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ABSTRACT 

 

Vitamin D deficiency remains prevalent throughout the world, with severe deficiencies 

resulting in skeletal muscle myopathies. Within skeletal muscle, a dynamic network of 

mitochondria exists primarily functioning to produce ATP via oxidative phosphorylation. 

Recent investigations have proposed that vitamin D related metabolites are able to 

modulate mitochondrial function within skeletal muscle cell lines and human 

populations with severe vitamin D deficiencies. Therefore, the aims of this thesis were 

to further explore the role of vitamin D related signalling via the VDR and diet-induced 

vitamin D deficiency in modulating skeletal muscle mitochondrial function. It was 

demonstrated that a reduction in the VDR significantly reduced mitochondrial 

respiration in the C2C12 skeletal muscle cell line without altering mitochondrial protein 

content. Furthermore, in vivo investigations revealed a reduction in skeletal muscle 

mitochondrial respiration following 3-months of diet-induced vitamin D deficiency in 

mice. Finally, we also demonstrated an impairment in voluntary wheel running 

performance and the subsequent adaptive response following diet-induced vitamin D 

deficiency in mice. In summary, this thesis contributes novel data towards the 

understanding of the role of the vitamin D and the VDR in modulating skeletal muscle 

mitochondrial function.  
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1.1 General Introduction 

Skeletal muscle is composed of cells from multiple tissues. Therefore, in this context 

skeletal muscle may be considered an organ. Skeletal muscle comprises ~40% of 

total body mass making it the largest organ within the human body [1]. The primary 

functions of skeletal muscle are to produce movement, maintain posture, store and 

move substances within the body, and generate heat. Not only does skeletal muscle 

account for ~30% of the resting metabolic rate [1], it is also the predominant site of 

glycogen storage and insulin stimulated glucose disposal [2, 3], highlighting its critical 

role in the maintenance of metabolic homeostasis. One of the defining features of 

skeletal muscle is a remarkable adaptive response (i.e. plasticity) in response to both 

positive and negative stimuli. For example, significant increases in skeletal muscle 

mass are observed during postnatal development via the process of hypertrophy [4, 

5]. This process can also be induced in adult skeletal muscle via contractile activity 

and mechanical overload in the form of strength training [6]. Whilst skeletal muscle is 

able to undergo distinct periods of growth, it is also susceptible to periods of atrophy 

such as during the age related loss of muscle mass termed sarcopenia [7]. Given 

that physical inactivity is a major risk factor in the development of sarcopenia, 

exercise training is currently the most effective preventative treatment [8, 9]. Whilst 

regular physical activity plays an important role in maintaining skeletal muscle health, 

nutritional status is also known to play a key role. The manipulation of nutrient intake 

particularly surrounding acute bouts of physical activity has been studied extensively 

[10-13]. These interventions are designed to augment the post exercise signalling 

response and therefore increase the subsequent training stimulus. Whilst these 

interventions are designed to enhance skeletal muscle exercise adaptation, in 
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contrast, many individuals who suffer from poor nutritional status and dietary 

deficiencies may display impaired physical function and adaptation to exercise.  

 

A common nutritional deficiency is that of vitamin D [14]. Vitamin D belongs to a 

group of fat-soluble seco-steroids and is primarily obtained via the exposure of the 

skin to sunlight [15]. Given the increase in time spent indoors, excessive use of sun 

screen and the reports of an increased risk in skin cancer following excessive sun 

exposure, it is unsurprising that the prevalence of vitamin D deficiency is still 

widespread [16]. Deficiencies are not only reserved to specific high risks groups, but 

are also evident within athletic populations [17]. Given this, the characterisation of 

these deficiencies and the effect that they have upon skeletal muscle health is an 

important area of research. A greater understanding on the impact of these 

deficiencies is needed in order to best optimise skeletal muscle form and function 

throughout lifespan to promote a greater quality of life and prevent disease. 

 

1.2 Introduction to Skeletal Muscle 

1.2.1 Skeletal Muscle Biology and Metabolism 

Skeletal muscle accounts for 40% of total body mass in mammals and accounts for 

30% of the resting metabolic rate in humans [1]. Playing a critical role in metabolic 

homeostasis and glycaemic control, skeletal muscle is the predominant site of 

glucose disposal under insulin-stimulated conditions [3]. In addition, skeletal muscle 

is the primary site of glycogen storage within the body containing approximately 80% 

of the total stores [18].  
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Mammalian skeletal muscle fibres are comprised of multiple different fibre types 

which are delineated by their individual biochemical properties [5]. Based upon the 

contractile property of “time-to-peak tension”, skeletal muscle fibres may be defined 

as either slow- or fast-twitch fibres [5]. There are four different subgroups of fibres, 

which can be classified based upon the expression of myosin heavy chain (MyHC) I, 

IIa, IIb, and IIx although, MyHC IIb is not detectable in human skeletal muscle [19, 

20]. Type I fibres classically display slow-twitch characteristics and are red in 

appearance indicating a higher content of both myoglobin and mitochondria, whereas 

type IIx and IIb are white in colour and type IIa fibres have a more intermediate 

colour. Interestingly, a spectrum of fibre types with both pure or hybrid MyHC 

expression have been identified making the classification of skeletal muscle fibres a 

complex and debated issue [21-23]. The ability to classify fibres has progressed 

significantly via the correlation of histochemical and physiological studies of individual 

motor units, electron microscopy of fast and slow muscle fibres, novel procedures for 

myosin adenosine triphosphatase (ATPase) histochemistry, and biochemical studies 

on oxidative and glycolytic enzymes in different muscles [5]. Further approaches 

involving microarray analyses of single muscle fibres will likely shed more light on the 

complex issue of skeletal muscle fibre typing [24]. 

 

The primary role of skeletal muscle fibres is to generate tension via contraction. 

Contraction is facilitated by the binding of myosin heads to actin filaments which slide 

over one another according to the sliding filament theory [25]. This process begins 

with the myosin head binding to adenosine triphosphate (ATP). The enzyme myosin 

ATPase then hydrolyses ATP into adenosine diphosphate (ADP) and a phosphate 
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group. This results in the myosin head becoming energized which subsequently 

attaches to the binding site of the actin filament to form crossbridges. As a result of 

this binding, the phosphate group is then released. The myosin head is then able to 

tilt and rotate in a movement known as the power stroke. This rotation allows the 

myosin head to generate force and pull the actin filament towards the M-line. 

Following the power stroke, myosin then releases ADP and myosin remains bound to 

the actin filament until the next supply of ATP binds to myosin. Once ATP is bound, 

myosin is then released and the contraction cycle can be repeated when ATPase 

hydrolyses ATP. It is important to note that in order for these events to occur there 

needs to be a continual supply of ATP and calcium (Ca2+) [26].  

 

In response to exercise induced contraction, skeletal muscle is able to rapidly 

modulate energy production, blood flow and substrate utilisation. Indeed, during 

maximal exercise, whole-body metabolic rate can increase up to 20-fold and ATP 

turnover within skeletal muscle can increase 100-fold than that of at rest [27]. Given 

that intramuscular concentrations of ATP are low (20-25 nmol/kg/dry weight), 

alternative metabolic pathways need to be activated in order to maintain this rapid 

turnover of ATP [28]. The three mains sources of ATP regeneration are 

phosphocreatine (PCr), anaerobic glycolysis and oxidative metabolism [27]. In order 

to meet this increase in ATP demand, skeletal muscle contains a large pool of 

mitochondria and is reliant upon oxidative phosphorylation for energy production 

during prolonged exercise. During both submaximal and maximal exercise, it has 

been estimated that tricarboxylic acid (TCA) cycle flux increases up to 70- and 100-

fold respectively [29]. Therefore, skeletal muscle is the primary site for the 
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metabolism of both carbohydrates and lipids for energy production. Substrates for 

oxidation can be provided from extra-muscular sources such as plasma free fatty 

acids or plasma glucose or intra-muscular sources such as triglycerides or glycogen 

[30]. The relative contribution of these is dependent on exercise intensity and 

duration, as well as training status and preceding dietary intake [31, 32].  

 

1.2.2 Skeletal Muscle Plasticity in Response to Endurance Exercise 

Regular physical activity in the form of endurance training results in a number of 

profound physiological and metabolic adaptations in a multitude of populations [33-

35]. The adaptations serve to reduce the degree of perturbations to homeostasis for 

a given exercise intensity and therefore reduce the onset of fatigue. Functionally, 

these adaptations result in an increase in maximal oxygen uptake (V̇O2max) as well as 

rightward shift in lactate threshold [36, 37]. Whilst improvements in V̇O2max are largely 

governed by adaptations to the cardiovascular system [38, 39], exercise capacity at 

submaximal workloads is more closely related to adaptations within skeletal muscle 

[40]. Alterations in substrate metabolism including a reduction in glycogen utilisation 

[41], a shift towards greater lipid oxidation [42] as well a reduction in glycolysis [43] 

are all observed with endurance exercise training. These adaptations allow for a 

greater absolute exercise intensity to be supported predominantly by aerobic energy 

production and therefore a reduction in the accumulation of lactate in both the blood 

and muscle [28, 44, 45].  

 

Regular endurance training also results in a shift towards a more oxidative and 

fatigue-resistant phenotype in skeletal muscle [46, 47]. In humans, an increase in 
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both type I and IIa skeletal muscle fibres are observed in endurance-trained 

individuals, whereas type IIa and IIx are increased in sedentary individuals [46, 48, 

49]. Hypertrophy of both type I and IIa fibres is also apparent, as well as an altered 

expression of MyHC isoforms to a slower phenotype [47, 50]. Given the close 

relationship between muscle fibre composition and the oxygen cost of locomotion, 

this alteration in the phenotype of skeletal muscle is of physiological importance with 

improved metabolic health observed across multiple populations [51-53].  

 

Another hallmark of skeletal muscle remodelling following endurance exercise is the 

increase in capillary density [47, 54]. Otherwise known as angiogenesis, the 

formation of new blood vessels within skeletal muscle is stimulated by mechanical 

factors such as increased shear stress and the elevated tissue strain following 

repeated contractions. Increased capillarization within skeletal muscle been observed 

to range from 10 to 25% following 4-24 weeks of endurance training [55-58]. Both 

exercise duration and intensity seem to have minimal influence over exercise 

induced angiogenesis given that studies have observed similar increases in 

capillarization following both moderate and high-intensity endurance exercise [58-60]. 

Whilst blood flow to skeletal muscle is low at rest, during exercise, these rates can 

increase up to 100-fold in order to meet the increase in oxygen demand [61]. It is this 

large increase in blood flow that induces a significant amount of shear stress within 

the capillary bed and therefore promotes angiogenesis [62]. Several vasodilators are 

also known to induce angiogenesis [63], with the most characterised being nitric 

oxide (NO), which simultaneously induces vasodilation and enhances the expression 

of vascular endothelial growth factor (VEGF) [64]. VEGF is known to be a key 
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mediator or exercise induced angiogenesis with skeletal muscle and is essential for 

the development and maintenance of a normal muscle capillary bed [65].          

 

Finally, aerobic exercise also promotes a large increase in mitochondrial mass, 

enzyme activity and oxidation efficiency [66-68]. The mitochondria undergo a large 

remodelling process involving coordinated events of mitochondrial biogenesis, 

fission, fusion and mitophagy [66, 69-73]. All of which contribute to the development 

of trained skeletal muscle phenotype. These processes will be discussed in more 

detail below (Section 1.3.2).  

 

1.3 Introduction to Mitochondria 

1.3.1 Mitochondrial Biology and Metabolism 

Approximately two billion years ago, mitochondria arose from the engulfment of an a-

proteobacterium by a precursor of the modern eukaryotic cell [74]. Across this time 

frame, the mitochondria retained its double membrane structure along with its core 

function of ATP production [75, 76]. This double membrane structure results in four 

distinct compartments within the organelle. These compartments are known as the 

inner membrane, the outer membrane, the intermembrane space, and the matrix 

[77]. The classical ‘textbook’ view which displays the mitochondria as a bean like 

structure, with the outer membrane encasing the highly folded inner membrane, has 

recently been challenged. These images were largely based upon two-dimensional 

electron micrographs however, since the introduction of three-dimensional 

reconstitution technologies, a more detailed picture of mitochondrial morphology has 
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been developed [78]. It is now accepted that the mitochondria exist within a tubular 

reticulum that is able to respond to the dynamic energy demands of the cell [79].  

 

Despite the majority of the genetic material being lost to the nuclear genome 

following endosymbiosis, the mitochondria still possesses its own genetic material 

[80]. The human mitochondrial genome contains the genetic coding information for 

13 proteins [81]. These proteins are core constituents of the mitochondrial electron 

transport chain, which are embedded within the inner membrane. These proteins, 

also known as complexes I to IV function together with the Krebs cycle to create an 

electrochemical gradient through the coupled transfer of electrons across the 

respiratory chain to oxygen (O2) and the pumping of protons from the mitochondrial 

matrix across the inner membrane and into the intermembrane space [82]. This 

electrochemical gradient powers complex V, which is also known as ATP synthase. 

ATP synthase is an ancient rotary turbine that catalyses the synthesis of cellular ATP 

[82]. Commonly referred to as “the powerhouse of the cell”, the mitochondria are the 

engines that primarily function to produce both ATP and carbon dioxide (CO2) at the 

expense of substrates and molecular O2.  

 

Within skeletal muscle ATP is not stored in great quantities (20-25 nmol/kg/dry 

weight) and during skeletal muscle contraction or a heightened metabolic demand, 

ATP demand can increase up to 100-fold [27]. Therefore, this results in a rapid and 

sustained demand for the production of ATP. In order to meet this requirement, 

skeletal muscle is densely populated with mitochondria, which produce ATP via a 

process known as oxidative phosphorylation. This process takes place in the 
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mitochondrial inner membrane where the individual complexes that make up the 

electron transport chain reside [83]. The energy conserving complexes known as 

complexes I, III and IV are protein-lipid enzyme complexes that function to pump 

protons across the inner mitochondrial membrane [84, 85]. Whilst complex II is also 

an important member of the electron transport chain, it is mechanistically incapable 

of pumping protons [86]. Under steady state conditions the total extrusion and re-

entry of protons across the inner mitochondrial membrane is balanced. However, 

during active synthesis of ATP, the primary pathway for proton re-entry is that of ATP 

synthase. In brief, the TCA cycle intermediates nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FADH) donate electrons to the individual 

complexes [82, 87]. Hydrogen ions (H+) are then extruded into the intermembrane 

space by proton pumping complexes. This results in the intermembrane space 

becoming positively charged in comparison to the mitochondrial matrix. As a result of 

this difference, H+ ions diffuse through the ATP synthase enzyme, which drives the 

conversion of ADP to ATP [87].  

 

Whilst the primary function of the mitochondria is the bioenergetic production of ATP, 

mitochondria are also involved in a number of other processes within the cell 

including apoptosis, the generation of reactive oxygen species (ROS) and Ca2+ 

handling [88-90].  

 

1.3.2 Mitochondrial Plasticity in Response to Endurance Exercise 

Mitochondrial biogenesis is a well-characterised response to increased contractile 

activity in skeletal muscle [66, 69]. During this process, mitochondria not only 
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increase in number and volume, but also undergo coordinated events of fission and 

fusion, increases in respiratory capacity and alterations in substrate utilisation [66, 

69, 70]. The magnitude of these changes are dependent on both training volume and 

intensity [91], whilst they are also reversible following periods of de-training [92, 93]. 

These processes are highly dynamic in their nature with half-lives of approximately 

one week having been observed for mitochondrial proteins [94, 95].  

 

One of the key characteristics of mitochondrial biogenesis is an increase in 

mitochondrial mass, with regular contractile activity increasing skeletal muscle 

mitochondrial density by up to as much as 100% [96]. Transmission electron 

microscopy (TEM) is currently regarded as the gold standard technique to assess 

mitochondrial volume density [97], although cardiolipin content and citrate synthase 

(CS) activity are also viewed as valid biomarkers [98]. Studies utilising TEM have 

provided evidence of an increase in both the size and number of the mitochondria in 

response to exercise in both rats [99] and humans [100-105]. Similarly, studies 

employing CS activity as a surrogate marker of mitochondrial mass have reported 

similar findings [68, 106, 107]. Increases in the size and number of the mitochondria 

translate to increases in protein content of the mitochondrial fraction within skeletal 

muscle including key components of the electron transport chain such as cytochrome 

c (cyt c) [66, 70, 108]. In concordance with these changes, increases in the activity of 

TCA cycle enzymes CS, NAD-specific isocitrate dehydrogenase, succinate 

dehydrogenase (SDH) and malate dehydrogenase all increase in rat skeletal muscle 

following daily running exercise [70]. Enzymes within the electron transport chain 
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show similar responses with SDH, NADH dehydrogenase, NADH-cyt c-reductase 

and cyt c-oxidase all increasing up to two-fold [47].   

 

Within skeletal muscle, the mitochondria exist within a morphologically tubular 

reticulum that is dynamic in its nature [79]. Due to the large size of skeletal muscle 

fibres, the existence of a dynamic mitochondrial reticulum may be beneficial in 

instances where the demand for both energy and substrates is not homogeneously 

distributed across the fibre [79]. Alterations within the shape and size of this reticulum 

are likely regulated by metabolite transport, increases in energy demand and oxygen 

diffusion [109, 110]. Indeed, in response to endurance exercise training, it was noted 

that the commonly observed increases in mitochondrial protein content are due to the 

proliferation of the mitochondrial reticulum [71]. Not only does this reticulum fuse and 

proliferate, but it also undergoes events of fission where potentially damaged or 

dysfunctional regions of the mitochondria are segregated and subsequently broken 

down [110]. These events of both fusion and fission are simultaneously regulated in 

order to maintain mitochondrial homeostasis and emerging evidence suggests that 

they are key to the mitochondrial remodelling response to endurance exercise [72, 

73, 111, 112]. Several proteins are known to facilitate the processes of fusion and 

fission including; mitofusins 1 and 2 (MFN1 and MFN2), optic atrophy type 1 (OPA1), 

dynamin-related protein 1 (DRP1), fission 1 (FIS1) and mitochondrial fission factor 

(MFF). Whilst the precise roles of the aforementioned fusion/fission proteins across 

the time course of exercise adaptation are still to be elucidated, a number of studies 

have sought to characterise the mitochondrial remodelling process in response to 

chronic endurance exercise [112-116]. Current evidence points towards a shift 
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towards an increase in mitochondrial fusion in response to exercise or chronic 

contractile activity. For example, 12-weeks of aerobic exercise results in an increase 

in the protein expression of both MFN1 and 2, both of which are known to be 

involved in the fusion of outer mitochondrial membrane [113]. Additionally, increases 

in the expression of OPA1 have been observed when utilising electrical stimulation 

as a means to induce contractile activity in both rats and humans [112, 114]. OPA1 is 

known to modulate fusion of the inner mitochondrial membrane and regulate cristae 

morphology [117]. In concert with its increased expression in both rat and human 

skeletal muscle following chronic contractile activity, the mitochondria were observed 

to be larger and more reticular in their morphology [112, 114]. Whilst others have 

reported similar increases in pro-fusion proteins, they have also observed increases 

in mitochondrial fission related proteins in response to exercise training [115, 116]. 

Following 8-weeks of swimming exercise, an increase in Drp1 was observed as well 

as Mfn2 and Opa1 in mouse skeletal muscle [115]. Similar responses were observed 

following seven high-intensity interval training sessions with increases in the protein 

content of both FIS1 and DRP1, as well as MFN1 [116]. Although Drp1 is a known 

mediator of mitochondrial fission, an increase in protein content alone is unlikely to 

result in an increase in mitochondrial fission. Either mitochondrial translocation or 

post translational modifications such as phosphorylation are a more accurate readout 

of Drp1 activity [118]. For example, recent evidence suggests that the 

phosphorylation of Drp1 at serine 637 is increased in mouse skeletal muscle 

following chronic endurance exercise training [111]. A modification that has been 

proposed to reduce mitochondrial Drp1 translocation and mitochondrial fission [119]. 

Interestingly, the action of Drp1 has also been linked to mitochondrial fusion events. 
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Mitochondria have been reported to undergo events of both complete and transient 

fusion, with transient fusion events dependent on Drp1 action [111, 120]. Whilst 

these data indicate a pro-fusion phenotype in response to exercise, it was recently 

observed that the previously reported increases in pro-fusion proteins such as MFN1, 

MFN2 and OPA1 in response to exercise are reduced when normalised for 

mitochondrial protein content [72]. However, a reduction in FIS1 was independent of 

changes in mitochondrial protein content [72]. Although the data points towards a 

pro-fusion phenotype, it is difficult to interpret such studies given the dynamic nature 

of these mitochondrial remodelling process. Static measurements in response to 

exercise training only provide a snapshot of the whole story and clearly more 

evidence and better models to study these processes are needed for future 

investigations.  

 

As mentioned previously, sections of the mitochondrial reticulum may be segregated 

via fission related processes and subsequently broken down by the catabolic process 

of autophagy [110, 115]. The selective removal of dysfunctional mitochondria is 

commonly referred to as mitophagy, highlighting the specific and non-random nature 

of this process [121]. Events of mitophagy may be upregulated in response to 

increased mitochondrial fragmentation, loss of mitochondrial membrane potential and 

increased mitochondrial ROS emission [122-124]. Currently, the most established 

pathway for the process of mitophagy involves PTEN-induced putative kinase 1 

(PINK1) and the ubiquitin E3 ligase Parkin [125]. Under normal conditions, PINK1 is 

continuously degraded following translocation to the inner mitochondrial membrane 

[126]. However, following the depolarization of the mitochondrial membrane, PINK1 
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translocation is impaired, which results in its stabilization on the outer mitochondrial 

membrane [127]. Under these conditions, PINK1 undergoes autophosphorylation on 

serine residues 228 and 402, which serve to recruit and activate Parkin [128, 129]. 

Both Parkin and Ubiquitin are phosphorylated by PINK-1 allowing for the accretion of 

polyubiquitin chains on the outer mitochondrial membrane, tagging the organelle for 

degradation [130-132]. Polyubiquitination results in the binding of the autophagy 

related protein p62 which can associate with lipidated microtubule-associated 

protein-light chain 3 (LC3II) [133, 134]. LC3II is located on the phagophore 

membrane and its binding with p62 results in the autophagosomal engulfment of the 

mitochondria [133]. Finally, this autophagosome is completely degraded at the 

lysosome [133, 135]. It should be noted that whilst these pathways are well 

established in lower organisms, the precise mechanisms of mitophagy within skeletal 

muscle are still to be elucidated. The role of mitophagy in the exercise-induced 

mitochondrial remodelling process is an ongoing area of research with the roles of 

both PINK1 and Parkin becoming the focus of attention. For example, it has 

previously been reported that in response to a period of chronic swimming exercise, 

the protein content of both Pink1 and Parkin remained unchanged [115]. However, 

protein content alone is unlikely to be an accurate readout for mitophagy given the 

activity of said proteins is reliant on localisation to outer mitochondrial membrane and 

phosphorylation status. Interestingly, both phospho-PINK1Thr257 and ParkinSer65 were 

elevated in trained human skeletal muscle when compared with sedentary individuals 

[136]. Additionally, following 6-weeks of voluntary wheel running, an increase in the 

localisation of Parkin to the outer mitochondrial membrane was observed in mouse 

skeletal muscle [137]. Whilst these data potentially highlight an increase in basal 
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mitophagy in trained skeletal muscle, it should be noted that further downstream 

markers of increased autophagy such as p62 or LC3II mitochondrial localisation were 

not apparent in trained mouse skeletal muscle [137]. In addition to the established 

mechanisms of PINK1 and Parkin, the beta-cell lymphoma 2 (BCL-2) related protein 

BCL-2 interacting protein 3 (BNIP3) has been reported to increase in both mouse 

and rat skeletal muscle following chronic endurance exercise [138, 139]. Due to its 

localisation within the mitochondria and its ability to interact with LC3, BNIP3 can be 

defined as a mitophagy receptor [140]. Primarily involved in hypoxia induced 

mitophagy, BNIP3 is transcriptionally regulated by hypoxia-inducible factor 1-alpha 

(HIF1a) [141] and phosphorylation promotes binding with LC3 therefore facilitating 

mitophagy [142]. Again, the precise mechanisms of BNIP3 mediated mitophagy 

within skeletal muscle are unknown and it remains to be seen whether the reported 

increases in BNIP3 result in an increase mitophagic activity. Clearly more research is 

needed to fully understand how mitophagy contributes to the exercise induced 

mitochondrial remodelling process. More sophisticated models to assess mitophagy 

such as the mito-Quality Control and MitoTimer mouse will aid in the development of 

our understanding of said processes [143, 144]. These models both utilise 

fluorescent probes that are sensitive to either changes in pH or oxidation allowing for 

the assessment of mitophagy and mitochondrial morphology in a tissue-specific 

manner [143, 144].  

 

As discussed previously, the core function of the mitochondria is to generate ATP at 

the expense of substrates and molecular O2. The respiratory function of the 

mitochondria can be assessed by measuring the oxygen consumption rate within 
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isolated mitochondria [145]. In response to exercise training, it is well established that 

the capacity to generate ATP is increased within human skeletal muscle 

mitochondria [93, 146]. Whilst O2 consumption is commonly assessed in isolated 

mitochondria, its measurement in permeabilised muscle fibres is currently considered 

the gold standard [147]. Cross-sectional studies have shown that training status is 

associated with an increase in mass-specific mitochondrial respiration [148-151] and 

it was Holloszy that first demonstrated an increase in O2 consumption in response to 

exercise training in isolated mitochondria from rat skeletal muscle [66]. Mitochondria 

from the trained cohort exhibited a high level of respiratory control and tightly coupled 

oxidative phosphorylation, indicating that the increase in the capacity of the electron 

transport chain was associated with an increase in the capacity to generate ATP [66]. 

Findings which were later confirmed in mitochondria isolated from guinea pig [152] 

and human skeletal muscle [153]. More recently, utilising protocols to assess 

mitochondrial respiration in permeabilised muscle fibres, it has been reported that 

exercise training increases human skeletal muscle mitochondrial respiratory capacity 

in an exercise intensity dependent manner [154-156]. Training volume on the other 

hand, is not a primary determinant of training-induced changes in mitochondrial 

respiration within human skeletal muscle [91, 157]. Differences in the ensuing 

adaptations following exercise training may result from differences in fibre type 

recruitment. Exercise undertaken at higher relative exercise intensities may result in 

an increase in the recruitment of type II fibres [158, 159]. Additionally, key signalling 

cascades that are known to be key drivers of training-induced adaptations are also 

known to be differentially regulated by exercise intensity with higher exercise 

intensities resulting in an increased signalling response [160].    
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Alongside gross changes in mitochondrial respiration, the sensitivity of oxidative 

metabolism to ADP is also altered in response to endurance exercise training. Initially 

postulated by Holloszy [69], this model suggests that less ADP would be required to 

stimulate a given rate of aerobic ATP production [69]. Typically, during exercise, free 

ADP concentrations rise, however, following exercise training this increase is 

attenuated highlighting tighter metabolic control [161, 162]. More recently, the 

development of a protocol utilising high-resolution respirometry to determine 

biologically relevant ADP Michaelis-Menten constant (Km) values [163] and thereby 

assess ADP sensitivity across multiple ADP concentrations within permeabilised 

muscle fibres has yielded ambiguous results [150, 164, 165]. Indeed, cross sectional 

analyses of healthy humans across differing physical activity levels indicates a 

decrease in ADP sensitivity in athletic individuals [150]. Furthermore, the sensitivity 

of the mitochondria to ADP as measured by the apparent Km  for ADP was three-fold 

higher when comparing athletic to sedentary subjects [150]. Whilst similar findings 

have been reported in rat skeletal muscle following exercise training [165] and 

indirectly suggested by others [166, 167], a decrease in the sensitivity of skeletal 

muscle mitochondria to ADP following exercise training seems surprising. A possible 

means to explain this paradox involves the control of cellular respiration within 

different skeletal muscle fibre types. For example, the apparent Km for ADP has been 

reported to be up to 30-fold higher in rat and mouse skinned fibres from the soleus 

when compared to the gastrocnemius [168, 169].  Additionally, whilst the sensitivity 

of ADP is decreased in athletic individuals and following exercise training, absolute 

rates of respiration are higher following training likely due to an increased 
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mitochondrial volume which may be more relevant to whole-body physiology [170]. 

Finally, given that the rates of absolute respiration are increased, an increased 

sensitivity to ADP and therefore lower apparent Km in trained individuals would result 

in resting mitochondrial respiration of between 25-65% that of maximal [171]. 

Therefore, the observed increase in apparent Km in this instance may contribute to 

the fine tuning of mitochondrial respiration in order to better meet the local energy 

demands of skeletal muscle [150]. The attenuation of mitochondrial ADP sensitivity 

following training is depicted below (Figure 1.1) [172].  

 
Figure 1.1. ADP respiratory kinetics in permeabilised skeletal muscle fibres in the presence of 
saturating concentrations of pyruvate plus malate pre and post exercise training. A) 
Mitochondrial respiration normalised to dry weight both pre and post training intervention. B) 
Mitochondrial respiration normalised to dry weight with rescaled axis highlighting that less ADP is 
required to elicit a given rate of oxygen consumption post training. C) The same data now expressed 
as percentage of maximum. D) The same data expressed as a percentage of maximum highlighting 
that a higher concentration of ADP is required to achieve 50% of maximal respiration. These data 
suggest that the intrinsic sensitivity of the mitochondria is actually decreased with training. Holloway 
(2017).  
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1.3.3 Mitochondrial Plasticity in Response to Nutritional Interventions 

Primarily utilised in an additive fashion to exercise training, a number or nutritional 

strategies and nutrient compounds have been proposed to enhance mitochondrial 

function and remodelling within skeletal muscle [173]. Whilst many compounds have 

shown promise in vitro [173], this section will focus on nutritional compounds that 

elicit mitochondrial alterations within skeletal muscle in vivo.  

 

Compounds that could potentially mimic the benefits of exercise in the absence of a 

training stimulus (i.e. exercise mimetics) were proposed and gained widespread 

attention in the media [174]. The most heralded of these approaches was the 

administration of the peroxisome proliferator-activated receptor delta (PPAR-d) 

agonist GW501516 in combination with 4-weeks of endurance exercise resulted in a 

robust increase in running time (68%) and distance (70%) in mice [174]. Following 

this observation, the authors then substituted exercise for the administration of the 5’ 

adenosine monophosphate-activated protein kinase (AMPK) agonist 5-

aminoimidazole-4-carboxamide ribonucleotide (AICAR) [174]. The combined 

compound administration resulted in increase in running time (23%) and distance 

(44%) and the proposal that the compound combination was able to act as an 

exercise mimetic and enhance skeletal muscle metabolism [174]. Unfortunately, the 

authors did not compare the combined treatment of GW501516 and AICAR to 

exercise alone or in combination with exercise. Additionally, the treatment of 

GW501516 alone was unable to increase exercise capacity, suggesting it is not an 

exercise mimetic and more likely an exercise enhancer [174]. Garnering widespread 

attention, the feasibility of exercise mimetics has since been brought into question 
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[175-177]. Since the early promise, the work has failed to translate into human 

studies primarily due to the poor bioavailability of AICAR [178, 179]. Furthermore, the 

chronic activation of PPAR-d has been linked to cancer progression, raising 

questions in regards to its efficacy as a proposed long-term treatment [180]. Given 

the widespread, multi-organ health benefits of exercise [181], an exercise mimetic 

targeting a single protein is unlikely to be feasible [175, 176]. More recently however, 

the use of bioactive compounds (vitamins or polyphenols) seems to hold promise 

[172, 173, 182]. 

 

One of the most well-known polyphenols is resveratrol which is found in grapes and 

was first isolated from red wine [183]. Resveratrol has been shown to aid in 

mitochondrial remodelling in mice fed a high-fat diet [184]. Indeed, mice fed a high-fat 

diet for 15-weeks with the addition of resveratrol show signs of increased 

mitochondrial volume, evidenced by increased mitochondrial size, mitochondrial DNA 

(mtDNA) content, SDH and CS activity [184]. Further to this, resveratrol was also 

shown to increase endurance capacity in mice and promote fat oxidation [185]. In 

contrast however, these promising reports in rodents have failed to translate to 

human studies and resveratrol supplementation has led to maladaptive responses to 

exercise training [186, 187]. 

 

Another polyphenol with a similar structure to that of resveratrol is quercetin which 

has been reported to promote numerous health benefits [188]. The supplementation 

of quercetin in mice across a 7-day period resulted in a doubling of mtDNA content in 

skeletal muscle as well increases in cyt c [189]. The adaptations were likely mediated 
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by an upregulation of the transcriptional coactivator peroxisome proliferator-activated 

receptor gamma co-activator 1-alpha (PGC-1a) [189]. In concert with the observed 

increases in mitochondrial content, mice fed quercetin exhibited increases in exercise 

capacity [188]. Whilst some of these findings have been replicated in human 

populations, including increased exercise performance and mtDNA content [190], 

others have shown no effect [191-193].  

 

The flavanol (-)-epicatechin a derivative of cocao has shown early promise, primarily 

via the consumption of small amounts of dark chocolate which has been linked to 

multiple health benefits including reductions in the development of cardiovascular 

disease [194]. In terms of its effects on the mitochondria, Nogueira and colleagues 

were the first to demonstrate that 15-days of (-)-epicatechin supplementation in mice 

increased mitochondrial volume in concert with increases in treadmill running 

performance, fatigue resistance and skeletal muscle capillarity [195]. Interestingly, 

the supplementation of (-)-epicatechin alone was able to increase skeletal muscle 

mitochondrial protein content as well skeletal muscle capillarity to a similar extent as 

the exercise alone group suggesting beneficial effects can be achieved without a 

training stimulus. Although the combined treatment of exercise and (-)-epicatechin 

resulted in further additive increases suggesting the combination treatment may be 

optimal [195]. Further studies examined the role of (-)-epicatechin following 5-weeks 

of endurance training followed by 2-weeks de-training [196]. The supplementation of 

(-)-epicatechin across the de-training period was able to maintain the prior training 

induced increases in cyt c oxidase activity and capillary to fibre ratio [196]. Whilst 

these data have yet to be repeated in human trials, the supplementation of flavanols 
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including (-)-epicatechin appears to hold promise for enhancing mitochondrial 

adaptations to endurance exercise training.  

 

Dietary nitrate is primarily obtained via the consumption of green leafy vegetables or 

from the consumption of beetroot juice [197]. The supplementation of dietary sodium 

nitrate over a three-day period resulted in a reduction in the oxygen demand during 

submaximal workloads in healthy trained individuals [198]. Furthering this work, 

multiple parameters of mitochondrial respiration were altered following the same 

supplementation protocol [199]. Nitrate supplementation increased the mitochondrial 

respiratory control ratio, suggesting an improved coupling between oxidative 

phosphorylation and ATP production [199]. Furthermore, supplementation also 

resulted in an increased phosphate/oxygen (P/O) ratio at submaximal concentrations 

of ADP indicative of altered stoichiometry [199]. Interestingly, beetroot juice, a source 

of dietary nitrate, also reduces the oxygen cost of exercise at submaximal workloads 

[200, 201], although this does not seem to be mediated by adaptations to the 

mitochondria [202].  

 

Omega-3 fatty acids, particularly those enriched with eicosapentaenoic acid (EPA) 

and docosahexaenoic acid (DHA) are known to alter mitochondrial membrane 

phospholipid composition following supplementation [203, 204]. An increased 

incorporation of polyunsaturated fatty acids into the mitochondrial membrane resulted 

in an increase in mitochondrial ADP sensitivity in human skeletal muscle [203]. 

Maximal ADP stimulated respiration remained unchanged, a finding also observed in 

rodents [205], suggesting the function of the electron transport chain was not altered 
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[203]. No changes were also observed in the protein content of adenine nucleotide 

translocase 1 (ANT1) and 2 (ANT2) or ATP synthase although post-translational 

modifications of these proteins may mediate the observed increase in ADP sensitivity 

[203, 206]. More recently, the effects of EPA and DHA supplementation both 

preceding and across a period of immobilisation have been studied. Whilst 14-days 

of immobilisation reduced ADP stimulated respiration (-20%), the supplementation of 

omega-3 fatty acids during the 4-weeks preceding and during the immobilisation 

period attenuated these reductions [207]. Whilst similar observations were noted for 

respiration stimulated by submaximal ADP concentrations, the pre control group had 

increased respiration when compared to the pre supplementation group [207]. 

Therefore, the fact that omega-3 supplementation attenuated to reductions in 

respiration may be a product of reduced respiration in the pre-supplementation 

controls. Whilst interesting, the effects of omega-3 supplementation on mitochondrial 

adaptation to training are yet to be studied.  

 

Given the wide variety of vitamins and bioactive compounds isolated from various 

fruits and vegetables there are still many questions to be answered in terms of how 

these compounds may enhance mitochondrial function either alone or in combination 

with training. Studies utilising bioactive compounds are often limited by the 

bioavailability of said compounds and future research should examine the extent to 

which the compound in question is absorbed and bioavailable to skeletal muscle 

[182].  
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1.4 Introduction to Vitamin D 

1.4.1 History of Vitamin D 

The idea that the adequacy of the diet could be described by the content of 

carbohydrate, fat, protein and minerals remained largely unchallenged until the 

beginning of the twentieth century when reports began to emerge suggesting that 

additional micro-organic nutrients may be required [208, 209].  

 

Towards the end of the nineteenth century the industrial revolution had taken place 

which resulted in the urbanisation of the population. The resulting smoke from 

industrial plants polluted the atmosphere, and in low-sunlight countries such as 

England, rickets appeared in epidemic proportions [210]. Rickets is a condition by 

which the skeleton becomes poorly mineralised and deformed often resulting in pain 

and growth abnormalities [211]. The previous discovery of vitamins led to the 

reasoning that rickets may also be caused by some form of dietary deficiency [212]. 

Early investigations utilised cod liver oil to cure rickets with the vitamin A contained 

within cod liver oil viewed as the therapeutic. However, despite the removal of 

vitamin A from cod liver oil via aeration and heating, cod liver oil still retained the 

ability to cure rickets [213] suggesting that cod liver oil contained another active 

vitamin. Once characterised, this vitamin later became known as vitamin D [212, 214, 

215], now viewed as an essential nutrient [215].  

 

During the same period, it was discovered that rickets could be both prevented and 

cured in children by exposing them to either sunlight or artificially induced ultraviolet 

B (UVB) light [216]. Studies in goats also revealed that sunlight exposure was 
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important for the maintenance of calcium balance due to the fact that those animals 

that were maintained indoors lost much their calcium to lactation [217]. This work 

resulted in the discovery that irradiation of the animals’ diets could induce vitamin D 

activity and thus cure rickets [218]. The discovery that UVB light could be utilised to 

induce vitamin D activity and fortify foods resulted in the elimination of rickets as 

major medical problem [218, 219]. This work also revealed that vitamin D was not a 

vitamin and was in fact a steroid hormone [219].  

 

1.4.2 Forms of Vitamin D 

Multiple biological forms of vitamin D are known to exist. Vitamin D2, also known as 

ergocalciferol was first isolated from the irradiation of plant sterols [214]. Vitamin D3, 

which is also known as cholecalciferol was first identified following the isolation of 7-

dehydrocholesterol which is the precursor for vitamin D3 within the skin. The fact that 

vitamin D3 is the form that is produced in the skin was later confirmed via the 

chemical identification of both pre-vitamin D3 and vitamin D3 in the skin [220, 221]. 

Both vitamin D2 and D3 are the major sources of vitamin D that contribute to vitamin 

D status. Both forms are found within dietary sources however, only D3 is produced 

endogenously within the skin following the exposure to UVB irradiation [221]. The 

chemical structure of both vitamin D forms is depicted below with the side chain of D2 

containing a double bond and the addition of a methyl group at carbon 24 (Figure 

1.2).  
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Figure 1.2. Nutritional forms of vitamin D. Vitamin D3 also known as cholecalciferol and vitamin D2 
also known as ergocalciferol [222]. 
 
 
 
1.4.3 Synthesis of Vitamin D 

Upon exposure to sunlight and more specifically UVB irradiation at a wavelength of 

290-315 nm [223], human skin is able to synthesise vitamin D [224]. The 

photochemical process that takes place in the plasma membrane of skin cells, results 

in the conversion of 7-dehydrocholesterol (precursor to cholesterol and vitamin D3) to 

the thermodynamically unstable pre-vitamin D3 (pre-cholecalciferol) [224]. It is the 

thermal isomerisation of pre-vitamin D3 that results in the formation of vitamin D3, 

which is a seco-steroid hormone [225]. Within 8 h of exposure to UVB irradiation, 

~80% of pre-vitamin D3 is converted to vitamin D3 [226]. When a sufficient quantity of 

D3 is produced, pre-vitamin D3 is converted to the biologically inactive photoproducts 

of tachysterol and lumisterol [227].  

 

Multiple factors can influence the synthesis of vitamin D. For example, the 

pigmentation of the skin plays an important role in regulating the dermal synthesis of 

vitamin D3 [228]. An increased melanin pigmentation will reduce the efficiency of the 
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sunlight mediated photosynthesis of pre-vitamin D3 [228]. The amount of radiation 

that actually enters the atmosphere and is therefore available for the cutaneous 

production of vitamin D is also an important factor [229, 230]. This is dependent on 

the time of the day, latitude, and season which alter the zenith angle of the sun [231]. 

As well as melanin, any substance that absorbs UVB radiation such as sunblock or 

clothing will also reduce the cutaneous production of vitamin D3 [232-234]. The use of 

sunscreen is widely used and effective method of reducing the damaging effects of 

chronic exposure to sunlight such as sunburn, skin cancer and skin damage. A 

sunscreen with a sun protection factor (SPF) of 30 will absorb up to 97.5% of UVB 

radiation and therefore reduce the production of vitamin D3 [232]. 

 

1.4.4 Dietary Sources of Vitamin D 

Nutrients that are not naturally synthesized will need to be obtained via an alternative 

source and an obvious solution to this is through dietary intake. Although there are 

few, some dietary sources of vitamin D do exist [235]. Dietary sources of vitamin D 

include oily fish, powdered milk, eggs and shitake mushrooms, as well as fortified 

foods such as bread, milks, cheese and breakfast cereals [235]. The current 

Recommended Daily Allowance (RDA) for vitamin D is 15 µg/day (600 IU) up to the 

age of 70 years and 20 µg/day (800 IU) thereafter [236]. Investigations into the 

current dietary intake of vitamin D reveal that the median intake for adults within the 

USA was 5.8 µg/day when both fortified foods and supplements were included [237]. 

Adding further difficulty to obtaining a sufficient amount of vitamin D from the diet, it 

has been reported that some foods stating fortification with vitamin D may contain 

less than 80% of the vitamin D claimed [231, 238]. Therefore, intake of vitamin D 
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containing foods is limited and it is unlikely that humans obtain enough vitamin D 

from dietary sources to compensate for a lack of sunlight exposure [237]. 

 

1.4.5 Metabolism of Vitamin D 

Whether vitamin D is obtained via the exposure to sunlight or from dietary sources, 

both forms will enter the circulation bound to the vitamin D binding protein (DBP) 

[239]. The DBP is present within serum in the micromolar concentrations and is 

responsible for the transport of all vitamin D metabolites with the highest affinity for 

25(OH)D [240, 241].  

 

Once in circulation, vitamin D undergoes a series of hydroxylation steps including; 

25-hydroxylation, 1a-hydroxylation, and 24-hydroxylation, which are all performed by 

cytochrome P450 mixed-function oxidases (CYPs) [242-244]. The first hydroxylation 

step (25-hydroxylation) occurs within the liver and converts vitamin D to 25(OH)D 

[245]. A number of CYPs have been established to have 25-hydroxylase activity 

including both CYP27A1 and CYP2R1 [242]. CYP2R1 is considered the main 25-

hydroxylase as this enzyme is able to 25-hydroxylate both vitamin D2 and D3 with 

comparable kinetics where as CYP27A1 does not 25-hydroxylate vitamin D2 [242, 

246].  

 

The second hydroxylation step, 1a-hydroxylation is performed primarily in the kidney 

and unlike 25-hydroxylation, only one enzyme is recognised to have 1a-hydroxylation 

activity [243, 244]. This enzyme, known as CYP27B1, is able to convert the 25(OH)D 

produced within the liver to its more biologically active metabolite 1a,25-
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dihydroxyvitamin D (1a,25(OH)2D3) [243, 244, 247, 248]. Despite the kidney being 

known as the main site of 1a,25(OH)2D3 production, a number of other tissues or cell 

types have been shown to express CYP27B1 including keratinocytes, epithelial cells, 

pancreatic islets, cerebellum, and skeletal muscle [249-251]. The ability of the cell to 

bypass the kidney and perform the 1a-hydroxylation step internally will be dependent 

on the ability of the cell to internalize the 25(OH)D bound to the DBP [252, 253]. 

Within skeletal muscle, this is likely achieved via the recently identified membrane 

bound protein Megalin [252] (Figure 1.4).  

 

Lastly, 24-hydroxylation is the final hydroxylation step with CYP24A1 the only 

established enzyme with 24-hydroxylase activity. This pathway is known to result in 

the conversion of the biologically active form of vitamin D (1a,25(OH)2D3) to the 

inactive calcitroic acid. Similar to CYP27B1, CYP24A1 is predominantly expressed 

within the kidney however a number of studies have also revealed its expression in 

other cell types and tissues including skeletal muscle [250, 251]. 
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Figure 1.3. Vitamin D Metabolism. Schematic illustrating the metabolism of vitamin D obtained via 
the exposure of the skin to sunlight or dietary ingestion of vitamin D containing foods. Once in 
circulation, vitamin D is bound to the vitamin D binding protein. Vitamin D then undergoes two 
hydroxylation steps, the first in the liver (25-hydroxylation) and the second in the kidney (1a-
hydroxylation). Note that some target tissues including skeletal muscle also express CYP27B1 
allowing for the local production of 1a,25(OH)2D3. The final hydroxylation step, 24-hydroxylation, 
results in the conversion of   1a,25(OH)2D3 to inactive by products.   Vitamin D has known actions in a 
number of tissues including bone, intestine, kidney, immune cells, tumour micro-environment, adipose 
tissue and skeletal muscle. Adapted from [254].   
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1.4.6 Measurement of Vitamin D Status 

Over 40 metabolites of vitamin D have been identified [255] making the analysis of 

vitamin D metabolism challenging. These metabolites are all in circulation in a variety 

of concentrations and some have an extremely short half-life making them of minimal 

physiological relevance [256]. Currently, it is the measurement of 25(OH)D which 

regarded as the best representation of vitamin D exposure [257]. In comparison to its 

parent sterol which has a half-life of 24 h, 25(OH)D has a half-life of 21-30 days [249, 

258]. Whilst 1a,25(OH)2D3 is the most biologically active form of vitamin D, it 

circulates in the picomolar (pmol.L-1) concentrations where as 25(OH)D circulates in  

nanomolar (nmol.L-1) concentrations [259, 260].  

 

Whilst the majority of vitamin D is obtained by UVB exposure, the potential for 

supplementation and the fortification of foods with both vitamin D2 and D3 can 

increase the amount derived from endogenous sources [261, 262]. Therefore, it is an 

important consideration to make sure that the assay in question is able to determine 

the amount of both the D2 and D3 metabolites. Various methods have been utilised 

for the measurement of vitamin D metabolites including radioimmunoassay (RIA), 

vitamin D-binding protein assays, high performance liquid chromatography coupled 

with ultra-violet spectrophotometry, and liquid chromatography coupled with mass 

spectrometry (LC-MS/MS) methods [263]. Given that all RIAs evaluated have 

displayed a problem with the detection of 25(OH)D2 and under-recover this 

metabolite [264], isotope dilution LC-MS/MS is considered the gold standard for 

measuring serum total 25(OH)D [265]. Isotope dilution LC-MS/MS is able to quantify 

both 25(OH)D2 and 25(OH)D3 simultaneously with the sum of the two values 
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representing a precise and accurate measure of total 25(OH)D and therefore vitamin 

D status [265, 266].  

 

1.4.7 Categorization of Vitamin D Status 

The current US Institute of Medicine guidelines for vitamin D status are generally 

accepted worldwide (Table 1.1) with the Endocrine Society providing similar 

categorization guidelines [236, 267]. Despite these guidelines, there still remains 

conflicting views on defining vitamin D deficiencies and the concentration of vitamin 

D that could be deemed optimal [268-270]. It has been suggested that in the optimal 

serum concentrations of 25(OH)D for optimal bone mineral density, bone turnover 

and muscle strength should be >75 nmol.L-1 [268, 271]. Others have even suggested 

that concentrations of >100 nmol.L-1 should be considered optimal based upon the 

fact that those in such rich environments close to the equator present with 25(OH)D 

concentrations within this range [272]. The debate on what constitutes vitamin D 

deficiency will likely continue, particularly with the development of more sensitive 

methods to measure an increasing amount of vitamin D metabolites.  

 

Serum 25(OH)D Classification 

<12 nmol.L-1 Severely Deficient 

12 – <30 nmol.L-1 Deficient 

30 – 50 nmol.L-1 Inadequate 

>50 nmol.L-1 Adequate 
Table 1.1. US Institute of Medicine (2011) vitamin D concentrations for classifications of vitamin D 
status [236].  
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1.4.8 Prevalence of Vitamin D Deficiency 

Even in areas with ample sunlight exposure, it has been estimated that around 1 

billion people worldwide currently have insufficient serum 25(OH)D levels according 

to the US Institute of Medicine guidelines [273]. In support of this there are a 

multitude of large population based trials from across Europe that report a high 

frequency of individuals with serum concentrations of <50 nmol.L-1 [274-276]. Further 

to this, it has been reported that 13% of individuals in Europe have vitamin D 

concentrations of <30 nmol.L-1, with that figure rising to 40% including those with 

concentrations <50 nmol.L-1 [14]. With similar prevalence reported within the US 

[277], Australia [278] and even the Middle East [279] it is clear that vitamin D 

deficiency is a common occurrence globally.  

 

Whilst vitamin D deficiency is common across the general population, certain 

subgroups are at an increased risk [14, 16, 280]. For example, children with low birth 

weight, pregnant women and the institutionalised elderly often present with 

inadequate 25(OH)D concentrations [16, 280]. Given that dermal synthesis of vitamin 

D decreases with age and the fact that those who are institutionalised will spend less 

time outdoors due to poor health status, it unsurprising that poor vitamin D status is 

commonly observed within this subgroup [281]. Whilst vitamin D insufficiency is 

common place within the general public, it has also been reported that insufficiency is 

also common within professional athletes [17]. Out of the 61 athletes tested from 

across four differing sports, 61% had serum 25(OH)D concentrations <50 nmol.L-1 

with only one from the 61 tested having concentrations >100 nmol.L-1 [17].  
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1.5 Physiological Role of Vitamin D 

1.5.1 Physiological Effects of Vitamin D Deficiency 

Clearly the reports of a high prevalence of vitamin D insufficiency across multiple 

populations and subgroups are striking however, they do not report on the 

physiological implications of such deficiencies. The classical role of vitamin D 

involves the maintenance of bone health, with severe deficiencies known to cause 

rickets [211], osteomalacia [282] and osteoporosis [283], as well as an increased risk 

of fractures [284].        

 

Rickets is a clinical syndrome in children which results from a delay or failure in 

mineralisation of the growth plate within growing bones [285, 286]. Rickets caused 

due to nutritional deficiencies is currently the most common form of the syndrome 

across the globe [285, 287]. Vitamin D deficiency is a prerequisite for the 

development of nutritional rickets in children, associated with a lack of sunlight 

exposure and an inadequate intake of vitamin D from the diet [288]. Therefore, 

adequate skin exposure to sunlight is essential for the prevention of rickets [223]. 

The prevalence of vitamin D deficiency rickets is most common in children between 

three months and two years of age [289]. Due to the fact that 25(OH)D readily 

crosses the placenta, new-born infants may be provided with some protection from 

vitamin D deficiency providing the mother had adequate serum concentration of 

25(OH)D [290]. In addition to the more classical roles of vitamin D, vitamin D 

deficiency has also been associated with an increased incidence of cardiovascular 

disease [291], diabetes [292], Alzheimer’s disease [293] and chronic kidney disease 

[294].   
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1.5.2 Musculoskeletal Effects of Vitamin D Deficiency 

Alongside the classical actions of vitamin D, several lines of evidence now support a 

role for vitamin D in the maintenance of skeletal muscle function. A prominent feature 

of vitamin D deficiency is proximal muscle weakness [295], whilst deficiency has also 

been linked to impaired physical performance, diffuse muscle pain, gait impairments 

and an increased risk of falls [296-299].  

 

Multiple animal models have been utilised to study vitamin D deficiency and its role in 

musculoskeletal health. Vitamin D deficiency can be achieved via dietary means 

[300-303], a reduction in sunlight exposure [300] or by the administration of ethane 1-

hydroxy-1, 1-diphosphonate which blocks the production of 1a,25(OH)2D3 [303]. 

Early research into the musculoskeletal effects of vitamin D deficiency revealed 

symptoms of skeletal muscle myopathy including impaired contraction kinetics and 

weakness in the skeletal muscle of chicks and rats [300, 301]. Despite the observed 

impairments in contraction kinetics, no abnormalities were reported in any 

histochemical measures of skeletal muscle morphology or within ATP concentrations 

in the skeletal muscle of vitamin D deficient chicks [300]. Similar observations have 

been made in rat skeletal muscle whereby diet-induced deficiency resulted in a 

significant decrease in muscle force [304]. Interestingly, prolonged deficiency 

resulted in dysregulation of both calcium and phosphate homeostasis and when 

phosphate levels were corrected muscle strength returned to normal [304]. In support 

of this, the administration of vitamin D3 to vitamin D deficient chicks resulted in an 

increase in the incorporation of phosphate into skeletal muscle, suggesting that 

vitamin D stimulates phosphate fluxes across muscle membranes [305]. Whilst these 
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data suggest the effects of vitamin D deficiency on skeletal muscle may be indirect, a 

reduced expression of components of the sarcomere, including actin and the myosin-

troponin complex were also observed in the same animals which may explain the 

reductions in muscle force [303, 305]. More recently, diets containing increased 

calcium and phosphate have been utilised in order to try to minimise the observed 

hypocalcemia and hypophosphatemia that are associated with the induction of 

vitamin D deficiency [302]. Interestingly, when fed this diet, mice have a reduced grip 

strength as well an increased gene expression of Myostatin and muscle RING-finger 

protein-1 (Murf1) [302], two known regulators of skeletal muscle mass [306, 307]. 

Similar impairments in physical function were observed when mice were fed a 

vitamin D deficient diet for longer periods (8-12 months) [308]. Whilst mice fed a 

vitamin D deficient diet displayed reductions in grip endurance, sprint speed and 

stride length, no changes were observed in absolute grip strength, lean mass or 

markers of muscle morphology [308].  

 

Observational studies suggest a positive association between serum 25(OH)D levels 

with muscle strength and lower extremity function in older individuals [296, 309, 310]. 

Within a cohort of 1234 men and women aged over 65, subjects with serum 

concentrations of <25 nmol.L-1 displayed a reduction in physical capacity (timed walk 

and chair stands) than those with serum concentrations >75 nmol.L-1 [296]. In 

addition, individuals with a baseline serum concentration of <25 nmol.L-1 are reported 

to have a two-fold greater risk of developing sarcopenia [311]. Studies of this design 

however, are unable establish a causal link between vitamin D deficiency and the 

associated impairments in physical performance. Vitamin D deficiency also results in 
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a dysregulation of calcium and phosphate homeostasis which may result in indirect 

effects on skeletal muscle function. Furthermore, these data are often reserved to 

elderly populations making generalisations difficult, particularly given that these 

cohorts may already suffer from pre-existing conditions that involve high levels of 

systemic inflammation which can substantially degrade vitamin D status [312].  

 

1.5.3 Musculoskeletal Effects of Vitamin D Supplementation 

The effects of vitamin D deficiency upon the musculoskeletal system have been well 

studied to date [296, 300-302, 309]. Given the potential for impairments in 

musculoskeletal health with deficiency, many have also aimed to determine the 

potential health benefits of supplementation across multiple populations. 

Supplementation of vitamin D is commonly administered in combination with calcium 

due to the well-established role of vitamin D in maintaining calcium homeostasis 

[254].  

 

Firstly, multiple observational studies have reported associations between serum 

25(OH)D levels and markers of muscle function including, hand grip strength, lower 

limb strength and gait speed in elderly populations [313-315], although not all have 

reported such associations [316]. Similar observations have been made in athletic 

populations with serum 25(OH)D levels positively associating with increased muscle 

strength, sprint time, hand grip strength [317-320], although again others have failed 

to show such associations [321, 322]. Whilst the majority of such studies report a 

benefit of increasing serum 25(OH)D, particularly for those in the lower echelons of 

serum 25(OH)D, studies of this design are unable to determine causality.  
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Multiple randomised control trials (RCTs) have sought to establish the effect of 

vitamin D supplementation on skeletal muscle performance however, the results 

have been indifferent. The daily combination of vitamin D (800 IU) and calcium (1200 

mg) over a 12-week period resulted in improvements in timed up and go (TUG) test, 

knee flexor strength, knee extensor strength and grip strength in cohort of elderly 

women [323]. Similar observations were made when daily vitamin D (800 IU) and 

calcium (1000 mg) supplementation was carried out over a 12-month period with 

improvements in TUG test and quadriceps strength reported [324]. Improvements in 

skeletal muscle function in both studies resulted in a reduction in the amount of falls 

over the study period when compared to calcium supplementation alone [323, 324]. 

Some improvements in muscle function have also been observed in athletic 

populations. Footballers randomised to receive daily vitamin D (5000 IU) for a period 

of 8-weeks recorded improvements in vertical jump height and 10 metre sprint time 

[17]. Further to this, a single dose of vitamin D (150,000 IU) resulted in improvements 

in quadriceps and hamstring strength in a cohort of Judoka athletes [325]. On the 

other hand, multiple RCTs have reported conflicting results. For example, 6-months 

of vitamin D (400 IU/day) and calcium (500 mg/day) resulted in no improvements in 

grip or knee strength in a cohort of elderly female patients [326]. Similarly, 

supplementation of vitamin D every 3-months (150,000 IU) for 9-months resulted in 

no change in grip strength and did not reduce the number of falls in a cohort of 

community-dwelling women [327]. Further negative results have also been reported 

in athletic populations with multiple studies showing no differences in muscle 

strength, muscle power, sprint time and hand grip strength with daily vitamin D 

supplementation [328-331].  
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Meta-analyses combining many of these RCTs have also reported indifferent results 

on the proposed benefits on vitamin D supplementation [332-336]. A meta-analysis 

combining six RCTs reported an increase in both lower and upper limb strength 

following vitamin D supplementation in young healthy individuals [332]. Whilst similar 

increases in lower limb strength were reported in athletic individuals, vitamin D 

supplementation did not increase upper limb strength or muscle power when eight 

RCTs were combined [333]. One meta-analysis containing 30 RCTs with a combined 

5615 individuals reported a favourable effect of vitamin D when compared with 

placebo on skeletal muscle strength [334]. Supplementation was deemed more 

effective in adults with 25(OH)D concentration of <30 nmol.L-1 and in individuals older 

individuals (>65 years). Whilst another meta-analysis reported similar findings in 

relation to supplementation being more effective in those with serum concentrations 

of <30 nmol.L-1, they overall reported no effective of vitamin D supplementation 

muscle strength [335]. Interestingly, vitamin D supplementation was reported to have 

a positive additive effect when combined with resistance training in increasing lower 

limb muscle strength in older adults [336], suggesting vitamin D status may influence 

exercise adaptation.  

 

Clearly, conflicting evidence exists when it comes to the proposed benefits of 

supplemental vitamin D on musculoskeletal health. Disparity in outcomes may in part 

be explained by the multitude of supplementation protocols and periods employed 

throughout previous studies. Whilst some studies have opted for a daily approach 

(400 to 800 IU) [323, 324], others have utilised large single dose bolus’ (300,000 IU) 

[337] which could result in different outcomes. Indeed, large single dose bolus’ have 
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been shown to have detrimental effects and actually increase the risk of falls and 

fractures [338-340]. A possible explanation for this involves an increase in the 

activation of CYP24A1, the hydroxylase responsible for the catabolism of 

1a,25(OH)2D3 [338]. Previously, rats given a large bolus of vitamin D (75,000 

IU/week) displayed a significant increase in renal CYP24A1 which resulted in a 

significant reduction (60%) in serum 1a,25(OH)2D3 [341]. Therefore, high bolus’ may 

be counterproductive and actually dysregulate vitamin status in the short-term [338]. 

On the whole, vitamin D seems to be most effective in elderly populations and even 

more so in those that in the lower ranges of serum 25(OH)D [334, 335].  

 

1.6 The Vitamin D Receptor 

1.6.1 Discovery of the Vitamin D Receptor 

The first study to propose that vitamin D acted through a specific binding protein or 

vitamin D receptor (VDR) was published by Haussler and Norman in 1969 [342]. In 

this study, the authors reported on the successful isolation of a receptor for the 

biologically active form of vitamin D from the chromatin fraction of the chicken 

intestine [342]. Subsequent work built upon the biochemical properties of the 

receptor with the discovery that the protein primarily resided within the cytoplasm 

before translocating to the nucleus upon ligand binding [343, 344]. The binding of the 

VDR with 1a,25(OH)2D3 takes place with a high affinity and high selectivity [345] 

although, the VDR is able to bind albeit less effectively to other vitamin D metabolites 

[346]. Finally, the cloning of the VDR in 1987 provided direct evidence that the VDR 

was indeed a member of the steroid class of nuclear receptors [347-349].  
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1.6.2 Function of the Vitamin D Receptor 

Upon ligand binding and nuclear translocation, the VDR serves to recruit 

coregulatory complexes that mediate gene regulation at the transcriptional level 

[350]. The discovery of a number of gene candidates that were activated by 

1a,25(OH)2D3 prompted investigations into how vitamin D related signalling could 

promote their respective regulation [351, 352]. Studies investigating the regulation of 

genes such as Osteocalcin [352] and Cyp24a1 [351] suggested that the VDR bound 

to vitamin D response elements (VDREs) within the promoter regions of the 

respective regulated genes. The binding of the VDR to these VDREs is dependent 

upon the VDR forming a heterodimer protein complex with the steroid receptor family 

known as the retinoid X receptor (RXRs) [353]. Upon binding of the VDR:RXR 

complex to the VDREs, the complex is able to recruit multiple coregulatory 

complexes of unique functions that serve to remodel chromatin and subsequently 

influence gene transcription. These complexes remodel chromatin via the 

repositioning of nucleosomes via ATPase enzyme activity [354], modify lysine or 

arginine residues of histones 3 and 4 at specific locations via the activity of histone 

acetyltransferases [355] or bind with complexes that allow for the entry of RNA 

polymerase II into the transcriptional apparatus and the subsequent activation of 

transcription [356].   

 

Alongside these classical actions of the VDR, binding of 1a,25(OH)2D3 to the VDR 

has also been proposed to result in rapid non-genomic signalling [357]. For example, 

a VDR distinct of the nuclear VDR has been proposed to exists on the cell membrane 

due to the fact that some vitamin D analogues are able to initiate rapid signalling 
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events without binding to the nuclear receptor [358]. A specific protein was identified 

that resided in the basal-lateral membranes of chick intestinal epithelium which was 

able to bind to 1a,25(OH)2D3 and regulate Ca2+ transport across such membranes 

[359]. This protein was initially termed the membrane-associated rapid response 

steroid (MARRS) binding protein however, it was later identified as a multifunctional 

thioredoxin-like protein known as glucose responsive protein 58 (GRP58) or 

endoplasmic reticulum protein 57 (ERp57) [360, 361]. Binding of 1a,25(OH)2D3 

stimulates intracellular calcium flux with osteoblasts as well as the activation of 

protein kinase C (PKC) [362]. Whilst VDR independent signalling events involving the 

MARRS protein have been identified, others have also shown that the traditional 

VDR may also possess the ability to mediate plasma membrane signalling. Indeed, 

the action of 1a,25(OH)2D3 are lost in osteoblasts from VDR knock-out (KO) mice 

[363] whilst a 1a,25(OH)2D3 mediated translocation of the VDR has been observed 

within skeletal muscle cell lines [364].  

 

1.6.3 Development of the Vitamin D Receptor Knock-Out Mouse 

Our understanding of the physiological roles of the VDR has been enhanced 

significantly by the development of mouse models with the targeted deletion of genes 

encoding for the VDR [365-368]. The first, often referred to as the Tokyo strain, was 

developed via the removal of exon 2 from the VDR gene that encodes the first zinc 

finger of the DNA-binding domain, essential for biological function of the VDR [367]. 

The second strain was developed in a similar fashion, albeit this time via the removal 

of the second zinc finger of the DNA-binding domain [365]. The Leuven strain was 

developed by utilised a Cre-lox system and the crossing of VDRlox mice with 
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phosphoglycerate kinase-Cre mice [366]. Finally, the München strain was developed 

via the targeted disruption of the first zinc finger of the DNA-binding domain which 

resulted in the expression of a VDR with intact hormone binding domain but lacking 

the first zinc-finger for DNA binding [368]. These mouse strains have been primarily 

utilised as a model to study hereditary vitamin D-resistant rickets (HVDDR). This 

autosomal recessive disorder caused by a defect in the VDR gene results in target 

tissue insensitivity to 1a,25(OH)2D3 [369].  

 

Interestingly, mice with the targeted ablation of the VDR are unaffected at birth and 

are indistinguishable from their respective littermates [365]. However, as of the third 

week of life abnormalities begin to emerge. Most notably, impaired mineral 

homeostasis in the form of hypocalcemia, as well as growth plate abnormalities are 

observed from 21-days [365]. Later experiments revealed a significant reduction in 

duodenal calcium absorption in VDR-KO mice at 10-weeks of age, highlighting the 

critical role for the VDR in maintaining mineral homeostasis [366, 368]. Across a 

similar timeframe, VDR-KO mice also develop secondary hyperparathyroidism with a 

progressive increase in serum parathyroid hormone (PTH) levels observed from 21-

days of age [365]. In correlation with increased serum PTH levels, an increase in 

renal phosphate losses are observed resulting in hypophosphatemia [365]. 

Disturbances in mineral homeostasis accompany growth plate abnormalities with an 

expansion, flaring and under mineralisation of the growth plate observed, 

characteristics that are consistent with the development of rickets [365]. As of 4-

weeks of age mice begin to develop alopecia [365, 367] which progresses to 

complete hair loss over a 3-month period, a trait that is also observed in humans with 
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VDR related mutations [369]. Later consequences include significant reductions in 

body weight at 6-weeks as well as a reduction in bone mineral density at 7-weeks of 

age [367]. The development of osteomalacia is followed by the severe under 

mineralisation of the bone at 10-weeks of age highlighted by a coverage of 85% of 

the bone with osteoid [370]. Finally, mutant mice progressively deteriorate until 

premature death occurs around 15-weeks of age [367].  

 

Interestingly, much of the observed phenotypes can be rescued by placing the VDR-

KO mice on a rescue diet with increased calcium and phosphorus content, thereby 

preventing the impaired mineral homeostasis that develops in VDR-KO mice [370]. 

Mice placed on this diet from 16-days of age show no signs of impaired mineral 

homeostasis or impaired bone development [370]. Similarly, the transgenic 

overexpression of the VDR within the intestine of VDR-KO mice also results in the 

prevention of the impaired mineral homeostasis previously observed [371]. Whilst 

neither osteomalacia or rickets are observed in mice fed the rescue diet, the 

development of alopecia still persists [372]. These data demonstrate that the actions 

of the VDR on skeletal development are predominantly indirect and the observed 

phenotype of VDR-KO mice is largely a result of impaired intestinal calcium 

absorption [370-372]. Interestingly, the rescuing of the impaired mineral homeostasis 

in VDR-KO mice provides a mouse model in which it is possible to identify which 

phenotypic traits are secondary effects of impaired mineral homeostasis or of a direct 

result of the loss of the VDR.  
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1.6.4 Detection of the Vitamin D Receptor in Skeletal Muscle 

The detection of the VDR within skeletal muscle is technically challenging due to low 

expression levels, the multicellular nature of skeletal muscle, differences in VDR 

expression across development and finally the non-specificity of antibodies [373]. 

 

One of the first reports suggesting a role for the VDR in skeletal muscle described 

the presence of a high affinity 1a,25(OH)2D3 binding protein in human derived 

myoblasts and myotubes [374]. However, since these early indications of positive 

VDR expression within skeletal muscle, following research has yielded ambiguous 

results [250, 375, 376]. Recently, real-time polymerase chain reaction (RT-PCR) was 

employed to detect VDR transcripts in a multitude of tissue extracts [250]. In 

comparison to the duodenum, a classical site of VDR action, skeletal muscle 

transcripts were detected at a substantially lower rate (4000x lower) [250]. Despite 

these extremely low levels, the VDR has been successfully detected in skeletal 

muscle cell lines [250, 375, 377] and rodent skeletal muscle [250] using the highly 

specific VDR-D6 antibody [373]. Whilst the VDR has also been detected in human 

skeletal muscle extracts, the antibody used has previously been called into question 

[378, 379]. In addition, the successful detection of the VDR within human skeletal 

muscle has been reported following a course of oral vitamin D supplementation in 

elderly subjects [380, 381], raising the possibility that supplementation aids in 

detection. On the other hand, a number of studies have failed to detect the VDR 

within skeletal muscle samples utilising both immunoblot and immunohistochemical 

approaches [375, 376]. Given the extremely low expression levels, current protein 
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detection methods may not be sensitive enough to reliably detect the VDR within 

skeletal muscle.  

 

One such method that has been described to aid in the detection of the VDR within 

skeletal muscle involves the use of a hyperosmolar lysis buffer (HLB). In comparison 

to more commonly used sucrose based lysis buffers, a urea based lysis buffer 

resulted in a much more robust detection of the VDR in mouse skeletal muscle 

extracts [250]. Given the tight binding of the VDR to DNA, it is hypothesised that the 

HLB may facilitate the release of DNA-bound proteins and be more effective in 

protein unfolding and denaturation [382, 383]. In support of this method, similar urea 

concentrations have aided in the detection of other transcription factors within 

skeletal muscle, including heat-shock proteins [384]. Despite the reported success 

using this method, others have reported conflicting results. Utilising the same 

method, it was reported that the VDR was undetectable in human skeletal muscle 

extracts despite loading up to 150 µg of protein [375]. Failure to detect the VDR, a 

predominantly nuclear protein, was also reported even when the nuclear fraction 

from whole skeletal muscle homogenates was probed [381]. Clearly issues still 

persist in the reliable detection of the VDR within skeletal muscle. Whilst the 

detection of the VDR in vitro does not seem to be an issue, its detection in adult 

skeletal muscle extracts remains problematic.  

   

1.6.5 The Vitamin D Receptor in Skeletal Muscle 

Despite the difficulties surrounding the detection of the VDR within skeletal muscle, 

our understanding on the role of the VDR within skeletal muscle has been enhanced 
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primarily via the use of in vitro models of myogenesis and the development of VDR-

KO mouse models [365-368, 370, 375, 377, 385]. Functionally, VDR-KO mice display 

reductions in grip strength, impaired swimming performance and increased fatigue 

indicating impaired skeletal muscle performance [302, 386]. Whole-body impairments 

in skeletal muscle function are supported by morphological changes within the 

skeletal muscle of VDR-KO mice. Animals at 3-weeks of age, prior to the onset of the 

secondary metabolic changes such as hypocalcemia, displayed a shift in muscle 

fibre diameters as well as a 20% decrease in size [387]. Morphological changes are 

still observed at both 8- and 12-weeks of age and persisted even with the 

administration of a rescue diet containing increased mineral content [302, 387]. 

Interestingly, these changes are observed across multiple muscles suggesting the 

actions of the VDR are not limited to skeletal muscle of specific fibre types [302, 387]. 

A number of myogenic regulatory factors including myogenic factor 5 (Myf5), 

transcription factor E2-aplha (E2A), myogenic differentiation 1 (MyoD) and myogenin 

were all increased [302, 387], whilst the expression of immature forms of MHC were 

also observed in the small muscle fibres of VDR-KO mice [387]. Myostatin mRNA, a 

negative regulator of muscle mass, was also increased within the skeletal muscle of 

VDR-KO mice, possibly explaining the observed reductions in muscle fibre size [302]. 

Given the ubiquitous expression of the VDR, including within the central nervous and 

vestibular system, the assessment of the direct effects of the loss of the VDR within 

skeletal muscle are difficult within this mouse model [388]. Recently, mice with the 

tissue-specific knockout of the VDR within skeletal muscle have been generated 

however, limited research has been performed to date utilising this model [385, 389]. 

Interestingly, these mice develop a number of metabolic defects including increased 
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serum insulin levels, insulin resistance and glucose intolerance [389]. Whilst the 

morphological characterisation of these mice was not the primary aim of the study, 

they did report a slight decrease in muscle fibre size concomitant with increases in 

forkhead box O1 (FOXO1) at both the gene and protein level [389]. The increased 

activation of FOXO1 could potentially explain the reductions in fibre size observed in 

both whole-body and skeletal muscle specific VDR-KO mice given its role in skeletal 

muscle atrophy [390, 391].  

 

The regeneration of skeletal muscle following an insult or injury is a complex process 

and recent evidence suggests that VDR activation may be increased during times of 

regeneration. Interestingly, a significant increase in the activation of both the VDR 

and CYP27B1 were observed following skeletal muscle injury induced via the 

injection of barium chloride (BaCL2) or freeze crush [251, 392, 393]. The increase in 

VDR expression was localised to the myonuclei of regenerating muscle fibres 

however, co-localisation was also observed with satellite cells suggesting an 

increase in activation specifically during the regenerative processes [251, 393]. 

Similar observations were reported following an acute bout of resistance exercise 

performed via electrical stimulation in rodent skeletal muscle [394]. Both VDR and 

CYP27B1 expression increased both immediately and 3 h post electrical stimulation, 

however endurance exercise failed to stimulate corresponding increases in 

expression [394]. Similarly, an acute bout of high-intensity treadmill based exercise in 

rats failed to increase VDR expression alone, although exercise in combination with 

vitamin D supplementation resulted in an increase in VDR expression [395]. Whilst 

these data highlight an increase in VDR expression during times of skeletal muscle 
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regeneration, it could be argued that the means to induce said processes are 

supraphysiological. Given endurance exercise failed to increase VDR expression 

alone, significant muscle damage may have to take place to induce VDR activation 

with skeletal muscle. 

 

Alongside its proposed roles in skeletal muscle regeneration, the VDR has also been 

studied in the context of skeletal muscle development [251, 377, 387, 396-399]. The 

VDR appears within 13-days of gestation in rats and resides within the mesoderm, a 

precursor to the musculoskeletal system [396]. Additionally, components of vitamin D 

related signalling including the VDR and CYP24A1 are expressed within 

mesenchymal stem cells [397], whilst the expression of the VDR within skeletal 

muscle decreases across development in mice [250]. Multiple studies have utilised 

the myogenic C2C12 skeletal muscle cell line to study the role of vitamin D and its 

related signalling on myogenesis [251, 377, 387, 398, 399]. The treatment of this cell 

line with 25(OH)D and 1a,25(OH)2D3 results in a reduction in proliferation [251, 377, 

398], an inhibition of myotube formation during serum starvation and an increase in 

individual myotube size [377]. Alterations in key markers of cell cycle progression 

including Rb, myc, ATM, and cyclin D1 as well the phosphorylation status of Rb 

contribute to the vitamin D induced anti-proliferative effects within the C2C12 cell line 

[377, 398]. Whilst vitamin D treatment resulted in a decrease in overall myotube 

number, individual myotube size was increased, in concordance with a 

downregulation of myostatin [377]. In contrast, others have reported that 

1a,25(OH)2D3 treatment in C2C12’s stimulates myotube formation when a high 

serum model of myogenesis is employed [398]. It is likely that the different models 
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employed to study myogenesis resulted in a different differentiation time course 

leading to conflicting effects of 1a,25(OH)2D3. Whilst the increased expression of the 

VDR is observed following treatments with 25(OH)D and 1a,25(OH)2D3 [377, 398] 

these models cannot confirm whether the effects on myogenesis observed are 

mediated by ligand dependent or independent roles of vitamin D. One study 

examining myogenesis following siRNA-mediated knock-down of the VDR observed 

similar effects on proliferation and differentiation [400] suggesting a direct role for the 

VDR in mediating myogenic signalling. However, given the transient nature and 

partial deletion often seen with siRNA approaches, improved in vitro models are 

needed to more clearly elucidate the role of the VDR in the development of skeletal 

muscle.  

 

As previously discussed, the VDR also possesses non-genomic roles involving 

transient signalling events [357]. In support of a non-genomic role for the VDR within 

skeletal muscle, the VDR rapidly translocates (1-10 minutes) from the nucleus to the 

cytoplasm upon exposure of cultured chick myoblasts to vitamin D [364]. Similar 

translocation to the plasma membrane was reported in C2C12s, with translocation 

dependent on intact microtubular transport and caveolae structure [401]. Binding of 

1a,25(OH)2D3 with the VDR at the plasma membrane in turn activates c-SRC, 

phosphoinositide-3-kinase (PI3K) and inositol triphosphate (IP3) which in turn leads 

to the release of Ca2+ from the sarcoplasmic reticulum [402, 403]. Furthermore, the 

actions of vitamin D signalling have been proposed to result in the translocation of 

PKCa from the cytosol to the cell membrane [404]. PKCa activates the L-type 

voltage dependent Ca2+ channel (VDCC) and Ca2+ store-operated entry (SOCE) 
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channel resulting in an increase in Ca2+ flux within the cell [405]. These translocation 

events likely govern 1a,25(OH)2D3 induced increases in intracellular calcium flux 

within skeletal muscle cell lines [406-408] and within chick skeletal muscle [409] 

(Figure 1.4).  Following longer periods of exposure, the VDR appears to return to the 

nucleus, possibly to carry out its genomic actions [398].  
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Figure 1.4. Genomic and non-genomic actions of vitamin D related signalling within skeletal 
muscle. 1a,25(OH)2D3 enters the cell prior to ligand binding to the VDR. Upon translocation to the 
nucleus, the VDR binds with RXRa forming a heterodimer protein complex that recruits co-regulatory 
binding partners and influences genomic transcription. 1a,25(OH)2D3 ligand binding also initiates 
transient signalling events mediated by the VDR that stimulate intracellular calcium uptake. Adapted 
from [410].  
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1.6.6 The Vitamin D Receptor in Mitochondria 

Over the last decade, evidence has begun to emerge suggesting a novel role for the 

VDR within the regulation of mitochondrial energy metabolism [411]. The localisation 

of the VDR within the mitochondria has been confirmed within a number of cell types 

including platelets, megakaryocytes, and keratinocytes [412, 413]. Whilst the 

detection of the VDR within the mitochondria has opened up a new line of 

questioning in terms of its precise role, the current evidence is conflicting and 

primarily based upon in vitro observations.  

 

Firstly, the treatment of human skeletal muscle myoblasts with 1a,25(OH)2D3 resulted 

in an increase in multiple parameters of mitochondrial function including basal, 

maximal and ATP dependent respiration as measured by extracellular flux analysis 

[414]. Similar observations were made following the treatment human skeletal 

muscle myoblasts with conditioned medium from the Lewis lung cancer carcinoma 

cell line 1 (LLC1). Whilst the conditioned medium reduced the spare capacity of the 

human derived myoblasts, the co-treatment with 1a,25(OH)2D3 was able to rescue 

observed impairments [415]. Increases in mitochondrial function following 

1a25(OH)2D3 treatment were reported to be mediated by increases in the 

mitochondrial volume fraction and OPA1, a key mediator of mitochondrial fusion 

[414]. In concert, decreases were observed in mediators of mitochondrial fission 

including Fis1 and Drp1, as well as a decrease in the amount of phosphorylated 

pyruvate dehydrogenase, which could increase the amount of acetyl-CoA entering 

the TCA cycle [414]. Interestingly, the positive effects of 1a,25(OH)2D3 were 
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abolished following the silencing of the VDR via siRNA suggesting a direct role for 

the VDR in mediating these effects within the mitochondria [414].  

 

Conversely, silencing of the VDR within the human keratinocyte cell line HaCaT and 

human breast cancer cell line MCF7, resulted in an increase in mitochondrial 

membrane potential and increased transcription of proteins involved in the 

mitochondrial electron transport chain [416, 417]. Whilst the authors suggested VDR 

silencing resulted in an increase in mitochondrial respiration, respiration was not 

directly measured and was indirectly assessed via measurements of membrane 

potential and ROS production [416, 417]. Additionally, similar analysis of human 

primary fibroblasts was reported, however data from the previously mentioned 

mitochondrial analysis was not reported, raising the question of whether similar 

effects of VDR silencing were observed [417]. Despite the questionable aspects of 

the aforementioned data, a study that did directly assess cellular bioenergetics in 

response to 1a,25(OH)2D3 reported a suppression of respiration in human brown 

adipocytes [418]. Both maximal and mitochondrial proton leak were suppressed in 

response to treatment with 1a,25(OH)2D3, whilst the overexpression of the VDR 

resulted in a decrease in mRNA expression of uncoupling protein 1 (UCP1), PGC-1a, 

as well as the expression and transactivation of peroxisome proliferator activated 

receptor gamma (PPARg) [418].  

 

In order to try to explain the discrepancies observed, it is interesting to note the 

localisation of the VDR within the cell types studied. Localisation of the VDR was 

observed within the mitochondria of the HaCaT cell line [412, 413] however, the VDR 
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was not detected within the mitochondria of human skeletal muscle myoblasts [414]. 

Therefore, the potential role of the VDR in modulating mitochondrial metabolism may 

rely on its subcellular localisation. The positive effects observed within skeletal 

muscle myoblasts may be as a result of the nuclear actions of the VDR or possibly 

due to its non-genomic actions in regulating Ca2+ flux.  

 

Currently, in vivo data regarding the precise role of the VDR within the mitochondria 

is lacking although, some evidence exists regarding the relationship between vitamin 

D and energy metabolism. Fatigue is a symptom commonly associated with vitamin 

D deficiency and markers of fatigue are negatively correlated with serum 25(OH)D 

levels [419], whilst supplementation also improves markers of fatigue in severely 

deficient individuals [420]. Interestingly, a beneficial effect of vitamin D 

supplementation in a group of severely deficient individuals was reported following 

the assessment of mitochondrial function via 31-phosphate nuclear magnetic 

resonance spectroscopy (31-P MRS) [420]. Whilst some parameters were 

unchanged, the time needed to recover PCr stores after exercise as well as the 

disappearance rate of ADP were significantly reduced following vitamin D 

supplementation [420]. Whilst these data are promising and potentially indicate an 

improvement in mitochondrial ATP production via oxidative phosphorylation following 

supplementation, a number issues exist within the study [420]. For example, the 

study design lacked proper randomisation and blinding and therefore adequate 

control. In addition, the control group did not have adequate serum 25(OH)D levels 

(18 ng.ml-1) themselves making comparisons difficult.  

   



	 57 

1.7 Summary 

Skeletal muscle is a highly plastic tissue with the ability to respond to both positive 

and negative stimuli. Within skeletal muscle there exists a morphologically tubular 

network of mitochondria that primarily functions to produce ATP at the expense of 

substrates and molecular O2 [76, 79]. In response to both exercise and nutritional 

interventions, this network undergoes remarkable remodelling processes including 

events of biogenesis, fusion, fission and mitophagy [66, 69-73]. Whilst a number of 

nutritional interventions are known to positively affect these processes [172], 

nutritional deficiencies can have opposing effects. A common deficiency is that of 

vitamin D [14, 277], with severe deficiencies resulting in skeletal muscle myopathies 

[421]. Interestingly, recent evidence has linked vitamin D to increased mitochondrial 

function with human skeletal muscle myoblasts [414, 415] and the supplementation 

of vitamin D in severely deficient patients improved markers of ATP production as 

well as reducing symptoms of fatigue [420]. In addition, diet-induced vitamin D 

deficiency in mice results in impaired physical function, highlighting a prominent role 

for vitamin D in maintaining skeletal muscle function [308]. Whilst these data are 

interesting, little is known about the precise role of the VDR in the maintenance of 

skeletal muscle mitochondrial function. Furthermore, whilst severe vitamin D 

deficiencies are known to impair physical performance, it is unknown how such 

deficiencies affect the process of exercise adaptation within skeletal muscle. 

Therefore, this thesis will explore the role of vitamin D and the VDR within skeletal 

muscle. The aims of this thesis are briefly outlined below and will be discussed in 

more detail in each respective chapter.   
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1.8 Thesis Aims 

The aims of this thesis are as follows; 

 

1. Develop a reliable method for the detection of the VDR within skeletal 

muscle samples (Chapter 3). 

 

2. Determine the role of the VDR within the maintenance of skeletal muscle 

mitochondrial function and protein content (Chapter 4). 

 

3. Examine the role of diet-induced vitamin D deficiency on anthropometric 

measures of body composition and mitochondrial function in C57BL/6J 

mice (Chapter 5). 

 

4. Determine whether diet-induced vitamin D deficiency impairs the positive 

impact of exercise on body composition and mitochondrial function in 

C57BL/6J mice (Chapter 6).  
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2.1 Ethical Approval 

2.1.1 Wistar Rats 

Ethical approval for rat studies was granted by the Royal Veterinary Colleges Ethics 

and Welfare committee. Experiments were carried out under UK Home Office license 

70/7437 and 70/25526 in order to comply with the Animals Scientific Procedures Act 

(1986). Male Wistar rats at 8-weeks of age were housed communally in a 

temperature controlled environment (22 ± 0.5°C) with a 12 h light-dark cycle. 

 

2.1.2 C57BL/6JAusb 

Ethical approval for mouse studies was granted by the Garvan Institute and St. 

Vincent’s Hospital Animal Experimentation Ethics Committee (approval number 

18/19). Ethical approval fulfils all the requirements of the NHMRC and the NSW State 

Government, Australia. All animal handling was carried out by trained personnel and 

all procedures were carried out according to the Australian code of practice for the 

care and use of animals for scientific purposes 8th edition [1]. Male C57BL/6JAusb 

mice at 3- and 10-weeks of age were housed communally in a temperature controlled 

environment (22 ± 0.5°C) with a 12 h light-dark cycle.  

 

2.2 Tissue Culture 

2.2.1 Tissue Culture Maintenance 

Tissue culture experiments were conducted on low passage number cells (<20). 

Tissue culture was carried out under sterile conditions in a class II safety cabinet. 

Cells were incubated in a HERAcell 150i CO2 Incubator (Thermo Scientific Inc, 

Chesire, UK) maintained at 37°C with 5% CO2. A VACUSAFE aspiration system 
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(Integra Biosciences Ltd, Berkshire, UK) was used to discard all waste media and 

liquids. Necessary solutions were made using ultra-pure water (Type 1) from a Milli-Q 

water purification system (Merck, Darmstadt, Germany). General cell populations 

were maintained on 15 cm2 plates (Corning Inc., Massachusetts, US).  

 

2.2.2 Tissue Culture Reagents 

All reagents were purchased from Gibco (Life Technologies, California, US) unless 

otherwise stated. Dulbecco’s modified eagles medium (DMEM) with added 

GlutaMAXTM and high glucose (4.5 g.L-1) was used as base for both growth and 

differentiation medium. Growth medium contained DMEM with the addition of 10% 

fetal bovine serum (FBS) purchased from GE Healthcare Life Sciences (GE 

Healthcare Bio-sciences, Pittsburgh, US), 1% penicillin-streptomycin (PS) and 2 

µg.ml-1 puromycin dihydrochloride (puromycin) purchased from Sigma-Aldrich 

(Sigma-Aldrich, Gillingham, UK). Differentiation medium contained DMEM with the 

addition of 2% horse serum (HS) purchased from Sigma-Aldrich and 1% PS. 

Phosphate buffered saline (PBS) was used to wash cell monolayers. Tryspin-EDTA 

(0.05%) with the addition of phenol red was used to dissociate cell monolayers. 

Frozen cells were stored in freeze medium containing FBS with 10% dimethyl 

sulfoxide (DMSO) purchased from Sigma-Aldrich (Sigma-Aldrich, Gillingham, UK).  

 

2.2.3 Generation of Vitamin D Receptor Knock-Down C2C12 Cell Line 

The lentiviral plasmid used (pLKO.1 backbone) was designed in-house and was 

based on (Clone ID: RMM3981-201757375) and targeted the (3’ UTR) mouse 

sequence 5′- TTA AAT GTG ATT GAT CTC AGG-3′ of the mouse Vdr gene; the 
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scramble short hairpin ribonucleic acid (shRNA) was used as a negative control as 

previously reported [2] with a hairpin sequence: CCT AAG GTT AAG TCG CCC TCG 

CTC TAG CGA GGG CGA CTT AAC CTT AGG (Addgene plasmid 1864, Cambridge, 

MA, USA). Oligos were obtained from ITDDNA USA and suspended, annealed and 

cloned into pLKO.1 at EcoRI and AgeI restriction sites as per the pLKO.1 protocol 

from Addgene. Resultant plasmids were transformed in DH5α cells for amplification 

and isolated. The actual DNA sequence was confirmed at the Pennsylvania State 

University College of Medicine DNA sequence core facility. Packaging plasmids 

psPAX2 and envelope protein plasmid pMD2.G were a gift from Trono Lab (Addgene 

plasmids 12260 and 12259 respectively). HEK293FT cells (Invitrogen, Carlsbad, CA, 

USA) were grown in DMEM; 80–85% confluent plates were rinsed once with Opti-

MEM (Invitrogen, Carlsbad, CA, USA) and then incubated with Opti-MEM for 4 h 

before transfections. psPAX2 and pMD2.G along with either scramble or pLKO.1 

clones targeting mouse Vdr (three clones) were added after mixing with 

Lipofectamine 2000 as per the manufacturer’s instructions (Invitrogen, Carlsbad, CA, 

USA). Opti-MEM was changed after overnight incubation with DMEM containing 10% 

FBS without antibiotics to allow cells to take up the plasmids and recover. Culture 

media were collected at 36 and 72 h post-transfection for viral particles. Viral 

particles present in the supernatant were harvested after a 15-minutes spin at 1,500 

g to remove cellular debris. The supernatant was further filtered using a 0.45-μm 

syringe filter. Supernatant-containing virus was either stored at −80°C for long-term 

storage or at 4°C for immediate use. C2C12 cells at 60% confluence were infected 

twice overnight with 3 ml of viral supernatant containing 8 μg.ml-1 polybrene in 

serum-free–antibiotic-free DMEM. Fresh DMEM media containing 10% FBS, 
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antibiotics and 2 μg.ml-1 puromycin (Sigma-Aldrich, St. Louis, MO, USA) were added 

the next day. Cells that survived under puromycin selection were either harvested (as 

stable cells), stored under liquid nitrogen (N2) or used as either myoblasts or 

myotubes depending on the experiment. Successful VDR knock-down (VDR-KD) 

was confirmed via the determination of VDR protein content via immunoblot.  

 

2.2.4 C2C12 Growth and Differentiation 

VDR-KD and respective scramble control C2C12s were plated at 1.0 x 105 cells/well 

in 2 ml of growth medium in 6-well plates (Nunc, Roskilde, Denmark). Upon reaching 

90% confluence, cells were either harvested for myoblast experiments or switched to 

differentiation medium. Before switching to differentiation medium, cells were washed 

once with PBS. Differentiation medium was changed every other day and myotube 

formation was monitored over a period of 7-days.  

 

2.3 Sample Lysis and Homogenization 

2.3.1 Cell and Tissue Lysis 

Upon collection, both myoblast and myotube cell monolayers were washed twice with 

ice-cold PBS. Each well was actively scraped and collected in 100 µl of sucrose lysis 

buffer. Tissue samples were powdered on dry ice using a CellcrusherTM tissue 

pulverizer (Cellcrusher Ltd, Cork, Ireland) and homogenized in a 10-fold mass of ice-

cold sucrose lysis buffer. The constituents of the sucrose lysis buffer are described 

below (section 2.3.2) 
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2.3.2 Sucrose Lysis Buffer 

Cell and tissue lysis was completed using sucrose lysis buffer (50 mM Tris pH 7.5; 

270 mM sucrose; 1 mM EDTA; 1 mM EGTA; 1% Triton X-100; 50 mM sodium 

fluoride; 5 mM sodium pyrophosphate decahydrate; 25 mM beta-glytcerolphosphate). 

Relevant inhibitors were added fresh on the day of use and included 1 cOmpleteTM 

protease inhibitor cocktail EDTA free tablet (cat. 1183617001) and Phosphatase 

Inhibitor Cocktail 3 (cat. P0044) both purchased from Sigma-Aldrich (Sigma-Aldrich, 

Gillingham, UK).  

 

2.3.3 Urea Lysis Buffer 

With the aim of detecting the VDR in whole skeletal muscle extracts (Chapter 3), 

tissue samples were also lysed in a hyperosmolar lysis buffer (6.7M urea; 10% 

glycerol; 10mM Tris-HCl, 1% sodium dodecyl sulfate; 1mM dithiothreitol; 1mM 

phenylmethylsulfonyl-fluoride). One Protease Inhibitor Cocktail tablet was added 

fresh upon the day of use. 

 

2.3.4 Cell and Tissue Homogenization 

Cell and tissue lysates were homogenized via shaking in a FastPrep 24 5G (MP 

Biochemicals, Santa Ana, California, USA) at 6.0 m·s-1 for 80 s. Samples were then 

centrifuged for 10 min at 8,000 g and at 4°C to remove any insoluble material. The 

resulting supernatant was removed and stored at -80°C for further analysis.  
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2.3.5 Determination of Protein Content 

Cell and tissue samples were diluted in a 1:5 and 1:20 ratio respectively and protein 

concentrations were determined using the DC protein assay as per manufacturer’s 

instructions (Bio-Rad, Hercules, California, USA). 

 

2.4 Immunoblotting 

2.4.1 Sample Preparation 

Total protein lysates of a known concentration were mixed 3:1 with 4x Laemmli 

sample loading buffer to generate polyacrylamide gel loading samples of a known 

concentration. Prior to gel loading samples were boiled at 95°C for 5 minutes 

(samples were un-boiled when using MitoProfile OXPHOS antibody). Prepared 

samples were stored at -80°C until analysis.  

 

2.4.2 Gel Preparation and Electrophoresis 

Gels (8-15%) were prepared by mixing relative amounts of 30% acrylamide/bis-

acrylamide (Bio-Rad, Hercules, California, USA), Tris-SDS (pH 8.8) and ultra-pure 

water. Subsequently, both 10% ammonium persulfate (APS) and TEMED were 

added in order to initiate polymerization. Gels were allowed to polymerize for ~30 

minutes prior to the addition of 5% stacking gel prepared as above. Gels were 

prepared using 10- or 15-well combs dependent upon the number of samples loaded. 

An equal volume of protein (10-75 µg) alongside a molecular weight marker 

(Precision Plus ProteinTM Dual Colour Standards, Bio-Rad, Hercules, California, 

USA) was separated by SDS-PAGE at a constant current of 23 mA per gel for ~60 

minutes.  
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2.4.3 Transfer and Blocking 

Proteins were then transferred on to BioTrace NT nitrocellulose membranes (Pall Life 

Sciences, Pensacola, Florida, USA) using a wet transfer system at 100 V for 1 h. 

Membranes were then stained in Ponceau S (Sigma-Aldrich, Gillingham, UK) and 

imaged to check for even loading and transfer. Membranes were then blocked for 1 h 

in 3% dry-milk in tris-buffered saline with tween (TBS-T). Membranes were then 

incubated overnight in primary antibodies at 4°C. Following primary antibody 

incubation, membranes were washed three times in TBS-T and subsequently 

incubated in the appropriate horseradish peroxidase-conjugated secondary antibody 

at room temperature for 1 h. Membranes were again washed three times in TBS-T 

prior to imaging.  

 

2.4.4 Antibodies 

All primary antibodies were used at a concentration of 1:1000 in TBS-T unless 

otherwise stated. Antibodies for the VDR were used at a concentration of 1:500 in 

TBS-T when aiming to detect the VDR in whole skeletal muscle lysates (Chapter 3). 

Antibodies for dynamin-1-like protein (DRP1; 8570) and vitamin D3 receptor (VDR; 

12550) were from Cell Signaling Technology; MitoProfile OXPHOS antibody cocktail 

(110413), vitamin D receptor (VDR; 109234) and mitofilin (110329) were from 

Abcam; dynamin-like 120 kDa protein (OPA1; CPA3687) was from BD Biosciences; 

peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a; 

AB3242) was from Merck-Millipore; citrate synthase (CS; SAB2701077) and 

mitochondrial fission protein 1 (FIS1; HPA017430) were from Sigma-Aldrich; vitamin 

D receptor (D-6) (VDR; 13133) was from Santa Cruz Biotechnology. Secondary 
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antibodies were used at a concentration of 1:10,000 in TBS-T. Anti-mouse (7076) 

and anti-rabbit (7074) were from Cell Signaling Technology.  

 

2.4.5 Image Capture and Analysis 

Antibody detection was performed via enhanced chemiluminescence horseradish 

peroxidase substrate detection kit (Millipore, Watford, UK). Subsequent imaging and 

band quantification were performed using a G:Box Chemi-XR5 system (Syngene, 

Cambrige, UK).  

 

2.5 Extracellular Flux Analysis 

2.5.1 Cell Seeding and Maintenance 

Both scramble control and VDR-KD cells were seeded in XFe24-well cell culture 

microplates (Seahorse Bioscience, North Billerica, USA) at 3.0 x 105 cells/well in 100 

µl of growth medium and allowed to rest at room temperature for 1 h in order to 

promote an even cell distribution [3]. For myoblast experiments, cells were incubated 

at 37°C and 5% CO2 for 3 h in order to allow sufficient time for adherence to cell 

culture microplate and subsequently assayed. For myotube experiments, cells were 

incubated for a period of 24 h resulting in a confluence of 90%. Cells were then 

washed once with PBS and medium changed to differentiation medium. 

Differentiation was changed every other day for a period of 7 days.  

 

2.5.2 Mitochondrial Stress Test 

Prior to the assay, cells were washed once and placed in 500 µl of Seahorse XF 

Base Medium (glucose 10 mM, sodium pyruvate 1 mM, glutamine 1 mM, pH 7.4) pre-
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warmed to 37°C. The plate was then transferred to a non-CO2 incubator for 1 h. 

Following calibration, cell respiratory control [4] and associated extracellular 

acidification were assessed following the sequential addition of oligomycin (1 µM), 

carbonyl cyanide p-trifluoromethoxyphenylhydrazone (CCCP) (1 µM) and antimycin A 

with rotenone (1 µM). Upon completion of the assay, cells were lysed in sucrose lysis 

buffer and subjected to one freeze thaw cycle. Upon thawing, cell lysate was 

centrifuged for 10 minutes at 8,000 g and the supernatant was removed for protein 

determination. Protein concentration was determined using the DC protein assay 

(Bio-Rad, Hercules, California, USA) as previously described (section 2.3.5). Oxygen 

Consumption Rate (OCR) is reported relative to protein content (pmol/min/µg). 

Calculation for respiratory parameters derived from the mitochondrial stress test can 

be found below (Table 2.1).  

 

 

Table 2.1. Calculations for respiratory parameters derived from mitochondrial stress test.  
 

Respiratory Parameter Calculation 

Basal Respiration Last Rate Measurement Before Oligomycin Injection - 
Non-Mitochondrial Respiration Rate 

Coupled Respiration 
Last Rate Measurement Before Oligomycin Injection – 

Minimum Rate Measurement After Oligomycin 
Injection 

Maximal Respiration Maximum Rate Measurement After CCCP Injection – 
Non-Mitochondrial Respiration 

Spare Respiratory Capacity Maximal Respiration – Basal Respiration 

H+ (Proton) Leak Minimum Rate Measurement After Oligomycin 
Injection – Non-Mitochondrial Respiration 
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2.5.3 Estimation of ATP Production 

Estimation of intracellular rates of glycolytic and oxidative ATP production were 

performed as previously described [5]. Briefly, scramble control and VDR-KD cells 

were seeded in XFe24-well cell culture microplates (Seahorse Bioscience, North 

Billerica, USA) at 3.0 x 105 cells/well in 100 µl of growth medium (high glucose 

DMEM, 10% FBS, 1% PS, puromycin 2 µg.ml-1). Prior to the assay, cells were 

washed once and then incubated in 500 μl of Krebs-Ringer phosphate HEPES 

(KRPH) medium (2 mM HEPES, 136 mM NaCl, 2 mM NaH2PO4, 3.7 mM KCl, 1 

mM MgCl2, 1.5 mMCaCl2, 0.1% (w/v) fatty-acid-free bovine serum albumin (BSA), pH 

7.4 at 37 °C). Cell respiratory control [4] and extracellular acidification were assayed 

following the addition of glucose (10 mM), oligomycin (1 µM), CCCP (1 µM) and 

antimycin A/rotenone (1 µM). Upon completion of the assay cells were collected in 

sucrose lysis buffer (50 mM Tris pH 7.5; 270 mM sucrose; 1 mM EDTA; 1 mM EGTA; 

1% Triton X-100; 50 mM sodium fluoride; 5 mM sodium pyrophosphate decahydrate; 

25 mM beta-glytcerolphosphate; 1 cOmpleteTM protease inhibitor cocktail EDTA free 

tablet) and centrifuged for 10 minutes at 8,000 g and the supernatant was removed 

for protein determination. Protein concentration was determined using the DC protein 

assay (Bio-Rad, Hercules, California, USA). Following correction for the buffering 

power of the medium, rates of ATP production are reported relative to protein content 

(pmol/min/µg). Rates of ATP production are converted to the same unit accounting 

for the different amounts of ATP produced via glycolysis (2 ATP/Glucose) and 

oxidative phosphorylation (31.45 ATP/Glucose) [5].  
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2.6 Mitochondrial Membrane Potential 

Both scramble control and VDR-KD cells were plated at 1.0 x 105 cells/well in 100 µl 

of growth medium and incubated for 24 h. A black 96-well plate with a clear bottom 

(Corning, Costar, NY, US) was used in order to minimise well-to-well interference. 

Cells were subsequently incubated for 30 minutes with 100 nM of 

tetramethylrhodamine, ethyl ester (TRME). A set of cells were also incubated with 20 

µM carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) in order to 

completely depolarise the mitochondrial membrane and act as a negative control. 

Following incubation, cells were washed with phosphate buffered saline (PBS) with 

0.2% BSA and then read at 549 nm using a CLARIOstar microplate reader (BMG 

Labtech, Victoria, Australia) in 100 µl of PBS and 0.2% BSA.  

 

2.7 Rodent Studies 

2.7.1 Transient Electroporation in Male Wistar Rats 

Eight-week-old male Wistar rats were housed a described above (section 2.1.1) and 

fed a standard chow diet (18% fat, 33% protein, 48% carbohydrate) for one week. 

VDR-KD (n=7) was achieved in right hind leg tibialis anterior muscle through in vivo 

electrotransfer of four unique rat VDR pGFP-C-shLenti plasmid constructs driven by 

a U6 promoter [6]. These constructs spanned multiple regions of rat VDR mRNA 

(NM_017058.1) to ensure effective coverage and knockdown. Left leg tibialis 

anterior muscles received scramble cassette sequence controls (OriGene, Rockville, 

USA). Plasmid DNA amplification was undertaken within JM109 Escherichia coli cells 

under puromycin selection (0.5 µg/ml) overnight. Plasmid DNA was purified using an 

endotoxin free plasmid Maxi Kit (Qiagen, Manchester, UK) as per the manufacturers 
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instructions. VDR over-expression (VDR-OE) (n=7) was achieved in right leg tibialis 

anterior muscle through in vivo electrotransfer of pCAGGS-mVDR vector constructs. 

The mouse cDNA sequence utilised was 92% homologous to rat VDR mRNA. To 

obtain pCAGGS-mVDR, myc-DDK-mVDR was subcloned in the pCAGGS vector. 

Left leg tibialis anterior muscles received empty pCAGGS vector controls. Plasmid 

DNA amplification was undertaken within JM109 Escherichia coli cells under 

puromycin selection (0.5 µg/ml) overnight. Plasmid DNA was purified using an 

endotoxin free plasmid Maxi Kit (Qiagen, Manchester, UK) as per the manufacturers 

instructions. 

 

2.7.2 Mouse Diets 

C57BL/6J mice were received at 10-weeks of age. Following 1-week of acclimation in 

which mice were fed standard chow, mice were place on either a vitamin D-control 

diet or a vitamin D-deplete diet [7]. The vitamin D deplete contains no vitamin D but 

increased calcium (2%), magnesium (0.2%), and phosphorous (1.2%) in order to 

maintain normal mineral homeostasis (SF085-003, Speciality Feeds, Glen Forest, 

NSW). The vitamin D control diet contains vitamin D (cholecalciferol 2.2 IU/g), 

calcium (1%), magnesium (0.2%), and phosphorous (0.7%) (SF085-034, Speciality 

Feeds, Glen Forest, NSW). Mice were maintained on the respective diets for a period 

of either 1-, 2- or 3-months. Mice subjected to voluntary wheel running maintained 

their respective vitamin D replete or deplete diets across the 20-day running period.  
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Nutrient Standard Chow VitD Replete VitD Deplete 
Protein 23% 19.4% 19.4% 

Fat 6% 7% 7% 
Fibre 5% 4.7% 4.7% 

Digestible Energy 13 MJ/kg 15.8 MJ/kg 15 MJ/kg 
Vitamin D 200 IU/kg 2,200 IU/kg 0 IU/kg 
Calcium 1.1% 1% 2% 

Magnesium 1.8% 0.2% 0.2% 
Phosphorous 0.77% 0.7% 1.2% 

Table 2.2. Nutrient composition of mouse diets.  
 

2.7.3 Voluntary Wheel Running 

Mice were housed individually and given access to an upright, free-spinning running 

wheel (diameter 10.16 cm, Columbus Instruments, Columbus, OH, US) for 20 days. 

Wheel revolutions were recorded every hour via a digital recorder (Columbus 

Instruments, Columbus, OH, US) and the distance ran per day was calculated and 

reported in kilometres per twenty-four hours (km/24 h).  

 

2.7.4 EchoMRI Assessment of Body Composition 

Prior to each assessment of body composition, mice were briefly weighed. Body 

composition was assessed upon arrival (10-weeks of age) and then following 1-, 2- 

and 3-months of dietary intervention and post 20-days of voluntary wheel running 

using quantitative EchoMRI (EchoMRI LLC, Houston, USA). Both absolute and 

percentage of body weight fat and lean mass’ are reported.  

 

2.8 Sample Collection and Processing 

2.8.1 Tissue Collection 

Following anesthetization under isoflurane (induction 4%, maintenance 1%, flow rate 

1 L/min), tissues were excised from fasted (2 h) mice in order to minimise effects of 



	 97 

prior food intake. Mice subjected to voluntary wheel running had no access to a 

running wheel for 24 h prior to tissue collection. Tissues collected include; 

gastrocnemius, quadriceps, triceps, liver, kidney, white adipose tissue and tibia. 

Following tissue collection, a blood sample was taken via cardiac puncture. End 

stage termination was completed via cervical dislocation. All tissues were rinsed in 

sterile saline, blotted dry, weighed, and frozen in liquid N2. A small portion (~20 mg) 

of the gastrocnemius was removed before freezing and used for high-resolution 

respirometry. All tissues were stored at -80°C for subsequent analysis.  

 

2.8.2 Blood Processing 

Blood samples were allowed to coagulate at room temperature for 10 minutes before 

being placed on ice. Samples were then centrifuged at 14,000 g for 10 minutes. The 

resulting supernatant was removed and stored at -80°C prior to further analysis.  

 

2.9 Serum Calcium 

Serum calcium was measured using a Calcium Detection Assay kit (Abcam, 

Cambridge, UK, cat. ab102505). Serum samples were diluted 1:10 and 

manufacturers instructions were followed. The microplate was read at 575 nm using 

a CLARIOstar microplate reader (BMG Labtech, Victoria, Australia). Calcium 

concentrations are reported in mM.  
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2.10 High-Resolution Respirometry 

2.10.1 Tissue Preparation 

Small portions of gastrocnemius muscle (~20 mg) were removed and placed in ice-

cold BIOPS buffer (2.77 mM CaK2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP, 6.56 

mM MgCl2-6H2O, 20 mM Taurine, 15 mM Na2Phosphocreatine, 20 mM Imidazole, 

0.5 mM Dithiothreitol, 50 mM MES Hydrate, pH 7.1, 290 mOsm). Muscle fibres were 

trimmed of connective tissue and fat and separated into small bundles of 

approximately 1.0-2.5 mg wet weight. These bundles were subsequently teased 

apart using needle tipped forceps under magnification. Following separation, fibres 

bundles were placed in BIOPS buffer (2 ml) containing saponin (50 µg/µl) and gently 

rocked for 30 min at 4°C. Saponin, a cholesterol-specific detergent is used in order to 

permeabilize the sarcolemmal membranes while keeping the mitochondrial 

membranes intact. Following permeabilization, fibre bundles were placed in 

mitochondrial respiration medium (MiR05) (0.5 mM EGTA, 3 mM MgCl2-6H2O, 60 

mM Lactobionic Acid, 20 mM Taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM D-

Sucrose, 1 g/l BSA, pH 7.1) and gently rocked for 10 min at 4°C.  

 

2.10.2 High-Resolution Respirometry 

High-resolution respirometry was conducted in MiR05 (2 ml) with the addition of 

blebbistatin (25 µM) using the OROBOROS Oxygraph-2K (Oroboros Instruments, 

Corp., Innsbruck, AT) with stirring at 750 rpm at 37°C. Oxygen within the chamber 

was maintained between 150-220 µM for each experiment. Prior to the addition of the 

fibre bundles to the chamber, samples were blotted dry and weighed. Bundles 

totalling 2.5-5.0 mg were added to the chamber. Firstly, pyruvate (10 mM) and 
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malate (2 mM) were added as complex I substrates. Subsequently, ADP was titrated 

in step-wise increments (100-6000 µM) followed by the addition of glutamate (10 

mM) and succinate (10 mM) as complex I and II substrates respectively. Cyt c (10 

µM) was added in order to check outer mitochondrial membrane integrity [8]. The 

partial loss of cyt c during fibre preparation may limit respiration. Fibre preparations 

that exhibited an increase of >10% were removed from final analysis. CCCP was 

titrated in a step-wise manner (0.5 to 2.5 µM) until the maximal capacity of the 

electron transport chain was reached. Finally, antimycin A (2.5 µM) was injected in 

order to inhibit mitochondrial respiration.  

 

2.10.3 Determination of Michaelis-Menten Enzyme Kinetics 

The apparent Km for ADP was determined through the Michaelis-Menten enzyme 

kinetics – fitting model (Y = Vmax*X/(Km + X)), where X = (free ADP; ADPf), using 

Prism version 7 (GraphPad Software, Inc., La Jolla, CA).  

 

2.10.4 Flux Control Ratios 

Flux control ratios (FCR) provide a method of internal normalization were by 

respiration is normalized to maximal and minimal respiration by setting CCCP 

stimulated respiration as one and antimycin A respiration as zero.  

 

2.11 Statistical Analysis 

Statistics were performed using the Statistical Package for the Social Sciences 

(SPSS) version 24.0 and Prism version 7 (GraphPad Software, Inc., La Jolla, CA). 

Data are presented as means with standard deviation (SD). Statistical significance 
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was accepted as P < 0.05. Additional statistical tests are discussed in each 

respective chapter.  
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CHAPTER 3  

 

METHODOLOGICAL CONSIDERATIONS FOR DETECTING THE VITAMIN D 

RECEPTOR IN C2C12 MYOBLASTS AND MOUSE SKELETAL MUSCLE 
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3.1 Introduction  

Once in circulation, vitamin D undergoes a series of hydroxylation steps. The first, 

occurs within the liver and coverts vitamin D to 25(OH)D via 25-hydroxylation [1]. The 

second, occurs within the kidney and converts 25(OH)D to the biologically active 

1a,25(OH)2D3 via 1a-hydroxylation [2, 3]. In order to carry out the biological actions 

of vitamin D, 1a,25(OH)2D3 binds to the VDR, which subsequently binds to the RXR 

forming a heterodimer protein complex [4, 5]. This protein complex then binds to 

VDREs within the promotor regions of vitamin D regulated genes [6, 7]. Whilst the 

VDR is said to be ubiquitously expressed [8], its detection within skeletal muscle has 

remained problematic due to extremely low expression levels, the use of non-specific 

antibodies and the multicellular nature of skeletal muscle [9-11].  

 

Current in vitro evidence suggests that the positive detection of the VDR protein 

within skeletal muscle cell lines is consistent and less problematic than its respective 

detection in adult skeletal muscle [9, 12]. One of the first reports of positive VDR 

expression within skeletal muscle described the presence of a high affinity 

1a,25(OH)2D3 binding protein in human derived myoblasts and myotubes [13]. 

Further to this, the positive detection of the VDR within skeletal muscle cells derived 

from chicks [14-16], mice [9, 17-19] and humans [12, 13, 20, 21] has been reported 

on multiple occasions. Within C2C12 myoblasts, the VDR was detected at the 

transcript and protein level, both of which increased in response to the treatment with 

25(OH)D and 1a,25(OH)2D3 [19] and decreased during myogenesis [9]. Similarly, the 

detection of the VDR in C2C12 skeletal muscle cells has also been reported utilising 

immunohistochemistry with time-dependent localisation to the cell membrane or 
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nucleus in response to 1a,25(OH)2D3 [18, 22]. Multiple studies have also confirmed 

the expression of the VDR within human primary myoblasts [12, 20, 21]. Clearly, the 

detection of the VDR within skeletal muscle in vitro is reliable with consistent reports 

of a successful detection utilising a multitude of techniques.  

 

The detection of the VDR in whole skeletal muscle lysates however, remains a 

contentious issue with multiple studies reporting conflicting results [9, 11, 12, 23, 24]. 

For example, VDR at the protein level was reportedly undetectable in rat and mouse 

skeletal muscle via both immunoblot and immunohisotchemical approaches [11]. In 

addition, whilst VDR transcripts were detected at an extremely low level, in 

comparison to the duodenum a classical site of VDR action, skeletal muscle 

transcripts were detected at a substantially lower rate (4000x lower) [9, 11]. Given 

this low expression profile, the use of a HLB (6.7M urea; 10% glycerol; 10mM Tris-

HCl, 1% sodium dodecyl sulfate; 1mM dithiothreitol; 1mM phenylmethylsulfonyl-

fluoride) has been reported to improve the detection of the VDR [9]. The VDR is 

known to tightly bind to DNA and it is hypothesised that the use of HLB may be 

effective in reducing VDR/DNA association [25, 26]. Whilst this method has proved 

successful in mouse skeletal muscle [9], other studies have reported that the VDR 

was undetectable in human skeletal muscle extracts when employing this method 

[12]. In addition, the VDR remained undetectable even when a purified nuclear 

fraction was probed [21]. Despite the successful detection of the VDR in mouse 

skeletal muscle, its expression was reduced across development and decreased 

significantly when tissue from 3-month old mice was compared to tissue from mice at 

3-weeks of age [9]. Within human skeletal muscle samples, the positive expression 
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of the VDR has been reported utilising immunohistochemical [27, 28] and 

immunoblot approaches [21]. Despite this, the antibody utilised to detect the VDR via 

immunohistochemistry, Affinity BioReagents 9A7, has previously been called into 

question due to non-specific binding [29]. Similarly, whilst the successful detection of 

the VDR was reported utilising the VDR NR1I1 antibody (Perseus Proteomics), it was 

validated in comparison to the Santa Cruz D6 antibody and was not tested in VDR-

KO tissue [28].  

 

Despite the consistent detection of the VDR in vitro, its detection within whole 

skeletal muscle remains problematic. Within skeletal muscle cell lines, the VDR is 

known to play a role in proliferation, differentiation and cell cycle progression [19]. In 

addition, both whole body and skeletal muscle specific VDR-KO mice display 

impairments in skeletal muscle structure and function, suggesting a direct role for the 

VDR within said tissue [17, 23, 30-32]. Therefore, a protocol that results in the 

reliable and consistent detection of the VDR within skeletal muscle lysates would be 

significant addition to this thesis and the field as a whole. Expanding upon previously 

described methods [9], we sought to detect the VDR in skeletal muscle lysates from 

both young (3-weeks) and adult (10-weeks) mice. Comparisons were made across 

differing skeletal muscle samples, lysis buffers and antibodies with the aim of 

positively detecting the VDR.  
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3.2 Methods 

3.2.1 Tissue Culture 

VDR-KD and respective scramble control C2C12s were plated at 1.0 x 105 cells/well 

in 2 ml of growth medium in 6-well plates (Nunc, Roskilde, Denmark). Upon reaching 

90% confluence, cells were either harvested for myoblast experiment or switched to 

differentiation medium. Before switching to differentiation medium, cells were washed 

once with PBS. Differentiation medium was changed every other day and myotube 

formation was monitored over a period of 7 days.  

 

3.2.2 Mouse Characteristics and Tissue Collection 

Both 3- (n=3) and 10-week old (n=3) C57BL/6J mice were housed as previously 

described (Section 2.1.2). Within the first week of arrival, mice were anesthetized 

under isoflurane and tissues were excised following a 2 h fast. Tissues collected 

included; gastrocnemius, quadriceps, triceps, kidney and liver. Following tissue 

collection, a blood sample was taken via cardiac puncture. End stage termination 

was completed via cervical dislocation. Samples were handled and stored as 

previously described (Section 2.8).  

 

3.2.3 Cell and Tissue Lysis 

Upon collection, both myoblast and myotube cell monolayers were washed twice with 

ice-cold PBS. Each well was actively scraped and collected in 100 µl of sucrose lysis 

buffer. Tissue samples were powdered on dry ice using a CellcrusherTM tissue 

pulverizer (Cellcrusher Ltd, Cork, Ireland) and homogenized in a 10-fold mass of ice-

cold sucrose or urea lysis buffer. Cell and tissue lysates were homogenised via 
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shaking in a FastPrep 24 5G (MP Biochemicals, Santa Ana, California, USA) as 

previously described (Section 2.3.1). The constituents of the sucrose and urea lysis 

buffers are described below (Section 3.2.5).  

 

3.2.4 Lysis Buffers 

Cell and tissue lysis was completed using sucrose lysis buffer (50 mM Tris pH 7.5; 

270 mM sucrose; 1 mM EDTA; 1 mM EGTA; 1% Triton X-100; 50 mM sodium 

fluoride; 5 mM sodium pyrophosphate decahydrate; 25 mM beta-glytcerolphosphate). 

Relevant inhibitors were added fresh on the day of use and included 1 cOmpleteTM 

protease inhibitor cocktail EDTA free tablet and Phosphatase Inhibitor Cocktail 3 both 

purchased from Sigma-Aldrich. With the aim of detecting the VDR in whole skeletal 

muscle extracts, tissue samples were also lysed in a urea lysis buffer (6.7M urea; 

10% glycerol; 10mM Tris-HCl, 1% sodium dodecyl sulfate; 1mM dithiothreitol; 1mM 

phenylmethylsulfonyl-fluoride). One Protease Inhibitor Cocktail tablet was added 

fresh upon the day of use.  

 

3.2.5 Immunoblotting 

Total protein lysates of a known concentration were mixed 3:1 with 4x Laemmli 

sample loading buffer to generate polyacrylamide gel loading samples of a known 

concentration. Prior to gel loading, samples were boiled for 5 minutes unless 

otherwise stated. An equal volume of protein (10-75 µg) was separated by SDS-

PAGE on 10% gels at a constant current of 23 mA per gel. Proteins were then 

transferred on to BioTrace NT nitrocellulose membranes (Pall Life Sciences, 

Pensacola, Florida, USA) using a wet transfer system at 100 V for 1 h. Membranes 
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were then stained in Ponceau S (Sigma-Aldrich, Gillingham, UK) and imaged to 

check for even loading and transfer. Membranes were then blocked for 1 h in 3% dry-

milk in TBS-T prior to incubation overnight in primary antibodies at 4°C. Following 

primary antibody incubation, membranes were washed three times in TBS-T and 

subsequently incubated in the appropriate horseradish peroxidase-conjugated 

secondary antibody at room temperature for 1 h. Antibody detection was performed 

via an enhanced chemiluminescence horseradish peroxidase substrate detection kit 

(Millipore, Watford, UK). Subsequent imaging and band quantification were 

performed using the G:Box Chemi-XR5 system (Syngene, Cambrige, UK). 

 

3.2.6 Antibodies 

Three different antibodies for the VDR were utilised and the characteristics of each 

are displayed below (Table 3.1). All primary antibodies were used at a concentration 

of 1:500 in TBS-T. Secondary antibodies were used at a concentration of 1:10,000 in 

TBS-T. Anti-mouse (7076) and anti-rabbit (7074) were from Cell Signaling 

Technology.  

 

Antibody Manufacturer Host Isotype Epitopes 
D6 SC-12133 Santa Cruz Biotechnology Mouse Monoclonal Human VDR 344-424 

D2K6W Cell Signaling Technology Rabbit Monoclonal Human VDR N-terminal 

AB109234 Abcam Rabbit Monoclonal Human VDR 

Table 3.1. Antibody characteristics utilised for the detection of the vitamin D receptor. The 
exact sequence for the Abcam antibody is proprietary.  
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3.2.7 Statistical Analysis 

Statistical analysis was performed using the SPSS version 24.0. Control myoblasts 

and myotubes were compared to VDR-KD myoblasts and myotubes respectively via 

independent t-tests. Data presented as mean ± SD. Statistical significance set as P < 

0.05.  

 

3.3 Results 

3.3.1 Detection of the VDR in C2C12 Myoblasts 

Antibodies from Abcam, Cell Signaling Technology and Santa Cruz all successfully 

detected the VDR protein in C2C12 myoblasts. Positive detection of the VDR was 

confirmed through immunoblotting of C2C12 myoblasts in which VDR protein was 

abolished via shRNA interference (See chapter 4 for detailed characterisation of this 

cell line). Minimal signal was detected in VDR-KD myoblasts and no non-specific 

binding was detected for each antibody (Fig. 3.1A-B) suggesting that all three 

antibodies are specific to the VDR in C2C12 cells. 

 
Figure 3.1. Detection of the VDR in control and VDR-KD C2C12 myoblasts. A) Detection of the 
VDR within control and VDR-KD C2C12 skeletal muscle myoblasts utilising antibodies from Abcam, 
Cell Signaling Technology (CST) and Santa Cruz (SC). B) Representative images of VDR protein 
expression. Data mean ± SD (n=6). **P < 0.005.   
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3.3.2 Detection of the VDR in C2C12 Myotubes 

VDR protein content was detected in C2C12 myotubes when antibodies from Abcam, 

Cell Signaling Technology and Santa Cruz were utilised. Positive detection of the 

VDR was confirmed via the use of the VDR-KD C2C12 cell line (See chapter 4 for 

detailed characterisation of this cell line). Minimal signal and no non-specific binding 

was detected for each antibody (Fig. 3.2A-B).  

 
 
Figure 3.2. Detection of the VDR in control and VDR-KD C2C12 myotubes. A) Successful 
detection of the VDR protein within control and VDR-KD C2C12 skeletal muscle myotubes utilising 
antibodies from Abcam, Cell Signaling Technology and Santa Cruz. B) Representative images of VDR 
protein expression. Data mean ± SD (n=6). **P < 0.005. 
 

3.3.3 Detection of the VDR in Mouse Kidney 

We next aimed to detect the VDR in 3- and 10-week old mouse kidney lysates using 

antibodies from Abcam, Cell Signaling Technology and Santa Cruz. The kidney is a 

known site of action for the VDR and kidney lysates are commonly recommended as 

a positive control for VDR detection. We successful detected the VDR using all three 

antibodies. All three antibodies were successful in detecting the VDR following tissue 

lysis with either the urea or sucrose lysis buffer (Fig. 3.3A).  
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Figure 3.3. Successful detection of the VDR in mouse kidney. A) Successful detection of the VDR 
in 3- and 10-week old mouse kidney samples lysed in sucrose lysis buffer. B) Successful detection of 
the VDR in 3 and 10-week old mouse kidney samples lysed in a urea lysis buffer. Ladders represent 
50 and 37 kDa.    
 
 

3.3.4 Detection of the VDR in Mouse Gastrocnemius 

The detection of the VDR in gastrocnemius lysates was unsuccessful whether 

samples were lysed in sucrose (Fig. 3.4A) or urea lysis buffer (Fig. 3.4B). Antibodies 

from Abcam, Cell Signaling Technology and Santa Cruz were unable to detect the 

VDR in 3- and 10-week old mouse gastrocnemius lysates despite loading ~75 µg of 

protein. A mouse kidney sample was used as a positive control (10 µg) suggesting 

that the immunoblotting procedure was successful.   
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Figure 3.4. Unsuccessful detection of the VDR in mouse gastrocnemius. A) Unsuccessful 
detection of the VDR protein in 3- and 10-week old mouse gastrocnemius when lysed in sucrose lysis 
buffer. B) Unsuccessful detection of the VDR protein in 3- and 10-week old gastrocnemius when lysed 
in a urea lysis buffer. Ladders represent 37 and 50 kDa.  
 

3.3.5 Detection of the VDR in Mouse Quadriceps 

We also aimed to detect the VDR in mouse quadriceps samples following lysis in 

sucrose and urea lysis buffers. Both lysis buffers combined with the use of antibodies 

from Abcam, Cell Signaling Technology and Santa Cruz were unsuccessful in VDR 

detection within mouse quadriceps samples despite loading ~75 µg of protein (Fig. 

3.5A-B). A mouse kidney sample was utilised in order to act as a positive control (10 

µg).  

Figure 3.5. Unsuccessful detection of the VDR in mouse quadriceps. A) Unsuccessful detection 
of the VDR in mouse quadriceps lysed in sucrose lysis buffer. B) Unsuccessful detection of the VDR 
protein in mouse quadriceps lysed in urea lysis buffer. Ladder represents 37 and 50 kDa.  
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3.4 Discussion 

The detection of the VDR within skeletal muscle samples is a contentious issue. 

Whilst some have reported positive VDR expression [9], others have reported a lack 

of VDR protein expression within skeletal muscle samples [11, 12]. In vitro, a 

prominent role for the VDR in skeletal muscle proliferation, differentiation and 

myogenesis has been reported [19]. In addition, both whole-body and skeletal 

muscle specific VDR-KO mouse models display an altered skeletal muscle 

phenotype [17, 23, 30-32]. Although the current evidence points towards a significant 

role for the VDR within skeletal muscle development and function, its detection within 

skeletal muscle is problematic. This primarily caused by low expression levels, the 

multicellular nature of skeletal muscle, differences in VDR expression across 

development and the use of non-specific antibodies [29].  

 

Similar to previous studies, we report a successful detection of the VDR protein 

within C2C12 myoblasts [18, 19, 22, 33]. In order to confirm specificity of our 

antibodies, we also utilised a VDR-KD C2C12 cell line in which the protein content of 

the VDR is reduced following lentivirus mediated shRNA interference. The Santa 

Cruz D6 antibody has previously been reported to be highly specific for the VDR [29] 

however, we also show that antibodies from both Abcam and Cell Signaling 

Technologies also result in a robust detection of the VDR with C2C12 myoblasts and 

myotubes.  

 

Whilst the detection of the VDR within skeletal muscle cell lines is reliable, its 

detection in whole skeletal muscle lysates is more contentious [11]. In order to detect 
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the VDR, the use of a HLB has previously been recommended [9]. This buffer 

contains high amounts of urea which aids in separating the VDR from its tight binding 

to DNA [25, 26]. Given that the kidney is a known site of positive expression for the 

VDR [29] we first sought to detect the VDR in mouse kidney samples. It should be 

noted that prior analysis and optimisation experiments were conducted comparing 

blocking reagents as well as multiple concentrations of primary (1:1000 & 1:500) and 

secondary (1:10,000 & 1:20,000) antibodies. The detection of the VDR was 

successful using antibodies from Abcam, Cell Signaling Technology and Santa Cruz 

irrespective of lysis buffer used. Finally, we sought to detect the VDR in whole 

skeletal muscle lysates from both young and adult mice. Within skeletal muscle, the 

VDR has been proposed to play a more prominent role within the early stages of 

muscle development [9]. Previously, the protein content of the VDR has been 

reported to decrease when comparing skeletal muscle samples from new-born, 3-

week and 3-month old C57BL/6J mice [9]. Therefore, we also aimed to detect the 

VDR with skeletal muscle samples from both 3 and 10-week old C57BL/6J mice. 

Similar to others [12], we were unable to detect the VDR with skeletal muscle 

samples derived from the gastrocnemius and quadriceps irrespective of age. The 

detection of the VDR was unsuccessful irrespective of antibody or lysis buffer 

utilised. Although others have detected the VDR within skeletal muscle samples 

using similar methods [9], were unable to detect the VDR despite loading ~75 µg of 

protein and using primary antibodies at a concentration of 1:500.  

 

Whilst some have reported a positive detection of the VDR within skeletal muscle [9], 

we and others [12] have been unable to replicate such findings. The results 
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described within this chapter only raise further questions in regards to the relevance 

of the VDR with skeletal muscle in vivo. If the VDR is not expressed within adult 

skeletal muscle then the positive effects of vitamin D and the skeletal muscle 

phenotypes arising in VDR-KO animals may result indirectly from alterations in 

mineral homeostasis. However, in support of a direct role for the VDR within skeletal 

muscle, skeletal muscle specific VDR-KO mice do display an alerted phenotype [30, 

31]. Clearly, further research is needed to understand the role of the VDR within 

skeletal muscle and the development of more reliable methods to detect the VDR 

would be a significant addition to the field. A more comprehensive comparison of 

sample lysis and immunoblot protocols alongside the use of multiple antibodies 

would further the development of a protocol for VDR detection within skeletal muscle. 

Purification and subcellular fraction approaches may aid in the detection of the VDR 

in whole skeletal muscle lysates however, purification of the nuclear fraction also 

resulted in the unsuccessful detection of the VDR [12]. In addition, the analysis of 

VDR mRNA expression in the same samples utilised within this chapter may offer 

further insight into the relative expression levels of the VDR. Given the extremely low 

expression levels of the VDR within skeletal muscle, current methods may not be 

sensitive enough to reliably detect the VDR within whole skeletal muscle lysates on a 

consistent basis.  
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CHAPTER 4 

 

THE ROLE OF THE VITAMIN D RECEPTOR IN REGULATING MITOCHONDRIAL 

FUNCTION IN C2C12 CELLS AND RAT SKELETAL MUSCLE 
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4.1 Introduction 

Vitamin D deficiency is characterised by serum 25(OH)D levels of <50 nmol.L-1 [1] 

Based on these numbers, it has been reported that approximately 40% of adults in 

both the USA [2] and Europe [3] can be classified as deficient, with 13% of 

Europeans deemed severely deficient [3]. The classical actions of vitamin D are well 

established, primarily functioning to maintain calcium and phosphate balance in order 

to prevent rickets [4], osteomalacia [5] and osteoporosis [6]. Vitamin D carries out its 

actions via its active metabolite 1a,25(OH)2D3 which binds to the ubiquitously 

expressed VDR [7]. Part of the nuclear receptor superfamily, the VDR together with 

its binding partner RXRa recruits both coactivators or repressors to exert its effects 

on genomic transcription [8, 9]. 

 

As well as its role in the maintenance of bone health, vitamin D has been shown to 

play a much wider role within the body, and more specifically, within skeletal muscle 

[10]. Multiple observational studies have reported positive associations between 

serum 25(OH)D levels and lower extremity muscle strength and function in older 

individuals  [11-13], whilst those with serum concentrations of <25 nmol.L-1 are at a 

two-fold greater risk of developing sarcopenia [14]. Additionally, a prominent feature 

of vitamin D deficiency is proximal muscle weakness [15, 16] and chronic 

deficiencies are often accompanied by severe skeletal muscle myopathies which can 

be rescued via vitamin D supplementation [17]. Furthermore, markers of skeletal 

muscle function, including grip strength, grip endurance and sprint speed, are 

impaired in mouse models of vitamin D deficiency [18, 19].  
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Given that vitamin D exerts its biological actions through binding to the VDR, multiple 

studies have sought to elucidate the role of the VDR specifically within skeletal 

muscle. Investigations utilising multiple mouse models with the global deletion of the 

VDR have identified skeletal muscle-specific actions [20-23]. From an early age, 

muscle fibre atrophy, reduced grip strength and impaired motor function are all 

present within VDR-KO mice [18, 24]. However, the global deletion of the VDR 

results in a dysregulation of both calcium and phosphate homeostasis [20, 21, 23].  

Given the importance of intracellular calcium and phosphate in skeletal muscle 

contraction [25, 26] and ATP production [27], a dysregulation in mineral homeostasis 

could mediate the observed impairments in skeletal muscle function indirectly within 

VDR-KO mice. Although, despite the administration of a rescue diet containing 

increased calcium and phosphate, the observed impairments in muscle function 

persist, suggesting a direct role for the VDR within skeletal muscle [20]. More 

recently, skeletal muscle specific VDR-KO mice have been developed [28, 29]. 

These mice exhibited a number of metabolic defects including increased serum 

insulin levels, insulin resistance, glucose intolerance, slight decreases in muscle fibre 

size [28] as well as reductions in voluntary wheel running capacity and lean mass 

[29].  

 

Evidence is now emerging to suggest that the deleterious effects of vitamin D 

deficiency within skeletal muscle may be mediated by impairments in mitochondrial 

energy metabolism [30, 31]. In support of this, the repletion of vitamin D status in 

severely deficient humans resulted in improvements in oxidative phosphorylation 

(assessed via P-31 MRS) as well as reductions in symptoms of fatigue [30]. 
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Additionally, the treatment of human primary skeletal muscle myoblasts and C2C12 

myotubes with vitamin D metabolites resulted in an increase in mitochondrial 

respiration [32-34]. Furthermore, vitamin D treatment of human primary myoblasts 

increased mitochondrial volume (as assessed via MitoTracker staining and confocal 

microscopy), as well as increasing the expression of >80 mRNAs encoding for 

mitochondrial proteins [32]. Whilst the VDR was not detectable within the 

mitochondria of human skeletal muscle primary myoblasts [32], it is expressed within 

the mitochondria of other cell types [35, 36] making the precise role of the VDR within 

the mitochondria unclear. Whilst these data highlight a potential role for vitamin D in 

modulating mitochondrial function, they do not directly examine the precise role of 

the VDR in mediating these changes. Although a reduction in the VDR was reported 

to abolish the 1a,25(OH)2D3 mediated increases in mitochondrial respiration it was 

not the primary focus of the study [32]. Additionally, the knock-down of the VDR was 

achieved by siRNA approaches which are transient and the effects of a reduction in 

the VDR across skeletal muscle development cannot be established.  

 

Taken together, these data suggest a role for vitamin D, 1a,25(OH)2D3 and the VDR 

in the maintenance of skeletal muscle mitochondrial function. However, the specific 

role of the VDR within mitochondrial regulation in skeletal muscle remains largely 

underexplored. Therefore, the aims of this chapter were as follows; 1) Examine 

whether stable knock-down of the VDR within C2C12 cells affects mitochondrial 

respiration across myogenesis 2) determine how loss of VDR affects mitochondrial 

protein content across myogenesis 3) determine whether manipulating VDR 

expression in rat skeletal muscle alters mitochondrial protein content.   
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4.2 Materials and Methods 

4.2.1 Tissue Culture 

All tissue culture experiments were carried out under sterile conditions in a class II 

safety cabinet. Cell cultures were maintained in a HERAcell 150i CO2 Incubator 

(Thermo Scientific Inc., Chesire, UK) maintained at 37°C with 5% CO2. Growth 

medium consisted of DMEM with added GlutaMAXTM and glucose (4.5 g.L-1) as well 

as the addition of 10% FBS, 1% PS and 2 µg.ml-1 puromycin. Differentiation medium 

consisted of DMEM with added GlutaMAXTM and glucose (4.5 g.L-1) as well as the 

addition 2% HS and 1% PS.  

 

4.2.2 shRNA Mediated Knock-Down of the Vitamin D Receptor 

The lentiviral plasmid used (pLKO.1 backbone) was designed in-house and was 

based on (Clone ID: RMM3981-201757375) and targeted the (3’ UTR) mouse 

sequence 5′- TTA AAT GTG ATT GAT CTC AGG-3′ of the mouse Vdr gene; the 

scramble shRNA was used as a negative control as previously reported [37] with a 

hairpin sequence: CCT AAG GTT AAG TCG CCC TCG CTC TAG CGA GGG CGA 

CTT AAC CTT AGG (Addgene plasmid 1864, Cambridge, MA, USA). Oligos were 

obtained from ITDDNA USA (Integrated DNA Technologies, Inc. Iowa, USA) and 

suspended, annealed and cloned into pLKO.1 at EcoRI and AgeI restriction sites as 

per the pLKO.1 protocol from Addgene. The resultant plasmids were transformed in 

DH5α cells for amplification and isolated. The actual DNA sequence was confirmed 

at the Pennsylvania State University College of Medicine DNA sequence core facility. 

Packaging plasmids psPAX2 and envelope protein plasmid pMD2.G were a gift from 

Trono Lab Addgene plasmids 12260 and 12259 respectively. HEK293FT cells 
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(Invitrogen, Carlsbad, CA, USA) were grown in DMEM; 80–85% confluent plates 

were rinsed once with Opti-MEM (Invitrogen, Carlsbad, CA, USA) and then incubated 

with Opti-MEM for 4 h before transfections. psPAX2 and pMD2.G along with either 

scramble or pLKO.1 clones targeting mouse Vdr (three clones) were added after 

mixing with Lipofectamine 2000 as per the manufacturer’s instructions (Invitrogen, 

Carlsbad, CA, USA). Opti-MEM was changed after overnight incubation with DMEM 

containing 10% FBS without antibiotics to allow cells to take up the plasmids and 

recover. Culture media were collected at 36 and 72 h post-transfection for viral 

particles. Viral particles present in the supernatant were harvested after a 15-min 

spin at 1,500 g to remove cellular debris. The supernatant was further filtered using a 

0.45-μm syringe filter. Supernatant-containing virus was either stored at −80°C for 

long-term storage or at 4°C for immediate use. C2C12 cells at 60% confluence were 

infected twice overnight with 3 ml of viral supernatant containing 8 μg.ml-1 polybrene 

in serum-free–antibiotic-free DMEM. Fresh DMEM media containing 10% FBS, 

antibiotics and 2 μg.ml-1 puromycin (Sigma, St. Louis, MO, USA) were added the 

next day. Cells that survived under puromycin selection were either harvested (as 

stable cells) and stored in liquid N2 or used as either myoblasts or myotubes 

depending on the experiment.  

 

4.2.3 Extracellular Flux Analysis 

Both scramble control and VDR-KD cells were seeded in XFe24-well cell culture 

microplates (Seahorse Bioscience, North Billerica, USA) at 3.0 x 105 cells/well in 100 

µl of growth medium and allowed to rest at room temperature for 1 h in order to 

promote an even cell distribution [38].  For myoblast experiments, cells were 
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incubated at 37°C and 5% CO2 for 3 h in order to allow sufficient time for adherence 

to cell culture microplate and subsequently assayed. For myotube experiments, cells 

were incubated for a period of 24 h, resulting in a confluence of 90%. Cells were then 

washed once with PBS and medium changed to differentiation medium. 

Differentiation media was changed every other day for a period of 7 days. Prior to the 

assay, cells were washed once and placed in 500 µl of Seahorse XF Base Medium 

(glucose 10 mM, sodium pyruvate 1 mM, glutamine 1 mM, pH 7.4) pre-warmed to 

37°C. The plate was then transferred to a non-CO2 incubator for 1 h. Following 

calibration, cell respiratory control [39] and associated extracellular acidification were 

assessed following the sequential addition of oligomycin (1 µM), CCCP (1 µM) and 

antimycin A with rotenone (1 µM). Upon completion of the assay, cells were collected 

in sucrose lysis buffer and subjected to one freeze thaw cycle. Upon thawing, cell 

lysate was centrifuged for 10 minutes at 8,000 g and the supernatant was removed 

for protein determination. Protein concentration was determined using the DC protein 

assay (Bio-Rad, Hercules, CA). OCR is reported relative to protein content 

(pmol/min/µg). 

 

4.2.4 Estimation of ATP Production 

Estimation of intracellular rates of glycolytic and oxidative ATP production were 

performed as previously described [40]. Briefly, scramble control and VDR-KD cells 

were seeded in XFe24-well cell culture microplates (Seahorse Bioscience, North 

Billerica, USA) at 3.0 x 105 cells/well in 100 µl of growth medium (high glucose 

DMEM, 10% FBS, 1% penicillin/streptomycin, puromycin 2µg.ml-1). Prior to the assay 

cells were washed once and then incubated in 500 μl of KRPH medium (2 
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mM HEPES, 136 mM NaCl, 2 mM NaH2PO4, 3.7 mM KCl, 1 mM MgCl2, 1.5 mMCaCl2, 

0.1% (w/v) fatty-acid-free BSA, pH 7.4 at 37 °C). Cell respiratory control [39] and 

extracellular acidification were assayed following the addition of glucose (10 mM), 

oligomycin (1 µM), CCCP (1 µM) and antimycin A with rotenone (1 µM). Upon 

completion of the assay cells were collected in sucrose lysis buffer (50 mM Tris pH 

7.5; 270 mM sucrose; 1 mM EDTA; 1 mM EGTA; 1% Triton X-100; 50 mM sodium 

fluoride; 5 mM sodium pyrophosphate decahydrate; 25 mM beta-glytcerolphosphate; 

1 cOmpleteTM protease inhibitor cocktail EDTA free tablet) and centrifuged for 10 

minutes at 8,000 g and the supernatant was removed for protein determination. 

Protein concentration was determined using the DC protein assay (Bio-Rad, 

Hercules, CA). Rates of ATP production are reported relative to protein content 

(pmol/min/µg). 

 

4.2.5 Measurement of Mitochondrial Membrane Potential 

Both scramble control and VDR-KD cells were plated at 1.0 x 105 cells/well in 100 µl 

of growth medium and incubated for 24 h. A black 96-well plate with a clear bottom 

(Corning, Costar, NY, USA) was used in order to minimise well-to-well interference. 

Cells were subsequently incubated for 30 minutes with 100 nM of TRME. A set of 

cells were also incubated with 20 µM FCCP in order to completely depolarise the 

mitochondrial membrane and act as a negative control. Following incubation cells 

were washed with PBS with 0.2% BSA and then read at 549 nm using a CLARIOstar 

microplate reader (BMG Labtech, Victoria, Australia) in 100 µl of PBS and 0.2% BSA.  
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4.2.6 Transient Electroporation in Male Wistar Rats 

Eight-week-old male Wistar rats were housed as described above (section 2.1.1) and 

fed a standard chow diet (18% fat, 33% protein, 48% carbohydrate) for one week. 

VDR-KD (n=7) was achieved in right hind leg tibialis anterior muscle through in vivo 

electrotransfer of four unique rat VDR pGFP-C-shLenti plasmid constructs driven by 

a U6 promoter [41]. These constructs spanned multiple regions of rat VDR mRNA 

(NM_017058.1) to ensure effective coverage and knockdown. Left leg tibialis 

anterior muscles received scramble cassette sequence controls (OriGene, Rockville, 

USA). Plasmid DNA amplification was undertaken within JM109 Escherichia coli cells 

under puromycin selection (0.5 µg/ml) overnight. Plasmid DNA was purified using an 

endotoxin free plasmid Maxi Kit (Qiagen, Manchester, UK) as per the manufacturers 

instructions. VDR-OE (n=7) was achieved in right leg tibialis anterior muscle through 

in vivo electrotransfer of pCAGGS-mVDR vector constructs. The mouse cDNA 

sequence utilised was 92% homologous to rat VDR mRNA. To obtain pCAGGS-

mVDR, myc-DDK-mVDR was subcloned in the pCAGGS vector. Left leg tibialis 

anterior muscles received empty pCAGGS vector controls. Plasmid DNA 

amplification was undertaken within JM109 Escherichia coli cells under puromycin 

selection (0.5 µg/ml) overnight. Plasmid DNA was purified using an endotoxin free 

plasmid Maxi Kit (Qiagen, Manchester, UK) as per the manufacturers instructions. 
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4.2.7 Immunoblotting 

Total protein lysates of a known concentration were mixed 3:1 with 4x Laemmli 

sample loading buffer to generate polyacrylamide gel loading samples. Prior to gel 

loading, samples were boiled for 5 minutes. An equal volume of protein (10-30 µg) 

was separated by SDS-PAGE on 8-15% gels at a constant current of 23 mA per gel. 

Proteins were then transferred on to BioTrace NT nitrocellulose membranes (Pall Life 

Sciences, Pensacola, Florida, USA) using a wet transfer system at 100 V for 1 h. 

Membranes were then stained in Ponceau S (Sigma-Aldrich, Gillingham, UK) and 

imaged to check for even loading and transfer. Membranes were blocked for 1 h in 

3% dry-milk in TBS-T prior to overnight incubation in primary antibodies at 4°C. The 

following day, membranes were washed three times in TBS-T and subsequently 

incubated in the appropriate horseradish peroxidase-conjugated secondary antibody 

at room temperature for 1 h. Antibody detection was performed with an enhanced 

chemiluminescence horseradish peroxidase substrate detection kit (Millipore, 

Watford, UK). Subsequent imaging and band quantification were performed using the 

G:Box Chemi-XR5 system (Syngene, Cambrige, UK). 

 

4.2.8 Antibodies 

All primary antibodies were used at a concentration of 1:1000 in TBS-T unless 

otherwise stated. Antibodies for dynamin-1-like protein (DRP1;8570) and vitamin D3 

receptor (VDR; 12550) were from Cell Signaling Technology; MitoProfile OXPHOS 

antibody cocktail (110413), vitamin D receptor (VDR; 109234) and mitofilin (110329) 

were from Abcam; dynamin-like 120 kDa protein (OPA1; CPA3687) was from BD 

Biosciences; peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
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(PGC-1a; AB3242) was from Merck-Millipore; citrate synthase (CS; SAB2701077) 

and mitochondrial fission protein 1 (FIS1; HPA017430) were from Sigma Aldrich; 

vitamin D receptor (D-6) (VDR; 13133) was from Santa Cruz Biotechnology. 

Secondary antibodies were used at a concentration of 1:10,000 in TBS-T. Anti-

mouse (7076) and anti-rabbit (7074) were from Cell Signaling Technology.  

 

4.2.9 Statistical Analysis 

Statistical analysis was performed using the SPSS version 24.0. Differences between 

scramble control and VDR-KD C2C12s were determined by independent t-tests and 

two-way analysis of variance (ANOVA) where appropriate, with Bonferroni correction 

for multiple comparisons. Differences between control and VDR-KD or VDR-OE legs 

were determined by independent t-tests. All data is presented as mean ± SD. 

Statistical significance was set at P < 0.05.  

 

4.3 Results 

4.3.1 Knock-Down of the Vitamin D Receptor 

Following shRNA interference, VDR protein content was reduced by ~96 and ~94 % 

within C2C12 myoblasts (Fig. 4.1, A and B) and myotubes (Fig. 4.1, C and D) 

respectively. VDR protein content was significantly reduced in myoblasts when 

detected with antibodies from Abcam (P < 0.001), CST (P < 0.001) and Santa-Cruz 

(P < 0.001). Similar reductions were observed in myotubes with antibodies from 

Abcam (P < 0.001), CST (P < 0.001) and Santa-Cruz (P < 0.001).  
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Figure 4.1. Successful knock-down of the VDR in the C2C12 skeletal muscle cell line. A) Knock-
down of the VDR in C2C12 skeletal muscle myoblasts (n = 6/group). B) Representative images of 
VDR protein abundance in control and VDR-KD C2C12 myoblasts. C) Knock-down of the VDR in 
C2C12 skeletal muscle myotubes (n = 6/group). D) Representative images of VDR protein abundance 
in control and VDR-KD C2C12 myotubes. Data mean ± SD. **P < 0.005. Repeat of Figures 3.1 and 
3.2.  
 

4.3.2 Extracellular Flux Analysis 

VDR-KD within C2C12 myoblasts reduced basal respiration by 30% (Control 9.86 ± 

3.41 vs. VDR-KD 6.93 ± 1.03 pmol/min/µg, P = 0.034), in addition to reducing 

coupled respiration by 30% (Control 8.38 ± 2.69 vs. VDR-KD 5.87 ± 0.56 

pmol/min/µg., P = 0.023). Further, VDR-KD reduced maximal respiration by 36% 

(Control 30.76 ± 10.42 vs. VDR-KD 19.65 ± 1.24 pmol/min/µg, P = 0.013) and 

reduced spare capacity by 39% (Control 20.90 ± 7.01 vs VDR-KD 12.72 ± 1.17 

pmol/min/µg, P = 0.008) when compared to control (Fig. 4.2, A and C). Similarly, 
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VDR-KD within C2C12 myotubes reduced basal respiration by 34% (Control 17.06 ± 

2.76 vs. VDR-KD 11.22 ± 1.24 pmol/min/µg, P < 0.001), as well as reducing coupled 

respiration by 33% (Control 11.40 ± 2.10 vs. VDR-KD 7.69 ± 0.96 pmol/min/µg, P < 

0.001). Furthermore, VDR-KD in C2C12 myotubes also reduced maximal respiration 

by 48% (Control 58.89 ± 9.83 vs. VDR-KD 30.86 ± 6.04 pmol/min/µg, P < 0.001) and 

spare capacity by 53% (Control 41.83 ± 7.45 vs. VDR-KD 19.65 ± 5.06 pmol/min/µg, 

P < 0.001) when compared to control (Fig. 4.2, B and D). Whilst proton leak 

remained unchanged in myoblasts (Control 1.49 ± 0.74 vs. VDR-KD 1.06 ± 0.62 

pmol/min/µg, P > 0.05) (Fig. 4.2C), VDR-KD resulted in a decrease in proton leak by 

67% in myotubes (Control 2.78 ± 0.56 vs. VDR-KD 0.91 ± 0.35 pmol/min/µg, P < 

0.001) (Fig. 4.2D).  
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Figure 4.2. Knock-down of the VDR in C2C12 myoblasts and myotubes reduces mitochondrial 
respiration as measured by extracellular flux. A-B) Mitochondrial stress test traces from both 
control and VDR-KD myoblasts and myotubes (n = 9-10/group). C-D) Respiratory parameters derived 
from the mitochondrial stress test from both control and VDR-KD myoblasts and myotubes (n =9-
10/group). Data mean ± SD. *P < 0.05, **P < 0.005.  
 
 

4.3.3 Estimation of ATP Production 

VDR-KD reduced total ATP production by 18% in C2C12 myoblasts (Control 55.15 ± 

8.13 vs. 45.03 ± 3.01 pmolATP/min/µg, P = 0.002) when compared to controls (Fig. 

4.3A). In addition, estimated ATP production derived from oxidative phosphorylation 

(ATPox) was reduced by 20% in VDR-KD myoblasts (Control 46.13 ± 8.41 vs. VDR-

KD 36.87 ± 3.53 pmolATP/min/µg, P = 0.007). ATP production derived from 

glycolysis (ATPglyc) on the other hand remained unchanged (Control 9.04 ± 4.29 vs. 

8.13 ± 2.76 pmolATP/min/µg, P > 0.05) (Fig. 4.3A).  
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Figure 4.3. Reduction in ATP production via oxidative phosphorylation as opposed to 
glycolysis following VDR-KD in C2C12 myoblasts. A) Total ATP production and ATP production 
derived from oxidative and glycolytic means in control and VDR-KD myoblasts (n = 10/group). Data 
mean ± SD. *P < 0.05.  
 

4.3.5 Membrane Potential 

No main effect for group (P > 0.05) was observed for mitochondrial membrane 

potential although there was a main effect for treatment (P < 0.001) and group X 

treatment interaction (P = 0.001) indicating treatment with FCCP successfully 

depolarised the mitochondrial membrane. Post-hoc comparisons revealed a 

significant reduction in mitochondrial membrane in basal conditions (P = 0.001) when 

VDR-KD cells were compared with controls (Fig. 4.4A).  
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Figure 4.4. Mitochondrial membrane potential is reduced in VDR-KD C2C12 myoblasts. A) 
Mitochondrial membrane potential assessed via TMRE in both basal control and VDR-KD myoblasts 
as well as with the pre-treatment with FCCP (n = 5/group). Data mean ± SD. *P < 0.05, bmain effect 
for treatment, cmain interaction effect.  
 

4.3.5 Mitochondrial Related Protein Content 

No differences were observed in mitochondrial protein content including CI 

(NDUFB8), CII (SDHB), CIV (MTCO1) and CV (ATP5A), citrate synthase and 

cytochrome c following the knock-down of the VDR in both C2C12 myoblasts and 

myotubes (Fig 4.5. A-D., P > 0.05). 
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Figure 4.5. No change in markers of mitochondrial protein content following VDR-KD in both 
C2C12 myoblasts and myotubes. A) Protein abundance of mitochondrial electron transport chain 
subunits, CS and cyt c in control and VDR-KD C2C12 myoblasts (n = 6/group). B) Representative 
images of markers of mitochondrial protein content in control and VDR-KD C2C12 myoblasts. C) 
Protein abundance of mitochondrial electron transport chain subunits, CS and cyt c in control and 
VDR-KD C2C12 myotubes (n = 6/group). D) Representative images of markers of mitochondrial 
protein content in control and VDR-KD C2C12 myotubes. Data mean ± SD and represented as a fold 
change from control. 
 
 
4.3.6 Mitochondrial Fusion and Fission Related Protein Content 

Mitochondrial fusion related proteins MFN2 and mitofilin were unchanged following 

VDR-KD in both myoblasts and myotubes (Fig 4.6. A-D., P > 0.05). However, the 

mitochondrial fusion related protein, OPA1, was greater compared to CON by ~15% 

in both VDR-KD myoblasts (Fig. 4.6A-B., P = 0.021) and myotubes (Fig. 4.6C-D., P = 

0.046). Mitochondrial fission related proteins Fis 1 and DRP1 remained unchanged in 

both VDR-KD myoblasts and myotubes (Fig. 4.6A-D., P > 0.05).  
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Figure 4.6. Knock-down of the VDR in C2C12 myoblasts and myotubes results in an increase in 
OPA1 protein abundance but no change in markers of mitochondrial fission. A) Protein 
abundance of markers of mitochondrial fusion and fission in control and VDR-KD C2C12 myoblasts (n 
= 6/group). B) Representative images of markers of mitochondrial fusion and fission in control and 
VDR-KD C2C12 myoblasts. C) Protein abundance of markers of mitochondrial fusion and fission in 
control and VDR-KD C2C12 myotubes (n = 6/group). D) Representative images of markers of 
mitochondrial fusion and fission in control and VDR-KD C2C12 myotubes. Data mean ± SD and 
reported as a fold change from control. *P < 0.05.  
 

4.3.7 Mitochondrial Related Protein Content in VDR-KD Rat Skeletal Muscle. 

VDR-KD in rat skeletal muscle via electroporation resulted in no changed in markers 

of mitochondrial protein content (Fig 4.7. A-B, P > 0.05). Trends were observed for 

decreases in the content of mitochondrial CI (NDUFB8) (P = 0.055) and CIV 

(MTCO1) (P = 0.056) following VDR-KD (Fig. 4.7A-B). No changes were observed in 

markers of mitochondrial fusion and fission when VDR-KD was compared to control 

leg (Fig. 4.7C-D, P > 0.05).  
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Figure 4.7. No change in markers of mitochondrial protein content, fusion or fission following 
the knock-down of the VDR in rat skeletal muscle. A and C) Protein abundance of markers of 
mitochondrial protein content, fusion and fission in the tibialis anterior following VDR-KD via electro-
transfer (n = 7/group). B and D) Representative images of markers of mitochondrial protein content, 
fusion and fission. Data mean ± SD and reported as a fold change from control leg. 
 

4.3.8 Mitochondrial Related Protein Content in VDR-OE Rat Skeletal Muscle 

Overexpression of the VDR resulted in no change in markers of mitochondrial protein 

content or markers of mitochondrial fusion and fission (Fig. 4.8A-D, P > 0.05).  
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Figure 4.8. No change in markers of mitochondrial protein content, fusion and fission following 
over-expression of the VDR in rat skeletal muscle.  A and C) Protein abundance of markers of 
mitochondrial protein content, fusion and fission in the tibialis anterior following VDR-OE via electro-
transfer (n = 7/group). B and D) Representative images of markers of mitochondrial protein content, 
fusion and fission. Data mean ± SD and reported as a fold change from control leg.  
 

4.4 Discussion 

The role of vitamin D within skeletal muscle has received considerable interest in 

recent years and current evidence suggests that vitamin D related metabolites are 

able to increase mitochondrial function within skeletal muscle [30, 32-34, 42]. 

Building upon previous studies, we demonstrate that a loss-of-function of the VDR in 

C2C12 cells results in significant reductions in mitochondrial function in both 

myoblasts and myotubes (Fig. 4.2A-D). Impairments were specifically observed in 

respiration derived from oxidative phosphorylation (Fig. 4.3A) although, this was not 

as a result of decreases in mitochondrial protein content (Fig. 4.5A-D). Furthermore, 

both the knock-down and over-expression of the VDR in rat skeletal muscle resulted 

in no change in markers of mitochondrial protein content or fission (Fig. 4.7 & 8A-B).  
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Previously, difficulties in the detection of the VDR within skeletal muscle have been 

reported [43, 44]. Therefore, we utilised multiple antibodies including the reportedly 

highly specific D6 antibody in order to detect the VDR across skeletal muscle 

myogenesis [43, 45]. Following shRNA interference targeting the mouse VDR gene 

and puromycin selection, we observed a significant reduction in VDR protein content 

within both C2C12 skeletal muscle myoblasts and myotubes. Indicative of a 

successful and stable loss-of-function of the VDR. Further analysis revealed a 

significant reduction in mitochondrial respiration in both C2C12 myoblasts and 

myotubes following VDR-KD. Previously, it has been reported that the treatment of 

both human primary skeletal muscle myoblasts and C2C12 skeletal muscle cells with 

vitamin D metabolites resulted in an increase in mitochondrial respiration [32-34]. 

Whilst the observed increases in respiration were abolished following the siRNA 

mediated knock-down of the VDR in human skeletal muscle myoblasts [32], transient 

siRNA approaches are unable to determine the role of the VDR in mediating these 

changes across development. Therefore, our results build upon previous findings and 

indicate that mitochondrial impairments persist across development following VDR-

KD in skeletal muscle. Furthermore, we utilised a recently developed assay in which 

mitochondrial respiration coupled to the production of ATP can be separated into 

ATP production derived from either oxidative phosphorylation or glycolysis [40]. We 

observed significant reductions in ATP production derived from oxidative 

phosphorylation, suggesting impairments are intrinsic to the mitochondria following 

VDR loss-of-function. Although the supplementation of vitamin D3 in severely 

deficient individuals improves oxidative phosphorylation [30], it is yet to be 
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established if the loss of the VDR within skeletal muscle alters skeletal muscle 

mitochondrial function in vivo.  

 

In order to determine whether the observed impairments in mitochondrial respiration 

were related to reductions in mitochondrial volume, we assessed multiple markers of 

mitochondrial protein content [46]. Interestingly, we observed no change in 

mitochondrial protein content in both myoblasts and myotubes. Therefore, the 

reductions in mitochondrial function following VDR loss-of-function are not mediated 

by a decrease in mitochondrial content per se. Corresponding findings have been 

reported previously in both human skeletal muscle myoblasts following the treatment 

with 1a,25(OH)2D3 and within the quadriceps of mice with a myocyte specific deletion 

of the VDR, both resulting in no change in the protein content of members of the 

electron transport chain [29, 32]. Similarly, we observed no changes in mitochondrial 

protein content in rat skeletal following both VDR-KD and VDR-OE. Although, we did 

observe trends for a reduction in both complex I (P = 0.055) and IV (P = 0.056) 

following VDR-KD. Interestingly, morphological alterations such as decreased muscle 

fibre size within the skeletal muscle of VDR-KO mice are not limited to muscles of 

specific fibre types [18, 24]. Therefore, it could be reasoned that the observed trends 

may have been more apparent if the VDR-KD was administered to a skeletal muscle 

of a more oxidative phenotype.  

 

Although we observed no differences in mitochondrial protein content, an increase in 

the abundance of OPA1 was observed following VDR-KD in both myoblasts and 

myotubes. In contradiction to our results, OPA1 is also increased in response to 
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1a,25(OH)2D3 treatment in human skeletal muscle myoblasts [32] suggesting the 

increase in OPA1 following VDR-KD may be compensatory. OPA1 is known to 

possess a number of roles including modulating the fusion of the inner mitochondrial 

membrane and cristae remodelling [47, 48], in addition to protecting from apoptosis 

by reducing mitochondrial fragmentation [49]. OPA1 exists in both long and short 

isoforms, with the long isoforms undergoing proteolytic processing under conditions 

of cellular stress such as reduced mitochondrial membrane potential or increased 

ROS production [50, 51]. Given that we also report a loss of mitochondrial membrane 

potential following VDR loss-of-function, we may be observing an increase in OPA1 

proteolytic processing. A mechanism which has previously been described to reduce 

mitochondrial fusion and promote to sequestering of fragmented mitochondria for 

degradation [50]. In support of this, the loss of the VDR in cancer cell lines has been 

reported to increase the production of ROS which could also contribute to the 

processing of OPA1 [52]. In addition, the treatment of human skeletal muscle 

myoblasts with 1a,25(OH)2D3 resulted in a decrease in mitochondrial fragmentation 

[32]. Therefore, it is possible that the large functional decrements observed following 

VDR-KD may be as a result of a fragmented mitochondrial network and the increase 

in OPA1 is a compensatory mechanism. Further analysis examining the organisation 

of the mitochondrial network via the use of mitochondrial labelling techniques would 

help to shed light upon this [53]. Despite in vitro observations, we report no change in 

OPA1 protein abundance in rat skeletal muscle following both VDR-KD and VDR-OE.  

 

Whilst we and others have shown distinct changes in skeletal muscle mitochondrial 

function in response to VDR loss-of-function and treatment with vitamin D related 
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metabolites [32-34], the exact manner by which the VDR mediates this is unclear. 

Multiple studies have utilised microarray analyses to identify VDR target genes from 

multiple tissues [54-58]. However, the number of overlapping genes were low, 

indicating VDR target genes respond to 1a,25(OH)2D3 in a tissue-specific manner 

[59, 60]. Previously, a number of mRNAs encoding for mitochondrial proteins have 

been shown to be upregulated in human primary skeletal muscle myoblasts following 

the treatment with 1a,25(OH)2D3 [32] however, it is unclear whether these genes 

contain specific VDREs. Further studies combining microarray analysis, chromatin 

immunoprecipitation (ChIP) and rapid immunoprecipitation mass spectrometry of 

endogenous proteins (RIME) are much needed within skeletal muscle in order to 

identify VDR target genes and coregulatory binding partners  [61, 62]. A potential 

candidate for further exploration, PPARd has been shown to be responsive to the 

treatment of 1a,25(OH)2D3 and contain a functional VDRE, albeit within cancer cell 

lines [63]. Similar to the VDR, PPARd forms a heterodimer protein complex with 

RXRs [64] and is a known regulator of fatty acid oxidation and mitochondrial content 

within skeletal muscle [65]. The potential exploration of the VDRs interaction with 

PPARd within skeletal muscle may provide explanation towards the functional 

decrement observed following VDR-KD.  

 

In addition to its genomic actions, the VDR is also involved in non-genomic transient 

signalling events [66, 67]. The treatment of skeletal muscle cell lines with 

1a,25(OH)2D3 results in an increase in intracellular Ca2+ flux likely mediated by the 

VDR [68-70]. Intracellular and mitochondrial Ca2+ handling involving uptake, 

buffering and extrusion of Ca2+ is tightly coupled to the energetic state of the 
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organelle [71, 72]. Given the observed decrements in mitochondrial function, 

oxidative phosphorylation and membrane potential in response to VDR loss-of-

function, the exploration of Ca2+ handling dynamics should be an avenue for further 

exploration.  

 

In summary, for the first time, we build upon previous links between vitamin D and 

mitochondrial function [32-34, 42] by reporting a novel role for the VDR in the 

regulation of mitochondrial function in the C2C12 mouse skeletal muscle cell line. 

Reductions in mitochondrial function were as a result of reduced ATP production via 

oxidative phosphorylation whilst markers of mitochondrial protein content, fusion and 

fission were unchanged. Finally, markers of mitochondrial protein content, fusion and 

fission remain unchanged following the knock-down and over-expression of the VDR 

within rat skeletal muscle although, the role of the VDR within skeletal muscle in vivo 

requires further examination.  
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CHAPTER 5 

 

THE EFFECT OF DIET-INDUCED VITAMIN D DEFICIENCY ON BODY 

COMPOSITION AND SKELETAL MUSCLE MITOCHONDRIAL FUNCTION IN 

C57BL/6J MICE 
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5.1 Introduction 

Vitamin D deficiency, characterised by serum 25(OH)D levels of <50 nmol.L-1, 

remains a widespread issue across the world [1, 2]. Although the classical actions of 

vitamin D are well established [3-5], a number of non-classical actions have recently 

been identified including; the prevention of some cancers [6], the maintenance of 

immune function [7] and the maintenance of skeletal muscle function [8].  

 

Multiple studies have also sought to assess the effects of vitamin D deficiency upon 

skeletal muscle function within human populations [9-12]. Of note, observational 

studies have reported a positive association between serum 25(OH)D levels and 

muscle strength and lower extremity function in older individuals [9-11], with vitamin 

D supplementation able to increase skeletal muscle strength in this population [13, 

14]. Despite these associations, studies of this design are unable to infer causality. In 

addition, isolating the effects of vitamin D status within older populations is often 

difficult given individuals may suffer from a number of pre-existing conditions that 

may interfere with vitamin D status [15]. These difficulties highlight the importance of 

model systems that allow for the manipulation and isolation of vitamin D status in 

order to study the precise role of vitamin D within skeletal muscle.  

 

In order to study the impact of vitamin D deficiency on skeletal muscle function, a 

number of animal models have been utilised. A dysregulation of vitamin D status can 

be achieved via dietary means [16-19], a reduction in sunlight exposure [16] or by the 

administration of ethane 1-hydroxy-1, 1-diphosphonate which blocks the production 

of 1a,25(OH)2D3 [19]. Diet-induced vitamin D deficiency has been shown to result in 
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symptoms of skeletal muscle myopathy including impaired contraction kinetics, 

skeletal muscle weakness and decreases in muscle force in both chicks and rats [16, 

17, 20]. In order to isolate the effect of vitamin D and offset the observed 

hypocalcemia and hypophosphatemia that are associated with the induction of 

vitamin D deficiency [20], diets with increased calcium and phosphate have also 

been utilised [18]. However, despite the administration of this rescue diet, mice still 

display reduced grip strength and an increase in Myostatin gene expression [18], a 

known negative regulator of muscle mass [21]. Similarly, mice fed this diet chronically 

(8-12 months) show similar impairments in physical performance including; reduced 

grip endurance, sprint speed and stride length [22].  

 

The observed impairments in physical performance with vitamin D deficiency may be 

linked to impairments within skeletal muscle mitochondrial function [12, 23]. In vitro, 

vitamin D related metabolites are able to increase mitochondrial function in both 

immortalised and primary skeletal muscle cell lines [24-27]. In addition, the 

supplementation of vitamin D within a cohort of severely deficient individuals resulted 

in an increase in oxidative phosphorylation, as measured non-invasively by P-31 

MRS [12]. Whilst skeletal muscle mitochondrial content seems to remain unchanged 

following diet-induced vitamin D deficiency in mice [22], the functional characteristics 

of the mitochondria remain largely underexplored. Despite previous observations, 

current evidence is limited, specifically in relation to the in vivo effects of vitamin D 

deficiency upon skeletal muscle mitochondrial function. Therefore, the aims of this 

chapter are as follows; 1) Determine the effects of vitamin D deficiency upon body 

composition in C57BL/6J mice. 2) Determine the effects of vitamin D deficiency upon 
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skeletal muscle mitochondrial respiration in permeabilised skeletal muscle fibres from 

C57BL/6J mice.  

 

5.2 Methods 

5.2.1 Ethical Approval  

Ethical approval for mouse studies was granted by the Garvan Institute and St. 

Vincent’s Hospital Animal Experimentation Ethics Committee (approval number 

18/19). Ethical approval fulfils all the requirements of the NHMRC and the NSW State 

Government, Australia. All animal handling was carried out by trained personnel and 

all procedures were carried out according to the Australian code of practice for the 

care and use of animals for scientific purposes 8th edition [28]. C57BL/6J mice were 

received at 10-weeks of age and housed communally in a temperature controlled 

environment (22 ± 0.5°C) with a 12 h light-dark cycle.  

 

5.2.2 Composition of Diet 

Following 1-week acclimation in which mice were fed a standard chow diet, mice 

were placed on either a vitamin D-control diet or a vitamin D-deplete diet (Table 2.2) 

[18]. The vitamin D deplete contains no vitamin D but increased calcium (2%), 

magnesium (0.2%), and phosphorous (1.2%) in order to maintain normal mineral 

homeostasis (SF085-003, Speciality Feeds, Glen Forest, NSW). The vitamin D 

control diet contains vitamin D (cholecalciferol 2,200 IU/kg), calcium (1%), 

magnesium (0.2%), and phosphorous (0.7%) (SF085-034, Speciality Feeds, Glen 

Forest, NSW). Mice were maintained on the respective diets for a period of either 1- 

(n=10/group), 2- (n=10/group), or 3-months (n=6/group).   
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5.2.3 Assessment of Body Composition 

Prior to each assessment of body composition, mice were briefly weighed. Body 

weight was also obtained on a weekly basis throughout dietary intervention. Body 

composition was assessed upon arrival (10-weeks of age) and then following 1-, 2- 

and 3-months of dietary intervention using the EchoMRi (EchoMRI LLC, Houston, 

USA).  

 

5.2.4 Tissue Collection 

Tissue collections were completed following 1-, 2- and 3-months of dietary 

intervention. All samples were excised from fasted (2 h) mice following isoflurane 

(5%) anesthetization. Tissues collected include; gastrocnemius, quadriceps, triceps, 

liver, kidney, white adipose tissue and the tibia. Following collection, a blood sample 

was taken via cardiac puncture and animal terminated via cervical dislocation. All 

tissues were rinsed in sterile saline, blotted dry, weighed, and frozen in liquid 

nitrogen. A small portion (~20 mg) of the gastrocnemius was removed before 

freezing and used for high-resolution respirometry. All tissues were stored at -80°C 

for subsequent analysis.  

 

5.2.5 Tissue Processing 

Small portions of gastrocnemius muscle (~20 mg) were removed and placed in ice-

cold BIOPS buffer (2.77 mM CaK2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP, 6.56 

mM MgCl2-6H2O, 20 mM Taurine, 15 mM Na2Phosphocreatine, 20 mM Imidazole, 

0.5 mM Dithiothreitol, 50 mM MES Hydrate, pH 7.1, 290 mOsm). Blood samples 

were allowed to coagulate at room temperature for 10 minutes before being placed 
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on ice. Blood samples were then centrifuged at 14,000 g for 10 minutes. The 

resulting supernatant was removed and stored at -80°C for further analysis.  

 

5.2.6 Analysis of Serum Calcium 

Serum calcium was measured using a Calcium Detection Assay kit (Abcam, 

Cambridge, UK, cat. ab102505). Serum samples were diluted 1:10 and 

manufacturers instructions were followed. The assay plate was read at 575 nm using 

a CLARIOstar microplate reader (BMG Labtech, Victoria, Australia). Serum calcium 

concentrations are reported in mM.  

 

5.2.7 High-Resolution Respirometry 

High-resolution respirometry was conducted in MiR05 (2 ml) with the addition of 

blebbistatin (25 µM) using the OROBORS Oxygraph-2K (Oroboros Instruments, 

Corp., Innsbruck, AT) with stirring at 750 rpm at 37°C. Oxygen within the chamber 

was maintained between 150-220 µM for each experiment. Prior to the addition of the 

fibre bundles to the chamber, bundles were blotted dry and weighed. Bundles 

totalling 2.5-5.0 mg were added to the chamber. Firstly, pyruvate (10 mM) and 

malate (2 mM) were added as complex I substrates. Subsequently, ADP was titrated 

in step-wise increments (100-6000 µM) followed by the addition of glutamate (10 

mM) and succinate (10 mM) as complex I and II substrates. Cyt c (10 µM) was added 

in order to check outer mitochondrial membrane integrity. The partial loss of cyt c 

during fibre preparation may limit respiration. No fibre preparation exhibited an 

increase of >10%. CCCP was titrated in a step-wise manner (0.5 to 2.5 µM) until the 
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maximal capacity of the electron transport chain was reached. Finally, antimycin A 

(2.5 µM) was injected in order to inhibit mitochondrial respiration.  

 

The apparent Km for ADP was determined through the Michaelis-Menten enzyme 

kinetics – fitting model (Y = Vmax*X/(Km + X)), where X = (free ADP; ADPf), using 

Prism (GraphPad Software, Inc., La Jolla, CA). Flux control ratios (FCR) was 

calculated by setting CCCP stimulated respiration as 1 and antimycin A respiration 

as 0.  

 

5.2.8 Statistical Analysis 

Statistical analysis was performed using Prism version 7 (GraphPad Software 

Incorporated, La Jolla, CA, USA). Differences between 1-, 2- and 3-month vitamin D 

replete and deplete mice were determined by two-way ANOVA with Bonferroni 

correction for multiple comparisons. Differences between vitamin D deplete and 

replete mice in mitochondrial respiration in response to ADP titration were 

determined by multiple t-test. For baseline comparisons of body weight and 

composition, vitamin D replete and deplete mice were pooled and compared via 

independent t-test. All values are presented as mean ± SD. Statistical significance 

was set at P < 0.05.  
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5.3 Results 

 

Table 5.1. No differences in baseline measurements of body composition in mice prior to 
dietary intervention. Data mean ± SD (n=22/group).  
 

 

5.3.1 Body Weight 

Mice were matched for body weight (P > 0.05) at baseline when separated into 

individual groups (Table 5.1). Overall, body weight increased in both dietary groups 

when assessed over the 3-month dietary period, main effect for time (P < 0.001), with 

a significant increase as of week 2 when compared to baseline (P < 0.001) (Fig. 

5.1A). Similarly, body weight increased when mice were compared at 1-, 2- and 3-

months of dietary intervention, main effect for time (P < 0.001) (Fig. 5.1B). Body 

weight was increased at the 3-month time point when compared to mice at 1- and 2-

months respectively (P < 0.001) (Fig. 5.1B). No differences in body weight were 

observed when comparing vitamin D replete and deplete mice (P > 0.05) (Fig. 5.1A-

B).  

 

 Dietary Group  
 VitD Replete VitD Deplete P 
Body Weight (g) 27.2 ± 1.3 27.2 ± 1.5 0.88 
    
Lean Mass (g) 24.0 ± 1.3 23.5 ± 1.3 0.31 
    
Lean Mass (% of BW) 88 ± 2 89 ± 2 0.10 
    
Fat Mass (g) 2.0 ± 0.6 1.8 ± 0.5 0.19 
      
Fat Mass (% of BW) 7 ± 2 7 ± 2 0.23 
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Figure 5.1. Body weight increases during 3-month dietary intervention irrespective of vitamin D 
status. A) Weekly assessment of body weight over 3-month dietary period. B) Body weight at 1-, 2- 
and 3-month dietary time point. Data mean ± SD (n=6-10/group). bMain effect for time; P < 0.05. 
dSignificantly different from baseline; P < 0.05.  
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5.3.2 Lean Mass 

Mice were matched for lean mass (P > 0.05) at baseline when separated into 

individual groups (Table 5.1). Absolute lean mass increased across the 3-month 

dietary period, main effect for time (P < 0.001), with a significant increase as of week 

4 (P = 0.004) (Fig. 5.2A). Despite this, due to the increased body weight, lean mass 

as a percentage of body weight decreased, main effect for time (P < 0.001), with a 

significant decrease as of week 4 (P < 0.001) (Fig. 5.2B). No differences were 

observed in absolute lean mass when compared at the 1-, 2- and 3-month time 

points (P > 0.05) (Fig. 5.2C). When expressed as a percentage of body weight, lean 

mass decreased, main effect for time (P < 0.001) and group x time interaction (P = 

0.035), when compared across the 1, 2 and 3-month time points (Fig. 5.2D). Further 

analysis revealed a significant decrease in lean mass as a percentage of body when 

the 3-month (71 ± 7%) vitamin D deplete mice was compared with the 1-month (85 ± 

3%), whereas vitamin D replete remained unchanged (P > 0.05) (Fig. 5.2D). At the 1-

month time point, lean mass as a percentage of body weight was increased in the 

vitamin D deplete group (85 ± 3%) when compared to vitamin D replete (79 ± 5%) (P 

= 0.039) (Fig. 5.2D).  
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Figure 5.2. Lean mass as a percentage of body weight decreases in vitamin D deplete mice 
with no differences in comparison to replete mice. A) Repeated measurement of absolute lean 
mass (grams) across 3-month dietary intervention. B) Repeated measurement of lean mass as a 
percentage of body weight across 3-month dietary period. C) Absolute lean mass (grams) following 1-, 
2- and 3-months of dietary intervention. D) Lean mass as a percentage of body weight following 1-, 2- 
and 3-months of dietary intervention. Data mean ± SD (n=6-8/group). bMain effect for time; P < 0.05, 
cgroup x time interaction effect; P < 0.05, dSignificantly different from baseline; P < 0.05, eSignificantly 
different from 1-month time point of same dietary group; P < 0.05, *P < 0.05.  
 
 
5.3.3 Fat Mass 

At baseline, mice were matched for fat mass when split into individual groups (P > 

0.05) (Table 5.1). Overall, absolute fat mass increased across the 3-month dietary 

period, main effect for time (P < 0.001), with a significant increase as of week 4 (P < 

0.001) (Fig. 5.3A). Similarly, when expressed as a percentage of body weight, fat 
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mass increased in both groups, main effect for time (P < 0.001), with a significant 

increase as of week 4 (P < 0.001) (Fig. 5.3B). When compared across the 1-, 2- and 

3-month time points, absolute fat mass increased, main effect for time (P < 0.001) 

(Fig. 5.3C). Similarly, as a percentage of body weight, fat mass increased across the 

1, 2 and 3-month time points, main effect for time (P < 0.001) (Fig. 5.3D). An 

increased in fat mass as a percentage of body was observed in the vitamin D replete 

(16 ± 5%) when compared with vitamin D deplete (10 ± 2%) at the 1-month time point 

(P = 0.044) (Fig. 5.3D).  

Figure 5.3. Fat mass increases across dietary period irrespective of vitamin D status. A) 
Repeated measurement of absolute fat mass (grams) across 3-month dietary period. B) Repeated 
measurement of fat mass as a percentage of body weight across 3-month dietary period. C) 
Assessment of absolute fat mass (grams) at 1-, 2- and 3-months of dietary intervention. D) Fat mass 
as a percentage of body weight at 1-, 2- and 3-months of dietary intervention. Data mean ± SD (n=6-
8/group). bMain effect for time; P < 0.05, cgroup x time interaction effect; P < 0.05, dSignificantly 
different to 1-month time point of same group; P < 0.05, *P < 0.05.  
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5.3.4 Skeletal Muscle Mass 

No changes were observed in gastrocnemius mass in response to either dietary 

intervention (P = 0.408) or time point (P = 0.103) (Table 5.2). Overall, the mass of the 

quadriceps increased over time (P = 0.004) however, this was not changed by dietary 

intervention (P = 0.951) (Table 5.2). Collectively, triceps mass was increased when 

vitamin D replete mice were compared with deplete (P = 0.041) although, post-hoc 

analysis revealed no difference between groups at individual time points (P > 0.05) 

(Table 5.2).  

 
 
 

Table 5.2. Increased tricep and no differences in quadriceps or gastrocnemius mass when 
vitamin D replete mice are compared with deplete mice. Data mean ± SD (n=6-8/group). 
Significant set at P < 0.05.  
 

5.3.5 Serum Calcium 

Serum calcium remained unchanged irrespective of dietary group or time point (P > 

0.05) (Fig. 5.4).  

 

 

 Dietary Period (Months)  
 1 2 3 P 
Gastrocnemius    VitD Time 
(mg)      
  Replete 143 ± 14 166 ± 25 161 ± 14   
  Deplete 152 ± 16 149 ± 12 156 ± 15 0.408 0.103 
      
Quadriceps      
(mg)      
  Replete 160 ± 14 189 ± 12 182 ± 20   
  Deplete 169 ± 18 178 ± 22 184 ± 19 0.951 0.004 
      
Tricep      
(mg)      
  Replete 111 ± 20 113 ± 14 109 ± 10   
  Deplete 106 ± 9 96 ± 19 101 ± 13 0.041 0.695 
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Figure 5.4. No change in serum calcium following manipulation of vitamin D status. Data mean 
± SD (n=6-10/group).  
 

5.3.6 Skeletal Muscle Mitochondrial Function 

No changes were observed in complex I related leak in response to either differing 

vitamin D diets (P > 0.05) or time points (P > 0.05) (Fig. 5.5A). Complex I respiration 

increased across the 1, 2 and 3-month time points, main effect for time (P = 0.048) 

and group x time interaction (P = 0.035) (Fig. 5.5B). Further analysis revealed a 

significant increase in 2-month (319.97 ± 75.81 pmol.sec-1.mg-1.dry weight) and 3-

month (338.08 ± 170.46 pmol.sec-1.mg-1.dry weight) vitamin D replete groups when 

compared to the 1-month (172.41 ± 51.60 pmol.sec-1.mg-1.dry weight), whereas the 

vitamin D deplete groups remained unchanged (P > 0.05) (Fig. 5.5B). Group x time 

interaction effects were observed for both complex I and II phosphorylating (P = 

0.035) and maximal respiration (P = 0.017) (Fig. 5.5C-D). Complex I and II 

phosphorylating respiration increased in 2 (416.17 ± 94.96 pmol.sec-1.mg-1.dry 

weight) and 3-month (451.37 ± 196.40 pmol.sec-1.mg-1.dry weight) vitamin D replete 

groups when compared with the 1-month (274.86 ± 47.57 pmol.sec-1.mg-1.dry weight) 

whilst vitamin D deplete remained unchanged (P > 0.05) (Fig. 5.5C). Similar 
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increases were apparent in maximal respiration when the 2 (502.22 ± 109.35 

pmol.sec-1.mg-1.dry weight) and 3-month (560.58 ± 205.09 pmol.sec-1.mg-1.dry 

weight) vitamin D replete groups where compared with the 1-month (323.19 ± 48.68 

pmol.sec-1.mg-1.dry weight) and again, vitamin D deplete remained unchanged (P > 

0.05) (Fig. 5.5D). At the 3-month time point, phosphorylating respiration supported 

via complex I and II was significantly decreased in the vitamin D deplete mice 

(291.76 ± 48.66 pmol.sec-1.mg-1.dry weight) when compared to vitamin D replete 

(451.37 ± 196.40 pmol.sec-1.mg-1.dry weight) (P = 0.035) (Fig. 5.5C). Similarly, 

respiration supported via the maximal capacity of the electron transport chain was 

reduced in the vitamin D deplete group (352.90 ± 46.56 pmol.sec-1.mg-1.dry weight) 

when compared with vitamin D replete (560.58 ± 205.09 pmol.sec-1.mg-1.dry weight) 

at the 3-month time point (P = 0.015) (Fig. 5.5D).  
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Figure 5.5. Skeletal muscle mitochondrial respiration is reduced following 3-months of diet-
induced vitamin D deficiency in mice. A) Complex I related leak at following 1-, 2- and 3-months of 
dietary intervention. B) Complex I phosphorylation respiration following 1-, 2- and 3-months of dietary 
intervention. C) Complex I and II phosphorylating respiration following 1-, 2- and 3-months of dietary 
intervention. D) Maximal capacity of the electron transport chain following 1-, 2- and 3-months of 
dietary intervention. Data mean ± SD (n=6-8/group). bMain effect for time; P < 0.05, cgroup x time 
interaction effect; P < 0.05, dSignificantly different from baseline; P < 0.05, eSignificantly different from 
1-month time point of same dietary group; P < 0.05, *P < 0.05.  
 

5.3.7 ADP Sensitivity 

No differences were observed in the apparent Km for ADP in response to either 

dietary intervention (P > 0.05) or time point (P > 0.05) (Fig. 5.6D).  
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Figure 5.6. No change in mitochondrial respiration across ADP titration following manipulation 
of vitamin D status in mice. A) ADP stimulated respiration following 1-month of dietary intervention. 
B) ADP stimulated respiration following 2-month of dietary intervention. C) ADP stimulated respiration 
following 3-month of dietary intervention. D) Apparent Km for ADP in vitamin D replete and deplete 
mice at 1-, 2- and 3-month of dietary intervention. Data mean ± SD (n=6-8/group).  
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5.3.8 Flux Control Ratios 

When normalised to maximal respiration, the flux control ratios revealed no 

differences in mitochondrial respiration supported via complex I alone (P > 0.05) or 

complex I and II (P > 0.05) (Fig. 5.7A-B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Flux control ratios remain unchanged following diet-induced vitamin D deficiency in 
mice. A) Complex I related flux control ration following 1-, 2- and 3-months of dietary intervention. B) 
Complex I and II related flux control ratio following 1-, 2- and 3-months of dietary intervention. Data 
mean ± SD (n=6-8/group).  
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5.4 Discussion 

We sought to determine the effects of vitamin D deficiency upon skeletal muscle 

mitochondrial function in the C57BL/6J mouse line. Utilising the current gold standard 

method to assess mitochondrial function in permeabilised skeletal muscle fibres [29, 

30], we report that 3-months of diet-induced vitamin D deficiency reduces 

mitochondrial respiration supported via complex I and II and the maximal capacity of 

the electron transport chain (Fig. 5.5C-D). However, following internal normalisation, 

these reductions were no longer apparent, suggesting that changes in mitochondrial 

respiration following dietary intervention are a result of reduced mitochondrial 

quantity (Fig. 5.7A-B). In addition, 1-month of diet-induced vitamin D deficiency 

resulted in an increase in lean mass (Fig. 5.2D) and a decrease in fat mass (Fig. 

5.3D) as a percentage of body weight, although these effects were transient as they 

did not manifest over 2-month and 3-months of dietary intervention. Furthermore, 

diet-induced vitamin D deficiency resulted in a decrease in lean mass as a 

percentage of body weight across the 3-month time period (Fig. 5.3D). Despite this, 

no changes in body weight, lean mass or fat mass were apparent when comparing 

vitamin D replete to the deplete group following 3-months of dietary intervention.  

 

The ability of vitamin D related metabolites to increase skeletal muscle mitochondrial 

function across both immortalised and primary cell lines has been well established 

[24-27]. Despite this, there is little evidence for the effects of vitamin D status upon 

skeletal muscle mitochondrial function in vivo. To date, just one study has sought to 

determine the effects of vitamin D upon skeletal muscle mitochondrial function in 

vivo. Skeletal muscle mitochondrial function was assessed non-invasively (P-31 
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MRS) in a cohort of severely deficient patients following the supplementation of 

vitamin D [12]. Whilst a decrease in PCr recovery time was reported, indicative of 

increased oxidative phosphorylation, the study lacked a number of experimental 

controls including proper randomisation and blinding [12], making the interpretation of 

said results difficult. Therefore, in order to assess the effects of vitamin D status upon 

skeletal muscle mitochondrial function, we utilised a mouse model of diet-induced 

vitamin D deficiency. This mouse model has been previously utilised and allows for 

the manipulation of vitamin D status without a dysregulation in mineral homeostasis 

[18]. Following 3-months of diet-induced vitamin D deficiency, we report that 

respiration supported via complex I and II and the maximal capacity of the electron 

transport chain are reduced when compared to respective controls at the same time 

point. In addition, vitamin D replete mice exhibited increases in multiple parameters 

of mitochondrial respiration (CIL, CI+IIP and ETC) across the 3-month dietary 

intervention period, whilst respiration in vitamin D deplete mice remained stable.  

Previously, both mitochondrial number and the activity of components of the electron 

transport chain have been reported to increase from 3 to 12 months of age within 

mouse skeletal muscle [31, 32]. Therefore, diet-induced vitamin D deficiency may 

well impair the age-related increases in skeletal muscle mitochondrial content. In 

support of this, we examined mitochondrial respiration as a flux control ratio, which 

offers a method of internal normalisation and the assessment of whether changes in 

respiration are as a result of mitochondrial quality or quantity [33-35]. Interestingly, 

the previously observed increases in mitochondrial respiration are abolished 

following internal normalisation, suggesting alterations in mitochondrial respiration 

following diet-induced vitamin D deficiency are a product of reduced mitochondrial 
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quantity. In contrast, no changes in mitochondrial protein content, mtDNA/nDNA ratio 

or citrate synthase activity have been reported following 12-months of diet-induced 

vitamin D deficiency in C57BL/6J mice [22]. It should be noted that diet-induced 

vitamin D deficiency was commenced from 6-months of age, whereas we examined 

a dietary period between 3- and 6-months of age. Therefore, it is possible that the 

effects of vitamin D deficiency upon skeletal muscle mitochondrial content and 

function are more potent during development. In addition, it could also be reasoned 

that our results may have been more prominent had vitamin D deficiency been 

induced in an older animal model given that in human populations vitamin D is most 

potent in such cohorts [14]. Unfortunately, time constraints limited the exploration of 

vitamin D deficiency in a setting of older age and sarcopenia. The further assessment 

of mitochondrial function across a longer period of diet-induced vitamin D deficiency 

would potentially address previous discrepancies. We also assessed the sensitivity of 

oxidative metabolism to ADP (apparent Km) via the titration of ADP from biological to 

saturating concentrations [36]. Whilst absolute respiration was slightly increased, 

albeit non-significantly in the 3-month vitamin D replete mice, we observed no 

differences in the apparent Km for ADP at any time point suggesting ADP sensitivity 

is unaffected by diet-induced vitamin D deficiency.  

 

In addition, we sought to determine the effects of diet-induced vitamin D deficiency 

upon body composition within C57BL/6J mice. Following 3-months of diet-induced 

vitamin D deficiency we observed no differences between the vitamin D replete and 

deplete groups in body weight, lean mass or fat mass. We did however observe a 

reduction lean mass as a percentage of body weight from 1- to 3-months in vitamin D 
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deplete mice whereas replete mice remained the unchanged over the same time 

period. This may in part be driven by the fact we also observed an increase in lean 

mass as a percentage of body weight following 1-month of diet-induced deficiency. 

Previously, no differences in body weight and lean mass were observed following 12-

months of diet-induced deficiency in male C57BL/6J mice [22]. On the other hand, 

12-months of diet-induced vitamin D deficiency in female C57BL/6J mice results in 

reductions in body weight, lean mass and fat mass [37]. Given those with serum 

concentrations of 25(OH)D <25 nmol.L-1 are at a greater risk of developing 

sarcopenia [38], vitamin D status is an important consideration for the preservation of 

muscle mass. Furthermore, whilst we and others observe minimal differences in lean 

mass following diet-induced vitamin D deficiency in male mice [22, 39], decrements 

have been observed in females [37]. Observations from human populations indicate 

that the effects of vitamin D deficiency on physical performance may be more potent 

in women although, this was likely mediated by increased physical activity in males 

[40]. Further characterisation of the sex-specific differences in skeletal muscle 

function and physical performance in the context of vitamin D deficiency may well be 

warranted.  

 

In conclusion, we report that mitochondrial function (CI+IIP and ETC) is reduced in 

C57BL/6J mice following 3-months of diet-induced vitamin D deficiency. These 

effects are no longer apparent when data is internally normalised suggesting 

changes are a consequence of mitochondrial quantity as opposed to quality. Similar 

to others, we observed minimal difference in body composition following 3-months of 

diet-induced vitamin D deficiency in male C57BL/6J mice [22, 39]. Our data highlight 
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a possible impairment in the development of skeletal muscle mitochondrial function in 

young C57BL/6J mice. Further analysis of mitochondrial morphology across this time 

period may offer more insight into how this impairment manifests.  
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CHAPTER 6 

 

THE EFFECT OF DIET-INDUCED VITAMIN D DEFICIENCY ON BODY 

COMPOSITION AND SKELETAL MUSCLE MITOCHODNRIAL FUNCTION 

FOLLOWING 20-DAYS OF VOLUNTARY WHEEL RUNNING IN C57BL/6J MICE 
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6.1 Introduction 

Vitamin D deficiency can be characterised by serum 25(OH)D concentrations of <50 

nmol.L-1. Currently, it has been estimated that ~40% of individuals within Europe and 

the USA can be classified as deficient [1, 2]. Further to this, ~13% may be classified 

as severely deficient with serum 25(OH)D concentrations of <12 nmol.L-1 [2]. Whilst 

severe deficiencies are known to dysregulate mineral homeostasis and impair bone 

health [3-5], severe deficiencies are also associated with skeletal muscle weakness, 

increased muscle pain and fatigue [6-8].  

 

In order to study the effects of vitamin D deficiency upon skeletal muscle function a 

number of models are available. The induction of vitamin D deficiency has previously 

been achieved within animal models by dietary means [9-12], a reduction in sunlight 

exposure [9] or by the administration of ethane 1-hydroxy-1, 1-diphosphonate [12]. 

Vitamin D deficiency achieved via dietary means is the most common and in such 

scenarios, vitamin D is completely removed from the diet [9-12]. Alongside the 

reduction in vitamin D, the dietary content of calcium and phosphorous is increased. 

The increased mineral content prevents the previously observed hypocalcemia and 

hypophosphatemia that are associated with the induction of vitamin D deficiency [11]. 

Further characterisations of vitamin D deficiency have been performed, with multiple 

human studies having sought to assess skeletal muscle function within individuals 

deemed deficient [13-15]. Within animal models, the induction of deficiency results in 

a reduction in skeletal muscle force, strength and endurance [9-11, 16, 17]. In 

addition, observational studies in humans have reported positive associations 

between serum 25(OH)D levels and skeletal muscle strength  [13-15]. Whilst the 
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majority of studies focus on skeletal muscle mass and strength in association with 

vitamin D status, vitamin D status has also been linked to the regulation of 

mitochondrial function [18-21]. For example, severely deficient individuals 

supplemented with vitamin D for a period of 12-weeks showed improvements in 

markers of oxidative phosphorylation and reduced symptoms of fatigue [20].  

 

Increases in mitochondrial function are a common adaptation to endurance exercise 

training (Section 1.3.2) [22, 23]. Increases in protein content and activity of enzymes 

involved in the mitochondrial electron transport chain are observed in rodent skeletal 

muscle following endurance based training [24, 25]. Alongside increases in protein 

content, mass specific respiration is also known to be increased in response to 

training, allowing for a greater production of ATP [26-28]. Despite the above 

evidence, limited studies have assessed skeletal muscle mitochondrial adaptations to 

training alongside the manipulation of vitamin D status. Given vitamin D deficiency is 

widespread and even common amongst athletic populations [29, 30], it may well be 

an important consideration for maximising the adaptive response to training. 

Therefore, the aim of this chapter was to determine the effects of diet-induced 

vitamin D deficiency upon skeletal muscle adaptation to 20-days of voluntary wheel 

running in C57BL/6J mice.  
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6.2 Methods 

6.2.1 Ethical Approval  

Ethical approval for mouse studies was granted by the Garvan Institute and St. 

Vincent’s Hospital Animal Experimentation Ethics Committee (approval number 

18/19). Ethical approval fulfils all the requirements of the NHMRC and the NSW State 

Government, Australia. All animal handling was carried out by trained personnel and 

all procedures were carried out according to the Australian code of practice for the 

care and use of animals for scientific purposes 8th edition [31]. C57BL/6J mice were 

received at 10-weeks of age and housed communally in a temperature controlled 

environment (22 ± 0.5°C) with a 12 h light-dark cycle. 

 

6.2.2 Composition of Diet 

Following 1-week of acclimation in which mice were fed standard chow (Table 2.2), 

mice were placed on either a vitamin D replete or a vitamin D deplete diet [11]. The 

vitamin D deplete diet contained no vitamin D but increased calcium (2%), 

magnesium (0.2%), and phosphorous (1.2%) in order to maintain normal mineral 

homeostasis (SF085-003, Speciality Feeds, Glen Forest, NSW). The vitamin D 

control diet contained vitamin D (cholecalciferol 2.2 IU/g), calcium (1%), magnesium 

(0.2%), and phosphorous (0.7%) (SF085-034, Speciality Feeds, Glen Forest, NSW). 

Mice were maintained on the respective diets for a period of either 1- or 3-months.  

 

6.2.3 Voluntary Wheel Running 

Following a 1- (n=10/group) or 3-month (n=10/group) dietary intervention period, 

mice were housed individually and given access to a running wheel for 20-days. Mice 
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continued to consume their respective vitamin D replete, deplete or standard chow 

diets during the 20-day voluntary wheel running period. Wheel revolutions were 

recorded every hour via a digital recorder (Columbus Instruments, Columbus, OH, 

US) and the distance ran per day was calculated and reported in kilometres per 

twenty-four hours. Diet only controls were maintained across the same dietary period 

but without access to a running wheel. Previous observations within our lab indicate 

that 20 days of voluntary wheel running is a suitable timeframe to induce training 

adaptations in mitochondrial protein content and respiration.  

 

6.2.4 Assessment of Body Composition 

Body composition was assessed upon arrival (10-weeks of age) and then following 1-

, 2- and 3-months of dietary intervention as well as post 20-days voluntary wheel 

running using the EchoMRi (EchoMRI LLC, Houston, USA). Body weight was 

measured on a weekly basis throughout the dietary and voluntary wheel running 

period.  

 

6.2.5 Tissue Collection 

Tissue collections were completed following 1- and 3-months of dietary intervention 

alone and following 1- and 3-months of dietary intervention plus 20-days of voluntary 

wheel running. Following anesthetization under isoflurane tissues were excised from 

fasted (2 h) mice. Tissues collected include; gastrocnemius, quadriceps, triceps, 

liver, kidney, white adipose tissue and the tibia.  Following collection, a blood sample 

was taken via cardiac puncture and mice terminated via cervical dislocation. All 

tissues were rinsed in sterile saline, blotted dry, weighed, and frozen in liquid 
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nitrogen. A small portion (~20 mg) of the gastrocnemius was removed before 

freezing and used for high-resolution respirometry. All tissues were stored at -80°C 

for subsequent analysis.  

 

6.2.6 Tissue Processing 

Small portions of gastrocnemius muscle (~20 mg) were removed and placed in ice-

cold BIOPS buffer (2.77 mM CaK2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP, 6.56 

mM MgCl2-6H2O, 20 mM Taurine, 15 mM Na2Phosphocreatine, 20 mM Imidazole, 

0.5 mM Dithiothreitol, 50 mM MES Hydrate, pH 7.1, 290 mOsm). Blood samples 

were allowed to coagulate at room temperature for 10 minutes before being placed 

on ice. Samples were then centrifuged at 14,000 g for 10 minutes. The resulting 

supernatant was removed and utilised for further analysis.  

 

6.2.7 Analysis of Serum Calcium 

Serum calcium was measured using a Calcium Detection Assay kit (Abcam). Serum 

samples were diluted 1:10 and manufacturers instructions were followed. The assay 

plate was read at 575 nM using a CLARIOstar microplate reader (BMG Labtech, 

Victoria, Australia). Calcium concentrations are reported in mM.  

 

6.2.8 High-Resolution Respirometry 

High-resolution respirometry was conducted in MiR05 (2 ml) with the addition of 

blebbistatin (25 µM) using the OROBORS Oxygraph-2K (Oroboros Instruments, 

Corp., Innsbruck, AT) with stirring at 750 rpm at 37°C. Oxygen within the chamber 

was maintained between 150-220 µM for each experiment. Prior to the addition of the 
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fibre bundles to the chamber, bundles were blotted dry and weighed. Bundles 

totalling 2.5-5.0 mg were added to the chamber. Firstly, pyruvate (10 mM) and 

malate (2 mM) were added as complex I substrates. Subsequently, ADP was titrated 

in step-wise increments (100-6000 µM) followed by the addition of glutamate (10 

mM) and succinate (10 mM) as complex I and II substrates. Cyt c (10 µM) was added 

in order to check outer mitochondrial membrane integrity. The partial loss of cyt c 

during fibre preparation may limit respiration. Multiple fibre preparations from 3-

month mice exhibited increases in respiration (>10%) following the addition of cyt c 

and were therefore removed. CCCP was titrated in a step-wise manner (0.5 to 2.5 

µM) until the maximal capacity of the electron transport chain was reached. Finally, 

antimycin A (2.5 µM) was injected in order to inhibit mitochondrial respiration.  

 

The Km for ADP was determined through the Michaelis-Menten enzyme kinetics – 

fitting model (Y = Vmax*X/(Km + X)), where X = (free ADP; ADPf), using Prism 

(GraphPad Software, Inc., La Jolla, CA). FCRs were calculated by setting CCCP 

stimulated respiration as 1 and antimycin A respiration as 0.  

 

6.2.9 Statistical Analysis 

Statistical analysis was performed using Prism version 7 (GraphPad Software 

Incorporated, La Jolla, CA, USA). Differences in voluntary wheel running 

performance and body composition between 1 and 3-month vitamin D replete and 

deplete mice were determined by two-way ANOVA with Bonferroni correction for 

multiple comparisons. Differences between 1-month standard chow, vitamin D 

replete and deplete mice were determined by one-way ANOVA. Differences in 
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mitochondrial function between 1-month dietary intervention mice and 1-month 

dietary intervention plus 20-days of voluntary wheel running were determined via 

two-way ANOVA with Bonferroni correction for multiple comparisons. All values are 

presented as mean ± SD. Statistical significance was set a P < 0.05.  

 

6.3 Results 

6.3.1 Voluntary Wheel Running 

Overall, the average running distance was greater in the vitamin D replete mice when 

compared to vitamin D deplete (P = 0.041) (Fig. 6.1A). Similarly, the total distance 

covered during the 20-day voluntary wheel running period was greater in the vitamin 

D replete mice when compared with vitamin D deplete (P = 0.041) (Fig. 6.1B). No 

differences were observed when comparing individual groups (P > 0.05) (Fig. 6.1A-

D). We also compared the 1-month vitamin D replete and deplete mice to mice fed a 

standard chow diet across the same dietary and voluntary wheel running period (Fig. 

6.2A-B). We observed no differences between the individual groups in either daily or 

total running distance (P > 0.05) (Fig. 6.2A-C). 
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Figure 6.1. Increased running distance and volume in vitamin D replete mice when compared to 
vitamin D deplete. A) Daily average running distance in kilometres (km) during 20-days of voluntary 
wheel running (VWR) following 1- or 3-months of dietary intervention. B) Total distance run in 
kilometres (km) following 20-days of voluntary wheel running following 1- or 3-months of dietary 
intervention. C) Daily distance run (km) across 20-days of VWR following 1-month dietary intervention. 
D) Daily distance run (km) across 20-days of VWR following 3-months of dietary intervention. Data 
mean ± SD (n=5-8/group). AMain effect for vitamin D diet; P > 0.05.  
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Figure 6.2. No difference in running distance or volume when vitamin D diet mice are compared 
to standard chow diet mice. A) Average of daily running distance in kilometres (km) following 20-
days of voluntary wheel running in mice fed a standard chow, vitamin D replete and vitamin D deplete 
diets. B) Total running distance in kilometres (km) following 20-days of voluntary wheel running in 
mice fed a standard chow, vitamin D replete and vitamin D deplete diet. C) Daily running distance in 
kilometres in standard chow diet mice. Data mean ± SD (n = 3-8/group).  
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comparing vitamin D replete to deplete mice following 1- or 3-months of dietary 

intervention (P > 0.05) (Fig. 6.3A). Similarly, no changes were observed in the 

percentage change in body weight from pre to post voluntary wheel running (P > 
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body weight when vitamin D replete mice were compared with vitamin D deplete (P = 

0.066) (Fig. 6.3B).   

 

Table 6.1. No differences in baseline body composition in mice prior to dietary and exercise 
intervention. Data mean ± SD (n = 5-8/group).  
 

 Dietary Period (Months)   
 1 3 P 

Body Weight   VitD Time 
(g)     
  Replete 27.7 ± 1.4 27.4 ± 0.4   
  Deplete 27.8 ± 0.7 28.2 ± 0.7 0.374 0.883 
     
Lean Mass     
(g)     
  Replete 24.2 ± 1.4 24.4 ± 0.8   
  Deplete 24.7 ± 1.7  25.3 ± 0.9 0.149 0.397 
     
Lean Mass     
(% of BW)     
  Replete 87.4 ± 1.8 88.8 ± 2.3   
  Deplete 88.8 ± 1.3 89.4 ± 2.0 0.168 0.148 
     
Fat Mass     
(g)     
  Replete 1.9 ± 0.5 1.7 ± 0.7   
  Deplete 1.8 ± 0.5 1.8 ± 0.4 0.917 0.409 
     
Fat Mass     
(% of BW)     
  Replete 7.1 ± 1.9 6.2 ± 2.8   
  Deplete 6.5 ± 1.6 6.3 ± 1.7 0.698 0.430 
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Figure 6.3. No differences in the final or percentage change in body weight following 20-days 
of voluntary wheel running in vitamin D replete and deplete mice. A) Final body weight following 
1- or 3-months dietary intervention and 20-days of voluntary wheel running (VWR). B) Change in body 
weight as a percentage across 20-days voluntary wheel running period. Data mean ± SD (n=5-
8/group). AMain effect of vitamin D diet; P < 0.05.  
 

6.3.3 Lean Mass 

No differences in baseline lean mass were observed at baseline in each of the 

groups (P > 0.05) (Table 6.1). Following 20-days of voluntary wheel running, 

absolute lean mass was similar between all groups (P > 0.05) (Fig. 6.4A). Similarly, 

absolute lean mass remained unchanged following 20-days of voluntary wheel 

running in all groups (P > 0.05) (Fig. 6.4B). In addition, no differences were observed 

in lean mass as a percentage of body weight (P > 0.05) (Fig. 6.4C). However, the 

change in lean mass as a percentage of body weight pre to post voluntary wheel 

running was greater in the vitamin D replete mice when compared to vitamin D 

deplete (P = 0.013) (Fig. 6.4D). No differences were observed when comparing the 

change in lean mass as a percentage of body weight when comparing individual 

groups (P > 0.05) (Fig. 6.4D).  
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Figure 6.4. Reduction in lean mass as a percentage of body weight across 20-days of voluntary 
wheel running in vitamin D deplete mice. A) Final lean mass following 1- or 3-months of dietary 
intervention and 20-days of voluntary wheel running. B) Percentage change in lean mass across 20-
days of voluntary wheel running period. C) Final lean mass as a percentage of body weight following 1 
or 3-months of dietary intervention and 20-days of voluntary wheel running. D) Percentage change in 
lean mass as a percentage of body weight across 20-days of voluntary wheel running. Data mean ± 
SD (n=5-8/group). AMain effect of vitamin D diet; P < 0.05.   
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6.5C). However, the change in fat mass as a percentage of body weight pre to post 

voluntary wheel running was greater in the vitamin D deplete mice when compared to 

vitamin D replete (P = 0.002) (Fig. 6.5D). Furthermore, the 3-month vitamin D replete 

mice reduced fat mass (-38 ± 41%) as a percentage of body weight pre to post 

voluntary wheel running whilst the vitamin D deplete mice remained unchanged (5 ± 

27%) (P = 0.030) (Fig. 6.5D).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5. Increase in absolute fat mass and as a percentage of body weight in vitamin D 
deplete mice when compared to vitamin D replete following 3-months of dietary intervention 
and 20-days of voluntary wheel running. A) Final fat mass following 1- or 3-months of dietary 
intervention and 20-days of voluntary wheel running. B) Percentage change in fat mass across 20-day 
voluntary wheel running period. C) Final fat mass as a percentage of body weight following 1 or 3 
months of dietary intervention and 20-days of voluntary wheel running. D) Percentage change in fat 
mass as a percentage of body weight across 20-days of voluntary wheel running. Data mean ± SD 
(n=5-8/group). AMain effect of vitamin D diet; P < 0.05.   
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6.3.5 Skeletal Muscle Mass 

An increase in gastrocnemius (P = 0.006) and triceps (P = 0.003) mass was 

observed with the 3-month mice displaying greater tissue weights than those of the 

1-month. In contrast, no differences were observed in quadriceps mass (P = 0.069). 

No differences were observed between vitamin D replete and deplete mice in 

gastrocnemius, quadriceps and triceps weights (P > 0.05).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.2. Increase in gastrocnemius and triceps mass in 3-month mice when compared to 1-
month with no effect of diet-induced vitamin D deficiency. Data mean ± SD (n=5-8/group).  
 

6.3.6 Serum Calcium 

Serum calcium measurements were similar between vitamin D replete and deplete 

mice when measured following 1-month of dietary intervention and 20-days of 

voluntary wheel running (P > 0.05) (Fig. 6.6A).  

 

 

 

 

 Dietary Period (Months)   
 1 3 P 

Gastrocnemius   VitD Time 
(mg)     
  Replete 150 ± 9 159 ± 13   
  Deplete 149 ± 12 166 ± 17 0.597 0.014 
     
Quadriceps     
(mg)     
  Replete 184 ± 20 162 ± 18   
  Deplete 165 + 34 159 ± 13 0.217 0.128 
     
Triceps     
(mg)     
  Replete 103 ± 11 116 ± 13   
  Deplete 99 ± 17 118 ± 11 0.782 0.004 
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Figure 6.6. No change in serum calcium following diet-induced vitamin D deficiency and 20-
days of voluntary wheel running. Data mean ± SD (n = 8-10/group).  
 

6.3.7 Skeletal Muscle Mitochondrial Function 

In response to both dietary intervention and 20-days of voluntary wheel running, 

complex I related leak remained unchanged (P > 0.05) (Fig. 6.7A). Overall, complex I 

phosphorylating respiration increased in response to voluntary wheel running (P = 

0.005) and a main interaction effect was observed (P = 0.027) (Fig. 6.7B). A 

significant training response in complex I phosphorylating respiration was observed 

in vitamin D replete mice when comparing the diet only group (172.42 ± 51.60 

pmol.sec-1.mg-1.dry weight) to diet and voluntary wheel running (333.32 ± 86.15 

pmol.sec-1.mg-1.dry weight) (P = 0.004) (Fig. 6.7B). Similarly, complex I and II 

phosphorylating respiration increased in response to voluntary wheel running (P = 

0.007) and an interaction effect was observed (P = 0.039) (Fig. 6.7C). In response to 

voluntary wheel running, vitamin D replete mice displayed a significant training 

response in complex I and II phosphorylating respiration when comparing the diet 

1 Month 1 Month + VWR
1.8

2.0

2.2

2.4

2.6

2.8

Dietary Period

S
er

um
 C

al
ci

um
 (m

M
)

VitD Replete VitD Deplete

A.



	 193 

only group (274.86 ± 47.57 pmol.sec-1.mg-1.dry weight) to diet and voluntary wheel 

running (427.33 ± 89.48 pmol.sec-1.mg-1.dry weight) (P = 0.008) (Fig. 6.7C).  Overall, 

the maximal capacity of the electron transport chain increased in response to 

voluntary wheel running (P = 0.003) and a main interaction effect was observed (P = 

0.039) (Fig. 6.7D). In response to voluntary wheel running, vitamin D replete mice 

increased the maximal capacity of the electron transport chain when comparing the 

diet only group (323.19 ± 48.68 pmol.sec-1.mg-1.dry weight) to diet and voluntary 

wheel running (517.01 ± 91.28 pmol.sec-1.mg-1.dry weight) (P = 0.005) (Fig. 6.7D).  

Figure 6.7. Increases in mitochondrial function following 20-days of voluntary wheel running in 
vitamin D replete mice. A) Complex I related leak (CIL) in response to diet-induced vitamin D 
deficiency and 20-days of voluntary wheel running. B) Complex I phosphorylating respiration (CIP) in 
response to diet-induced vitamin D deficiency and 20-days of voluntary wheel running. C) Complex I 
and II phosphorylating respiration (CI+IIP) in response to diet-induced vitamin D deficiency and 20-
days of voluntary wheel running. D) Maximal capacity of the electron transport chain (ETC) in 
response to diet-induced vitamin D deficiency and 20-days of voluntary wheel running. Data mean ± 
SD (n=5-8/group). bMain effect for VWR; P < 0.05. cMain interaction effect; P < 0.05. *P < 0.05.  
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6.3.8 ADP Sensitivity 

The titration of ADP across multiple concentrations (100-6000 µM) revealed no 

differences between vitamin D replete and deplete mice in ADP stimulated 

respiration following 20-days of voluntary wheel running (P > 0.05) (Fig. 6.8A). 

Overall, ADP sensitivity as measured by the apparent Km for ADP, increased in 

response to voluntary wheel running (P = 0.004) (Fig. 6.8B). In response to 20-days 

of voluntary wheel running, ADP sensitivity decreased in vitamin D replete mice when 

comparing the diet only group (209.4 ± 37.2 µM) to diet and voluntary wheel running 

group (460.1 ± 71.9 µM) (P = 0.011) (Fig. 6.8B).     

 

 
Figure 6.8. Increased ADP sensitivity in response to 20-days of voluntary wheel running in 
vitamin D replete mice. A) ADP stimulated respiration following 20-days of voluntary wheel running in 
vitamin D replete and deplete mice. B) The apparent Km for ADP following 1-month of dietary 
intervention and 20-days of voluntary wheel running in vitamin D replete and deplete mice. Data mean 
± SD (n=5-8/group).  
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6.3.9 Flux Control Ratios 

When normalised to maximal respiration, there were no differences in respiration 

support via complex I (P < 0.05) or complex I and II (P > 0.05) combined in response 

to 20-days of voluntary wheel running (Fig. 6.9A-B).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9. No differences in flux control ratios following 20-days of voluntary wheel running. 
A) Complex I related flux control ratio following 1-month dietary intervention and 20-days of voluntary 
wheel running. B) Complex I and II related flux control ratio following 1-month dietary intervention and 
20-days of voluntary wheel running. Data mean ± SD (n=5-8/group).  
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6.4 Discussion 

We sought to determine the effects of diet-induced vitamin D deficiency upon the 

adaptive responses to 20-days of voluntary wheel running in C57BL/6J mice. Overall, 

diet-induced vitamin D deficiency resulted in a reduced daily and total volume in 

running performance in comparison to vitamin D replete mice (Fig. 6.1A-B). Whilst no 

changes in body weight were observed (Fig. 6.3A-B), diet-induced vitamin D 

deficiency resulted in a diminished accretion of lean mass (Fig. 6.4D) and loss of fat 

mass (Fig. 6.5C) as a percentage of body weight across the 20-days of voluntary 

wheel running. Alongside alterations in body composition, vitamin D replete mice 

displayed an increase in multiple parameters of mitochondrial function (CIP, CI+IIP, 

ETC and ADP sensitivity) following 20-days of voluntary wheel running (Fig. 6.7A-D; 

Fig. 6.8B).  

 

Previously, diet-induced vitamin D deficiency has been shown to reduce physical 

performance within the C57BL/6J mouse line [11, 17]. Reductions in grip strength, 

grip endurance, sprint speed and stride length have been observed across a range of 

dietary intervention periods (3-12 months) [11, 17]. Furthermore, mice with a 

myocyte-specific deletion of the VDR display a reduction in voluntary wheel running 

capacity when assessed over a 24 h period [32]. Despite this, no previous study has 

examined the effects of diet-induced vitamin D deficiency upon voluntary wheel 

running capacity in C57BL/6J mice. Voluntary wheel running offers an interesting 

model to study physical capacity and exercise adaptation within mice. In comparison 

to forced treadmill exercise, voluntary wheel running offers a more natural pattern of 

running behaviour in mice, the exercise intervention is performed under non-stressed 
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conditions and it can easily be applied in longer term intervention studies [33]. 

Although a large degree of variation exists, which is to be expected with voluntary 

wheel running, vitamin D replete (1-month; 3.7 ± 2.0 km, 3-month; 4.0 ± 2.8 km) mice 

did run on average more than that of their vitamin D deplete (1-month; 2.2 ± 0.8 km, 

3-month; 2.7 ± 1.1 km) counterparts. Similar to previous observations [11, 17], this 

supports the notion that vitamin D deficiency reduces physical performance in mice. 

Whilst strain to strain variations exist, mice have been to known to run between ~4 to 

20 km per day [33-35]. Given this, our mice were on the lower end of this spectrum. 

In addition to these low running distances a large number of mice (11/40) were 

removed from the above analysis due to running distances of <1 km per day. The 

removal of mice was not limited to a certain cohort of vitamin D replete or deplete 

mice suggesting low running distances were not as a result of vitamin D deficiency. 

In order to further explore this issue, we also gave mice fed a standard chow diet 

over the same period as the 1-month dietary intervention mice access to a running 

wheel. We observed similar running distances (4.5 ± 1.8 km) in standard chow mice 

as well as a large proportion running <1 km per day (3/6). Therefore, the lower 

running distances we observed previously were not as a result of the vitamin D 

replete and deplete diets. A number of factors may be contributing to these lower 

running distances including; genetic influences, sex differences and running wheel 

design [35-38]. All of which will be discussed in more detail below (Chapter 7).  

 

Despite the low running distances, vitamin D replete mice displayed some favourable 

adaptations in body composition, particularly within the 3-month mice. Whilst we and 

others have shown no differences in body weight or skeletal muscle tissue weight 
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following voluntary wheel running in C57BL/6J mice [39], we also report no difference 

in absolute fat and lean mass following diet-induced vitamin D deficiency and 20-

days of voluntary wheel running. However, as a percentage of body weight, vitamin D 

replete mice displayed positive responses in the accretion of lean mass and the loss 

of fat mass following 20-days of voluntary wheel running. Whilst others have also 

reported favourable adaptations in body composition to voluntary wheel running 

including reductions in fat mass [40], we now highlight that these changes are 

dependent upon vitamin D status. It is important to note that given the reduced 

running distances in the vitamin D deplete mice, the favourable adaptations in 

vitamin D replete mice may be a consequence of an increased training volume. It 

would be interesting to see if these effects are more pronounced in a voluntary wheel 

running model that encourages increased running distances than that observed 

within this study.  

 

Adaptations to the mitochondria are a prominent feature in the response of skeletal 

muscle to endurance training [22, 24, 25]. In addition, voluntary wheel running in 

mice is known to result in an increase in citrate synthase activity, mitochondrial 

protein content and markers of mitochondrial biogenesis (PGC-1a and TFAM) [40, 

41]. Whilst diet-induced vitamin D deficiency has been shown to impair physical 

performance in mice [11, 17], its effects upon the adaptive response to a period of 

endurance exercise have not been studied. Given this, we sought to assess 

mitochondrial function with permeabilised skeletal muscle fibres following 20-days of 

voluntary wheel running in vitamin D replete and deplete mice. In response to 

endurance exercise, both mitochondrial mass and oxygen consumption are known to 
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increase in rodent skeletal muscle [22, 40-42]. Similarly, we report an increase in 

multiple parameters of mitochondrial function (CIP, CI+IIP and ETC) following 20-days 

of voluntary wheel running in C57BL/6J mice. However, these increases were only 

apparent in vitamin D replete mice indicating an impaired training adaptation 

following 1-month of diet-induced vitamin D deficiency. Similarly, the apparent Km for 

ADP increased in vitamin D replete mice only following 20-days of voluntary wheel 

running, indicating a reduced sensitivity to ADP. Whilst this seems counter intuitive, a 

decrease in the sensitivity to ADP within skeletal muscle is a prominent feature of the 

adaptive response to endurance exercise [43-46]. Whilst absolute rates of respiration 

are increased, no differences were observed when respiration was reported as a 

ratio of maximal respiration (FCR). This likely indicates that alterations in respiration 

are mediated by changes in mitochondrial quantity as opposed to quality although, 

this would need confirming via the assessment of mitochondrial mass via TEM, CS 

activity or mitochondrial protein content [47]. In addition, we completed the same 

analysis following 3-months of diet-induced vitamin D deficiency however, technical 

issues with the analysis resulted in an unusable dataset. Alongside considerable 

increases (>10%) in respiration in response to the addition of cyt c, overall respiration 

values were much lower than normally observed throughout this thesis and in 

previous reports [48].  

 

In conclusion, we report that diet-induced vitamin D deficiency results in a reduced 

capacity for voluntary wheel running in C57BL/6J mice. Vitamin D replete mice 

displayed favourable responses in body composition pre to post voluntary wheel 

running, highlighted by an accretion of lean mass and decrease in fat mass as a 
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percentage of body weight. Although mitochondrial function increased in the vitamin 

D replete mice, there was no difference in mitochondrial function when comparing 

vitamin D replete mice to vitamin D deplete at the same time point. Mitochondrial 

respiration data from the 3-month cohort of mice may have revealed more prominent 

differences following diet-induced vitamin D deficiency. Given that vitamin D 

deficiency remains widespread [1, 2] in the general population and even within 

athletic populations [29], vitamin D status may be an important consideration for 

those looking to maximise the adaptive benefits of exercise. Further characterisation 

of the adaptive process in models of vitamin D deficiency over longer timeframes 

would provide further evidence towards to determining the role of vitamin D in 

exercise adaptation.  
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7.1 Introduction 

Skeletal muscle is a highly adaptive (i.e. plasticity) tissue, capable of undergoing 

distinct periods of hypertrophy and atrophy in response to both positive and negative 

stimuli [1, 2]. Contributing to this plasticity, a dynamic network of mitochondria exists 

within skeletal muscle [3]. In response to physiological stressors such as contractile 

activity, this network undergoes events of biogenesis, fusion, fission and mitophagy 

[4-9]. Primarily functioning to produce ATP via oxidative phosphorylation [10], the 

maintenance of mitochondrial health is therefore crucial to meet the energy demands 

of skeletal muscle and other tissues throughout the body [11]. Indeed, mitochondrial 

dysfunction has been linked to numerous disease states including, the age related 

loss of muscle mass termed sarcopenia [12]. Whilst physical inactivity is a major risk 

factor for age related diseases, poor nutritional status and dietary deficiencies have 

also been linked to impaired physical function [13-16]. A common nutritional 

deficiency is that of vitamin D [17, 18]. Recent investigations have shown that vitamin 

D related metabolites are able to increase mitochondrial function in skeletal muscle in 

vitro [19-21] and within human populations of severe vitamin D deficiency [22]. 

Despite this, little is known with regard to the role of the VDR in mediating this 

adaptive response. Furthermore, the effects of vitamin D deficiency upon skeletal 

muscle mitochondrial function in vivo remain largely underexplored. Therefore, the 

aims of this thesis were as follows; 

 

1. Develop a reliable method for the detection of the VDR within skeletal 

muscle samples (Chapter 3). 

 

2. Determine the role of the VDR within the maintenance of skeletal muscle 

mitochondrial function and protein content (Chapter 4). 
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3. Examine the role of diet-induced vitamin D deficiency on anthropometric 

measures of body composition and mitochondrial function in C57BL/6J 

mice (Chapter 5). 

 

4. Determine whether diet-induced vitamin D deficiency impairs the positive 

impact of exercise on body composition and mitochondrial function in 

C57BL/6J mice (Chapter 6).  

 

In order to address these aims, this thesis utilised both in vitro and in vivo 

approaches. Firstly, methodological considerations were evaluated for the detection 

of the VDR within skeletal muscle. This was followed by a combination of in vitro and 

in vivo approaches to assess the skeletal muscle-specific role of the VDR in 

regulating mitochondrial function and protein content. Finally, two in vivo studies 

investigated the influence of diet-induced vitamin D deficiency upon skeletal muscle 

mitochondrial function. This chapter will further summarise and amalgamate the data 

obtained throughout this thesis.  

 

7.2 The Vitamin D Receptor in Skeletal Muscle 

Recent investigations have shown that vitamin D related metabolites are able to 

increase mitochondrial function in both immortalised and primary skeletal muscle cell 

lines [19-21]. To directly assess the role of the VDR on mitochondrial function, we 

utilised RNA interference approaches to generate a stable C2C12 clone in which 

VDR protein content was reduced by ~95%. Utilising this novel approach, we report 

that loss of VDR in C2C12s resulted in a significant decrement in mitochondrial 

function (Chapter 4). Despite this, no changes were observed in mitochondrial 
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protein content in both VDR-KD myoblasts or myotubes (Chapter 4). In continuation, 

we also studied the skeletal muscle-specific role of the VDR within rat skeletal 

muscle. Whilst the knock-down of the VDR resulted in a trend towards a decrease in 

both mitochondrial complex I and IV, overall, we observed no differences in 

mitochondrial protein content following both the knock-down and over-expression of 

the VDR (Chapter 4). Results that have recently been corroborated in a mouse 

model with the skeletal muscle-specific deletion of the VDR [23]. Despite this, this 

does not preclude a role for the VDR in mediating mitochondrial function in vivo. 

Given that we report a reduction in mitochondrial function following 3-months of diet-

induced vitamin D deficiency in C57BL/6J mice (Chapter 5), the examination of 

mitochondrial function in mouse models with the skeletal muscle-specific deletion of 

the VDR may also reveal functional decrements despite no change in mitochondrial 

protein content. Unfortunately, we were unable to perform such measurements due 

to limited access to tissue of VDR-KD and –OE rats.  

 

The precise role by which the VDR may mediate changes in skeletal muscle 

mitochondrial function remains unclear. Previously, microarray analysis has identified 

potential VDR target genes however, the overlap between tissues is minimal, 

highlighting that VDR target genes respond in a highly tissue specific manner [24, 

25]. Within skeletal muscle, >80 mRNAs encoding for mitochondrial proteins have 

been shown to be upregulated in response to treatment with 1a,25(OH)2D3 [19] 

however, it is unclear whether these genes contain specific VDREs. A potential target 

for further exploration, the chromosome 15 open reading frame 48 (C15orf48) is 

responsive to 1a,25(OH)2D3 within skeletal muscle [19]. Whilst this protein remains 

largely uncharacterised, particularly within skeletal muscle, one study reported an 

interaction with both complex I and IV, suggesting that it regulates either the activity 
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of said complexes or potential supercomplex formation [26]. Therefore, the potential 

characterisation of said protein within skeletal muscle may provide an opportunity to 

establish a mechanism by which the VDR mediates mitochondrial function.  

 

Due to its extremely low expression levels within skeletal muscle [27, 28], we were 

unable to detect the VDR in adult mouse skeletal lysates (Chapter 3). Whilst the 

detection of the VDR was not central to aim of each chapter (Chapter 5-6), the ability 

to reliably detect the VDR would have enabled further analysis throughout this thesis. 

Previously, the successful detection of the VDR within human skeletal muscle has 

been reported following a period of vitamin D supplementation [29, 30], suggesting 

the tissue-specific expression levels of the VDR are mediated by whole-body vitamin 

D status. In addition, whilst the expression of the VDR has been reported to increase 

in response to an acute bout of muscle damage [31], its expression in response to a 

period of chronic exercise has not been explored. Therefore, the ability to reliably 

detect the VDR within adult skeletal muscle would have enabled the further 

exploration of these questions and added further novelty to this thesis (Chapter 5-6). 

Given that we were unable to detect the VDR within skeletal muscle, this raises 

questions in regards to its potential relevance in vivo. Given the systemic changes 

that occur in models of vitamin D deficiency and VDR-KO mice, the phenotypes 

observed may be as a result of indirect effects as opposed to VDR signalling. Further 

characterisation of models with skeletal muscle VDR-KO will shed light upon the role 

of the VDR within skeletal muscle in vivo [23].  

 

7.3 Vitamin D Deficiency, Body Composition and Physical Function 

Previously, no changes in body composition were reported in male C57BL/6J mice 

following diet-induced vitamin D deficiency across a 12-month period [32]. On the 
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other hand, reductions in body weight, lean mass and fat mass were reported in 

female mice across the same time period [33]. In response to 3-months of diet-

induced vitamin D deficiency, we observed no differences in body weight, lean mass 

or fat mass between vitamin D replete and deplete C57BL/6J male mice. Vitamin D 

deplete mice did display a reduction in lean mass as a percentage of body weight 

from 1- to 3-months of diet-induced deficiency. This however, is likely due to the 

observed increase in lean mass as a percentage of body weight at the 1-month time 

point between vitamin D replete and deplete mice. In continuation of this, we also 

examined body composition in response to a period of voluntary wheel running 

(Chapter 6). Whilst physical function has been reported to be impaired in mouse 

models of diet-induced vitamin D deficiency [32, 34], these effects have only been 

explored in the basal state and not following a period of adaptation. In order to 

explore the effects of diet-induced vitamin D deficiency upon exercise adaptation, we 

utilised a model of voluntary wheel running in which mice were given access to a 

wheel for a period of 20-days following either 1 or 3-months of diet-induced vitamin D 

deficiency. In comparison to vitamin D replete mice, diet-induced vitamin D deficiency 

resulted in a reduced overall running performance (Chapter 6). Reductions in both 

sprint speed and stride length have previously been reported and likely contribute to 

reduced running performance observed in our study [32, 34]. In addition, mice with 

the skeletal muscle-specific deletion of the VDR display similar reductions in running 

performance over a 24 h period, suggesting direct effects for vitamin D related 

signalling in mediating physical function [23]. Whilst the running distances we 

observed were lower than that previously observed [35-37], similar running distances 

in mice fed a standard chow indicate that this is a strain issue as opposed to an 

effect of the vitamin D diets. The further analysis of running performance and 

subsequent adaptation in a mouse model of increased running volume may reveal 
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more prominent effects of diet-induced vitamin D deficiency. Whilst, no changes in 

body weight were observed between vitamin D replete and deplete mice, we did 

observe some favourable adaptations in body composition in vitamin D replete mice. 

Most notably, vitamin D replete mice displayed a positive accretion of lean mass and 

a decrease in fat mass as percentages of body weight in response to 20-days of 

voluntary wheel running. These beneficial effects are likely due to an increase in 

running volume observed within vitamin D replete mice.  

 

7.4 Vitamin D Deficiency and Skeletal Muscle Mitochondrial Function 

Whilst vitamin D related metabolites are reported to increase skeletal muscle 

mitochondrial function in vitro [19-21], in vivo investigations are currently lacking. To 

date, one study explored skeletal muscle mitochondrial function following vitamin D 

supplementation in a cohort of severely deficiency patients exhibiting symptoms of 

skeletal muscle myopathy [22]. Skeletal muscle mitochondrial function was assessed 

indirectly via 31-P MRS and vitamin D supplementation was reported to reduce PCr 

recovery time, a marker of improved oxidative phosphorylation [22]. Despite this 

observation, a number of limitations were evident in this study, such as improper 

randomisation and blinding [22]. Therefore, in order to further examine the role of 

vitamin D status in modulating mitochondrial function in vivo, we utilised a well-

established mouse model of diet-induced vitamin D deficiency [34] in combination 

with high-resolution respirometry, the current gold-standard method to assess 

mitochondrial function within skeletal muscle fibres [38]. Initially, we examined the 

role of diet-induced vitamin D deficiency alone upon skeletal muscle mitochondrial 

function. We reported that 3-months of diet-induced deficiency reduced the capacity 

of multiple parameters of skeletal muscle mitochondrial function to increase (CI+IIP 

and ETC) (Chapter 5). In continuation of this, we also assessed the effects of diet-
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induced vitamin D deficiency upon skeletal muscle mitochondrial function following a 

period of voluntary wheel running (Chapter 6). We reported that following 1-month of 

diet-induced vitamin D deficiency and 20-days of voluntary wheel running, only 

vitamin D replete mice displayed an increase in multiple parameters of mitochondrial 

function (CIP, CI+IIP and ETC) (Chapter 6). Therefore, we build upon previous 

research reporting impairments in physical function following diet-induced vitamin D 

deficiency [32, 34] by highlighting a role for vitamin D status in modulating skeletal 

muscle mitochondrial function not only in the basal state, but also following a period 

of adaptation.  

 

Furthermore, we also examined the effects of diet-induced vitamin D deficiency upon 

mitochondrial ADP sensitivity within skeletal muscle. Whilst diet-induced vitamin D 

deficiency alone did not alter mitochondrial ADP sensitivity (Chapter 5), only the 

vitamin D replete mice displayed an increase in the apparent Km for ADP following 1-

month of diet-induced deficiency and 20-days of voluntary wheel running (Chapter 6). 

Whilst an increase in the apparent Km highlights a decrease in sensitivity, this is a 

common characteristic of a trained skeletal muscle phenotype [39-42]. A decrease in 

sensitivity possibly indicates an increase in mitochondrial mass, however, time 

constraints limited the scope of analysis performed within these studies (Chapter 5-

6). In support of this notion, the reported effects upon skeletal muscle mitochondrial 

function following diet-induced vitamin D deficiency and voluntary wheel running 

where abolished when subjected to internal normalisation (Chapter 5-6). This 

suggests that the alterations observed within parameters of skeletal muscle 

mitochondrial function are as a consequence of mitochondrial quantity as opposed to 

quality. The further analysis of tissues collected throughout these studies will provide 

further insight into the above notion.  
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7.5 Limitations 

As with all research, a number of limitations exist within this thesis that should be 

considered when making interpretations in regards to the results obtained. Firstly, we 

were unsuccessful in our attempt to detect the VDR in adult skeletal muscle samples 

(Chapter 3). Whilst the detection of the VDR was not central to aims of each chapter, 

it did preclude the further analysis of the role of the VDR in response to diet-induced 

vitamin D deficiency and voluntary wheel running. Furthermore, our examination of 

the role of the VDR in modulating skeletal muscle mitochondrial function and protein 

content was only conducted in the basal state (Chapter 4). Further characterisation of 

such rodent models in response to physiological stressors such as exercise training 

and ageing may reveal further skeletal muscle-specific roles for the VDR. 

Unfortunately, the scope of our analysis of VDR-KD and –OE rat skeletal muscle was 

limited due to restrictions upon tissue availability as this tissue was utilised in 

previous research. The analysis of skeletal muscle mitochondrial function within 

these samples would have also provided further translational of in vitro findings 

(Chapter 4). Furthermore, the analysis of protein content via immunoblotting is semi-

quantitative in nature which may limit the sensitivity of such analyses. Given the VDR 

is proposed to be highly tissue specific [24, 25], untargeted based approaches 

utilising ‘omics’ platforms may have provided broader insight into the skeletal muscle-

specific role of the VDR.  

 

As discussed previously, a large proportion of mice were removed from analyses due 

to running distances of <1 km/day (Chapter 6). Even with these mice removed, 

running distances overall were on the lower end of those previously reported in mice 

[35-37]. These issues resulted in a reduced sample size and training volume. This 
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reduced running performance may be as a result of the mouse strain chosen for such 

studies. The C57BL/6J mouse is known to contain a mutation in the nicotinamide 

nucleotide transhydrogenase (Nnt) gene which encodes for an inner membrane 

mitochondrial protein [43]. Whilst running distances have not been directly compared 

to mice without the Nnt mutation, metabolic defects in glucose homeostasis and 

mitochondrial redox abnormalities have previously been reported [43, 44]. In addition, 

the design of the running wheel is an important consideration when evaluating 

running performance in mice. For example, an upright wheel, as used within our 

study (Chapter 6), results in reduced running distances when compared to an angled 

wheel [35]. Furthermore, given our analyses was conducted using only adult male 

mice, sex or age-related differences cannot be excluded. The further comparison of 

mouse strains for running performance may have alleviated such issues. We also 

assessed skeletal muscle mitochondrial function in response to 3-months of diet-

induced vitamin D deficiency and subsequently 20-days of voluntary wheel running. 

Unfortunately, this analysis was not included due to a number of issues. Firstly, 

multiple data points exhibited signs of poor fibre preparation including a cyt c 

response of >10%. In addition, the overall respiration rates were much lower than 

that previously observed for C57BL/6J skeletal muscle both within this thesis 

(Chapter 5-6) and by others [45]. Finally, time constraints meant that it was not 

feasible to repeat analyses with the above issues nor was it feasible to conduct 

further analysis of the multiple tissue samples that were collected during mouse in 

vivo studies (Chapter 5-6).   

 

7.6 Future Research 

Further studies in continuation of recent publications [23, 46] should examine the 

skeletal muscle-specific role of the VDR in response to physiological stressors such 
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as exercise training and ageing. In addition, given the role of the VDR is tissue 

specific [24, 25], the use of unbiased ‘omics’ approaches may aid in the 

characterisation of specific VDR target genes within skeletal muscle. The 

combination of in vitro models of VDR-KD with microarray analysis, ChIP and RIME 

would aid in the identification of skeletal muscle specific VDR targets genes and 

coregulatory binding partners [47, 48]. Furthermore, the translation of rodent studies 

of diet-induced vitamin D deficiency into human populations is particularly interesting. 

The utilisation of techniques such as high-resolution respirometry would shed light 

upon the effects of vitamin D deficiency upon skeletal muscle mitochondrial function. 

Such analysis could be combined with the assessment of ROS production, 

membrane potential or calcium concentrations via the use of O2k-fluorometry [49-51] 

providing broader insight into the regulation of mitochondrial function in response to 

vitamin D deficiency and supplementation. Furthermore, recent technical 

developments that allow for the measurement of multiple vitamin D metabolites 

provide the opportunity for the further characterisation of the vitamin D metabolome 

[52, 53]. Recent investigations have reported differential effects of vitamin D2 and D3 

supplementation upon this metabolome [54]. Similar studies in the context of skeletal 

muscle may provide broader insight into the positive effects of vitamin D 

supplementation upon skeletal muscle metabolism.  

 

7.7 Conclusions 

Throughout this thesis we have provided direct evidence that loss of VDR leads to 

significant decrements in mitochondrial function during myogenesis, whilst diet-

induced vitamin D deficiency reduces skeletal muscle mitochondrial respiration 

(CI+IIP and ETC), voluntary wheel running performance and an impaired adaptive 

response in mitochondrial function (CIP, CI+IIP and ETC) and body composition in 
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male C57BL/6J mice. Therefore, we highlight vitamin D status as an important 

consideration within the maintenance of skeletal muscle mitochondrial function both 

in the basal state and following a period of adaptation. Given that vitamin D 

deficiency remains prevalent across multiple populations including both the elderly 

and athletes [17, 55], maintaining sufficient vitamin D levels may aid in the 

maintenance of skeletal muscle function. Finally, this thesis contributes novel data 

towards the understanding of the role of the vitamin D and the VDR in modulating 

skeletal muscle mitochondrial function.  
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