catchment in southern Iceland. Speci�cally, the thesis will assess changes in glacier-fed

river �ow regime and downstream groundwater dynamics. The VGO was selected for

the focus of this research for a number of reasons. Firstly, a range of observation data

have been collected at the site that can be used to parameterise and evaluate computer

models with. These data cover key drivers and �uxes of glacial and hydrological change

in the catchment including climate, glacier mass balance, meltwater runo� and proglacial

groundwater level dynamics. Secondly, the VGO includes a proglacial alluvial aquifer

which forms a signi�cant groundwater store and is known to interact with meltwater

channels (MacDonald et al., 2016; Ó Dochartaigh et al., 2019) making it ideal for inves-

tigating the propagation of meltwater through the wider hydrological system. There are

also key societal bene�ts to studying glacial and hydrological change in Iceland. Tourism

is one of three key economic sectors in Iceland of which glaciers are a major attraction

(Jóhannesson and Huijbens, 2010; Welling et al., 2015). Meltwater runo� from Iceland's

glaciers also forms an important national resource, particularly for the hydropower in-

dustry which meets more than 70% of Iceland's electricity demand (Jóhannesson et al.,

2007). Finally, �ood waters from glacier-fed rivers can cause major disruption to Iceland's

road network (Björnsson and Pálsson, 2008; Jóhannesson et al., 2006).

1.2 Research gaps

Throughout this thesis, four primary research gaps are identi�ed and addressed to advance

understanding of glacial and hydrological change in glaciated watersheds under climate

change and advance understanding of uncertainty associated with model projections which

inform this understanding.
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Research gap 1: A framework for GHM intercomparison and selection

A major challenge in developing water supply adaptation policies in glaciated watersheds

is accounting for the uncertainties in future projections of hydrological variables which are

known to be large for glaciated river basins (Huss et al., 2014). These uncertainties stem,

in part, from an incomplete understanding of the glacio-hydrological processes that govern

the evolution of these watersheds (e.g. glacier mass balance Jobst et al., 2018; Ragettli

et al., 2013) and an inability to represent them at the level of detail that these processes

are known to operate at (Beven, 2016). This has led to the development of an array of

di�erent simpli�ed model structures that purport to simulate the same glacio-hydrological

processes, but which adopt di�erent process assumptions and levels of complexity that

are typically more re�ective of observation data availability and computational resource

constraints. Model intercomparison studies undertaken have shown no clear approach

to distinguish which (if any) model is appropriate for the purpose of making projections

(Gabbi et al., 2014; Irvine-Fynn et al., 2014; Reveillet et al., 2017). The choice of ap-

propriate model structures and parameterisations for key glacio-hydrological processes,

therefore, remains a key source of hydrological projection uncertainty in glaciated river

basins. There is a need for a model selection framework that better discriminates between

competing model structure hypotheses so that these uncertainties can be better constrained

and quanti�ed.

Research gap 2: Twenty-�rst century changes in glacier-fed river �ow regime

Water cycling in glaciated mountain regions is complex and distinctive from other types

of watersheds. Water is accumulated and stored as snow and ice and released according to

melt cycles which operate over diurnal, seasonal and decadal timescales (Jansson et al.,

2003). Liquid water may also be stored in snow and �rn or in glacier crevasses, frac-

tures, tunnels and cavities (Cu�ey and Paterson, 2010). The drainage e�ciency of these

reservoirs is highly dynamic and typically increases through the melt season as meltwater

develops preferential �ow pathways through snow and ice (Machguth et al., 2018; Rada

and Schoof, 2018; Willis, 2005). The loss of this unique water storage behaviour under
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twenty-�rst century climate change could, therefore, cause changes to the magnitude, tim-

ing and variability of downstream river �ows over a range of timescales which will impact

the energy sector (Carvajal et al., 2017; Gaudard et al., 2014; Laghari., 2013) and agricul-

ture (Baraer et al., 2015; Carey et al., 2014; McDowell and Hess, 2012; Nolin et al., 2010).

These changes could also threaten the sustainability of sensitive alpine river ecosystems

(Bunn and Arthington, 2002; Clausen and Biggs, 2000; Naiman et al., 2008; Puckridge

et al., 1998). However, an analysis of the range of potential characteristic shifts in river

�ow regime has yet to be undertaken. There is a need to project the range of characteristic

changes in glacier-fed river �ow regime that might be expected under twenty-�rst century

climate change.

Research gap 3: Sources of uncertainty in glacier-fed river �ow regime pro-

jections

Such projections of glacier-fed river �ow regime will be uncertain, partly due to inadequa-

cies in GHMs, but also due to gaps and errors in the observation data used to drive and

evaluate models, an issue which is especially important in relatively inaccessible moun-

tain catchments, but rarely considered in practice (Beniston et al., 2017). The issue of

uncertainty will be exacerbated when considering climate change forcing given the imper-

fections in the structure and boundary conditions of climate models (Giorgi et al., 2009).

Quantifying the propagation of uncertainty from these di�erent sources in the model chain

would provide a basis for assigning more robust levels of con�dence to river �ow regime

projections. Such analyses have been undertaken in the past (Addor et al., 2014; Giuntoli

et al., 2015; Vetter et al., 2017, e.g.), but none have investigated uncertainty across a

full range of characteristic changes in river �ow regime. There is a need to quantify the

contribution to uncertainty in projections of di�erent characteristics of glacier-fed river

�ow regime from di�erent sources in the model chain.
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Research gap 4: Twenty-�rst century changes in proglacial groundwater dy-

namics

Water drainage dynamics in glaciated mountain watersheds are also controlled by variable

geological conditions which may include low permeability mountain bedrock and higher

permeability deposits such as moraines and alluvium (Wilson and Guan, 2004). These

high permeability materials can form signi�cant aquifers in the foreland areas of glaciated

catchments (La Frenierre and Mark, 2014; Vincent et al., 2019). Some recent studies

have shown that proglacial aquifers can receive signi�cant recharge from meltwater runo�

emanating from neighbouring mountains as it �ows along river channels which actively

exchange water with the aquifer (Liljedahl et al., 2017; Ó Dochartaigh et al., 2019). Other

studies have shown that, further downstream, groundwater base�ow to glacier-fed rivers

can exceed contributions from meltwater (Andermann et al., 2012; Kobierska et al., 2015).

In this respect, aquifers serve to slow down the transfer of meltwater to rivers and can

therefore help to sustain river �ow outside of the melt season (Andermann et al., 2012; Jó-

dar et al., 2017). This process of storage and release could serve to bu�er seasonal changes

to the magnitude and timing of glacier-fed river �ows due to glacier retreat (Markovich

et al., 2016) and could also make groundwater stores more strategically important in

the absence of signi�cant ice and snow stores in the future (Taylor, 2013). Even so, fu-

ture changes in water storage in proglacial aquifers, the contribution of groundwater to

glacier-fed river �ow and how these changes might be linked to changes in runo� from

neighbouring glaciated watersheds has yet to be investigated. There is a need to project

how groundwater storage dynamics and groundwater-surface water (GW-SW) exchanges

will evolve under twenty-�rst century climate change in proglacial aquifers.

1.3 Research objectives

To address each of the identi�ed research gaps, the thesis has the following research

objectives:

1. Implement a novel GHM comparison and selection framework to undertake a rigor-
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ous evaluation of multiple GHM structures.

2. Implement a climate-GHM model chain to project twenty-�rst century changes in

di�erent characteristics of river �ow regime.

3. Determine the relative contribution of individual model chain components to uncer-

tainty in river �ow regime projections.

4. Incorporate a distributed groundwater model into the climate-GHM model chain to

project twenty-�rst century changes in proglacial groundwater level dynamics and

GW-SW exchanges.

These research objectives are closely aligned with three of the most important scien-

ti�c problems in hydrology identi�ed in a recent community-led initiative involving 230

scientists (Blöschl et al., 2019) (Fig. 1.1).

1.4 Thesis structure

Following on from this introduction, chapter 2 introduces the VGO study site. Chapter

3 presents the overarching research design and provides information on the models and

datasets used to meet the research objectives. Chapters 4, 5 and 6 contain the majority

of the research undertaken in this thesis and each serves to address the identi�ed research

gaps. Finally, chapter 7 concludes the research by synthesising the main �ndings from

the thesis before identifying areas for future work.

1.5 Summary

This chapter has introduced the main research gaps and objectives identi�ed for this

thesis. A more detailed background review and justi�cation for the identi�ed gaps and

objectives is provided in each of the corresponding main research chapters. The next

chapter presents an overview of VGO study site.
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Figure 1.1: Links between thesis objectives (grey boxes) and important scienti�c problems

in hydrology (coloured boxes) identi�ed by Blöschl et al. (2019).
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CHAPTER 2:

VIRKISJÖKULL GLACIER OBSERVATORY

2.1 Introduction

The VGO is situated in south-east Iceland on the southern edge of Europe's largest ice

cap, Vatnajökull (Fig. 2.1a) and has been operated and funded by the British Geological

Survey since 2009, with additional funding provided by the UK Natural Environment

Research Council under a Capital Grant. The observatory was initially set up to inves-

tigate local climate drivers of short-term landscape evolution of the proglacial foreland,

but then evolved to study past, present and future glacier evolution and its impact on

proglacial hydrology and hydrogeology. It includes the glaciated Virkisá River basin which

is situated on the western side of the high relief, ice-capped Öræfajökull stratovolcano.

It also includes a proglacial groundwater catchment situated on a lowland sandur �ood-

plain which forms a signi�cant groundwater store (Ó Dochartaigh et al., 2019) and is

hydrologically connected to the upstream mountainous river basin by the Virkisá River

(MacDonald et al., 2016).

A range of instrumentation have been installed at the site including three o�-ice auto-

matic weather stations, six on-ice GPS stations, an ablation stake network, four seismic

stations, an automatic stream gauge and eight peizometers in the proglacial groundwa-

ter catchment. These data in conjunction with additional data collected from subannual

�eld campaigns have provided extensive conceptual understanding of the glacial and hy-

drological behaviour of the VGO including: 1) glacier �uctuations from the early-mid

Holocene to present day (Bradwell et al., 2013; Everest et al., 2017); 2) mechanisms for

the recent (post-2000) rapid retreat of the glacier (Phillips et al., 2014); 3) patterns of

glacier ice ablation (Flett, 2016); 4) meltwater transport through the glacier (Flett et al.,

2017; MacDonald et al., 2016); and 5) interactions between meltwater runo� and sandur

groundwater (MacDonald et al., 2016; Ó Dochartaigh et al., 2019). This chapter describes
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key characteristics of the VGO and draws on research previously undertaken at the study

site.

2.2 Geology and topography

The VGO sits approximately 50 km south-east of Iceland's active rift zone and drains

an area of 22.2 km2, 60% of which is glacier-covered (Fig. 2.1c). The bedrock geology

is dominated by very young (0.78 Ma), normally magnetised subglacial basic and inter-

mediate volcanic rocks from the Brunhes chron (Roberts and Gudmundsson, 2015). The

topography is controlled by the steeply sided conical form of Öræfajökull which rises from

near sea level to the east, south and south-west, where it is bounded by steep cli�s, up

to the Hvannadalshnjúkur summit, Iceland's highest peak, at approximately 2100 m asl.

At the summit, a 14 km2 ice-capped caldera exists, the edge of which forms the upper-

most boundary of the Virkisá basin. This caldera forms the main ice accumulation zone

from which ice �ows radially downslope via nine outlet glaciers. Two of these glaciers,

Virkisjökull and Falljökull, which together comprise a twin-lobed outlet glacier (herein re-

ferred to as Virkisjökull) of the Öræfajökull ice cap, provide one of the primary drainage

channels for accumulated ice at the summit (Björnsson and Pálsson, 2008) (see Fig. 2.2a).

Virkisjökull has been in a phase of retreat since 1991 (IGS, 2017) and the immediate fore-

land in the vicinity of the terminus is characterised by extensive areas of remnant glacier

ice buried under outwash sand and gravels which are 1�4 m in thickness. This zone of

buried ice now forms the bed of an expanding proglacial lake (Fig. 2.2b). The forelands

in the vicinity of the lake support nested moraines composed of sand, gravel and boul-

ders, formed by small glacier �uctuations over seasonal and shorter timescales since 1990

(Everest et al., 2017). Broader zones of sharp-crested moraines up to 80 m high extend

from the lower reaches of Öræfajökull onto the sandur �oodplain to the south. These

moraines are composed of well-rounded cobbles, sand, gravel and silt and are thought to

have formed in the last 200-300 years which would coincide with the Little Ice Age (LIA)

maximum c. 1870-1890 (Everest et al., 2017; Thompson, 1988). Further south still are
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a number of isolated moraine mounds which probably relate to an early-mid Holocene

advance (5000�6000 BP) (Everest et al., 2017). These have well developed soils and are

vegetated, unlike most of the Virkisá River basin and surrounding area where the steep-

sided valley walls and the relatively recent glacial maximum at the end of the LIA mean

that there is limited soil development. Where thin soils have developed, vegetation is

dominated by mosses, sparse grass and shrubs such as dwarf willow and birch.

The proglacial sandur (Fig. 2.2a) is an active glacial outwash �oodplain which forms

part of the world's largest sandur: Skeiðarársandur (Fig. 2.1b). The sandur is made

up of deposits from actively shifting meltwater streams as well as frequent (c. 5 per

century) jökulhlaups - glacial outburst �oods - which have distributed huge quantities of

loosely consolidated, moderately to poorly sorted, dominantly medium- to coarse-grained

glacio�uvial sand, gravel and cobbles across the �oodplain (Robinson et al., 2008). Two

of the largest jökulhlaups were caused by explosive eruptions of Öræfajökull in 1362 and

1727, the only recorded eruptions in recent history. Here, �ows as high as 1 × 105 m3

s-1 inundated the foreland with sediment-rich meltwater (Roberts and Gudmundsson,

2015). Geophysical evidence from Tromino R© passive seismic surveys indicate that 2 km

downstream of the lake outlet, the aquifer is between 60 and 100 m thick which then

increases to between 100 and 150 m thick 3.5 km downstream of the lake outlet. The

Virkisá groundwater catchment is estimated to store between 1-2% of the water stored in

the Virkisjökull glacier (Ó Dochartaigh et al., 2019).

2.3 Virkisjökull

Virkisjökull is a retreating glacier (Bradwell et al., 2013; IGS, 2017; Phillips et al., 2014)

with a high mass balance gradient (Björnsson et al., 1998; Björnsson and Pálsson, 2008;

Flett, 2016) and is one of the highest mass turnover glaciers in Europe (Dyurgerov et

al., 2002). Mass balance measurements on the glacier are limited. Annual snow cores

taken at the summit of Öræfajökull between 1993 and 1998 showed net accumulation of

up to 7.8 m w.e. y-1 (Guðmundsson, 2000) while ablation stake measurements collected
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Figure 2.1: Location of the VGO in Iceland (a); on Öræfajökull (b); and detailed topo-

graphical map of study area including the Virkisá River and its corresponding basin area,

major land surface types and the approximate Virkisá groundwater catchment adapted

from Ó Dochartaigh et al. (2019) (c). Note the basin area here was derived using the hy-

draulic potential gradient method as applied previously to outlet glaciers of Vatnajökull

(Bjornsson, 1982).
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between 2012 and 2014 showed annual ice melt of 4.8 m w.e. y-1 below the ice fall up

to 8.9 m w.e. y-1 near the ice margin (Flett, 2016). This high mass balance gradient is

typical of many glaciers in Iceland and makes them some of the most sensitive to climate

warming in the world where mass balance sensitivities range from -0.6 to -3 m w.e. ◦C-1

(Björnsson et al., 2013). Records of speci�c mass balance for Vatnajökull show a shift

from approximately 1.0 m w.e. to -2 m w.e. between 1992 and 2010, a period in which

mean annual air temperature rose by approximately 1.0 ◦C (Björnsson et al., 2013). Inter-

annual variability in mass balance of Iceland's glaciers are also known to be in�uenced by

other factors including snowfall which can dramatically reduce melt rates by increasing

surface albedo as well as volcanic eruptions where ash deposition has the opposite e�ect

(Björnsson et al., 2013).

Bradwell et al. (2013) used high resolution photography along with geomorphological

interpretation of the moraine �eld and lichenometric dating to derive a detailed history

of Virkisjökull length variations extending back to 1912. They found evidence for two

historical phases of retreat (1935-1945 and 1990-present) which correspond to periods of

rapid climate warming. The most recent phase of retreat and its relation to air tempera-

ture can be seen in Fig. 2.3a which shows the annual frontal movement of the Falljökull

arm of the glacier since 1958. From 2005, the rate of retreat has increased substantially,

exceeding 30 m y-1 for all but one year and showing a record annul retreat of 110 m y-1 in

2015. Bradwell et al. (2013) noted that no annual push moraines have been formed since

2005 indicating that this recent phase of rapid retreat could be linked to some change

in ice �ow behaviour. Phillips et al. (2014) installed a series of GPS sensors along both

arms of Virkisjökull to investigate the current ice �ow regime. They found that while the

accumulated ice at the summit of Öræfajökull continues to �ow down slope at a rate of

72 m y-1 on average, the ice at the front of the glacier has become detached and is now

in a phase of passive down wasting. Furthermore, fractures in the ice indicate that the

continued forward motion of accumulated ice is now being thrust over the immobile ice in

the terminal zone. The reason for this detachment is not known, although Phillips et al.

(2014) note evidence of a previously pressurised subglacial hydrological network that is
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no longer active.

Figure 2.3b shows the most recent complete ice thickness distribution of Virkisjökull

derived by Magnússon et al. (2012) and Fig. 2.3c show the two corresponding cross

sections of ice and bedrock topography through along the Virkisjökull and Falljökull

arms of the glacier. The glacier shows several regions with distinct topography. At the

summit where ice elevations exceed 1800 m asl, the ice is relatively �at and greater than

400 m thick in the deepest sections of the ice-�lled caldera. This planar summit forms the

main accumulation zone for the glacier ice which then drains in a south-westerly direction

down the steep sides of Öræfajökull with a slope between 0.15 and 0.5 in the steepest

sections. This fast �owing, relatively thin band of ice experiences high longitudinal stresses

resulting in a highly crevassed section approximately 4 km long (see Fig. 2.2a). Along

this section the glacier splits at the surface into two distinct arms as it �ows around a

bedrock ridge which is the principal source of distinctive supraglacial debris bands that

hug the ridge and accumulate at the front of the glacier (see Fig. 2.1b). From the base of

the crevassed section, the glacier �ows through an overdeepened valley which, like many

of the outlet glaciers that drain the Öræfajökull ice cap, have been progressively carved

into the bedrock over time. Here ice is greater than 100 m thick.

2.4 Climate

Iceland is situated just south of the Arctic Circle between 63 and 67 degrees north and

experiences a maritime climate characterised by cool summers and mild winters with

year-round precipitation. The Icelandic climate is dictated, to a large degree, by the

meeting of cold and warm air masses at the polar front (Einarsson, 1984). Here, the

North Atlantic Current �ows along the southern and western coast bringing with it mild

Atlantic air which comes into contact with cold Arctic air from the north. At this front, a

semi-permanent low pressure system exists known as the Icelandic low, which is associated

with frequent cyclone activity, particularly in the winter when contrasts between tropical

and polar air masses are largest. These cyclones typically approach from the south-west,
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Figure 2.3: Historic observations of Virkisjökull geometry including: annual evolution

of the Falljökull front position between 1958 and 2015 (IGS, 2017) (a); ice thickness

distribution in 2011 (b); and cross-section of ice and bedrock topography along transects

through the Virkisjökull and Falljökull arms of the glacier.
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bringing with them strong winds and intense rainfall. As such, the VGO is situated in

one of the wettest and windiest parts of Iceland.

Figure 2.4a shows the mean annual total precipitation distribution over the VGO

taken from the atmospheric reanalysis project for Iceland (ICRA) data (further details

provided in section 3.4.1). The prevailing north-easterly wind, which blows moist air over

Öræfajökull, induces a strong lateral precipitation gradient due to orographic lift with

>8000 mm y-1 of precipitation falling at the summit of Öræfajökull and <1500 mm y-1

falling in the sandur region. Seasonally, the precipitation is substantially lower between

April and August than the rest of the year (blue bars in Fig. 2.4b).

Mean monthly air temperature on the sandur (yellow line, Fig. 2.4b) shows that at

lower elevations, temperature peaks in July (10.7 ◦C) and is lowest in January (0.7 ◦C).

Regional variations in near-surface air temperature in Iceland are controlled by topography

to a large extent (Crochet and Jóhannesson, 2011). Analysis of weather station data

conducted by Flett (2016) indicates that the average temperature lapse rate at the VGO

is -0.44 ◦C 100 m-1.

2.5 Hydrology and hydrogeology

The Virkisá River �ow is controlled to a large extent by the seasonal input of water from

snow and ice melt. Flett (2016) analysed measurements of river �ow, ice melt and snow

line location to characterise seasonal variations in water inputs to the river. They conclude

that the main melt season occurs between May and September, but that snow melt likely

contributes to runo� year-round given that the snow line elevation rarely exceeds 1200

m asl and the occurrence of above-freezing days throughout the year at lower elevations.

Indeed, analysis of 2H and 18O stable isotope compositions of river water revealed glacier

melt is the dominant source of water, accounting for up to 80% of wintertime river �ow

(MacDonald et al., 2016).

The highest �ows in the Virkisá River occur between June and August (8.7 m3 s-1

on average) when near-surface air temperature is highest and the lowest �ows occur in
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Figure 2.4: Mean annual total precipitation distribution (1980-2016) over the VGO (a)

and monthly precipitation distribution (blue bars) at three selected locations (red dots in

a) and monthly mean temperature (yellow line) from the Fagurhólsmýri weather station

situated on the sandur 12 km south of the study site at 10 m asl (b).
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early-spring between March and April (1.7 m3 s-1 on average) before the initiation of

the main melt season. River �ow responds rapidly to runo� events with an average lag

time between peak rainfall and runo� of 10.5 h (Flett, 2016). This rapid response time

can be partly explained by the catchment's small size. Additionally, ground penetrating

radar (GPR) surveys conducted on the glacier ice and remnant buried ice immediately in

front of the glacier indicate the presence of an extensive conduit network (Phillips et al.,

2013; Phillips et al., 2014) and subsequent tracer tests from moulins in the main ablation

zone beneath the ice fall indicate that this conduit network provides an e�cient drainage

system for runo� with mean �ow velocities of 0.58 m s-1 at the end of the melt season

(Flett et al., 2017). Hydrograph recession analysis has also shown that this drainage

system remains open throughout the year, providing e�cient drainage channels that can

accommodate large runo� inputs (MacDonald et al., 2016). Accordingly, the Virkisá River

is highly responsive to daily and even sub-daily variations in rainfall and melt throughout

the year.

The proglacial lake at the glacier terminus forms the headwater of the Virkisá River,

the only drainage pathway for melt and rainfall from the Virkisá River basin. The river

�ows south-westerly, �rstly through 800 m of bedrock controlled section which is �anked

on either side by moraines. Beyond this, the river continues its route towards the coast

over the vast and gently sloping sandur �oodplain: a shallow, uncon�ned aquifer with an

average surface gradient of 0.017. Groundwater in the aquifer is recharged by rainfall,

snow melt and river losses. The water table typically resides between 0 and 4.4 m of the

ground surface promoting interactions between groundwater and surface features. Indeed,

an extensive water sample �eld campaign using stable isotopes 2H and 18O to distinguish

between meltwater and precipitation indicates that glacial meltwater in�uences ground-

water within 500 m of the river (see groundwater catchment in Fig. 2.1c) with more than

25% of groundwater in this part of the aquifer sourced from meltwater (Ó Dochartaigh

et al., 2019). Additionally, groundwater provides a reliable source of runo� to the river

∼2 km downstream of the lake outlet both through direct exchange at the river bed and

via a large network of springs and seeps that discharge back to the river. In winter, when
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meltwater runo� is relatively low, 15�20% of river water in this lower section of sandur

originates from groundwater (MacDonald et al., 2016).

Pumping tests conducted at eight boreholes drilled into the top 15 m of sandur estimate

transmissivity between 100-2500 m2 d-1 with a median value of 600 m2 d-1. Additionally,

surface permeability has been estimated from Guelph permeameter experiments and par-

ticle size analysis which showed a median surface hydraulic conductivity of 35 m d-1 with

an interquartile range of 25 - 40 m d-1 (Ó Dochartaigh et al., 2019). The permeability of

the deeper sandur aquifer has not been measured. The bedrock is poorly fractured and

pumping tests indicate its transmissivity is very small (<0.25 m2 d-1).

2.6 Summary

This chapter has given an overview of the key characteristics of the VGO study site in-

cluding the geological setting, the historic evolution of Virkisjökull, the dominant climate

and current understanding of the hydrological and hydrogeological behaviour of the catch-

ment based on site investigations undertaken since 2009. The next chapter introduces the

overall research design of this thesis and provides more detail on available observation

data for the VGO and the model codes used to meet the research objectives identi�ed in

chapter 1.
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CHAPTER 3:

RESEARCH DESIGN, DATA AND MODELS

3.1 Introduction

The research undertaken in the subsequent chapters uses a variety of environmental data

including observation data obtained by direct measurement in the �eld, remotely sensed

�eld data and climate model outputs. These data are used to drive and evaluate sim-

ulations from two principal model codes which are used throughout this thesis. They

include one glacio-hydrological model code, GHM++ and one groundwater model code,

MODFLOW-NWT. This chapter presents the research design which outlines how the

models and data have been used to meet the research objectives identi�ed in Chapter 1.

It then provides more detail of the model codes and environmental datasets which have

been used to undertake the research in this thesis.

3.2 Research design

Chapters 4, 5 and 6 contain the bulk of the experimental research undertaken in this

thesis, each of which has been designed to meet the identi�ed research objectives and to

feed newly gained knowledge and newly generated datasets directly into the subsequent

chapters (Fig. 3.1).

Research objective 1 (chapter 4): Implement a novel GHM comparison and se-

lection framework to undertake a rigorous evaluation of multiple GHM struc-

tures

Chapter 4 presents a model intercomparison study which compares the e�ciency of dif-

ferent structural representations of two key glacio-hydrological processes: i) snow and ice

melt; and ii) runo�-routing which are implemented in the GHM++ glacio-hydrological
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model code (detailed below). This chapter implements a limits of acceptability (LOA)

framework in which the glacio-hydrological characteristics of the study site are charac-

terised using 33 metrics (signatures) derived from historic observations of ice melt, snow

coverage and river discharge. The uncertainty of each set of observations is harnessed to

de�ne LOA, a set of criteria used to objectively evaluate the e�ciency of di�erent GHM

structures and parameterisations and identify model de�ciencies. Speci�cally, this chapter

evaluates di�erent structural representations of snow/ice melt and runo�-routing.

Research objective 2 (chapter 5): Implement a climate-GHM model chain to

project twenty-�rst century changes in di�erent characteristics of river �ow

regime

Chapter 5 draws on the �ndings from chapter 4 and uses the signature-based LOA frame-

work to de�ne an ensemble of the most behavioural GHM structural con�gurations and

parameterisations which are then driven with an ensemble of state-of-the-art climate pro-

jections to project twenty-�rst century changes in the Virkisá River �ow regime. This

chapter employs signatures to quantify changes in di�erent characteristics of river �ow

regime change (magnitude, timing and variability).

Research objective 3 (chapter 5): Determine the relative contribution of indi-

vidual model chain components to uncertainty in river �ow regime projections

Within chapter 5, a decomposition of the projection uncertainties is also undertaken to

quantify the relative contributions of di�erent components of the climate-GHM model

chain to projection uncertainty across the signatures. In total, �ve contributors to pro-

jection uncertainty are considered including the future greenhouse gas concentrations,

climate model and climate projection downscaling. Contributions from snow/ice melt

and runo�-routing structure uncertainty in the GHM make up the �nal two components.
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Research objective 4 (chapter 6): Incorporate a distributed groundwater

model into the climate-GHM model chain to project twenty-�rst century

changes in proglacial groundwater level dynamics and GW-SW exchanges

Finally, Chapter 6 uses a subsample of the climate and river �ow ensemble projections from

Chapter 5 as boundary conditions for a distributed MODFLOW-NWT groundwater model

of the proglacial sandur. The groundwater model projections are used to evaluate impacts

of twenty-�rst century climate and river �ow regime change on proglacial groundwater

level dynamics and GW-SW exchanges.

Chapter 7 synthesises the main conclusions from each of the research chapters and

identi�es research areas for future work.

3.3 Model codes

3.3.1 GHM++ glacio-hydrological model

Key to achieving the research objectives was using a GHM code that is: i) computation-

ally e�cient, allowing for the simulation of large ensembles; and ii) easily customisable,

allowing for the incorporation of di�erent model structures that can be used interchange-

ably. It was decided that to guarantee these requirements, a new GHM code should be

written. This decision was made for a number of reasons. Firstly, the advantage of having

total familiarisation with a model code allows one to customise that code with relative

ease while reducing the potential for introducing errors to simulations. Similarly, given

the variety of model evaluation data used (see section 3.5 below), a deep understanding of

the model code helps to maximise commensurability of model simulations with observa-

tion data. Finally, developing a new code allows for the prioritisation of model complexity

(and computational demand) for those catchment properties and processes deemed most

important, thereby removing potentially redundant and computationally expensive model

characteristics.

C++ was deemed the ideal programming language for developing the GHM, �rstly
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Figure 3.1: Overview of thesis research design which shows how the study region, driving

climate and evaluation data and model codes are used across the chapters to meet the

research objectives.

25



Chapter 3: Research design, data and models

because it is relatively low level with small overheads, allowing for one to write highly

e�cient code with minimal processor and memory demand. Additionally, it uses an

object-oriented programming paradigm which allows one to design model codes with a

modular structure. By doing so, processes within the model code can be arranged as

a series of interacting objects allowing one to easily add or modify individual process

representations without the need to extensively alter the overarching code and potentially

introduce model errors.

The model code is hereafter refereed to as GHM++. The code is driven by gridded

climate time series data and simulates a number of key catchment processes including

the accumulation and melt of snow and ice, snow drift, glacier advance and retreat, soil

in�ltration and evapotranspiration and runo�-routing through the snow, ice and overland.

A detailed description of the model structure and equations are provided in Chapter 4

and associated appendices.

3.3.2 MODFLOW-NWT groundwater model

The U.S. Geological Survey MODFLOW-NWT groundwater model code (Niswonger et

al., 2011), a variant of the core MODFLOW-2005 code, was used to simulate groundwa-

ter level dynamics and GW-SW exchanges in the proglacial sandur. MODLFOW-NWT

simulates nonsteady groundwater �ow in three dimensions over a distributed grid of cells

using a �nite di�erence approach. It can also simulate external stresses including recharge,

rivers and surface springs. A key advantage of the MODFLOW family of model codes is

their modular structure and use of `packages' to represent di�erent processes. The ability

to switch between packages allows the user to tailor the structure of the model to their

speci�c requirements. Accordingly, the code has been used for a wide range of applica-

tions including contaminant transport modelling, parameter estimation and simulation

of coupled groundwater/surface water systems (Hariharan and Uma Shankar, 2017; Mc-

Donald and Harbaugh, 2003). MODFLOW models have also been applied to cold-region

and mountain-fed shallow alluvial aquifers (Allen et al., 2004; Huntington and Niswonger,

2012; Okkonen and Kløve, 2011; Scibek et al., 2007).
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MODFLOW-NWT is a Newton-Raphson formulation of the MODFLOW-2005 code

which has been designed speci�cally for simulating uncon�ned groundwater �ow problems.

The Newton solver mitigates model convergence problems due to drying and wetting of

cells when representing uncon�ned aquifers where the water table moves between model

layers. This improved model stability is particularly bene�cial for future projection studies

where simulated groundwater levels may deviate outside of the simulation range during

historical periods.

3.4 Climate data

Continuous climate data are required as boundary conditions for GHM++ to drive the

glacial and hydrological process simulations. A range of data sources were available in-

cluding historic weather station observations and gridded precipitation data covering the

years 1980-2016 inclusive as well as future climate projections up to 2100.

3.4.1 Historic climate data (1980-2016)

Weather station observations

Measurements of climate variables at the VGO are available from three o�-ice, telemetered

automatic weather stations (AWSs). These are situated at 156 m asl (AWS1), 444 m asl

(AWS3) and 805 m asl (AWS4) (Fig. 3.2) and have been operational since September

2009, 2010 and 2011 respectively. They measure meteorological variables including air

temperature, rainfall, wind speed and wind direction every 15 minutes (see Appendix

A.1 for raw data). AWS1 is also equipped with a cosine-corrected pyranometer which

measures incident solar radiation. To measure rainfall, AWS1 uses a tipping-bucket rain

gauge, while AWS3 and AWS4 are equip with Vaisala RAINCAP R© technology: acoustic

sensors that measure the impact of individual raindrops which are subsequently converted

to rainfall volume. All data are discontinuous for several reasons. Firstly, hardware

has on occasion malfunctioned, especially during extreme weather conditions e.g. strong

winds have broken the wind-vanes and anemometers. Secondly, the long, dark and cold
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winters can result in loss of power from the solar-powered battery packs. Finally, freezing

temperatures result in erroneous precipitation measurements as none of the AWSs are

designed to measure snowfall. Additionally, the tipping bucket gauge can accumulate

large amounts of snowfall which must melt before it is able to measure rainfall accurately.

Similarly, the acoustic sensors are prone to icing over which can a�ect their operation.

Accordingly, all days where the previous three days were not above 0◦C were considered

unreliable and removed from the database. Figure 3.3 shows the number of days of usable

data at each weather station for each month. For air temperature (Fig. 3.3a) and wind

speed (Fig. 3.3b) AWS1 has the most usable data due to the fact it was installed one

and two years prior to AWS3 and AWS4 respectively. It is also the only station with

incident solar radiation data (Fig. 3.3c). For rainfall, AWS4 has the most data during

the summer months between June and August, but the prevalence of sub-zero conditions

at higher elevations means that it has less than 16 days of usable data for all months

between November and April. AWS3 has more days of data during the cooler months,

but AWS1 consistently has the most available rainfall data outside of the summer months.

In addition to the AWSs, the Fagurhólsmýri weather station operated by the Ice-

landic Meteorological O�ce (IMO) approximately 12 km south of the VGO has daily

measurements of temperature dating back to 1949 (Appendix A.2) and therefore provides

long-term variations in regional near-surface air temperature.

Gridded precipitation

Given the lack of continuous precipitation data (particularly snowfall) within the study

region, and the known orographic in�uence of Öræfajökull on precipitation patterns, it was

deemed necessary to obtain an additional, reliable gridded precipitation product which

covers the VGO.

Recently, the IMO initiated the atmospheric reanalysis project for Iceland (ICRA)

to produce a historic record of gridded meteorological variables for the whole of Iceland

for use in glacier mass balance simulations and hydrological studies (Nawri et al., 2017).
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Figure 3.2: Location of primary instrumentation and datasets used throughout the re-

search.
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Figure 3.3: Number of days of air temperature (a), wind speed and direction (b), incident

solar radiation (c) and rainfall (d) data available for each month from the three AWS

installed in the VGO.

30



Chapter 3: Research design, data and models

These data are produced using the state-of-the-art HARMONIE-AROME mesoscale nu-

merical weather prediction model (Bengtsson et al., 2017) forced by the latest ECMWF

ERA-Interim reanalysis product from 1980-2016 inclusive. As part of this they produce

hourly precipitation at a spatial resolution of 2.5 km which, when compared to data from

64 weather stations in contrasting topographic settings across Iceland, have shown to

match measurements closely and represent a signi�cant improvement over older gridded

precipitation products for Iceland (Crochet et al., 2007). These data are therefore con-

sidered the most accurate gridded precipitation product currently available (Nawri et al.,

2017) and were thus adopted for this study.

It is important to note that Nawri et al. (2017) stress biases may still be large at

individual gauges, especially in the winter. Therefore, these data should be used with

careful consideration of these biases.

3.4.2 Twenty-�rst century projections (2005-2100)

Projections of future climate from general circulation models (GCMs) underpin the phys-

ical science basis of climate change (Stocker et al., 2013). Since 1995, virtually all climate

modelling centres around the world have coordinated their modelling e�orts through the

Coupled Model Intercomparison Project (CMIP). CMIP provides a community-based in-

frastructure to support model intercomparison and enable the scienti�c community to

analyse outputs from GCMs in a systematic fashion. As of 2019, the sixth phase of the

programme was being undertaken, but the experiments remain incomplete. As such, the

experiments conducted under the �fth phase (CMIP5) remain the most up-to-date climate

projection data.

A key drawback of using GCM outputs is that the simulations are typically done at a

resolution of a few 100 of kms which prevents them from capturing the e�ects of complex

topography and land-surface characteristics. Their performance also deteriorates when

looking at higher-order climate statistics such as variability and extremes (Giorgi et al.,

2009). To circumvent this problem, regional climate models (RCMs) are increasingly

being implemented by the climate modelling community to dynamically downscale GCM
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simulations and provide higher-resolution climate information. In 2009, theWorld Climate

Research Programme (WCRP) initiated the COordinated Regional Climate Downscaling

EXperiment (CORDEX) (Jacob et al., 2014) to provide a framework to evaluate and

benchmark RCM performance and uncertainty . The CORDEX climate projections are

based on an ensemble of RCMs forced with an ensemble of GCM simulations from CMIP5

(Taylor et al., 2012) and they currently represent the state-of-the-art for understanding

climate change in Iceland (Gosseling, 2017).

Iceland is covered by two of the CORDEX regional model domains: EURO-CORDEX

and ARCTIC-CORDEX. A recent review by Gosseling (2017) concludes that the EURO-

CORDEX domain is preferable for Iceland as it includes projections at a higher 0.11◦C

spatial resolution and a larger ensemble of GCM-RCM combinations allowing better rep-

resentation of climate model uncertainty. Accordingly, the 0.11◦ EURO-CORDEX data

were adopted for this research (Fig. 3.4).

The 0.11◦ EURO-CORDEX simulations span the years 1950-2100 with simulations

up to 2005 constituting the `recent past' where in�uences such as atmospheric composi-

tion, solar forcing and emissions are imposed based on observations. From 2006, three

future representative concentration pathways (RCPs) were imposed on the models which

represent di�erent land use and greenhouse gas emission/concentration pathways. These

include RCP2.6, RCP4.5 and RCP8.5 which represent an additional radiative forcing by

2100 relative to pre-industrial values of +2.6, +4.5 and +8.5 W m-2 respectively (Vuuren

et al., 2011). All simulations are available at 3-hourly to 3-monthly resolution; how-

ever the 3-hourly simulations were only produced using four GCM-RCMs while daily to

seasonal simulations were produced using 15. Given the intent of this study to analyse

projection uncertainty, it was decided that the daily data were most suitable. Table 3.1

shows the six GCMs and seven RCMs which make up the 15 unique GCM-RCMs.
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Figure 3.4: EURO-CORDEX 0.11◦ RCM grid lines. RCM nodes are situated at grid line

intersects. All RCMs utilise the green grid except for REMO2009 which uses the blue

grid.
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3.5 Observation data for model evaluation

3.5.1 Gridded snow coverage

Gridded snow coverage data from the NASA Moderate Resolution Imaging Spectrora-

diometer (MODIS) (Riggs and Hall, 2015) have been widely used in the evaluation of

GHMs (Frey and Holzmann, 2015; Hanzer et al., 2016; Pellicciotti et al., 2012; Valentin

et al., 2018). These data have been archived since 2000 as part of the MOD10A1 product

and consist of daily 500 m gridded maps of snow cover extent with values ranging between

0 and 1 which relate to the proportion of the ground that is snow covered. The snow cover

extent is calculated using the normalized di�erence snow index (NDSI): a spectral band

ratio that utilises di�erences in infrared and visible spectral bands to identify snow cov-

ered features on Earth's surface. This method of determining snow coverage has shown to

be robust when compared against observations of snow coverage (Salomonson and Appel,

2004).

As part of the MOD10A1 product, a basic estimate of the data quality is calculated

as a means to avoid measurements a�ected by cloud cover and poor light conditions. For

this study, only those data that achieved a QA score of `good' or `best' were used. This

precluded the use of data collected between September to February presumably because of

reduced daylight hours and increased cloud cover during these months. Of the remaining

data <5% achieved a QA score of `good' or `best'. Furthermore, the MOD10A1 product

cannot distinguish between snow and ice-covered regions, so only data that covered ice-

free parts of the catchment have been used (Fig. 3.2) which limited the analysis up to a

maximum elevation of just under 1200 m asl.

3.5.2 Ablation

Direct measurements of ablation rates on the glacier were undertaken by Flett (2016) by

installing ablation stakes at 17 locations at elevations ranging between 174 - 459 m asl

(Fig. 3.2). They periodically measured ablation rates between September 2012 and May
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Table 3.2: Mean annual ablation rates measured at 17 ablation stakes between September

2012 and September 2013.

Stake ID Elevation (m asl) Ablation rate (m w.e. y-1)

F1 174 7.3

F2 185 7.9

F3 202 8.5

F4 213 7.3

F5 218 8.9

F6 283 8.7

F7 304 7.5

F8 315 6.6

F9 359 6.7

V1 217 8.0

V2 251 6.7

V3 252 7.9

V4 321 7.2

V5 358 6.6

V6 378 6.1

V7 387 5.8

V8 459 4.8

2014, capturing the entire 2013 melt season over the lower section of Virkisjökull and

recorded annual ice melt of 4.8 m w.e. y-1 below the ice fall and 8.9 m w.e. y-1 near the

ice margin (Table 3.2).

In addition, researchers at the British Geological Survey have undertaken annual high

resolution (sub-metre) terrestrial lidar scans of the proglacial region between 2009 and

2016 including ice at the front of the glacier (cyan dashed box in Fig. 3.2). The scans were

carried out using two scanners: The Riegl LPM-i800HA which is a medium to long-range

scanner which can scan up to 800m with an accuracy of ±15mm and the Riegl VZ1000,

a higher precision scanner which is able to scan up to 1200m with an accuracy of ±5mm.

Point-cloud data collected from both scanners were oriented using dGPS measurements

of the scanner and back-sights positioned on the scan area and then converted into digital

elevation models (DEMs) using the InnovMetrics Polyworks R© software package. Given

that ice �ow is negligible at the front of the glacier, these data could provide an additional

indicator of ablation rates. Figure 3.5 shows the di�erence in surface elevation recorded
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Figure 3.5: Elevation change in proglacial region between two lidar scans taken in Septem-

ber 2012 and September 2013.

between two scans taken in September 2012 and September 2013. When converted to

units of m w.e. (assuming an ice density of 900 kg m-3), there is a 0.9 m w.e. y-1 (13%)

di�erence between the estimated ablation from the lidar scan and the F1 ablation stake

which is likely due to scale di�erences between the two measurement approaches.

3.5.3 Glacier geometry

Accurate DEMs of Iceland's main glaciers were produced using airborne lidar technology

as part of an initiative by the IMO and Institute of Earth Sciences, University of Iceland

to establish a baseline for monitoring future changes in glacier geometry. The surveys

were carried out between 2008 and 2011 using an Optech ALTM 3100 laser scanner

and are available as a 5 m gridded dataset. The scans of Öræfajökull and its outlet

glaciers were undertaken in 2011 (Jóhannesson et al., 2013) and they are the most accurate

measurement of the ice geometry and surrounding landscape currently available.

Earlier maps of ice surface topography have been derived for some glaciated regions
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in Iceland using stereo photogrammetric processing of aerial photography and satellite

imagery (Gudmundsson et al., 2011). Hannesdóttir et al. (2015a) constructed six historic

(1890-2002) DEMs of Öræfajökull's outlet glaciers using a range of glacial extent indicators

including �eld geomorphology, aerial imagery and di�erential GPS measurements on the

ice surface. They did not, however, include Virkisjökull in their analysis due to limited

data availability. More recently, Magnússon et al. (2016) used photogrammetric methods

to derive six historic DEMs of the Drangajökull ice cap in Iceland between 1946 and 2005

using aerial images from the National Land Survey of Iceland archives and the Loftmyndir

ehf aerial photography company. Upon request, the authors produced an equivalent

historic DEM of Virkisjökull from aerial images taken in 1988 at 20 m resolution. The

DEM was created by implementing a four step approach in the ERDAS IMAGINE R©

Photogrammetry software. The steps include: i) orientation of the images; ii) stereo

matching; iii) manual edits of the DEMs; and iv) orthorecti�cation of aerial photographs.

The orthorecti�ed aerial photographs were then used to de�ne the glacier margin.

In addition to the 1988 and 2011 DEMs, Magnússon et al. (2012) derived a map

of Öræfajökull's bedrock topography based on radio echo sounding (RES) pro�les and

point measurements carried out between 1991 and 2012. Upon request, the authors

supplied the map as a digital 20 m raster �le. They note that the bedrock elevations

of the caldera at the summit of Öræfajökull are well constrained by RES pro�le data.

Point measurements are mainly focussed in the lower parts of Öræfajökull including the

relatively �at ablation zone of Virkisjökull near the glacier terminus. For the steep and

crevassed regions (including the crevassed sections outlined in Fig. 2.3b), there are no

observation data due to access di�culties. Accordingly, Magnússon et al. (2012) used

a linear relationship between the slope and ice thickness to de�ne ice thickness in these

sections. They note, however, that the linear relationship breaks down where surface

slope <8◦ making ice thickness most uncertain in these areas of the highly crevassed zone.

Figures 3.6a and b show the estimated ice thickness in 1988 and 2011 respectively

taken as the di�erence between the DEM and the bedrock topography. There has been

more than 100 m lowering of ice at the front of the glacier between 1988 and 2011 and
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almost no change in ice thickness over a large section of glacier covering the summit down

to the beginning top of the bedrock ridge that separates the two glacier arms (Fig. 3.6c).

The total volume change between 1988 and 2011 was ∼0.3 km3.

3.5.4 River discharge

River stage measurements

Continuous hourly river stage data are available from an automatic stream gauge (ASG)

installed by the British Geological Survey in September 2011. ASG1 is situated at the

Icelandic national Route 1 road bridge 2 km downstream of the lake outlet on the Virkisá

River (Fig. 3.2). The bridge is built on two central concrete piers with wooden trestle

supports at either end (Fig. 3.7a). A central island made up of sandur material has

formed around one of the concrete piers (Figs. 3.7a and d) which separates two water-�lled

channels. Flow is generally constrained to the larger channel (up to 22 m wide) to the east

while �ow in the smaller channel (up to 15 m wide) to the west is insigni�cant. It should

be noted, however, that as water levels rise, overspill from the main eastern channel feeds

the smaller channel to the west. Even so, the pooling of water here is thought to derive

mainly from groundwater which maintains surface water temperatures above freezing even

when the main channel freezes over (see Fig. 3.7b). During exceptionally high �ows, water

levels can exceed the central bank material and the entire channel transmits river water.

Stilling wells with submerged pressure transducers and water temperature sensors (log

every 15 minutes) are installed on the eastern wooden trestle and on the downstream face

of one of the concrete piers (hereafter referred to as the eastern and central stilling well

respectively). Additionally, a camera is mounted next to the river which takes photos of

the channel three times a day (9:00, 12:00 and 15:00 UTC). Given that the river is prone

to freezing over during the winter months, the photographic archive and temperature data

were used to remove these periods from the river stage time series.

Signi�cant e�orts were made to ensure the reliability of the river stage data which

depends both of the time of year (e.g. due to freezing) and �ow conditions in the river.
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Figure 3.7: Icelandic national Route 1 road bridge where ASG1 is located (a). Annotated

are the locations of the eastern (1) and western (2) stilling wells, the central island (3)

and the mounted camera (4). Also shown are pictures from the mounted camera during

the exceptionally high �ows, October 2014 (b), during freezing conditions, February 2015

(c) and a cross section pro�le of the river bed and water levels at the bridge based on a

survey undertaken in March 2015 (d).
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The eastern stilling well is reliable during moderate and high �ows, but can dry when

water levels are low and/or freeze during the winter months. The central stilling well

is reliable during low �ow and cold periods as it is positioned in the deeper section of

river channel, but hydraulic drag e�ects are observed to cause local lowering of the water

level downstream of the pier as �ow velocities increase making measurements unreliable

during high �ows. Accordingly, the �ow records were combined based on their known

uncertainties to form a single river stage time series (Fig. 3.8a). Prior to harmonising the

stage data, a comparison of the logged water levels at both wells revealed discrepancies

of up to 40 cm. Accordingly, these discrepancies were analysed in detail and corrected for

(see Appendix B). A key conclusion from the analysis was that data prior to 2013 should

not be used as the discrepancies between the logged levels at the two stilling wells are

di�cult to characterise and thus correct for. Additionally, signi�cant bridge maintenance

works were undertaken by the highway authority in October 2012 resulting in a major

diversion of the main river channel making measurements at this time more unreliable.

River �ow gauging

River �ow gaugings have been undertaken periodically at the bridge since September 2011

by collaborators at the University of Dundee using the velocity-area method (Herschy,

1999). For the majority of gaugings, an Ott C-31 current meter and electronic counter

unit were used. Flett (2016) used gaugings taken in 2011, 2013 and 2014 to construct a

stage-discharge rating curve based on the widely-applied power law equation:

Q = a(c+ h)b (3.1)

where Q is river discharge (m3 s-1), h is the stage (m) and a, b and c are calibration

parameters.

Given the signi�cant alteration to the river channel in 2012, gaugings from 2011 were

not used in this study, but additional data collected between January 2015 and March

2017 were available, giving a total of 43 gaugings. In addition, it was also deemed appro-

priate to experiment with using a two and three-section power law approach (McMillan
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and Westerberg, 2015), given the irregular geometry of the river bed and the periodic acti-

vation of the western section of the river channel. It was found that a two-section equation

produced a better �t than that of Eq. 3.1, but that the three-section approach provided

no additional bene�t. Accordingly, the two-section power-law equation was deemed the

most parsimonious approach and has been used throughout this research. It has the form:

Q =


a1(c1 + h)b1 h < br1

a2(c2 + h)b2 h ≥ br1

(3.2)

where bri is the breakpoint on the rating curve (m). The following constraint is placed to

endure continuity at breakpoints:

a2 =
a1(br1 + c1)b1

(br1 + cb22 )
(3.3)

A shift in the rating was noted between the end of 2014 and beginning of 2015 which

is likely due to the movement of river bed material which is known to become mobile

during high �ow events such as that which occurred in October 2014. Accordingly, two

separate rating curves were derived (Fig 3.8b). Figure 3.8c shows the river discharge time

series derived using these rating curves.

3.5.5 Groundwater level

Eight boreholes were drilled into the sandur over a six day period between 17th and 22nd

August 2012. They form three transects leading away from the Virkisá River channel

including an upper (U1,U2), middle (M1,M2,M3) and lower (L1,L2,L3) transect (Fig.

3.2). The boreholes were drilled to between 9 and 15 m deep and installed as piezometers,

with 88 mm diameter uPVC plain casing and a 3�6 m length of 0.5 mm slotted well

screen. The completed piezometer depths range from 8.2 to 14.9m below ground level

(Table 3.3).

Groundwater level in each piezometer was measured at 15 minutes intervals using In-

Situ Inc. Rugged Troll 100 non-vented pressure transducers at 7�8.4 m depth which were

corrected for air pressure based on measurements from two In-Situ Rugged Barometer
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Table 3.3: Summary of sandur boreholes adapted from Ó Dochartaigh et al. (2012).

Borehole ID Date completed Completed depth (m bgl) Depth of screen(s) (m bgl) Mean level (m asl) Level range (m)

U1 17/08/2012 14.4 10.4-13.4 88.6 1.5

U2 18/08/2012 14.6 8.6-9.6; 11.6-12.6 88.7 1.9

M1 19/08/2012 14.9 10.95-13.95 73.8 1.9

M2 20/08/2012 14.75 11.75-13.75 74.1 2.4

M3 21/08/2012 14.68 7.7-13.7 76.1 3.6

L1 21/08/2012 11.98 5.05-11.05 55.1 1.0

L2 22/08/2012 8.23 4.25-7.25 56.6 1.0

L3 22/08/2012 8.42 4.45-7.45 58.8 1.6

Trolls. Figure 3.9 shows the groundwater level time series obtained from each borehole.

Note the groundwater level �uctuations at borehole M3 are at least 50% larger than at the

other boreholes. Discussions with A. MacDonald con�rmed that these are likely due to an

ephemeral surface water channel which has been seen to �ow in the immediate vicinity of

the borehole causing discrete focussed groundwater recharge (MacDonald, 2019, personal

communication, 28 February). Accordingly, it was decided not to use these data in this

study given that they are not representative of regional groundwater level �uctuations.

3.6 Summary

This chapter has detailed the models and datasets that will be used throughout this

thesis to meet the research objectives identi�ed in Chapter 1. The GHM++ glacio-

hydrological model will be used in chapters 4 and 5 to simulate accumulation and melt

of snow and ice, snow drift, ice �ow, soil in�ltration and evapotranspiration and runo�-

routing through the snow, ice and overland in the Virkisá River basin over historic (1980-

2016) and future (up to 2100) time periods. It will also be used in chapter 6 to provide

di�use recharge and river �ow boundary conditions for a MODFLOW-NWT groundwater

model of the proglacial sandur aquifer. Both models will be used in conjunction with

available catchment observation data to aid model parameterisation and evaluation. The

next chapter is the �rst of the main research chapters. Here a signature-based LOA

framework is implemented to compare the e�ciency of di�erent structural representations

of snow/ice melt and runo�-routing in the GHM++ glacio-hydrological model code.
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CHAPTER 4:

APPLICATION OF A LIMITS OF ACCEPTABILITY

FRAMEWORK FOR GLACIO-HYDROLOGICAL

MODEL COMPARISON AND SELECTION

4.1 Introduction

This chapter aims to meet the �rst research objective of this thesis by implementing

a signature-based LOA model intercomparison framework to compare the e�ciency of

di�erent snow/ice melt model structures and runo�-routing model structures within the

GHM++ glacio-hydrological model code. A range of signatures are derived from obser-

vations of ice melt, snow coverage and river discharge to quantify di�erent aspects of the

Virkisá River basin's glacio-hydrological behaviour. The uncertainty of each set of obser-

vations is then harnessed to de�ne the LOA, a set of criteria used to objectively evaluate

the acceptability of di�erent GHM structures and parameterisations. The �ndings and

methodology developed from this study will be used to inform the model calibration and

selection procedure for the future projection study presented in the next chapter.

The material presented in this chapter has been published in The Cryosphere (Mackay

et al., 2018). For this, JM designed and undertook all aspects of the methodology including

the �eldwork, GHM theory and code, construction of bias-corrected climate time series

and the de�nition and calculation of glacio-hydrological signatures and their LOA. He also

led the analysis, interpretation and writing of the manuscript. All co-authors (NB, DH,

SK, CJ, JE and GA) contributed to the �eldwork design, provided guidance on the choice

of signatures and GHM structures and contributed to the �nal edits of the manuscript.
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4.2 Background

Computational GHMs allow us to develop an understanding of how future climate change

will a�ect river �ow regimes in glaciated watersheds (Lutz et al., 2014; Radi¢ and Hock,

2014; Ragettli et al., 2016; Singh et al., 2016b). A variety of GHM codes exist (e.g.

Boscarello et al., 2014; Ciarapica and Todini, 2002; Huss et al., 2008b; Schae�i et al., 2014;

Schulla, 2015), each of which include a number of model components that represent two

broad groups of processes: i) glaciological mass balance: the accumulation and ablation

of snow and ice; and ii) hydrological water balance: the storage and release of melt

and rainfall through snow, ice, overland and the subsurface. The exact form that these

model components should take, both in terms of their governing equations (structure)

and numerical constants (parameterisation) is not known. Physically based models which

solve equations derived from �rst principles, typically over a distributed grid, are our

closest approximation of the `true' structure. However, limited parameterisation data and

computer resources often preclude the use of such complex models, particularly in remote

mountainous regions where data are scarce and where the inclusion of extra complexity

does not guarantee better predictions (e.g. Gabbi et al., 2014).

Simpli�ed process models o�er an alternative. They are faster to run and employ

fewer parameters that are typically calibrated to available observation data. They are

based on, but do not necessarily adhere to, physical laws and as such their mathematical

structure is somewhat unconstrained and may be biased towards a particular scientist's

own perceptions and understanding of environmental processes. This has led to the de-

velopment of a variety of competing model structures which purport to simulate the same

process, but which have been derived from di�erent process hypotheses. For example, a

number of simpli�ed `index' model structures of snow and ice melt exist. The classical

temperature-index model (TIM) simulates melt as a linear piecewise function of temper-

ature only and ignores other drivers of melt which can be found in the physically based

surface energy balance equation (Braithwaite, 1995). The TIM hypothesis can be justi-

�ed because of the in�uence temperature has on the total energy balance of ice and snow,
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particularly in temperate climates (Aðalgeirsdóttir et al., 2011; Guðmundsson et al., 2009;

Ohmura, 2001). So-called `enhanced' TIM structures have also been proposed which in-

clude added levels of complexity with the purpose of providing more accurate estimates

of melt. These have accounted for perturbations in melt caused by topographic shading

(Hock, 1999), surface albedo characteristics (Oerlemans, 2001; Pellicciotti et al., 2005)

and more recently, debris cover (Carenzo et al., 2016).

Similarly a number of simpli�ed representations of processes governing the hydrolog-

ical water balance have been used in GHMs. Arguably, the equations that govern the

routing (transport) of runo� are most important in relation to river �ow predictions in

glaciated river basins, as storage characteristics of ice and snow strongly in�uence river

�ow regimes over a range of timescales (Jansson et al., 2003). The concept of linear reser-

voirs is the most widely adopted approach for runo�-routing in glaciated basins (Gao

et al., 2017; Hanzer et al., 2016; Zhang et al., 2015). A linear reservoir lumps all of

the interacting, non-linear and non-stationary components of water transmission within

a prede�ned area (e.g. a watershed) into a single leaky bucket. Despite its simplicity, the

linear reservoir has shown to be remarkably versatile at capturing the storage-discharge

characteristics of glaciated river basins around the world (Farinotti et al., 2012; Hock

and Jansson, 2005; Woul et al., 2006). This is partly because the concept lends itself

to structural modi�cations that can represent di�erent glacio-hydrological systems. For

example, Hanzer et al. (2016) hypothesised that the snow pack, �rn layer, glacier ice and

the region free from ice all exhibit unique runo�-discharge responses and advocate the

use of four linear reservoirs in parallel to distinguish between these units. In contrast,

Hannah and Gurnell (2001) were able to accurately reproduce river discharge time series

collected from the outlet of the Taillon glacier in the French Pyrénées using only two linear

reservoirs to route meltwater through the snowpack and ice separately, while Boscarello

et al. (2014) were able to accurately simulate the observed river discharge time series in

the Rhone watershed using a single linear reservoir to route all rainfall and melt runo�

simultaneously.

The availability of multiple, presumably plausible, simpli�ed model structures presents
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somewhat of a dilemma to glaciologists and hydrologists as they are left with some un-

certainty about how processes should be represented in their models. For the purpose

of river discharge predictions, this problem is particularly pertinent as there are compet-

ing structures for two fundamental controls on these predictions: snow and ice melt and

runo�-routing. One approach to mitigate this is to determine the `optimum' structure that

best captures the observation data. Structural optimisation of simpli�ed runo�-routing

routines has largely been ignored in glacio-hydrological contexts, although Hannah and

Gurnell (2001) provide one notable exception where they used hydrograph recession limb

analysis to identify the most appropriate linear reservoir con�guration for a glaciated

river basin. More studies have sought to optimise and compare simpli�ed models of melt.

Gabbi et al. (2014) applied four di�erent TIMs to Rhonegletscher, Switzerland. They

found that all achieved a similar goodness-of-�t to six years of ablation stake data, but

that the inclusion of a solar radiation term provided the most accurate predictions of

multi-decadal measurements of ice volume change. Irvine-Fynn et al. (2014) applied six

di�erent TIMs to the High-Arctic Midtre Lovénbreen glacier and compared them against a

two-year dataset of seasonal ablation stake data. They found some minor improvements

when various levels of complexity were introduced to the classical (temperature-only)

TIM, however simulations were generally comparable between competing model struc-

tures. More recently, a comparison of four TIMs applied to four glaciers in the French

Alps by Reveillet et al. (2017) found no clear evidence that using an enhanced TIM over

the classical temperature-only approach provided better simulations when compared to a

17-year dataset of ablation stake measurements. Mosier et al. (2016) used a multi-criterion

evaluation approach to compare the performance of di�erent conceptual melt model struc-

tures. They compared seven competing melt model structures in two glaciated catchments

in Alaska to ablation stake, river discharge and remotely-sensed snow coverage data. They

found that no single model was best across all of the observation datasets, but the inclu-

sion of a snow cold-content representation consistently produced the best goodness-of-�t

scores over the evaluation data.

Clearly, while some studies have provided useful insight into the comparative behaviour
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between competing conceptual process hypotheses (particularly for melt), none provide

any de�nitive reasoning for adopting (or not) a particular model structure. Of course,

discriminating between competing model structures in this way is made di�cult by the

fact that observation data used to drive and evaluate models are uncertain and therefore

we cannot be sure whether model de�ciencies represent inadequacies in the model or the

data (Beven, 2016). Beven (2006) argues that because of this uncertainty and because

of the fact that all models are by de�nition imperfect, no one optimum model structure

(or parameterisation) exists. Instead, there is an equi�nality of `behavioural' models that

make predictions within some prede�ned acceptability bounds around the observation

data that take account of the various sources of modelling uncertainty. Indeed, parameter

equi�nality is a well recognised phenomenon in conceptual models of snow and ice melt

(Finger et al., 2015; Gabbi et al., 2014; Jost et al., 2012; Pellicciotti et al., 2012; Reveillet

et al., 2017). If we accept this, then a priority within the glacio-hydrological modelling

community should be to establish frameworks that allow us to robustly evaluate model

appropriateness and distinguish between behavioural (acceptable) and non-behavioural

(unacceptable) structures and parameterisations. Constraining the range of acceptable

models is particularly important for glacio-hydrological modelling as it has been shown

that model uncertainty can lead to high uncertainty in twenty-�rst century predictions of

river �ows in glaciated basins (Huss et al., 2014).

One potential source for inspiration is the hydrological rainfall-runo� modelling com-

munity. Their heavy reliance on an ever-expanding choice of conceptual hydrological

process models to make river �ow predictions prompted Gupta et al. (2008) to discuss

the need for a better framework in which to discriminate between these competing pro-

cess hypotheses. They focussed on the performance metrics used to evaluate how well

a model �ts a set of observations and noted that there was an over-reliance on metrics

that quantify the average performance of a model (e.g root mean squared error and Nash-

Sutcli�e e�ciency) which reduce information held in observation data down to a single

summary statistic. They argue for a multi-criterion, `diagnostic' approach where more of

the relevant information from observation data is extracted so that inadequacies in model
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structures and parameterisations can be better identi�ed. Rye et al. (2012) applied such

an approach to optimise a distributed surface mass balance model of two glaciers in Sval-

bard. They used ablation stake data to de�ne three di�erent features of the observations

including mass balance at the stake locations, long-term mass balance trend and mass bal-

ance gradient. Using a multi-objective optimisation procedure, they identi�ed structural

inadequacies relating to how the mass balance gradient was simulated.

Hydrologists are now moving away from traditional metrics of model performance in

favour of more diagnostic `signatures' of hydrological behaviour. These have typically been

derived from river �ow time series, an integrator of upstream hydrological processes, and

they may be as simple as the mean �ow (an indicator of water balance) or they can be used

to characterise the distribution (e.g. �ow percentiles) and timing (e.g. autocorrelation)

of �ows. They have shown to have more discrimination power than traditional error

metrics (Euser et al., 2013; Hrachowitz et al., 2014; Schae�i, 2016; Sha�i and Tolson,

2015) and, importantly, it is also possible to take account of their information content

(i.e. their uncertainty) so that decisions about model appropriateness can be made within

the uncertainties of observation data used to evaluate the model. Here, observation data

uncertainty can be used to de�ne quantitative LOA around each signature. Di�erent

model structures and parameterisations can then be systematically evaluated for their

ability to capture the signatures within their LOA, allowing the modeller to objectively

diagnose model de�ciencies and make decisions about model appropriateness.

Blazkova and Beven (2009) adopted a LOA framework to constrain the parameters of

a distributed hydrological model for �ood prediction in the Skalka catchment in the Czech

Republic. They derived 114 di�erent river �ow signatures and used the LOA to distin-

guish between acceptable and unacceptable parameter sets. More recently, Coxon et al.

(2014) used the LOA framework to evaluate the appropriateness of di�erent hydrological

model structures across 24 river basins in the UK. They demonstrated a clear di�erence

in structure acceptability across the catchments and that this was correlated with the

catchment geologies. The LOA framework has also recently been applied to an Alpine

catchment in order to diagnose de�ciencies in the SEHR-ECHO glacio-hydrological model
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(Schae�i, 2016). Using a range of river discharge signatures, they identi�ed a multi-year

period in river discharge observations that the model could not capture within the LOA.

A signature-based approach within a LOA framework could also be used to compare

and diagnose de�ciencies in di�erent simpli�ed melt and runo�-routing model (ROR)

structures and parameterisations employed in GHMs. For this purpose, signatures need

not be derived just from river discharge data, but should also be taken from other ob-

servation sources such as ice melt and snow coverage as these have shown to be useful

for evaluating the consistency of GHMs across di�erent aspects of glacio-hydrological sys-

tems (Finger et al., 2011; Finger et al., 2015; Hanzer et al., 2016; Mayr et al., 2013). By

doing so, this framework could facilitate better predictions of river �ow regime changes in

glaciated river basins; �rstly by helping to diagnose de�ciencies in GHM structures that

require improvement, and secondly, by objectively selecting the range of acceptable model

structures and parameterisations so that prediction uncertainty can be better constrained.

4.3 Aims

This study is the �rst of its kind to apply a signature-based LOA framework for a multi-

GHM-structure evaluation. The framework is used to evaluate three commonly used

simpli�ed melt model structures and three di�erent ROR structures of varied complexity.

By doing so, this study will meet objective 1 outlined in the introduction of this thesis.

Speci�cally, this study has two aims:

1. Investigate the utility of a signature-based LOA framework for diagnosing de�cien-

cies in the di�erent model structures.

2. Determine if the framework can be used to constrain a prior population of model

structures and parameterisations down to a smaller population of acceptable models.

The �rst aim will demonstrate the framework's usefulness for aiding future improvement of

simpli�ed process models, while the second aim will determine the framework's usefulness

for constraining simulation uncertainty.
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4.4 Methodology

4.4.1 Glacio-hydrological model

The GHM++ code was used for all model experiments which is computationally e�cient

and ideally suited for incorporating di�erent model structures. It consists of a 2D Carte-

sian grid of equally spaced model nodes. A spatial resolution of 50 m was selected as the

best balance between simulation detail and model performance. Hourly observations of

precipitation, temperature and incident solar radiation are used to simulate the accumu-

lation of snowfall and the melt of snow, �rn and ice across the model domain. The snow

redistribution algorithm developed by Huss et al. (2008a) is used to account for snow drift

and avalanches based on the curvature and slope of the surface. A soil in�ltration and

evapotranspiration model developed by Gri�ths et al. (2006) solves the water balance for

the non-glaciated regions of the study catchment. Excess soil moisture, rainfall and melt

are then routed to the catchment outlet via a semi-distributed network of linear reservoir

cascades which represent the water storage and release characteristics of the major hydro-

logical pathways in the watershed. The GHM also simulates the evolution of the glacier

geometry under periods of sustained negative mass balance using the ∆h parametrisation

of glacier retreat which has shown to closely reproduce the evolution of Alpine glaciers

with results comparable to more complex 3-D �nite-element ice �ow models (Huss et al.,

2010). Details of this and the soil water balance component are given in Appendix C.

The following text details the di�erent melt and runo�-routing structures adopted for this

study.

Snow and ice melt model structures

Melt of snow and ice is calculated at each model node separately. Snow melt can occur

at any node where a snow pack has developed. Ice melt can only occur at ice-covered

nodes where the snow pack has completely melted. The mass balance at a given node is

the summation of snowfall minus snow and ice melt. The melt model therefore performs
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a pivotal role in the function of GHM++ and in�uences a number of aspects of the model

simulations. Firstly, it simulates the hourly melt runo� in the catchment which in�uences

the discharge regime of the river outlet. It also controls the melt of snowfall and therefore

its distribution across the catchment. Finally, it determines the overall mass balance of

the glacier which in�uences the long-term evolution of the glacier geometry. Related to

this, GHM++ uses the mass balance calculated at each node to determine the equilibrium

line altitude (ELA) of the catchment. Here, the average node elevation where the mass

balance is close to zero was taken as the ELA and this was updated after each simulation

year. A rolling three-year average ELA was used to determine the dividing line between

the �rn and the bare ice on the glacier.

For this study, three di�erent conceptual models of snow and ice melt were compared,

which have been used extensively to simulate melt processes in glaciated regions around

the world (Gao et al., 2017; Matthews and Hodgkins, 2016; Nepal et al., 2017; Ragettli

et al., 2016; Reveillet et al., 2017). Each can be viewed as a simpli�cation of the full

surface energy balance equation which has the form:

QM = SW ↓ (1− α) + LW ↓ −LW ↑ +QH +QE +QR +QG (4.1)

where QM is the energy available for melt and sublimation (W m-2), α is the surface

albedo, SW ↓ is the incident solar radiation, LW ↓ and LW ↑ are the incoming and

outgoing longwave radiation balance terms, QH and QE are the turbulent sensible and

latent heat �uxes, QR is the sensible heat �ux supplied by rainfall and QG is conduction

of heat from the ground. Here, QM can be converted into a unit depth melt rate, M using

the thermodynamic properties of water:

M =
QM

ρwLf
β (4.2)

where ρw is the density of water (kg m-3), Lf is the latent heat of fusion of water (J kg-1)

and β is a scaling factor to achieve melt in units meters water equivalent per hour (m w.e.

h-1).

The �rst melt model structure (TIM1) employs a classic TIM approach (Braithwaite,

1995) whereby melt is assumed to increase linearly with temperature above a given critical
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temperature threshold:

Mi =


ai(T − T ∗i ) T > T ∗i

0 T ≤ T ∗i

(4.3)

where a (m w.e. ◦C-1 h-1) is the temperature factor calibration parameter that converts

temperature into melt, T is the near-surface air temperature and T ∗ is the critical thresh-

old above which melt occurs. This model e�ectively incorporates all of the energy balance

terms into a single calibration parameter, a. To account for the di�erent properties of

snow, �rn and ice that may bring about di�erent values of a and T ∗, these are de�ned

separately so that i = (snow, firn, ice).

The second melt model structure (TIM2) was originally proposed by Hock (1999) and

includes an additional incident solar radiation term to more closely match the full energy

balance equation. This model structure accounts for topographic e�ects such as slope,

aspect and shading which an can bring about spatio-temporal variations in melt (Arnold

et al., 2006; Pellicciotti et al., 2008). Their enhanced TIM has the form:

Mi =


(T − T ∗i )(ai + bi · SW↓) T > T ∗i

0 T ≤ T ∗i

(4.4)

where b (m3 w.e. W-1 ◦C-1 h-1) is an additional radiation factor calibration parameter that

converts the measured incident solar radiation, SW↓ (W m2) into a unit melt. To account

for the topographic e�ects at a given location, the incident angle of solar radiation was

calculated to scale the measured incoming radiation:

SW↓ = SW ∗
↓ · cos θ (4.5)

where SW ∗
↓ is the uncorrected measured incident solar radiation and θ is the incident

angle of solar radiation which was calculated at each node in the GHM as:

cos θ = cos β cosZ + sin β sinZ cos(Φsun − Φslope) (4.6)

where β is the surface slope angle, Z is the solar zenith angle, Φsun is the solar azimuth

angle and Φslope is the surface aspect.
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The SPA algorithm (Reda and Andreas, 2008) was used to determine hourly solar

zenith and azimuth angles used in Eq. (4.6). GHM++ also includes a dynamic topo-

graphic shading model that determines which model nodes are completely shaded for

each simulation hour based on the model domain DEM and the position of the sun in the

sky. For those model nodes that are shaded, SW↓ = 0.

Note that the form of Eq. (4.4) is not congruent with Eq. (4.1) as temperature is

used to multiply the short-wave radiation term. Konya et al. (2004) note that this can

lead to overestimation of melt during peak temperatures. Accordingly the melt model

structure proposed by Pellicciotti et al. (2005) was also used for this study (TIM3) which

is an enhanced TIM in additive form that also incorporates an albedo parameter, α, and

therefore more closely resembles the energy balance equation:

Mi =


ai(T − T ∗i ) + bi · SW↓(1− αi) T > T ∗i

0 T ≤ T ∗i

(4.7)

where b has the units m3 w.e. W-1 h-1. Following Pellicciotti et al. (2005), this melt

model structure also includes the dynamic snow albedo algorithm proposed by Brock

et al. (2000) which accounts for the drop in snow albedo as it ages using a logarithmic

function with the form:

αsnow = p1 − p2 · log10 · Ta (4.8)

where p1 is the albedo of fresh snow (set to 0.9), p2 is an empirical calibration parameter

and Ta is the accumulated daily maximum temperature greater than 0◦C since snowfall.

For all melt model structures, melt M is converted into a volumetric melt Mv at each

node:

Mv = M · A (4.9)

where A is the model node area. Following Hopkinson et al. (2010) the area of each node

is corrected for surface slope:

A =
L2

cos β
(4.10)

where L is the model node length and β is the node surface slope.
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Runo�-routing model structures

Runo� includes any rainfall falling on, and melting of the snow and ice as well as excess

soil moisture from those areas free of ice and snow. The concept of linear reservoirs was

employed to route runo� to the catchment outlet. A linear reservoir can be visualised

as a bucket that receives a volumetric in�ow and releases it at a rate proportional to its

internal water storage. The continuity equation can be written as:

ds

dt
= i− q (4.11)

where s is the storage (m3), i is the in�ow (m3 h-1) and q is the out�ow (m3 h-1) which

was calculated as a linear function of storage:

q =
1

k
s (4.12)

where k is mean residence time of the reservoir (h) which accounts for the di�usive e�ect of

storage and release mechanisms within the catchment. Increasing the value of k increases

the di�usion e�ect on the in�ow hydrograph. Additional controls on the di�usion and lag

e�ects can be obtained by arranging a cascade of multiple linear reservoirs in series (Ponce,

1989) so that the out�ow from the previous reservoir is the in�ow for the subsequent

reservoir. With this setup, the continuity equation for the jth reservoir of n reservoirs in

series, where j = (1, 2...n) can be re-written as:

dsj
dt

=


i− qj j = 1

qj−1 − qj j > 1

(4.13)

The out�ow hydrograph is then taken from qn.

Common practice when using linear reservoirs is to subdivide the catchment into one or

more hydrological response units (HRU) which are thought to have di�erent water storage

and release characteristics. For example, the �rn, snow and bare ice have generally shown

to respond over relatively long, intermediate and short timescales respectively (Hock and

Jansson, 2005) and therefore these may be characterised as separate HRUs, although

as noted previously, simpler and more complex de�nitions of HRUs have been de�ned

58



Chapter 4: A framework for GHM intercomparison and selection

in the past. Subsequently, three ROR structures were proposed with di�erent levels of

complexity structured around these subdivisions (Fig. 4.1).

The �rst and simplest ROR structure (ROR1) uses a single linear reservoir cascade

(e.g. see Boscarello et al., 2014) to route the in�ow from all runo� sources simultaneously.

This structure makes no distinction between the di�erent runo� sources and �ow pathways

and assumes that all conform to the same storage-discharge relationship.

The second model structure (ROR2), employs two linear reservoir cascades in parallel

(e.g. Hannah and Gurnell, 2001). The �rst cascade represents the relatively slow percola-

tion of water through the snow and �rn HRUs, while the second cascade represents faster

�ow of water through the bare ice and overland. This approach therefore makes some

distinction between the di�erent �ow pathways and, by conditioning the parameters so

that the snow and �rn have a more di�use response function, it introduces a degree of

non-linearity in the discharge response to runo�.

The third ROR structure (ROR3) has not been used previously. It employs separate

linear reservoir cascades to route runo� from the �rn, snow, ice and soil HRUs. Here the

parameters are conditioned so that the �rn is the most di�use, slowly responding reservoir,

followed by the snow and then the ice and soil zones which are considered to be relatively

�ashy, quickly responding HRUs. This approach also includes some representation of

linkages between these various units. Here it is hypothesised that water that �ows through

the �rn, must then �ow through the downstream bare ice HRU before it reaches the river.

Similarly, water that percolates through the snow pack must also �ow via the HRU that

it overlies before it reaches the river. There are therefore six di�erent �ow pathways that

runo� may take before reaching the river outlet (see Fig. 4.1c) and this represents the

most complex, non-linear ROR structure.
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Figure 4.1: Three runo�-routing model structures which relate the linear reservoir cascade

con�gurations to idealised cross-sections of a temperate glacier.
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4.4.2 Driving climate data

The GHM was con�gured to run from the initial ice geometry of 1988 through to the

end of 20141 It requires continuous measurements of hourly precipitation, near-surface

air temperature and incident solar radiation to drive the various model components. The

following sections describe how each of these were derived from the available climate data

outlined in section 3.

Precipitation

A new gridded precipitation time series was constructed that incorporated the measure-

ments of rainfall from the AWSs in the Virkisá basin and the information on spatial

and long-term variations in precipitation from the gridded ICRA data. First, the AWS

data were used to bias-correct the ICRA data. Due to the lack of rainfall measurements

during the winter months, the AWS4 rainfall data were not used for the bias correction

procedure. Furthermore, because the AWS1 and AWS3 gauges overlap the same ICRA

data pixel, and because the AWS1 time series is the longest and most complete, it was

decided to use the AWS1 data to bias-correct the overlapping ICRA data pixel. Here, the

equidistant quantile mapping (EQM) approach (Li et al., 2010; Sachindra et al., 2014;

Srivastav et al., 2014) was employed. Quantile mapping is a simple and e�cient bias

correction procedure that maps the cumulative distribution function (CDF) of the ob-

served `true' time series onto the biased time series whilst preserving the rank correlation

between the two series (Panofsky and Brier, 1968). Generally, it has shown to be superior

to other statistical methods for bias correction of precipitation data for hydrological mod-

elling studies (Gudmundsson et al., 2012; Teng et al., 2015). EQM is an adaptation of

the original quantile mapping method that accounts for non-stationarity in the statistical

properties (moments) of the biased time series and helps to preserve changes in the CDF

of the precipitation data that may have occurred over time (Cannon et al., 2015; Switanek

1Note, at the time of undertaking this study, there were not su�cient river gauging data to calculate

the river discharge beyond 2014. Accordingly, the model was only run up to the end of 2014 for this

study.
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et al., 2017). To evaluate the e�ectiveness of the bias correction procedure, a number of

statistics were calculated to compare the observed and ICRA precipitation data before

and after bias correction (Table 4.1). There were a total of 30,460 hourly measurements of

precipitation available for above-freezing days at AWS1 of which the majority were during

the autumn months (September, October and November) and the least during the winter

months (December, January and February). Overall, the procedure corrects for bias in

the mean (Avg) and also improves the spread (SD), relative variability (CV) and skewness

of the distribution of precipitation data at hourly, daily and 3-daily time steps. At the

seasonal scale, these improvements are notable for spring, summer and autumn. How-

ever, the bias correction procedure typically has a slightly negative impact on the winter

precipitation statistics, probably because of the limited above-freezing data available for

these months. In particular, average hourly winter precipitation is underestimated by

0.11 mm (16%) while the positive bias in relative variability and skewness are ampli�ed

after bias correction. Given that EQM preserves the rank correlation of the time series,

it has little e�ect on the R2 correlation score, with a typical reduction of 0.01-0.02 after

bias correction. At an hourly timescale, the bias-corrected data only captured 22% of

the observed variance in the AWS1 rainfall record. However, when averaged to a daily

timescale the R2 score increased to 0.49, and for a three-daily timescale the R2 increased

to 0.72. The limited correlation of the ICRA precipitation data at an hourly timescale

could hinder the acceptability of the GHM across some of the signatures (e.g. the river

discharge signatures related to the timing of �ows). However, the AWS1 rainfall record

is complete for the years 2013 and 2014 where the GHM is compared against observed

river discharge signatures. As such, poor replication of the timing of hourly rainfall events

should have minimal in�uence on the GHM's ability to capture the river discharge sig-

natures. Rather, the role of the bias-corrected ICRA precipitation data was primarily to

drive the glacier-mass balance component of the GHM prior to 2009 for which a reliable

three-daily temporal correlation with observations was deemed adequate.

To distribute the newly generated continuous time series of precipitation data from

AWS1 across the entire study catchment, hourly maps of precipitation anomalies gen-
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erated from the raw ICRA data were used. As such, it was assumed that the absolute

bias correction applied to the ICRA data at AWS1 holds for the rest of the study catch-

ment. While it is di�cult to validate this approach because of the scarcity of precipitation

observations available at higher elevations in the river basin, Guðmundsson (2000) esti-

mated annual precipitation rates at the summit to be somewhere between 7000 - 8000

mm y-1. The mean bias-corrected ICRA data concur with an estimate of 7600 mm y-1

which suggests the assumption a �xed bias correction in space is reasonable.

Note the distinction between precipitation falling as rainfall or snowfall is made within

the GHM++ code. Here, following previous modelling studies on Icelandic glaciers (Aðal-

geirsdóttir et al., 2006; Aðalgeirsdóttir et al., 2011; Hannesdóttir et al., 2015b; Johannes-

son et al., 1995), it was assumed that for a given model node, precipitation falls as rainfall

when the near-surface air temperature is at least 1 ◦C.

Near-surface air temperature

To generate a continuous time series of temperature back to 1988, daily measurements

of temperature available from the nearby Fagurhólsmýri weather station to the south of

the study site were used. A comparison of daily average temperatures showed there to

be a good linear relationship between the two stations with an R2 of 0.92. As such, this

linear model was used to bias-correct the daily weather station data so that it could be

combined with the AWS1 time series. To downscale the data to an hourly resolution,

24-hour temperature anomalies were randomly sampled from the AWS1 record, thereby

ensuring the complete time series had a consistent sub-daily variability. Of course, diurnal

cycles in temperature are dependent on the time of year, whereby increased incident

solar radiation in the summer enhances sub-daily temperature variability. Therefore, the

sampling strategy was employed on a month-by-month basis. The complete hourly time

series of temperature at AWS1 is shown in Fig. 4.2b.

The importance of characterising temperature lapse rates for glacio-hydrological mod-

elling is well known because it has a strong control on spatial patterns of melt simulations

(Gardner and Sharp, 2009; Heynen et al., 2013; MacDougall et al., 2011). In fact while
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Figure 4.2: Continuous hourly time series of precipitation (a), temperature (b) and inci-

dent solar radiation (c) between 1988 and 2015 at AWS1.
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many studies employ a �xed temperature lapse rate, in reality seasonal variations in sur-

face characteristics (e.g. albedo and roughness) and atmospheric conditions can bring

about strong seasonal and diurnal variations in lapse rates which control melt processes

(Gardner et al., 2009; Immerzeel et al., 2014; Minder et al., 2010). Furthermore, local

atmospheric phenomena associated with mid-latitude glaciers such as katabatic winds

which bring cool dense air over the ice surface can serve to reduce the temperature gradi-

ent (Petersen and Pellicciotti, 2011; Ragettli et al., 2014). Having analysed near-surface

air temperature variations both on and away from the Virkisjökull glacier, it was deemed

most appropriate to extrapolate temperature across the study catchment using a sea-

sonally variable hourly lapse rate in conjunction with an on-ice temperature correction

function based on the work of Shea and Moore (2010) (see Appendix D).

Incident solar radiation

The only source of incident solar radiation is the continuous hourly time series from AWS1.

To construct a continuous time series back to 1988, a resampling strategy was employed to

generate a complete time series that was statistically consistent with the data at AWS1.

It was found that during the summer months, the daily range in incident solar radiation

and temperature are strongly correlated. Therefore, when generating a continuous time

series of hourly incident solar radiation from 1988, it was important to maintain this

dependence between intra-day solar radiation and temperature variability. To do this,

a coordinated (in time) sampling strategy identical to that used for the near-surface air

temperature data was employed. More speci�cally, for each random 24-hour temperature

anomaly sample from the AWS1 record used to build part of the temperature time series,

the corresponding 24-hour solar cycle data were extracted and used to build the same part

of the incident solar radiation time series. Figure 4.2c shows the complete time series of

incident solar radiation used to drive the model.
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4.4.3 Signatures and limits of acceptability

Observations of ice melt, snow coverage and river discharge were used to derive 33 unique

signatures with LOA to characterise the glacio-hydrological behaviour of the Virkisá River

basin over a di�erent spatio-temporal scales and evaluate the acceptability of the di�erent

model structures (Table 4.2). For convenience, the signatures have also been subdivided

into 11 attributes which encapsulate the main aspects of model behaviour to be assessed.

Ice melt

The average winter (November 2012 - April 2013) and summer (May 2013 - September

2013) melt across the ablation stake network were used to characterise the short-term,

seasonal ice melt on the glacier tongue. Of course, point measurements of melt are not

directly comparable to simulated melt at the GHM nodes as these simulations represent

the average melt over the node area. Therefore, the GHM can only be expected to get as

close to the stake measurements as the actual spread in melt over the equivalent model

node area. To calculate this spread, the high resolution terrestrial lidar scans taken during

the ablation stake campaign (2012-2014) were used. The scans were used to estimate the

spread of melt deviations from the mean melt across 50 m square regions (Fig. 4.3).

The 95% con�dence bounds (± 0.78 m y-1) were then used to de�ne the LOA around

the winter and summer melt signatures where it was assumed that the spread should be

proportional to the total melt. This assumption leads to much narrower LOA around the

winter melt signature than the summer melt signature.

A signature to characterise the long-term change in glacier volume was also quanti�ed

by di�erencing the two 3-D models of the ice from 1988 and 2011. DEMs derived from

photogrammetric methods are prone to errors due to poor image recti�cation and stereo

image mismatches due to low or poor contrast areas such as cloud or new snow cover

(Barrand et al., 2009). Therefore, the 1988 ice DEM was assumed to be the main source

of uncertainty in the calculation of the ice volume change signature. A comparison to the
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Table 4.2: Summary of signatures used to evaluate model acceptability. Units with as-

terisk (*) are per section of �ow duration curve (FDC).

Group Attribute Attribute ID Signature Limits of acceptability

Ice melt
Seasonal ice melt on tongue Seas melt

2013 Summer ice melt 5.22 � 6.44 m w.e.

2012-2013 Winter ice melt 0.64 � 0.78 m w.e.

Long-term glacier volume change Melt vol Change in ice volume (1988-2011) -0.36 � -0.28 km3

Snow coverage

Snow coverage in lower catchment Low snow

Mean snow coverage in spring 0.32 � 0.45

Mean snow coverage in early-summer 0.02 � 0.08

Mean snow coverage in late-summer 0.00 � 0.03

Snow coverage in mid catchment Mid snow

Mean snow coverage in spring 0.70 � 0.80

Mean snow coverage in early-summer 0.17 � 0.27

Mean snow coverage in late-summer 0.00 � 0.04

Snow coverage in upper catchment Upp snow

Mean snow coverage in spring 0.81 � 0.90

Mean snow coverage in early-summer 0.51 � 0.64

Mean snow coverage in late-summer 0.02 � 0.09

River discharge

Mean monthly river �ow Mnthly �ow

Mean January river �ow 1.16 � 1.86 m3 s-1

Mean February river �ow 1.69 � 2.92 m3 s-1

Mean March river �ow 0.85 � 1.58 m3 s-1

Mean April river �ow 0.73 � 1.48 m3 s-1

Mean May river �ow 1.50 � 2.16 m3 s-1

Mean June river �ow 4.12 � 6.23 m3 s-1

Mean July river �ow 6.33 � 10.30 m3 s-1

Mean August river �ow 5.72 � 9.15 m3 s-1

Mean September river �ow 4.55 � 7.38 m3 s-1

Mean October river �ow 3.88 � 7.02 m3 s-1

Mean November river �ow 3.90 � 7.40 m3 s-1

Quick-release high �ows High �ows

Volume under highest �ow section of FDC 59.4 � 116.0 m3 s-1 *

Slope of highest �ow section of FDC 2.67 � 9.88 m3 s-1 *

Volume under high �ow section of FDC 70.6 � 111.0 m3 s-1 *

Slope of high �ow section of FDC 0.38 � 0.79 m3 s-1 *

Slow-release low �ows Low �ows
Volume under low �ow section of FDC 20.9 � 46.1 m3 s-1 *

Slope of low �ow section of FDC 0.03 � 0.05 m3 s-1 *

Flow variability Flow var Coe�cient of variation 0.95 � 1.83

Melt runo� timing Melt timng Peak summer �ow hour 17:00 � 18:00

Flashiness Flow �ash
Integral scale 25 � 44 h

Rising limb density 0.13 � 0.20
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Figure 4.3: Histogram of deviation of 1 m melt from 50 m mean derived from terrestrial

lidar scans of static ice front between 2012-2014.

more accurate 2011 DEM shows that the 1988 DEM captures the gridded elevation data

across the non-glaciated portion of the study area with reasonable accuracy (Fig. 4.4a).

The residuals are approximately normally distributed with a mean error of zero (Fig.

4.4b) and they show to be largest for those parts of the catchment that are steeply sloped

(scatter in Fig. 4.4c). To account for these errors in the calculation of the ice volume

change signature, 1000 unique DEMs of the 1988 ice surface were generated by randomly

perturbing each pixel of the original dataset with perturbations drawn from a normal

distribution with mean zero. Given that the spread of the residuals increases for those

areas of the catchment that are steepest, the shape parameter of the error distribution

(standard deviation) was varied according to the slope of each pixel of the 1988 DEM (see

dark blue line in Fig. 4.4c). From these, 1000 equally probable estimates of ice volume

change were calculated and the 95% con�dence interval was used to de�ne the LOA. The

total change in ice volume over 23 years from 1988 was estimated to be between -0.36 and

-0.28 km3.

Snow coverage

No direct observations of snow accumulation or melt exist for the VGO and so instead,

the MODIS snow coverage data were used to evaluate snow characteristics of the model.
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Figure 4.4: Error model for estimating uncertainty in glacier volume change between 1988

to 2011 including: 1988 vs 2011 o�-ice DEM elevations (a), distribution of 1988 DEM

errors calculated as di�erence between 1988 and 2011 o�-ice elevations (b) and estimation

of change in standard deviation of errors with DEM slope (c).

70



Chapter 4: A framework for GHM intercomparison and selection

Figure 4.5: Snow coverage curves de�ned from the MOD10A1 snow cover product from

2000 - 2015 with 95% con�dence bounds.

While the MOD10A1 data cannot be used to quantify snow accumulation or melt directly,

they can have similar predictive power as ground-based mass-balance observations and,

as such, have been widely used in the calibration and evaluation of GHMs (Frey and

Holzmann, 2015; Hanzer et al., 2016; Pellicciotti et al., 2012; Valentin et al., 2018).

Given that <5% of the data passed the QA (see section 3.5.1), it was decided that these

data should be combined to derive three seasonal average snow coverage maps. From these

maps, three snow coverage curves were constructed that de�ne the mean catchment snow

coverage at di�erent elevations for spring (March and April), early-summer (May and

June) and late-summer (July and August) (Fig. 4.5). The curves provide information on

both the spatial and temporal distribution of snowfall in the study catchment. They were

constructed by distributing the seasonal average snow distribution maps across the 50 m

model grid DEM. For example, for a MODIS pixel value of 0.5, half of the corresponding

DEM pixels were assumed to be snow covered. While the data are only available up to an

elevation of 1200 m asl, Fig. 4.5 shows that the three curves capture a large amount of

variability in seasonal snow cover. From the three snow coverage curves, the mean snow

coverage from the lower, middle, and upper terciles of the curves were used as signatures

of snow coverage.

There exists no de�nitive quanti�cation of errors in the MOD10A1 product that can be

used to estimate LOA for these signatures. Previous validation of the MODIS data using
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satellite imagery has shown the data to be relatively robust (Salomonson and Appel, 2004).

Accordingly, it was assumed that as with the ablation stake data, the primary source of

uncertainty stems from scale di�erences between the data and the model simulations.

More speci�cally, because the MODIS data have a coarser resolution (500 m) than the

DEM over which the MODIS data were distributed (50 m), a MODIS pixel value of

0.5 only indicates that 50 of the corresponding 100 DEM pixels are snow covered. The

construction of a snow distribution curve, therefore necessitates some assumptions about

where the snow actually lies which will in�uence the shape of the snow distribution curve.

Accordingly, the LOA were quanti�ed to account for this uncertainty. Here, for each of

the seasons, a mean MODIS snow cover map over the study region was derived. Then, for

each 500 m pixel, snow was randomly distributed across the corresponding DEM pixels

1000 times. From these, an equal number of snow distribution curves and corresponding

snow distribution signatures could be derived, each assumed to be equally probable. The

95% con�dence bounds from this distribution of snow cover signatures were used to de�ne

the LOA which are indicated by blue error bars in Fig. 4.5.

River discharge

The hourly river discharge data for the years 2013 and 2014 measured at ASG1 (Fig. 4.6a)

were used to de�ne 21 di�erent river discharge signatures that cover a range of temporal

scales and �ow magnitudes. The majority of these signatures were based on previous

studies (Andrés-Doménech et al., 2015; Casper et al., 2012; Clausen and Biggs, 2000;

Coxon et al., 2014; Euser et al., 2013; Garavaglia et al., 2017; Hrachowitz et al., 2014;

Monk et al., 2007; Sawicz et al., 2014; Schae�i, 2016; Sha�i and Tolson, 2015; Teutschbein

et al., 2015; Viglione et al., 2013; Westerberg et al., 2016; Winsemius et al., 2009; Yadav

et al., 2007; Yilmaz et al., 2008).

Mean monthly river �ows were calculated to characterise the seasonal river �ow regime.

Signatures were also derived from sections of the FDC to characterise quick-release high

�ows and slow-release low �ows. These include signatures that quantify the volume under

the section (�ow magnitude) and the slope of section (�ow variability) for the low �ow
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Figure 4.6: River �ow time series from ASG1 with quanti�ed con�dence intervals (a),

rating curve uncertainty used to quantify con�dence intervals (b) and zoomed section of

river �ow time series (see yellow dash box in top plot) with con�dence intervals (c).
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section (99-66% �ow exceedance), high �ow section (15-5% �ow exceedance) and highest

�ow section (5-0.5% �ow exceedance). An overall estimate of �ow variability, the coe�-

cient of variation, was also calculated. Related to this, two further signatures, the rising

limb density and integral scale, provide a measure of �ashiness. The rising limb density

is the ratio of number of �ow peaks to the total time to peak where a higher number

is more �ashy. The integral scale measures the lag time at which the autocorrelation

function of the �ow time series falls below 1
e
(diurnal cycles in river �ow were removed

prior to this using a moving average �lter). A higher integral scale therefore indicates a

more slowly responding hydrological system. Finally, the peak summer �ow hour of the

observed discharge time series was calculated to characterise the intra-day river discharge

response to melt.

River discharge calculated using the rating curve approach outlined in section 3.5.4

are inherently uncertain (Pappenberger et al., 2006). McMillan and Westerberg (2015)

provide a useful de�nition of two important sources of uncertainty which they distinguish

as either aleatory (random) or epistemic (of an unknown character). The �rst stem from

random measurement errors such as those from the instrument used for periodic river

gaugings. These cause gauging points to vary around the `true rating curve', typically

according to some formal statistical de�nition. Epistemic uncertainty stems from the

assumptions hydrologists have to make when constructing rating curves such as assuming

the river bed pro�le and horizontal �ow velocity distribution is relatively stable over

time. These errors make �tting a single rating curve to all of the gauging data invalid.

Accordingly, McMillan and Westerberg (2015) propose a method to de�ne rating curve

uncertainty which accounts for both sources of error which has been used to estimate

uncertainty in river discharge signatures (Westerberg et al., 2016). The random error

component was de�ned from analysis of 27 �ow gauging stations in the United Kingdom

with stable ratings and without obvious epistemic errors (Coxon et al., 2015). They

conclude that this source of error is best approximated by a logistical distribution model.

The logistic function with scale parameter σ and zero mean has the following probability
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density function (PDF):

fLG(x;σ) =
e−

x
σ

σ(1 + e−
x
σ )2

(4.14)

and inverse CDF:

ICDFLG(p;σ) = σln(
p

1− p
) (4.15)

where p is the probability conditional on σ. Following, McMillan and Westerberg (2015),

the scale parameter is calculated for each gauging following:

σ = 4.18e−3.051Qn + 3.51 (4.16)

where Qn is he normalised gauged discharge.

To account for epistemic error, they reject the assumption that the rating curve is

�xed in time and instead they �t an ensemble of rating curves to all of the gauging data.

Each curve is weighted by a `Voting Point' likelihood function which scores it based on

how many points of the periodic gaugings it is able to intersect (and at what location on

the logistical PDF of each gauging). The voting point likelihood is calculated as:

LV P = w
n∑
g=1


fLG(Rg−1;σg)

fLG(0;σg)
|Rg − 1| < ICDFLG(0.025;σg)

0 otherwise

(4.17)

where n is the number of gaugings, Rg is the ratio between gauged and rated discharge

for point g and w is an additional weighting parameter which rates the curve according to

the proportion of the space occupied by the gauging points that the �tted curve captures:

w =

(
max(hfit)−min(hfit)

max(h)−min(h)

)(
max(qfit)−min(qfit)

max(q)−min(q)

)
(4.18)

where h and q are the gauging stage and �ow data and hfit and qfit are those gaugings

that are captured (|Rg − 1| < ICDFLG(0.025;σg)) by the rating curve.

This method allows each rating curve to �t a subset of all gaugings only and takes

account of the fact that there may be more than one rating curve consistent with the

gauge data due to epistemic errors. Following McMillan and Westerberg (2015), Markov

chain Monte Carlo sampling was used to de�ne the rating curve ensemble (made up of

667 unique rating curves) which de�nes the rating curve uncertainty (Fig. 4.6b). From
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these an equivalent distribution of each river discharge signature was derived from the

ensemble of �ow time series (Fig. 4.6c), from which the 95% con�dence bounds were

used as the LOA. Because the Voting Point method only accounts for uncertainty in the

�ow magnitude and not the timing, it was not suitable to apply this approach to the

three signatures that characterise melt runo� timing and �ashiness. For these signatures,

Schae�i (2016) proposed that the LOA should be derived by subsampling di�erent periods

of the �ow time series. For this study a month-by-month subsampling strategy was

employed to do this.

4.4.4 Model calibration procedure

The GHM was con�gured to run from 1988 to 2015 so that simulations could be com-

pared against all observation signatures. The initial ice surface was set to the 1988 DEM

of the ice while the bedrock and land surface topography were taken from the Öræfa-

jökull bedrock map (Magnússon et al., 2012). Initial snow coverage, soil moisture, linear

reservoir storages and ELA were determined by running the model for three consecutive

years prior to the simulation period using climate data from 1985 to 1988.

In total there were nine possible structural con�gurations of the GHM including all

possible combinations of the three melt and ROR structures. For each of the nine con-

�gurations, the melt and ROR parameters were calibrated to achieve the closest �t to

the observed signatures. To do this, �rst a set of preliminary runs were undertaken to

assess the sensitivity of the simulations to the parameters. Here, it was found that the

simulations were insensitive to the �rn melt parameters across the range of 33 signatures.

Accordingly, these were set to the same values as for snow. Similarly, none of the sig-

natures were sensitive to the threshold above which melt occurs, T ∗, and accordingly

this was set to 0 ◦C throughout the model experiments. Finally, it was also decided to

�x the albedo parameter for ice in TIM3 to 0.3. This was because this parameter di-

rectly interacts with the b parameter and therefore provides no extra control over model

behaviour.

The remainder of parameters were kept for calibration (see Table C.1). For each GHM
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con�guration, 5000 Monte Carlo simulations with random parameter sets sampled from

prede�ned uniform distributions were undertaken. The prior parameter distributions

were de�ned from a review of previous modelling studies and later re�ned during the

preliminary runs noted above. The quasi-random Sobol sampling strategy (Brately and

Fox, 1988) was employed to sample the parameter space as e�ciently as possible. The

simulated signatures from each model run (parameter set) were then evaluated against the

observed signatures using a continuous acceptability score that is analogous to those used

in other signature-based hydrological studies (Coxon et al., 2014; Sha�i and Tolson, 2015).

This objective function explicitly accounts for uncertainty in the observation signatures,

so that decisions about model appropriateness can be made within the uncertainties of

observation data. The acceptability for signature j is de�ned as:

sj =


0 lowj ≤ simj ≤ uppj

simj−uppj
uppj−obsj simj > uppj

simj−lowj
obsj−lowj simj < lowj

(4.19)

where obsj and simj are the observed and simulated values and uppj and lowj are the

upper and lower LOA. A score of zero indicates that the model captures the observed

signature within the LOA. An absolute score greater than 0 is outside of the LOA and

therefore unacceptable. The sign of the score indicates the direction of bias while its

magnitude indicates the model's performance relative to the LOA. A score of -3 would

indicate that the model underestimates the signature by three times the observation

uncertainty. This score therefore does not penalise a model if it falls within the observation

uncertainty of a signature. It is also tolerant of projections that fall outside of the LOA

where observation uncertainty is high which is a desirable attribute given the range of

signatures used in the calibration.

Given that there are 33 di�erent signatures to calibrate to simultaneously, it was

important to de�ne a weighting scheme to achieve the best overall performance across the

range of signatures. It was decided that, for a given GHM con�guration, the 5000 runs

should be ranked by a weighted average score where each group, each attribute within
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each group and each signature within each attribute were given equal weighting so that

the scores were not biased to a particular group or attribute. The top 1% of model

runs that achieved the smallest weighted average acceptability scores were then taken as

the calibrated models for each GHM con�guration and the average acceptability scores

of these are reported. A bootstrapping with replacement re-sampling scheme was also

used to assign 95% con�dence intervals around all reported acceptability scores. While

not a formal test of statistical signi�cance, these were used to avoid reporting di�erences

between the GHM con�gurations where issues such as under-sampling of the parameter

space would make such conclusions unjusti�ed. Where con�dence intervals do not overlap,

di�erences are hereafter referred to as substantial. The di�erent GHM con�gurations were

also compared when calibrated to individual groups of signatures (ice melt, snow coverage

and river discharge). In this case the same weighting procedure was applied to a single

group only.

4.5 Results

4.5.1 Signature discrimination power

As a �rst step towards evaluating the LOA framework, the discrimination power of the

signatures was investigated to determine their relative usefulness for discriminating be-

tween acceptable and unacceptable model structures and parameterisations when used

individually. A total of 45,000 calibration runs, each with unique model structures and

parameterisations (hereafter referred to as model compositions) were undertaken in this

study. The signatures with the highest discrimination power were de�ned as those that

best constrain the range of acceptable model compositions. Here, the total number of

acceptable model compositions were calculated for each signature as an indicator of dis-

crimination power (bars in Fig. 4.7a). The results indicate that the ice melt signatures

are the best discriminators, where each accepted less than 5000 model compositions. Of

these, the winter melt signature from the ablation stake measurements is the best discrim-

inator while the summer melt signature shows the least discrimination power. The snow
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Figure 4.7: Total number of acceptable model compositions (bars) and con�gurations

(dots) for each signature (a) and mean simulated range in river discharge from the popu-

lation of acceptable models as a percentage of the simulated range using all of the 45000

model compositions (b).

coverage signatures generally show to be inferior discriminators when compared to the ice

melt signatures. The late-summer snow coverage signature for the lower catchment shows

to be the poorest discriminator, presumably because there is negligible snow cover here

at this time of the year; an observation that almost all of the model compositions have

no di�culty in replicating. In contrast, no model compositions are deemed acceptable for

the signatures of the spring and early-summer snow coverage in the upper catchment.

The discrimination power of the river discharge signatures shows to be highly vari-

able, but there are several discernible patterns. Firstly, the mean monthly �ow signatures

between January and June, when river discharge is low, show to be better discriminators
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than the higher-�ow signatures from July to October. The mean monthly January and

May �ows stand out as being particularly powerful at discriminating between acceptable

and unacceptable model compositions suggesting that these are likely to be important

focal points for characterising model de�ciencies. Those signatures related to the vari-

ability of �ows such as the coe�cient of variation and the FDC slope signatures, as well

as peak �ow hour (timing) and rising limb density (�ashiness) also show to be relatively

good discriminators.

To determine the structural discrimination power of each signature, the total number

of GHM con�gurations that returned at least one acceptable simulation has also been

calculated for each signature (scatter in Fig. 4.7a). They show that when used individu-

ally, most of the discrimination power stems from constraining the parameter space rather

than constraining the structural space. Only the lower-catchment spring snow coverage

and mean January river �ow signatures discriminate between structures where only six

of the nine GHM con�gurations returned acceptable simulations. In both cases it was

the GHM con�gurations that employed the TIM3 melt model structure that could not

capture these signatures within their LOA.

To indicate how each signature helps to reduce river �ow prediction uncertainty, a

second measure of discrimination power has also been calculated (Fig. 4.7b). Here, the

mean simulated range in river discharge from the population of acceptable models has

been calculated as a percentage of the simulated range using all of the 45,000 model

compositions for each signature. These results show that when used individually, all

of the signatures help to constrain the river �ow prediction uncertainty, although the

e�ectiveness of each is variable. The mean January and May river �ow signatures again

exhibit good discrimination power, reducing the mean river discharge uncertainty to 60-

70% of that from the full population of model compositions. Similarly, the winter ice melt

and spring snow coverage in the lower catchment remain as two of the best discriminators.

However, some signatures such as the long-term volumetric change in the glacier, which

showed to be a good discriminator of model acceptability, are not as e�ective at reducing

river discharge prediction uncertainty.
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4.5.2 Acceptability of melt model structures

While all signatures clearly demonstrate discrimination power when used individually, it

remains to be seen how e�ective the LOA framework is for discriminating between and

diagnosing de�ciencies in di�erent model structures when using multiple evaluation cri-

teria. Here, the acceptability scores obtained after calibrating the GHM to the di�erent

groups of signatures (ice melt, snow coverage and river discharge) using the three di�er-

ent melt model structures have been calculated (Fig. 4.8). The light grey boxes indicate

those signatures that have been captured within the LOA and the dark grey boxes and

their corresponding acceptability scores indicate those signatures for which the structures

were not able to capture within the LOA. So that the river discharge acceptability scores

can be compared fairly, they have all been obtained using the ROR1 runo�-routing struc-

ture. When calibrated against the ice melt signatures, the GHM is not able to capture

them within their LOA, regardless of the melt model structure used. The di�erent GHM

con�gurations show a tendency to overestimate the measured summer and winter melt

from the ablation stake data, yet underestimate the long-term change in total ice volume

(note underestimation here refers to the simulated loss in ice volume). This highlights

a de�ciency in the melt model structures as they are unable to reconcile the three melt

signatures simultaneously within the observation uncertainty. The winter melt is by far

the most unacceptable simulation, particularly when using the TIM1 structure where it

is overestimated by more than 30 times the observation uncertainty.

Each of the GHM con�gurations using the three melt model structures have been

ranked from 1 to 3 in the top left corner of each box where the acceptability scores are

substantially di�erent (Fig. 4.8). While there are clearly di�erences in the acceptability

scores for the summer melt and ice volume signatures, these are not substantially dif-

ferent and therefore it is not possible to say that one structure is more acceptable than

another. Indeed, a comparison of the simulated ice thickness change along the Falljökull

and Virkisjökull arms of the glacier reveal that all three con�gurations of the GHM pro-

duce almost identical simulations which broadly capture the observed ice thickness change
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Figure 4.8: Acceptability scores obtained after calibrating the GHM using the three melt

model structures in combination with the ROR1 runo�-routing model structure. The three

GHM con�gurations were calibrated against ice melt, snow coverage and river discharge

signatures separately. Light grey boxes indicate acceptable simulations (s = 0) and

numbered, dark-grey boxes indicate unacceptable simulations coloured blue and red to

indicate negative and positive bias respectively. Note, all acceptability scores are rounded

to two decimal places. Those non-zero scores that round to zero are accompanied by +/-

to indicate sign of score. White numbers in top left of each box indicate relative ranking

where acceptability scores are substantially di�erent between the GHM con�gurations.
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Figure 4.9: Observed and simulated ice thickness change as measured along transects of

the Falljökull and Virkisjökull glacier arms. Insets show transect location.

between 1988 to 2011 (Fig. 4.9).

For the winter melt signature, there is a substantial di�erence in acceptability when

using the three melt model structures. Here, the GHM con�guration using the TIM3

structure is the most acceptable while that using the TIM1 structure is least acceptable,

indicating that while all con�gurations produce simulations outside of the LOA, there is

an improvement in ice melt simulations when implementing the most sophisticated TIM3

melt model structure.

For the snow coverage signatures, all three of the GHM con�gurations capture the

late-summer snow coverage in the lower portion of the catchment within the LOA. When

using the TIM2 and TIM3 structures the mid-catchment spring snow coverage is also

captured. The remaining snow coverage signatures are not captured within the LOA

where all con�gurations show a tendency to underestimate snow coverage in the lower

and mid parts of the catchment and overestimate snow coverage in the upper part of

the catchment. To investigate why this is, Fig. 4.10a shows the simulated early-summer

mid-catchment and upper-catchment snow coverage signatures for the 5000 calibration

parameter sets (blue dots) used with the TIM1-ROR1 GHM con�guration. Here it can
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Figure 4.10: Simulated snow coverage signatures from the 5000 calibration runs (blue

dots) for the TIM1-ROR1 GHM con�guration including: early-summer mid-catchment

and upper-catchment snow coverage signatures (a), and lower-catchment spring and early-

summer snow coverage signatures (b).

be seen that regardless of the choice of melt model parameters, this structure is not able

to capture both of these signatures within their LOA simultaneously (indicated by yellow

area). A similar inconsistency exists when comparing snow coverage over di�erent seasons

where the GHM is not able to capture the lower catchment snow coverage in the early-

summer and spring simultaneously (Fig. 4.10b). Indeed, this inconsistency extends across

all melt model structures.

A comparison of simulated snow distribution curves from the calibrated models (Fig.

4.11) reveals that all return similar simulations. The simulation using TIM1 deviates

slightly from the curve produced by the GHM when using the TIM2 and TIM3 structures,

but overall the choice of melt model structure has a limited in�uence on the simulated

seasonal snow coverage.

The acceptability scores for the river discharge signatures in Fig. 4.8 show that re-

gardless of the choice of melt model structure, when used in conjunction with the ROR1

runo�-routing model structure, all are able to capture a range of the river discharge sig-

natures. The simplest GHM con�gurations using the TIM1 and TIM2 model structures
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Figure 4.11: Simulated seasonal snow distribution curves when using the three melt model

structures.

capture 12 river discharge signatures simultaneously within the LOA while the inclusion

of the dynamic snow albedo term and re-arrangement of the melt equation in the TIM3

melt model actually inhibits the GHM performance where only 10 of the 21 river discharge

signatures are captured within the LOA.

The mean monthly �ow signatures for January, February and May show some of the

highest absolute acceptability scores indicating the models are least e�cient at capturing

these. For winter �ows in January and February, the simulation using the TIM2 model

structure is substantially more acceptable than when using the other melt model structures

although it should be noted that, given that �ows are very low here, the absolute error is

less than 0.2 m3 s-1. A comparison of the simulated ice melt during May 2013 reveals that

the TIM3 structure simulates the highest ice melt of all three melt model structures (Fig.

4.12a) which results in a positively biased river �ow time series (see Fig. 4.12b). Note,

the full input/output time series over the observation period can be found in Appendix

E.

Furthermore, a comparison of the simulated ice melt time series over 2013 with a

monthly moving average �lter demonstrates that the positive melt bias from TIM3 extends

between April and June (Fig. 4.13b) which corresponds to the period where temperatures

are relatively low, but where incoming solar radiation is relatively high (see Fig. 4.13a).
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Figure 4.12: Mean simulated hourly ice melt (a) and river discharge (b) during May 2013

using the top 1% of models from the three melt model structures in combination with the

ROR1 runo� routing model structure.

86



Chapter 4: A framework for GHM intercomparison and selection

Figure 4.13: Normalised temperature and incident solar radiation (a) and simulated ice

melt from the three calibrated ice melt model structures (b) for the year 2013. All time

series use a monthly moving average �lter.
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Of the remaining river discharge signatures, only a handful show any substantial dif-

ference when switching between the melt model structures including the mean April and

August discharge and the two '�ashiness' signatures: the integral time and the rising

limb density. However, the di�erences here are very small. For the `high slope' signa-

ture, which characterises the variability of high �ow river �ows, the simulation using the

TIM1 melt model structure is able to capture it within the LOA, while the simulations

using the TIM2 and TIM3 model structures both show a negative bias suggesting they

underestimate high �ow variability.

4.5.3 Acceptability of runo�-routing model structures

To evaluate the ROR structures, acceptability scores have been calculated for the river

discharge signatures only as these structures do not in�uence ice melt or snow coverage

(Fig. 4.14). To ensure fair comparison between the di�erent structures, all scores have

been obtained using the simplest TIM1 melt model structure in the GHM.

It was noted previously, that all melt model structures used in combination with ROR1

resulted in positively biased January and February river �ows. It could be that including

a more complex non-linear ROR structure in the GHM could help to mitigate this bias.

Indeed, the calibrated simulations do show a substantial reduction in positive bias for

the mean February �ows when using ROR2 and ROR3, however the simulations are still

unacceptable. Furthermore, for the mean January river �ow there is no substantial change

in acceptability score. This indicates that the runo�-routing representation is also not the

reason for this overestimation of �ows at the beginning of the year. To investigate this

positive bias further, Fig. 4.15c shows the simulated time series from the calibrated models

using TIM1 in combination with ROR1, ROR2 and ROR3 for January and February

2013. Figure 4.15a shows that melt is an insigni�cant input during these winter months

(green line). Rather it is rainfall (black dash) that dominates the runo� input and this

results in two pronounced peaks in the simulated river discharge time series. The di�erent

behaviour of the simulations using the three ROR structures is much more obvious during

the rainfall-runo� events. The simulation using the ROR1 structure is noticeably more
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Figure 4.14: Acceptability scores obtained after calibrating the GHM using the three ROR

structures in combination with the TIM1 melt model structure. Light grey boxes indicate

acceptable simulations (s = 0) and numbered, dark-grey boxes indicate unacceptable

simulations coloured blue and red to indicate negative and positive bias respectively.

Note, all acceptability scores are rounded to two decimal places. Those non-zero scores

that round to zero are accompanied by +/- to indicate sign of score. White numbers in

top left of each box indicate relative ranking where acceptability scores are substantially

di�erent between the GHM con�gurations.
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�ashy in response to the rainfall and overestimates the peak �ows while the ROR2 and

ROR3 simulations, which include additional, more di�usive representations of the �ow of

water through snow and �rn, result in peak �ows that are closer to the observed, but with

a recession that is too shallow. Regardless of these de�ciencies, however, all result in an

almost identical positive bias as shown by the cumulative �ow in Fig. 4.15b.

There are however di�erences when assessing other aspects of the river discharge time

series, particularly in the signatures relating to high �ows. In Fig. 4.14, it can be seen that

while the simulation using the ROR1 routing model structure is able to capture all of the

high �ow signatures simultaneously, the ROR2 and ROR3 structures show an unacceptable

negative bias for these signatures indicating underestimation of high �ow magnitude and

variability. To evaluate this in more detail, Fig. 4.15f shows the simulated time series for

the highest recorded river �ow event during October 2014. Here, the �ashier and more

responsive ROR1 structure achieves the closest �t to the observed peak �ow and within the

uncertainty bounds while the more di�usive, ROR2 and ROR3 structures underestimate

the peak �ow. Note they also underestimate the overall river �ow variability as indicated

by the coe�cient of variation signature.

4.5.4 Consistency of melt model structures

The results so far have highlighted some inconsistencies in the GHM con�gurations using

the melt and runo�-routing model structures where they are unable to reconcile some

combinations of signatures simultaneously. This is important as those inconsistencies

could help to further diagnose structural de�ciencies in the di�erent model structures. To

investigate this, consistency scores have been calculated between pairs of the 33 signatures

for each GHM con�guration. A model can be deemed consistent across a pair of signatures

if it is able to capture both within their LOA simultaneously. The consistency scores are

therefore calculated as the minimum sum of the two acceptability scores between a pair

of signatures across the 5000 calibration runs for each GHM con�guration.

Figure 4.16 shows the average consistency scores calculated across the signatures for

each attribute of ice melt, snow coverage and river discharge using the three melt model
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Figure 4.15: Simulation time series using the three di�erent ROR structures in combi-

nation with the TIM1 melt model structure including simulated total melt and rainfall

(top), cumulative river discharge (middle) and river discharge time series (bottom) for

January and February 2013 (a,b,c) and the October 2014 �ood (d,e,f).
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structures in combination with the ROR1 runo�-routing structure. The top panel shows

the consistency scores when using the simplest TIM1 melt model structure. The regions

in red highlight the areas where the GHM is inconsistent. The �rst striking observation

is the red band along the upper catchment snow coverage attribute. It has already been

demonstrated that the simulations using the TIM1 structure cannot reconcile the upper-

catchment snow coverage with the remaining snow coverage signatures. This further

demonstrates that when using the TIM1 structure, the GHM cannot reconcile the upper-

catchment snow coverage with any of the other attributes.

The largest inconsistency score obtained was between the short-term, seasonal melt

on the glacier tongue and long-term total glacier volume change. It should be noted that

the seasonal melt signatures show a small inconsistency with the lower-catchment snow

coverage and a larger inconsistency with the upper-catchment snow coverage. The total

glacier volume change signature, however, is also inconsistent with the monthly �ow and

low �ow signatures indicating that it is the long-term glacier wide mass balance that the

model is getting wrong.

The use of the TIM2 model structure which includes topographic e�ects goes some

way to reducing most of the inconsistencies shown using the TIM1 model structure (Fig.

4.16 middle panel). However, all but one of the inconsistencies (between lower-catchment

snow coverage and seasonal melt) remain, indicating that the use of the TIM2 melt model

structure only provides a small improvement in model consistency.

Using the TIM3 model structure also helps to improve model consistency, particularly

those associated with the upper snow coverage, but surprisingly it also introduces new

inconsistencies in relation to the lower-catchment snow coverage, where the model is not

able to reconcile these signatures with any of the other attributes.

4.5.5 Consistency of runo�-routing model structures

Consistency scores have also been calculated for each pair of river discharge signatures

(Fig. 4.17) using the three runo�-routing structures in combination with the TIM1 melt

model structure. The simulations using the ROR1 structure (top panel) and next simplest
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Figure 4.16: Average consistency scores between attributes using the three melt model

structures in combination with the ROR1 runo�-routing structure. Scores of < 0.1 have

not been reported.
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ROR2 structure (middle panel) show a very similar pattern of model inconsistencies.

Firstly, both sets of simulations do not capture the relatively low �ows in February and the

relatively high �ows in July and August simultaneously. This corroborates the �ndings

from the acceptability analysis which revealed a tendency for the model structures to

overestimate low �ows in the winter and underestimate high �ows in the summer and

autumn, particularly with relation to rainfall-induced high �ows. Interestingly though,

the seasonal �ow inconsistency is centred on February and there are not inconsistencies

for the other low �ow months from January to April. This provides further evidence that

it is particularly the rainfall-induced �ows that the model is not able to capture e�ectively.

In fact, February has some of the highest �ows in the record of winter �ows induced by

large rainfall events (see average �ow signatures in Table 4.2). This suggests this could be

the reason that the inconsistencies between winter and summer �ows are centred around

these months. The inclusion of additional �ow pathways in the routing routine only

enhances these inconsistencies, particularly when using the ROR3 model structure where

the inconsistencies extend into June (bottom panel).

The ROR1 simulations show inconsistencies between the February �ows and low �ow

variability as indicated by the low slope signature. The reason for this is not clear,

but interestingly, the inclusion of an extra, more di�use, �ow pathway in the ROR2

model appears to remedy this, suggesting that there is some non-linear behaviour that

the ROR1 model structure cannot capture. However, it comes at the cost of inducing an

extra inconsistency between the mean �ows in January and the overall �ow variability as

indicated by the coe�cient of variation. This new inconsistency is ampli�ed when using

the ROR3 structure.

Interestingly, the consistency scores when using the ROR1 and ROR2 structures are

relatively similar, with each con�guration demonstrating inconsistencies between four and

�ve pairs of river discharge signatures respectively. In contrast, using the most complex

ROR3 structure introduces a number of new inconsistencies with a total of 12 inconsistent

pairs of simulated river discharge signatures. These new inconsistencies are centred around

the mean monthly �ow signatures as well as the signatures relating to high and low �ow
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magnitude and variability.

4.6 Discussion

4.6.1 Using the LOA framework for diagnosing GHM structure

de�ciencies

The �rst aim of this study was to investigate if a signature-based LOA framework could

be used to diagnose de�ciencies in the di�erent melt and runo�-routing model structures.

The comprehensive set of signatures provided a powerful method to evaluate the model

behaviour. Furthermore, when used within a LOA framework, it was straightforward

to identify those aspects of the glacio-hydrological system that the GHM con�gurations

could and couldn't capture.

All of the GHM con�gurations were able to capture 29 of the 33 signatures within

their LOA when evaluated against the signatures individually while none of the GHM

con�gurations were able to capture the observed spring and early-summer snow coverage

in the upper section of the catchment, highlighting these aspects of glacio-hydrological

behaviour as key de�ciencies in the tested GHM con�gurations. A more revealing analysis

of structural de�ciencies, however, was achieved by evaluating the ability of the models

to capture multiple signatures simultaneously. For example, all GHM con�gurations were

able to capture the three signatures of ice melt individually within their LOA, but none

of them could capture all of the signatures simultaneously. The challenge here was to

reconcile three signatures that characterise glacier melt over di�erent spatial and temporal

scales. The fact that none of the total tested GHM con�gurations could capture these

signatures simultaneously is likely because the three TIM structures lump a number of

terms from the full energy balance equation into a handful of calibration parameters

which may lack robustness in space and time (Gabbi et al., 2014; MacDougall et al.,

2011; Matthews et al., 2015). All TIM structures can therefore be deemed `unacceptable'

given they were not able to capture all of the ice melt signatures.
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Figure 4.17: Average consistency scores between river discharge signatures using the three

ROR structures in combination with the TIM1 melt model structure.
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While none of the TIM structures were technically acceptable, the acceptability ob-

jective function adopted in the LOA framework demonstrated that including solar and

topographic e�ects in the TIM2 and TIM3 melt model structures improved model e�-

ciency. The inclusion of these processes in conjunction with the dynamic snow albedo

parameterisation in TIM3 returned the most acceptable simulations of the ice melt signa-

tures overall.

The results from this study, however, showed that the inclusion of extra model com-

plexity does not guarantee gains in model acceptability. For example, the most sophis-

ticated TIM3 melt structure was also the least acceptable structure for the mean May

river �ow signature where it showed the highest positive bias. This is interesting, as

May coincides with the beginning of the main melt season which indicates an inability

to capture this initialisation properly. It was shown that the simulated snow coverage

signatures were almost identical when using the three melt model structures indicating

that this de�ciency did not stem from the dynamic snow albedo component of TIM3.

Furthermore, May corresponds to the period where temperatures are relatively low, but

where incoming solar radiation is relatively high which suggests that it is the additive

form of the TIM3 melt equation and the subsequent increased in�uence of solar radiation

on melt which induced the positive bias in �ow simulations in the early melt season.

Similarly, the ROR3 structure, originally proposed as the most realistic conceptual

representation of water storage and transmission in the river basin, was the least accept-

able model overall across the river discharge signatures. It also underestimated peak �ows

at the end of the melt season and underestimated overall river �ow variability. These re-

sults highlight the need to exercise caution before introducing complexity to conceptual

models of glacio-hydrological processes. They also illustrate the importance of testing

prior assumptions about the system against other possible model hypotheses, for which a

signature-based LOA framework is ideally suited.

The main de�ciencies noted for all of the GHM con�gurations when compared to

the river discharge signatures were an overestimation of the relatively low winter �ows

in January and February, and the �ows at the start of the melt season in May. It was
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assumed that the addition of extra `slow' �ow pathways in the ROR2 and ROR3 runo�-

routing structures would help to correct for any de�ciencies in capturing the hydrograph

seasonality. Instead, the choice of runo�-routing structure had very little in�uence on

these signatures, indicating that longer term storages of water do not have a major control

on the seasonality of the hydrograph. This is probably because of the catchment's small

size which leads to an instantaneous seasonal response to melt on a monthly timescale.

For larger catchments, the monthly �ow signatures are likely to be more sensitive to

the choice of runo�-routing structure. Instead, the simulated mean monthly river �ow

signatures were more sensitive to the choice of melt model structure, particularly in May

at the start of the melt season, which is likely due to the high degree of glaciation and

thus the high meltwater runo� from the basin.

In contrast to the monthly river �ow signatures, the choice of runo�-routing structure

had by far the dominant control on those signatures that are controlled by �ows operating

on much shorter timescales such as the distribution of �ows, �ow variability and �ashiness.

This hierarchy of in�uence between the melt and runo�-routing model structures has im-

portant implications for river discharge projection uncertainty in glaciated basins. For

example, if one were interested in future seasonal water resource availability, they would

be most reliant on projections of mean monthly river �ows. The results here indicate that,

for this catchment at least, uncertainties in these projections stem primarily from melt

model uncertainty. In contrast if one were interested in future changes in �ood frequency,

the dominant source of model projection uncertainty is the runo�-routing approach. Un-

certainties in river �ow projections from glacio-hydrological models are therefore likely to

be dependent on the river �ow characteristic of interest.

4.6.2 Using the LOA framework for GHM structure selection

The second aim of this study was to determine if the signature-based evaluation within

a LOA framework could be used to constrain the prior population of model structures

and parameter sets (compositions) down to a smaller population of acceptable models.

The initial discrimination tests showed that all of the signatures have discrimination
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power, although for two of the snow signatures, none of the 45000 model compositions

could capture them. The mean January and May river �ow signatures were the best

discriminators, individually reducing mean river discharge uncertainty to 60 - 70% of

that from the full population of model compositions, although it should be noted that

the majority of this reduction stemmed from constraining the acceptable parameter sets

rather than the model structures. These results indicate that a LOA framework could be

used to �nd a population of acceptable model compositions. However, the fact that none

of the prior 45000 compositions were able to capture all of the signatures means that this

remains to be seen.

At a fundamental level, this indicates that the structural con�gurations of the GHM

employed in this study are simply not e�cient enough to capture the observation data

within their observation uncertainty bounds. This could be addressed by including ad-

ditional process representations within the GHM. For example, one process that is not

represented at all in any of the GHM con�gurations, but which has shown to be impor-

tant in for Icelandic glaciers, is refreezing of meltwater and rainfall (Johannesson et al.,

1995). It is estimated that about 7% of total melt in valley glaciers in Iceland refreezes,

and therefore, the inclusion of this process could also help to reduce runo� during the

colder winter months where the models showed to overestimate runo�. Another attribute

of the study site which was not accounted for was debris cover at the glacier terminus

which could be an important control on point scale and overall ice mass balance. Some

TIMs that include representations of debris cover do exist (e.g. Carenzo et al., 2016) and

the signature-based LOA approach would provide the ideal framework for evaluating the

added value of further structural modi�cations like these.

The results also demonstrated some degree of insensitivity to the di�erent structures

tested in this study. For example, none of the prior 45,000 model compositions were able

to capture the spring and early-summer snow coverage in the upper catchment and all of

the calibrated GHM con�gurations overestimated snow coverage in the upper catchment

whilst underestimating it in the lower catchment. Furthermore, using the most sophis-

ticated TIM3 structure with the dynamic snow albedo function had almost no e�ect on
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the overall acceptability across these signatures. This of course, could be an indication

that the melt model formulation was not the primary source of model de�ciency here.

Snow coverage simulations are sensitive to other components of the GHM such as the

snow redistribution model, which itself, is sensitive to the resolution of the DEM used

to parameterise it. A coarser DEM resolution removes peaks and troughs in the land

surface which can bring about more complex patterns of snow coverage. Similarly, the

glacier volume change signature will be sensitive to the glacier evolution formulation and

parameterisation. It is clear, therefore, that while the application of a LOA framework

here has highlighted some di�erences in model behaviour between the di�erent structures,

the apparent insensitivity of the snow coverage signatures to structural modi�cations in-

dicates that further gains may also be made by investigating other components of the

GHM structure within this framework.

Beyond the structural nature of a GHM, de�ciencies in the boundary conditions may

also provide some explanation for the lack of acceptable model compositions. For this

study, the driving precipitation data were relatively well constrained by observations

within the catchment during the summer and autumn months of recent years, but there

were fewer observations during the winter months and none at all before 2009. Fur-

thermore, while the bias-corrected precipitation time series was well correlated over a

three-day time step, it was not at an hourly time step. It is also important to note that

precipitation observations were all collected at the bottom of the catchment and there-

fore driving precipitation data at the top of the catchment are less certain. Indeed, one

could explain the tendency to overestimate snow coverage higher up in the catchment by

a positive bias in the driving precipitation data here. Such a bias could also explain the

modelled inconsistencies across signatures that characterise ice melt at di�erent spatio-

temporal scales. Furthermore, given the strong coupling between snow, ice and river

runo�, de�ciencies in capturing the snow and ice signatures could also propagate through

to the hydrological representation of the catchment. For example, one could imagine how

errors in the spatial distribution of snow could perturb the timing of runo� through the

catchment given that snow distribution in�uences the behaviour of the semi-distributed
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runo�-routing routine employed in the GHM. Such perturbations are likely to impact the

ability of the GHM to capture the full range of river discharge signatures. Accordingly, it

is important to stress the in�uence that biases in the driving climate data could have on

the model acceptability across the di�erent signatures. Of course, for balance, it should

be noted that regarding precipitation higher up in the catchment, the limited number of

measurements taken at the summit of Öræfajökull indicate that mean annual biases in

driving precipitation data are small (Guðmundsson, 2000). Even so, the recent melt model

comparison by Reveillet et al. (2017) suggest that uncertainties in driving precipitation

data can cloud any di�erences between melt model behaviour.

Given the fact that none of tested compositions were acceptable across all signatures,

one could implement further parameter, structure and boundary condition modi�cations

in an attempt to identify a model, or group of models, that captures all of the signatures

within their LOA. While this should be the grand aim of such an approach, it remains

beyond the scope of this study. Even so, the LOA framework adopted here has provided

a thorough understanding of which aspects of glacio-hydrological behaviour are well rep-

resented by the di�erent models and which aren't. This newly-gained knowledge will be

fundamental to selecting a justi�able range of GHMs in the subsequent chapters. While

this selection process will be detailed in the chapters that follow, the LOA framework

has already shown that the inclusion of the most complex ROR3 runo�-routing structure

cannot be justi�ed given that it introduced additional inconsistencies in model behaviour

and no clear gains in acceptability across any of the model evaluation signatures. The

added complexity and associated uncertainty in the parameterisation of this structure

therefore cannot be justi�ed and will not be adopted in the remainder of the research

conducted in this thesis.

4.7 Conclusions

The signature-based, LOA framework adopted in this study provided a comprehensive

evaluation of di�erent GHM melt and runo�-routing model structures. In contrast to
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traditional model evaluation approaches which rely on one or several global summary

statistics, the adoption of 33 signatures helped to identify those aspects of the glacio-

hydrological system that a particular model could or could not capture and the added

value of introducing additional complexities to simpli�ed process models.

When evaluated against individual signatures, the more complex model formulations

did improve model simulations in some cases, but were not necessarily more consistent

across the full range of signatures. This �nding not only emphasises the need to exercise

caution before introducing additional model complexities, but it also demonstrates the

utility of the LOA framework for justifying such modi�cations. The often con�icting ac-

ceptability scores across the signatures highlights the di�culty and inherent uncertainty

in model structure selection. It is clear, therefore, that future glaciological and hydrolog-

ical projection studies that use simpli�ed model structures should take account of these

uncertainties, although to date these have rarely been considered. The results from this

study indicate that, for future river �ow projections in glaciated basins, the source of

model uncertainty will depend on the particular river �ow characteristic of interest.

An additional advantage of adopting a LOA framework is that it provides objective

criterion for accepting or rejecting particular model structures and parameterisations.

While all but two of the signatures demonstrated discrimination power, none of the 45,000

di�erent model compositions tested in this study were able to capture them within their

LOA simultaneously. Therefore, it remains to be seen if the framework can be used in

this way, although applications that go beyond examining the melt and runo�-routing

structural uncertainties and look at other process representations and model boundary

conditions may prove more fruitful in obtaining a behavioural population of models.

4.8 Summary

The study undertaken in this chapter aimed to meet the �rst research objective of this

thesis which was to, "implement a novel GHM comparison and selection framework to

undertake a rigorous evaluation of multiple GHM structures". To meet this objective
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a signature-based LOA framework to compare and diagnose de�ciencies in the di�erent

snow/ice melt and runo�-routing model structures was implemented. The �ndings have

provided new understanding of de�ciencies in the di�erent model structures and this

understanding will be used to develop a model selection and calibration approach in the

next chapter.
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CHAPTER 5:

TWENTY-FIRST CENTURY EVOLUTION AND

UNCERTAINTY OF GLACIER-FED RIVER FLOW

REGIME

5.1 Introduction

This chapter uses the EURO-CORDEX climate projections to drive an ensemble of GHMs

and project twenty-�rst century changes in di�erent characteristics (magnitude, timing

and variability) of river �ow regime using a signature-based analysis. By doing so, this

chapter will meet the second research objective outlined in chapter 1. This chapter also

aims to meet the third research objective by undertaking a decomposition of the projection

uncertainties to quantify the relative contributions of �ve components of the climate-

GHM model chain across the signatures. These include the land use and greenhouse gas

emission/concentration pathway (RCP), numerical climate model, climate downscaling

parameterisation, snow/ice melt model and runo�-routing model. The projections from

this study will be used as boundary conditions in the next chapter to drive a distributed

groundwater model of the proglacial sandur aquifer.

The material presented in this chapter has been published in Hydrology and Earth

System Sciences (Mackay et al., 2019). JM designed and undertook all practical elements

of this study, including the downscaling of EURO-CORDEX climate projections, GHM

calibration and the decomposition of projection uncertainties. He also led the analysis,

interpretation and writing of the manuscript. NB, DH, SK, CJ, JE and GA contributed

to the interpretation of the results. AB assisted in the construction of the harmonised

river stage time series data used in this study.
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5.2 Background

The presence of snow and ice in mountain watersheds profoundly a�ects characteristics

of downstream river �ow regime including �ow magnitude, timing and variability over

a range of timescales (Jansson et al., 2003; Mankin et al., 2015). This is partly due to

the periodic (diurnal and seasonal) variations and longer-term (decadal) trends in melt-

water inputs brought about by �uctuations in glaciological mass balance. In addition,

the dynamic water storage and release properties of snow and ice (runo�-routing) control

downstream river �ow response to runo� over hourly to seasonal timescales (Willis, 2005).

As such, glaciated basins exhibit river �ow regimes that di�er from their non-glaciated

equivalents. Fountain and Tangborn (1985) analysed the e�ect of temperate glaciers

on runo� variations for the North Cascade Mountains in the United states by compar-

ing runo� records from glaciated and non-glaciated catchments and Chen and Ohmura

(1990) did the same for the Rhone catchment. They showed that the presence of glaciers:

i) increases annual stream�ow through melt contribution; ii) delays the seasonal timing

maximum runo� due to temporary storage of spring meltwater and peak meltwater pro-

duction in the summer; and iii) decreases annual and monthly �ow variation, particularly

in the summer. The last of these e�ects is often referred to as the `compensation e�ect'

whereby partially-glaciated catchments demonstrate reduced inter-annual �ow variability

due to ice melt which compensates for precipitation variability. Indeed, the compensation

of runo� from melt inputs can actually serve to increase mean runo� during anomalously

dry heatwave events (Zappa and Kan, 2007).

Mountain glaciers are retreating at unprecedented rates (Zemp et al., 2015) while snow

coverage is receding (Vaughan et al., 2013) resulting in observable changes to downstream

river �ow regimes including changes in annual mean �ows and inter-annual �ow variability

(Luce and Holden, 2009; Singh et al., 2016b), changes in �ow seasonality (Hernández-

Henríquez et al., 2017) and increases in �ood frequency (Matti et al., 2017). With near-

surface air temperature projected to rise over the coming decades (Collins et al., 2013)

future changes in river �ow regimes in response to snow and glacier retreat could have
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wide-ranging socio-economic and ecological impacts. Long-term reductions in meltwater

inputs will disrupt the supply of water available for irrigation (Baraer et al., 2015; Carey

et al., 2014; McDowell and Hess, 2012; Nolin et al., 2010) while increased inter-annual

�ow variability will threaten infrastructure projects such as hydroelectric power stations

(Carvajal et al., 2017; Gaudard et al., 2014; Laghari., 2013). The loss of the runo�-

regulating e�ects of snow and ice could result in more frequent short-term very high

�ows putting downstream populations and infrastructure at risk (Laghari., 2013; Sto�el

et al., 2016). Conversely, the loss of melt during drier months could increase frequency and

severity of droughts (Van Tiel et al., 2018). Studies of changes in riparian and river species

abundance under �ow alteration consistently show negative responses to both increases

and decreases in �ow magnitude (Po� and Zimmerman, 2010). Increased frequency of

�ow extremes (�oods and droughts) typically result in reduced species richness, while

shifts in �ow seasonality can disrupt �sh spawning cues. Increased �ashiness and short-

term �ow variability typically result in decreased riparian germination survival. Indeed,

metrics used to de�ne these characteristics of �ow regime now underpin decision-support

systems for managing these systems (Beamer et al., 2017; Cartwright et al., 2017; Pool

et al., 2017).

Computational GHMs driven by numerical climate model projections allow us to as-

sess how future river �ow regimes will change in glaciated river basins. Past studies have

focussed on projecting changes in decadal, annual and seasonal variations in runo� mag-

nitude. Decadal changes in runo� are inevitable over the coming century (e.g. Bliss et al.,

2014; Lutz et al., 2014; Shea and Immerzeel, 2016) where enhanced melt will result in

increased river discharge to a point in time termed `peak water' after which the continued

loss of snow and ice will result in an overall decrease in river �ow. It has been shown that

many basins, particularly those with small glaciers, have already reached peak water and

face a future of dwindling water supply (Huss and Hock, 2018). Seasonal �ow magnitudes

are also projected to change as melt cycles evolve and watersheds shift from glacial-nival

to pluvial runo� regimes (Duethmann et al., 2016; Garee et al., 2017; Kobierska et al.,

2013; Ragettli et al., 2016).
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Some impact studies show robust changes in the magnitude of the highest and lowest

river �ows including Wijngaard et al. (2017) who projected an increase in the magnitude of

the 10% exceedance �ow (Q10) for river basins across the Hindu-Kush-Himalayan region.

Other studies for the Rhine (Bosshard et al., 2013), upper Indus (Lutz et al., 2016) and

upper Yellow river basin (Vetter et al., 2015) show high �ow magnitudes will increase.

Stewart et al. (2015) projected a decrease in low �ow magnitude (Q90) for the snow-covered

Sierra Nevada and Upper Colorado river basins due to shifts in the snow melt season and

changes in precipitation type from snow to rain. For the Hindu-Kush, Wijngaard et al.

(2017) found the opposite impact with an increase in the magnitude of low �ow events.

The projected trends in Q90 for the upper Yellow river basin by (Vetter et al., 2015) were

inconclusive as they showed an even spread of positive and negative trends under the

warmest climate scenarios.

Of course, one could go beyond projecting changes in seasonal to decadal mean �ow

magnitudes and quantiles of the FDC. A branch of stream�ow analysis that has been

widely adopted in hydrology is the calculation of river �ow signatures to represent di�erent

characteristics of river �ow over speci�c timescales. Signatures have been used in the past

to analyse catchment runo� behaviour and similarity (Ali et al., 2012; Yadav et al., 2007).

They also o�er an opportunity to evaluate past (Sawicz et al., 2014) and future (Casper

et al., 2012) river �ow regime change. For example, Teutschbein et al. (2015) projected

changes in 14 di�erent river �ow signatures for 14 snow-covered catchments in Sweden

and showed daily to annual river �ow magnitude, timing and variability were all sensitive

to climate change. An analysis like this is yet to be undertaken for any glaciated river

basins.

Projections of river �ow regime are inherently uncertain due to assumptions made

about the formulation, parameterisation and boundary conditions of the underlying GHM

(Huss et al., 2014; Jobst et al., 2018; Ragettli et al., 2013) and climate model, be that a

GCM, RCM, or the combination of the two (GCM-RCM) (Giorgi et al., 2009). Uncertain-

ties may also be introduced by intermediary steps employed to link the two sets of models

together such as downscaling (DS). Quantifying the propagation of uncertainties from all
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sources in the model chain provides a basis for assigning more robust levels of con�dence

to river �ow projections. Additionally, one can assess the relative contributions of model

chain components to the total projection uncertainty, providing empirical evidence for

future research needs (e.g. Meresa and Romanowicz, 2017). Ensemble-based experiments

have been used in the past to provide this understanding. Here, di�erent components of

the model chain are perturbed, typically using a one at a time (OAT) approach where the

spread in projections for each perturbed component is evaluated. Ragettli et al. (2013)

perturbed three components of a model chain applied to the Hunza River Basin, northern

Pakistan including the GCM, statistical DS model and parameterisation of the GHM.

They showed that all three sources contributed to annual runo� projection uncertainty,

but for the heavily glaciated subregions of the catchment, the GHM parameter uncer-

tainty exceeded the e�ect of other sources. Huss et al. (2014) investigated uncertainty

in seasonal river �ow projections over the twenty-�rst century for the Findelengletscher

catchment, Switzerland by modifying the GCM-RCM, GHM melt model structure and

initial ice volume boundary condition. Of these, they found that the GCM-RCM and

initial ice volume were most important while the melt model structure was of secondary

importance. Jobst et al. (2018) investigated uncertainties in twenty-�rst century river

�ow projections for the Clutha river basin, New Zealand. They evaluated contributions

from emission scenario, GCM-RCM, statistical DS approach and melt model structure.

Similarly to Huss et al. (2014), they found that uncertainty in the choice of GCM-RCM

dominated total projection uncertainty.

The OAT method provides a �rst-order approximation of the relative contribution of

each component to the total projection uncertainty. However, �ndings are dependent on

how the non-perturbed model components are �xed. Furthermore, this approach cannot

resolve interactions between model components which may also contribute to projection

uncertainty (Pianosi et al., 2016). The analysis of variance (ANOVA) statistical method

(Storch and Zwiers, 1999; Tabachnick and Fidell, 2014) addresses these shortcomings and

has been adopted in a number of recent regional and global scale hydrological modelling

studies (Addor et al., 2014; Bosshard et al., 2013; Giuntoli et al., 2015; Samaniego et al.,
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2017; Vetter et al., 2015; Vetter et al., 2017; Yuan et al., 2017) to compare uncertain-

ties stemming from emission scenario/concentration pathway, climate model, hydrological

model structure and DS approach. While uncertainties associated with future climate tend

to dominate projections of river �ow, glacier-fed river �ow projections have shown to be

highly sensitive to hydrological model structure (Addor et al., 2014; Giuntoli et al., 2015),

particularly in relation to high �ows (Vetter et al., 2017). Furthermore, the contribution

of projection uncertainty from interactions between model chain components can exceed

individual components (Addor et al., 2014; Bosshard et al., 2013; Vetter et al., 2015).

Several issues not considered in these studies, however, are yet to be addressed. Firstly,

none have investigated a full range of characteristic changes in river �ow regime cover-

ing decadal to sub-daily timescales. Second, all have incorporated hydrological model

uncertainty using multiple model codes, each with their own unique set of process rep-

resentations, resolution, time step and climate interpolation strategies making it di�cult

to determine which model components contribute most to projection uncertainty. Fi-

nally, none included a fully integrated mass-conserving, dynamic glacier evolution model

component and therefore could not fully account for atmosphere-cryosphere-hydrosphere

feedbacks.

5.3 Aims

This study uses a climate-GHM model chain to simulate the impact of twenty-�rst century

climate change on downstream river �ow regime in the Virkisá River basin. Five com-

ponents of the model chain are perturbed to represent uncertainty of RCP, GCM-RCM,

statistical DS parameterisation and structure-parameterisation of two primary controls

on river �ow regime in the GHM: melt and runo�-routing processes. The study has two

principal aims which will address objectives 2 and 3 outlined in chapter 1:

1. Use a signature-based analysis to determine how climate change and consequent

cryospheric change will impact di�erent characteristics of downstream river �ow

regime over the twenty-�rst century.
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2. Use ANOVA to quantify the relative in�uence of the �ve model chain components

to projection uncertainty across the di�erent characteristics of river �ow regime.

This study addresses each of the aforementioned gaps in previous work. Firstly, changes

in river �ow regime are assessed quantitatively using 25 river discharge signatures which

de�ne di�erent characteristics of river �ow regime over a range of timescales. Second, a

single, consistent, GHM code is used that can incorporate di�erent model structures and

parameterisations of melt and runo�-routing processes allowing for uncertainty stemming

from these to be localised using ANOVA. Finally, a fully integrated mass-conserving,

dynamic glacier evolution routine is included in the GHM code.

5.4 Methodology

5.4.1 Driving climate data

The same historical precipitation, temperature and incident solar radiation data used in

Chapter 4 were used in this study, except that the complete time series from 1981 to 2016

inclusive were utilised.

Future climate time series until 2100 were constructed using the CORDEX regional

climate projections. It was decided to use the RCP4.5 and RCP8.5 pathways only and

omit RCP2.6 from the analysis. This was necessary given that only 8 of 15 GCM-RCMs

within the CORDEX archive used this RCP. Furthermore, the probability of achieving the

RCP2.6 targets is increasingly unlikely (Fyke and Matthews, 2015; Sanford et al., 2014)

and arguably completely infeasible (Mora et al., 2013) given the current global emis-

sion trajectory. Of the 15 available GCM-RCMs, one (GCM:CNRM-CM5, RCM:CNRM-

ALADIN53) was removed from the ensemble given that it showed an extreme negative

winter temperature bias and a consistently low skill when compared to daily observed cli-

mate data (see Appendix F). Figure 5.1 shows the seasonal bias of each of the 14 remaining

GCM-RCMs when compared to observations between 1981 and 2005. For temperature,

the coldest 1% of days (T1) typically show a negative bias, particularly in winter, spring

110



Chapter 5: Twenty-�rst century changes and uncertainty in river �ow regime

and autumn. Biases for warmest 99% of days (T99) are generally positive, but smaller

in magnitude. The average absolute bias in mean seasonal temperature (Tmean) is 1.4

◦C, but the majority of GCM-RCMs show absolute biases <1.2 ◦C. Biases in seasonal

incident solar radiation projections are almost exclusively positive with the largest biases

associated with SWmean and SW99, particularly in spring and summer where they can

exceed 100 W m-2. Total precipitation biases are typically largest in winter and autumn

where proportionally, biases can exceed the magnitude of the observations (see SON for

[EC-EARTH]-[HIRHAM5]). The largest biases however are seen in the highest 1% of

precipitation values (P99) which range from -86.9 to 77.5 mm d-1. While positive and

negative precipitation biases are present throughout the ensemble, the sensitivity of pre-

cipitation simulations to the RCM is clear. For example, the CCLM4-8-17 RCM has a

systematic negative bias and the HIRHAM5 RCM has a systematic positive bias.

5.4.2 Downscaling regional climate projections

For this study, the statistical delta-change downscaling approach was employed which has

been widely applied in hydrological impact studies (Farinotti et al., 2012; Huss et al., 2014;

Immerzeel et al., 2013; Kobierska et al., 2013; Lutz et al., 2016). Here, changes (deltas)

in the statistical properties of climate variables are calculated from coarse GCM-RCM

projection time series and applied to higher-resolution historical observed data. This

approach produces future climate time series with �ner-scale properties (e.g. sub-daily

variability) that are consistent with historical observations, but with broader changes in

climate that are consistent with the deltas. While most studies have used monthly mean

delta-change values to capture seasonal shifts in climate, several recent investigations

have used advanced quantile-based approaches which account for changes in higher-order

statistical properties of future climate by evaluating shifts in the empirical cumulative

distribution functions (ECDFs) of climate variables. Including these higher-order changes

has shown to be important for evaluating shifts in extreme high �ows and sub-seasonal

metrics of river �ow projections (Immerzeel et al., 2013; Jakob Themeÿl et al., 2011;

Lutz et al., 2016). In addition, shifts in the day-to-day variability of temperature impact
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projections of glacier retreat as these variations control the periodic rising of temperature

above the melting point (Beer et al., 2018). Accordingly, the advanced delta-change

approach was adopted in this study. The approach is summarised in �ve steps which were

applied to each combination of GCM-RCM, climate variable and RCP separately:

1. The climate variable time series was divided into four 25-year-long periods including

the recent past (1981 - 2005) and early (2006 - 2030), mid- (2041-2065) and late

(2076 - 2100) twenty-�rst century.

2. For each of the four periods, all daily data points were further divided into 12

subsamples representing each month of the year. An ECDF was constructed for

each month of each period.

3. For each month of each future period, 10 deltas were calculated by taking the mean

di�erence between the recent past and future ECDF for each 10% section (see grey

bars in Fig. 5.2a for example).

4. Given the need for transient climate time series to simulate glacier evolution over the

twenty-�rst century, a daily delta time series from 2006 to 2100 was constructed for

each ECDF section of each month by linearly interpolating between the calculated

deltas of each future period (e.g. as implemented by Farinotti et al., 2012), using

the midpoints of the future periods as interpolation points (Fig. 5.2b).

5. The hourly historic observation data for the recent past were randomly sampled

(with replacement) on a year-by-year basis to generate an initial unperturbed future

climate variable time series (blue dash, Fig. 5.2c). The daily deltas were applied to

this time series for each month and ECDF section separately to generate a future

perturbed climate time series at an hourly resolution (orange dash Fig. 5.2c). It was

noted upon visual inspection, that the inter-annual variability of the future climate

time series was very sensitive to the random sampling of the historic climate data.

Accordingly, uncertainty associated with this aspect of the DS parameterisation was

considered by using 10 di�erent random historic climate samples.
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Figure 5.2: Example of advanced delta-change approach when applied to near-surface

air temperature data based on the RCP8.5 projections using the CNRM-CM5 GCM and

CCLM4-8-17 RCM. Deltas (grey bars) derived from ECDFs (black curves) for April in

late twenty-�rst century (a); Daily delta time series for each section of the April ECDFs

(green line represents 40th - 50th percentile section) (b); Initial and perturbed future

temperature time series when deltas for all months and ECDF sections are applied (c).
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For temperature, catchment-average daily deltas were applied evenly across the catch-

ment and each daily period of the unperturbed time series. Accordingly, diurnal temper-

ature variability and lapse rates were assumed not to change in the future. For incident

solar radiation and precipitation, proportional deltas were used to prevent negative values

and preserve the sub-daily proportional distribution of these variables in space and time.

A total of 2 RCP × 14 GCM-RCM × 10 DS parameterisations = 280 future climate time

series were generated for this study.

5.4.3 Glacio-hydrological model

The �ndings from Chapter 4 showed that the most complex runo�-routing structure was

consistently the least e�cient when compared to the two simpler alternatives, particularly

in relation to capturing signatures representing high-river-�ow events. Accordingly, the

added complexity of this model structure was not deemed justi�able and so only the

remaining six combinations of melt and runo�-routing models structures were used in

this study made up of every combination of the TIM1, TIM2 and TIM3 melt model

structures with the ROR1 and ROR2 runo�-routing model structures.

Modi�cation to ∆h parameterisation of glacier retreat

The ∆h glacier evolution parametrisation is not designed to simulate glacier advance.

Under periods of sustained positive mass balance, simulations from the ∆h glacier evolu-

tion model may result in an unrealistic build up of ice at the glacier tongue without any

simulated areal advance. Given the potential for periods of glacier advance under a chang-

ing climate, such behaviour is likely to result in signi�cant projection biases. Recently,

Seibert et al. (2018) presented an implementation of the original ∆h parameterisation

that provides more realistic simulations of glacier advance. They propose running the ∆h

parametrisation a priori outside of the GHM. A small negative mass balance is used to

force the ∆h model from an initial glacier pro�le (ideally its maximum observed extent)

until the glacier has disappeared completely. At each step, the glacier mass and geometry

are stored in the form of a lookup table. On running the GHM, the retreat/advance
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of the glacier is derived from the lookup table as a function of the simulated glacier

mass. One important drawback of using this static lookup table is that it modi�es the

behaviour of the ∆h formulation during periods of retreat. More speci�cally, this ap-

proach neglects the transient annual sequencing of glacier mass balance which in�uences

simulated glacier geometry due to the non-linear structure of the ∆h polynomial that

de�nes the relationship between mass balance and glacier geometry. Accordingly, a mod-

i�ed implementation of the Seibert et al. (2018) approach was used in this study which

behaves like the original ∆h formulation during periods of glacier retreat and allows for

the simulation of glacier advance while accounting for mass balance sequencing e�ects

on the model behaviour. For periods of negative glacier mass balance the original ∆h

formulation was used. The GHM++ code was then modi�ed so that for each simulation

year, the simulated glacier mass and geometry were stored in memory. If a positive glacier

mass balance (∆M) was simulated, GHM++ would log the current glacier mass (Mcurrent)

and then look for the most recent historical simulated glacier mass (Mhist) that exceeded

Mcurrent + ∆M . The ∆h model was then run with a negative mass balance (∆M∗) so

that Mhist + ∆M∗ = Mcurrent + ∆M .

5.4.4 Signatures of river �ow regime

Table 5.1 lists the 25 signatures of river discharge used to evaluate future changes in

river �ow regime. The signatures are grouped into seven di�erent attributes and further

categorised by the characteristic(s) of �ow regime that they evaluate and their temporal

scale. They broadly follow those used in Chapter 4, but have been modi�ed in some cases

to provide more relevant indicators of hydrological impacts rather than model behaviour.

At the decadal timescale, two signatures were selected. These include the `peak water',

which de�nes the timing (by year) of maximum �ow, as well as the inter-annual �ow

range which characterises long-term �ow variability. Changes in mean annual river �ow

were also evaluated, while mean monthly �ows were used to evaluate changes to the

seasonal timing and magnitude of river �ow. The range in mean monthly �ows was also

chosen to evaluate intra-annual �ow variability. In addition, eight signatures were selected
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Table 5.1: Summary of 25 river discharge signatures used to evaluate future changes in

river �ow regime. Those with available limits of acceptability were also used as part of

the GHM calibration and evaluation procedure.

Attribute Signature Limits of acceptability Regime characteristic Temporal scale

Calibration (2013-2014) Evaluation (2015-2016)

Inter-annual �ow
Peak water (PW) - - Timing and magnitude Decadal

Inter-annual �ow range (RANN) - - Variability Decadal

Annual river �ows Mean annual river �ow (	Q) - - Magnitude Annual

Monthly river �ows

Mean January river �ow (	QJAN) 1.16 � 1.86 m3 s-1 - Timing and magnitude Monthly

Mean February river �ow (	QFEB) 1.69 � 2.92 m3 s-1 - Timing and magnitude Monthly

Mean March river �ow (	QMAR) 0.85 � 1.58 m3 s-1 1.22 - 2.34 m3 s-1 Timing and magnitude Monthly

Mean April river �ow (	QAPR) 0.73 � 1.48 m3 s-1 1.03 - 2.10 m3 s-1 Timing and magnitude Monthly

Mean May river �ow (	QMAY) 1.50 � 2.16 m3 s-1 1.64 - 3.00 m3 s-1 Timing and magnitude Monthly

Mean June river �ow (	QJUN) 4.12 � 6.23 m3 s-1 4.88 - 9.39 m3 s-1 Timing and magnitude Monthly

Mean July river �ow (	QJUL) 6.33 � 10.3 m3 s-1 4.96 - 9.38 m3 s-1 Timing and magnitude Monthly

Mean August river �ow (	QAUG) 5.72 � 9.15 m3 s-1 6.80 - 14.39 m3 s-1 Timing and magnitude Monthly

Mean September river �ow (	QSEP) 4.55 � 7.38 m3 s-1 6.61 - 14.21 m3 s-1 Timing and magnitude Monthly

Mean October river �ow (	QOCT) 3.88 � 7.02 m3 s-1 6.94 - 16.33 m3 s-1 Timing and magnitude Monthly

Mean November river �ow (	QNOV) 3.90 � 7.40 m3 s-1 3.17 - 5.76 m3 s-1 Timing and magnitude Monthly

Mean December river �ow (	QDEC) - - Timing and magnitude Monthly

Mean monthly �ow range (Rmnth) - - Variability Seasonal

Slow-release low �ows

95% exceedance �ow (Q95) 0.27 - 1.10 m3 s-1 0.66 - 1.75 m3 s-1 Magnitude Monthly to seasonal

99% exceedance �ow (Q99) 0.12 - 0.88 m3 s-1 0.46 - 1.56 m3 s-1 Magnitude Monthly to seasonal

Low �ow standard deviation (σ99-95) 0.03 - 0.10 m3 s-1 0.02 - 0.09 m3 s-1 Variability Monthly to seasonal

Moderate �ows
50% exceedance �ow (Q50) 2.38 - 3.70 m3 s-1 3.10 - 5.79 m3 s-1 Magnitude Daily to monthly

Moderate �ow standard deviation (σ52-48) 0.07 - 0.15 m3 s-1 0.08 - 0.18 m3 s-1 Variability Daily to monthly

Quick-release high �ows

1% exceedance �ow (Q01) 17.71 - 40.31 m3 s-1 21.90 - 61.57 m3 s-1 Magnitude Hourly to daily

5% exceedance �ow (Q05) 9.43 - 15.76 m3 s-1 11.71 - 27.37 m3 s-1 Magnitude Hourly to daily

High �ow standard deviation (σ05-01) 2.08 - 5.68 m3 s-1 2.60 - 8.10 m3 s-1 Variability Hourly to daily

Flashiness Integral scale (τ) 25 � 44 h 0 - 54 h Timing Hourly to daily

which broadly describe the magnitude and variability of slow-release low �ows (99-95%

exceedance �ows), moderate �ows (52-48% exceedance) and quick-release high �ows (5-

1% exceedance). For these, the quantiles of the FDC were used to assess changes in

the magnitude of these �ow types. Quantiles were deemed more relevant to hydrological

impacts than the volume under the FDC. Additionally, the standard deviation has been

used as an indicator of �ow variability rather than using the coe�cient of variation or

slope of the FDC as this provides consistent units with the other �ow signatures. Finally,

the integral scale, was utilised as an indicator of the response time of the catchment to

runo� events (�ashiness).
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5.4.5 GHM++ calibration

Given the focus on projecting changes in river discharge signatures, these were explicitly

included in the GHM calibration procedure as this gives better signature simulations

than using traditional global objective functions (Kiesel et al., 2017; Pool et al., 2017).

However, calibrating against river �ow data alone can lead to unrealistic snow and glacier

melt rates, inhibiting model consistency and increasing projection uncertainties (Finger

et al., 2011; Hanzer et al., 2016; Konz and Seibert, 2010; Schae�i and Huss, 2011).

Accordingly, a novel signature-based calibration of GHM++ was undertaken by evaluating

the model against 20 of the river discharge signatures in Table 5.1 for which observation

data exists in combination with the 12 signatures of ice melt and snow coverage in Table

4.2.

For each signature, model simulations were compared to observations using the con-

tinuous acceptability score outlined in Eq. 4.19 using the LOA in Table 5.1. The aim

of the calibration was to extract an ensemble of GHM++ compositions (TIM and ROR

structure-parameter combinations) that were most acceptable across the river discharge

signatures whilst broadly reproducing the snow coverage and ice melt signatures. This

was achieved using a two-stage Monte Carlo procedure which was devised so that the

resultant model ensemble re�ected the uncertainty in model selection given the known

model inconsistencies across the signatures shown in Chapter 4.

Stage 1: TIM calibration

The �rst stage aimed to extract the optimal TIM compositions (structure-parameter com-

binations) by calibrating them against the 12 snow coverage and ice melt signatures. Here,

for each of the three TIM structures, 5000 TIM parameter sets were drawn from prede-

�ned uniform distributions (Table C.1) using the quasi-random Sobol sampling strategy

(Brately and Fox, 1988) to sample the parameter space as e�ciently as possible. For each

parameter set, GHM++ was spun-up for three years from 1985 to 1988 with a static ice

geometry �xed to a 1988 ice DEM (Magnússon et al., 2016). The model was then run
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from 1988 to the end of 2016 with a freely evolving glacier geometry.

Given the high degree of glaciation in the study catchment, and its recent rapid re-

treat, an initial emphasis of the calibration was put on the model's ability to capture the

long-term glacier volume change signature. Accordingly, only those TIM compositions

that captured this signature within the LOA were considered and the rest were discarded.

These remaining compositions were then further re�ned by evaluating them against the re-

maining 11 snow and ice signatures. First, the TIM compositions were sorted by structure

(TIM1,TIM2,TIM3). Then, for a given TIM structure, the following steps were applied:

1. Find the TIM parameter set(s) that capture the signature within the LOA and

discard the rest. If more than one parameter set captures the current signature, go

to step 2. If none capture the current signature, discard none and go to step 2.

2. Of the remaining models, �nd that which best captures the 10 remaining snow and

ice signatures overall according to the weighted mean scores obtained in Eq. 4.19.

The weights were applied to ensure that equal preference was given to ice melt and

snow coverage signatures.

24 unique TIM compositions were obtained from this calibration stage made up of eight

unique parameterisations of each of the three TIM structures. In some cases the same

composition was selected more than once which was accounted for by weighting the sim-

ulations in the results presented throughout this study.

Stage 2: ROR calibration

The second calibration stage aimed to extract the optimal ROR compositions when used

in combination with the 24 preselected TIM compositions by calibrating them against 20

of the river discharge signatures obtained from observations of river discharge for the years

2013 and 2014 (see signatures with calibration LOA in Table 5.1). Note, the inter-annual

�ow signatures and the mean December river �ow signatures could not be calculated as

there were insu�cient observation data. Furthermore, the mean annual river �ow and

mean monthly �ow range were not included as this information was already accounted
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for in the mean monthly �ow signatures. Here, 5000 random ROR parameter sets were

drawn for each ROR structure. Each was used in combination with the preselected TIM

compositions in GHM++. Then, the two steps outlined in calibration stage 1 were applied

using the 20 calibration river discharge signatures with two notable di�erences. Firstly,

for each ROR structure and each river discharge signature, rather than selecting a unique

ROR parameter set for each of the 24 TIM compositions, a single parameter set was

selected based on its mean performance across the 24 TIM compositions. This was done

to satisfy the ANOVA requirements so that the TIM and ROR composition uncertainty

could be analysed separately. Furthermore, for step 2, the signatures were weighted so

that each of the attributes in Table 5.1 were weighted equally. In total, 14 unique ROR

compositions were selected made up of seven unique parameterisations of the ROR1 and

ROR2 structures, giving a total of 24×14 = 336 unique GHM++ compositions.

5.4.6 ANOVA uncertainty analysis

For the twenty-�rst century runs, all 336 GHM++ compositions were run to the end of

2016 using the historic observed climate to capture the evolving ice geometry as accurately

as possible. From 2017 to 2100, the 280 downscaled future climate time series were used to

drive the models resulting in 94080 individual model runs. For each model run, projections

of watershed snow and ice coverage and the 25 river discharge signatures were extracted

for six twenty-�rst century 25-year time slices centred on the 2030s (2023-2047), 2040s

(2033-2057), 2050s (2043-2067), 2060s (2053-2077), 2070s (2063-2087) and 2080s (2073-

2097). Future changes in these were then calculated relative to a reference 25-year period

(1991-2015). This reference period was chosen because ice coverage data used to initialise

the GHM is only available from 1988 and historic climate data are available up to the end

of 2016.

The ANOVA statistical framework (Storch and Zwiers, 1999; Tabachnick and Fidell,

2014) was used to quantify the e�ect size of the �ve components of the model chain, here-

after termed factors, on each signature for each twenty-�rst century time slice. Note, the

peak water (PW) signature can only be calculated taking into account the full projection
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time series and, as such, it was not possible to apply ANOVA to each time slice for this

signature. The �ve factors include the 2×RCP, 14×GCM-RCM combinations, 10×DS

parameterisations, 24×TIM compositions and 14×ROR compositions. ANOVA o�ers an

intuitive approach to estimate the e�ect size of each factor on each signature by parti-

tioning the total sum of squares (SStot) in the response variable over all combinations of

factor levels:

SStot = SSa + SSb + SSc + SSd + SSe + SSI + SSε (5.1)

where:

SStot =
na∑
i=1

nb∑
j=1

nc∑
k=1

nd∑
l=1

ne∑
m=1

(yi,j,k,l,m − Ȳ )2 (5.2)

where na, nb, nc, nd and ne are the number of levels for each factor, y is the response

for a given treatment (i.e. combination of factor levels) and Ȳ is the grand mean of the

response variable over all treatments. SSa, SSb, SSc, SSd and SSe in Eq. 5.1 are the

sum of squares due to the main e�ects, i.e. the variability in the response variable due to

varying a given factor on its own. For example:

SSa = nbncndne

na∑
i=1

(yi,◦,◦,◦,◦ − Ȳ )2 (5.3)

where ◦ indicates averaging over an index. SSI includes all nonadditive interaction terms

where the combined e�ect of two or more factors is not the sum of their main e�ects. For

a 5-factor ANOVA, one could include all unique n-tuple combinations of factors where

n = (2, 3, 4, 5). Given the di�culty in interpreting these higher-order interactions, and

computational requirements, it was decided to investigate the nine �rst-order interactions

only, so that:

SSI = SSab + SSac + SSad + SSae + SSbc + SSbd + SSbe + SScd + SSce + SSde (5.4)

The sum of squares for a �rst-order interaction are calculated as follows using factors a

and b as an example:

SSab = ncndne

na∑
i=1

nb∑
j=1

(yi,j,◦,◦,◦ − yi,◦,◦,◦,◦ − y◦,j,◦,◦,◦ + Ȳ )2 (5.5)

Finally, the SSε term includes all unexplained variance i.e. error in the ANOVA model.
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Having partitioned the sum of squares, the e�ect size, η2 for any term in Eq. 5.2 can

be taken as the proportion of the total sum of squares:

η2
∗ = SS∗/SStot (5.6)

where ∗ can be any of the main e�ects, interactions or error term.

Bosshard et al. (2013) showed that because ANOVA is based on a biased variance

estimator that underestimates the variance in small sample sizes, the calculated e�ect

sizes are biased if a di�erent number of levels are used for each factor. Given that the

number of factor levels range from 2 to 24, a pure application of ANOVA using all possible

treatments would lead to biased results. Bosshard et al. (2013) outlined a method to

correct for this which involves subsampling the factor levels down to the smallest number

levels across all factors. The procedure is repeated using every possible combination of

factor levels with unbiased e�ect size taken as the mean across all subsamples. However,

given that there are > 108 unique combinations of factor levels when subsampled down

to two (and discarding factor level repetitions), it would have been infeasible to account

for every possible combination. Instead, it was decided to calculate the e�ect sizes in this

manner using �ve di�erent subsample sizes (101, 102...105). The results were then analysed

to see if the e�ect sizes converged. It was found that 103 subsamples were su�cient to

converge the e�ect sizes for all river discharge signatures and projections of snow and ice

coverage. Accordingly, this subsampling strategy was adopted in this study.

5.5 Results

5.5.1 Evaluation of calibrated GHM++ compositions

The simulated river discharge time series and signatures using the calibrated GHM++

compositions were evaluated against river discharge observations covering the years 2015

and 2016. Note, no data for mean January and February �ows were available for these

years. Figures 5.3a and b show the simulated `capture ratio' (the ratio of the 336 model

compositions that capture the observation data within their 95% uncertainty bounds)
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time series projected onto the mean observed river discharge for the years 2015 and 2016

respectively. Also shown is the ensemble mean simulated river discharge (black dash)

which while not indicative of a single model simulation, does provide an indication of

overall projection bias.

56% of the observation time series were captured by at least half of the model compo-

sitions, while 41% and 28% of the observations were captured by at least 75% and 90% of

the GHM compositions. 12% of the observations were not captured by any of the model

compositions. These included some of the low �ows observed at the beginning of the year

outside of the melt season, particularly in 2015, where the simulations showed consistent

negative biases. Some rainfall-induced summer peak �ows were also not captured, par-

ticularly during the late-summer months of August and September. Furthermore, the

sustained summer melt runo� discharge in between rainfall-induced peak �ows tended to

be overestimated (for example during July and August 2016). Even so, the FDC in Fig.

5.3c shows that almost the entire FDC was captured by all of the GHM++ simulations

except for some of the lowest �ows on record. Indeed, Fig. 5.3d reveals that models were

least e�cient at capturing the low �ow signatures, particularly the variability signature

(σ99-95), where simulations were positively biased by almost four times the observation

uncertainty. For the remaining signatures though, the ensemble of models were remark-

ably e�cient, with the majority of simulations (and in most cases all of them) capturing

these signatures within their LOA.

5.5.2 Future climate projections

Projections of temperature for the late twenty-�rst century (2076-2100) consistently show

an increase relative to the recent past (1981-2005). The largest increases are projected

for the coldest days of the year during the winter (Fig. 5.4a), spring (Fig. 5.4d) and

autumn (Fig. 5.4j) months as shown by the positive skew in the lower sections of the

ECDFs. However, these changes are also typically associated with the greatest projection

uncertainty. RCP4.5 projects annual mean near-surface air temperature to rise by between

1.1 and 3.6 ◦C by the late twenty-�rst century relative to the recent past with an ensemble
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Figure 5.3: Capture ratio projected onto observed river discharge data during evaluation

period for 2015 (a); 2016 (b); and over the FDC (c). The weighted ensemble mean

simulation is shown as a black dash. Also shown are the range of acceptability scores for

each of the available river discharge signatures over the evaluation period (d). Acceptable

simulations in (d) are those contained within the black dash lines.
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mean projection of +2.0 ◦C. RCP8.5 projects an equivalent rise of between 2.3 and 4.9

◦C with an ensemble mean projection of +3.3 ◦C.

Projected changes in incident solar radiation span positive and negative values, but

the median projections are consistently negative indicating reductions in incident solar

radiation are most likely. Uncertainty in the magnitude of change is highest during the

spring and summer months (Figs. 5.4e and h) when incident solar radiation peaks. Under

RCP4.5 annual mean incident solar radiation is projected to change by between -10.7 to

+0.8% by the late twenty-�rst century with an ensemble mean projection of -4.4%. Under

RCP8.5 changes of between -15.3 to 0.4% are projected with an ensemble mean projection

of -7.7%.

Projected changes in total precipitation are negligible for the four lowest 10% sections

of the precipitation ECDFs, but signi�cant for the two highest sections. In the winter (Fig.

5.4c) and autumn (Fig. 5.4l) months, absolute changes exceed 40 mm d-1. The direction of

change is uncertain apart from autumn where median projections are consistently positive

for the upper sections of the ECDF. The magnitude of change is also uncertain. RCP4.5

projects annual mean precipitation will change by between -13.5 to +21.6% relative to the

recent past by the late twenty-�rst century with an ensemble mean projection of +1.7%.

Under RCP8.5 changes of between -25.7 to 25.1% are projected with an ensemble mean

projection of +1.4%.

Figure 5.5 shows the correlation matrix calculated between seasonal average climate

variables for the late twenty-�rst century. For all climate variables, between-season

changes (scores within green borders in Fig. 5.5) are positively correlated indicating

that an increase in summer temperature typically corresponds with an increase in win-

ter temperature for example. Temperature has the greatest between-season correlation

while precipitation is the least well correlated. Within-season, between-variable correla-

tion scores (within purple border in Fig. 5.5) show that precipitation and incident solar

radiation are negatively correlated and that the correlation between precipitation and

temperature depends on the time of year. For the cooler winter, spring and autumn

months, temperature and precipitation are positively correlated, but there is a weak neg-
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Figure 5.4: Seasonal average projected changes in ECDFs for near-surface air temperature

(a,d,g,j), incident solar radiation (b,e,h,k) and total precipitation (c,f,i,l) for the late

twenty-�rst century (2076-2100) relative to the recent past (1981-2005). Changes are

plotted for each 10% section of the ECDFs. For each section, blue and yellow dots

represent each of the 140 downscaled future climate time series for the RCP4.5 and RCP8.5

pathways respectively (280 in total). Winter: Dec, Jan, Feb; spring: Mar, Apr, May;

summer: Jun, Jul, Aug; autumn: Sep, Oct, Nov.
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Figure 5.5: Correlation matrix between seasonal average climate variables calculated for

late twenty-�rst century (2076-2100) using the 280 downscaled future climate time series.

Within-variable, between-season correlation scores are contained within the green borders

and within-season, between-variable correlation scores are contained within the purple

borders. Those regions of the correlation matrix that do not cover these two groups are

shaded in black.

ative correlation for the summer months. Temperature and incident solar radiation are

negatively correlated, most strongly for the cooler winter, spring and autumn months.

5.5.3 Future evolution of snow and ice coverage

The ensemble mean projections of annual mean watershed snow coverage (Fig. 5.6a) show

that it will decrease from 12.2 km2 in 2016 to 9.2 km2 in 2100 (25% reduction) under

RCP4.5 and 6.0 km2 (51% reduction) under RCP8.5. The 95% projection con�dence

intervals indicate that by 2100 the watershed could be almost entirely free of snow (2.5

km2 remaining) under RCP8.5 or could have a coverage exceeding present levels (13.3

km2) under RCP4.5.
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Figure 5.6: Projected annual mean watershed snow coverage (a) and ice coverage (b) in-

cluding the projection con�dence intervals (bands) and ensemble mean projections (thick

solid lines) for the RCP4.5 (blue) and RCP8.5 (yellow) projections. Also shown are pro-

jection con�dence levels for a reduction in coverage relative to 2016 (thin solid lines,

right-hand axis).

Beyond 2050, there is high con�dence (≥ 95%) that snow coverage will reduce relative

to 2016 levels under RCP8.5 (thin yellow line in Fig. 5.6a) and equally high levels of

con�dence apply to projected reductions in snow coverage beyond 2066 under the cooler

RCP4.5 (thin blue line in Fig. 5.6a).

The ensemble mean projection of ice coverage (Fig. 5.6b) projects a 31% reduction

relative to 2016 by 2100 under RCP4.5 and a more severe 63% reduction under RCP8.5.

There is high con�dence (≥95%) that ice coverage will be less than 2016 levels from

2037 onwards under RCP4.5 and from 2030 onwards under RCP8.5 but the magnitude

of change is uncertain under both RCPs. By 2100, the 95% con�dence intervals for both

RCP4.5 and RCP8.5 are 6.5 km2 wide (more than half the 2016 watershed ice coverage).

The simulation that projected the minimum ice coverage by 2100 under RCP8.5 shows

sustained retreat of the glacier between 2000 and 2100 resulting in a watershed that is

almost entirely ice free by the end of the century (Fig. 5.7). In contrast, the maximum
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Figure 5.7: Simulated ice thickness between 2000 and 2100 based on simulations that pro-

jected the maximum (RCP4.5) and minimum (RCP8.5) ice coverage by 2100. Watershed

outline shown in magenta.

ice coverage simulation under RCP4.5 projects two periods of glacier advance between

2010 and 2030 and between 2060 and 2100. By the end of the century, this simulation

projects ice coverage will be similar to that in 2000.

Figures 5.8a-c show the climate projection time series that produced the minimum

(dotted lines) and maximum (dashed lines) snow (blue lines) and ice (red lines) coverage

by 2100. The minimum coverage simulations were forced with some of the highest tem-

perature time series while the maximum coverage simulations were forced with some of

the lowest. The maximum coverage simulations show higher-than-average incident solar

radiation inputs (Fig. 5.8b) and lower precipitation volumes than the minimum cover-

age simulations. Indeed, correlation scores calculated between seasonal average climate

variables and the simulated snow and ice coverage by 2100 (Fig. 5.8d) show that there

is a strong negative correlation between mean temperature and projected snow and ice

coverage and a weaker positive correlation between snow and ice coverage and incident

solar radiation. An even weaker negative correlation exists between autumn and winter

precipitation and snow and ice coverage.
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Figure 5.8: Relationship between driving climate data and projected snow and ice coverage

including annual mean downscaled climate time series of temperature (a), incident solar

radiation (b) and total precipitation (c) with time series that produced the minimum

(dotted lines) and maximum (dashed lines) snow and ice coverage by the end of 2100.

Also included are correlation scores calculated between seasonal average climate variables

over the entire future period (2017-2100) and simulated snow and ice coverage by the end

of 2100 (d).
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Figure 5.9: E�ect size (η2) of main e�ects (RCP, GCM-RCM, DS and TIM), interactions

(I) and remaining error (ε) on projected changes in snow and ice coverage calculated using

ANOVA for the six twenty-�rst century time slices. Note, the ROR main e�ect is not

included here as it does not in�uence cryospheric processes in GHM++

.

5.5.4 Sources of uncertainty in snow and ice coverage projections

The e�ect size of the main, interaction and error terms calculated using ANOVA for

projected changes in snow and ice coverage is shown in Fig. 5.9. Note, ROR e�ects

are not included here as this model chain component has no in�uence on cryospheric

processes in GHM++. The e�ect size of each ANOVA term changes through the decades

and also varies between snow and ice coverage. Throughout the twenty-�rst century, TIM

uncertainty contributes <3% to the total projection uncertainty of snow coverage. For

projections of ice coverage, η2
TIM>0.11 up to and including the 2060s, but then gradually

falls to 0.07 by the 2080s. η2
DS and η2

I never exceed 0.1 for snow and ice coverage and

as with η2
TIM , they gradually reduce through the latter half of the twenty-�rst century.

GCM-RCM uncertainty is the largest contributor to ice coverage projection uncertainty

in the 2030s with an e�ect size of 0.47. For snow coverage, RCP and GCM-RCM have

similar e�ect sizes of 0.45 and 0.4 respectively. However, for the mid- and latter half of

the twenty-�rst century RCP uncertainty dominates, contributing 73% and 72% of snow

and ice coverage total projection uncertainty by the 2080s respectively.
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5.5.5 Future evolution of primary runo� components

As an initial indication of the potential for downstream river �ow regime change, Fig. 5.10

shows the twenty-�rst century evolution of changes in the four primary runo� components

relative to the reference period. The ensemble means (solid coloured lines) indicate that

by the end of the century rainfall will increase for all months under both RCPs except

for August where RCP8.5 shows a small decrease in rainfall on average (Fig. 5.10a). The

largest increases are shown during the autumn (SON) and winter (DJF) months under

RCP8.5. The con�dence in the direction of change by the end of the century is ≥90% for

six months under RCP8.5 (as indicated by the coloured bands), but only for two months

(March and April) under RCP4.5. However, ≥75% of the projections from both RCPs

project an increase in rainfall between October and April (as indicated by the markers in

Fig. 5.10a). A comparison of the reference and 2080s monthly ensemble means (inset in

Fig. 5.10a) indicates that the peak rainfall month will shift from September to October.

For snow melt, the greatest changes are projected to occur in the summer months

of July and August under RCP8.5 where there is ≥90% con�dence that melt will reduce

relative to the reference period from the 2040s onwards (Fig. 5.10b). RCP4.5 also projects

decreases in summer melt, but the magnitude of change is smaller. In the winter months,

both RCPs project a small increase in melt on average by the end of the century. The

ensemble means project that total summer (JJA) melt will reduce by 19% under RCP4.5

and 37% under RCP8.5 by the 2080s (inset in Fig. 5.10b). Annual melt will decrease by

12% under RCP4.5 and 26% under RCP8.5. A similar pattern of change is projected for

ice melt (Fig. 5.10c) where total summer (JJA) melt will reduce by 33% under RCP4.5

and 58% under RCP8.5 by the 2080s. There is high con�dence (≥90%) that mean monthly

ice melt will reduce for all months except December under RCP8.5. Under RCP4.5 a small

increase in winter ice melt is projected for the early and mid twenty-�rst century, but by

the 2080s, winter melt is projected to reduce near to reference levels on average. Under

RCP8.5, winter ice melt is projected to reduce relative to reference levels for the latter

half of the twenty-�rst century.

132



Chapter 5: Twenty-�rst century changes and uncertainty in river �ow regime

Figure 5.10: Projections of monthly mean runo� components including rainfall (a), snow

melt (b), ice melt (c) and evapotranspiration (d) for RCP4.5 (blue) and RCP8.5 (yellow).

For each month, the trajectory of the ensemble mean change over the twenty-�rst century

time slices (2030s to 2080s) relative to the reference period (1991-2015) is shown by the

solid coloured lines. These lines are marked for each time slice where there is ≥75%

con�dence in the direction of change. They are bounded by the 10th and 90th percentiles

of the projections (bands). Inset in each plot are ensemble mean monthly runo� volumes

averaged over the reference period (black solid line) and 2080s (dashed lines).
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Projections consistently (≥90%) show an increase in evapotranspiration for all months

of the year (Fig. 5.10d) with the largest increases projected under RCP8.5 towards the

end of the twenty-�rst century. However, the volume of evapotranspiration will remain a

small component of the overall water balance.

5.5.6 Future evolution of river �ow regime

Figure 5.11 shows the projected changes in river discharge signatures relative to the refer-

ence period (except peak water for which the raw projections are shown). Under RCP4.5

the ensemble mean projection of peak water is 2045, while under RCP8.5 peak water is

projected to occur 17 years earlier in 2028. Indeed, the RCP8.5 projections of the mean

annual �ow signature ( 	Q) show a consistent decline through the twenty-�rst century with

≥90% con�dence that �ows will reduce by the end of the century by 19% on average. In

contrast, under RCP4.5 the magnitude of the decline is smaller (ensemble mean projects

7% decrease for 2080s) and the direction of change is more uncertain. Both RCPs project

an increase in inter-annual �ow range (RANN) throughout the twenty-�rst century (≥75%

under RCP8.5). Under RCP4.5 the ensemble mean projects a 47% increase in RANN by

the 2080s while RCP8.5 shows a 71% increase.

Seasonally, monthly winter (DJF) �ows are projected to increase while ≥90% of the

ensemble project a decrease in summer (JJA) �ows by the 2080s under both RCPs.

The absolute change in mean monthly �ows is larger for summer �ows on average, but

proportionally, the winter �ows are projected to change most, particularly in February

where the ensemble mean projects a 60% and 67% increase under RCP4.5 and RCP8.5

respectively by the end of the century. The combined e�ect of increased winter �ows

and decreased summer �ows results in decreased intra-annual �ow variability. Under

both RCPs, more than 90% of the ensemble project a decrease in Rmnth relative to the

reference period from the 2050s onwards. The ensemble mean projections under RCP8.5

show a decade-on-decade reduction in Rmnth with time and a 41% reduction by the end

of the century.

Of those signatures with units m3 s-1, the high �ow Q01 signature shows the largest
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Figure 5.11: Projected changes in river discharge signatures. For each signature, the

trajectory of the ensemble mean change over the twenty-�rst century time slices (2030s

to 2080s) relative to the reference period (1991-2015) is shown by the solid coloured lines.

These lines are marked for each time slice where there is ≥75% con�dence in the direction

of change. They are bounded by the 10th and 90th percentiles of the projections (bands).

Also shown are 2080s ensemble mean change expressed as a percentage of simulated

signatures for the reference period (text). Note, the peak water (PW) signature is not

expressed as a change, but as the overall raw projections.
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ensemble mean increase of 2.8 m3 s-1 and 2.5 m3 s-1 for RCP4.5 and RCP8.5 respectively

by the end of the century. There is high con�dence (≥75%) that Q01 will increase relative

to the reference period under RCP8.5 but the magnitude of change is uncertain under both

RCPs. For Q05, the ensemble means from both RCPs both show a reduction throughout

the twenty-�rst century, however the 10th and 90th percentile span positive and negative

values of change for all decades. The ensemble mean projections of changes to high �ow

variability (σ05−01) are positive throughout the twenty-�rst century under both RCPs. In

the latter half of the century, ≥75% of the projections under RCP4.5 show an increase in

σ05−01 while ≥90% of the projections under RCP8.5 show an increase.

For moderate �ows, the ensemble mean of the RCP4.5 projections show a small re-

duction in Q50 of approximately 0.15 m3 s-1 throughout the twenty-�rst century while the

RCP8.5 ensemble mean projects a decade-on-decade reduction in Q50 and by the end of the

century there is high con�dence (≥90%) that moderate �ows will reduce. Moderate �ow

variability (σ52−48) is projected to reduce with high con�dence under both RCPs, albeit

by only 0.03 m3 s-1 and 0.06 m3 s-1 by the 2080s under RCP4.5 and RCP8.5 respectively.

For the slow-release low �ow signatures, ≥90% of the projections are positive through-

out the twenty-�rst century under both RCPs indicating an increase in the magnitude

of low �ow events (or equivalently a reduction in the frequency of these �ow events) and

variability of low �ows. The absolute changes in the ensemble means never exceed 0.1 m3

s-1 for these signatures, although proportionally, they show the largest degree of change,

particularly for Q99 where the proportional change exceeds 2000% under RCP4.5.

Finally, the response time to runo� (τ) is projected to decrease throughout the twenty-

�rst century under both RCPs (≥90% con�dence) indicating the catchment will likely

become more �ashy. The magnitude of change is small where the ensemble mean projects

a small reduction in τ of 3.9 hours under RCP4.5 and a slightly greater reduction of 4.7

hours under RCP8.5.
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5.5.7 Sources of uncertainty in river �ow regime projections

Figure 5.12 shows the ANOVA e�ect sizes calculated for the 2030s and 2080s for each river

discharge signature. The error term (η2
ε ) never exceeds 0.09 and for 21 of the 25 signatures

is < 0.03 indicating that the main e�ects and �rst-order interaction terms explain the

majority of projection uncertainty. For the 2030s, RCP uncertainty contributes 4-27% of

the total projection uncertainty across the signatures. By the 2080s, RCP contributes up

to 65% of total projection uncertainty. In fact, for all but four signatures, RCP contributes

proportionally more to total projection uncertainty in the 2080s than the 2030s. By the

2080s the �ve signatures with the highest η2
RCP include the mean monthly �ows from

May to August and the mean monthly �ow range (Rmnth) signature (Table 5.2) for which

the e�ect sizes are at least 0.47. GCM-RCM uncertainty is the largest contributor to

total projection uncertainty for 21 of the 25 river discharge signatures for the 2030s and

it still remains a signi�cant contributor to projection uncertainty by the 2080s with a

mean e�ect size across the signatures of 0.3. Four of the �ve most sensitive signatures

to GCM-RCM uncertainty for the 2030s remain in this top �ve for the 2080s (Table 5.2)

and these include the mean monthly winter �ows in January and February and two of the

quick-release high �ow signatures (Q01 and Q05).

On average, the DS parameterisation contributes 18% of the total projection uncer-

tainty across the signatures for the 2030s. In fact, η2
DS is relatively consistent across the

signatures, ranging from 0.1-0.2 for 18 of the 25 signatures. For the 2080s, η2
DS reduces

for all signatures except mean November and December �ows and the inter-annual �ow

range (RANN). For RANN, DS has the largest e�ect size, contributing 43% of the total pro-

jection uncertainty. Autumn and winter monthly mean �ows for September, November,

December and February make up the remainder of the top �ve signatures most a�ected

by DS uncertainty for the 2080s. On average TIM uncertainty contributes 9% of the total

projection uncertainty across the di�erent signatures for the 2030s. For this period it is

the largest contributor to RANN uncertainty (η2
TIM = 0.35) and it also shows signi�cant

contributions to mean monthly �ow projection uncertainty for April (η2
TIM = 0.17) and
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Figure 5.12: E�ect size (η2) of all main e�ects (RCP, GCM-RCM, DS, TIM and ROR),

interactions (I) and remaining error (ε) on projected changes in the 25 river discharge

signatures at the start (2030s, a) and end (2080s, b) of the twenty-�rst century.
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Table 5.2: Top �ve river discharge signatures ranked according to the average e�ect size

for each of the main e�ects, interactions and remaining error on projected changes for the

2030s and 2080s. E�ect sizes are included in brackets.

Decade Rank RCP (η2RCP ) GCM-RCM (η2GCM−RCM ) DS (η2DS) TIM (η2TIM ) ROR (η2ROR) I (η2I ) ε (η2ε )

2030s

1 	QDEC (0.27) 	QJAN (0.59) 	QJUN (0.39) RANN (0.35) Q99 (0.43) PW (0.27) PW (0.09)

2 RANN (0.23) 	Q (0.56) 	QNOV (0.35) 	QMAY (0.23) Q95 (0.22) τ (0.23) τ (0.06)

3 	QOCT (0.21) Q05 (0.53) 	QMAR (0.26) τ (0.20) τ (0.19) 	QDEC (0.21) RANN (0.05)

4 	QMAR (0.20) Q01 (0.52) σ52-48 (0.21) σ52-48 (0.18) σ99-95 (0.13) RANN (0.20) σ52-48 (0.05)

5 σ05-01 (0.20) 	QFEB (0.52) 	Q (0.20) 	QAPR (0.17) σ05-01 (0.06) Rmnth (0.17) Q99 (0.02)

2080s

1 	QJUN (0.65) Q05 (0.55) RANN (0.43) τ (0.20) Q99 (0.33) 	QOCT (0.32) PW (0.09)

2 	QJUL (0.63) 	QJAN (0.53) 	QSEP (0.26) σ99-95 (0.14) τ (0.28) 	QMAR (0.29) τ (0.05)

3 	QAUG (0.59) 	QNOV (0.49) 	QNOV (0.23) 	QMAY (0.14) Q95 (0.14) PW (0.27) σ52-48 (0.03)

4 	QMAY (0.54) Q01 (0.48) 	QFEB (0.18) 	QAPR (0.12) σ05-01 (0.12) σ05-01 (0.21) RANN (0.03)

5 Rmnth (0.47) 	QFEB (0.45) 	QDEC (0.17) Q95 (0.12) Q01 (0.05) Q01 (0.20) Q99 (0.03)

May (η2
TIM = 0.23) at the beginning of the melt season. It is also the largest contributor

to uncertainty of projections of response time to runo� (τ) where η2
TIM = 0.20. For the

2080s the average η2
TIM falls slightly to 7%, but TIM uncertainty remains an important

contributor to total projection uncertainty for τ , April and May �ows and two of the low

�ow signatures (Q95 and σ99-95) where η2
TIM ≥ 0.12. Uncertainty stemming from the ROR

structure-parameterisation has a negligible in�uence on the decadal signatures (PW and

RANN) and those signature characterising annual and monthly mean �ows for the 2030s

and 2080s. For the 2030s it is important for projections of low �ow magnitude (Q99 and

Q95, η2
ROR = 0.43 and 0.20 respectively) and variability (σ99-95, η2

ROR = 0.13). In fact,

for Q99, ROR is the single largest contributor to total projection uncertainty. For the

2080s, its in�uence on low �ow quantiles remains signi�cant and it is the single largest

contributor to both the Q99 and τ projection uncertainty. It also remains a signi�cant

contributor to the high �ow variability signature, σ05-01 where η2
ROR = 0.12.

Unlike ice and snow coverage, interactions between model components signi�cantly

contribute the total projection uncertainty across the signatures where η2
I ranges between

0.07 and 0.27 for the 2030s and between 0.07 and 0.32 for the 2080s. Figure 5.13 shows

the decomposition of the �ve interaction terms with the largest e�ect sizes on average for

the 2030s (a) and 2080s (b). The interactions between the RCP and GCM-RCM model

chain components dominate the contribution to projection uncertainty. However, inter-
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actions between the climate model chain components and GHM++ (e.g. DS-TIM) may

also contribute to the projection uncertainty. For RANN, DS-TIM interaction contributes

7% of total projection uncertainty for the 2030s and 2080s. Furthermore interactions be-

tween the TIM and ROR contribute some (albeit small) amounts to the total projection

uncertainty. For 16 of the signatures, the contribution from interactions between model

chain components increases from the 2030s to the 2080s. These include all of the signa-

tures that characterise, high-, moderate- and low-�ow magnitude and variability, but the

largest increases are shown for March and October mean monthly �ows.

5.6 Discussion

5.6.1 Future evolution of river �ow regime

There is high con�dence that near-surface air temperature will increase by the late twenty-

�rst century (2076-2100) relative to conditions in the recent past (1981-2005). Precipita-

tion and incident solar radiation were projected to slightly increase and decrease respec-

tively on average - a �nding that is consistent with other analyses of the EURO-CORDEX

projections for northern Europe (Bartók et al., 2017). The primary driver of changes in

snow and ice is near-surface air temperature, while precipitation and incident solar radi-

ation are of secondary importance. Because of this, there is high con�dence that glacier

ice and snow will continue to retreat as near-surface air temperature rises throughout the

twenty-�rst century which would leave the river basin almost free of snow and ice by 2100

under the warmest climate projections.

The signature-based analysis undertaken in this study has revealed how climate change

will impact the magnitude, timing and variability of downstream river �ows over a range

of timescales in the Virkisá River basin. Projected changes in �ow seasonality broadly

follow those shown for other mid-latitude alpine river basins where the loss of snow and

ice will reduce meltwater inputs in the summer months and a phase shift of precipitation

from snowfall to rainfall combined with enhanced melt during the colder months will

increase winter runo� (Addor et al., 2014; Huss et al., 2014; Jobst et al., 2018; Mandal
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Figure 5.13: E�ect size (η2) of the �ve most signi�cant interactions on projected changes

in the 25 river discharge signatures at the start (2030s, a) and end (2080s, b) of the

twenty-�rst century.
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and Simonovic, 2017). Summer runo� is projected to decrease by 24% under RCP4.5 and

40% under RCP8.5 by the 2080s while winter runo� is projected to increase by 59% under

RCP4.5 and 57% under RCP8.5 by the 2080s. The consequence of these seasonal shifts

in runo� is that intra-annual (monthly) �ow variability will reduce by 25% (RCP4.5) and

41% (RCP8.5) by the 2080s. Furthermore, the magnitude of very low �ow events (Q99),

which typically occur during the winter months, is likely to increase.

On average, the projections indicated that the seasonal redistribution of runo� will

have little in�uence on mean annual �ows under RCP4.5 (-7% by the 2080s) as changes

in summer and winter �ows approximately compensate for one another. Under RCP8.5,

however, the more pronounced reduction in summer melt inputs results in a 19% reduction

by the 2080s. The loss of a consistent melt input to the river basin and its evolution to a

hydrological regime governed by rainfall-runo� processes means inter-annual �ow variabil-

ity (RANN) will increase by 47% (RCP4.5) and 71% (RCP8.5) by the 2080s. The increase

in rainfall inputs, particularly during the storm-prone autumn and winter months, likely

explains the projected increased magnitude of very high �ow events (Q01), a �nding that

is in agreement with other studies that have investigated changes in high �ow magnitudes

in glaciated river basins (Lutz et al., 2016). It is likely that the intensi�cation of peak �ow

magnitudes will be further exacerbated by the projected decrease in river �ow response

time to runo� (τ), which is an artefact of losing the runo�-regulating ice and snow water

stores. Accordingly, the river basin will become more �ashy and �ood-prone in the future.

Increased �ood frequency has major implications for local infrastructure in the vicinity

of the Virkisá River basin. In particular, the southern section of the Route 1 highway

which passes over the Skeiðarársandur �oodplain navigates a large number of glacier-fed

rivers including the Virkisá. Due to the unconsolidated nature of the �oodplain lithology,

the morphology of these rivers can change rapidly, particularly during high �ow events

(Marren, 2005) and often at considerable expense to the road authority (Björnsson and

Pálsson, 2008). Accordingly, the projected increase in frequency and severity of high �ow

events will likely incur further expenses to maintain this transport link in the future.

Beyond local implications, one should be cautious in extrapolating the �ndings from
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this study to other glaciated catchments in Iceland or beyond, but it is clear that the

timing, magnitude and variability of glacier-fed river �ows over a range of timescales are

sensitive to climate change. For Iceland, these changes could impact glacier-fed hydroelec-

tric dams, which are a primary source of electricity for the country. Increased frequency

and magnitude of high �ow events could render current dams unsafe if their designed

�ood capacity can no longer meet regulation requirements (Thorsteinsson and Björnsson,

2012). The redistribution and levelling out of seasonal �ows, however, could actually

have a bene�cial e�ect on the running costs and capacity to produce electricity from such

projects (Jóhannesson et al., 2007).

5.6.2 Uncertainties in projections of river �ow regime

Projections of the direction of change relative to the reference period were well con-

strained for the majority of river discharge signatures, particularly towards the end of the

twenty-�rst century and for the warmer RCP8.5 pathway. Even so, there was considerable

spread in the projected magnitude of these changes due to uncertainties in the driving

climate data (RCP,GCM-RCM,DS) and representation of glacio-hydrological processes

(TIM,ROR) in the model chain. Uncertainty in future snow and ice coverage primarily

stemmed from the RCP due to its control on future near-surface air temperature. In fact,

the proportional contribution of the RCP to projection uncertainties increased throughout

the twenty-�rst century and, consequently, the RCP was also found to be the dominant

source of uncertainty for projections of mean monthly �ows during the melt season by the

2080s. The growing in�uence of the RCP over time was also shown by Addor et al. (2014)

for six alpine catchments in Switzerland and by Duethmann et al. (2016) for two mountain

river basins in the Tian Shan. Interestingly though, these studies along with the recent

study of Jobst et al. (2018) found that climate model uncertainty was still the dominant

source for projections of monthly river �ows. Jobst et al. (2018) postulated that this was

likely because of the high uncertainty in future precipitation across the climate models.

Indeed, others have also attributed future runo� uncertainty in glaciated river basins to

variability in precipitation projections (Lutz et al., 2016), a �nding which is compounded
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by an increasingly warm and thus rainfall-dominated precipitation input. In this study

however, the GCM-RCM model chain component only dominated river �ow projection

uncertainty during the winter months while summer �ow uncertainty was dominated by

the RCP. There are two key reasons that could explain this. Firstly, precipitation un-

certainty across the GCM-RCMs showed to be especially high during winter (Fig. 5.4)

which coupled with the fact that rainfall is the primary source of runo� during win-

ter, likely explains the dominant role GCM-RCM plays in projection uncertainty during

the winter months. Furthermore, it should be noted that the Virkisá River basin has a

much higher proportional glacier coverage (60%) compared to the aforementioned studies

(1.8%-22.3%). Therefore, it is postulated that the in�uence of the RCP in the summer

is related to the relatively high proportion of melt runo� that the Virkisá River receives

during these months and the fact that the RCP showed to be the dominant contributor to

future ice coverage uncertainty. Importantly, this �nding also serves to highlight the need

to represent atmosphere-cryosphere-hydrosphere feedbacks adequately in future studies,

particularly where glacier coverage is high, through the inclusion of a dynamic glacier

evolution model in the model chain like that implemented in this study.

For projections of the inter-annual �ow range, the DS procedure was the largest con-

tributor to projection uncertainty by the end of the twenty-�rst century, which should

be expected given that the perturbation of this procedure accounted for uncertainty in

the random year-by-year sampling of the historic climate data. Uncertainty in the TIM

structure-parameterisation was the dominant contributor to the spread in projections

of moderate monthly �ows during the transition from the cold to melt season, which

corroborates the �ndings in Chapter 4 where the structural representation of melt was

important for controlling the initiation of the melt season due to the contrasting sensi-

tivity of the models to temperature and incident solar radiation. It was also found that

signatures derived from the �ow duration curve as well as those representing �ashiness

were most sensitive to the con�guration of the ROR component. Indeed, in this study, the

uncertainty in the ROR structure-parameterisation signi�cantly contributed to the total

projection uncertainty of slow-release low �ow signatures as well as the response time
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(�ashiness) of the catchment to runo�. Similar sensitivities in low �ow metrics to the

choice of hydrological model have been shown for non-glaciated river basins Yuan et al.

(2017) and they postulated that these might stem from di�erences in water storage-release

processes in the models. However, a key drawback of this study and other studies that

have investigated the role of hydrological model uncertainty in glaciated river basins (e.g.

Giuntoli et al., 2015; Vetter et al., 2017) is that they have implemented multiple model

codes and therefore cannot make any de�nite conclusion about the source of the projec-

tion uncertainties. For example, Addor et al. (2014) concludes that the sensitivity to the

choice of hydrological model could stem from any number of di�erences between model

codes including the structure, climate interpolation method and calibration strategy. In

this study, it has been demonstrated that by using a single but �exible model code, it is

possible to separate out the sources of projection uncertainties down to the process level.

Such insights can be used to help prioritise those aspects of the GHM that require i)

additional re�nement (e.g. through model development) and ii) adequate representation

of their uncertainty to improve projection robustness.

Furthermore, the signature-based analysis undertaken in this study has shown that

the importance of these di�erent sources, be it from the GHM or the climate projections

is dependent on which signature of river discharge is being evaluated. It is clear, therefore,

that signature-based analyses could be used to help prioritise uncertainty sources based

on the characteristic of �ow one is interested in. For example, the results from this

study indicate that for evaluating changes in monthly melt season runo� only, it may

be bene�cial to ignore ROR uncertainty and focus time and computational resources

on quantifying uncertainties stemming from the remaining model components. In this

respect, the time frame of the projections should also be considered, given the apparent

change in e�ect sizes with time demonstrated for projections of snow and ice coverage

and river �ow signatures (see Appendix G).

More broadly, the results from this study emphasise the need for impact studies to

represent uncertainties stemming from model chain components that control future cli-

mate and glacio-hydrological behaviour, the second of which has been widely neglected.
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The need for this is compounded by the fact that interactions between model chain com-

ponents exceeded individual main e�ects for some river discharge signatures. Accordingly,

an ensemble that includes perturbations of multiple components of the model chain si-

multaneously will provide the most rigorous quanti�cation of projection uncertainty.

5.6.3 Limitations

While some characteristics of projected river �ow regime change are broadly in agreement

with other studies in similar mid-latitude alpine settings (e.g. changes in �ow seasonality

and projected increase in high �ow magnitude), it is important to emphasise that the

projected river �ow regime shifts should not be generalised across glaciated river basins.

Indeed, recent regional (Ragettli et al., 2016) and global (Huss and Hock, 2018) studies

have shown that local catchment characteristics such as climate and glacier hypsometry

largely in�uence seasonal river �ow response to twenty-�rst century climate change. In

this study a small absolute increase in low �ow magnitude was projected, indicating

climate change and deglaciation could help to limit periods of water scarcity. However, in

more arid regions, where rainfall cannot compensate for reductions in melt, the opposite

e�ect has been shown (Stewart et al., 2015). One might also expect to see much greater

changes in the river �ow response time to runo� as snow and ice retreat in other river

basins. For the Virkisá River basin, a relatively small reduction in response time (τ) was

projected on average by the end of the twenty-�rst century. This, perhaps, should not be

surprising given the small size of the river basin and the fact that previous investigations

have shown that Virkisjökull has a well developed conduit drainage system that routes

runo� e�ciently year-round (Flett et al., 2017; Phillips et al., 2014). For larger river

basins with more expansive cryospheric water stores, changes in the response time to

runo� could be much greater, substantially increasing the risk of pluvial �ooding.

Similar inter-catchment variability should also be expected with regards to the domi-

nant sources of projection uncertainty. Indeed, as already noted in this discussion, some

of the results from this study contrast the limited number of studies that have investigated

uncertainty sources in other glaciated basins. Addor et al. (2014) suggests that catchment
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elevation in�uences the importance of the RCP on projection uncertainty whereby runo�

from higher elevation catchments with more snow and ice are more sensitive to the RCP.

It is therefore vital that signature-based evaluations like the one undertaken in this study

are applied to other glaciated river basins in the future so that regional variations in river

�ow regime change and uncertainty sources can be evaluated.

It is also important to consider potential de�ciencies in the calibrated GHMs. In fact,

the model evaluation demonstrated that they were able to capture the majority of the

observed river discharge signatures within their observation uncertainty bounds. Even

so, it should be noted that there are several limitations in the calibration approach that

could have hindered the e�ciency of the calibrated models. Firstly, given the distributed

structure of GHM++ and the fact that it runs on an hourly time step, running it over mul-

tiple years required considerable computation time which limited the number of runs that

could be undertaken in the Monte Carlo calibration procedure. 5000 runs was adopted as

an appropriate compromise, balancing the density of parameter sampling with available

computational resources. Even so, it is recognised that particularly for the more complex

model structures which employ more calibration parameters, a denser parameter sampling

could help to �nd more e�cient model parameterisations. It should also be noted that the

models were calibrated and evaluated on four years of river �ow data only. This detail is

particularly important given the conceptual nature of GHM++ and thus the potential for

the calibration parameters to become less applicable when applied to periods outside of

the calibration data. Additionally, it is important to highlight possible model de�ciencies

brought about by the two-step calibration procedure employed in which the TIM and

ROR model chain components were calibrated independently. This was necessary so that

the main e�ects (Eq. 5.3) and interaction terms (Eq. 5.5) for both components could be

calculated separately (thus achieving the second aim of the study). However, the draw-

back of implementing this stepwise calibration procedure over one that calibrates both

model components simultaneously is that it neglects any interactions between the TIM

and ROR models. Of course, its should be noted that the ANOVA results showed that

TIM and ROR interactions are negligible except for two of the 25 signatures evaluated.
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Chapter 4 highlighted the historic observed precipitation data as a potential source

of model de�ciencies. This is partly due lack of available precipitation data at higher

elevations, making the gridded dataset employed in this study less reliable near the basin

summit. Furthermore, the bias correction procedure applied to the precipitation dataset

resulted in time series that were well correlated to the AWS data over a 3-day time step,

but that this correlation degraded at shorter daily and hourly time steps which could

have contributed to the model's inability to capture snow coverage observations higher

up in the catchment and river discharge signatures relating to the timing of �ows. Biases

in baseline climate data also serve to condition the magnitude of simulated impacts of

climate change due to the non-linear response climate change (Remesan and Holman,

2015).

Indeed, uncertainties in the historic precipitation data were not included as part of

this study, partly because there was almost no information that would have allowed one to

quantify these uncertainties (e.g. rain gauge errors), particularly higher up in the catch-

ment where measurements are least reliable. Additionally, though, it would have meant

further increasing the size of the model chain ensemble which was already at the very limit

of what was computationally feasible. This, however, raises an important broader limi-

tation of the study in that the total projection uncertainties reported are not indicative

of the `true' uncertainty. Further insights could undoubtedly be gained by perturbing

other model chain components including the historic climate time series which may in

fact contribute more to projection uncertainty than GHM parameter uncertainty (Islam

and Déry, 2017). Jobst et al. (2018) calculated that the bias correction of precipitation

contributed up to 22% of seasonal stream�ow projection uncertainty and other studies

have found that the initial ice volume (Gabbi et al., 2012; Huss et al., 2014) and param-

eterisation of the glacier evolution model (Huss et al., 2014; Linsbauer et al., 2013) are

also important sources of projection uncertainty.

Furthermore, the representations of uncertainty in the �ve components evaluated in

this study are themselves not exhaustive. It is well established that uncertainties in

climate model ensembles are under-represented (Daron and Stainforth, 2013) and steps
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were taken in this study to limit the total ensemble size so that the experiments were

computationally feasible. For example, only 10 random DS sequences were generated,

and indeed other aspects of the downscaling procedure could have also been modi�ed

(e.g. replacing the linear interpolation of change factors with a moving average model).

Additionally, the melt and runo�-routing model structures implemented represent a subset

of a much larger population of available models. Other model structures that employ more

complex physically based energy balance approaches and hydraulic models that simulate

discrete �ow pathways through the glacier Arnold et al. (1998) could also be implemented

to provide a more accurate representation of the true projection uncertainty.

5.7 Conclusions

Twenty-�rst century climate change is projected to alter the magnitude, timing and vari-

ability of river �ows over decadal to sub-daily timescales in the Virkisá River basin. Rel-

ative to the 1990s reference period, there was high con�dence in the direction of change

for the majority of the 25 river discharge signatures over the twenty-�rst century. The

magnitude of change, however, was more uncertain. The application of ANOVA demon-

strated that the climate model chain components (RCP,GCM-RCM,DS) were the main

sources of this uncertainty. However, uncertainty relating to glacio-hydrological process

representation in the model chain (TIM,ROR) was the dominant source of projection un-

certainty for some river discharge signatures. Furthermore, interactions between model

chain components can exceed individual main e�ects. A rigorous quanti�cation of uncer-

tainty in di�erent characteristics of river �ow regime change in glaciated river basins must,

therefore, account for uncertainty emanating from these di�erent model components.

5.8 Summary

The study undertaken in this chapter aimed to meet research objectives 2 and 3 of this

thesis. Objective 2 was to, "implement a climate-GHM model chain to project twenty-

�rst century changes in di�erent characteristics of river �ow regime". This was achieved
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by undertaking a signature-based analysis of twenty-�rst century climate change impacts

on river �ow regime in Virkisá River basin. The results have shown for the �rst time that

di�erent characteristics of glacier-fed river �ow regime including �ow magnitude, timing

and variability over a range of timescales are sensitive to climate change. Objective

3 was to, "determine the relative contribution of individual model chain components

to uncertainty in river �ow regime projections". To meet this objective, an ANOVA

decomposition of the projection uncertainties was undertaken which demonstrated that

all of the perturbed components of the model chain contribute to projection uncertainty

in at least some aspects of glacier-fed river �ow regime change.

A subsample of the projections from this study will be used as boundary conditions

in the next chapter to drive a distributed groundwater model of the proglacial sandur

aquifer. The high uncertainty in projected changes in climate, snow/ice coverage and

downstream river �ow regime indicate that this subsample should aim to capture a range

of future glacio-hydrological and climatic behaviours that are likely to drive changes in

proglacial groundwater dynamics.
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CHAPTER 6:

TWENTY-FIRST CENTURY EVOLUTION OF

PROGLACIAL GROUNDWATER LEVEL

DYNAMICS AND GROUNDWATER-SURFACE

WATER EXCHANGES

6.1 Introduction

This chapter presents the �nal research study of this thesis which aims to meet the

fourth and �nal research objective by using a subsample of the climate and river �ow

projections generated in the previous chapter to drive a distributed groundwater model

of the proglacial sandur in the VGO. The subsample is selected using a signature-based

cluster analysis approach. The groundwater model projections are then used to evaluate

impacts of twenty-�rst century climate change and changes in the Virkisá River �ow

regime on proglacial groundwater level dynamics and GW-SW exchanges in the sandur.

All aspects of the methodology in this chapter were designed and undertaken by JM

including the con�guration and calibration of the distributed groundwater model and the

signature-based cluster analysis approach. JM also led the analysis and interpretation.

NB, DH, SK, CJ, JE and GA provided guidance on to the groundwater model con�gu-

ration and choice of signatures used in the cluster analysis. They also contributed to the

interpretation of the results.

6.2 Background

Groundwater is increasingly being recognised as an important component of water cycling

in glaciated mountain catchments that could become strategically more important as wa-

ter inputs from rainfall and meltwater become less reliable under twenty-�rst century
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climate change (Ghasemizade and Schirmer, 2013; Taylor, 2013; Vincent et al., 2019).

Overburden materials such as talus piles and moraine deposits can form hydrologically

important groundwater �ow pathways that alter catchment water transit times signi�-

cantly (Baraer et al., 2015; Clow et al., 2003; Hood and Hayashi, 2015; Langston et al.,

2013; Roy and Hayashi, 2009), while the consolidated mountain bedrock may also trans-

mit groundwater downstream to the valley bottom along �ow pathways that may extend

kilometres deep in some cases (Frisbee et al., 2017; Manning and Solomon, 2003; Wilson

and Guan, 2004; Yao et al., 2017).

In the foreland areas of glaciated catchments, unconsolidated, high-storage, alluvial

aquifers are commonly found (Baraer et al., 2015; Covino and McGlynn, 2007; Ó Dochar-

taigh et al., 2019; Ward et al., 1999). These aquifers are normally uncon�ned with a

shallow water table o�ering an easily accessible source of fresh water to downstream com-

munities year-round (e.g. for drinking and irrigation Stefania et al., 2018). Additionally,

they provide a steady supply of base�ow to glacier-fed rivers, helping to supplement low

�ows outside of the melt season (Andermann et al., 2012; Jódar et al., 2017) and meet

downstream water demands for drinking, irrigation and industry. Indeed, hydrochemical

tracer studies in the tropical Andes (Baraer et al., 2015; Guido et al., 2016; Somers et al.,

2016), the Himalayas (Wilson et al., 2016), the Alps (Kobierska et al., 2015; Magnusson

et al., 2014; Ravazzani et al., 2016) and Iceland (MacDonald et al., 2016) have shown

that even within tens of kilometres of a glacier outlet, groundwater can contribute more

than 70% of river �ow outside of the melt season. These groundwater inputs provide

more favourable habitat conditions for aquatic fauna by regulating ecologically important

physiochemical properties such as channel stability, temperature, electrical conductivity

and suspended sediment concentration (Blaen et al., 2014; Brown et al., 2007) which

strongly in�uence spatial and temporal aquatic species abundance and diversity (Brown

et al., 2009; Hotaling et al., 2017; Khamis et al., 2016). Even in relatively harsh, high-

energy glacial outwash �oodplain environments, groundwater springs can provide as much

as 40% of total riverine habitat by acting as centres of invertebrate diversity (Crossman

et al., 2012; Gray et al., 2006; Ward et al., 1999).
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Given the socio-economic and ecological signi�cance of groundwater in glaciated catch-

ments, a fundamental uncertainty is how future availability of water in proglacial aquifers

and their exchanges with surface water resources will evolve in a changing climate. Allen

et al. (2010) found that groundwater level dynamics in mountain aquifers (i.e. those in

mountain valleys and forelands) exhibit two main types of behaviour which could provide

a model of the likely drivers of change in proglacial mountain aquifers. In their analysis of

hydrometric records from nine aquifers in southern British Columbia, Allen et al. (2010)

proposed that groundwater level dynamics in mountain aquifers exhibit two main types of

behaviour. The �rst can be classi�ed as recharge-driven. In these aquifers, groundwater

level �uctuations are primarily driven by variability in di�use recharge from rainfall and

snow melt. Future changes in groundwater level dynamics in recharge-driven aquifers

will be determined by changes in local climate conditions in the vicinity of the aquifer.

The second can be classi�ed as stream-driven. Here, groundwater level �uctuations are

driven by the bi-directional exchange of water between the aquifer and rivers draining

from the neighbouring mountains. In contrast to recharge-driven aquifers, groundwater

level dynamics in stream-driven aquifers are closely coupled to river stage variability and,

therefore, may exhibit a response to climate change that is more strongly tied to climatic

conditions away from the aquifer in the runo�-bearing mountains.

Of course, in reality, groundwater level dynamics are controlled by the combined in�u-

ence of di�use recharge inputs and exchanges with hydrologically connected mountain-fed

rivers. A full understanding of aquifer evolution in glaciated mountain environments un-

der climate change must, therefore, take into account: i) changes in di�use recharge inputs

driven by climate change in the vicinity of the aquifer; and ii) changes in mountain-fed

river runo� driven by climate and glacier changes in the neighbouring highland regions.

Numerical glacio-hydrological and groundwater models o�er a means to represent the hy-

drological linkages between climate, mountain glacio-hydrology and proglacial aquifer in

order to investigate current and future groundwater storage dynamics in glaciated moun-

tain aquifers. Okkonen and Kløve (2011) implemented a numerical model chain consisting

of a hydrological, land surface and groundwater model to investigate future groundwater
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level dynamics in a snow-dominated esker aquifer in Finland. The models were forced with

climate change projections based on the SRES A1B emission scenario and they showed

that a warming climate induced a shift in peak di�use recharge inputs from spring to

winter causing an earlier rise and recession of groundwater levels. Sridhar et al. (2018)

projected an increase in average water table elevations of between 2.1 and 2.6 m by 2042

for an uncon�ned fractured basalt aquifer in the north-west of the United States and

attributed this to projected increases in precipitation.

Other modelling studies have shown mountain-fed streams to be the main driver of

groundwater level dynamics in mountain aquifers. Allen et al. (2004) ran a series of MOD-

FLOW groundwater model (Harbaugh, 2005) simulations of the alluvial Grand Forks

Aquifer in southern British Columbia and conducted a sensitivity analysis to determine

the relative sensitivity of groundwater levels to changes in climate-driven di�use recharge

and mountain-driven river stage boundary conditions. Their high and low recharge sce-

narios perturbed groundwater levels from the control scenario by +0.05 m and -0.025 m

respectively while their high and low river stage scenarios perturbed groundwater levels

by 3.45 m and -2.10 m respectively indicating that river stage was the dominant control

on groundwater level dynamics. Scibek et al. (2007) built on the work of Allen et al.

(2004) using more realistic changes in di�use recharge and river stage. They forced a

transient version of the Grand Forks groundwater model with future climate change sce-

narios up to 2029. They also used Principle Component Analysis to de�ne a statistical

mountain-hydrology model which was used to perturb the river stage boundary conditions

as a function of the future climate. They found that climate warming led to an earlier

initiation of snow melt and peak in river �ow which propagated through to the timing of

maximum groundwater levels.

More recently, Huntington and Niswonger (2012) investigated the impact of climate

change on groundwater level dynamics in three snow-dominated watersheds in California

and Nevada using the integrated GW-SW model, GSFLOW forced with an ensemble

of future climate projections based on the IPCC A2 and B1 emission scenarios. The

results from their study are of particular interest as they show not only how changes in
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snow melt seasonality propagates through to groundwater level seasonality, but also the

consequent changes in groundwater contributions to the river further downstream. More

speci�cally, their simulations showed that an earlier recession in mountain spring snow

melt and subsequent drop in river stage induced earlier drainage of the alluvial aquifer

to the stream. The resultant fall in groundwater levels reduced groundwater discharge to

the stream in the summer.

A key limitation of the modelling work undertaken to date is that all of the studies

have focussed on snow-dominated catchments with no glacier coverage. This is despite

observation studies that highlight the sensitivity of proglacial groundwater level dynamics

to mountain runo� (Dragon et al., 2015; Ó Dochartaigh et al., 2019; Robinson et al.,

2009). Recently, Liljedahl et al. (2017) showed that the glacier-fed Tanana River in

Alaska currently loses 46% of its annual �ow to a proglacial alluvial aquifer which equates

to more than the total recharge from di�use sources. Accordingly, they conclude that

continued glacier retreat would impact groundwater level dynamics and contributions

to surface water systems downstream. In addition, Levy et al. (2015) found that an

observed reduction in groundwater levels of up to 2 m in the Skeiðarársandur glacier

outwash �oodplain could be attributed to a reduction in meltwater recharge at the glacier

margin. Glacier-fed rivers are particularly relevant for impact studies because of the

uniquely pivotal role that groundwater plays in sustaining ecosystem services in otherwise

harsh glacier-fed river systems. Furthermore, unlike snow-fed rivers, glacier-fed river

�ows typically peak during the warmest and driest summer months when di�use recharge

inputs are lowest (Farinotti et al., 2012; Rees and Collins, 2006; Verbunt et al., 2003).

Accordingly, proglacial mountain aquifers are likely to be more sensitive to changes in

meltwater inputs in a warming climate. Indeed, the need for further research into the links

between climate, meltwater and groundwater dynamics in glaciated mountain watersheds

has been highlighted by two comprehensive reviews of glaciated catchment hydrology and

hydrogeology (La Frenierre and Mark, 2014; Vincent et al., 2019). There is, therefore, a

need to investigate how proglacial groundwater level dynamics and GW-SW exchanges

will change under a warming climate.
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6.3 Aims

This study investigates how twenty-�rst century climate change and consequent changes

in runo� to the glacier-fed Virkisá River will impact on groundwater storage and GW-SW

exchanges with the river and springs in the proglacial sandur aquifer. This will be achieved

using a subsample of the river runo� and di�use recharge projections from chapter 5 to

drive a transient MODFLOW-NWT coupled GW-SW �ow model (Niswonger et al., 2011)

of the proglacial sandur aquifer. Speci�cally, this study aims to:

1. Evaluate changes in seasonal groundwater level dynamics and GW-SW exchanges

with the Virkisá River and springs in the proglacial sandur over the twenty-�rst

century.

2. Determine if the aquifer is predominantly recharge- or stream-driven by evaluat-

ing the relative in�uence of changes in di�use recharge and river runo� on future

proglacial groundwater level dynamics.

The �rst aim is of key relevance to water resource issues and the consequent social and eco-

logical impacts as it addresses the future role of the aquifer as a groundwater resource and

contributor to surface water resources. The second aim has a broader scienti�c relevance

as it addresses the importance of hydrological linkages between surface and groundwater

in a coupled mountain glacier-alluvial system and follows on from past research in other

study regions which have investigated the relative importance of recharge and stream in

driving mountain aquifer groundwater dynamics.

6.4 Methodology

6.4.1 MODFLOW-NWT groundwater model

The MODFLOW-NWT code was used to simulate groundwater �ow through the san-

dur as well as water exchanges with the Virkisá River and surface water springs. The

model operates over a spatially discretised three-dimensional Cartesian grid of rectangular
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model cells and uses a �nite-di�erence approach to solve the three-dimensional saturated

groundwater �ow equation:

∂
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(
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∂h

∂x

)
+

∂

∂y

(
Ky

∂h

∂y

)
+

∂
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∂h

∂z

)
= Ss

∂h
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−W (6.1)

where Kx, Ky and Kz are the hydraulic conductivity values in the x, y and z directions

[L T-1], h is the hydraulic head [L], W represents per unit volume net source (positive)

and sink (negative) �uxes [T-1] and Ss is the speci�c storage [L-1].

The continuity equation for a given model cell can be expressed as:∑
Qin = Ss

∆h

∆t
V (6.2)

where
∑
Qin is the sum of all �ows into and out of the cell [L3 T-1] which includes

exchanges with neighbouring aquifer cells and from external stresses such as rivers, drains

and di�use recharge and V is the cell volume. Note, MODFLOW-NWT is speci�cally

designed to simulated uncon�ned aquifers with a free water table so that groundwater

�ow is proportional to the saturated thickness of the aquifer. Under such conditions,

water released from elastic storage will be small relative to the drainable porosity released

under gravity which is de�ned by the speci�c yield, Sy [-].

Flow between cells in direction i where i ∈ {x, y, z} is calculated from Darcy's law:

qi = KiA
∆h

∆si
(6.3)

where si is the model cell length in direction i and A is the cross-sectional area of the �ow

plane normal to the direction of �ow.

The stream�ow-routing package (SFR1) (Prudic et al., 2004) was used to simulate

river-aquifer interactions. The SFR1 package splits the river into a number of intercon-

nected sections so that each section is assigned to a given MODFLOW model cell. For

a given section of river with cross-sectional river bed area Ariv [L2], river bed thickness

m [L], and river bed hydraulic conductivity Kriv [L T-1], �ow between the river section

and the underlying groundwater model cell (river leakage), qL [L3 T-1] is calculated using

Darcy's Law:

qL = KrivAriv
(hriv − h∗)

m
(6.4)

157



Chapter 6: Twenty-�rst century changes in proglacial groundwater dynamics

where hriv is the river hydraulic head [L] and h∗ is the prescribed head in the aquifer

which depends on where the simulated aquifer head, haq lies in relation to the river bed

bottom elevation, zbot [L] so that:

h∗ =


haq haq ≥ zbot

zbot haq < zbot

(6.5)

Note that in eq. 6.4, the river is losing when qL is positive and gaining when the leakage

is negative.

In addition to simulating river-aquifer interactions, the SFR1 package also routes river

�ow along the river channel using Manning's equation for uniform open channel �ow:

Qriv =
AchnR

2/3S
1/2
0

n
(6.6)

where Qriv is the river discharge [L3 T-1], n is the Manning's roughness coe�cient [-], Achn

is the cross-sectional areas of the river channel [L2], R is the channel hydraulic radius [L]

and S0 is the river bed slope.

The in-built drainage package was also used to simulate groundwater springs. Drains

remove water from the aquifer when the aquifer water table, haq is above the drain eleva-

tion, zdrn. The drainage rate, qD [L3 T-1] is calculated as:

qD =


cdrn(haq − zdrn) haq > zdrn

0 haq ≤ zdrn

(6.7)

where cdrn [L2 T-1] is the drain conductance.

6.4.2 Groundwater model con�guration

The model domain was divided into a Cartesian grid with 50 m horizontal and 10 m ver-

tical resolution. This resolution was selected as a compromise between model complexity

and runtime requirements, to ensure consistency with the GHM++ model grid and to

ensure that the aquifer geometry could be adequately represented.
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The Virkisá groundwater catchment derived by Ó Dochartaigh et al. (2019) was used

to de�ne the lateral extent of the sandur aquifer using a combination of no �ow and spec-

i�ed �ux boundary conditions (Fig. 6.1a). The upstream model boundary (B1 in Fig.

6.1a) coincides with known outcropping of the bedrock approximately 800 m downstream

of the lake outlet. Pumping tests conducted by Ó Dochartaigh et al. (2012) have shown

that the permeability of the volcanic bedrock material is negligible, and so no �ow model

nodes were speci�ed at this boundary. No �ow conditions were also imposed along the

boundaries to the east and west of the river (B2 and B3 in Fig. 6.1a) given that ground-

water level contours are perpendicular to the river here (Ó Dochartaigh et al., 2019), and

�ows across these boundaries are, therefore, negligible. At the downstream boundary (B4

in Fig. 6.1a), speci�ed �ux boundary conditions were prescribed by assuming that the

hydraulic gradient is equal to the topographic slope. This is a reasonable assumption

given that the water table resides at or very close to the ground surface here year-round.

The thickness of the sandur aquifer was set according to a bedrock topography model

derived from two Tromino R© passive seismic surveys (Fig. 6.1b, see Appendix H for de-

tails). No �ow boundary conditions were also imposed at the aquifer-bedrock interface.

The Virkisá River was represented by a single rectangular channel running between the

upstream and downstream model boundaries. This is somewhat contrary to the known

geometry of the channel which braids signi�cantly in the lower (downstream) sandur

where sand and �ne gravel material dominates (Fig. 6.1a). However, it was decided not

to represent the braided channel system explicitly in the model given that diurnal and

seasonal variations in meltwater discharges as well as less frequent high-�ow-magnitude

rainstorm events are known to bring about regular (sub-annual) sediment reworking,

causing changes to channel morphology, channel migration and channel deactivation and

reactivation (Marren, 2005). As such, any attempt to include a braided channel system

(e.g. based on the aerial imagery in Fig. 6.1a) would require the inclusion of hundreds of

interconnected channels which would only be valid for a short time frame. Furthermore,

the inclusion of any dynamic landscape evolution component in the model was beyond

the scope of this study.
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Figure 6.1: Groundwater model lateral (a) and vertical (b) extent and model used to de�ne

river width variations (c). Aerial image taken on Aug 7, 2012, source: DigitalGlobe (Vivid

- Iceland).
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An important implication of river channel braiding is that it promotes water exchanges

between the aquifer and the river as the cumulative river bed area (Ariv in eq. 6.4)

increases with the number of braids. To account for this, the width of the river channel

was varied in the groundwater model according to the degree of braiding downstream.

More speci�cally, the total width of all river channels was measured at 50 m intervals

along the main river channel (blue dots in Fig. 6.1c). A polynomial was then �t to these

data points (black dash line in Fig. 6.1c) to determine the change in river channel width

with distance downstream. This was deemed more appropriate than assigning the raw

width data to the river channel model as it promotes model stability and convergence

during transient simulations.

No direct measurements of the river bed elevation exist except at the ASG1 gauging

station. However, numerous sections of the river have been waded into during �eld ex-

cursions where water depth is typically between 0.2 and 1 m with an estimated average

water depth of 0.5 m. Accordingly, the river bed bottom elevation was set for each river

section by subtracting 0.5 m from the 2011 lidar DEM of the sandur.

In addition to the river, an extensive network of ephemeral and perennial springs exist,

particularly in the lower sandur. These springs are thought to form a signi�cant drainage

output (MacDonald et al., 2016) and so were included in the model using drains at the

land surface elevation at each x and y coordinate covering the lateral extent of the model

domain.

6.4.3 Groundwater model driving data

The two major water inputs to the groundwater catchment are mountain runo� from the

Virkisá River basin and di�use rainfall and snow melt recharge over the sandur. Both

of these can be speci�ed as transient boundary conditions within MODFLOW-NWT

and this was done using the GHM++ simulations from chapter 5. The raw hourly river

discharge simulations were used to specify in�ows at the upstream end of the river. Hourly

di�use recharge was speci�ed across the groundwater catchment using the simulated excess

soil water calculated by the soil water balance model in the GHM++ code. Note that
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the GHM++ model domain from chapter 5 does not cover the entirety of the Virkisá

groundwater catchment. As such, the domain was extended for this study using the same

model parameterisations.

As part of the study in chapter 5, 336 unique GHM compositions (structure-parameter

combinations) were calibrated based on simulations using the historical climate data

(1980-2016). These simulations are hereafter referred to as the historical ensemble and

show variability in river �ow and di�use recharge simulations due to di�erences in the

melt and runo�-routing components of the GHM. Additionally, 94800 twenty-�rst cen-

tury (2005-2100) simulations were undertaken, made up of every combination of the GHM

compositions and 280 climate projections. These simulations are hereafter referred to as

the future ensemble and show variability in river �ow and di�use recharge simulations

due to di�erences in the climate projections and the melt and runo�-routing components

of the GHM.

6.4.4 Groundwater model calibration

Within MODFLOW-NWT, the hydraulic parameters can be speci�ed for each model cell

individually. Depositional processes on alluvial aquifers can bring about complex dis-

tributions of sediment grain size, shape, packing and orientation giving rise to spatial

heterogeneity in aquifer permeability and porosity (Chen et al., 2010; Neton et al., 1994).

However, the only quantitative data on hydraulic parameter heterogeneity come from the

pumping tests undertaken by Ó Dochartaigh et al. (2019). These indicate that transmis-

sivity increases downstream and observations at the site show considerable downstream

�ning of sandur material which could conceivably bring about changes in hydraulic prop-

erties. Even so, the transmissivity data alone do not provide conclusive evidence for

changes in hydraulic conductivity given that the aquifer thickness is also known to in-

crease downstream. There is also no information on changes in storage properties of the

aquifer. Given the lack of information available to constrain to a heterogeneous parame-

terisation of the sandur, and the additional model uncertainties that would be introduced

by doing so, it was decided to �x the aquifer hydraulic properties across the sandur.
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This meant that eight model parameters needed to be speci�ed using available �eld

data or through model calibration (Table 6.1). Prior to undertaking model calibration,

a number of preliminary steady-state simulations were used to explore parameter sensi-

tivity and re�ne their behavioural ranges. Groundwater level simulations showed to be

insensitive to the prescribed river bed thickness parameter, m which is likely due to the

shallow location of the water table and therefore relatively linear behaviour of eq. 6.4.

Accordingly, this was set to an estimated thickness of 0.5 m. It was also decided to �x

the speci�c storage parameter, Ss given that the sandur is uncon�ned. Ss was set to

10-5 m-1 based on representative values reported for unconsolidated coarse sand aquifers

(Domenico and Schwartz, 1990). In addition, the river bed hydraulic conductivity, Kriv

was set to 40 m d-1 based on the mean of the surface permeability measurements under-

taken by Ó Dochartaigh et al. (2019) in abandoned river channels on the sandur. Given

the observed similarity between river bed material and the material found on the winder

sandur, this parameter was also used to set the drain conductance, cdrn (see Table 6.1).

Finally, the Manning's roughness coe�cient was set to 0.05 based on the `normal' value

for mountain streams with beds made up of cobbles and large boulders (Chow, 1959).

The three remaining model parameters were calibrated against groundwater level time

series data from the seven observation boreholes in the sandur. These include: 1) hori-

zontal hydraulic conductivity in the x and y directions, which are assumed equal so that

Kx = Ky = Kh; 2) the vertical anisotropy, κ which is speci�ed as the ratio between

vertical (Kz) and horizontal hydraulic conductivity so that κ = Kz
Kh

; and 3) the speci�c

yield, Sy. Half of the data (up to August 31st 2014) were used for model calibration and

the other half (up to December 31st 2016) were used for model evaluation.

The parameters were calibrated using a Monte Carlo approach with 5000 parame-

ter sets drawn randomly from uniform distributions using the Sobol sampling technique

adopted in previous chapters (Brately and Fox, 1988). 5000 runs was deemed adequate

given that two of the three calibration parameters and all of the main state variables

were identi�able (see section 6.5.1). For each run, the model was executed in transient

mode and set to run for a simulation period between 2010 and 2017. This period covers
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the groundwater level observation time series and also includes an additional two year

spin-up period. A prior, steady state simulation was also undertaken for each run using

the average di�use recharge and river in�ow �uxes over the simulation period as driving

data. The hydraulic head �eld from the steady state simulation was used as the initial

head for the transient simulation.

The model �t was quanti�ed using the average root mean squared error (RMSE)

over all observation boreholes. All simulated groundwater levels were extracted using the

Observation Process MODFLOW package (Harbaugh, 2005) which interpolates simulated

groundwater levels in space and time so that the simulations are spatially and temporally

coherent with available observation data.

A key constraint on the model calibration procedure was the computational burden of

running the groundwater model thousands of times. Accordingly, two measures were taken

to ensure that the calibration could be executed within time constraints. Firstly, the time

step of the model was set to daily rather than hourly. This reduced the runtime of a single

calibration run from six hours to sixteen minutes. Secondly, a single river discharge and

di�use recharge simulation from the 336 calibrated GHM++ models (historical ensemble)

was derived by taking the ensemble mean. The calibrated groundwater model therefore

represents the best groundwater model approximation given the average river discharge

and di�use recharge simulations from chapter 5.

6.4.5 Twenty-�rst century groundwater model simulations

To drive the calibrated groundwater model over the twenty-�rst century, river discharge

and di�use recharge simulations from the future ensemble were used. Similarly to the

calibration runs, all transient twenty-�rst century simulations were executed with a two

year spin-up period and initial hydraulic head �eld from a prior steady state run.

Given the computational demands of running a distributed groundwater model, it

was not feasible to run the entire ensemble of projections from chapter 5, particularly

as it was important to run the groundwater model on an hourly time step so that sub-

daily characteristics of river �ow, which may bring about episodic GW-SW exchange
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Table 6.1: Parameters requiring speci�cation or calibration for MODFLOW-NWT.

Parameter Description Calibration range Justi�cation

Kh Horizontal hydraulic conductivity 1-20 m d-1 Preliminary steady-state runs

κ Vertical anisotropy 0.01-1.0 Recommended range from Anderson and Woessner (2002)

Sy Speci�c yield 0.1-0.3 Estimate from Ó Dochartaigh et al. (2019)

Ss Speci�c storage 1e-5 m-1 Based on representative values for unconsolidated coarse sand

aquifers (Domenico and Schwartz, 1990)

Kriv River bed hydraulic conductivity 40 m d-1 Average of surface permeability measurements in abandoned

river channels (Ó Dochartaigh et al., 2019)

m Rived bed thickness 0.5 m Not known, but preliminary steady-state runs showed it to be

insensitive

n Manning's roughness coe�cient 0.05 Based on `normal' value for mountain streams with cob-

ble/large boulder beds (Chow, 1959)

cdrn Drain conductance 2e5 m2 d-1 Set using the river bed parameterisation so that cdrn =

∆x∆yKriv
m

dynamics, could be simulated. Instead a small subsample of �ve ensemble members,

hereafter referred to as scenarios, were selected to represent a range of potential future

outcomes under twenty-�rst century climate change. While such an approach means that

it is not possible to ascribe meaningful con�dence intervals to projections like those in

chapter 5, using a handful of ensemble members crucially allows one to undertake a more

process-oriented analysis of di�erences between individual simulations and capture the

nuanced feedbacks between climate, glacio-hydrology and groundwater that might be lost

when averaging simulations over large ensembles (Knutti et al., 2010). This approach is

particularly bene�cial for evaluating the dynamics of uncon�ned aquifers and exchanges

with surface water bodies given their known nonlinear response to climate stresses (Cayar

and Kavvas, 2009).

Given the emphasis on a small number of scenarios, it was important to adopt a

robust scenario selection procedure that captured a range of future glacio-hydrological

and climatic behaviours from the future ensemble that are likely to drive changes in

proglacial groundwater dynamics. Therefore, to aid the scenario selection, eleven signa-

tures were calculated for each member of the future ensemble to characterise key climatic

and glacio-hydrological behaviours over the mountain (Virkisá River basin) and alluvial

aquifer (sandur) study regions (Table 6.2). It was decided to focus the projections on the
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Table 6.2: Eleven signatures used to characterise the glacio-hydrological and climatic

drivers of proglacial groundwater dynamics in the sandur aquifer for the 2080s (2073-

2097).

Region Group Signature ID 95% CI (2080s)

Mountain (Virkisá River basin)

Ice and snow coverage
Ice coverage IceCov 4.09 - 11.28 km2

Snow coverage SnowCov 7.99 - 15.7 km2

Seasonal river discharge

Winter river discharge QDJF 1.52 - 4.53 m3 s-1

Spring river discharge QMAM 1.20 - 3.55 m3 s-1

Summer river discharge QJJA 4.29 - 9.25 m3 s-1

Autumn river discharge QSON 3.43 - 6.84 m3 s-1

Quick-release high �ows 1% exceedance �ow Q01 15.56 - 32.4 m3 s-1

Alluvial aquifer (sandur) Seasonal total precipitation

Winter total precipitation PDJF 3.04 - 6.04 mm d-1

Spring total precipitation PMAM 2.08 - 4.08 mm d-1

Summer total precipitation PJJA 2.26 - 5.09 mm d-1

Autumn total precipitation PSON 3.57 - 6.92 mm d-1

time slice centred on the 2080s (2073-2097) given that, in chapter 5, this period showed

the largest spread in projected evolution of climate and glacio-hydrological characteristics

and therefore is most appropriate for evaluating the range of potential responses to climate

change. The signatures include snow and ice coverage as these control runo� volumes and

timing over seasonal to hourly timescales. The ice coverage also provides an indicator

of long-term climate warming. Seasonal river discharge signatures were also included to

characterise changes in runo� inputs throughout the year which are controlled by melt

and rainfall-runo� in the Virkisá River basin. The 1% exceedance river �ow signature

was also included as episodic river recharge during high �ow events could be an important

recharge mechanism. Finally, total precipitation signatures over the sandur aquifer were

calculated to characterise seasonal shifts in the timing and magnitude of di�use recharge

inputs.

In order to de�ne the scenarios, k-means cluster analysis (MacQueen, 1967) was used.

The k-means method can be used to �nd natural groupings in multivariate data that

are distinct from one another and has been widely used in the past for climate projec-

tion scenario selection (Cannon, 2015; Wilcke and Bärring, 2016) and for undertaking

signature-based analyses of watershed hydrological functioning (Jehn et al., 2019; Singh
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et al., 2016a) and so was considered ideal for this application. For a given dataset X with

n observations (ensemble members) and p variables (signatures):

X =


x1

x2

...

xn


=


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp


(6.8)

The aim is to partition the observations into k clusters C = (C1, C2, . . . , Ck) so as to

minimise the within-cluster variance:

arg min
C

k∑
i=1

∑
x∈Ci

‖x− µi‖
2 (6.9)

where µi is the mean (centroid in the p-dimensional Euclidean space) of all observations

in Ci.

The MATLAB R© kmeans function was used to solve eq. 6.9, which uses an iterative

approach to determine the optimal location of the centroids. Given the potential to reach

local minima in the solution space during the optimisation procedure, 100 replicates were

undertaken using random centroid locations initialised using the kmeans++ algorithm.

6.5 Results

The results are split into four sections. The �rst section covers the model calibration and

evaluates the model simulations against the observed groundwater level time series data.

The second section then analyses simulations of the main water balance variables from the

calibrated model over the historical reference period (1991-2015) to evaluate the current

hydrodynamic behaviour of the aquifer. The third section then analyses the driving river

discharge and di�use recharge data for the twenty-�rst century projections (2080s) before

the �nal section analyses the corresponding projections of groundwater level dynamics

and GW-SW exchanges with the Virkisá River and springs and how these relate to shifts

in river discharge and di�use recharge.

Note, the majority of simulated state variables in the results section are presented

as a sequence of daily averages for the 365 days of the year to allow for straightforward
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analysis of shifts in seasonal timing and magnitude of state variables. These intra-annual

distribution plots are calculated after �rst applying a 30-day moving average (MA) �lter

to the raw simulation data which smooths out any inter-day variability that can make

the plots di�cult to interpret, but also allows one to analyse shifts in the timing of peaks

and troughs in the simulations at a daily resolution.

6.5.1 Groundwater model calibration

In total, 4398 of the 5000 Monte Carlo calibration runs executed successfully. The remain-

ing 602 runs did not converge. Figure 6.2a shows the frequency histogram and cumulative

frequency diagram of the RMSE scores (averaged over the seven observation borehole time

series) obtained from the successful runs. The least e�cient model run obtained an RMSE

of 1.89 m while the most e�cient calibrated model obtained an RMSE more than three

times smaller of 0.56. More than 90% of the runs returned a RMSE<0.9 m. Figures

6.2b-d show the range (light blue lines) and mean (dashed blue line) of the three calibra-

tion parameter values for all model runs under each point of the cumulative frequency

diagram. It can be seen that as progressively fewer models are included (i.e. the RMSE

threshold is reduced), Kh converges towards a value of approximately 4 m d-1 (Fig. 6.2b).

The yellow line shows the convergence ratio: the proportion by which the calibration

parameter range is reduced, for each point on the cumulative frequency diagram. For the

the most e�cient models (left-most point on the yellow line), the Kh parameter range

is reduced by 93% of the original calibration range size indicating high sensitivity and

identi�ability. The calibrated Kh value was 3.3 m d-1.

The convergence ratio only reaches 57% for κ (Fig. 6.2c) indicating that it is less

identi�able than Kh. Even so, the parameter still converges towards a value >0.5 and the

calibrated κ is 0.98 indicating an aquifer lithology that is approximately isotropic. The

calibrated Sy is 0.15, but the convergence ratio only reaches 4% (Fig. 6.2d) indicating that

this parameter is not identi�able. This is likely because inter-borehole groundwater level

variability is much larger than variations in groundwater levels within individual boreholes

as demonstrated by the analysis that follows in this section. Accordingly, the calibration of
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hydraulic model parameters to all of the groundwater level time series data simultaneously

likely renders Sy insensitive. To investigate this further, an additional side experiment

was undertaken whereby the model was calibrated to each borehole individually. It was

found that, except for the U1 and U2 boreholes, which are situated close to the river and

therefore controlled primarily by river dynamics, Sy showed to be more sensitive with the

convergence ratio ranging between 27 and 99% with a mean of 73% and the calibrated

Sy ranging between 11 and 25% with a mean of 15%. Given that the Sy obtained when

taking the average of the calibration values at all sensitive boreholes is in agreement

with the value obtained from the initial Monte Carlo calibration and that this is in the

representative porosity range (10 - 20%) for proglacial fans and sandur aquifers (Parriaux

and Nicoud, 1990), an Sy of 0.15 was deemed justi�able.

Figures 6.2e-h show equivalent convergence plots for the mean simulated state variables

as the RMSE threshold is reduced. All state variables appear to converge towards a

calibrated state and indeed, the convergence ratio reaches≥89% for all variables indicating

the model behaviour is well constrained by the calibration procedure.

Table 6.3 shows the RMSE scores obtained at each borehole for the most e�cient

calibrated model over the calibration and evaluation periods. The relative e�ciency of

the model between the boreholes is consistent across the calibration and evaluation time

periods where the model is most e�cient at capturing the U1 groundwater level data and

least e�cient at capturing the U2 groundwater level data. There is a slight decrease in

model e�ciency between the calibration and evaluation periods where the average RMSE

rises from 0.39 to 0.40.

Figure 6.3 shows that the model captures the average spatial distribution of ground-

water levels accurately, obtaining an R2 of 0.997. Temporally, the simulated groundwater

level time series (yellow lines in Fig. 6.4) also capture the seasonal timing of peaks in

the winter and spring months and troughs in the summer months shown in the obser-

vation borehole data. The timing of individual, event-scale peaks are also captured by

the model. There are also, however, some de�ciencies in the model simulations. For

example, the simulated groundwater level dynamics at U2 show a systematic underesti-
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Figure 6.2: Frequency histogram (blue bars) and cumulative frequency diagram (black

line) of RMSE scores obtained from successful Monte Carlo calibration runs (a). Also

shown is the range (light blue lines), mean (dashed blue line) and convergence ratio

(yellow line) of the calibration parameters (b-d) and model state variables (e-h) for all

model runs under each point of the cumulative frequency diagram.
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Table 6.3: Calibration and evaluation RMSE scores against observed groundwater level

time series for the seven observation boreholes used for the model calibration.

Borehole ID Calibration RMSE (m) Evaluation RMSE (m)

U1 0.16 0.17

U2 0.65 0.69

M1 0.59 0.65

M2 0.44 0.38

L1 0.29 0.22

L2 0.23 0.22

L3 0.38 0.47

mation of levels throughout the year except during the winter months when levels are

highest. This underestimation exceeds 2 m in the summer of 2016. The simulations at

M2 show the opposite e�ect where groundwater levels outside of the winter months are

typically overestimated while simulations at M1 and L3 show systematic underestimation

and overestimation of groundwater levels respectively throughout the year. Simulated

groundwater levels at L1 and L2 show a larger amplitude of response than shown in the

observation data where the model overestimates maximum winter groundwater levels and

underestimates summer minimum groundwater levels.

6.5.2 Historical reference period simulations

Average simulated annual di�use recharge rates over the reference period are highest in

the upper sandur where rates peak at 1700 mm y-1 (Fig. 6.5a). In the lower sandur,

recharge rates are signi�cantly lower with a minimum rate of 1100 mm y-1 on average.

Figure 6.5b shows how the intra-annual distribution of di�use recharge changes as you

move downstream. Here, each line represents the average simulated di�use recharge for

a given 100 m long subdivision of the Virkisá groundwater catchment (Fig. 6.6) where

yellow represents the upstream end and blue the downstream end of the groundwater

catchment. As noted above, each point on the line is calculated using a 30-day moving

average of the raw simulation data, averaged over all years, for each day of the year.

In fact, the intra-annual timing of di�use recharge is approximately identical across the
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Figure 6.3: Comparison of mean observed and simulated groundwater levels at seven

observation boreholes used for model calibration.

entire catchment where it is highest in February and between September and October

and lowest in May.

More than 65% of the groundwater catchment has a simulated annual average DTGWL

less than 1 m (Fig. 6.5c). The water table is deepest upstream where it can exceed 14

m on average. Within the top 1 km of the catchment (area shown by purple line in Fig.

6.6), the groundwater level �uctuates by more than a metre (yellow lines in Fig. 6.5d).

Here, they are at their highest at the end of winter in February and reach a minimum at

the end of summer between July and August. Downstream of this (green and blue lines

in Fig. 6.5d), the amplitude of �uctuations are typically less than 0.3 m.

The map of river leakage shows that the upper 2 km of the river is net losing on

average and the lower 2 km is net gaining on average (Fig. 6.5e) which broadly agrees

with the observations made by Ó Dochartaigh et al. (2019). Even so, there is considerable

variability in the magnitude and direction of �uxes, as you move downstream (Fig. 6.5f).

Seasonally, leakage to groundwater typically peaks in the summer months when ground-

water levels are at their lowest. Note, that in the sections furthest downstream (dark

blue lines in Fig. 6.5f), the maximum leakage occurs earlier (approximately May) which
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Figure 6.4: Observed (blue) and simulated (yellow) groundwater level time series at the

seven observation boreholes. The dashed black line shows the dividing time between the

calibration and evaluation periods to the left and right of the line respectively.
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Figure 6.5: Annual average maps (a,c,e,g) and intra-annual distribution plots (b,d,f,h) of

di�use recharge, groundwater level, river leakage and spring drainage over the reference

period (1991-2015) using average of simulations from TIM-ROR models in Table 6.4.

Note in c, groundwater level is expressed as depth to groundwater level (DTGWL) and

in d, groundwater level is expressed as an anomaly, i.e. the deviation from the mean

groundwater level. Also note, in g spring drainage is on a log scale.
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Figure 6.6: 100 m long subdivisions of the Virkisá groundwater catchment (shown by

black lines) used to average simulated state variables for a given distance downstream.

Yellow represents the upstream end and blue the downstream end. The purple line shows

the top 1 km section of the groundwater catchment.
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corresponds to an earlier minimum groundwater level (Fig. 6.5d) in the lower sandur.

Spring drainage is most concentrated downstream, particularly on those parts of the

sandur that �ank either side of the river. The greatest �uxes occur between 1 and 2 km

downstream near the moraines (Fig. 6.5g). The seasonal timing of spring drainage closely

follows that of di�use recharge (Fig. 6.5h).

Based on stable isotope data of meltwater and groundwater (see section 2.5), Mac-

Donald et al. (2016) estimated that groundwater contributes 15-20% of surface runo� in

the lower sandur and the reference period simulations show close agreement with this

where groundwater drainage to the river and springs make up to 14-17% of the 30-day

MA sandur runo�.

6.5.3 Twenty-�rst century projections of river discharge and dif-

fuse recharge

Scenario selection

Figure 6.7 shows the signatures of the �ve selected scenarios after undertaking k-means

cluster analysis (coloured lines) and where they lie on the distribution of signatures from

the future ensemble (grey bars). Each is coloured from orange to blue to indicate the

relative degree of glacier and snow retreat where orange indicates high retreat and blue

indicates low retreat. The selected scenarios cover between 38% (spring river �ow) and

76% (summer river �ow) of the ensemble with an average coverage of 61%. While the

spread of the scenarios across the signatures is generally good, the extremes are not always

represented. For example, for ice and snow coverage, the most extreme cases of retreat

are not represented by the selected scenarios. Similarly for the QDJF , QSON and Q01

signatures, the highest �ows are not represented, while for the QMAM signature neither

the highest nor lowest ends of the distribution are represented.

Each scenario has been assigned a code with the format G*-Q*-P* where G, Q and P

represent glacier coverage, mean annual river �ow and mean annual sandur precipitation

respectively and * is either 1, 2 or 3 representing low, moderate and high respectively.
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Figure 6.7: Signatures of �ve scenarios selected using k-means clustering algorithm in-

cluding ice and snow coverage (a), seasonal river �ow (b), high river �ow (c) and seasonal

sandur precipitation (d) signatures. Grey bars indicate the con�dence intervals of the

future ensemble from chapter 5. Percentages indicate the proportion of this distribution

covered by the selected scenarios.
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These bandings were de�ned based on which tercile of the future ensemble they fall into.

Table 6.4 provides a summary of each scenario. Average near-surface air temperature

rises between 0.7 and 3.1 ◦C across the scenarios with the warmest scenarios showing the

highest degree of glacier retreat. The change in glacier coverage (∆G) ranges from -3.7

km2 for the coolest scenario to -8.1 km2 for the warmest scenario. All scenarios show a

reduction in mean river discharge (∆Q) between the reference period and the 2080s and

all apart from the wettest G2-Q2-P3 scenario show a reduction in total precipitation over

the sandur relative to the reference period (∆P). Both RCPs are included in the scenarios

with the warmest scenarios associated with RCP8.5 and the cooler scenarios driven by

RCP4.5. Each uses a unique GCM-RCM and all but scenarios 1 and 5 use unique TIM-

ROR structure combinations. Each scenario will now be summarised:

G1-Q1-P1: This is one of the warmest scenarios with a mean temperature rise of

3.1 ◦C and has the lowest glacier and snow coverage of all of the scenarios. Accordingly,

upstream river discharge is low with a mean reduction of 1.1 m3 s-1, particularly in the

summer where melt would normally persist. It is also a relatively dry scenario, where

sandur precipitation is low for most of the year except autumn.

G2-Q2-P3: This scenario is also one of the warmest, but only shows a moderate

glacier retreat, likely due to high snowfall inputs. It is the wettest scenario and the only

scenario that shows an increase in total precipitation over the sandur relative to the ref-

erence period. River �ows are moderate.

G2-Q2-P1: This scenario shows an average warming of 1.9 ◦C resulting in moderate

glacier coverage for the 2080s. River �ows are also moderate, but precipitation inputs

over the sandur are low throughout the year except in winter. This is a dry scenario.

G3-Q1-P1: This is one of the coldest scenarios with an average warming of only 1.0

◦C resulting in high glacier coverage for the 2080s. It is also the driest scenario with
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Table 6.4: Scenarios listed in descending order according to their projected glacier retreat

for the 2080s. Each have been assigned a code with the format G*-Q*-P* where G, Q

and P represent glacier coverage, mean annual river discharge and mean annual sandur

precipitation respectively and * is either 1, 2 or 3 representing low, moderate or high

respectively. Also shown are the changes in near-surface air temperature (∆T), glacier

coverage (∆G), upstream river discharge (∆Q) and total precipitation over the sandur

(∆P).

Scenario Scenario code ∆T (◦C) ∆G (km2) ∆Q (m3 s-1) ∆P (mm d-1) RCP GCM-RCM TIM-ROR

1 G1-Q1-P1 3.1 -8.1 -1.1 -0.6 8.5 [HadGEM2-ES]-[CCLM4-8-17] TIM3-ROR1

2 G2-Q2-P3 3.1 -6.4 -0.7 0.2 8.5 [EC-EARTH]-[RACMO22E] TIM3-ROR2

3 G2-Q2-P1 1.9 -5.6 -0.9 -0.7 4.5 [HadGEM2-ES]-[RCA4] TIM2-ROR1

4 G3-Q1-P1 1.0 -4.8 -1.2 -0.9 4.5 [NorESM1-M]-[HIRHAM5] TIM1-ROR2

5 G3-Q3-P2 0.7 -3.7 -0.3 -0.2 4.5 [CNRM-CM5]-[CCLM4-8-17] TIM3-ROR1

a mean reduction in total precipitation over the sandur of 0.9 mm d-1 and also has the

lowest mean upstream river discharge input.

G3-Q3-P2: This is the coldest scenario with an average warming of only 0.7 ◦C

resulting in high glacier coverage for the 2080s. This scenario shows the highest summer

river �ows and also receives a moderate precipitation input over the sandur.

River discharge projections

Figure 6.8a shows the intra-annual distribution of river discharge out of the Virkisá River

basin over the reference period while Figs. 6.8b-d show the contribution from ice melt,

snow melt and rainfall. Over the reference period, ice melt is the dominant source of river

runo� and this input in conjunction with snow melt has the major control on river �ow

seasonality where the maximum 30-day MA �ow (as indicated by the upwards triangles

in Fig. 6.8d) occurs in August. There are small di�erences in simulated runo� over

the reference period. The G1-Q1-P1 (orange) and G3-Q1-P1 (cyan) scenarios show the

highest and lowest river discharges respectively over the rising limb of the intra-annual

distribution hydrograph between April and July and the opposite over the falling limb
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between August and November. These clearly stem from di�erences in simulated ice and

snow melt. Rainfall runo� reaches a maximum between September and October and is

the dominant runo� input outside of the melt season.

Projections of river discharge for the 2080s (Fig. 6.8e) and changes relative to the

reference period (Fig. 6.8i) show large reductions in melt-season runo� of up to 5 m3 s-1

for the warmest G1-Q1-P1 scenario which is mainly due to reductions in ice melt (Fig.

6.8j). The reduced in�uence of melt and increased in�uence of rainfall runo� on the intra-

annual distribution of river discharge is demonstrated by the loss in smoothness of the

hydrographs (Fig. 6.8e). For the warmest G1-Q1-P1 scenario, a signi�cant increase in

October rainfall results in a 51-day shift in the timing of maximum river discharge from

August to October. For all of the scenarios, rainfall is projected to increase outside of the

melt season between December and May although the two coldest scenarios show a small

reduction in December and January rainfall (Figs. 6.8l). These increases are re�ected in

the projected changes in river discharge (Figs. 6.8i).

Di�use recharge projections

Projections of month-to-month variability in di�use recharge over the 2080s (Fig. 6.9e)

show signi�cant changes relative to the reference period (Fig. 6.9a). The intra-annual

peaks typically become more pronounced in the future (e.g. in February, March/April,

and November/December) while the di�use recharge is consistently projected to decrease

for the autumn and winter months across the scenarios. The projected changes in dif-

fuse recharge (Fig. 6.9i) are clearly related to the relative `wetness' of the scenarios

with the G3-Q1-P1 dry scenario (cyan) demonstrating some of the largest reductions in

recharge between September and February and the G1-Q1-P1 (orange) scenario showing

the greatest reductions in melt-season runo� between May and September. Furthermore,

the intra-annual variability of di�use recharge plots (Figs. 6.9a, e and i) is mirrored in

the corresponding rainfall plots (Figs. 6.9b, f and j). Over the reference period, rainfall

makes up 94% of the total di�use recharge and this increases to between 96 and 99%

across the scenarios. Di�use recharge by snow melt, thus, only constitutes a relatively
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Figure 6.8: Intra-annual distribution plots of river discharge, ice melt, snow melt and

rainfall for the Virkisá River basin over the reference (1991-2015) period (a-d); future

(2080s) period (e-h) and the di�erence between the two periods (i-l). Also shown is the

change in time of maximum between the reference and future periods (m-p).
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Figure 6.9: Intra-annual distribution plots of di�use recharge, rainfall, snow melt and

evapotranspiration for the Virkisá groundwater catchment over the reference (1991-2015)

period (a-d); future (2080s) period (e-h) and the di�erence between the two periods (i-l).

minor source of groundwater recharge.

During the reference period, evapotranspiration removes as much as 35% of daily

rainfall and snow melt inputs to the soil (Fig. 6.9d). However, these �uxes do not change

signi�cantly in the future across the di�erent scenarios 6.9l).

6.5.4 Twenty-�rst century projections of groundwater level dy-

namics and GW-SW exchanges

Groundwater level dynamics

To evaluate shifts in groundwater level dynamics, average groundwater level, di�use

recharge and river leakage inputs have been calculated for the top 1 km section of san-

dur (see purple box in Fig. 6.6) where groundwater level dynamics are not constrained

by the surface topography (Fig. 6.10). All scenarios except for the wettest G2-Q2-P3

scenario (yellow) project winter and spring groundwater levels to decrease (Fig. 6.10g).

The wettest scenarios (yellow and blue) show a small increase in 30-day MA groundwater
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level between July and November of up to 0.3 m. The three driest scenarios (orange,

green and cyan) show the greatest reductions in groundwater levels. The dry G3-Q1-P1

scenario (cyan) projects 30-day MA groundwater level to reduce by 1 m in February.

Over the reference period, river leakage inputs peak in the summer months (Fig. 6.10c)

where 30-day MA contributions to total recharge can reach between 46-50% in the top 1

km of the sandur. Overall river leakage contributes between 21-23% of total recharge in

this area. Maximum river leakage inputs for the G2-Q2-P3 scenario (yellow) are approx-

imately 12 m3 h-1 higher than the other scenarios. This di�erence will be investigated

in the next section. All simulations for the 2080s project that river leakage �uxes will

increase between November and March (Fig. 6.10i). The wettest scenarios (yellow and

blue) project a decrease in spring and summer leakage while the driest scenarios (orange,

green and cyan) show an increase in river leakage for the majority of the year. The pattern

of river leakage changes closely follows the inverse of changes in groundwater levels across

the scenarios.

Signi�cant shifts in the timing of minimum and maximum groundwater levels in the

2080s (Fig. 6.10d) relative to the reference period (Fig. 6.10a) are shown for some

scenarios. For the G1-Q1-P1 scenario (orange), a sharp rise in groundwater level in

October causes the peak to occur much earlier in December, rather than in February. This

corresponds to a signi�cant increase in October di�use recharge (Fig. 6.10e). The G3-Q1-

P1 scenario (cyan) shows an even earlier maximum in groundwater levels in September

for the 2080s which can be attributed to a reduction in di�use recharge during the main

recharge season between September and February (Fig. 6.10h). Changes to the timing

of minimum groundwater level are much smaller with four of the �ve scenarios showing

an earlier minimum day (up to 23 days earlier), and the G1-Q1-P1 scenario showing a

minimum 23 days later in the 2080s.

River leakage dynamics

Figure 6.11 shows intra-annual distribution plots of various aspects of river leakage dy-

namics over the whole Virkisá groundwater catchment. The seasonal pattern of river
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Figure 6.10: Intra-annual distribution plots of groundwater level, di�use recharge and

river leakage input averaged over the top 1 km section of sandur (see purple box in

Fig. 6.6) for the reference (1991-2015) period (a-c); future (2080s) period (d-f) and the

di�erence between the two periods (g-i).
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leakage over the reference (Fig. 6.11a) and future (6.11e) periods, and the projected

change between the two (Fig. 6.11i) broadly follow the patterns observed in the upper

sandur (Fig. 6.10c, f and i) where leakage is projected to increase in the winter months

while the summer months show a mixture of responses across the scenarios. A comparison

of the projected river leakage input plots (Figs. 6.11a, e and i) with the corresponding

length of leaking river plots (Fig. 6.11b, f and j) show an almost like-for-like relationship

indicating that it is the seasonal evolution of the proportion of river that is losing that

drives variability in river leakage. However, some aspects of leakage behaviour do not cor-

relate to the length of leaking river. In particular, the maximum river leakage inputs for

the G2-Q2-P3 scenario (yellow) over the reference period (Fig. 6.11a) are approximately

54 m3 h-1 higher than the other scenarios (an observation also made from Fig. 6.10),

but this is not shown in the leaking river length data. Instead, it is the rate of leakage

at leaking river nodes which is much higher for the G2-Q2-P3 scenario as shown by the

plot of speci�c river leakage i.e. the river leakage rate per unit area of leaking river (Fig.

6.11c).

To investigate this in more detail, Figs. 6.12a and b show the simulated river stage

and groundwater level respectively over a three-day period during the melt season in July

2013 at a single river node 1 km downstream for all scenarios. The diurnal melt signal

is clear in all time series, but the amplitude of the cycle is highly variable across the

scenarios and is highest for the G2-Q2-P3 model run. Furthermore, Fig. 6.12c shows that

downward head gradient is proportional to the amplitude of diurnal �ow. Accordingly,

the high amplitude of the diurnal melt signal for the G2-Q2-P3 model run induces the

highest leakage rates from the river to the water table (Fig. 6.12d). The intra-annual

distribution of diurnal �ow amplitude for each scenario correlates well with the speci�c

leakage rate (Fig. 6.11d). Note, it is the loss of this diurnal �ow amplitude for the G2-

Q2-P3 scenario during the melt season (Fig. 6.12l) that also explains the large reduction

in projected river leakage for the 2080s (Fig. 6.12i).
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Figure 6.11: Intra-annual distribution plots of river leakage input, length of leaking river

section, speci�c river leakage (river leakage per unit area of leaking river) and the diurnal

�ow amplitude for all days where ≥90% of runo� is from melt for the reference (1991-

2015) period (a-d); future (2080s) period (e-h) and the di�erence between the two periods

(i-l).
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Figure 6.12: Simulated river stage (a); groundwater head (b); stage minus head (c); and

river leakage (d) time series for a single river node 1 km downstream for three days during

the reference period (July 2013).
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Figure 6.13: Intra-annual distribution plots of surface drainage to springs and the river as

well as river discharge from the Virkisá River basin and the proportion of surface runo�

from groundwater for the reference (1991-2015) period (a-d); future (2080s) period (e-h)

and the di�erence between the two periods (i-l).

Surface drainage dynamics

Over the reference period, the seasonal patterns of groundwater drainage to springs (Fig.

6.13a) and the river (Fig. 6.13b) are closely aligned with the corresponding pattern of

di�use recharge (Fig. 6.9e) where greatest drainage �uxes occur outside of the melt season

between September and March. Note, the G2-Q2-P3 scenario shows elevated drainage to

the river over the reference period (Fig. 6.13b) which can be attributed to larger diurnal

�ow amplitude (Fig. 6.12).

Figure 6.13d shows that over the reference period, spring and river drainage makes

up to 14-17% of the total sandur runo� in February and March when drainage is at its

highest and river discharge from the Virkisá River basin (Fig. 6.13c) is relatively low.

During the melt season, groundwater drainage makes up approximately 1% of surface

runo� runo� only.

The projections of spring and river drainage for the 2080s (Figs. 6.13e and f) show

seasonal patterns across the scenarios that are closely aligned with the corresponding
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projections of di�use recharge (Fig. 6.9e). There shows to be a consistent reduction

in spring and river drainage in the winter months across the scenarios (Figs. 6.13i and

j), which, coupled with projected higher winter river discharge (Fig. 6.13k) results in

a decreased proportion of winter runo� from groundwater (Fig. 6.13l). For the three

warmest scenarios, this proportion falls by up to 9.2%.

Outside of the winter months, signi�cant increases in surface drainage, particularly

in April, July and August broadly correspond to those periods where di�use recharge is

projected to increase (Fig. 6.9o), particularly for the wettest G2-Q2-P3 (yellow) G3-Q3-

P2 (blue) scenarios. The G1-Q1-P1 scenario (orange) which has the driest projections of

summer recharge shows a consistent decrease in summer surface drainage of groundwater.

Despite the mixed surface drainage response to climate change outside of winter, all

scenarios project an increase in proportion of runo� from groundwater for May through

to July (Fig. 6.13l) due to the projected decrease in summer upstream runo� across the

scenarios (Fig. 6.13k). It should be noted, however, that the decrease in upstream runo�

can be as much as 5 m3 s-1 while the increase from GW spring drainage never exceeds 0.1

m3 s-1 across the scenarios.

6.6 Discussion

6.6.1 Projected changes in proglacial groundwater level dynam-

ics and GW-SW exchanges: are they recharge- or stream-

driven?

Changes in groundwater level dynamics over the twenty-�rst century will be most pro-

nounced in the upper-sandur (top 1 km) region of the Virkisá groundwater catchment

where the water table resides up to 14 m below ground level and is therefore free to �uc-

tuate. Four of the �ve scenarios projected upper-sandur winter (DJF) and spring (MAM)

groundwater levels to decrease on average by the 2080s while the three driest scenarios

(i.e. lowest sandur precipitation inputs) projected upper-sandur groundwater levels to
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fall year-round with a maximum reduction of 30-day MA groundwater levels of 1 m. The

two wettest scenarios projected increases in 30-day MA groundwater levels of up to 0.3

m over the summer (JJA) and autumn (SON) months.

The evolution of intra-annual groundwater level in the Virkisá groundwater catchment

was dominated by the driving di�use recharge signal over the sandur. Drier scenarios con-

sistently projected lower groundwater levels in the 2080s while shifts in the timing of max-

imum groundwater level were controlled by changes in the magnitude of di�use recharge

during the main recharge season. Increases in the early recharge season (SON) and/or

decreases in the late recharge season (DJF) shifted the timing of maximum groundwater

level forward. The trajectory of future groundwater storage in recharge-driven systems is

of course dependent on local trends in climate and the presiding hydrological regime. Srid-

har et al. (2018) projected average water table elevations to increase over the twenty-�rst

century in the Snake River basin, United States due to projected increases in precipitation.

Okkonen and Kløve (2011) projected winter groundwater levels to increase in an esker

aquifer in Finland as a result of increased di�use recharge from snow melt under a warm-

ing climate. For the Virkisá groundwater catchment, enhanced snow melt recharge due to

climate warming should be expected to have negligible in�uence on regional groundwater

levels given that snow melt only contributes 6% of total di�use recharge. A commonality

between these recharge-driven aquifers and the Virkisá sandur aquifer is that they are all

`wet' systems. In fact, the sandur receives between 83 and 89% of total recharge from

di�use rainfall and snow melt sources. It is also notable that those studies which have

emphasised the sensitivity of future groundwater level dynamics to changes in mountain-

fed river runo� (Allen et al., 2004; Huntington and Niswonger, 2012; Scibek et al., 2007)

have all focussed on semi-arid regions of North America.

Changes in recharge-driven groundwater level dynamics also showed to control future

variations in GW-SW exchanges. The relatively �at topography of the sandur means

that even small variations in recharge-driven groundwater level can signi�cantly alter the

location at which the water table intersects the land surface and therefore the volume of

water draining to the surface and the length of river that is actively leaking to the water
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table. Groundwater is projected to contribute proportionally less to winter sandur runo�

in the 2080s (3-8% reduction across the scenarios), partly due to projected decreases in

groundwater drainage to the surface as a consequence of declining groundwater levels.

These results suggest that the role of groundwater in bu�ering low �ow periods outside

of the melt season will lessen in the future. During the melt season, the proportional

contribution of groundwater drainage to sandur runo� is only projected to rise by 1 or

2% by the 2080s and this is primarily due to decreased melt season mountain runo� to

the river indicating that the potential to bu�er losses in melt season runo� is negligible.

The simulations from this study indicated that leakage from the Virkisá River cur-

rently contributes up to 50% of 30-day MA recharge in the summer and as a consequence

of falling groundwater levels in the future and the simultaneous extension of the leaking

river length, this contribution could increase. Meltwater-derived river recharge is there-

fore likely to become more crucial to the sustainability of groundwater storage in the

sandur. It should be noted, however, that river leakage only made up for between 7 and

15% of the loss in di�use recharge across the dry scenarios. Importantly though, the

simulations also indicate that the extent to which meltwater-derived runo� might be able

to bu�er reductions in groundwater levels in proglacial aquifers will depend somewhat

on the degree of glacier and snow retreat that has taken place. More speci�cally, the

simulations have shown that the daily rise of river �ow driven by the melt of snow and

ice induces a downward head gradient at the river-aquifer interface, driving river leakage

inputs to the aquifer. A comparison of the simulations over the reference period in this

study e�ectively served as a sensitivity analysis of this aspect of river recharge behaviour

(�xed climate and variable melt runo�). Here, the scenario with the largest daily river

discharge amplitude due to melting increased river recharge �uxes by up to 53%. To the

author's knowledge, the sensitivity of recharge �uxes from mountain-fed rivers to the daily

amplitude of �ows has not been shown before, but such feedbacks could be important,

particularly for aquifers which are more reliant on river recharge e.g. in Iceland (Levy

et al., 2015), Alaska (Liljedahl et al., 2017) and Motana, US (Covino and McGlynn, 2007).
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6.6.2 Limitations

It is important to highlight potential de�ciencies in transferring results from this study

to other glaciated catchments. The importance of local climatic factors and hydrological

regime have already been noted, but an additional factor to consider when assessing

the relevance of the reported magnitude and dynamical behaviour of simulated state

variables and �uxes is scale. The section of sandur evaluated in this study is 4 km long

(approximately one �fth of the total distance to the ocean). If the groundwater catchment

were extended further downstream, the proportion of sandur runo� from groundwater

would of course increase. Indeed, other studies have looked at larger scale glaciated

groundwater catchments such as Andermann et al. (2012), who studied the contribution of

groundwater to glacier-fed rivers over twelve river basins in the Nepal Himalayas covering

almost 185,000 km2. They found much more signi�cant bu�ering of river discharge from

groundwater where snow and ice melt only contributed 10% of river �ow. In the studied

Virkisá groundwater catchment, groundwater only makes up 7% of total runo� on average

while snow and ice melt currently contribute almost 70% of runo� inputs from the Virkisá

River basin (refer back to section 5.5.5).

It is also important to consider potential de�ciencies in the groundwater model. The

model is e�cient at capturing the spatial variability of groundwater levels across the seven

observation boreholes. However, when analysed against individual borehole time series,

a number of model de�ciencies were noted including systematic biases in the mean and

amplitude of variability of the groundwater level data. Even so, that the RMSE calculated

over all observation boreholes was only 0.39 and 0.40 over the calibration and evaluation

periods respectively indicating a high degree of accuracy. However, this accuracy should

be interpreted with caution given the shallow water table and shallow topographic gradient

of the land surface which mean that even small simulation errors could induce relatively

large errors in GW-SW �ux simulations.

De�ciencies in the simulations partly stem from the assumptions and simpli�cations

employed in the construction of the groundwater model. One key aspect of the model
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that was simpli�ed was the surface drainage network. In reality, it is known to consist

of a complex interlinking network of groundwater springs and braided meltwater river

channels. Furthermore, the morphology of these channels are poorly constrained by the

unconsolidated sandur material over which they �ow. In fact, a study of proglacial geo-

morphology on the sandur at the neighbouring Skaftafellsjökull showed major changes to

the proglacial drainage network both in terms channel morphology and degree of braiding

in response to sustained glacier retreat between 1996 and 2011 (Marren and Toomath,

2013) due to changes in meltwater runo� and proglacial lake development which serve to

alter channel incision and aggradation rates. Major channel migrations are also known

to occur during and after jökulhlaup events (Marren, 2005) which occur every 20 years

on average (Robinson et al., 2008). The inclusion of a landscape evolution component in

the modelling of the system was deemed beyond the scope of this study and infeasible

given the additional data required to constrain such a model. Accordingly, no attempt

was made to explicitly include the connectivity of springs and meltwater channels or the

dynamic evolution of these over time, but both of these would undoubtedly in�uence

the �ow dynamics in the Virkisá River, and accordingly, the direction and magnitude of

GW-SW �uxes signi�cantly.

The parameterisation of the model was also simpli�ed by assuming a homogeneous

distribution of aquifer permeability and porosity, the justi�cation for which was given in

section 6.4.4. However, when calibrated to individual boreholes, the range of Sy was 0.11 -

0.25 and the range of Kh was 1.1 - 19.2 m d-1 which indicated heterogeneity is likely to be

high. In fact, the Kh value calibrated for the groundwater model (3.3 m d-1) was an order

of magnitude smaller than the surface permeability measurements collected by Ó Dochar-

taigh et al. (2019). Past seismic analysis of Skeiðarársandur indicates that overburden

pressure from past glaciations could result in compaction with depth (Guðmundsson et al.,

2002) which would result in a reduction of Kh. However, in their analysis Ó Dochartaigh

et al. (2019) suggest that these surface permeability measurements are indicative of the

permeability at all depths, although there are no observation data to validate this. If this

is the case, it could be an indication that recharge inputs to the aquifer are currently being
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underestimated. One potential source of recharge that was not included in this study was

recharge via lateral �ows draining through the mountain bedrock which has shown to be

an important or even dominant source of recharge in other studies (Frisbee et al., 2017;

Manning and Solomon, 2003; Voeckler et al., 2014; Wilson and Guan, 2004; Yao et al.,

2017). Even so, as noted, pumping tests conducted in the bedrock material suggest the

permeability of the bedrock is negligible.

As well as the limitations and potential sources of error from the groundwater model,

one must also consider limitations in the driving data. In particular, it should be noted

that only �ve future di�use recharge and river discharge scenarios were used out of a

total ensemble size of 94800. The spread of projections therefore do not represent the full

range of uncertainties stemming from the future climate scenarios and GHM compositions

implemented in chapter 5. The sensitivity of the simulations to di�use recharge over the

sandur indicates that accounting for the climate uncertainty fully should be a priority

for `wet' catchments like this, however the sensitivity of river leakage to the diurnal river

discharge amplitude suggests that the inclusion GHM uncertainty could also be important.

It was noted that the �ve selected scenarios did not cover the extremes of the distributions

of the hydro-climatic signatures used to select the scenarios, with a tendency to miss the

highest winter and autumn river discharge scenarios. Additionally, none of the scenarios

covered the highest precipitation inputs which could explain the tendency for projections

of lower winter groundwater levels, leading to increased river leakage and reduced base�ow

to the river. It should therefore be stressed that the individual scenarios should not be

interpreted as the most likely outcomes for this catchment.

6.7 Conclusions

Across the �ve analysed scenarios, groundwater levels are consistently projected to de-

crease in the winter and spring months of the 2080s, while the summer and autumn

months show a spread of increase and decreases in groundwater level in proglacial san-

dur aquifer. The long-term evolution of groundwater level and intra-annual timing of
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maximum and minimum groundwater levels is controlled primarily by changes in di�use

recharge over the sandur rather than future river stage dynamics in the Virkisá River.

Under the classi�cation of Allen et al. (2010), this aquifer is recharge-driven.

The shallow topography of the Virkisá groundwater catchment makes future changes in

GW-SW exchanges extremely sensitive to changes in recharge-driven groundwater levels.

Even small variations in groundwater level can drastically alter the volume of spring

drainage and the length of river that is actively leaking to the water table. Future changes

in GW-SW exchanges are, therefore, also controlled by the evolution of recharge-driven

groundwater level variations.

If, as projected by the �ve scenarios, spring and winter groundwater levels fall in the

future, the role of groundwater in bu�ering low �ow periods outside of the melt season will

also lessen. Furthermore, the relatively modest contribution of groundwater to summer

river discharge means that the potential of groundwater to bu�er losses in melt season

runo� due to glacier and snow retreat will be negligible. The results also indicate that in

response to any future reduction in groundwater level, additional river recharge could serve

to bu�er up to 15% of reduced di�use recharge in the driest future scenarios. Importantly,

though, the volume of river recharge to groundwater is largest when melt-induced diurnal

cycles in runo� are largest. As such, the results from this study indicate that the ability of

river recharge to bu�er reductions in groundwater levels in proglacial aquifers will depend

on the degree of glacier and snow retreat that has taken place. Future retreat of snow and

ice and the subsequent changes in diurnal river �ow variability could, therefore, have some

control over the future evolution of proglacial aquifers in Iceland and in other glaciated

catchments around the world.

6.8 Summary

This chapter aimed to meet the fourth and �nal research objective of this thesis which was

to, "incorporate a distributed groundwater model into the climate-GHM model chain to

project twenty-�rst century changes in proglacial groundwater level dynamics and GW-
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SW exchanges". This was done by utilising a subsample of the climate and river �ow

projections generated in chapter 5 to drive a distributed MODFLOW-NWT groundwater

model of the proglacial sandur. The groundwater model projections were used to evaluate

the impacts of climate change, glacier and snow retreat and river �ow regime change on

proglacial groundwater level dynamics and GW-SW exchanges in the 2080s and to deter-

mine the relative importance of climate-driven di�use recharge and mountain-driven river

runo� in controlling this future evolution. The next chapter will conclude the research

undertaken in this thesis by synthesising the �ndings from this study with those from the

previous research chapters and identify areas for future research.
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CHAPTER 7:

CONCLUSIONS

7.1 Introduction

Chapter 1 outlined the overarching aims of this thesis which were to utilise a suite of

climate, glacio-hydrological and groundwater models and apply them to the glaciated

VGO to gain understanding of climate change impacts on glacier-fed river �ow regime

and downstream groundwater dynamics as well as the uncertainties associated with these

projections. Four speci�c research objectives were identi�ed and addressed in chapters 4,

5 and 6:

1. Implement a novel GHM comparison and selection framework to undertake a rigor-

ous evaluation of multiple GHM structures.

2. Implement a climate-GHM model chain to project twenty-�rst century changes in

di�erent characteristics of river �ow regime.

3. Determine the relative contribution of individual model chain components to uncer-

tainty in river �ow regime projections.

4. Incorporate a distributed groundwater model into the climate-GHM model chain to

project twenty-�rst century changes in proglacial groundwater level dynamics and

GW-SW exchanges.

This �nal chapter concludes the thesis by synthesising the research and main �ndings

before identifying areas for future work.
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7.2 Twenty-�rst century glacial and hydrological change

7.2.1 Principal research �ndings

There were three principal research �ndings related to twenty-�rst century glacial and

hydrological change:

1. The magnitude, timing and variability of river �ows in the glacier-fed Virkisá River

will change over sub-daily to decadal timescales in response to twenty-�rst century

climate change.

2. Climate change will also result in changes to average groundwater level and intra-

annual groundwater level timing and variability in the proglacial sandur aquifer

leading to changes in river leakage �uxes to the aquifer and groundwater to surface

runo�.

3. The trajectory of twenty-�rst century groundwater level dynamics and GW-SW

exchanges in the proglacial sandur aquifer are primarily controlled by patterns of

di�use recharge to the sandur rather than river stage dynamics in the glacier-fed

Virkisá River.

7.2.2 Synthesis of research

Twenty-�rst century changes in glacier and snow coverage as well as two aspects of hy-

drological change in the VGO were evaluated. These aspects included the Virkisá River

�ow regime and proglacial groundwater level dynamics.

The river �ow regime projections were simulated and analysed in chapter 5 using an

ensemble of GHMs de�ned using the signature-based LOA framework applied in chapter

4. The suitability of the GHM ensemble for the projection experiments was determined

by evaluating the models against historic observations of the river discharge signatures

to be simulated. The GHM ensemble was able to capture the majority of the historic

198



Chapter 7: Conclusions

observed river discharge signatures within their LOA indicating that the model ensemble

was suitable for the projection experiments.

An ensemble of downscaled EURO-CORDEX climate projections was used to drive the

GHM ensemble over the twenty-�rst century. Projections of glacier and snow coverage as

well as 25 di�erent characteristics of river �ow regime over decadal to sub-daily timescales

were analysed. The study showed for the �rst time that all characteristics and timescales

of glacier-fed river �ow regime are sensitive to twenty-�rst century climate change. A

descriptive overview of the projected glacial and hydrological changes at the VGO from

chapter 5 will now be given. For a more quantitative summary of the projected changes

and their linkages for the end of the twenty-�rst century (2080s), the reader is referred to

the �ow diagram above the solid grey line in Fig. 7.1.

The projections showed high con�dence that near-surface air temperature will increase

over the twenty-�rst century causing snow and glacier coverage to recede. As the volume

of cold-season meltwater runo� increases and more precipitation falls as rainfall, river

discharge outside of the melt season is projected to increase. The magnitude of the

lowest �ow events (Q99 and Q95), which typically occur during the colder months, will

subsequently increase. However, the loss of snow and ice coverage will reduce melt season

runo� volume. Consequently, the seasonality of �ows in the Virkisá River will change,

resulting in a reduction of intra-annual (month-to-month) �ow variability. Inter-annual

(year-to-year) �ow variability will increase as the runo�-regime of the catchment becomes

increasingly dominated by more variable rainfall inputs. The loss of the runo�-regulating

e�ects of snow and ice will result in a more responsive and �ashy watershed which, coupled

with the increase in rainfall inputs, will lead to an increase in the magnitude of higher than

normal �ow events (Q05 and Q01). Given the clear in�uence of glacier and snow retreat

on the projected shifts in river �ow regime at the VGO, it is likely that other glaciated

basins around the world will also demonstrate sensitivity across a complex range of river

�ow regime characteristics. However, it is postulated that the direction and magnitude

of these changes will be highly catchment-speci�c.

Chapter 6 projected changes in proglacial groundwater level dynamics and GW-SW
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interactions. Here, a distributed MODFLOW-NWT groundwater model of the proglacial

sandur was calibrated against observation borehole groundwater level time series data

from the sandur. The model captured the average spatial distribution of observed ground-

water levels as well as the seasonal timing of groundwater level peaks and troughs, but also

showed some systematic biases in the mean and amplitude of variability of the ground-

water level data.

Once calibrated, a subsample of �ve coupled climate-river discharge scenarios from

chapter 5 were used as boundary conditions to drive the groundwater model over the

twenty-�rst century. Cluster analysis was used to select these �ve scenarios so that a

broad range of glacio-hydrological and climatic behaviours were covered.

The groundwater model projections were analysed for change in proglacial ground-

water level dynamics and GW-SW exchanges. A descriptive overview of the projected

changes in proglacial groundwater dynamics from chapter 6 are given here and a more

quantitative summary for the 2080s can be found in the �ow diagram beneath the solid

grey line in Fig. 7.1.

Average sandur groundwater levels were consistently projected to fall in the spring and

winter months due to projected reductions in total precipitation over the main recharge

season. River leakage could serve to bu�er up to 15% of the loss in di�use recharge

given the inevitable increase in leaking river length in response to a fall in groundwater

level. Given the shallow topography of the sandur, the fall in groundwater level reduced

the volume of groundwater draining to springs and the Virkisá River indicating that the

potential of groundwater to bu�er low river �ows outside of the melt season will lessen in

the future.

The trajectory of future groundwater level dynamics and GW-SW exchanges are pri-

marily controlled by changes in di�use recharge over the sandur rather than by changes in

meltwater runo� to the Virkisá River. Even so, the projections indicated that a reduction

in sub-daily river �ow variability (the diurnal melt cycle) due to glacier and snow retreat

could inhibit future river recharge to the aquifer. This characteristic of glacier-fed river

�ow regime could, therefore, be key in the future evolution of other proglacial aquifers in
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Iceland and elsewhere.

7.3 Uncertainty of twenty-�rst century glacial and hy-

drological projections

7.3.1 Principal research �ndings

There were three principal research �ndings related to uncertainty of twenty-�rst century

glacial and hydrological projections:

1. The signature-based LOA framework provides a powerful method for identifying

de�ciencies in di�erent GHM structures and parameterisations. However, its use

for objectively selecting a range of acceptable models remains to be seen as no

models captured all signatures within their LOA simultaneously.

2. Projections of glacier-fed river �ow regime are uncertain due to de�ciencies in future

climate projections and GHM structural and parameter uncertainty. The relative

contribution of uncertainty from climate projections and GHMs depends on the

characteristic (signature) of river �ow regime and the time frame of the projections.

3. Uncertainty in sandur groundwater level dynamics and GW-SW exchanges primar-

ily stem from uncertainty in future climate. However, structural uncertainty asso-

ciated with the snow and ice melt routine in the GHM contributes to river leakage

projection uncertainty.

7.3.2 Synthesis of research

GHM structure and parameter selection uncertainty contributes to hydrological projection

uncertainty in glaciated catchments. Chapter 4 applied a signature-based LOA frame-

work to compare the e�ciency of di�erent snow and ice melt model structures and runo�-

routing model structures with the aim of determining the framework's utility for diagnos-

ing model de�ciencies and constraining a prior population of model hypotheses down to
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Figure 7.1: Summary of projections for 2080s. Grey boxes show changes in pro-

cesses/�uxes/stores including mean and interquartile range (square brackets) of projec-

tions under each RCP. Values in square brackets from chapter 6 (below grey solid line)

show range of the �ve scenarios. Orange boxes show process groups and green boxes show

model groups. Dashed arrows show driver-response linkages (response at arrow head end).

Colour of arrows indicates dominant projection uncertainty sources in the model chain.
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a smaller population of acceptable ones. 45,000 GHM structure-parameter compositions

were applied to the Virkisá River basin and evaluated against 33 signatures of catchment

glacio-hydrological behaviour. The study demonstrated that the signatures and their

LOA provide an intuitive means to identify aspects of the glacio-hydrological system that

a particular GHM con�guration can and cannot capture within the uncertainty of the

observation data used to calculate those signatures. When evaluated against signatures

individually, subsets of the models were able to capture all but two of them. The sensitiv-

ity of the acceptability scores to changing the melt and runo�-routing model structures

showed to be signature-speci�c. This provided the �rst indication that the dominant

sources of uncertainty in projections of river discharge could also be signature-speci�c,

emphasising the need to investigate this further in chapter 5.

The acceptability of the models broke down when assessed against two or more sig-

natures simultaneously � an indicator of the model's consistency. None of the GHM

compositions were able to capture all of the signatures simultaneously and, therefore, it

remains to be seen if the LOA framework can be used to objectively select a population of

behavioural GHMs. It was concluded that in order to do this, one would need to expand

the model selection framework to include multiple realisations of boundary conditions

(particularly the driving precipitation data) and additional model structures.

The inclusion of extra process complexity in the GHM showed to improve model ac-

ceptability across speci�c signatures, but such modi�cations could also introduce new

model inconsistencies. Indeed, the lack of improvement across individual signatures in

combination with an increase in model inconsistency provided justi�cation for exclud-

ing the most complex ROR3 runo�-routing model structure from subsequent studies in

chapters 5 and 6.

In light of the �ndings from the LOA framework study, chapter 5 adopted a signature-

based LOA model calibration approach to identify a model ensemble that re�ected the

uncertainty in model selection given the known model inconsistencies. When driven with

the downscaled EURO-CORDEX ensemble of climate projections, there was high con-

�dence in the direction of change for each signature, but the magnitude of change was
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uncertain. A decomposition of projection uncertainty for snow coverage, ice coverage and

river �ow regime change was undertaken using ANOVA. All �ve sources of uncertainty

in the model chain contributed to projection uncertainty. For the signatures of river �ow

regime change, the relative contribution of uncertainty from each source depended on

the characteristic of �ow and the time frame over which those projections were made.

A descriptive overview of the primary sources of projection uncertainty is given here. A

summary of the propagation of these sources through the model chain is given in Fig. 7.1

as represented by the coloured arrows.

Uncertainty in projections of snow and ice coverage primarily stemmed from the RCP

due to its control on near-surface air temperature. Consequently, the RCP was also the

dominant source of uncertainty for mean monthly river �ows during the melt season.

The DS procedure was the largest contributor to projection uncertainty for inter-annual

(year-to-year) variability in river discharge. The TIM structure-parameterisation was the

dominant contributor to projections of monthly mean river �ows during the transition

from the cold to melt season. The GCM-RCM contributed most to uncertainty in future

high �ow signatures, while the ROR structure-parameterisation signi�cantly contributed

to the total projection uncertainty of slow-release low �ow signatures and signatures of

response time (�ashiness) of the catchment.

The translation of large climate and GHM uncertainties quanti�ed in chapter 5 to the

proglacial groundwater modelling experiments undertaken in chapter 6 was limited by the

computational requirements of running large ensembles through a distributed groundwa-

ter model and the desire to undertake a process-oriented analysis of future proglacial

groundwater dynamics. Instead cluster analysis was used to select a handful of scenar-

ios that re�ected contrasting future glacio-hydrological and climatic conditions for the

2080s. This approach still provided some basis for analysing the sources of uncertainty

for the groundwater projections. The results indicate that the GCM-RCM is likely to be

the dominant contributor to projection uncertainty for proglacial groundwater dynamics

given that the aquifer showed to be recharge-driven and GCM-RCM uncertainty is the

main source of future precipitation uncertainty. The results also indicate that the TIM
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structure-parameterisation contributes to uncertainty in projections of river leakage given

its in�uence on the amplitude of the melt-induced diurnal river discharge cycle. As such,

uncertainty both in future climate and the representation of key glacio-hydrological pro-

cesses in the GHM have the potential to propagate through to projections of groundwater

dynamics in glaciated catchments.

7.4 Recommendations for future research

Based on the �ndings in this thesis, a number of recommendations for future work have

been highlighted and these broadly fall under three themes each of which is detailed in

this section.

7.4.1 Application of signature-based methods in glacio-hydrological

modelling

This research has demonstrated the advantages of two principal applications of signature-

based methodologies within the �eld of glacio-hydrological modelling and it is recom-

mended that these approaches are adopted in future glacio-hydrological modelling studies

where possible.

Firstly, glacio-hydrological modelling studies should seek to diagnose structural model

de�ciencies through the evaluation diagnostic signatures of system behaviour. Chapter

4 demonstrated that signatures provide a means to interrogate glacio-hydrological model

behaviour at the process level by quantifying speci�c aspects of observed catchment be-

haviour that can be related to di�erent process representations within the GHM. Addi-

tionally, because they are derived directly from observation data, it is relatively easy to

quantify their uncertainty, providing a means to evaluate model structure appropriate-

ness within the uncertainties of the observation data and, therefore, diagnose structural

de�ciencies more objectively.

Of course, a key limitation of the signature-based LOA framework used in chapter 4

was that no acceptable models were found. However, it is hoped that rather than dissuade
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others from adopting a similar framework, this �nding will encourage them to seek out

model con�gurations (existing or newly-developed) that are able to capture a range of

signatures within their observation uncertainty. Model hypothesis testing like this would

not only help to deliver more justi�able GHM structures, but could also help to develop

process understanding of glacio-hydrological systems (e.g. as has been shown in non-

glaciated hydrology Clark et al., 2015). Model processes not investigated in this thesis as

well as boundary conditions and driving climate data should be the focus of future work in

this area. It should also be emphasised that future applications of a signature-based LOA

framework need not adopt the same 33 signatures used in chapter 4. On the contrary, the

choice of signatures will depend on the availability of observation data, and information

on data uncertainty as well as the complexity (e.g. spatio-temporal resolution) of the

model(s) being interrogated. Study sites with good observation data and understanding

of data uncertainty would be ideal candidates for future applications.

It is also recommended that signatures are used as a means to identify how di�erent

characteristics of glacier-fed river �ow regime � which are deemed important for future

socio-economic and environmental prosperity � will respond to future climate. Chapter

5 highlighted the complexity of river �ow regime shifts and, therefore, the wider adoption

of signatures in impact studies would provide a more comprehensive understanding of

potential impacts of change which could feed into adaptation strategy planning. Indeed,

river �ow signatures already underpin decision-support systems for managing hydroeco-

logical systems in warmer environments (Beamer et al., 2017; Cartwright et al., 2017;

Pool et al., 2017).

Given that the characteristics of river �ow regime that have been widely studied before

are known to be highly site-speci�c (e.g. �ow seasonality Huss and Hock, 2018; Ragettli

et al., 2016), it is hypothesised that changes in speci�c signatures in other glaciated wa-

tersheds will also depend strongly on local climatic, glaciological and hydrological factors.

For example, the relatively small reduction in the projected catchment water transit time

(τ) in response to glacier and snow retreat is likely due to the fact that, relatively speaking,

Virkisjökull is a small glacier and therefore it's ability to slow the �ow of water is limited
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by the size of its internal drainage network. In addition, the glacier is known to have

a well developed conduit drainage system that routes runo� e�ciently year-round (Flett

et al., 2017; Phillips et al., 2014). Watersheds with larger cryospheric water stores and

less e�cient internal drainage systems should be expected to show much larger changes in

water transit time. Therefore, signature-based analyses of river �ow regime change should

be encouraged in other glaciated catchments with di�erent geometries, hypsometry and

climate to explore physical controls on these characteristic changes.

7.4.2 Investigations of climate change impacts on proglacial aquifers

The study presented in chapter 6 was the �rst application of a distributed groundwater

model driven by a GHM to evaluate the impact of climate change as well as glacier and

snow retreat on a proglacial groundwater system. While the sandur in the VGO showed to

be relatively insensitive to changes in mountain runo� due to glacier and snow retreat, it

is postulated that this is due to the high di�use recharge inputs that the sandur receives.

It is vital, therefore, that future research is undertaken in regions with di�erent climates.

For example, it has already been shown that in more arid, snow-dominated mountain

catchments, particularly in the semi-arid mountain catchments in the north-west of the

United States (Allen et al., 2004; Huntington and Niswonger, 2012; Scibek et al., 2007),

changes in mountain-fed river �ow regime exhibit a much stronger control on lowland

aquifer groundwater dynamics. It is suggested here, therefore, that in more arid glaciated

catchments, proglacial groundwater dynamics and GW-SW interactions are likely to be

much more sensitive to glacier and snow retreat. Given the potentially important role

that groundwater could play in sustaining surface water availability in proglacial regions

where snow and ice have retreated, a fuller understanding of climate change impacts

on groundwater resources in these regions is paramount. This understanding should

be developed through using glacio-hydrological and groundwater models. Based on the

�ndings from chapter 6, a number of recommendations can be made for future modelling

applications of this nature. Firstly, they should consider changes in melt-induced sub-

daily characteristics of river �ow regime given that these could be a signi�cant driver of
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Chapter 7: Conclusions

river recharge from glacier-fed rivers. As such, it is imperative that such models are run

on a sub-daily (ideally hourly) time step so that these characteristics can be captured.

These studies should also be underpinned by a well-constrained melt model given the

sensitivity of river leakage to the diurnal melt cycle. Some representation of melt model

uncertainty would be especially bene�cial if the simulations are to be used to inform policy

decision making. Finally, the inclusion of a mass-conserving dynamic glacier model and

snow routine is vital so that the river �ow regime response to climate and cryosphere

change and subsequent changes in groundwater dynamics can be captured adequately.

7.4.3 Robust quanti�cation and exploration of projection uncer-

tainties

When considering the di�erent sources of uncertainty in projections of hydrological change

in glaciated basins, past studies have typically focussed on including future climate uncer-

tainty only. However, the research undertaken in chapter 5 showed for the �rst time that

the uncertainties stemming from the glacio-hydrological model are high, and dominate

projection uncertainty for some characteristic changes in glacier-fed river �ow regime.

Furthermore, chapter 6 has provided the �rst model-based evidence that this uncertainty

could propagate through to simulations of proglacial groundwater dynamics (although this

is subject to further modelling studies recommended above). It is therefore recommended

that future glacio-hydrological modelling studies must make e�orts to quantify uncertain-

ties stemming both from climate and from incomplete knowledge of glacio-hydrological

process complexity. Furthermore, future researchers should be encouraged to include other

sources of GHM uncertainty that have not been investigated here. Obvious contenders

for these include the snow redistribution routine, the ice evolution model and climate and

ice boundary conditions. It follows that if modellers include these di�erent sources of

uncertainty in their models (or chain or models), they should be encouraged, not only

to quantify projection uncertainty, but to actively explore those uncertainties to direct

future best practices (e.g. targeted approaches for most important uncertainty sources)

and research directions.
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The ANOVA approach applied to projections of river discharge signatures showed

that di�erent components of the model chain are more signi�cant sources of projection

uncertainty for di�erent signatures. From this, one can conclude that projection studies

could be better-designed to prioritise the representation of uncertainty sources that are

most important for the characteristics of change they are interested in. Currently, little

to no information on this exists for glaciated river basins, yet it must be prioritised given

the computational limitations that still limit the number of uncertainty sources that can

be realistically investigated at one time. Further applications of approaches like ANOVA

would help to address this knowledge gap. For such applications, it is also recommended

that a single, but �exible GHM code is used so that sources of projection uncertainty can

be easily localised and quanti�ed at the process level.

Finally, it is recognised that the scenario-based analysis undertaken in chapter 6 did

not facilitate a thorough analysis of uncertainty in the projections of proglacial ground-

water dynamics and GW-SW exchanges. These uncertainties could stem from climate

boundary conditions, the GHM and the groundwater model itself. While the computa-

tional demands of a large-ensemble experiment that incorporated all of these uncertainty

sources is, perhaps, not technically feasible now, such an experiment in the future could

deliver potentially important �ndings to feed into future adaptation strategy planning.

This should be treated as a key milestone for future investigations of twenty-�rst century

glacial and hydrological change.

7.5 Final remarks

This thesis has shown how twenty-�rst century climate and cryosphere change will prop-

agate through the hydrological system at the VGO and manifest as a complex range of

shifts in river �ow regime and proglacial groundwater dynamics and GW-SW exchanges.

It has also shown how di�erent sources of model uncertainty, be it uncertainty in future

climate projections or uncertainty due to incomplete understanding of glacio-hydrological

processes, map onto these di�erent characteristics of hydrological change. Projections of
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change and robust evaluations of their uncertainty like this are fundamental if we wish

to increase resilience of populations and ecosystems that will be a�ected by changes in

water cycling due to climate change and glacier and snow line retreat over the coming

decades. However, the transferability of the �ndings from this thesis to other catchments

is currently unknown. Accordingly applications of the methods adopted in this thesis to

other catchments with di�erent glaciological and climate settings must be undertaken. It

is suggested here, that the use of signatures and integrated modelling approaches that

include river �ow and groundwater would be especially valuable to scienti�c community

and vulnerable communities. Furthermore, through the continued exploration of mod-

elling uncertainties, more robust projections of hydrological changes in glaciated basins

can be delivered to the end users that most need them.
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APPENDIX A:

RAW WEATHER STATION DATA

A.1 Automatic weather stations
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A.2 Fagurhólsmýri weather station

Figure A.2: Raw near-surface air temperature time series data from Fagurhólsmýri

weather station.
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APPENDIX B:

CORRECTION AND HARMONISATION OF RIVER

STAGE TIME SERIES DATA

Prior to combining the logged river stage data into a single harmonised time series, a

comparison of water levels logged at the two stilling wells revealed discrepancies between

them of up to 40 cm (Fig. B.1a&b). There are a number of distinct �at regions in the

di�erence plot (indicated by green dashed lines in Fig. B.1b) where the dynamics of the

two water level records are similar and any di�erence between the two are systematic.

The largest systematic di�erences occur in 2015 where they jump to -27.5 cm. This

corroborates observations made in the �eld in March 2015 where it was noted that the

central stilling well had moved in an upward direction signi�cantly. The reason for this

movement is not known, but is thought to have occurred during or shortly after a large

storm event in the 2014/2015 winter. As an additional source of evidence, Fig. B.2 shows

the di�erence between logged water levels at both wells and independent readings of stage

taken from a stage board permanently �xed to the bridge. Here it can be seen that for

2013 and 2014, logged water levels at both stilling wells lie within the estimated reading

error from the stage board (±5 cm), but in 2015 logged levels from the central stilling

are negatively biased with a magnitude equivalent to that shown in Fig. B.1b, while

the data from the eastern well is still consistent with the independent measurements of

stage. This indicates that the eastern stilling well can be used to correct the systematic

bias in the central stilling well data post-2014 which was done according to the derived

systematic biases shown in Fig. B.1b. Prior to 2013, there are no obvious �at regions in

the di�erence plot. Instead, there shows to be some longer-term drift between September

2011 and the end of 2012. This could be partly explained by signi�cant bridge maintenance

works which were undertaken by the highway authority in October 2012 resulting in a

major diversion of the main river channel. Furthermore, comparisons of logged levels to

independent readings taken at the stage board show a large scattering of di�erences in
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Figure B.1: Raw hourly logged river stage from stilling wells (a); the di�erence between

the two (b) and the harmonised stage time series after correction (c). Note, periods where

the river was frozen over have been removed from the time series and shaded areas denote

periods where the eastern stilling well data were substituted for corrected central stilling

well data.
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Figure B.2: Di�erence between logged stage and independent readings from stage board

at bridge.

2011 indicating the water level data from both stilling wells are likely to be unreliable.

In 2012, both stilling wells show a positive bias relative to the stage board. Given the

apparent drift shown in Fig. B.1b, the di�culty in relating the data to independent stage

board readings and the known modi�cations made to the channel in October 2012, it was

decided not to use measurements of river stage prior to 2013.

In addition to the systematic di�erences between the two river stage datasets indicated

by the �at regions of the di�erence plot, there are localised periods where the di�erences

diverge, often increasing in magnitude. These occur in the spring months of 2013, 2015

and 2016 as shown by the shaded regions in Fig. B.1. After discussions with the team at

the University of Dundee who set up the gauging station, it was determined that for these

periods, given �ow is typically lower than average which can lead to drying and/or pooling

e�ects, the central stilling well data is most reliable and should be used. Accordingly, the

corrected central stilling well data was utilised here. Outside of these periods, where �ow

is typically higher and hydraulic e�ects bias the central stilling well data, only the logged

stage from the eastern stilling well have been used.
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APPENDIX C:

GLACIO-HYDROLOGICAL MODEL

C.1 Soil in�ltration and evapotranspiration

The semi-vegetated nature of the VGO coupled with the relatively cool temperatures

year-round mean that evapotranspiration is generally low (Einarsson, 1972). Even so, to

satisfy the water balance, an explicit representation of the soil zone for model nodes that

are not ice or snow-covered was included using the method developed by Gri�ths et al.

(2008) based on the well-established FAO56 soil moisture accounting procedure (Allen et

al., 1998). This model has been applied extensively (Jackson et al., 2016; Mackay et al.,

2014; Mackay et al., 2015; Mansour et al., 2018) and has shown to compare favourably

to physically based models at the �eld scale where interception losses are small (Sorensen

et al., 2014). For each bare ground node, the soil is represented as a �nite storage reservoir

with a soil water capacity, termed the total available water, TAW [L], which de�nes the

maximum volume of water available to plants for evapotranspiration after the soil has

drained to its �eld capacity. This is calculated as:

TAW = Zr(FC −WP ) (C.1)

where Zr [L] is the maximum root depth of the vegetation and FC [L] and WP [L] are

the �eld capacity and wilting point of the soil respectively, all of which can be de�ned

from lookup tables with basic information on vegetation and soil information (Allen et al.,

1998). Parameters de�ned for the `Talus' soil class and `semi-vegetated' land surface class

derived by Flett (2016) were used across the model domain, giving an average TAW value

of 7 mm. Soil storage is replenished by in�ltration from rainfall and melting of residual

snow overlying the bare ground and is depleted by evapotranspiration giving a soil water

balance:
∆Ssoil

∆t
= I − ET (C.2)
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where Ssoil [L] is the soil water storage, t is time, I [LT-1] is the in�ltration rate and ET

[LT-1] is the evapotranspiration rate. Because measured ET is rarely available, Gri�ths

et al. (2006) propose using the potential evapotranspiration rate, ET0, instead which

de�nes the evapotranspiration rate from a reference grass-covered wet soil (see Appendix

C.2 for calculation of ET0). Using ET0 as the maximum possible evapotranspiration rate,

they de�ne a separate function which accounts for the fact that as the soil becomes drier,

plants �nd it more di�cult to extract moisture from the soil matrix, and therefore ET is

typically less than ET0. While this is conceptually sound, it was decided not to include

this function and instead assume that ET = ET0. There are three reasons for doing this.

Firstly, because the inclusion of this function requires an additional parameter which is

uncertain and must be calibrated. Secondly because ET is a relatively small component

of the overall water balance in this catchment and it was not the aim of this study

to investigate this aspect of the catchment hydrology. Thirdly, because previous studies

have shown that this parameter (and therefore the behaviour of this function) is relatively

insensitive and unidenti�able (Mackay et al., 2014).

In the original formulation by Gri�ths et al. (2006), any excess soil water (i.e. when

Ssoil > TAW ) is distributed between overland �ow and groundwater recharge pathways.

They use a �xed base�ow index (BFI) parameter which de�nes the proportion of soil

water excess that recharges the groundwater. Given the nature of the Virkisá River basin

(thin soils overlying impermeable bedrock), it was assumed that soil water migrates to

the river outlet via relatively fast, overland �ow pathways only and so the BFI parameter

was set to zero.

C.2 Potential evapotranspiration

Potential evapotranspiration can be calculated from measured meteorological data, most

simply as a linear function of measured temperature (e.g. Blaney and Morin, 1942), or

where measurements of windspeed, air pressure and solar radiation exist, the full Penmen-

Monteith combination equation can be solved. Given that these additional variables are
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Figure C.1: Multiple linear regression model used to convert ambient air temperature and

incoming solar radiation into potential evapotranspiration.

measured at AWS1 from 2009, the combination equation as de�ned by Allen et al. (1998)

was used to calculate hourly potential evapotranspiration over this period:

ET0 =
0.408∆(Rn −G) + γ 900

T+273
u(es − ea)

∆ + γ(1 + 0.34u)
h (C.3)

where ET0 is the daily average potential evapotranspiration rate (mm d-1), Rn is the net

radiation (MJ m-2 d-1), G is the soil heat �ux (MJ m-2 d-1), es and ea are the saturation

and actual vapour pressure respectively (kPa), ∆ is the rate of change of the saturation

vapour pressure with temperature (kPa ◦C-1), γ is the psychrometric constant (kPa ◦C-1),

u is the wind speed (m s-1) and T is the mean daily ambient air temperature (◦C).

Prior to 2009, the viability of using T as a proxy for ET0 in a linear regression model

framework like Blaney and Morin (1942) was investigated. Similarly, incident solar ra-

diation was also used as the independent variable for this model. In fact, the best �t

was achieved using both variables in a multiple linear regression model which was able to

explain 66% of the ET0 variance (Fig. C.1). This model was used to distribute ET0 in

space and time using the driving temperature and incident solar radiation data.
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C.3 Glacier geometry evolution

The empirical ∆h parametrisation (Huss et al., 2010) requires the availability of at least

two digital elevation models of the glacier separated in time. The di�erence between the

two is used to de�ne the ∆h polynomial which has the form:

∆h = (hr + a)γ + b(hr + a) + c (C.4)

where ∆h is the normalised surface elevation, hr is the normalised elevation range and a,

b, γ and c are �tted parameters. The two digital elevation models from 1988 and 2011

were used to de�ne this relationship. Figure C.2a shows the raw change data against the

1988 ice elevation. It was decided that the data at the very front of the glacier should

not be used as here the ice has completely melted and as such the bedrock beneath skews

the raw change data. Figure C.2b shows the �tted ∆h model to the normalised mean

elevation change curve. Following Huss et al. (2010), the glacier geometry is updated

each year by distributing the net glacier mass balance across the glacier according to this

relationship.

C.4 Calibration parameters

Table C.1 lists all of the calibration parameters for the melt and runo�-routing model

structures which were randomly perturbed during the GHM calibration procedure.
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Table C.1: Calibration parameters for the melt and runo�-routing model structures.

Structure Parameter Calibration range Units

TIM1

aice 2.0e-4 - 7.0e-4 m w.e. ◦C-1 h-1

asnow/�rn 4.0e-7 - 2.0e-4 m w.e. ◦C-1 h-1

TIM2

aice 2.0e-4 - 7.0e-4 m w.e. ◦C-1 h-1

asnow/�rn 4.0e-7 - 2.0e-4 m w.e. ◦C-1 h-1

bice 4.0e-7 - 2.0e-6 m3 w.e. W-1 ◦C-1 h-1

bsnow/�rn 4.0e-8 - 4.0e-7 m3 w.e. W-1 ◦C-1 h-1

TIM3

aice 1.5e-4 - 3.0e-4 m w.e. ◦C-1 h-1

asnow/�rn 6.0e-5 - 2.0e-4 m w.e. ◦C-1 h-1

bice 1.0e-5 - 8.0e-5 m3 w.e. W-1 h-1

bsnow/�rn 2.0e-7 - 4.0e-6 m3 w.e. W-1 h-1

p2 0.01 - 0.4

ROR1
k 1 - 30 h

n 1 - 5

ROR2

kice/soil 0.1 - 5 h

ksnow/�rn 20 - 100 h

nice/soil 1 - 5

nice/snow 1 - 5

ROR3

ksoil 0.1 - 5 h

kice 0.1 - 5 h

ksnow 10 - 50 h

k�rn 50 - 300 h

nsoil 1 - 5

nice 1 - 5

nsnow 1 - 5

nsoil 1 - 5
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Figure C.2: Raw elevation change data from 1988 and 2011 ice DEMs (a) and �tted ∆h

model to normalised mean elevation change curve following Huss et al. (2010) (b).
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APPENDIX D:

TEMPERATURE LAPSE RATES

In order to investigate seasonal variations in lapse rate, the temperature gradient between

the lowest (AWS1) and highest (AWS4) weather stations were analysed. The results

showed a remarkable degree of variation in hourly average lapse rate between the months

of the year (white lines in Fig. D.1). During the winter months between November and

February, the lapse rate is a relatively stable -5 ◦C km-1 throughout the day. In contrast,

between March and October there is a pronounced diurnal variation in lapse rate where it

is strongest in the late afternoon/early evening. The heat maps in Fig. D.1 represent the

frequency distribution of wind direction for each month and show that the development

of the strongest lapse rates in the afternoon correspond with a break-up of the prevailing

north-east winds that �ow down from the summit of Öræfajökull and a switch to winds

from the south-west. Petersen and Pellicciotti (2011) found a similar phenomenon on

the Juncal Norte Glacier in the semi-arid Chilean Andes. They attributed the shallow

temperature gradient in the morning with katabatic winds �owing down-glacier which

serve to cool the air over the glacier and weaken the lapse rate. In the afternoon, they

showed that a breaking up of this layer by valley winds served to increase the temperature

gradient by warming the air over the lower glacier. This suggests that winds �owing down

from the Öræfajökull summit in the warmer months could serve to cool near-surface air

temperatures over the ice, thereby retarding ice melt. To account for this phenomenon,

Petersen and Pellicciotti (2011) suggest adopting the Shea and Moore (2010) model to

correct on-ice temperatures relative to ambient o�-ice weather station measurements.

Shea and Moore (2010) found that for three glaciers on the southern coast mountains

of British Columbia, Canada, there was a threshold in ambient o�-ice air temperature,

above which the winds �owing over the glacier served to cool the near-surface on-ice air.

They suggest this temperature lies somewhere between 4 and 8 ◦C, but is likely to be site

speci�c.
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Figure D.1: Monthly average hourly temperature lapse rates (white lines, right hand

axis) derived from AWS1 and AWS4 temperature time series overlying heat maps which

represent the frequency distribution of hourly wind direction data from AWS4 (left hand

axis).
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To investigate if such a threshold exists on the Virkisjökull glacier, �ve Gemini Tinytag

Aquatic 2 temperature loggers were deployed across the glacier at elevations ranging from

150 - 400 m asl. Each logger was secured at 1.5 m above the ice in a white PVC radiation

shield attached to a tripod (Fig. D.2). The sensors were deployed for 7 days in late August

2016 and then for a further 7 days in early March 2017 to represent summer and winter

on-ice temperatures respectively. The loggers were synchronised in time with the AWSs

and set to measure temperature every 15 minutes. This allowed for the direct comparison

of on and o�-ice near-surface temperatures.

Figure D.3 shows the synchronised on and o�-ice temperatures from all of the mea-

surements taken in winter (blue dots) and summer (yellow dots). The o�-ice temperatures

were derived assuming a linear lapse rate between AWS1 and AWS3 as these are situated

at elevations similar to the Tinytag temperature loggers. The results show that there is

a temperature threshold above which on-ice temperature falls below o�-ice temperature

which was estimated to be 5.27 oC. Following Petersen and Pellicciotti (2011), Ragettli

et al. (2014), and Shea and Moore (2010), this cooling e�ect was interpreted as being

due to north-east winds which bring cooler air from above over the tongue of the glacier,

thereby cooling the on-ice air temperature and the piecewise function derived from Fig.

D.3 was employed to correct temperatures on the ice during the warmer months when

ambient air temperatures exceed this threshold:

Ton =


Toff Toff ≤ 5.27

0.74 · Toff + 1.38 Toff > 5.27

(D.1)

where Ton and Toff are the on and o�-ice near-surface air temperature (◦C).
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Figure D.2: Example of Gemini TinyTag housing used for measuring on-ice temperature

at one location on ice.
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Figure D.3: Derived temperature threshold where on-ice temperature is cooler than the

ambient o�-ice temperature using Shea and Moore (2010) model.
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APPENDIX E:

GHM++ INPUT AND OUTPUT TIME SERIES

Figure E.1 shows the complete GHM++ input and output time series. These include the

watershed total precipitation, watershed average temperature and incident solar radiation

data used to drive GHM++ as well as the simulated watershed total snow melt, ice melt

and river discharge using the TIM1, TIM2 and TIM3 melt model structures in conjunction

with the simplest ROR1 runo�-routing structure. Figure E.2 shows the same set of plots

when using the ROR1, ROR2 and ROR3 runo�-routing model structures in conjunction

with the simplest TIM1 melt model structure.
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Figure E.1: Time series of driving precipitation, temperature and incident solar radiation

data and simulated snow melt, ice melt and river discharge using the TIM1, TIM2 and

TIM3 melt model structures in conjunction with the simplest ROR1 runo�-routing struc-

ture. Note, the proportion of rainfall and snowfall is an output from the GHM which is

approximately equal across the di�erent con�gurations. Ice melt includes melt of bare ice

and the �rn.
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Figure E.2: Time series of driving precipitation, temperature and incident solar radiation

data and simulated snow melt and ice melt and river discharge using the ROR1, ROR2 and

ROR3 runo�-routing model structures in conjunction with the simplest TIM1 melt model

structure. Note, the proportion of rainfall and snowfall is an output from the GHM which

is approximately equal across the di�erent con�gurations. Also note, ice melt includes

melt of bare ice and the �rn.
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APPENDIX F:

REMOVAL OF GCM-RCM ENSEMBLE MEMBER

After comparing monthly average simulations from each GCM-RCM over the recent past

(1981-2005) against the observed climate data, it was found that the [CNRM-CM5]-

[ALADIN53] GCM-RCM had anomalously large negative temperature biases, particularly

during the winter months of the year (see red line in Fig. F.1d). In addition to this, a

RMSE score was calculated for each climate variable by comparing monthly observed

and simulated empirical distribution functions constructed from catchment-average daily

climate data (Fig. F.1a-c). When ranked according to their RMSE scores, the [CNRM-

CM5]-[ALADIN53] GCM-RCM ranked 14, 13 and 15 out of 15. Given the anomalously

high biases in temperature and the importance of temperature for driving hydrological

change in the catchment (both in terms of melt rate and the proportion of precipitation

falling as rainfall), coupled with the fact that the model was relatively poor across all

three climate variables, this model was not deemed to be a reliable representation of

future climate trends and was removed from the ensemble.
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Figure F.1: RMSE scores calculated by comparing monthly empirical distribution func-

tions constructed from catchment-average daily observed and simulated (GCM-RCM)

total precipitation (a), incident solar radiation (b) and near-surface air temperature (c)

data over the recent past (1981-2005). Also shown are the observed and simulated monthly

mean near-surface air temperatures for the recent past (d).
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APPENDIX G:

DECADAL CHANGES IN EFFECT SIZE FOR

RIVER DISCHARGE SIGNATURES
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Figure G.1: E�ect size of all main e�ects, interactions and remaining error on projected

decadal changes in the 25 river discharge signatures for all future time slices centred on

the 2030s to the 2080s.
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APPENDIX H:

DELINEATION OF SANDUR BEDROCK

TOPOGRAPHY

Using available observations of bedrock depth on the sandur, a map of bedrock elevation

(Fig. H.1a) was derived to de�ne the geometry of the sandur groundwater model. Ob-

servations of bedrock outcroppings at the north-east groundwater catchment boundary

indicate that depth to bedrock here is at, or close to zero. Additionally, they also indi-

cate the orientation (strike) of the bedrock is approximately perpendicular to the river

channel. Two Tromino R© passive seismic surveys conducted 1.1 and 2.4 km downstream

of the north-east boundary (Fig. H.1b&c) provide additional observations of bedrock el-

evation. The lower survey shows a distinct high spectral ratio (Log H/V) zone indicating

the bedrock resides approximately 90 m bgl. The orientation of this survey indicates the

strike of the bedrock is beyond perpendicular to the river. The upper survey shows three

distinct high spectral ratio zones, but interpretation of the bedrock topography is much

more subjective here. Based on discussions with the authors of Ó Dochartaigh et al.

(2019), the high spectral ratio zone in the centre of the survey is the most probable lo-

cation of the bedrock giving a depth to bedrock of 70 m. However, variations in bedrock

elevation along the survey are uncertain.

The observations therefore indicate the depth to bedrock increases downstream and

that the strike of the bedrock is near or beyond perpendicular to the river which is in agree-

ment with bedrock surveys undertaken in neighbouring catchments on Skeiðarársandur

(Guðmundsson et al., 2002). To incorporate these observations into the MODFLOW-

NWT groundwater model, a digital 3-D model of the bedrock geometry was constructed.

Here, a transect was drawn through the catchment just beyond perpendicular to the river

(red dash in Fig. H.1a). The bedrock elevation data were then imposed on that transect

(red circles in Fig. H.1d) and a third-order polynomial was then �t to the bedrock eleva-

tion data to produce a continuous bedrock depth pro�le along the transect (blue line in
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Figure H.1: Depth to bedrock map for sandur groundwater model (a), upper (b) and

lower (c) tromino survey data and depth to bedrock transect (d).

Fig. H.1d). Note, a third-order polynomial was chosen based on trial and error experi-

ments using orders ranging from one to �ve. Also note that at the lower boundary, the

depth to bedrock was assumed to be close to that recorded from the lower transect. This

was based on the conceptual model of Ó Dochartaigh et al. (2019), but no observation

data exist to verify this. The resultant bedrock model used in the groundwater model is

shown by the coloured Depth to bedrock map in Fig. H.1.
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