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Abstract 

Mucorales spores are the causative agents of the emerging disease mucormycosis. 

Mucorales species are also responsible for high quantities of food spoilage annually. The 

mechanism by which Mucorales spores cause disease and rot relies upon spore 

germination, however the mechanism underlying germination in these species remains 

poorly understood. Presented here are results which characterise Mucorales spore 

germination, through phenotypic and transcriptional studies (RNA-Seq), which followed 

the defined germination phenotype throughout. Hallmark pathways are identified 

through analysis of differentially expressed genes and co-transcriptional networks, 

providing targets for germination inhibition. With the resulting transcriptional data, the 

genome of Rhizopus delemar was enriched and analysed, thus providing better information 

on the Mucoralean genome. Comparative genomics was also employed to better 

understand genotypic variation between Mucorales species. To examine the differences 

in pathogenicity between species, and assess the impact of germination stage on 

pathogenicity, the transcriptional profile (RNA-Seq) of selected Mucorales species was 

examined upon phagocytosis by innate immune cells. To better understand the 

corresponding host response, the transcriptional response (single cell RNA-Seq) of innate 

immune cells to Mucorales infection was also examined. Finally, germination targets 

identified through the described analyses were targeted with suspected inhibitors to 

confirm function in germination regulation. This work has furthered our basic understanding 

of germination in these ancient fungi, indicated pathways essential to the germination 

programme of Mucorales species, and demonstrated a crucial role played by many of these 

pathways in host-fungal interactions of the Mucorales. 
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Chapter 1: Introduction 

Introduction: Mucorales 

The following work has been adapted from the book chapter “Spore Germination of 

Pathogenic Filamentous Fungi” (Sephton-Clark and Voelz 2017), for which I performed the 

literature search, wrote the manuscript, completed revisions, and prepared the figures. 

Mucorales species (Figure 1), belonging to the Mucorales order of the Zygomycota division 

(Mucoromycotina subdivision), are ancient diverging pathogenic fungi, capable of causing 

mucormycosis. These species are also known as food spoiling agents, predominantly spoiling 

soft fruits, vegetables and baked goods. Mucorales species are disseminated in their spore 

form, which swell and produce aseptate hyphae upon germination (Hoffmann et al. 2013). 

They reproduce sexually, via the combination of two hyphae (of opposite mating types) 

producing zygospores, or asexually (Mendoza et al. 2014). Asexual reproduction is quicker 

and leads to the formation of sporangiospores. These structures contain many spores which 

are dispersed via water, air, or animal disruption (Moore-Landecker 2011). Sexual 

reproduction introduces genetic variation into the population, allowing for the adaptation to 

changing environments (Mendoza et al. 2014), whereas asexual reproduction and sporulation 

provides an advantage in terms of dissemination, dispersal and colonisation of new 

territories. Propagated spores are found ubiquitously throughout the environment and 

remain dormant until favourable conditions prompt germination. Upon germination spores 

swell and grow to produce aseptate hyphae (Hoffmann et al. 2013). Once hyphal growth is 
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initiated, Mucorales species are characterised by rapid growth which allows them to cause 

infection and food spoilage. 
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Figure 1. Phylogeny of the Mucorales A) Figure adapted from “Phylogenetic and Phylogenomic 

Definition of Rhizopus Species”, Gryganskyi et al, G3: GENES, GENOMES, GENETICS, 2018. This 

figure shows the phylogeny of 5 Rhizopus species, including multiple R. delemar and R. 

microsporus species, as well as Mucor circinelloides. This analysis has been performed based 

on 192 orthologues genes, and compares this phylogeny to parsimony phylogeny. Genome 

sizes have also been included in bold. B) Figure adapted from “An integrated genomic and 

transcriptomic survey of mucormycosis-causing fungi”. Chibucos et al, Nature 

Communications, 2016. This analysis shows the broader phylogenetic relationship of 38 

Mucorales species, including multiple R. oryzae species, based on the relationship between 

76 orthologous proteins. C) Phylogenetic tree based on NCBI taxonomy, generated with 

phylot. The asterisk denotes species worked with throughout chapter 2-6.   
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Food Spoilage

Worldwide one in eight people are malnourished, whilst it is predicted that a third of 

all food produced annually is wasted. Reducing this waste is crucial to improving food 

security. Food spoilage is a significant contributor toward food waste; it has 

been estimated that 20% of harvested fruit and vegetables are spoiled by microbes (Jay 

1992; Barth et al. 2009), whilst in east Asian countries, rice losses due to bruising, 

moulds and pest spoilage can be as high as 80% (Fox and Fimeche 2013) . It has also 

been estimated that up to 5% of baked goods are spoiled by fungi every year, with 

fungal spoilage estimated to cost $10,000,000 a year in Australia alone (Dao and 

Dantigny 2011). Food spoilage due to fungal contamination occurs at pre-harvest, 

storage, processing and packaging stages of food production (Bond et al. 2013) . 

The ability to grow in acidic conditions, as well as at temperature extremes, has led 

to the spoilage of fruit juices, pasteurized and refrigerated foods, predominantly by fungi 

(Dao and Dantigny 2011).  

Fungi of the Mucorales order are capable of invading plant tissue due to their rapid growth, 

with fruits and vegetables providing an optimal pH, high water content and nutrient source 

for growth (Turgeman et al. 2016). Sweet potatoes, cherries, peaches and tomatoes 

in particular are commonly affected by Rhizopus spp. spoilage (J W Eckert and Sommer 

1967). Rhizopus may even spoil unbroken fruits, as it is able to penetrate the skin by 

secreting esterase enzymes (Baggio et al. 2016). Control of spoilage agents can be 

achieved through storage of produce below 5°C, however it is not viable to store all fruit 

and vegetables at this temperature (Joseph W Eckert and Ogawa 1989). Biological 

agents such as Candida guilliermondii and Acremonium cephalosporium have been 

used effectively to decrease Rhizopus spoilage of grapes (Zahavi et al. 2000), whilst 

Pichia membranefaciens effectively 
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inhibits spoilage within peach wounds through a proposed mechanism of competitive wound 

colonisation (Qing and Shiping 2000; Bonaterra et al. 2003). Although storage at low 

temperatures works well as a preventative measure, this is not feasible in all countries. With 

few alternative options, it is necessary to develop new measures to reduce food spoilage and 

increase food security. 

Mucormycosis 

Human mucormycosis, an emerging fungal infection caused by members of the Mucorales 

order, has become a growing concern due to difficulty treating, resulting in mortality rates of 

up to 90% (Trzaska et al. 2015; Brown et al. 2012; Kontoyiannis et al. 2012). Rhizopus, Mucor 

and Lichthemia species are thought to account for 70-80% of all mucormycosis 

infections (Gomes, Lewis, and Kontoyiannis 2011), whilst Cunninghamella has been 

reported as one of the most aggressive and pathogenic species (Petraitis et al. 2013a). 

Mucormycosis mainly affects immunocompromised patients, such as those having 

undergone transplants, or in many cases individuals suffering from ketoacidic phases 

due to diabetes (Lanternier and Lortholary 2009). Mucormycosis is especially prevalent 

in countries with high counts of uncontrolled diabetes, as is the case in India 

(Chakrabarti and Singh 2014). Mucormycosis diagnosis due to traumatic injuries is 

common, whilst nosocomial acquisition in susceptible patients is also on the rise (Skiada et 

al. 2012). Mucorales species manage to cause invasive infection due to their ability to 

germinate, grow and proliferate within the host. They avoid killing by the host in 

immunocompromised individuals, causing angioinvasion and tissue necrosis (Ibrahim et 

al. 2012). Current treatment consists of lipid forms of Amphotericin B and surgical 

debridement (Spellberg and Ibrahim 2010). Statins also effectively decrease the growth 

of Rhizopus delemar, by attenuating germination and increasing the pathogens 
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susceptibility to oxidative stress (Bellanger et al. 2016). Although alternative treatment 

options are being explored, mortality rates remain high, available treatment options for 

mucormycosis are severely limited and the outcome often leads to patients having affected 

areas amputated.   

Mucorales spores and germination regulation 

Mucorales spores have been detected in a range of environments, from the sands of Saudi 

Arabia to the forests of China (Murgia et al. 2019; Walther et al. 2013). They appear dark due 

to the melanin within the cell wall, a feature common to many fungi which is thought to 

protect against UV damage (Moore-Landecker 2011). These hardy spores can survive 

temperatures of 60-70°C (maintaining viability), however once germination is initiated, these 

spores become increasingly prone to damage (Turgeman et al. 2013). The composition of the 

Mucorales cell wall changes over germination; under aerobic conditions chitin increases over 

germination, with chitosomes acting as a reservoir for chitin synthase (Kamada, Bracker, and 

Bartnicki-Garcia 1991). At rest, Mucorales spore cell walls contain large quantities of lipids, 

accounting for 10-40% of the cell wall (Feofilova et al. 2015). The cell wall also contains 

considerable chitin/chitinosan (11.6%), sugars (49.3%), protein (16.1%), phosphate (2.6%) 

and melanin (10.3%) (Bartnicki-Garcia 1968).  

Germination may be initiated upon cell wall breakage, removal of unfavourable conditions or 

the introduction of specific cues and nutrients - such as water, carbon and nitrogen (Feofilova 

et al. 2012; Mendoza et al. 2014). Essential nutrients for triggering germination of Rhizopus 

oligosporus includes glucose, phosphates and a mixture of amino acids, with leucine 

displaying a strong inductive effect on germination (Thanh, Rombouts, and Nout 2005). Blue 
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and green light have also been proposed as germination regulators for the light-sensitive 

protein possessing Mucorales species  Mucor circinelloides (Herrera-Estrella and Horwitz 

2007). Germination of Rhizopus delemar can be achieved with acidified glucose alone, as pH 

regulates germination via the recruitment of aquaporins (RdAQP1 and RdAQP2) that enable 

swelling (Turgeman et al. 2016). In Mucorales spores, the amount of RNA and protein within 

the spore appears to increase exponentially as soon as germination is induced, however DNA 

synthesis has not been reported to occur until 30 minutes before the production of germ 

tubes (Cano and Ruiz-Herrera 1988).  

11



 Spores of Cryptococcus neoformans and yeast cells of Candida albicans have been shown 

to be key to dissemination throughout the host (Walsh et al. 2019; Seman et al. 2018). 

C. neoformans spores are the infectious propagules which lead to greater dissemination 

and mortality, when compared to infection with the yeast form (Walsh et al. 2019). 

Similarly, Aspergillus species are disseminated throughout the host via their 

conidial (spore) forms, however hyphae are often required for tissue damage and 

invasion (Bertuzzi, Schrettl, Alcazar-Fuoli, Cairns, Munoz, et al. 2014; Seman et al. 2018; 

Ben-ami et al. 2009; Ben-Ami et al. 2009). Spores are the infectious particles of Aspergillus 

species and germination is central to pathogenicity (Zhao et al. 2006; Fortwendel et 

al. 2005). Aspergillus has long been used as a model for understanding the lesser studied 

Mucorales species, and though research in this field provides a framework, a full 

understanding of Mucormycete pathogenicity requires comprehensive investigation into 

mucorales species. The transition from Mucorales spore to hyphae appears to be a key 

pathogenicity factor (Inglesfield et al. 2018; Mendoza et al. 2014), however the 

underlying mechanisms which control this event in Mucorales species is poorly understood.  

As filamentous growth leads to tissue damage, the rate of germination can also be 

a contributing factor to virulence. In Rhizopus species, iron availability is known to 

regulate virulence (Andrianaki et al. 2018) as iron limitation leads to inhibition of 

germination (Kousser et al. 2019), and excess iron induces expression of the invasion 

mediating CotH (Gebremariam et al. 2016). Cunninghamella spp. are also known as 

one of the more aggressively invasive Mucorales species sets, the rate of germination 

of Cunninghamella spp. is increased, when compared to that of other Mucorales species. 

Mucor circinelloides shows increased virulence in its hyphal form, when compared to the 

yeast form 
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(Herrera-Estrella and Horwitz 2007; Walsh et al. 2019; Seman et al. 2018; Ben-ami et al. 

2009; Zhao et al. 2006; Fortwendel et al. 2005; Inglesfield et al. 2018; Andrianaki et al. 2018; 

Lee et al. 2013).  

In immunocompetent individuals phagocytes inhibit spore germination (Inglesfield et 

al. 2018), a mechanism key to infection control in immunocompetent patients. Phagocytes 

are rapidly recruited to the site of infection, and form innate granuloma-like 

structures around spores, leading to a latent infection. Phagocytes of 

immunocompromised patients fail to inhibit germination and subsequently life 

threatening infections develop. Despite the vital role played by the innate 

immune system in controlling mucormycosis, the interaction between Mucor 

species and innate immune cells is poorly understood.  

There are several challenges when working with species of the Mucorales order. 

These include: a complete absence of chromosomal level genome assemblies (the 

highest resolution Rhizopus assembly consists of 83 contigs) (Ma et al. 2009; Horn et 

al. 2015; Mondo et al. 2017); the repetitive nature of Mucorales genomes which 

makes for difficult assembly; unclear species phylogeny (Gryganskyi et al. 2018; 

Hoffmann et al. 2013); minimal or absent genome annotation; limited genetic tools 

for manipulation (until recently) (Garcia, Vellanki, and Lee 2018); and large 

phenotypic variation and genotypic variation between species within the order. 

Further to this, understanding of the pathogenicity mechanisms employed by 

Mucorales species is limited (Gebremariam et al. 2014), compared to better 

studied species such as Cryptococcus, Candida and Aspergillus spp. Aside from the 

work presented here, there have been few comparative genomic and phenotypic studies 
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of Mucorales species. To date, there have been no transcriptional (high-resolution) 

studies of Mucorales germination, few studies which explore the transcriptional 

basis of Mucorales-host interactions and only one which explores germination 

inhibition as a means to inhibit pathogenicity (Trzaska et al. 2015). 
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Project Aims 

This project aims to further understanding of the mechanisms of germination in the 

Mucorales species, and determine how this programme of morphological change and rapid 

growth contributes to pathogenicity. Once a basic phenotypic and transcriptional 

understanding of germination has been established, this project aims to detect mechanisms 

key to pathogenicity and identify pathways targetable to inhibit germination and reduce 

pathogenicity.  
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Literature Review 

The following literature review will give an overview of knowledge about fungal morphology 

and germination regulation in multiple fungal species. Subsequent chapters will include 

literature reviews on the current knowledge of: phenotypes of fungal germination (Chapter 

2), hallmarks of the fungal genome (Chapter 3), transcriptional regulation of fungal 

germination (Chapter 4), fungal-immune cell interactions (Chapter 5) and inhibition and 

modulation of fungal germination (Chapter 6), relevant to the work presented in these 

sections. 

Introduction to fungal morphotypes: Spores and Hyphae 

Spores may be formed either through sexual or asexual reproduction. Asexual reproduction 

is thought to provide an advantage due to the speed at which the spores can be produced 

and disseminated. Sexual reproduction, though often a longer process, presents an advantage 

through introduction of genetic variation into the population (Moore-Landecker 2011; 

Mendoza et al. 2014). The method of reproduction may be determined by the environment 

encountered by the fungi. For example, It has been suggested that the decision to reproduce 

sexually is regulated by trehalose homeostasis in Cryptococcus neoformans (Botts et al. 2014), 

whilst Aspergillus species conidiate when grown in nutritionally sparse conditions (Adams, 

Wieser, and Yu 1998). Although the nutritional triggers of sexual reproduction in the 

Mucorales order have not been well studied, trisporic acid is capable of triggering this process 

(Schimek and Wostemeyer 2012). Mucorales species produce this pheromone prior to sexual 

reproduction: both mating types must co-operate to complete production, as they rely on 
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one another for the interchange of intermediates required for this biosynthetic pathway (Lee 

and Heitman 2014). 

Asexual spores are genetically identical to their parent cells and may be formed through the 

specific process of sporulation, or through the transformation of an existing cell. The asexual 

spores of basidiomycetes, ascomycetes, mucormycetes and chytridiomycetes are known as 

conidia, arthrospores or conidia, sporangiospores and zoospores (Table 1). Arthrospores are 

produced through the conversion of an existing cell, whilst conidia, zoospores and 

sporangiospores are formed through a specific process that produces new spores, known as 

sporulation or conidiation. Blastospores form in a budding manner, budding away from 

hyphae, swollen cells or vesicles. Specialized spore-producing cells known as phialides are 

also capable of producing blastospores.  

The sexual spores of basidiomycetes, ascomycetes and mucormycetes are known as 

basidiospores, ascospores and zygospores, respectively. Sexual spores are usually formed via 

the fusion of hyphae, zoospores or gametangia of opposite mating types. This process may 

be initiated by the release of fungal hormones, as described for the mucormycetes  (Austin, 

Bu’lock, and Gooday 1969). The genomic structure of the mating locus has been described for 

Rhizopus and Mucorales species and although sequence comparisons revealed locus 

conservation, the results enable increased phylogeny resolution (Gryganskyi et al. 2010). 

17



Class Spore Type Reproduction Image Reference 

Ascomycetes 

Conidia on 
conidiophore: 
Aspergillus 
fumigatus 

Asexual 
Aspergillus fumigatus, 
conidia, close-up SEM. 
Credit: David Gregory & 
Debbie Marshall. CC BY. 

Basidiomycetes 
Conidia - 
Cryptococcus 
neoformans 

Asexual 

Isolation and 
Characterization of 
Cryptococcus neoformans 
Spores Reveal a Critical 
Role for Capsule 
Biosynthesis Genes in 
Spore Biogenesis: 
Botts et al. 
EukCell, 2009. 

Mucormycetes Sporangiospore – 
Rhizopus delemar Asexual 

Structure, Function, and 
Phylogeny of the Mating 
Locus in the Rhizopus 
oryzae Complex: 
Gryganskyi et al. PLOS 
ONE, 2010. 

Chytridiomycetes Zoospore - Bd 
strain JEL423 Asexual 

WASP and SCAR are 
evolutionarily conserved in 
actin-filled pseudopod-
based motility: Fritz-Laylin 
et al. 
The Journal of Cell 
Biology, 2017.

Basidiomycetes 
Basidiospore - 
Cryptococcus 
neoformans 

Sexual 

Function of Cryptococcus 
neoformans KAR7 (SEC66) 
in Karyogamy during 
Unisexual and Opposite-
Sex Mating: Soo Chan Lee, 
Joseph Heitman. 
EukCell, 2012

Ascomycetes 
Ascospore - 
Aspergillus 
fumigatus 

Sexual 

Credit: Bryan Hansen. 
Aspergillus fumigatus—
What Makes the Species a 
Ubiquitous Human Fungal 
Pathogen?: Kwon-Chung 
KJ, Sugui JA. PLoS Pathog, 
2013.

Mucormycetes Zygospore – 
Rhizopus oryzae Sexual 

Structure, Function, and 
Phylogeny of the Mating 
Locus in the Rhizopus 
oryzae Complex: 
Gryganskyi et al. PLOS 
ONE, 2010.

Table 1. Table describing fungal spore types. 
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Once spores are formed, they are usually kept suspended within sacs or fruiting bodies. These 

structures may contain thousands of spores and differentiate from fungal filaments, to which 

they remain associated. The number of spores contained in fruiting bodies can be described 

as a balancing act: maximizing the number increases spread of the species, increasing chances 

of survival, whilst too many may result in stalk collapse (Santorelli et al. 2008). Dispersion of 

spores from sacs is achieved through wind, water or animal disturbance. Release of some 

spores is also determined seasonally to coincide with the humidity and temperatures which 

provide an optimal climate for the germination of different species.  

Germination is induced through favourable conditions and generally occurs in the following 

stages: isotropic growth or swelling, cell polarization, hyphal emergence and 

hyphal elongation (Figure 2) (Bonazzi et al. 2014). The process of germination 

culminates in the production of septate or aseptate hyphae depending on fungal species. 

Throughout isotropic growth, the spores can visibly be seen to swell. During this phase 

spores will take up water, whilst expanding and reorganizing their cell walls. Spores also 

increase their metabolic activity and may use external or internal energy sources in 

order to initiate transcription and translation (Griffin 1996; Novodvorska et al. 2016). 

Polarization of the cell wall following swelling determines where the hyphal tube will 

emerge and utilizes cell machinery such as the polarisome to support this process. This 

stage involves an extensive remodelling of the cell wall to enable hyphal extension. When 

hyphae emerge and extend, they grow to form what can be seen as a hyphal mat or 

matrix, in which the hyphae may overlap and even grow towards nutritional or light sources 

(Lucas, Kendrick, and Givan 1975; Dussutour et al. 2010). 
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Figure 2. Schematic of germination. Adapted from Sephton-Clark & Voelz (2018). 

Importance of spores and hyphae in pathogenicity and food spoilage 

Although we are exposed to thousands of fungal spores every day (Moore-Landecker 2011), 

not every spore we encounter is pathogenic. Of those which are pathogenic, the 

developmental stage of the spore can affect the outcome of the encounter; whilst dormant 

spores may not be pathogenic, the germinated counter parts are often capable of causing 

disease in humans, animals or plants.  To maintain dormancy, dispersed spores may employ 

nutrient and enzymatic compartmentalization, alongside the release of germination 

autoinhibitors, molecules which help regulate the maintenance of dormancy (Feofilova et al. 

2012). Dormancy enables spores to avoid germination under conditions that may not be 

optimal, or could even be harmful to the germlings. Under suboptimal conditions the 

germling may perish due to environmental stress or lack of nutrients. Conversely, if spores 

stay dormant too long, they may miss a golden opportunity to exploit their environment for 

fungal growth and dissemination. As a result, the maintenance of dormancy is carefully 

regulated.  

Cues which initiate germination may include the host environment, signalling spores to 

initiate pathogenic growth within or on a host. Once metabolically active, germinating spores 
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have the potential to express their repertoire of virulence factors. Damage to the host may 

be caused by the release of toxins, pathogenicity factors, or immunostimulatory 

components such as cell wall constituents. Plant pathogenic Fusarium spp. are known to 

produce and release phytotoxins which aid pathogenicity and invasion, through the 

induction of host cell death (Nishiuchi et al. 2006). The human pathogen Aspergillus flavus, 

is known to cause respiratory diseases, like many other Aspergillus sp. This may be through 

pulmonary infection in an immunocompromised individual, or simply through an allergic 

reaction induced by the inhalation of the conidia. A. flavus is also known to produce the 

mycotoxin, aflatoxin, which can lead to liver damage and even cancers, if the toxin is 

consumed (Hedayati et al. 2007). Similarly, Candida albicans produces candidalysin, a 

cytotoxic peptide which is toxic towards tissue, and causes damage during 

infection. Specifically, the hyphal form of C. albicans releases candidalysin, which aids 

dissemination and host invasion (Moyes et al. 2016).  

In many cases, filamentous growth initiated during spore germination may be the 

underlying cause of disease. Filamentous growth can lead to tissue invasion and 

disruption which may prove fatal to the host. The lesser known but often more 

invasive Aspergillus terreus has been shown to produce accessory conidia, capable of 

increased germination rates when compared to the primary conidia produced by 

Aspergillus species, with accessory conidia forming hyphae within two hours of 

germination initiation. This increased germination rate may account directly for the 

aggressive pathogenicity of this species (Deak et al. 2009).  

The emergence and extension of hyphae produced by plant pathogenic fungi, which is 

frequently accompanied by the release of extracellular degradative enzymes, is often key to 

infection. Infection caused by the wheat and barley pathogen Fusarium graminearum relies 
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on hyphal extension and the release of these enzymes in order to invade the host tissue 

(Zheng et al. 2012). Hyphal growth is also key to the infection caused by Batrachochytrium 

dendrobatidis and Batrachochytrium salamandrivorans. Once the motile chytrid zoospores 

of the amphibian fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium 

salamandrivorans have made contact with the mucus membranes of their hosts, they are 

also known to utilise swelling and hyphal growth as a mechanism to invade host tissue (van 

Rooij et al. 2012).  

Spore Composition 

The spore cell wall 

The cell wall of spores offers increased protection against environmental factors allowing 

survival of resting spores. The general structure and components within a spore cell wall are 

relatively conserved between fungal species. While fungal cell walls mainly consist of 

polysaccharides, with lipids and proteins usually accounting for a smaller percentage, the 

ratio of these components largely depends on species.  

The composition of the Mucor rouxii spore wall has been well documented and is known to 

contain around 42.6% glucose, 16.1% protein, 10.3% melanin, 9.8% lipid, 9.5% chitosan, 

2.1% chitin, 2.6% phosphate, 4.8% mannose and 1.9% glucuronic acid (Reyes and Bartnicki-

garcia 1964). Similarly, the S. cerevisiae strain AM3 ascospore wall consists of large 

quantities of glucose (55%), mannan (17%), chitin/chitosan (9%), and protein (11%), along 

with smaller quantities of phosphates and organic acids (Briza et al. 1988). The cell walls 

of Aspergillus oryzae conidia show a much lower lipid content, at around 2%. However the 

carbohydrate content is similar at about 30% in Aspergillus niger (Sumi 1928; Feofilova 

et al. 1988), demonstrating the variability in ratio between species. The spore cell wall 
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of Aspergillus fumigatus has even been recorded to contain several lectins, capable of 

binding sialic acid and fucose, along with other sugars (Houser et al. 2013). Interestingly, the 

presence of some lectins has been shown to inhibit spore germination of penicillia 

(Barkai-Golan, Mirelman, and Sharon 1978). The conidial cell wall of Aspergillus 

fumigatus has also been shown to contain hydrophobic rodlets, known as RodA&B, 

thought to give structural support to the spore wall, as well as enhancing the 

adhesion of conidia to surfaces, and masking conidia from host immune recognition 

(Paris et al. 2003; Aimanianda et al. 2009).  

The cell walls of many spore forming pathogenic fungi are also known to contain melanin. 

This pigment colours the spores brown, with an increased melanin content causing the 

spores to appear darker and most melanin mutants displaying an ‘albino’ phenotype. 

Fungal melanin consists of a highly complex structure, which exists in a stacked planar 

sheet structure and is likely formed from DOPA oligomers or polymers (Nosanchuck et al. 

2015). The inclusion of melanin into fungal cells varies markedly between 

species. Melanin accompanies the hydrophobic rodlets in the outer layer of Aspergillus 

fumigatus, where it is thought to confer pathogenicity (Akoumianaki et al. 2016), and 

provide structural support (Pihet et al. 2009). The cell wall of an Aspergillus fumigatus 

mutant, which does not possess melanin, showed decreased electronegativity, 

hydrophobicity and a significant change in the structure of the conidial wall itself. This 

includes a loss of the outer hydrophobic rodlet layer which likely accounts for the loss of 

hydrophobicity (Bayry et al. 2014; Pihet et al. 2009). The accessory conidia of the 

highly pathogenic Aspergillus terreus have a wall which is compositionally very 

different to those of other Aspergillus species. The wall of A. terreus lacks the 

rodlet coating on the outermost layer, as well as the melanised underlayer, and 

also contains less ergosterol, demonstrating that variability even within a genus can 

be vast (Deak et al. 2009). 
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In addition, the cell wall of spores from the dimorphic human pathogen Blastomyces 

dermatitidis is known to contain melanin, which has been shown to offer protection 

against UV (Ultra Violet) (Nosanchuk et al. 2004), whilst antioxidant carotenes may also 

be present to provide protection against reactive oxygen species (ROS). In the 

opportunistic human pathogen Cryptococcus neoformans, melanin- 

containing vesicles known as fungal melanosomes are thought to deliver melanin to 

the cell wall, and once trapped form the layers seen in C. neoformans (Eisenman et al. 

2005, 2009). The presence of melanin in C. neoformans is associated with an increase 

in virulence. It is thought that it provides protection against reactive oxygen 

species (ROS) which phagocytic cells use against pathogens (Moore-Landecker 2011; 

Schnitzler et al. 1999).  

Spore compartmentalization and dormancy factors

The structure of spores is, in part, responsible for their ability to survive in extreme 

environments. It  should be noted that in general spore walls,  structurally,  are 

very sturdy, although prone to morphing when under severely dehydrating 

conditions (Sarmiento et al. 2006). By storing compounds which will be used in the initial 

stages of germination separately from the enzymes which will catabolize them to release 

energy for the initiation of germination, spores maintain dormancy and energy stores 

(Dijksterhuis et al. 2007). For example, the storage molecule trehalose is highly 

abundant in the cytoplasm of dormant Aspergillus nidulans conidia. However, it is not 

metabolized in dormant conidia, indicating a lack of free trehalase enzymes. Trehalose is 

rapidly mobilized and used as an energy source to fuel germination (Elbein 1974; 

Svanström et al. 2014; Novodvorska et al. 2016).   

In addition, dormancy factors can contribute to the maintenance of spores in a resting state. 

In Rhizopus oligosporus the autoinhibitor, nonanoic acid, maintains dormancy through a pH 
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regulated germination inhibition mechanism (Breeuwer et al. 1997). A transcriptomic 

approach which focused on dormant spores of A. niger, A. fumigatus and A. oryzae revealed 

that the autoinhibitor bZIP-type transcription factor AftA plays a significant role in 

maintaining dormancy. aftA mutants begin the process of germination much earlier 

than wild type conidia, and before the correct nutrients are available. Regulators like 

AftA are thought to be a common mechanism used by spores to maintain dormancy, with 

AftA involved in the regulation of dormancy and germination through interaction with 

conidia-associated genes such as the calA-family genes which encode a thaumatin-like 

protein (Hagiwara et al. 2016).   

 Water availability and metabolic activity

The maintenance of little or no metabolic activity allows spores to preserve dormancy. 

Metabolic activity of ‘dormant’ Aspergillus niger conidia measured in an 

aqueous environment was seen to be severely reduced when compared to 

germinated conidia. However, these readings may not present the true metabolic activity 

of dormant spores, as the presence of water alone has been recorded to trigger 

germination in A. niger (Teertstra et al. 2017; Novodvorska et al. 2016). Upon 

germination, spores rapidly take in water (Turgeman et al. 2016), and maintaining a low 

water content is thought to aid spore survival of desiccation. The water content of 

Aspergillus oryzae conidia has been recorded to be as low as 17.8%, a third of the reported 

percentage for S. cerevisiae yeast cells (Illmer, Erlebach, and Schinner 1999). It is thought 

that the lower the water content, the better equipped the spores are to survive extreme 

heat, although the thermostability of other spore components such as proteins and lipids 

will also play a role in this context (Sumi 1928; Nicholson et al. 2000).  
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The Spore Germination Program 

Spore polarization  

Prior to hyphal emergence, polarization of the spores occurs. In many fungi this 

process is reliant upon polarizomes, a protein complex which regulates polarity through 

its effects on actin, chitosomes and microvesicles which support the synthesis of chitin 

(Ruiz-Herrera and San-Blas 2003). This reliance appears conserved across fungi; work 

done by Kamada et al. (1991) in Mucor rouxii spores demonstrates that 

chitosomes act as a reservoir for chitin synthase throughout growth, as well as during 

dormancy (Kamada, Bracker, and Bartnicki-Garcia 1991). The recruitment of polarizome 

components and polarization-essential proteins has been well studied; during 

germination the actin cytoskeleton of S. cerevisiae spores is regulated by polarizome 

components   Spa2p,   Pea2p,   Bud6p,   Bni1p,   Msb3   and   Msb4.   Over   the   course   of

germination, these components, along with Ras2p, regulate the formation and 

polarization of actin patches prior to polarized growth (Kono et al. 2005; Park and Bi 

2007). The GTPase Cdc42p (cell division cycle 42) has been shown to be involved in 

regulation and recruitment of the polarizome, as well as the GTP binding proteins known as 

septins (Loeb et al. 1999; Bassilana, Blyth, and Arkowitz 2003; Momany and Talbot 

2017). This conserved process of polarizome recruitment may also be 

accompanied by coiled coil cytoskeletal proteins locating to the cell wall. These proteins 

are thought to act as stress bearing structures to limit damage done by weakening the cell 

wall through polarized growth (Fuchino et al. 2013). In P. discolor, this process is followed 

by the formation of an ergosterol cap at the point of polarized growth (Van Leeuwen et 

al. 2008). Small GTPases, such as Rho1p, are also involved in the regulation of 

germination of S. cerevisiae (Kono et al. 2005). These hydrolytic enzymes have been 

shown to be involved in cytoskeletal arrangement, exocytosis and cell wall composition 

of the yeast. Cytoskeletal rearrangement also appears crucial to the 

Spore polarization
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polarization of  Magnaporthe oryzae. The polarization of the plant pathogen Magnaporthe 

oryzae has been shown to be regulated by the transcription factor Tpc1 (Transcription factor 

for Polarity Control 1) which interacts with the pathogenicity factor Mst12, that regulates 

infectious growth downstream of Pmk1 (mitogen-activated protein kinase 1) as well as 

NADPH oxidase (G. Park et al. 2002). Tpc1 is dependent upon MAPK signalling for normal 

regulation of cytoskeletal components, specifically F-actin components required for plant 

invasion (Galhano et al. 2017). Kinase signalling is also implicated in polarization; the 

pathogenic yeast Penicillium marneffei relies upon the p21-activated kinase pakA, which 

localizes to the site of germination and plays a major role in the cAMP-PKA pathway, to 

regulate polarization (Boyce and Andrianopoulos 2007). Kinases are also important for 

polarization in S. cerevisiae; Cdk1 (Cyclin dependent kinase 1) and the cyclins Clb1-4 

promote isotropic growth of the cells. The accumulation of Clb2 specifically within the 

cytoplasm is thought to stabilize the switch between isotropic growth and 

polarization (Machu et al. 2014).  RAS signalling also appears important for germination 

regulation; the G-protein alpha-subunits GasA and C are implicated in the regulation of 

P. marneffei germination, both dependently and independently of RasA (Zuber, Hynes,

and Andrianopoulos 2003). GasA and C mutants also show defects in asexual 

development, as well as conidial yield (Boyce and Andrianopoulos 2007; Boyce, Hynes, 

and Andrianopoulos 2005; Pérez-Sánchez et al. 2010; Zuber, Hynes, and 

Andrianopoulos 2003). Many pathways involved in polarization regulation appear 

broadly conserved across filamentous fungal species, however it is likely there are also 

many species specific germination processes (Huang and Hull 2017). 

The polarization process in Mucor rouxii is impaired by the presence 

of cAMP phosphodiesterase inhibitors, revealing that protein kinase A plays a 
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in the differentiation of M. rouxii spores. This is further evidenced by germ tube 

emergence correlating directly with the amount of active PKA present, as threshold PKA 

levels result in germ tube emergence (Pereyra, Mizyrycki, and Moreno 2000). PKA is also 

important for the proper polarization of Neurospora crassa, and appears crucial to 

germination of Aspergillus fumigatus conidia (Zhao et al. 2006; Bruno et al. 1996). 

The mechanism of polarization and initial germination appears to be broadly conserved 

across filamentous fungal pathogens (Boyce and Andrianopoulos 2015; D’Souza and 

Heitman 2001; Fortwendel 2016), however with this conservation there appears to 

be cross functionality:  genes required for normal germination are frequently found to 

have various other functions, often in asexual development and the production of conidia. 

For example, the histidine kinase DRK1/drkA found in Blastomyces dermatidis, 

Histoplasma capsulatum and P. marneffei is known to be required for sporulation, 

virulence, cell wall integrity and production of infectious spores (Nemecek, Wuthrich, and 

Klein 2006; Boyce et al. 2011).  

Hyphal outgrowth and extension

Germ tube emergence follows swelling and is a result of polarized growth, with the hyphal 

tip emerging from the site of polarization. Upon hyphal production, hyphae of most 

Fusarium species will immediately penetrate agar under laboratory conditions, although a 

few species produce hyphae that first grow along the top before penetration. As 

pathogenesis is often initiated by conidial germination and germ tube production, the more 

penetrating the species, the more pathogenic (Ruiz-Roldan et al. 2010; Petraitis et al. 

2013b). For example, it is thought that the pathogenicity of Fusarium verticillioides 

depends on the FPH1 (frustrated philade, conidiogenesis regulator) linked SIG1 (surface 

vs. invasive germination), which regulates the  invasive germination phenotype, 
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responsible for pathogenicity (Glenn, 2006).  

 

To exit dormancy and establish growth, appropriate internal or external signals are required. 

Germination can be initiated by the removal of dormancy factors, or by the introduction of 

environmental cues. Similarly to the process of seed germination, the removal of dormancy 

factors such as the dehydrin-like proteins DprA and DprB in Aspergillus fumigatus may induce 

germination (Hoi et al. 2011), whilst the removal of the autoinhibitor methyl 3,4-

dimethoxycinnamate is essential for the germination of the plant pathogen Uromyces

phaseoli (Macko et al. 1970; Hogan 2006). Although this induction method may trigger 

germination, it may not necessarily support full outgrowth of spores. 

External cues capable of initiating germination and regulating growth include temperature, 

light, nutrient availability, water availability, pH, quorum sensing molecules and osmolarity 

(Alavi et al. 2013; Turgeman et al. 2016; Nguyen Van Long et al. 2017). Whilst species such 

as Aspergillus niger can start germination when in contact with water alone, the initiation 

of germination in Rhizopus delemar under starvation conditions induces atypical 

morphology, fragmented DNA and increased susceptibility to cell death 

(Turgeman et al. 2013; Novodvorska et al. 2016). Light responses have been well 

studied in plants, although they do not all possess germinating spores. Dependent on the 

wavelength, light is also capable of both inducing and inhibiting germination in fungi 

(Franklin and Quail 2010; Röhrig, Kastner, and Fischer 2013; Possart, Fleck, and 

Hiltbrunner 2014; Aron Maftei et al. 2014; Idnurm and Heitman 2005; Brunk et al. 2015). 
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The nutritional environment and germination 

An appropriate nutritional environment to support fungal growth is essential for initiation of 

spore germination. The following sections will discuss the organic and inorganic nutrient 

signals that can induce spore germination and sustain growth.  

Organic nutrients 

Organic cues are one of the most commonly used germination initiation factors for fungi. 

Whilst carbon and nitrogen sources are generally indispensable for growth, macronutrients 

known to trigger germination in various fungi are manifold and species-specific. Essential 

nutrients for germination and activation of a higher metabolic rate in Rhizopus oligosporus 

include glucose, phosphates and a mixture of amino acids, with leucine capable of triggering 

germination (Thanh, Rombouts, and Nout 2005). Although Aspergillus niger may start to 

germinate in water alone, D-tagatose, D-lyxose, and 2-deoxy-D-glucose will all trigger 

germination, though they will not support outgrowth. For outgrowth D-glucose, D-mannose, 

or D-xylose is required (Hayer, Stratford, and Archer 2013). However, not all carbon sources 

are capable of triggering germination. For example D-galactose, L-glucose, and D-arabinose 

have all been shown to be incapable of triggering germination in Aspergillus niger, whilst they 

may support outgrowth if a complementary triggering sugar is present (Hayer, Stratford, and 

Archer 2013). This supports the notion that different stages of germination may be carried 

out regardless of whether conditions will support full germination (Hayer, Stratford, and 

Archer 2013). Similarly, spores of Cryptococcus neoformans are able to germinate on minimal 

water agarose medium, suggesting nutritional cues are not needed to trigger germination for 

this species (Velagapudi et al. 2009). Blastomyces dermatitidis spores will germinate on a low 
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glucose substrate, but can also utilize complex carbon sources from decomposing matter, a 

useful trait for exploiting carbon sources available in the environment. Additionally, B. 

dermatitidis requires a nitrogen source such as allantoin, creatinine, quanidoacetic acid, 

guanidine or cysteine. Interestingly, B. dermatitidis is also capable of growth at extremely 

high ammonia concentrations, of up to 42-62mmol/l. This is particularly significant as the 

growth of most soil inhabiting fungi will be inhibited at 2.1-4.2mmol/l. The ability to grow in 

such extreme conditions provides B. dermatidis with an environmental niche which it may 

exploit to increase its ubiquity (Baumgardner and Laundre 2001; Baumgardner 2009). The 

composition of the carbon source can even lead to opposing effects on germination, whilst 

L/D-leucine and/or unsaturated long chain fatty acids will induce germination in Microsporum 

gypseum, saturated short chain fatty acids are inhibitory towards germination (Barash, 

Conway, and Howard 1967).  

Sulphur, a constituent key to life and a component of a few key amino acids, is required for 

the growth of many fungal species (Marzluf 1993). It enables strengthening and proper 

folding of protein structures through disulphide bridges, and is key to the functionality of 

many essential enzymes such as permeases and proteases. A source of sulphur such as biotin, 

thiamine or thioctic acid is required for the formation of Histoplasma capsulatum yeast cells. 

Whilst it is not required for the formation of hyphae, both mycelial and yeast forms utilise 

sulphur metabolism. It has been suggested that the sulphur requirement of the dimorphic 

fungus Histoplasma capsulatum, specifically cysteine, is temperature dependent, indicating 

the sulphur metabolism may be important for morphology and pathogenicity (Howard et al. 

1980; Maresca and Kobayashi 1989). 
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Inorganic nutrients 

Alongside macronutrients, micronutrients are also required by many fungi to initiate 

germination and sustain growth. For example, studies investigating calcium metabolism in 

Sporothrix schenckii showed that the presence of exogenous calcium stimulated mycelial 

production, with hyphal emergence corresponding to calcium uptake (Rivera-Rodriguez and 

Rodriguez-del Valle 1992). 

Iron is essential for the proper growth of many fungi (Tamayo et al. 2014; Philpott 2006; C. 

Zhang 2014). Although too little iron may result in growth defects, too much can also be 

extremely toxic. Tight regulation of iron homeostasis is therefore essential. External 

siderophores are often used to scavenge iron from the surrounding environment, whilst 

internal siderophores store iron and limit toxicity. Aspergillus species employ the two 

transcription factors SreA and HapX to regulate iron homeostasis via siderophores, such as 

the intracellular siderophore SidC. Aspergillus nidulans conidia lacking SidC are known to be 

more susceptible to oxidative stress and exhibit delayed germination when grown in 

reduced iron environments (Eisendle et al. 2006). Interestingly, genes coding for 

the biosynthesis of triacetylfusarinine C, a common fungal siderophore, are absent in 

Aspergillus niger, indicating that there are many homeostatic mechanisms which 

are implicated in maintaining the correct metal homeostasis (Franken et al. 

2014). The siderophore rhizoferrin is used by Mucorales species to scavenge iron 

from the surrounding environment. When Mucorales spores are germinated in iron 

limited conditions, they can be seen to produce atypical hyphae (Lewis et al. 2011; 

Kousser et al. 2019) and iron availability is known to regulate virulence in various 

Mucorales species (Ibrahim 2011). Notably, Mucorales species such as Rhizopus 

delemar may also bind iron provided by exogenous siderophores, such as the iron 

overload treatment deferoxamine, increasing spore germination. 
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In turn, this leads to higher susceptibility to mucormycosis in individuals who have elevated 

iron levels within their blood e.g. those with uncontrolled diabetes, patients receiving 

blood transfusions or those suffering from hemochromatosis. The combination of 

increased iron levels and treatment with the siderophore deferoxamine creates an 

optimal growth environment for the spores of Mucorales species (Boelaert et al. 1993; 

Gebremariam et al. 2016; Spellberg et al. 2016; Spellberg, Edwards, and Ibrahim 2016; 

Ibrahim, Spellberg, and Edwards 2016). 

Micronutrients are often required by spores to overcome environmental and host stresses. 

Spores utilize enzymes such as catalase and superoxide dismutase (SOD) to avoid damage by 

reactive oxygen species (ROS). These enzymes are dependent on the presence of transition 

metals, namely Zn and Cu, to be able to perform their redox functions. Levels of SOD and 

catalase were shown to increase in Aspergillus niger grown at extreme temperatures, 

demonstrating their roles in survival in harsh conditions (Abrashev et al. 2005). SOD1, 2 and 

3 are all required for the correct germination and outgrowth of Aspergillus fumigatus, whilst 

deletions of individual SOD proteins alone leads to growth perturbations and increased 

sensitivity to ROS (Lambou et al. 2010; Plante et al. 2017). Similar work done in Neurospora 

crassa showed that catalase is important for the survival and viability of conidia. Catalase-1 

mutants showed an increased susceptibility to hydrogen peroxide and a decreased ability to 

germinate after exposure to light, when compared to the wild type control (Wang, Yoshida, 

and Hasunuma 2007). 

The acquisition of micronutrients from low availability environments allows many fungal 

pathogens to survive and proliferate within hosts (Ballou and Wilson 2016). Nutritional 
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immunity is recognized as a way in which a host may limit the growth of a pathogen. 

However, pathogens have developed high specificity scavenging systems to combat this. 

Using high affinity chelators regulated by transcription factors such as ZafA (Aspergillus 

fumigatus), Csr1 (Candida albicans) and other Zap1 orthologues to regulate zinc 

homeostasis, pathogenic fungi may scavenge zinc from the host environment 

(Böttcher et al. 2015; Moreno et al. 2007). ZafA is required for the correct germination of 

Aspergillus fumigatus (Moreno et al. 2007), whilst Zap1 orthologues are thought 

to contribute towards virulence of fungi. Similarly, copper homeostasis has been 

shown to be important for the pathogenicity of fungi. Copper is also 

essential to the germination of Schizosaccharomyces pombe. If lacking copper 

transporters Ctr4 and 5, germination is halted at hyphal production, whilst the copper 

transporter Ctr6 has also been suggested to play a role in germination. Ctr6 is localised 

to the spore membrane at the end of the sporulation process, and spores lacking Ctr6 

show decreased viability when grown in a low copper environments, than those with a 

functioning Ctr6 (Plante et al. 2014).  

Micronutrients are not only required for the initial growth of pathogenic fungi, but often 

they are also implicated in ability of fungi to switch between dimorphic growth forms, as 

is the case for Blastomyces dernmatidis. B. dermatidis is known to produce a 

siderophore which aids in pathogenicity. Although it is capable of 

growth without supplementary ferric iron, Blastomyces requires exogenous 

magnesium and calcium for hyphal growth (Giles and Czuprynski 2004). The GATA 

transcription factor SREB, found frequently amongst fungal species, has been shown 

to regulate siderophore production in   Blastomyces dermatidis, as well as lipid 

droplet formation, triacylglycerol and ergosterol synthesis. As lipid droplets are 

thought to be used as energy sources for Blastomyces dermatidis when transitioning 

from yeast to mycelial growth, SREB is also essential for hyphal growth (Gauthier et al. 
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2010; Marty et al. 2015). Histoplasma capsulatum, another dimorphic pathogen, utilizes a 

siderophore for pathogenicity and iron scavenging within host cells. Histoplasma 

capsulatum has been shown to scavenge iron from host ferritin/fe-transferrin with the 

SID1 encoded ferric reductase. Without the iron scavenger, Histoplasma capsulatum 

is rendered incapable of replicating within host macrophages (Newman and 

Smulian 2013). Histoplasma capsulatum also utilises the transition metal requiring 

extracellular SOD and catalase enzymes to survive host ROS. As a result, decreasing the 

levels of iron and zinc available to Histoplasma capsulatum leads to higher 

susceptibility to macrophage killing (Garfoot and Rappleye 2016).  

Germination Regulation via pH, Temperature, Light and Environmental Gases

Several exogenous factors, other than nutrient availability, are known to regulate 

germination of fungi. The abiotic factors discussed below may be important signals that aid 

pathogenic fungi to exploit their host environments at choice moments, or they may 

be signals that it is not yet a suitable environment in which to germinate.  

pH 

pH has been well established as a factor which influences germination in many fungal 

species and many pathogenic fungi grow best at the pH of their host 

environment. The host environment may also be liable to pH change. Once 

phagocytosed by host phagocytes, fungi are often subject to drastic pH changes within 

the phagosome, as the phagocytes attempt to disarm the phagocytosed fungi through 

fusion and fission events with both endosomes and lysosomes. Often, a matured 

phagosome will degrade the captured microbe, therefore maturation arrest (or 

phagosome escape) is a tactic often employed by fungi such as C. neoformans, to 

avoid degradation (Smith, Dixon, and May 2014; Yates, Hermetter, and Russell 2005; 

Gresnigt et al. 2018).
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The germination of the Mucorales species Rhizopus delemar is induced at lower pHs; this is 

true in both artificial growth media, along with in vivo replicating conditions (Turgeman et al. 

2016). The pH drop of the blood of diabetics undergoing a ketoacidic phase has even been 

linked to an increased susceptibility to mucormycosis, as the decreased pH in turn leads to 

an increased availability of iron and beta-hydroxybutyric acid for the fungus (Artis et al. 

1982; Gebremariam et al. 2016). The pH dependent induction of germination in Rhizopus 

delemar is known to be regulated by two aquaporins (RdAQP1 and RdAQP2). The optimal 

pH for germination initiation was found to be between pH 4-5 (Turgeman et al. 2016).  

Other fungi are capable of growing at a vast range of pH’s. The human fungal pathogen 

Sporothrix schenckii is found ubiquitously in soils and can grow between pH 3.5-9.4 (Tapia 

Noriega et al. 1993), whilst Candida albicans is capable of colonizing host environments of 

extreme pH’s and growing in pH’s from 2-10 (Odds 1988). Many  fungi rely on the zinc finger 

transcription factor PacC, and the signalling pathway in which it is implicated, to sense the 

pH of their surroundings. The PacC signalling pathway has also been shown to effect 

germination in Aspergillus nidulans. Conidia lacking PacC components showed decreased 

growth, when compared to the wildtype, whilst the acquisition of iron is also thought to be 

dependent on PacC in A. nidulans (Bertuzzi, Schrettl, Alcazar-Fuoli, Cairns, Muñoz, et al. 2014). 

A. nidulans further relies on the signal transduction components encoded by the PalA-I genes

to respond to environmental pH (Denison 2000). Given a suboptimal pH, fungi may modulate 

the pH of their surrounding environment through the release of pH altering molecules. 

Through the secretion of organic acids and ammonia, fungi are able to either increase or 

decrease the pH of their surroundings (Cornet and Gaillardin 2014; Vylkova 2017). 
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Temperature 

In some fungal species, temperature has been shown to effect germination more than other 

factors. The germination of Cryptococcus neoformans was shown to be more reliant on 

temperature than it is on nutrient availability (Forsythe, Vogan, and Xu 2016). The small 

GTPase RAS1 has been shown to regulate the filamentous growth of Cryptococcus 

neoformans through the mitogen-activated protein kinase (MAPK) and RAS specific signalling 

pathways in response to shifting to higher temperatures (Alspaugh et al. 2000). Neurospora 

crassa mcb strains which lack the cAMP dependent protein kinase are incapable of polarized 

growth at higher temperatures, demonstrating that the complex triggers for germination are 

interlinked (Bruno et al. 1996). Interestingly, Aspergillus nidulans RasA, which is also involved 

in the polarization of conidia, regulates the germination of conidia in response to nutrients 

through possible interactions with heat sensitive factors encoded by spore germination-

deficient (sgd) genes. These temperature dependent factors are also known to be important 

for germination and polarized growth (Osherov and May 2000). Studies investigating the 

impact of temperature on A. fumigatus germination revealed that over the course of 

germination higher temperatures (37°C) upregulated carbohydrate, lipid and secondary 

metabolism pathways, whereas lower temperatures (24°C) upregulated RNA metabolism and 

processing (Sueiro-Olivares et al. 2015). 

Whilst spore production is often induced in suboptimal conditions as a survival mechanism, 

some fungi, such as the blight- causing fungus Exserohilum monoceras, require 

specific temperatures in order to produce spores. The optimum temperature for 

Exserohilum monoceras growth and spore production is between 27°C and 28°C  (Zhang and 

Watson 1997).   
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Light 

Environmental factors such as light play a role in the regulation of spore germination and 

growth in some species. Light induces germination and hyphae formation in arbuscular 

mycorrhizal species such as Gigaspora gigantea, but will inhibit germination and growth of 

many other fungal species, such as Puccinia graminis and Aspergillus fumigatus, dependent 

on the wavelength (Nagahashi, Douds, and Buee 2000). The crop pathogen Puccinia 

graminis showed inhibited germination when exposed to both white and far red 

light, whilst germination occurred normally in dark conditions (Lucas, Kendrick, and 

Givan 1975). Aspergillus fumigatus conidia showed decreased germination rates when 

exposed to blue light, red light and far red light (Fuller et al. 2013; Röhrig, Kastner, and 

Fischer 2013). 

Light is sensed by fungi through photoreceptors which interact with and bind to fungal

chromophores, ultimately transmitting and eliciting a cellular response to light. Light 

responses through photoreceptors have been studied extensively in the fungal plant 

pathogen Neurospora crassa. It has been shown that both conidia production and release can 

be regulated by the presence of blue light, through the con-6 and con-10 light responsive

genes (Linden, Rodriguez-Franco, and Macino 1997). A whole transcriptome response to light 

exposure revealed that transcripts con-6 and con-10 were not only upregulated upon light 

exposure, but also play a role in the germination of N. crassa conidia (Wu et al. 2014). 

Similarly, con-6 and 10 homologues conF and J were found to induce conidia formation in 

Aspergillus nidulans. A double mutant also harboured germination defects, demonstrating 

the role of blue and red light to be involved in both conidia formation and germination, 

which appears to be conserved across filamentous fungi (Suzuki et al. 2013). It has been 
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suggested that the light signalling pathways, such as the cellular response to blue light, in 

Neurospora crassa may be dependent on internal ROS, as SOD1 mutations showed 

increased light dependent accumulation of metabolites, suggesting ROS factors resulting 

from light exposure may act as alternative signals to transmit the signalling responses 

to light (Yoshida and Hasunuma 2004; Belozerskaya et al. 2012). In order to overcome the 

oxidative stress which light induces, Neurospora crassa upregulates the production of 

antioxidants and protective photopigments in response to light exposure (Wu et al. 2014). 

Light exposure also increased the resistance of A. fumigatus conidia to UV and ROS, 

demonstrating the ability to respond in a protective manner to potentially harmful stimuli 

(Fuller et al. 2013; Röhrig, Kastner, and Fischer 2013). Alternate mechanisms such as 

proton pumps are also activated by light; the light activated proton pump, CarO, is 

involved in the formation of Fusarium fujikuroi hyphae, with hyphal growth rates 

decreased under light conditions (Brunk et al. 2015; Garcia-Martinez et al. 2015).  

The connection between light and germination has been exploited in both medicine and 

agriculture (Lucas, Kendrick, and Givan 1975; Schmidt-Heydt et al. 2011; Baltazar et al. 2015; 

Trzaska et al. 2017). Pulsed light containing UV spectra decreases the ability of spores to 

germinate on food sources such as wheat grain, providing a useful food spoilage preventative 

measure (Aron Maftei et al. 2014).  

Gases 

Atmospheric gases are most commonly used within food packaging to inhibit fungal 

germination, to prevent food spoilage. Through [O2] reduction, or [CO2] increases (15-20%), 

spoilage by species such as Rhizopus stolonifer is successfully controlled (Barkai-Golan 2001). 
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Although higher CO2 concentrations often result in germination inhibition, germination is 

supported in Fusarium roseum at up to 32% CO2 (Wells and Uota 1970), and Rhizopus 

oligosporus germination is supported by CO2 when O2 becomes limited (de Reu et al. 1995). 

 

The signalling molecules known as quorum sensing molecules are capable 

of regulating growth in both plant and human pathogenic fungi. One of the best-studied 

examples is the quorum sensing molecule farnesol, a secondary metabolite produced 

by Candida species when in stationary phase, capable of modulating the innate 

immune response (Leonhardt et al. 2015) and inhibiting Candida albicans hyphal 

growth at high concentrations (Piispanen et al. 2011). Farnesol is capable of regulating the 

growth phase of Candida albicans populations, as well as biofilm formation (Ramage et al. 

2002). Even at low cell densities, a condition which usually induces hyphal growth in 

Candida albicans, it will not form hyphae if the quorum sensing molecule farnesol is 

present (Kruppa et al. 2004). Furthermore, farnesol, produced in higher quantities 

by Candida albicans grown between 37 and 40 °C, is known to inhibit the 

production of hyphae by disrupting the degradation of the hyphal growth repressor 

Nrg1. Nrg1 must be both down regulated via the cAMP-PKA pathway, as well as 

degraded for Candida albicans to produce hyphae, a complex regulation which controls 

the morphogenesis of Candida albicans and the resulting pathogenicity (Lu et al. 2014). 

Farnesol has also been shown to inhibit the germination of the common plant 

pathogen Fusarium graminearum, with higher concentrations of purified farnesol inducing 

apoptosis (Semighini, Murray, and Harris 2008). Similarly, the presence of farnesol was 
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shown to impair growth of Aspergillus nidulans and induce apoptosis like characteristics in 

the hyphal form of Aspergillus niger (Semighini et al. 2006).  

Whilst bacteria have been shown to modulate germination through nutrient competition 

(Kousser et al. 2019), the presence of the bacterial and fungal cell wall component GlcNac is 

also capable of inducing the switch to filamentous growth in Blastomyces dermatidis, 

Histoplasma capsulatum and Candida albicans. This response in Histoplasma capsulatum 

is thought to be mediated by the GlcNac transporters NGT1/2, required for the 

filamentous response (Gilmore et al. 2013), whilst the DNA-binding containing RON1 is 

involved in regulating this switch in C. albicans (Naseem et al. 2017).  

Hormones produced by both plants and fungi are also capable of regulating the 

germination of select fungal species. Gibberellic acids have been shown to stimulate the 

germination of the plant pathogen N. crassa, whilst auxins show a dose dependent 

modulation of germination. At low concentrations, auxins promote germination of the 

plant pathogen Fusarium delphinoides, whilst at high concentrations it is inhibitory towards 

germination (Kulkarni et al. 2013; Tomita, Murayama, and Nakamura 1984). The antagonist 

to gibberellic acids, abscisic acid, has been shown to promote germination of the rice 

blast fungus M. oryzae (Spence et al. 2015). Jasmonic acid was shown to decrease 

germination of Fusarium oxysporum spores, whilst the germination of corn pathogen 

Harpophora maydis can be subdued by the presence of sialic acid (Krol et al. 2015; Degani, 

Drori, and Goldblat 2015). The gaseous hydrocarbon and plant hormone, ethylene, is 

released by plants and known to initiate the ripening of fruits. Ethylene is also capable of 

triggering germination of the plant pathogen Colletotrichum musae, so that germination 

occurs simultaneously with fruit ripening. Upon germination, the fungus releases 

extracellular cutinase; this enzyme hydrolyses the waxy cutin layer coating the  
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plant, enabling pathogen access to the cuticle of the plant. Other plant pathogens, 

such as Fusarium solani pisi, even store the cutinase enzyme in the spores, enhancing 

access to the plant upon spore contact and germination (Kolattukudy et al. 1995). 

Plant hormones have also been shown to modulate the growth of some human fungal 

pathogens. For example, sialic acid is capable of decreasing hyphal growth of Aspergillus 

flavus. However, it is striking that plant hormones have mainly been seen to regulate the 

germination of classical plant pathogens which rarely cause human infections. This suggests 

fungal plant pathogens may have evolved or diverged to produce hormones which are almost 

identical to those mentioned above, allowing fungi to regulate the growth of the plants which 

they rely on for nutrients and leading to a dynamic co-regulation of growth between fungi 

and their hosts.  
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Materials and Methods 

This work has been adapted from the following articles: “Pathways of Pathogenicity: 

Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus 

delemar”(Sephton-Clark et al. 2018) and “Host-pathogen transcriptomics of macrophages, 

Mucorales and their endosymbionts: a polymicrobial pas de trois” (Sephton-clark et al. 

2019). For both I conceived, designed and performed the experiments, collected the data, 

performed the analysis and interpretation, wrote the manuscript, completed revisions, and 

prepared the figures. 
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Microbial Culture 
Fungal Culture 
 Spore Isolation 

Spores were harvested from 10 day old cultures maintained on sabouraud 

dextrose agar plates by washing with 10ml of phosphate buffered saline (PBS) (Sigma-Aldrich). 

Spores in PBS solution were centrifuged for 3 minutes at 3000 rpm and washed with 5ml 

of PBS. The pellet was resuspended  in 3-5ml of PBS and the concentration of spores in the 

suspension calculated by counting with a haemocytometer.  

Spore Growth 

Sabouraud Dextrose Broth 

Spores  harvested  as  above  were grown in Sabouraud (SAB) broth (10 g/liter mycological 

peptone, 20 g/liter dextrose), sourced from Sigma-Aldrich, at a range of temperatures (RT 

to 37°C, protocol dependent), at 100-250 rpm. 

 Sabouraud Dextrose Agar Plate

100-200 spores, harvested as above, were spread evenly onto SAB agar plates.

Plates were incubated lid side up away from light at RT for 2-3 days, before being 

turned (lid side down) and incubated in the same conditions for 7-8 days. 

 Endosymbiont Curing

To  cure  spores  of  their  respective  bacterial  endosymbionts,  spores  were cultured with 

ciprofloxacin, as described in Itabangi et al. 2019 (Itabangi et al. 2019). Briefly, spores were 

passaged  for  a  month  in  60 μg/mL  ciprofloxacin  and  cultured  on   ciprofloxacin   plates 

prior  to  use.  Once cured,  spores  were  sub-cultured  at  least  twice  in ciprofloxacin-free 

media before use. 
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Bacterial Culture 

Bacterial endosymbiont species, isolated by Herbert Itabangi, were grown in lysogeny broth 

(also referred to as Luria-Bertani media) (LB), sourced from Sigma-Aldrich, at 37°C, for 

12 hours, with 250rpm shaking prior to processing for genomic DNA extraction.  
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Germination Phenotyping 

Spore Germination Assay 

Live cell Imaging 

Spores were harvested as above and used at 1x105 Spores/ml in 200μl of Sabouraud dextrose 

Broth. Images of the spores were taken every 10 minutes over the course of 24 hours with 

brightfield microscopy. Images were taken at 20X objective on a Zeiss Axio Observer. Images 

were analysed with ImageJ V1. 

Flow Cytometry 

Spores were harvested as above and used at a concentration of 2x107 Spores/ml in 200μl of 

SAB. Spores were incubated for between 0-6 hours, then fixed in 4% paraformaldehyde (PFA), 

sourced from Sigma-Aldrich and prepared according to manufacturer’s instructions, before 

staining with either calcofluor white (CFW) or Fluorescein isothiocyanate isomer I (FITC). 

Spores stained with 250-1000 μg/ml of CFW were kept at RT, for 20 minutes, prior to washing 

with PBS. Spores stained with 100 μg/ml FITC were kept at RT, for 30 minutes, prior to washing 

with PBS. 

XTT Assay 

The XTT assay was used to measure metabolic activity of spores and germlings 

(Antachopoulos et al. 2006; Moss et al. 2008). To germinating spores, XTT sodium salt and 

menadione were added as described by Antachopoulos et al. After 80 minutes, optical density 

readings at 450nm were taken, these reading correspond to metabolic activity. Readings were 
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also taken at 600nm to determine fungal biomass. Readings were corrected by the 

appropriate controls during analysis. 

Exosome Release 

Spores were harvested as above and grown in SAB broth for 0-6 hours at 25°C. The 

extracellular vesicles were isolated according to manufacturer’s instructions Exo-spin™. 

Extracellular vesicle (EV) size was determined with dynamic light scattering (dls), a method 

which determines the size of particles dispersed in a liquid, based on the detection of laser 

beam scattering.  

47



Genomic DNA Extraction, Sequencing and Analysis 

Genomic DNA Extraction 

Fungal DNA Extraction 

Spores germinated in SAB broth at 37°C, 100-200 rpm shaking, for 12 hours were pelleted at 

3000rpm, and washed in PBS. To washed spores 1ml of Qiagen DNEasy PowerLyzer Microbial 

Kit lysis buffer (Solution SL) was added. The mixture was bead beaten at 6500 rpm for 2 

rounds (30 seconds per round). Samples were immediately placed on ice post beating and 

DNA was extracted from the resulting solution as per Qiagen DNEasy PowerLyzer Microbial 

Kit instructions (column based extraction). Nanodrop measurements were taken to 

determine DNA quality, and agarose gel electrophoresis (1%) indicated DNA integrity. 

Bacterial DNA Extraction 

Bacterial cells grown in LB broth at 37°C, 100-200 rpm shaking, for 12 hours were processed 

according to the of Qiagen DNEasy PowerLyzer Microbial Kit (column based extraction). 

Nanodrop measurements were taken to determine DNA quality, and agarose gel 

electrophoresis indicated DNA integrity. 

Genomic DNA Sequencing 

Fungal Sequencing 

Library preparation and sequencing of genomic DNA was performed by MicrobesNG. Briefly, 

Nextera XT Library Prep Kit was used for library preparation and pooled libraries were 

quantified using the Kapa Biosystems Library Quantification Kit for Illumina. Libraries were 
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sequenced on the Illumina HiSeq using a 250bp paired end protocol. 30X coverage was 

obtained for all fungal species sequenced. 

Bacterial Sequencing 

Library preparation and sequencing of genomic DNA was performed by MicrobesNG. Briefly, 

Nextera XT Library Prep Kit was used for library preparation and pooled libraries were 

quantified using the Kapa  Biosystems Library  Quantification Kit  for Illumina.  Libraries were 

sequenced on the Illumina HiSeq using a 250bp paired end protocol. 5X coverage was 

obtained for all bacterial species sequenced. Species identification was carried out with 

Kraken(Wood and Salzberg 2014). 

Genome Sequence Analysis 

Rhizopus microsporus Genome Assembly 

Raw reads obtained from the MicrobesNG protocol above were quality checked with FastQC 

(Andrews). Reads were assembled with SPAdes (Bankevich et al. 2012), using the R. 

microsporus assembly (Mondo et al. 2017) as a reference (-untrusted contigs). 

Rhizopus microsporus Variant Identification 

Raw reads obtained from the MicrobesNG protocol above were aligned to the R. microsporus 

assembly  (Mondo et al. 2017)  with  bwa  (Li and Durbin 2010). Samtools  (Li et al. 2009) 

and  Picard  (Broadinstitute)   were   used   to   extract   alignment   metrics.  Haplotypecaller 

(McKenna et al. 2010) was used to identify single nucleotide polymorphisms (SNPs) in the 

aligned reads. SNPs identified in the aligned reads were used to replace their alternatives in 
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the reference genome with GATK (FastaAlternateReferenceMaker) (McKenna et al. 2010). 

Subsequent reads generated via RNA-Seq were aligned to this hybrid.   

Comparative Genomics

Fisher's exact test was used to detect enrichment of Pfam terms between Rhizopus 

delemar and Rhizopus microsporus (R. delemar & R. microsporus), terms with a corrected 

(FDR, false discovery rate) P value of < 0.01 were considered significant. Orthologue genes of 

R. delemar and R. microsporus were identified using blast+. R (version 3.3.3) was used to carry

out hypergeometric testing of KEGG and GO terms to determine enrichment. 

Orthologue genes of R. delemar and Aspergillus niger were identified using blast+. 

 

The genome of R. delemar was reannotated by incorporating the RNA-Seq data via 

BRAKER (version 2.1.0) (Hoff et al. 2016), this was fed into the Broad Institute 

annotation pipeline, which removed sequences that overlapped with repetitive elements, 

numbered, and named genes as previously described (Haas et al. 2011). Completeness of 

annotation was analyzed with BUSCO (version 3) (Simão et al. 2015). Duplicated gene pairs 

were identified based on parameters outlined by Ma et al (Ma et al. 2009) with 

Python (version 3.5.5). GO term enrichment of duplicated gene pairs was determined 

in R (version 3.3.3). Pathway Tools (version 21.0) was used to obtain information on 

specific pathways (Karp et al. 2016). 

Comparative Genomics

Rhizopus delemar Genome Annotation Update
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Transcription and Inhibition of Rhizopus delemar Germination 

Germination RNA-Seq 

RNA Isolation 

Total RNA was extracted from R. delemar spores (harvested as above) which germinated in 

SAB broth for 0,1,2,3,4,5,6,12,16 and 24 hours. To extract Total RNA, the washed samples 

were immediately immersed in 1ml of Trizol and lysed via bead beating at 6500 rpm for 2 

rounds, 30 seconds each. Samples were then either immediately frozen at -20°C and stored 

for RNA extraction, or immediately placed on ice for RNA extraction. 

All further work was done on ice to inhibit RNases. After lysis via bead beating, samples were 

moved to clean Eppendorf tubes and 0.2ml of chloroform was added for every 1ml of Trizol 

used in the sample preparation. Samples were incubated for 3 minutes, then spun at 12,000 

G at 4°C for 15 minutes to separate out the aqueous and organic phases.  

The aqueous phase, containing RNA, was placed into a fresh tube and the interphase and 

organic phase containing proteins and DNA were stored at -20°C for any further work. To the 

aqueous phase, an equal volume of 100% EtOH was added, before the samples were loaded 

onto RNeasy RNA extraction columns. The columns were spun at 8000g for 30 seconds at 4°C 

and the flow through discarded as RNA should now be bound to the silica column. 700µl of 

buffer RW1 was added to remove and carbohydrates, lipids or proteins bound to the 

column. It should be noted that at this point, only RNA longer than 200bp will remain 

bound to the membrane, therefore if regulatory, small non-coding RNA etc... is also 

being isolated, this method will not be suitable. The column was spun at 8000g for 30 

seconds at 4°C and the 
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flow through discarded. The washing buffer RPE was then added to the column to remove 

any contaminating salts which may affect results seen with the NanoDrop, or any other 

equipment which relies on measuring absorbance to determine quantity and quality of RNA. 

500µl of the buffer was added to the column, followed by a spin at 8000g for 30 seconds at 

4°C, the flow through discarded. Another 500µl of the buffer was added to the column, 

followed by a spin at 8000g for 2 minutes at 4°C, the flow through discarded. The RNA was 

then eluted in two rounds, each using 30µl of RNase free dH2O to elute RNA by spinning the 

columns at 8000g for 1 minute at 4°C. 3µl aliquots of each sample was then taken for testing 

with the Nano drop, whilst the remainder of the sample was immediately frozen and stored 

at -20°C. 

Three biological repeats were performed and the quality of the resulting RNA was 

checked by Agilent to ensure all RIN scores were above 8, indicating that there was 

minimal RNA degradation within the sample and a good ribosomal RNA ratio (Schroeder et 

al. 2006). 1ug of Total RNA was used for library preparation.  

The following Library preparation was performed in accordance with the NEBNext pipeline. 

mRNA was isolated with NEB’s Poly(A) magnetic isolation module. The isolated mRNA 

was then fragmented to around 200bp with Mg2+ ions. From this, ds cDNA was 

produced and underwent PCR amplification and indexing. The quality of the library was 

checked by Agilent BioAnalyzer and the concentration was determined by qPCR prior to 

sequencing.  
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Samples were sequenced using the Illumina HiSeq platform. 15 samples were loaded per lane, 

with 140 million reads expected per lane. 100bp paired end sequencing was employed 

(2X100bp).  

 

FastQC (version 0.11.5)(Andrews) was employed to ensure the quality of all samples, a Phred 

value of over 36 was found for every sample. Hisat2 (version 2.0.5) (Kim, Langmead, and 

Salzberg 2015) was used to align reads to the indexed genome of R. delemar (JGI: 

PRJNA13066) (Ma et al. 2009). HTSeq (version 0.8.0) was used to quantify the output 

(Anders, Pyl, and Huber 2015). Trinity and edgeR (version 3.16.5) were then used to analyze 

differential expression (Grabherr et al. 2009). Pathway Tools (version 21.0) was used to 

obtain information on specific pathways (Karp et al. 2016). Cytoscape (version 3.5.1) was 

used to analyse co-transcriptional networks. 

Germination Inhibition 

Inhibition Assessment of Targets Determined via RNA-Seq 

Images of 1X105 spores/ml in SAB were taken every 10 minutes to determine germination 

characteristics. Images were taken at 20X objective on a Zeiss Axio Observer. Calcofluor white 

(CFW), fluorescein isothiocyanate (FITC) (Sigma-Aldrich), and the ROS stain carboxy-H2DCFDA 

(6-carboxy-2=,7=-dichlorodihydrofluorescein diacetate [C400]; Invitrogen) were incubated 

with live spores, according to the manufacturer’s instructions, prior to imaging. To assess 

inhibition, spores were incubated with either: 1 to 5 mM hydrogen peroxide, 1.5 to 10 nM 

antimycin A (Sigma-Aldrich) or Nikkomycin Z 120ug/ml prior to imaging. Bright-field and 

fluorescent images were then analyzed using ImageJ V1.  

Data Analysis
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Strathclyde Natural Compound Library 

Spores were harvested as above and used at a concentration of 1x105 Spores/ml in 200ul of 

SAB. To measure metabolic activity the XTT assay was used (Antachopoulos et al. 2006; Moss 

et al. 2008). The compound A10 was added to germinating spores at concentrations of 1000, 

100, 75, 50, 25, 10, 1, and 0 ug/ml. To control for effects introduced by the extract solvent 

(DMSO), DMSO was added to samples at an equal volume to the highest volume of A10 

extract used. 3% Acetic Acid was used as a positive control. To measure metabolic activity and 

inhibition the XTT assay was used (Antachopoulos et al. 2006; Moss et al. 2008). Optical 

density readings at 450nm were taken at 80 minutes after the addition of the XTT mix. 

Readings were also taken at 600nm to determine biomass. 
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Rhizopus-macrophage interactions 

Macrophage  

Macrophage Culture 

Macrophages from the J774.A1 cell line were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM), (complemented with 10% foetal bovine serum, 1% penicillin, 1% streptomycin and 

1% L-glutamine), sourced from Sigma-Aldrich. Macrophages were grown at 37°C, in 5% CO2. 

In vitro Phagocytosis assay 

Macrophages were incubated for one hour in serum-free DMEM prior to infection. Spores 

were pre-swollen in SAB (2 hr for R. delemar, 4 hr for R. microsporus). Washed spores were 

incubated at 5:1 MOI with 1 x 105 macrophages as described in Itabangi et al (Itabangi et al. 

2019), to ensure that >95% of macrophages contained one spore or more. After a 1 hour of 

incubation, excess spores were washed off the surface and the macrophages were incubated 

for a further 2 hours, before processing for RNA-Seq experiments. For live cell imaging 

experiments, images were taken starting immediately after the excess spores were removed. 

Phagocytosis Live Cell Imaging 

Time course images were taken to determine how LPS pre-treatment (100ng/ml) (Myers, 

Tsang, and Swanson 2010) of macrophages, and Nikkomycin Z pre-treatment (120ug/ml over 

the course of swelling in SAB) of spores effected phagocytic outcome. Images were taken at 

20x on a Zeiss Axio Observer, with images taken every 5 minutes. Bright-field and fluorescent 

images were then analysed using ImageJ V1. 
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RNA-Seq 

Bulk Rhizopus RNA-Seq 

RNA was extracted from spores which had either been incubated with the macrophages, or 

incubated in DMEM for the equivalent time period. To remove the macrophages, triton at 1% 

was used to lyse the macrophages, the resulting solution was then centrifuged for 3 min at 

3,000 rpm, and washed, leaving only spores. The DMEM control also received the same 

treatment. To extract total RNA, the washed samples were immediately immersed in TRIzol 

and lysed via bead beating at 6,500rpm for 60s. Samples were then either immediately frozen 

at −20°C and stored for RNA extraction or placed on ice for RNA extraction. After lysis, 0.2 ml 

of chloroform was added for every 1 ml of TRIzol used in the sample preparation. Samples 

were incubated for 3 min and then spun at 12,000 g at 4°C for 15 min. To the aqueous phase, 

an equal volume of 100% ethanol (EtOH) was added, before the samples were loaded onto 

RNeasy RNA extraction columns (Qiagen). The manufacturer’s instructions were followed 

from this point onwards. RNA quality was checked by Agilent, with all RNA integrity number 

(RIN) scores above 7 (Schroeder et al. 2006). One microgram of total RNA was used for cDNA 

library preparation. Library preparation was done in accordance with the NEBNext pipeline, 

with library quality checked by Agilent. Samples were sequenced using the IIlumina HiSeq 

platform; 100-bp paired-end sequencing was employed (2 × 100 bp) (>10 million reads per 

sample). 

Single Cell Macrophage RNA-Seq 

For single cell sequencing experiments, macrophages were infected with fungal spores, as 

outlined above. Uninfected macrophages, used as a negative control, were treated in the 
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same manner and underwent mock washes and media changes at identical time points to 

infected macrophages. Macrophages were isolated and released from the bottom of their 

wells with accutase, as per manufacturer’s instructions (Technologies). Once in solution, the 

macrophages were loaded onto the 10X genomics single cell RNA sequencing pipeline for 

single cell isolation and library preparation. In total, 1082 single cells were sequenced. The 

libraries were sequenced on the IIlumina Sequencing Platform. 

RNA-Seq Data Analysis 

For the bulk RNA-Seq data, FastQC (version 0.11.5)(Andrews) was employed to ensure the 

quality of all samples. Hisat2 (version 2.0.5)(Kim, Langmead, and Salzberg 2015) was used to 

align reads to the indexed genome of R. delemar RA 88-880 (PRJNA13066)(Ma et al. 2009) 

and the indexed genome of R. microsporus (Mondo et al. 2017). HTSeq (version 0.8.0)(Anders, 

Pyl, and Huber 2015) was used to quantify the output. Trinity and edgeR (version 3.16.5) were 

then used to analyse differential expression (Grabherr et al. 2009). For the single cell RNA-

Seq data, the 10X genomics analysis pipeline (Loupe Cell Browser V 2.0.0, Cell Ranger Version 

V 2.0.0) was used to align reads to the mus musculus genome (version MM10), and quantify 

the output. For single cell analysis, the samples were then aggregated using this pipeline, to 

allow comparisons between samples. 
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Other 

Rhizopus delemar Protoplast Formation 

R. delemar spores were harvested as above and incubated in 10ml of SAB broth at 37°C until

germ tubes roughly equal in length to the diameter of the spores had formed. The germlings 

were then spun at 3000 RPM for 3 minutes and the supernatant removed. The germlings were 

washed in PBS and resuspended on 10ml of 0.6M KCl, with the addition of 50mg of glucanex. 

The germlings were incubated at 30°C, 100RPM and checked periodically for protoplast 

formation using brightfield microscopy. The bodies that formed were imaged with brightfield 

microscopy. To check for protoplast formation, the resulting bodies were immersed in 

deionised water to check for lysis.  Protoplasts formed were incapable of germinating.

Zebrafish 

Macrophage isolation and RNA Extraction 

Zebrafish husbandry and infections were performed by Aleksandra Jasiulewicz. Zebrafish 

larvae expressing either mCherry macrophages (mCHerry+), GFP neutrophils (GFP+) or 

wildtype (AB) were used in the following work. The Zebrafish Larvae, infected and uninfected, 

were suspended in fixation solution (10ml 4% PFA solution + 5ml 3% Sucrose), on ice for 10 

minutes. 1ml of the fixation solution was used for every 10 larvae. The fixation solution was 

then removed and the larvae were dissociated in 1ml of 0.25% Trypsin (preheated to 37°C) 

per 10 larvae, the mixture was incubated at 37°C for 10 minutes, mixing via pipetting 

periodically. To terminate dissociation, 10% FBS and 1ul of 1M CaCl2 were added per 1ml of 

trypsin to the mixture. The solution was then spun at 800G for 3 minutes to pellet the 

dissociated cells and remove the dissociation media. The cells were resuspended in an 
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appropriate amount of PBS for sorting (1ml per 10 larvae) and kept on ice until sorting. Sorting 

was carried out using a BD FACSaria sorter, cells were sorted based on fluorescent signal when 

compared to the signal obtained from wild-type (AB) zebrafish cells. The sorted cells were 

then kept on ice (for no longer than 2 hours) until RNA extraction. Total RNA was extracted 

following the Recoverall guidelines, modifying the protease digestion step to 3 hours at 50° 

(Hrvatin et al. 2014). 
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Chapter 2: Mucorales Spore Germination 

Characterisation 

This work has been adapted from the book chapter “Spore Germination of Pathogenic 

Filamentous Fungi” (Sephton-Clark and Voelz 2017), for which I performed the literature 

search, wrote the manuscript, completed revisions, and prepared the figures. Selected results 

have been previously published in  and “Pathways of Pathogenicity: Transcriptional Stages of 

Germination in the Fatal Fungal Pathogen Rhizopus delemar” (Sephton-Clark et al. 2018) for 

which I conceived, designed and performed the experiments, collected the data, performed 

the analysis and interpretation, wrote the manuscript, completed revisions, and prepared the 

figures. 

This chapter will introduce the varying germination phenotypes observed across Mucorales 

species. Results obtained through live cell imaging, FACS and extracellular vesicle isolation 

demonstrate that species within the Mucorales order exhibit a range of germination rates 

and physiologies. Phenotypic heterogeneity to this extent has implications for diagnostic 

testing, pathogenicity and phylogenetic assignment. 
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Germination phenotype diversity 

Large variation is seen in spore physiology between fungal species; ungerminated spores may 

range in diameter from 2.8 to 8.85um (Reponen et al. 2001; Li et al. 2011), and present in a 

variety of shapes from spherical to ellipsoidal (Reponen et al. 2001). Some spores require an 

initial swelling/isotropic growth phase prior to hyphal germ tube emergence, the timing of 

which also varies between fungal species. 

Filamentous fungi rely upon germination to transform from spore form to filamentous form. 

Germination may occur at a variety of rates, and optimal germination conditions vary 

between species. Aspergillus species will germinate fully using a sugar cane bagasse 

substrate, by 13 hours. In comparison, Rhizopus microsporus will germinate under the same 

conditions in 11 hours, whilst Myceliophthora thermophila fails to germinate completely 

(Hassouni et al. 2007). For a single species such as Aspergillus niger, environmental 

requirements will also govern germination rate. Within an optimal temperature range (19-

45°C) A. niger will germinate in 12 hours, however at a suboptimal temperature range (50-

60°C), A niger fails to germinate (Hassouni et al. 2007). It is unclear how Mucorales spores 

germinate in relation to one another, and whether this impacts pathogenicity. 

Over the course of germination, the fungal spore wall changes in a dynamic nature. Spore cell 

wall components are produced and organized by several cell wall associated enzymes 

including chitin synthase and deacetylase, b(1,3)-glucan synthase, a(1,3)-glucan synthase 

and Mannosyltransferase for polysaccharide production, with the corresponding transferase 

enzymes responsible for remodelling polysaccharide portions of the cell wall (Karkowska-

61



kuleta and Kozik 2015). These enzymes enable constant reorganisation over the course of 

germination. The production of melanin in Aspergillus fumigatus is known to require the 

ALB1, ARP1/2, ABR1/2, and AYG1 enzymes which make up the dihydroxynaphthalene melanin 

pathway (Tsai et al. 1999; Bernard and Latge 2001; Pihet et al. 2009). These enzymes are also 

important for restructuring and reorganizing the cell wall throughout germination. They also 

play large roles in the production of filaments, as well as the production of new spores 

themselves. The Aspergillus fumigatus genes chsC,G&E, all encoding for chitin synthases, are 

required for proper conidiation, as well as hyphae formation, whilst the functionality of chitin 

synthases also appears to be required for the acquisition of melanin to the cell wall of C. 

neoformans (Mellado et al. 1995, 1996; Aufauvre-Brown et al. 1997; Tsai et al. 1999; Beauvais 

et al. 2001; Anand, Yadav, and Yadav 2016; Tsirilakis et al. 2012). Although the genomes of 

Mucorales species show the presence of predicted cell wall remodelling enzymes, the roles 

which they play throughout germination is unknown. 

The structural changes of germinating Aspergillus fumigatus conidia have been tracked to 

show both compositional and spatial changes over this time, a characteristic which is also 

observed in Mucorales spores (Figure 2,3,4) (Dague et al. 2008). Over the course of 

germination, a loss of hydrophobicity can be seen in Aspergillus, which is due to a 

rearrangement of the hydrophobic rodlet outer layer as the Aspergillus conidia 

swell. After 2 hours of germination, the hydrophobic rods form 

clusters, surrounded by hydrophilic polysaccharides, resulting in a heterogeneous 

Aspergillus coat (Dague et al. 2008). Work done in the plant pathogen Phanerochaete 

chrysosporium shows a similar trend, as the outer rodlet coat is disbanded over the 

course of germination (Dufrêne et al. 1999). The conidial cell wall of the pathogenic 

mold Scedosporium boydii also shows a decrease in hydrophobicity over the course of 
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germination, along with a decreasing electrostatic charge, an increased accessibility of 

polysaccharides and lectins within the cell wall and a remodelling of cell wall proteins. 

Conidial GPI anchored proteins are swapped for hyphae specific GPI anchored proteins over 

germination (Ghamrawi et al. 2015). Taken together, the highly dynamic restructuring of the 

cell wall of spores as they germinate is dependent on many enzymes and components, which 

appear to act cooperatively in order to provide structure and environmental protection. How 

these enzymes behave in Mucorales species throughout germination is unknown.  

This cell wall remodelling may aid the release of extracellular vesicles (EV), which fungal 

species such as Magnaporthe oryzae release over the course of germination (Rybak and 

Robatzek 2019). Extracellular vesicles have been implicated in fungal pathogenesis 

(Panepinto et al. 2009; Yoneda and Doering 2006)(Alspaugh 2015), and have been reported 

to carry RNA, lipids, fungal cell wall components, complex sugars and enzymes (Albuquerque 

et al. 2008; Vallejo et al. 2011; Da Silva et al. 2015; Eisenman et al. 2009; Muxing Liu et al. 

2018b). Recently Liu et al detected the presence of small RNAs in EVs isolated from R. 

delemar (Liu et al. 2018a). sRNAs are thought to play roles in modulating plant-

pathogen interactions (Zhao, Liang, and Zhou 2018) and have the potential to modulate host 

immunity in response to infection, proving a potent potential virulence factor. Whilst fungal 

EVs often appear to carry cargo implicated in pathogenesis, EVs from Candida albicans have 

been shown to offer ‘protection’ in a Galleria mellonella infection model (Vargas et al. 

2015). Despite their role, it remains unclear where EVs originate, and exactly how they 

traverse the fungal cell wall. Whilst Rodrigues et al propose the cytosol as a potential EV 

reservoir,  Wolf  et  al.  provide  evidence  for  EV  formation  via  membrane  budding 

(Rodrigues et al. 2013; Wolf et al. 2014). Recent work has shown that the cell wall 

of  C. albicans,  and  C. neoformans,  is  permeable  to  vesicles  60-80nm  in  size.  The 

viscoelastic properties of the cell wall may therefore allow for EV traversal (Walker et al. 
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The mechanism by which EVs traverse the cell wall remains unclear, however several 

studies have revealed the presence of cell wall degrading enzymes within fungal EVs, 

offering a potential mechanism for this understudied process. The release of extracellular 

vesicles over the course of germination has been poorly studied to date, and remains 

unknown in Rhizopus sp. 

The definition of germination varies widely between studies and fungal species, an 

approach which standardises the definition and measurement of germination would benefit 

the field. For the work presented here, germination is said to have been reached upon the 

formation of a hypha, the length of which is greater than or equal to the diameter of the 

spore body from which it emerges. The following results address gaps in the literature 

regarding comparative germination phenotypes, germination dynamics of the 

Mucorales cell wall and extracellular vesicle release. 
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Results 

The following results focus on germination phenotypes observed in Rhizopus 

delemar, Rhizopus microsporus, Cunninghamella and Lichtheimia (see Chapter1 

Figure1, for phylogenetic reference). These species were chosen due to the high frequency 

at which they are isolated from mucormycosis cases, and access to clinical isolates of 

each species. Germination rates and cell size measurements were determined with live cell 

imaging. In all species, there is a significant difference between resting and swollen spore 

diameters (Figure 1a, p<0.05), whilst hyphal width and length remains similar 

between species (Figure 1b). R. delemar germinates at an increased rate compared to 

all other species (Figure 1c), consistent with reports that indicate R. delemar to be 

a rapidly germinating species, which might account for the frequent isolation of R. 

delemar from mucormycosis cases (Mingfu Liu et al. 2015). 
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Figure 1. Germination phenotypes vary between Mucorales species. a) Diameter of 

resting and swollen spores of: Lichthemia, Cunninghamella, R. microsporus and R. 

delemar. N=3 biological repeats per species. 200 spores measured per repeat. Error bars 

show standard deviation. All resting vs. swollen pairings showed a significant 

difference between spore diameter when a Student’s t- test was applied, 

significance represented by asterisk (****=p<0.05). b) Width and Length of 

hyphae produced by Lichtheimia, Cunninghamella, R. microsporus and R. delemar spores. c) 

Percent germination of Lichtheimia, Cunninghamella, R. microsporus and R. 

delemar spores over time (n=1)  
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The cell wall alters over the course of germination in multiple fungal species (Dague 

et al. 2008; Dufrene et al. 1999). Multiple studies have focused on rodlet dynamics in 

Aspergillus species as a measure for cell wall restructuring, however the genome 

of R. delemar lacks genes with predicted functions in rodlet formation, and SEM 

images of Rhizopus arrhizus confirm a lack of rodlets (Wurster et al. 2017). Like other 

Mucorales species, the genome of R. delemar appears enriched for chitin synthases (Ma et 

al. 2009) and deacetylases (Chibucos et al. 2016), twice as many seen for many dikaryotic 

fungi (Ma et al. 2009). For this reason, cell wall chitin/chitinosan content was chosen as 

an initial measure of cell wall plasticity over germination. Flow cytometry revealed 

dynamic processes which take place within the cell wall over the course of swelling 

(Figure 2). Over the 6-hour course of isotropic swelling and germ tube emergence, 

CFW staining becomes more intense, indicating that more chitin/chitinosan is available to 

the stain. By 6 hours all species show an intense stain for CFW, and both Mucor cbs and 

Mucor nrrl (Figure 2. C,D) show slightly increased staining at 0 hours, indicating 

that Mucor  species display more chitin/chitinosan on the resting spore surface. 

Morphology and Cell Wall Dynamics
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Figure 2  

Flow cytometry data displayed as histograms with % of events (Y axis) vs. fluorescence 

intensity (X axis). Spores swollen for: 0 hours (red), 3 hours (blue) and 6 hours (yellow) in SAB 

broth. Unstained control is represented in grey. a) R. microsporus stained with CFW b)  R. 

delemar stained with CFW c) Mucor cbs stained with CFW d) Mucor nrrl stained with CFW e) 

Cunninghamella stained with CFW f) Lichthemia stained with CFW  

A 

CFW 

B 

CFW 

C 

CFW 

D 

CFW 

E 

CFW 

F 

CFW 

68



To better characterise the distinct phases of germination, R. delemar and R. microsporus were 

chosen for higher resolution phenotyping. Germination is characterized by three distinct 

transitions: dormancy to swelling, swelling to germ tube emergence, and the switch to 

sustained filamentous growth. For both species the switch from dormancy to swelling was 

triggered by exposure to rich media. Swelling, characterized by an isotropic increase in size, 

continued for 4 to 6 h (Figure 3). Once fully swollen, germ tubes emerged from the spore 

bodies. Most R.delemar spore bodies (75.5%, Fig. 1C) produced hyphae that exceeded the 

diameter of the spore body in length by 4-5 hours, whilst R. microsporus requires 6-7 hours 

to reach this point. At this time point, the spores were considered fully germinated. Hyphal 

growth was monitored up to the 24 hours post germination initiation for R. delemar to 

inform subsequent RNA-Seq studies. 
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Figure 3. Germinating spores exhibit three distinct phenotypes a) Images taken from time 

lapse live cell imaging of R. microsporus spores that have germinated for 0-6 hours (left to 

right) b) Images taken from time lapse live cell imaging of R. delemar spores that have 

germinated for 24 hours. 

To determine whether the increase in cell wall staining observed via flow cytometry was due 

to the emergence of hyphal buds/tips with high chitin/chitinosan exposure, R. delemar and 

R. microsporus spores were imaged after staining with CFW and FITC, to determine the

location on cell wall restructuring. CFW stains specifically for chitin and chitinosan whilst FITC 
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specifically binds protein. Both species exhibit an increase in chitin/chitinosan and protein 

content uniformly across the spore body throughout germination (Figure 4. A,B). R. delemar 

appears to display a reduced quantity of chitin/chitinosan and protein in its hyphal 

protrusions (Figure 4a), indicating the process of cell wall restructuring may be especially 

important during the initial stages of germination. 

Figure 4. Cell wall dynamics. A) R. delemar spores germinated for 0, 3, 6, 12, and 24 h, stained 

with calcofluor white (CFW) and fluorescein (FITC). B) R. microsporus spores germinated for 

0, 2, 4 and 6 h, stained with calcofluor white (CFW) and fluorescein (FITC). 
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To determine whether Mucorales species also release extracellular vesicles (EVs) over 

germination, as has been reported in other species (Rodrigues et al. 2008), an EV isolation 

protocol was applied to the supernatant of germinating R. delemar spores. EVs were 

successfully isolated and the size of these particles determined. The concentration of 

EVs isolated increases post germination initiation (Table 1) and after 4 hours, the size of 

the particles released increases significantly, with the average size for 0-2 hours being 

2.74nm and the average size for 4-6 hours being 269nm (Figure 5), however the charge 

remains neutral (Table 2). pH has been shown to influence charges across EV membranes, 

therefore influencing EV ability to fuse with external cells via micropinocytosis (Yáñez-Mó et 

al. 2015). As germinating R. delemar spores are able to germinate in a range of pHs, and may 

influence the pH of their microenvironment as they do so, effective EV cargo delivery may 

be altered depending on germination stage or environment.   

Extracellular Vesicle Release 
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Figure 5. Extracellular vesicles are detected from spores which have germinated for 

4-6 hours. Graph showing extracellular vesicle (EV) size profiles of EVs isolated from

Rhizopus delemar spores germinated for 0-6 hours, data derived via dynamic light 

scattering (dls) analysis. Dls allows the size of particles dispersed in a liquid to be 

derived from the scattering of a laser beam.  
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Condition Average Concentration (particles/spore) 
0 hour 3.78 
1 hour 10.40 
2 hour 7.87 
4 hour 8.96 
6 hour 16.99 

Table 1: showing the concentrations of EVs from spores germinated in SAB, recorded by 
nano sight. 

Condition Average charge (mV) 
0 hour -19.75
0.5 hour -12.83
1 hour -11.43
2 hour -11.48
4 hour -11.49
6 hour -12.06
SAB control (no spores present) -14.82

Table 2: showing the charge of the isolated EVs from spores germinated in SAB, recorded by 

zetasizer. By applying an electric field to particles analyzed by dynamic light scattering, the zeta 

potential (potential difference across phase boundaries, measured in mV) was determined. 

Conclusions

The species studied here display similar spore and hyphae sizes throughout 

germination. Conversely, germination timing is varied between Mucorales species 

(Figure 1c). Despite timing differences, the germination phenotype of swelling, germ 

tube emergence and finally hyphal growth appears conserved across the species 

studied. Trends in cell wall component (chitin/chitinosan and protein) exposure 

varies between species. Closely-related species exhibit similar exposure patterns to one 

another over germination (Figure 2: Mucor cbs and Mucor nrrl), however these patterns 

are distinct from other species. Finally, germinating Rhizopus delemar spores were found 

to release extracellular vesicles after 4-6 hours (Figure 5). Small particle peaks (1-4nm) 

were also detected from spores that germinated for 0.5-2 hours, however given the 

size, these peaks likely represent artifacts or cell wall components. These results and the 

potential for further work will be discussed here.
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Discussion 

The phenotypic variation over germination highlights the broad phylogeny of the Mucorales 

order, which has been better described taxonomically through DNA based reclassification 

(Hoffmann et al. 2013; Gryganskyi et al. 2010; Abe et al. 2007). The species studied here 

display similar resting spore, swollen spore and hyphal sizes (Figure 1a,b), thus making 

diagnosis difficult through single time point imaging alone (Yang et al. 2016). However the 

differential germination dynamics of these species (Figure 1c, 2) might provide a cost 

effective alternative for diagnosis through multiple time point imaging and cell staining. All 

species appear to undergo cell wall remodelling during germination (Figure 2, 4), however 

the extent to which each species remodels is variable. Cell wall remodelling and unmasking 

in response to pH has been linked to pathogenicity in Candida albicans (Sherrington et 

al. 2017), and it may be possible that the variation in remodelling of these species is 

linked to variation in pathogenicity. The known Mucorales pathogenicity factor CotH 

resides within the cell wall of pathogenic Mucorales species, and unmasking of 

this factor over germination may result in increased pathogenicity. This would support the 

observation that swollen Mucorales spores are more pathogenic than ungerminated 

ones (Chibucos et al. 2016). Mucorales cell wall remodelling may occur in response to pH 

changes, as we see for the pH dependent recruitment of aquaporins over germination 

(Turgeman et al. 2016). The EV data shown here adds to the sparse literature on fungal EV 

release over germination. It is likely that these EVs contain sRNAs (Liu et al. 2018b), 

however they may include other components such as enzymes or pathogenicity 

factors which might aid environment dependent colonisation. Both seedlings and 

neutrophils have been shown to release EVs capable of interacting with their respective 

fungal pathogens (Sclerotinia sclerotiorum and Aspergillus fumigatus) to inhibit growth 

(Regente et al. 2017; Shopova et al. 2019). 
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It is possible that Rhizopus delemar might release EVs in a similar manner to ensure spore 

survival and propagation, despite environmental responses to the spores.

Further Work

This field would benefit from further work focusing on the impact of environment 

on germination. Most fungal germination studies use rich media, however this does not 

reflect the ‘real world’ environments which many fungi have evolved to inhabit. 

Studies which address germination phenotypes in a range of ‘realistic’ media (soil, 

blood, guano etc.) would greatly increase our understanding of how these pathogens 

interact with their surroundings, and advance our understanding of their pathogenesis. 

This work would also benefit from an in-depth analysis of the precise alterations which 

occur in the Mucorales cell wall over germination, and any molecules they may secrete (eg 

EVs). High resolution mass spectrometry and scanning electron microscopy would allow 

these areas to be explored further.

76



Chapter 3: Hallmarks of the Mucorales genome 

Results have been previously published or adapted from the following articles: “Pathways of 

Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus 

delemar”(Sephton-Clark et al. 2018) and “Host-pathogen transcriptomics of macrophages, 

Mucorales and their endosymbionts: a polymicrobial pas de trois” (Sephton-Clark et al. 

2019). For both I conceived, designed and performed the experiments, collected the data, 

performed the analysis and interpretation, wrote the manuscript, completed revisions, and 

prepared the figures. 

This chapter will introduce characteristics of the Mucoralean genome. Results describing 

genome assembly, annotation and comparisons of two Mucorales species, Rhizopus delemar 

and Rhizopus microsporus, show the conservation of a core set of fungal features, but 

divergence between the two genomes in enrichment of substrate binding, transporter 

activity, endosome activity and DNA repair.  
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Mucoralean Genomics 

Previously Rhizopus oryzae was reclassified into two species based on the ability to produce 

either fumaric-malic acid or lactic acid. Strains capable of producing fumaric-malic 

acid were reclassified as the species Rhizopus delemar. This reclassification led to two 

distinct clusters, when ribosomal DNA from both Rhizopus oryzae and the newly proposed 

Rhizopus delemar was used to determine a phylogenetic relationship between the two (Abe 

et al. 2007). This work is supported by findings from Chibucos et al (Chibucos et al. 2016), 

who identify two distinct clusters (Figure 1) within Rhizopus species, based on whole 

genome sequences.  

Figure 1. Figure and legend from “An integrated genomic and transcriptomic survey of 

mucormycosis-causing fungi”, Chibucos et al. 2016 (Chibucos et al. 2016). a) SNP-based 

whole-genome maximum-likelihood phylogeny of all 13 R. delemar and R. oryzae strains. All 

nodes have a bootstrap value of ≥97 out of 100. b) Population structure inferred using the 

program Admixture. Values represent fraction of population ancestry denoted by colours: 

green (R. delemar) and blue (R. oryzae). 
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Prior to reclassification, the genome of Rhizopus oryzae 99-880 (now Rhizopus delemar 99-

880) was sequenced and assembled from whole genome shotgun library sequencing data by

Ma et al. (Ma et al. 2009). Although transcriptomic data was not available for assembly and 

annotation, the resulting assembly identified the 45.26Mb genome to be repetitive (20% 

transposable elements), and consisting of 13,895 protein coding genes. A whole genome 

duplication event, followed by subsequent gene duplication events, indicated by the 

segments of duplicate gene pairs scattered throughout the genome, resulted in multiple gene 

family expansions. These gene families have roles in ergosterol biosynthesis, cell growth, 

signal transduction, protease secretion and subtilase secretion (Ma et al. 2009). Notably, 

analysis revealed a lack of the common siderophore producing non-ribosomal peptide 

synthases, highlighting R. delemar’s reliance on Rhizoferrin for iron scavenging. This is 

especially relevant in the context of this species’ requirement for iron in order to germinate, 

and its implications in pathogenesis (Ibrahim et al. 2007; Andrianaki et al. 2018; Kousser et 

al. 2019).  

The chitin deactelyase family is also expanded in R. delemar, compared to non-early divergent 

fungi, as it is for other mucoralean species. There appear to be 2,658 core clusters present in 

the 19 Mucorales species included in the analysis carried out by Chibucos et al. We see that 

there is a range of genome sizes in this study, with the smallest genome consisting of 22.3Mb, 

whilst the largest is 96.7Mb. Highly pathogenic Mucorales species from this study were found 

to contain a unique set of 174 genes, conserved in Rhizopus species but lacking in non-

Rhizopus species and thus labelled as putative virulence genes. Amongst the virulence genes 

conserved across the Mucoralean family, CotH, which codes for a surface protein uniquely 

expressed by Mucoralean species, is present in varying copy numbers between Mucorales 
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species. The genomes of Rhizopus delemar, Rhizopus oryzae and Rhizopus microsporus and 

Lichtheimia corymbifera all contain over 6 CotH genes, whilst other Mucorales species contain 

fewer than 6. The number of CotH genes present has been linked directly to pathogenicity, 

however species containing fewer than 6 copies, such as Mucor circinelloides, may still cause 

mucormycosis (Chibucos et al. 2016). It is clear that CotH plays an important role in 

virulence, however it does not account for all interactions between Mucorales species and 

host.  

Aside from CotH, few key pathogenicity genes/characteristics have been identified within all 

Mucorales species. Around 54% of clinical Mucorales isolates are were found to harbour 

bacterial endosymbionts from the Burkholderia family in a study carried out by Ibrahim et 

al. (Ibrahim et al. 2008), and though previous work demonstrated that the presence of 

these endosymbionts did not impact infection of endothelial cells (Ibrahim et al. 2008), 

recent work by Itabangi et al (Itabangi et al. 2019) has shown that the bacterial 

endosymbiont within Rhizopus microsporus impacts the fungus’ interaction and 

regulation of the host immune system. A bacterial endosymbiont also impacts sexual 

reproduction in R. microsporus (Mondo et al. 2017), demonstrating the unique relationship 

crucial to development and pathogenicity between Rhizopus microsporus and its bacterial 

endosymbiont.  

Although several genome sequences exist for Rhizopus microsporus (Horn et al. 2015; 

Mondo et al. 2017) a comprehensive analysis of the genome is not available. It is 

unknown whether Rhizopus microsporus underwent a whole genome duplication, similarly 

to Rhizopus delemar. The following results will provide a thorough analysis of both the 

Rhizopus microsporus and Rhizopus delemar genome, and include results based on 

comparative genomics analysis carried out to compare the two species.  
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Genome Statistics 

Size (Mb) GC% Protein rRNA tRNA Gene 
Rhizopus 
delemar 

45.32 35.6 17,459 5 239 17,703 

Rhizopus 
microsporus 

25.53 37.7 10,891 Not 
predicted 

70 10,959 

Results 

We utilized our RNA-Seq data to revise the current annotation of the available R. 

delemar genome (revised GFF file available at: https://github.com/psephtonclark/

RhizDeleAnno), using BRAKER 2.1.0 (Hoff et al. 2016) to improve gene structures and 

incorporate these into an updated annotation. Compared to the previous annotation (Ma et 

al. 2009), this updated set included 475 new predicted genes, 370 new protein family 

domains (Pfam terms), 103 new pathway predictions (KEGG-EC), and 96 new 

transmembrane domains (TMHMM terms) (Figure 2). The updated annotation was assessed 

for completeness with BUSCO v3 (Simão et al. 2015) and was shown to include a good 

representation of expected core eukaryotic genes, with minimal missing BUSCOs 

(benchmarked universal single-copy orthologues) (2%) 

Resulting Characteristics of the Reannotated R. delemar Genome
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Figure 2. Table displaying genome annotation statistics, comparing the original R. delemar 

annotation (column 1, ‘Vesper Annotation’) and the annotation updated with our RNA-Seq 

data (column 2, ‘‘Vesper Annotation with RNA Seq data incorporated’’). 

Biochemical Pathways Present in R. delemar 

A custom genome database for R. delemar was created with PathoLogic to allow for 

PathwayTools analysis of the reannotated R. delemar genome (Database available at 

https://github.com/psephtonclark/rhior3cyc). From this, metabolic, signalling and 

transporter pathways can be visualised with the PathwayTools GUI (Figure 3). This annotation 

classified genes with predicted or known functions into the following categories: Enzymatic 

reactions (2061), Transport reactions (13), Activation/inactivation pathways (4), Biosynthesis 

pathways (166), Degradation pathway (93), Detoxification pathway (8), Precursor Metabolism 

(20), Macromolecule Modification pathway (4), Metabolic cluster (6), Superpathways (31). 

This annotation also identified 4377 enzymes, 93 transporters and 1517 compounds. These 

-
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pathways and molecules have been visualized in Figure 3. All pathway predictions are based 

on genomic information. Annotations of model fungal species inform these predictions, 

therefore the predictions will be more accurate, the more closely related the species are. 

Key metabolic pathways identified include:  

• Carbohydrate Biosynthesis and degradation(sugar, polysaccharide, oligosaccharide)

• Amino Acid Biosynthesis and degradation (polyamine, proteinogenic, modification, b alanine

biosynthesis, L-citrulline biosynthesis, L-Ornithine)

• Fermentation and alcohol degradation

• Respiration

• Glycolysis

• TCA Cycle

• Lipoate biosynthesis

• NAD/NADP metabolism

• Polyprenol biosynthesis

• Porphyrin compound biosynthesis

• Tetrahydrobiopterin biosynthesis

• Tetrapyrrole biosynthesis

• Vitamin biosynthesis

• Secondary Metabolite biosynthesis and degradation (Phenylpropanoid, Sugar derivative, Terpenoid)

• Lipid biosynthesis and degradation (choline, FA, phospholipid, sphingolipid, sterol)

• Aminoacyl-tRNA charging

• Nucleoside/tide biosynthesis and degradation

• Aldehyde degradation
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Figure 3. Pathway visualization based on the R. delemar genome. The PathoLogic database required to generate this can be found in the 

online appendix (https://github.com/psephtonclark/rhior3cyc). This annotation was developed via the following 

method: predicted gene functions were incorporated into the PathoLogic annotation. Pathways were predicted as described by Karp et al 

(Karp et al. 2002), and can be visualized with the PathwayTools GUI. For each prediction there is information available detailing 

compound structure, enzymatic reactions and other metabolic functions. Metabolomic and transcriptomic data can be overlaid onto the 

annotation, thus pathways up/down regulated (condition dependent) will be highlighted in various colors (this example shows pink, green, 

orange and red representing pathways down regulated in hyphal, swelling, germination initiation - 1hr, and resting spores - 0hr, respectively). 
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 Previous work determined R. delemar is likely to have undergone a whole genome 

duplication, followed by multiple individual gene duplication events (Ma et al. 2009). 

The preservation of duplicated genes suggests a specific function for each gene in the pair 

may have developed. Enriched functions of duplicated gene pairs which occur 

throughout the genome were determined by testing for significant enrichment of pair 

GO terms. The genome appears enriched for gene pairs with predicted functions in 

succinate metabolism, pigment metabolism, cell cycle, amine metabolism, glycosylation, 

carbohydrate metabolism, cofactor metabolism, sulphur metabolism, coenzyme 

metabolism, RNA polyadenylation, asparagine metabolism, mitochondrial transport and 

cellular component biogenesis (Figure 4). 

Figure 4. Plot representation of GO terms of duplicated gene pairs enriched in the R. 

delemar genome. The X and Y axis represent semantic space based on ReviGO. The size 

of the dots correspond the enrichment significance (P Value, Hypergeometric Enrichment).
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R. microsporus Genome Assembly and Statistics

A genome assembly of R. microsporus was produced with SPAdes, using short read data as 

input. For this, Mondo et al’s assembly was taken as a reference (Mondo et al., 2017), 

producing an assembly with 4778 contigs. With a GC content of 37.7% (Figure 5), our assembly 

appeared identical to that produced by Mondo et al. The low resolution of the assembly 

produced (4778 contigs) is likely due to the lack of long read information and likelihood of a 

highly repetitive genome, which increases the difficulty of contig joining when relying on short 

read data alone. As Mondo et al’s assembly achieved a higher resolution (131 scaffolds) by 

making use of long read data, I used this assembly, but replaced nucleotides identified as 

SNPs (Figure 6) in our R. microsporus strain, to produce a reference genome specific to the 

R. microsporus strain used throughout the project (University of Birmingham R. microsporus

strain). Briefly, I did this by aligning the raw reads obtained through short read sequencing to 

the assembly produced by Mondo et al. I then called variants present when comparing the 

sequence of the assembly to the aligned reads. I then inserted the variant nucleotides from 

our strain into the assembly, in place of the previous nucleotides. In total, 6132 SNPs were 

identified and replaced (Figure 6).  
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Scaffolds 

# contigs 4778 

# contigs (>= 1000bp) 1096 

# contigs (>= 5000bp) 577 

# contigs (>= 10000bp) 491 

# contigs (>= 25000bp) 313 

# contigs (>= 50000bp) 172 

# Total length (>= 0bp) 30030542 

# Total length (>= 1000bp) 25509162 

# Total length (>= 5000bp) 24582835 

# Total length (>= 10000bp) 23970496 

# Total length (>= 25000bp) 20979206 

# Total length (>= 50000bp) 15886454 

Largest contig 235405 

Total length 27890444 

Reference Length 25972395 

GC% 37.77 

N50 61180 

NG50 66773 

N75 25555 

NG75 31831 

L50 138 

LG50 123 

L75 311 

LG75 261 

# N's per 100 kbp 1.33 

Figure 5. Genome statistics and visual representation for the genome assembly of 

R. microsporus, produced with SPAdes, based on short reads only. All contigs are displayed

and demonstrate the poor quality of the assembly. A small section of the assembly has been 

magnified to display the large number of short contigs incorporated into this fractured 

genome assembly.
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Figure 6. Single nucleotide polymorphisms and indels identified when comparing Mondo et al’s assembly to 

aligned reads representing the UoBirmingham R. microsporus strain. The IGV graph (top) demonstrates that  

Variants (blue columns corresponding to genome location of variants) were identified across the entire genome. 

To generate this, the UoB R. microsporus VCF file (variant call data) was aligned against the Mondo et al R. 

microsporus genome. Variants highlighted in blue. 

Comparative Genomics 

R. delemar genes with homology to genes in R. microsporus were identified via blast+. A

comprehensive list of these genes can be found in the online appendix 

(https://github.com/psephtonclark/RhizoOrthologues). 8,356 genes were identified with a 

bit score > 90 (E Value < 1 x 10-20) and a percentage identity match of over 60% (Pearson, 

2013). 2,121 highly conserved genes were found (identity % > 80%), and those with an identity 

percentage of over 90% (234 genes) had roles in ribosome structure, translation, protein 

metabolism, phosphorus metabolism, organelle structure, transcription, respiration, ATP 

metabolism, sugar metabolism, catalytic activity, ion transport and binding. 

Fisher's exact test identified enriched Pfam terms when the genome contents of R. 

delemar and R. microsporus are compared. Compared to R. microsporus, the genome of R. 

delemar is 
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enriched for genes with protein domains (PFAM) associated with ion binding, carbohydrate 

derivative binding, nucleic acid binding, cytoskeletal protein binding, poly(A) binding, NAD+ 

ADP-ribosyltransferase activity, protein kinase C activity, translation initiation factor binding 

and inorganic phosphate transmembrane transporter activity (Figure 7). R. microsporus is 

enriched for genes with protein domains corresponding to nucleoside phosphate binding, 

early endosome activity and DNA repair complex activity (Figure 7). 

Figure 7. Pfam terms enriched (FDR corrected P Value < 0.01) in R. delemar vs 

R. microsporus genomes, with colour representing Log10 Count. A list of the top 50 most 

significant Pfam terms can be found in the appendix (ComPfam.pdf). 
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Comparison with Aspergillus genomes 

R. delemar genes with homology to genes in Aspergillus niger were identified via blast+.

A comprehensive list of these genes can be found in the 

online appendix (https://github.com/psephtonclark/Orthologues). 13,613 genes were 

identified with a bit score > 80 (E Value < 1 x 10-20), of these 2,494 genes had a percentage 

identity match of over 50% (Pearson, 2013). Highly conserved genes (155 with 

identity % > 80%) had roles in ribosomal processes, translation, transcription, protein 

metabolism, enzyme activity (kinase, transferase, hydrolase), ion transport and amine 

processing. 

Conclusion and Discussion

Through incorporation of RNA-Seq data and short read data, an improved R. delemar genome 

and updated R. microsporus genome (specific to the UoB R. microsporus strain) were 

produced. The extra R. delemar annotation and duplicated genome information will inform 

further RNA-Seq analysis, whilst RNA-Seq analysis of the UoB specific R. microsporus is now 

possible. Pathway analysis of the R. delemar genome revealed predicted pathways, which 

show minimal missing eukaryotic components (Figure 2). As expected, there appears to be 

greater conservation between the R. delemar and R. microsporus genomes, than between the 

R. delemar and A. niger genomes. R. delemar does however appear enriched for many more

functions when compared to R. microsporus, a trait which may be explained by the larger 

genome size and likely whole genome duplication event. Unsurprisingly, the conserved fungal 

gene core shared by R. microsporus, R. delemar and A. niger is highly populated with genes 

predicted (GO) to play roles in protein synthesis, a general process highly conserved across 

filamentous fungi (amongst other kingdoms). Species-specific genes likely offer an advantage 
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to that species, which may be environment dependent. For example, the enrichment of 

endosome activity in the rice seedling blight fungus R. microsporus (Lackner and Hertweck, 

2011) may aid plant pathogenesis, as it does in U. maydis (Bielska et al. 2014). The R. delemar 

genome appears enriched for phosphate transportation, which may support growth in low 

micronutrient conditions. This is consistent with C. albicans reliance upon phosphate transport 

in stress and starvation conditions (Ikeh et al. 2017).

Further work

To better our understanding of the Mucoralean genome, DNA sequencing of ‘ultra-long’ reads, 

via Oxford Nanopore or PacBio technologies, would allow resolution of highly repetitive 

regions, resulting in chromosomal level genome detail. This would inform better gene 

predictions and, combined with a whole genome CRISPR-Cas9 knockout library, allow for high 

quality functional gene annotations. Knockout library analysis may also reveal novel drug 

targets, potentially increasing our ability to treat mucormycosis. 
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Chapter 4: Transcriptional States of Germination 

This work has been adapted from the book chapter “Spore Germination of Pathogenic 

Filamentous Fungi” (Sephton-Clark and Voelz 2017), for which I performed the literature 

search, wrote the manuscript, completed revisions, and prepared the figures. Results have 

been previously published in “Pathways of Pathogenicity: Transcriptional Stages of 

Germination in the Fatal Fungal Pathogen Rhizopus delemar” (Sephton-Clark et al. 2018) for 

which I conceived, designed and performed the experiments, collected the data, performed 

the analysis and interpretation, wrote the manuscript, completed revisions, and prepared the 

figures. 

This chapter will introduce transcriptional regulation of germination in a range of fungal 

species. Results will describe the transcriptional landscape of Rhizopus delemar over 

germination. This fine scale RNA-Seq study sheds light on pathways highly regulated over the 

course of germination, identifying pathways which could be targeted to inhibit germination, 

providing new treatment options for mucormycosis. Dormant spores are shown to be 

transcriptionally unique, containing a subset of transcripts absent in later developmental 

stages. A large shift in the expression profile is prompted by the initiation of germination, 

with genes involved in respiration, chitin, cytoskeleton, and actin regulation appearing 

to be important for this transition. A period of transcriptional consistency can be seen 

throughout isotropic swelling, before the transcriptional landscape shifts again at the 

onset of hyphal growth. In addition, I compare germinating R. delemar spores 

(transcriptionally) to germinating Aspergillus niger spores. The results identify a core set 

of orthologous genes which show similar expression patterns over germination; however 

germinating R. delemar 
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also exhibits a uniquely expressed set of genes. These results provide us with a greater 

understanding of the regulation of germination and highlight processes involved in 

transforming R. delemar from a resting spore state to a hyphal mass.  
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Germination Regulation 

During spore germination, previously dormant spores adapt a metabolically active state that 

is characterized by rapid changes in the transcriptional landscape, metabolism, cell wall 

composition and cell physiology. Together these changes lead to isotropic growth which is 

defined by swelling of the spore and a marked increase in spore size, eventually leading to 

hyphal growth. The transcriptional, biochemical and physiological changes that take place 

over this time course will be addressed species by species in the following section.  

Aspergillus species 

Transcriptional profiling of germinating Aspergillus niger shows the largest differences in gene 

expression between resting conidia and germlings (Novodvorska et al. 2013; van Leeuwen et 

al. 2013). Conidia having germinated for 2 hours (T2), though barely reaching isotropic 

growth, show the greatest change in abundances of transcripts of all major classes, when 

compared to resting conidia. Dormant conidia were enriched in transcripts involved in protein 

synthesis, whilst T2 conidia contained transcripts involved in protein synthesis, energy 

production, cell cycle, transcription and translation. Most strikingly, many transcripts present 

in resting conidia were completely depleted in all other stages studied, demonstrating that 

the largest transcriptional shift appears at the beginning of germination. T4 conidia showed 

little alteration in the transcriptional landscape, compared to T2, however metabolic 

transcripts, such as the NADPH-dependent carbonyl reductase homologue, appear to be the 

most upregulated when compared to T2 (van Leeuwen et al. 2013).  
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It has been suggested that resting Aspergillus spp. conidia contain vast quantities of 

pre-packaged messenger RNA molecules, ready to be translated into proteins 

and cell components essential for growth and metabolism, once dormancy is broken 

(Lamarre et al. 2008; Novodvorska et al. 2016). This could explain the vast decrease in 

transcripts seen between resting and germinated conidia, accounting for the 

rapid conidial germination response. Others have argued that the large quantity of 

transcripts present in resting conidia are instead an artifact of conidiation and are 

degraded upon germination (van Leeuwen et al. 2013).  

Transcripts present in large amounts in dormant conidia, which were swiftly depleted, 

play roles in the degradation of internal trehalose stores, as well as mannitol 

metabolism, signalling and hydrophobin production. This combination of stored 

transcripts are likely useful for both the initiation of germination, as well as conidiation, 

which would support a combination of the models proposed above (van Leeuwen et al. 

2013; Novodvorska et al. 2013, 2016). Transcripts for heat shock proteins and ROS 

protection were also found to be high in dormant conidia and depleted upon 

germination. Eight proteins involved in ROS protection were found to be specifically 

enriched. These include catalase A, thioredoxin reductase, and mitochondrial 

peroxiredoxin (Oh et al. 2010). A triple superoxide dismutase (SOD1,2&3) deletion in 

Aspergillus fumigatus resulted in delayed germination, whilst individual deletions 

resulted growth inhibition at high temperatures and sensitivity to ROS (Morales 

Hernandez et al. 2010; Lambou et al. 2010). This indicates stress response and ROS 

signalling is likely crucial to germination initiation.  

Conidial Transcripts
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A similar study analysing the transcriptional landscape of germinating Aspergillus niger 

elucidated further information on the metabolic changes during the early stages of dormancy 

disruption (Novodvorska et al. 2013). Dormant conidia were shown to possess many 

transcripts involved in carbon starvation, trehalose and mannitol biosynthesis. Trehalose 

mobilisation and utilisation occurs rapidly at the onset of germination in A. nidulans, as does 

mannitol utilisation (Thammahong et al. 2017; Novodvorska et al. 2013), making it likely that 

these transcripts were pre-packaged to aid germination initiation. Transcripts involved in 

glycerol synthesis and the metabolism of conidial sugar solutes were also abundant in the 

dormant conidia and are thought to be important in the immediate onset of germination to 

provide energy, as their presence may allow for the immediate access to sugars required for 

growth.  

The presence of abundant metabolic transcripts and ROS response transcripts within dormant 

conidia supports the argument that conidia come with pre-packaged mRNA ready to mobilise 

carbohydrates and protect from ROS damage at germination onset. However, these 

transcripts may also be required for maintaining dormancy. Internal ROS has been shown to 

act as a germination signalling molecule in Colletotrichum gloeosporioides and therefor ROS 

responders (SOD, catalase etc.) might aid in dormancy maintenance (Li et al. 2018; Nesher 

et al. 2011)(van Leeuwen et al. 2013). Similarly, low concentrations of ATP have been shown 

to inhibit trehalase, thus inhibiting trehalose mobilisation and germination initiation 

(Thevelein, den Hollander, and Shulman 1982), therefore low levels of metabolic activity 

may be required for ATP production to maintain dormancy. For the above transcripts 

to play a role in maintaining Aspergillus sp. dormancy, translation would be 
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required; spores of Saccharomyces cerevisiae have been found to contain transcripts 

which are constantly translated throughout dormancy, and it has been suggested that 

this ongoing expression plays a role in long term spore survival (Brengues, Pintard, and 

Lapeyre 2002). If the purpose of conidial transcripts are to aid germination initiation, the 

mRNA may be capped and packaged to increase stability. Highly stable mRNA has 

been detected in dormant S. cerevisiae spores, these mRNAs were stable for several 

months, but rapidly degraded upon germination onset (Brengues, Pintard, and 

Lapeyre 2002). If transcripts within the conidia are remnants of conidiation, to 

reduce degradation there may be either a lack of degradative enzymes such as 

ribonucleases existing freely within the conidia, or these enzymes are kept 

compartmentalized, as many fungal species compartmentalise enzymes necessary for 

secondary metabolism (Kistler and Broz 2015). 

I suspect that there is more than one explanation for the vast transcriptional shift upon 

germination initiation. Given that ‘resting’ A. niger conidia show metabolic activity 

(Novodvorska et al. 2016), it is likely that selected transcripts are translated during 

dormancy (Brengues, Pintard, and Lapeyre 2002). Selected transcripts might play a role in 

dormancy maintenance as autoinhibitors do, or by controlling ROS and ATP as previously 

discussed. As transcripts are rapidly degraded upon germination and play roles in trehalose 

mobilisation, it is likely that some transcripts are also pre-packaged (polyadenylated and 

capped) ready for germination initiation, as is seen for S. cerevisiae and M. tuberculosis 

(Brengues, Pintard, and Lapeyre 2002; Ignatov et al. 2015). There is less support for 

that argument that the transcripts found in dormant spores are artifacts of 

conidiation, as the longest lived mRNA in transcriptionally inactive S. cerevisiae has a 

half-life of under 100 minutes (Wang et al. 2002). 
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Germination Metabolism 

Follow up work on the metabolic changes in germinating Aspergillus niger showed that 

dormant conidia suspended in water alone exhibited low levels of respiration (Novodvorska 

et al. 2016). This either suggests that a nutrient source is less essential for initiating the 

process of germination, as can be seen in C. neoformans, or that dormant conidia in fact 

maintain a low level of metabolism at all times, as is supported by Brengues et al (Brengues, 

Pintard, and Lapeyre 2002). Transcripts involved in oxidative phosphorylation and therefore 

respiration, were also shown to be present in dormant A. niger conidia (Novodvorska et al. 

2016). Proteomics showed that at early time points, proteins containing the Has domain with 

potential aldehyde-lyase activity, proteins with potential enoyl-[acyl-carrier-protein] 

reductase activity and proteins with translation elongation factor activity were abundant. 

These proteins are suspected to play roles in carbohydrate metabolism, oxidative 

phosphorylation and translation, respectively (Novodvorska et al. 2016).  

Initial germination relies on fermentation to derive energy, probably from internal carbon 

sources such as trehalose. Fermentation rapidly switches to respiration after 25 minutes of 

germination. After 60 minutes of germination, glucose uptake can be detected, suggesting 

conidia may use their internal carbon sources to support the initial stages of germination, 

accounting for the metabolic activity measured in water alone (Novodvorska et al. 2016). An 

array of glucose and hexose transporters (An02g03540, An15g03940, An05g01290, 

An16g08940, An02g01270) were upregulated during the early stages of germination, with the 

low affinity and high affinity transporters An02g03540 (an A. nidulans homologue) and a mstA 

homologue, respectively, appearing most upregulated at the early and later time points 

(Novodvorska et al. 2016). Several G protein coupled receptors were also highly transcribed 
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at the early stages of germination (Novodvorska et al. 2016). As G protein coupled receptors 

are known to play roles in signalling and nutrient sensing (Choi et al. 2015), it is unsurprising 

that several serine and threonine phosphatases, linked with glucose uptake, were also found 

to be upregulated at these time points.  

The presence of sorbic acid prolonged the fermentation phase of germination in A. niger, 

altering the metabolism of several substrates including trehalose and ergosterol 

(Novodvorska et al. 2016). The germination of Aspergillus species is also reliant upon 

RAS/MAPKinase signalling along with cAMP/PKA signalling in response to nutrients. An 

upregulation of amino acid metabolism also appears necessary for germination, as proteins 

within germinating Aspergillus fumigatus show a specific requirement for lysine (Osherov et 

al. 2002; Lamarre et al. 2008).  

Neurospora crassa 

A transcriptional study of germination in the model organism and plant pathogen Neurospora 

crassa showed similar changes during isotropic growth and hyphal emergence to those 

described in Aspergillus spp. (Kasuga et al. 2005). Neurospora crassa will begin to germinate 

upon immersion in water with the correct salts and carbon sources. Vogel’s medium  

is  commonly used to initiate germination in laboratory conditions. This is a medium 

that contains: sucrose, water, Na3 citrate, KH2PO4, NH4NO3, MgSO4, CaCl2, trace elements 

and biotin. Germination results in swelling of the irregular spores, followed by changes in the 

cell wall composition and hyphal formation, with most conidia possessing hyphae 

at around 4 hours (Kasuga et al. 2005). Biochemical analysis has shown that in the time 

immediately after germination induction, internal stores of carbon such as trehalose and 

glutamic acid are 
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released and degraded (Kasuga et al. 2005). Transcriptionally, major differences were seen 

between resting and germinated spores (Kasuga et al. 2005). Conidia-specific genes such as 

the light responsive con-6 and 10, as well as 8, are enriched in resting conidia, but swiftly 

depleted after germination (Kasuga et al. 2005), whilst internal amino acid stores are also 

rapidly degraded following the initiation of germination. After 30 minutes of germination, 

processes such as glucan and chitin synthesis, DNA processing and heat shock protein 

production peaked, whilst after 1-4 hours of germination, germlings were enriched in 

transcripts involved in RNA synthesis, DNA processing, ribosome biogenesis, protein 

biosynthesis, amino acid biosynthesis and enzymes & proteins involved in cellular 

transportation (Kasuga et al. 2005). Interestingly, the peak in amino acid production 

correlates with the restoration of amino acid stores at around 3 hours post germination 

induction. Respiratory transcripts peaked after 8-16 hours of germination (Kasuga et al. 2005), 

correlating with the observation that oxygen consumption commences after 2-4 hours of 

germination (Kasuga et al. 2005; Schmit and Brody 1976). 

Fusarium species 

The conservation of cellular reprogramming during germination is further evidenced by the 

protein content present in germinating conidia of Fusarium oxysporum. At early time points 

(3 hours), germlings were enriched for proteins involved in metabolic processes, redox 

processes, RNA processing, transcription and translation. Later time points (7-11 hours) 

showed an increase in proteins associated with ergosterol biosynthesis (Deng et al. 2015). 

Several conidiation and germination essential proteins and factors are known to exist for the 

plant pathogen Fusarium graminearum. GEA1 (Germinated Ascospores 1) is essential  

for normal conidia production, as well as development of the ascus wall, in which the conidia 
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are contained (Son, Lee, et al. 2013). The gene FgATG15 also appears to be essential for 

normal conidia formation, as mutants produce abnormally shaped conidia. In addition, 

FgATG15 is required for the turnover of stored lipids, a process often essential for 

germination (Nguyen et al. 2011). Similarly to other filamentous fungi, the production 

of conidia in Fusarium graminearum relies upon the presence of an AbaA (Aspergillus) 

orthologue, known to be involved in the regulation of cell cycle pathways, regulating 

these processes through the conserved AbaA-Weta signalling pathway in Aspergillus spp. 

and Fusarium sp. (Son, Kim, et al. 2013). 

In summary, the timings of general mechanisms such as translation, metabolism and DNA 

synthesis correspond well between N. crassa and Aspergillus spp. Interestingly, the timing of 

more specific processes such as heat shock protein production also appears conserved 

between species. It has been suggested that the presence of heat shock proteins at these 

early stages in Neurospora crassa aids the correct folding of newly synthesized proteins 

(Osherov et al. 2002; Kasuga et al. 2005). Similarities between transcriptional changes over 

germination have also been found when comparing data from this study to changes seen in 

germinating D. discoideum and U. maydis (Zahiri, Babu, and Saville 2005). Together with the 

similarities seen in Aspergillus spp., this suggests the broad transcriptional changes seen 

over the course of germination are highly conserved between fungi and other eukaryotes, 

indicating that a 'core germination program' which evolved prior to recent eukaryotic 

species divergence, may exist (Kasuga et al. 2005).  

Mucorales 

It has been shown that the fatty acid composition of Mucor rouxii is altered over 

the course of germination, with quantities of gamma linoleic acid increasing over 
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germination, whilst other fatty acids fluctuate over germination (Khunyoshyeng et al. 2002). 

The content of chitin synthase also increases over the course, predominantly under aerobic 

conditions, thought to provide chitin to the cell wall as the spores swell and the cell wall 

expands (Kamada, Bracker, and Bartnicki-Garcia 1991). It is known that Mucor 

circinelloides relies in part in the Atf1/2 (putative transcription factors) pathway to 

germinate within phagocytes (Pérez-Arques et al. 2019), and aquaporin recruitment is 

required for germination of Rhizopus delemar (Turgeman et al. 2016). Aside from the 

transcriptional profiles described above, the transcriptional landscape of germinating 

fungi has been largely unexplored, and remains understudied for Mucorales species. 
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Results 

In order to address this gap, I performed a transcriptional analysis of Rhizopus delemar spore 

germination. My phenotypic analysis of spore germination (Chapter 2, Figure 3b) established 

the temporal pattern for the development of spores from dormancy to filamentous growth. 

These dramatic morphological changes require vast cellular reprogramming. I performed 

transcriptional analysis of each stage outlined in this process (Chapter 2, Figure 3b). For high-

resolution capture of the transcriptional regulation of spore germination, mRNA was isolated 

and sequenced from resting spores (0 h), swelling spores (1, 2, 3, 4, and 5 h) and during 

filamentous growth (6, 12, 16, and 24 h). Three biological replicates were produced for each 

time point, and mRNA from each sample was sequenced with Illumina HiSeq technology, with 

100-bp paired end reads. Reads were aligned to the R. delemar genome (Ma et al. 2009),

giving an average alignment rate of over 95% per sample, with an average of 68% (12,170 

genes) of all genes expressed over all time points. Genes which were never expressed in this 

time course likely have roles in other processes, such as sexual reproduction, or may be 

expressed under specific conditions, such as nutrient starvation. 

Transcriptional Trends over Germination 

Principal-component analysis (PCA) of TMM (trimmed mean of M-values) normalized read 

counts per gene (Figure 1) showed that the biological replicates grouped closely together, 

with time points grouping into 3 clusters separated by time (principal component 1 [PC1]) and 

stage (PC2), as determined by k-means clustering). 
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Figure 1. Principal-component analysis of 7,942 genes differentially expressed across all time 

points (n=3 for each time point; T = 0, 1, 2, 3, 4, 5, 6, 12, 16, or 24 h post-germination). Each 

time point is colour coded. 

In examining the overall transcriptional profiles of our cells, we observed a set of 482 

transcripts that were only expressed in ungerminated spores (Figure 2,3), representing 3.76% 

of total transcripts expressed in ungerminated spores (Figure 2). As a result, genes expressed 

in resting spores account for 71.5% of all genes in the genome, whereas the highest 

percentage of the genome covered by germinated spores is 68.8% (Figure 2). Resting-spore 

specific transcripts that were co-expressed (across all samples, n=3) have predicted roles in 

lipid storage and localization, as well as transferase activity on phosphorous-containing 

compounds (Figure 3). As these transcripts are absent in germinated spores, they may have 

roles in the maintenance of spore dormancy. 
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Figure 2. Number of genes expressed (10 or more transcripts present) at germination time 

points (t = 0,1,2,3,4,5,6,12,16 and 24 hours). Percentage was determined by dividing the 

number of genes expressed (10 or more transcripts) at each time point by the total number 

of genes within the genome, and multiplying by 100. 
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Figure 3. Resting-spore-specific expression. a) Heat map displaying the absence (blue) or 

presence (red) of 10 or more transcripts for a given gene over time. The average percentage 

of the transcriptome expressed at any given time point is given below. b) Co-expression 

between all T0 samples (n=3), where each node represents a gene only expressed in 

ungerminated spores. Nodes linked (by grey lines) to 10 or more others are highlighted in 

yellow, with their functions shown adjacent. 
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A series of analyses were performed to identify the transcriptional changes occurring during 

spore germination. Principle component analyses highlighted that the fungal transcriptome 

displayed a time-dependent shift across 3 major clusters corresponding to the phenotypic 

developmental stages swelling, germ tube emergence, and hyphal growth, indicating that 

spore germination is underpinned by progressive shifts in transcriptional regulation (Figure 

4,5). The transcriptome of resting spores was distinct from that of all other developmental 

stages, changing dramatically between 0 and 1 h. Thereafter, the transcriptional profiles of 

swelling spores and of those developing germ tubes were distinct but clustered together (2 

to 6 h). Furthermore, fully established filamentous growth was characterized by a specific 

transcriptional signature (12, 16, and 24 h) (Figure 4,5). Consistent with stage-specific 

transcriptional changes, progressive change in differential gene expression was observed 

during examination of the transcriptional profiles of each time point.  

Differential Expression Throughout Germination 

A total of 7,924 genes were differentially expressed across the entire time course (Figure 5a). 

Analysis of differentially expressed genes by k-means clustering identified seven major 

clusters of expression variation over time (Figure 5a,b). Genes in clusters 1 and 3 are 

expressed at low levels in resting spores, with abundance increasing upon germination (1 h) 

(Figure 4b). Both clusters are enriched (hypergeometric test, corrected P value of < 0.05) for 

transcripts with predicted roles in regulation of the cytoskeleton, protein metabolism, the 

electron transport chain, translation, and sugar metabolism (Figure 5c), suggesting these 

processes are important for germination initiation. Clusters 4 and 6 show gene expression 

levels moving from low to high over time, peaking during hyphal growth (Figure 5b). These 

clusters are enriched (hypergeometric test, corrected P value of < 0.05) for transcripts with 
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predicted functions related to kinase, transferase, transposase, and oxidoreductase activities, 

along with pyrimidine and phosphorous metabolism, stress response, transport, and 

signalling (Figure 5c). This is consistent with the established roles for these processes in 

starting and maintaining vegetative growth (van Leeuwen et al. 2013; Balmant, Sugai-guérios, 

and Coradin 2015; Yao et al. 2016). Cluster 5 contains genes that have high expression levels 

in both ungerminated spores and the hyphal form, but low levels during initial swelling (Figure 

5b). Cluster 5 is enriched (hypergeometric test, corrected P value of < 0.05) for transcripts 

with predicted functions in regulation of the cytoskeleton, transferase and hydrolase 

activities, and phosphorous metabolism (Figure 5c). This suggests that these functions may 

be repressed during isotropic growth to maintain swelling. Clusters 7 and 2 contain genes 

with expression levels peaking in ungerminated spores (Figure 5b). These clusters are 

enriched (hypergeometric test, corrected P value of < 0.05) for transcripts with predicted 

functions relating to glycerone kinase, pyrophosphatase, transferase, hydrolase, and 

oxidoreductase activities, as well as cofactor and coenzyme metabolism, pyrimidine, sulfur, 

nitrogen, sugar, and aromatic compound metabolism. These clusters are also enriched for 

reduction-oxidation (redox) processes, respiration, and stress responses (Figure 5c). Notably, 

every cluster is enriched for transcripts involved in ion transport regulation, specifically 

potassium, sodium, and hydrogen ions. This suggests tight regulation of transmembrane 

transport of these particular ions is important for the survival of R. delemar. 
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Figure 4. Heatmap displaying sample correlation. R. delemar samples (T0-T24, n=3) are 

hierarchically clustered based on gene expression patterns (Grabherr, Brian J. Haas, 

Moran Yassour Joshua Z. Levin, Dawn A. Thompson, Ido Amit, Xian Adiconis, Lin Fan, 

Raktima Raychowdhury, Qiandong Zeng, Zehua Chen, Evan Mauceli, Nir Hacohen, Andreas 

Gnirke, Nicholas Rhind, Federica di Palma, Bruce W.,  and Friedman 2013). Colours 

represent sample correlation, red = similar, green = dissimilar.  
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Figure 5 . Clustering of expression over time. a) Heat map displaying differentially expressed 

genes. Expression levels are plotted in log2, space and mean centred (FDR of < 0.001) across 

the entire time course. k-means clustering has partitioned genes into 7 clusters, as indicated 

by coloured bars and numbered graphs below the heat map. b) Graphs displaying cluster 

expression over time (0 to 24 h). c) Table displaying categories enriched (hypergeometric test, 

corrected P value of < 0.05), indicated in red, for clusters 1 to 7. 
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Ungerminated spores have a radically different expression profile from germinated spores 

(6,456 significantly differentially expressed genes; false-discovery rate [FDR] of < 0.001): this 

is reflected by the functions of transcripts enriched in ungerminated spores. By pairwise 

comparisons of differentially expressed genes between time points, the largest 

transcriptional changes were seen during the first hour of germination (3,476 genes 

upregulated and 2,573 genes downregulated [Figure 6a]). The large quantity of apparently 

down regulated transcripts may in fact represent transcripts which have been degraded, or 

immediately utilised upon germination initiation. Following this, there was a period of 

transcriptional consistency over the course of isotropic swelling, where few or no genes 

were found differentially expressed (Figure 6a). A noticeable shift in differential 

expression then bridges the beginning and later stages of hyphal growth (6 to 12 h 

[Figure 6a]). At the beginning of germination, an increase is observed in expression of 

transcripts with predicted roles in stress response, mitochondrial ribonucleases (MRP), 

the prefoldin complexes, organophosphate and sulfur metabolism, and 

transposase, ATPase, nucleoside triphosphatase, and glycerone kinase activities (Figure 

6b). A decrease in expression of genes with predicted functions in the organization of 

the actin cytoskeleton, carbohydrate metabolism, translation initiation factors, 

hexon binding, and phosphodiesterase, arylformamidase, galactosylceramidase, and 

precorrin-2 dehydrogenase activities is also seen (Figure 6b). Notably, some categories are 

both positively and negatively regulated at the beginning of germination: transcripts 

predicted to have roles in ion channel activity and hydrolase and pyrophosphatase 

activities do not always trend together (Figure 6b). It is likely these processes may involve 

several regulatory mechanisms implicated in initializing germination. 

After initiation (1 to 2 h), there is an overall trend of downregulation. The majority of 

transcripts that were upregulated at 1 h are downregulated at 2 h (Figure 6b), suggesting a 
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reorganization of the transcriptome upon germination initiation. Notably, metabolism of 

sulfur, organophosphate, and thiamine diphosphate remains downregulated at both 2 and 3 

h. After the transcriptional stability during isotropic growth and hyphal emergence,

transcripts with predicted roles in stress response, respiration, ATPase and nucleoside 

triphosphatase activities, and redox increase during early hyphal growth (Figure 6b). Between 

6 and 12 h, the proportion of downregulated transcripts decreases, with hydrolase and 

pyrophosphatase activities appearing both up and downregulated. 
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Figure 6. Differential gene expression over time. a) The number of genes significantly differentially expressed (multiple comparisons corrected 

P value of < 0.05, corrected via Benjamini-Hochberg method) between time points, shown over time. Green bars indicate genes with an 

increase in expression (log fold change [FC] of > 2), while red bars indicate genes with a decrease in expression (log FC of < -2). b) Enriched 

categories for the up or downregulated genes over time. Green boxes indicate an overall upregulation of this category, red 

indicates an overall downregulation and red-green hatching indicates mixed regulation of this category. 
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Similar trends are observed when analysis of is carried out to determine the expression 

of genes with predicted functions (Pfam) in carbohydrate metabolism (Figure 7a), inorganic 

ion metabolism (Figure 7b), lipid metabolism (Figure 7c), amino acid metabolism (Figure 7d) 

and signalling (Figure 7e). Resting spore expression appears most similar to post-

germination initiation expression. When carbohydrate metabolism is examined (Figure 

7a) two subsets appear to gradually increase in expression over time, 

demonstrating the sustained requirement for respiration as biomass increases. Resting 

spores appear to express a subset of genes involved in inorganic ion metabolism (Figure 7b), 

which appear lowly expressed post germination-initiation, whilst other subsets are stably 

expressed throughout. Resting spores also express a subset of genes involved in lipid 

metabolism (Figure 7c), whilst other subsets appear highly expressed only after 

germination is initiated. This demonstrates the potential reliance of resting spore on 

stored lipids to initiate and sustain germination. Expression of genes with predicted 

roles in amino acid metabolism appears relatively stable over germination (Figure 

7d), whilst other small subsets appear highly expressed within resting spores (0h), and 

again in filamentous form (12-24h). A slight increase in expression can also be noted at the 

onset of germination (1h), indicating spores rely on protein synthesis to kick-start 

germination and biomass production, as expected. Expression of genes with predicted 

functions in signalling show 3 distinct trends (Figure 7e): One subset appears highly 

expressed in resting spores (0h), a second subset is highly expressed at the onset of 

germination and throughout swelling(1-6h) and a third is highly expressed within 

filamentous forms (12-24h). These subsets correspond with the phenotypic stages 

outlined for germination of these spores, and demonstrate the reliance on unique 

signalling pathways to initiate and maintain these phenotypic stages.  

Metabolic Activity over Germination
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Figure 7. Heatmaps displaying expression of metabolic processes over germination (t = 

0,1,2,3,4,5,6,12,16 and 24 h, n=3). a) Expression of genes with Pfam annotations involved in 

carbohydrate metabolism (expression = plotted in log2, FDR of < 0.001). b) Expression of 

genes with Pfam annotations involved in inorganic ion metabolism (expression = plotted in 

log2, FDR of < 0.001). c) Expression of genes with Pfam annotations involved in lipid 

metabolism (expression = plotted in log2, FDR of < 0.001). d) Expression of genes with Pfam 

annotations involved in amino acid metabolism (expression = plotted in log2, FDR of < 0.001). 

e) Expression of genes with Pfam annotations involved in signalling (expression = plotted in

log2, FDR of < 0.001). 
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Pathways Upregulated at Alternate Germination Phases 

PathwayTools annotation of the R. delemar genome allows analyses of individual pathway 

regulation over the course of germination. There are currently only 4 fungal genomes (S. 

cerevisiae, C. albicans, E. dermatitidis and P. rubens, available at: https://biocyc.org/organism-

summary?object=CALBI) publicly available on biocyc, which have annotated PGDB’s 

(PathoLogic Databases: format compatible with PathwayTools). This annotation is the first 

available (https://github.com/psephtonclark/rhior3cyc) for a Mucorales species. 

Pathways which appear highly regulated during discrete germination phases (Figure 8) will be 

described here. The following pathways were found to be upregulated at resting (0h) and 

during hyphal growth (12-24h): protein glycosylation, chitin biosynthesis, trehalose 

degradation, ribonucleotide biosynthesis, glycolysis and galactose degradation. This is 

consistent with other findings which show chitin biosynthesis to be important for hyphal 

emergence and extension in A. nidulans (Yamazaki et al. 2008), protein turnover to be a 

hallmark of filamentous vegetative growth (Sun et al. 2017; Anderson et al. 2016) and 

respiration to be important for maintaining fungal biomass (Prasad, Kurup, and Maheshwari 

1979). It should be noted that glycolysis also appears down regulated at 0-1 hours, 

indicating complex regulation of this process may be required to maintain dormancy 

and initiate germination. Galactose degradation appears downregulated throughout 

swelling (1-6h), highlighting its importance for initiation and hyphal growth.  

Within resting spores (0h), hypusine and glyoxylate pathways are upregulated and NADP 

mitochondrial/cytosolic conversion appears to increase, whilst spermidine pathways also 

appear upregulated in both resting and initial spores (0-1h). Similarly, cysteine and glutamine 
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pathways are also upregulated at this time. Inositol degradation appears downregulated in 

resting and initial spores (0-1h), indicating inositol may be important at the onset of 

germination, whilst phyate degradation appears upregulated within resting spores (0h), 

indicating a role in dormancy maintenance. Xyoglucan and chitin degradation appear 

downregulated in resting spores (0h), along with peroxisome processes. This is consistent 

with conidial A. niger, which upregulates transcripts involved in amino acid metabolism and 

glyoxylate pathways, and downregulates peroxisome processes (Novodvorska et al. 2013). 

At germination initiation (1h), Fe-S cluster biosynthesis appears downregulated, whilst 

phyate degradation is upregulated. Within swelling spores (3-6h), cysteine and glutamine 

catabolic and metabolic pathways appear upregulated, whilst NADP conversion, Cytochrome C,  

ATPase  and NADPH  oxidoreductase activities appear downregulated. This is consistent 

with A. niger germlings, which show upregulation of metabolic processes including 

amino acid processing (van Leeuwen et al. 2013). Within hyphal forms (12-24h), Fe-S 

cluster biosynthesis, tetrahydrofolate biosynthesis, oxoglutarate and isovalerate 

decarboxylation, Acetyl CoA metabolism, glycolysis, ATPase and peroxisome activity appear 

upregulated, indicating a reliance on aerobic respiration for hyphal growth. This is 

consistent with findings which show aerobic respiration to be important for the 

hyphal growth of many fungal species (Seto and Tazaki 1975; Lew and Levina 2004; 

Solaiman and Saito 1997; Watanabe et al. 2006). 
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Up at Hyphal (12-24) 
Down at Resting and             
Initial (0-1): Fe-S Cluster 
Biosynthesis 

Up at Resting(0) and 
Hyphal (12-24): Protein 
Glycosylation, Chitin 
Biosynthesis and 
Trehalose Degradation 

Up  at Resting and 
Hyphal (0, 12-24) Down 
at Initial  and Mid (1-6): 
Ribonucleotide 
Biosynthesis 

Up  at Resting (0): 
Hypusine Biosynthesis- 
AA only found in EIF5A, 
this interacts with 
Spermidine 

Up  at Resting  and Initial 
(0-1): Spermidine 
Biosynthesis- involved in 
signal transduction and 
stress response 

Up at Hyphal (12-24) 
Down at Resting & 
Initial (0-1): Inisitol Pi 
Biosynthesis and 
Degradation 
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Up at Resting        and Initial 
(0-1), Down at Mid (3-
6): Cysteine and 
Glutamine Pathways 

Up   at Hyphal (12- 
24) and Down at
Resting  &  Initial (0- 1):
Tetrahydorfolate
Biosynthesis

Up   at Resting (0) and 
Down  at Mid (3-6): 
NADP 
Mitochondrial/Cytosolic 
Conversion 

Up at Resting (0): 
Glyoxylate Pathway 

Glycolysis 1 & 2: Up at 
Resting and Hyphal (0, 
12-24), Down at Resting
and Initial (0-1)
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• Down at Mid (3-6): Cytochrome C, ATPase  and NADPH  Oxidoreductase
• Up at Hyphal (12-24): CoA Ligase
• Up at Hyphal (12-24): ATPase
• Up at Resting (0) and Down Mid (3-6): Myrosinase Production
• Down at Resting  (0): Monoxygenase
• Down at  Initial (1)  &  Mid (3-6): Glucoronosyl transferase : UDP generation
• Up at Hyphal (12-24), Down at Mid (3-6): Phosphatidylcholine transferase

Figure 8. Pathways differentially regulated over the course of germination. Differential 

pathway expression was determined by highlighting pathways which included genes 

significantly differentially expressed (multiple comparisons corrected P value of < 0.05) 

between time points. Genes with increased expression (LogFC > 2) and decreased 

expression (LogFC < -2) were selected for this analysis. Up and down regulated pathways 

were highlighted using the custom R. delemar pathologic annotation and PathwayTools. 

Up at Hyphal (12-24): 
Oxoglutarate and 
Isovalerate 
decarboxylation (CoA 
Regeneration) 

Up at Hyphal (12-24): 
Acetyl CoA  Ligase  and 
Synthase 

Down at          Resting (0): 
Xyoglucan and Chitin 
Degradation 

Up  at Hyphal  (12-24), 
Down at Resting and 
Mid (0, 3-6): 
Peroxisome 
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Co-transcriptional Networks 

To determine whether phenotypes expressed a core set of genes, co-transcriptional network 

analysis was performed. In total, resting spores and those germinated for up to two hours 

shared expression of 4,738 transcripts. These transcripts were enriched for processes which 

include cellular and primary metabolism, ribosome biogenesis, ncRNA processes, RNA 

metabolism and protein metabolism (Figure 9). This core set may be key to initiating cellular 

metabolism and protein processing which support the rapid morphological changes which 

occur at germination initiation. Swelling spores (3-6h) co-expressed only 109 transcripts 

(Figure 10), with roles in metabolism, RNA, tRNA and nucleotide processing and protein 

processing. Though much smaller, this core set appears similar in function to the one 

identified within 0-2h resting and swelling spores.  

R. delemar in its hyphal form (12-24h) shares 1677 co-expressed transcripts. These had roles

in metabolism, tRNA, RNA and nucleotide processing, protein processing and macromolecule 

processing (Figure 11). Again, the core set identified here appears highly similar in 

functionality to the core sets for resting and swelling spores. This analysis suggests there is a 

core set of transcripts expressed to maintain function of R. delemar. As all transcripts included 

in this analysis were identified to be significantly differentially expressed across the entire 

course of germination (and therefore not constituently expressed for the entirety of 

germination), it may be possible that alternate genes with similar functions are expressed 

throughout the germination of R. delemar. This mechanism would allow for regulation of 

these processes alternately at different morphological stages.   
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Figure 9. Co-transcriptional network of genes (grey) and network enrichment visualisation 

(yellow) expressed between 0 and 2 hours post germination. Yellow nodes represent 

enriched predicted functions (GO term, P < 0.05), reduced to specific terms with ReviGO, 

listed on the left. 

Figure 10. Co-transcriptional network of genes (grey) and network enrichment visualisation 

(yellow) expressed between 3 and 6 hours post germination. Yellow nodes represent 

enriched predicted functions (GO term, P < 0.05), reduced to specific terms with ReviGO, 

listed on the left. 

109 Nodes 
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Figure 11. Co-transcriptional network of genes (grey) and network enrichment visualisation (yellow) 

expressed between 12 and 24 hours post germination. Yellow nodes represent enriched 

predicted functions (GO term, P < 0.05), reduced to specific terms with ReviGO, listed on the left. 

As the genome of R. delemar is likely to have undergone a whole genome duplication event 

(Ma et al. 2009), duplicate gene pairs were identified (Ma et al. 2009) and the expression 

profiles were analysed to identify pairs which displayed alternate expression profiles over 

the course of germination. As these duplicates have been maintained within the 

genome, it was hypothesised that some duplicates may have diverged in function. 

Evidence of divergence may be visible via alternate expression profiles of the 

duplicates. In total 70 pairs, which were differentially expressed over the course of 

germination to a significant level (FDR < 0.001), were identified to have alternate 

expression profiles (LogFC between each gene within the pair > 2) (Figure 12). Alternate 

expression profiles support the hypothesis that these duplicated genes may have diverged in 

function or process regulation. Of these genes, pairs with the most highly divergent 

expression patterns over the course of germination had the following predicted 

functions: Glycosyltransferase, Nucleoporin, SMR domain, Ribosomal protein S2, 

Protein Kinase, Metallopeptidase, Phosphatidyl inositol 4-phosphate-5-kinase and a 

conserved fungal protein of unknown function (Figure 13). 
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Functions of these potential growth regulators should be explored further, to determine 

whether these processes would be good targets for germination or growth inhibition, in 

order to treat mucormycosis.  

Figure 12. Heatmap displaying expression difference (LogFC) between duplicated gene pairs 

(gene pairs listed on the Y axis, e.g. RO3G_001560_014978 represents pair RO3G_001560 

and RO3G_014978).  
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Best Hit: P. 
blakesleeanus 

glycosyltransferase 
family 2 protein
% Identity: 77%
E Value:  8e-151

Best Hit: R. microsporus 
DUF1771-domain-
containing protein

% Identity: 74%
E Value:  5e-77

Best Hit: R. microsporus  
hypothetical protein (no 

well characterised 
homologues available)

% Identity: 74%
E Value:  9e-162

Best Hit: R. microsporus 
40S ribosomal protein S0

% Identity: 80%
E Value:  7e-165

Best Studied Hit: S. pombe 
40S ribosomal protein S0B 

% Identity: 71%
E Value:   9e-56

Best Hit: R. microsporus  
kinase-like protein

% Identity: 75%
E Value:   4e-114

Best Studied Hit: P. lutzii 
Pb01 serine/threonine-

protein kinase ppk8
% Identity: 67%
E Value:   5e-24

Best Hit: R. microsporus 
SAICAR synthase-like 

protein
% Identity: 80%

E Value:   0
Best Studied Hit: A. flavus 
multicopy suppressor of 

stt4 mutation
% Identity: 66%
E Value:    2e-49

Best Hit: 'Hypothetical 
Protein' conserved 

across fungal species, but 
without any known 

function.

Best Hit: R. microsporus 
proliferation-associated 

protein 1
% Identity: 84%

E Value:   0
Best Studied Hit: 

S.lignohabitans Map2p
(Microtubule Associated
Protein) (DNA Binding)

% Identity: 65%
E Value:   2e-21

Figure 13. Expression profiles of individual gene pairs. The X axis corresponds to time post 

germination initiation (0-24h), whilst the y axis corresponds to expression (LogFC). Best hits 

determined with blastn. 

Potential Roles of Plant and Fungal Hormones as Germination Regulators

Whilst the germination of human fungal pathogens may be triggered by nutritional or 

host factors, plant hormones are also capable of regulating germination of fungal spores. 

Auxins, sialic acid, gibberellic acids, abscisic acid, ethylene and jasmonic acid are all 

known to be capable of regulating the germination of fungal spores (Chanclud and Morel 

2016). For this reason the genome of R. delemar was analysed to find homologues of plant 

and fungal hormone receptors and biosynthesis genes.
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Expression of these homologues over germination will be discussed here. bcABA 

homologues (Izquierdo-Bueno et al. 2018) and genes predicted (GO) to play roles in 

abscisic acid biosynthesis were identified (Figure 14)(Appendix bcABA: gene 

homology trees). Of these, one gene (R03G_015440) shows 

upregulation (LogFC>15, significantly differentially expressed) within resting spores, 

followed by a decrease in expression upon germination initiation. Abscisic acid acts 

on plant seeds and spores as a germination inhibitor (Schopfer et al. 1979; Moody et al. 

2016). Some phytopathogenic fungi have also been shown to produce abscisic acid (Takino 

et al. 2019; Izquierdo-Bueno et al. 2018), however it should be noted that R. delemar has 

not been shown to produce abscisic acid. If R. delemar is capable of producing ABA, this 

molecule may work in a similar way to maintain dormancy in resting spores 

through germination inhibition. However, until R. delemar has been shown to produce 

ABA, these results should be taken with caution, as fungal homologues displayed 

lower query covers, and other required ABA biosynthesis machinery was found to be 

lacking. Future work focusing on improving predictions of hormone biosynthesis 

pathways within the R. delemar genome would greatly benefit the field. 

Figure 14. Expression (LogFC) of bcABA1, 2 and 4 homologues over germination. 
RO3G_008564: GO prediction: abscisic acid homeostasis. No plant homologues detected through blastp. 
RO3G_016095: GO prediction: abscisic acid homeostasis. No plant homologues detected through blastp. 
RO3G_015440: blastp aligned to bcABA2 Botrytis cinerea with: E value: 0.009, % Identity: 92%. No plant homologues detected.
RO3G_011172: blastp aligned to bcABA2 Botrytis cinerea with: E value: 0.039, % Identity: 82%. No plant homologues detected.
RO3G_016699: blastp aligned to bcABA1 Botrytis cinerea with: E value: 0.029, % Identity: 85%. No plant homologues detected.
RO3G_006513: blastp aligned to bcABA4 Botrytis cinerea with: E value: 0.017, % Identity: 84%. No plant homologues detected.
RO3G_005203: GO prediction: abscisic acid metabolic process. No plant homologues detected through blastp
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DELLA proteins are responsible for germination inhibition in plants (Dill et al. 2001). When 

gibberellins are released, they interact with the DELLA proteins to induce 

conformational changes which decreases the repressive effect of the DELLA proteins, and 

the inhibition is removed. Two DELLA homologues were identified in R. delemar (via 

Vesper custom HMMER annotation)(Figure 15)(Appendix DELLA: gene homology 

trees); of these, R03G_010461 appears dynamically expressed over germination. This 

homologue appears highly expressed both within resting spores and those growing in a 

hyphal state. It may be possible that these homologues interact in a similar fashion, 

maintaining dormancy within resting spores and suppressing early germination cues in R. 

delemar which has entered its vegetative growth phase. These predicted functions were 

identified through the automated Vesper annotation pipeline (materials and 

methods), however a reciprocal BLAST against the plant database does not identify DELLA 

homology, highlighting annotation limitations. These results should therefore be taken with 

caution until experimental proof of R. delemar DELLA-like activity can be provided. 

Figure 15. Expression (LogFC) of DELLA homologues over germination. 
RO3G_010461 sequence homology to DELLA-like sequence identified through custom 
annotation, species unknown: E Value: 0.027, % Identity: 53%
RO3G_003034 sequence homology to DELLA-like sequence identified through custom 
annotation, species unknown: E Value: 0.07, % Identity: 46%
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Figure 16. Expression (LogFC) of GLP homologues over germination. (Appendix GLP: gene homology trees)

RO3G_016021 sequence homology to GLP1-like sequence identified through sequence identified through custom 
annotation, species unknown: E Value: 6e-04, % Identity: 29%. RO3G_013521: sequence homology to GLP4-like sequence 
identified through sequence identified through custom annotation, species unknown: E Value: 0.014, % Identity: 28%.   
RO3G_000756: sequence homology to GLP1-like sequence identified through sequence identified through custom 
annotation, species unknown: E Value: 2e-10, % Identity: 71%. RO3G_017339: sequence homology to GLP2-like sequence 
identified through sequence identified through custom annotation, species unknown: E Value: 0.01, % Identity: 32%.   
RO3G_000511: sequence homology to GLP4-like sequence identified through sequence identified through custom 
annotation, species unknown: E Value: 3e-12, % Identity: 32%. RO3G_003101: sequence homology to GLP1-like sequence 
identified through sequence identified through custom annotation, species unknown: E Value: 1e-05, % Identity: 30%   
These predicted functions were identified through the automated annotation pipeline (materials and 
methods), however a reciprocal BLAST against the plant database does not identify GLP homology. These 
results should therefore be taken with caution until experimental proof of R. delemar GLP-like activity can be 
provided.

Further bioinformatic studies with the putative R. delemar DELLA sequences such as 

alignments, modelling on known structures and detailed phylogeny with plant- and fungal 

protein families would confirm whether R. delemar has proteins that function similarly to 

DELLAs.

Potential  Regulators With Known Functions In The  Fungal Kingdom

Other known regulators of fungal germination and reproduction include trisporic acid 

and photoreceptors. Expression of genes predicted to have roles in these 

processes will be described here. Multiple genes predicted to have roles in 

4dehydroxymethyl-trisporate-dehydrogenase production (Figure 17a) have increased 

expression in resting spores, whilst others exhibit upregulation at germination onset and 

throughout hyphal growth (Figure 17b). 
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C 

Figure 17. a) Expression (LogFC) of genes predicted to have roles in 4dehydroxymethyl-

trisporate-dehydrogenase (homologues of 4dehydroxymethyl-trisporate-dehydrogenase 

from Blakeslea trispora) production over germination. Percentage identity and E value are 

shown below each homologue. b) Expression (LogFC) of genes predicted to have roles in 

trisporic acid production over germination (homologues of carotene oxygenase in Blakeslea 

trispora), percentage identity and E value are shown below each homologue. c) Expression 

(LogFC) of A. nidulans FAR homologues over germination, percentage identity and E value 

are shown below each homologue.

Light is sensed by fungi through photoreceptor proteins capable of sensing a range 

of wavelengths at varying intensities. Fungal photoreceptors include the phytochromes, 

known to sense red light in Aspergillus nidulans; the blue light sensitive white collar 

(WC) complex, best studied in N. crassa; and the Opsins, shown to sense green light 

in N. crassa (Idnurm and Heitman 2005b, 2005a). Homologues of genes known to encode 
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cryptochromes WC-1 & WC-2 show dynamic expression over germination (Figure 18); 

R03G_000967 and R03G_001009 appear highly expressed over hyphal growth, whilst 

R03G_013578 is highly expressed in resting spores, and R03G_003097 highly expressed at 

the onset of germination. This dynamic expression suggests the germination of R. delemar 

may also be regulated by light sensing receptors, in a similar way to other ancient fungi. 

Figure 18. Expression (LogFC) of photoreceptor homologues over germination. Homologues 
and species are listed, along with percentage identity and E values, below the gene names.

RdAQP1 and RdAQP2 are thought to be transmembrane domains which show high 

homology to porins from other fungal families. It has been postulated that the porins are 

regulated by a His residue which may be protonated dependent upon pH and therefore 

regulates water uptake and swelling of spores, prior to hyphal emergence (Turgeman et al. 

2016; Verma et al. 2014). 
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 We see that both porins also appear dynamically regulated over germination (Figure 19), 

concordant with swelling phases, thus supporting their proposed mechanism of 

regulation. 

Figure 19. Expression (CPM) of RO3G_001381 and RO3G_001102 (RdAQP1&2) over 

germination. 
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Comparisons of Transcription Throughout Germination 

It is unclear whether the mechanisms that underpin germination are conserved throughout 

the diverse fungal kingdom. To explore the extent of conservation, I compared my 

transcriptional data set to other available transcriptional data sets for Aspergillus niger, 

generated by Van Leeuwen et al and Novodvorska et al (van Leeuwen et al. 2013; 

Novodvorska et al. 2013). When expression profiles of homologous genes from A. niger and 

R. delemar are compared over the course of germination, genes with common or unique

functions specific to that time point can be identified. The largest shift in the transcriptional 

landscape of A. niger can be seen at the initial stage of germination; we also observed this 

shift in R. delemar. Transcripts with predicted functions involved in transport and localization, 

proteolysis, and glucose, hexose, and carbohydrate metabolism increase at the initial stages 

of germination in both A. niger and R. delemar, while transcripts with predicted functions in 

translation, tRNA and rRNA processing, and amine carboxylic acid and organic acid 

metabolism decrease (Figure 20). We also observe differences between the two data sets: 

over isotropic and hyphal growth, homologous genes with predicted functions in valine and 

branched-chain amino acid metabolism were upregulated only in R. delemar, while 

homologous genes with predicted roles in noncoding RNA (ncRNA) metabolism, translation, 

amino acid activation, and ribosome biogenesis were downregulated exclusively in R. 

delemar. A 5% increase in genes that are uniquely up- or downregulated in R. delemar is found 

in high-synteny regions of the genome, compared to genes that are up or downregulated in 

both R. delemar and A. niger. The duplicated nature of the R. delemar genome may allow for 

specific and tight regulation of the germination process, a feature unique to R. delemar. 
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It should be noted that A. niger and R. delemar were cultivated under conditions with 

different media. Aspergillus complete medium (ACM), used to cultivate A. niger, and 

sabouraud dextrose broth (SAB), used to cultivate R. delemar, both contain a complex mix of 

salts, inorganic nutrients, and organic components. Peptides are provided in SAB by 

mycological peptone, whereas peptides are provided by bacto peptone in ACM. The main 

carbon source is the same for both ACM and SAB. Both media have a relatively low pH (ACM, 

pH 6.5; SAB, pH 5.6), and it is known that pH is important for regulating germination in both 

R. delemar and A. nidulans. There are currently limited studies that address differences in

gene expression, when germination is initiated in filamentous fungi, under different growth 

media. Growth characteristics of A. nidulans have been shown to vary when contents of 

media differ, while various growth cultivation methods also alter gene expression in 

Aspergillus oryzae. The effect of adding or removing specific organic and inorganic nutrients 

from media on the growth of filamentous fungi is also better understood. When comparing 

data sets or designing experiments to address these issues, the effects of using distinctly 

different media should be considered. This is an area that would benefit from further work 

aimed at exploring these effects. 
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Figure 20. Number of homologous genes significantly differentially expressed 

(multiple comparisons corrected P value of < 0.05, Benjamini-Hochberg method) 

between time points, shown over time. Green represents the number of A. niger genes, 

red represents the number of R. delemar genes, and dark red represents the number of 

R. delemar genes found in high-synteny regions of the R. delemar genome.

139



Conclusions

This transcriptional analysis reveals that a temporal transcriptional pattern governs 

germination of R. delemar spores (Figure 1). Phenotype-specific (resting spore, swelling 

spore, hyphal fungi) transcript clusters (Figure 2-5) are identified, and along with pairwise 

differential expression analysis (Figure 6), it is shown that resting spores appear 

transcriptionally unique. In comparison, swelling spores appear transcriptionally consistent, 

whilst the switch to hyphal growth is underpinned by a significant change in the 

transcriptional landscape. Paired with this, analysis of metabolic transcripts (Figure 7), 

predicted pathways (Figure 8) and co-transcriptional networks (Figure 9-11) reveal a 

reliance of germinating spores on ROS resistance, cell wall remodelling components, protein 

synthesis apparatus, and iron acquisition and transport components. Analysis of duplicated 

gene pairs highlight individual genes which may be important for germination control. 

Homology searching reveals the dynamic regulation of germination and growth 

regulators, with homologues in well-studied fungi and plants. Finally, a comparison of 

germinating A. niger and R. delemar transcription demonstrates the presence of a 

‘core set’ of genes conserved throughout germination, however genes unique to 

each species are also abundant. 

Discussion

The above results increase our understanding of the molecular mechanisms 

controlling germination in R. delemar. They show that the initiation of germination 

entails a huge transcriptional shift; ROS resistance and respiration are required for 

germination to occur, while actin, chitin, and cytoskeletal components appear to play key 
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roles in initiating isotropic swelling and hyphal growth. Iron acquisition, Fe-S cluster 

regulation and sulphur metabolism were also key features of the germination transcriptome, 

confirming that R. delemar relies upon iron not only for pathogenesis (Ibrahim et al. 2010), 

but also for germination (Kousser et al. 2019). Transcripts co-expressed at the defined 

stages of germination (and unique to these stages) share functions in protein synthesis. 

This may offer regulation of protein processes, whilst maintaining specificity to 

morphological stage. R. delemar shares many transcriptional traits with A. niger at 

germination initiation; however, transcriptional features unique to R. delemar indicate 

that the duplicated nature of the genome may allow for alternative regulation of this 

process. Transcriptional results demonstrate the potential of light, fungal hormones and 

plant hormones to regulate germination. Specifically, resting spores show increased 

expression of bcABA2 homologues (Figure 14), which may inhibit fungal 

germination, similarly to P. patens spore germination inhibition via ABA (Moody et al. 2016). 

It should be noted that the custom annotation which predicted DELLA-like and GLP-like 

activity did not provide specific species homologues. As plant homologues were not detected 

through a traditional blastP approach, these results should be taken with caution. The 

hyphal form shows increased expression of both cryptochrome and white 

collar homologues, indicating that light sensing may play a role in germination 

regulation and hyphal development, as it does in A. fumigatus and the phototrophic P. 

blakesleeanus (Fuller et al. 2013; Idnurm et al. 2005). It should be noted that other 

homologues of the genes discussed here may exist within the R. delemar genome 

(Appendix Homology Trees), however only those which were differentially expressed 

(FDR < 0.001) over all time points have been investigated here. As a result, constituent 

expression is not discussed here, but should be investigated in further studies. These 

results have provided a significant overview of the transcriptome of germinating spores 

and expanded current knowledge in the Mucorales field. 
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Further Work

Further work focusing on the elucidation of genes essential to germination would benefit the 

field. Whilst co-expression network analysis aimed to reveal these, the networks (Figure 

9-11) were ultimately too large to provide a practical list of candidate genes. To determine

germination essential genes, transcriptional studies focusing on the times of phenotypic 

change (0-2hr, 4-6hr, 6-12hr), sampling at smaller intervals (every 10 minutes), would 

likely provide better information about germination specific genes. Further analysis of 

duplicated gene pairs might also aid in the identification of germination specific 

genes. Producing knockout mutants of the genes proposed here (Figure 13), which 

could be screened for germination defects, would confirm whether these candidate 

genes have diverged in function, and whether they play specific roles in germination. A full 

transcription factor annotation of the R. delemar genome, combined with an integrated ChIP-

Seq RNA-Seq experimental approach, would also aid in determining germination regulation. 

This approach would generate germination-essential gene candidates via analysis of 

differentially regulated gene networks. Generation of a CRISPR-Cas9 knock out library in 

R. delemar might also identify germination specific genes. Germination specific genes

would be attractive drug targets, as mucormycete germination within the host contributes 

to pathogenesis. Use of a metabolomics approach would aid in the validation of 

the PathwayTools pathway predictions, and may result in identification of natural 

compounds with therapeutic activities, as is common for secondary metabolites of fungi.  
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Chapter 5: Transcriptional Regulation of Rhizopus-
Macrophage Interactions 

The following text and figures have been previously published, or are adapted from the article 

“Host-pathogen transcriptomics of macrophages, Mucorales and their endosymbionts: a 

polymicrobial pas de trois” (Sephton-Clark et al. 2019). For this article, I conceived, designed 

and performed experiments, collected the data, performed the analysis and interpretation, 

wrote the manuscript, completed revisions and prepared the figures. 

This chapter will introduce the host-pathogen interactions which govern mucormycosis and 

immunity. An introduction to how bacterial endosymbionts impact pathogenicity of 

mucorales species will also be given. Results will describe the differential interactions of two 

Mucorales species (Rhizopus delemar RA 99-880 and the UoB strain of Rhizopus microsporus) 

with the innate immune system, and their interactions with environmental bacterial 

endosymbionts. The transcriptional responses of R. delemar and R. microsporus to innate 

immune cells, and the corresponding immune cell response will be examined. The variation 

in these responses will be assessed, given the presence or absence of bacterial 

endosymbionts within the fungi. It can be seen that the fungal response is driven by 

interaction with innate immune cells. The effect of the bacterial endosymbiont on the fungus 

is species specific, with a minimal effect in the absence of stress, but strongly influencing 

fungal expression during spore interactions with innate immune cells. In contrast, the 

macrophage response varies depending on the infecting fungal species, but also depending 

on endosymbiont status. The most successful macrophages elicit a pro-inflammatory 

response, and through germination inhibition macrophage survival is enhanced. This reveals 
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species-specific host responses to related Mucorales species and shows that bacterial 

endosymbionts impact the innate immune cell response. 
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Host-Pathogen Interactions in Mucormycosis 

Mucormycosis has been studied in the context of mucorales-host interactions using model 

organisms and in vitro tissue culture methods. Mouse models have shown that spore 

interactions with endothelial cells are vital to causing diseases in immunocompromised 

individuals, as pathogenicity is linked to the variable copy number of the gene encoding CotH, 

a family of cell surface proteins important for the spores’ adherence to the GRP (glucose 

regulated protein) receptors on endothelial cells (Liu et al. 2010; Gebremariam et al. 2014; 

Watkins et al. 2018). Mouse studies have also revealed the reliance of mucorales spores on 

free iron to cause invasive mucormycosis. The DKA ( Diabetic Ketoacidic)  mouse model 

is more susceptible to developing mucormycosis (Gebremariam et al. 2016). DKA and other 

acidosis disorders result in pH-mediated dissociation of iron from protein 

transporters, resulting in elevated concentrations of free iron within individuals. This is 

clearly seen in patient data, as individuals with elevated iron concentrations (within 

serum) are highly susceptible to mucormycosis (Ibrahim, 2014).  

This reliance on iron is also seen in vitro. Iron limitation has been reported as a mechanism 

by which macrophages control mucorales spore germination, whilst iron-scavenging 

pathways have been reported to confer pathogenicity to Rhizopus spp. (Andrianaki et al. 

2018; Chibucos et al. 2016). The reliance on innate immune cells such as macrophages to 

control spores has been demonstrated in the established zebra fish model (Voelz et al. 

2015). Within the zebra fish model, innate immune cells form granuloma- like structures 

around infecting mucorales spores. In doing so they inhibit spore germination, 

dissemination and delay invasive infection (Inglesfield et al. 2018). In an 

immunocompromised zebra fish model, 
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these innate granulomas are less likely to form, and infecting spores rapidly disseminate, 

leading to uncontrolled infection and increased mortality rates (Inglesfield et al. 2018).  

The interaction between host and mucorales spore can be further regulated by the presence 

of an endosymbiont (Itabangi et al. 2019; Partida-Martinez & Hertweck 2005). Many 

Mucorales species have been shown to harbour bacterial endosymbionts whose species can 

vary between Mucorales isolates (Ibrahim et al. 2008; Kobayashi & Crouch 2009; Mondo et 

al. 2017; Itabangi et al. 2019). Itabangi et al. recently explored the effect of an endosymbiont 

on the interaction between R. microsporus and innate immune cells. This study has shown 

that a bacterial endosymbiont influences the outcome of Rhizopus microsporus  infections in 

both zebrafish and murine models, through modulation of both fungal and phagocyte 

phenotypes (Itabangi et al. 2019). 

It is clear that understanding the interaction between Mucorales spores, their endosymbionts 

and innate immune cells is key to understanding mucormycosis. Studies frequently focus 

upon the interaction of a single species of the Mucorales order with innate immune cells 

(Warris et al. 2005; Chamilos et al. 2008; Schmidt et al. 2013; Kraibooj et al. 2014; Inglesfield 

et al. 2018), despite numerous phenotypic and genomic differences existing between 

Mucorales species and infecting isolates (Hoffmann et al. 2013; Mendoza et al. 2014; 

Schwartze et al. 2014). Several works comparing Aspergillus spp. to Rhizopus spp. have 

revealed similar immunostimulatory capacities, but differences in their responses to host 

stress (Warris et al. 2005; Chamilos et al. 2008; Schmidt et al. 2013; Kraibooj et al. 2014). 

Exploring and understanding fungal responses to the host is essential to improving our 

understanding of mucormycosis, yet it remains unclear how Mucorales species respond to, 
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and interact with, the innate immune system, and to what extent this varies by species and 

endosymbiont presence. 

This work explores the interplay between phagocytes, R. delemar, and R. microsporus  using 

fungal isolates found to harbour bacterial endosymbionts (Itabangi et al. 2019). This work 

investigates the differences between these two fungal species, how they respond 

transcriptionally to innate immune cells, and how their respective bacterial endosymbionts 

affect this interaction. This work also explores the transcriptional response of innate immune 

cells to these infectious spores, and determines how their response is influenced by the 

presence of an endosymbiont.  
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Results 

To better understand the interactions between Mucorales spores and innate immune cells, I 

performed a paired transcriptional study to identify responses of macrophages and fungal 

spores, whilst exploring the influence of the endosymbiont on this interaction. Rhizopus 

delemar and Rhizopus microsporus spores were either cured via ciprofloxacin treatment to 

remove the bacterial endosymbiont (cured) or maintained in media permissive to bacterial 

endosymbiosis (wt). Cured spores were passaged twice in the absence of ciprofloxacin to limit 

the impact of the drug on transcriptional responses. The cured and wt spores of both R. 

delemar  and R. microsporus  were allowed to swell in sabouraud broth (SAB) until 95% of the 

population had reached mid isotropic phase (Sephton-Clark et al. 2018). Due to the 

differences in germination rates between the species (Chapter 2), this occurred at 2 hours for 

R. delemar  and 4 hours for R. microsporus. Swollen spores were then used to infect the J774.1

murine macrophage-like cell line. Swollen fungal spores were co-cultured with macrophages 

for one hour, after which unengulfed spores were removed, and phagocytosed spores were 

incubated within the macrophages for a further two hours. In all cases 95% phagocytosis 

was achieved. Macrophages and spores from the resulting infection were processed to 

explore their transcriptional response to this infection scenario. Macrophages that had 

phagocytosed swollen fungal spores (cured and wt) were isolated and sequenced via the 

10X Genomics Chromium Single Cell Sequencing platform. Macrophages left unexposed 

to the fungi were used as a negative control. RNA was also isolated from fungal spores 

(cured and wt) which had been engulfed by macrophages, and this was sequenced with a 

bulk RNA-Seq approach. Unexposed fungi (cured and wt) were incubated in macrophage 

media (serum-free Dulbeccos Modified Eagle Medium) for a matched time and used as 

a negative control. 
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The Fungal Response 

The overall response to phagocytosis from R. delemar and R. microsporus, obtained through 

the bulk RNA-Seq approach, was examined with principle component analysis (PCA) (Figure 

1). Large differences between the transcriptomes of both fungal species can be observed, 

when exposed or unexposed to macrophages, while the presence or absence of their 

respective endosymbionts has a weak but differential effect on PCA (Figure 1). The presence 

or absence of the endosymbiont appears to have very little bearing on the transcriptional 

patterns displayed by R. delemar, as samples fell into two distinct clusters, most strongly 

influenced by macrophage status (Figure 1a). R. microsporus  exhibits a similar trend upon 

exposure to macrophages, however the presence of the endosymbiont influenced clustering 

more so (Figure 1b). Itabangi et al., show that the presence of the endosymbiont Ralstonia 

pickettii impacts fungal cell wall organization, resistance to host-relevant stress, 

spore germination efficiency, and pathogenesis of R. microsporus (Itabangi et al. 2019). 

It should be noted that both sample groups contain an outlier. Given the smaller range of the 

R. microsporus PCA axis (Figure 1b), the outlier for this group appears to effect grouping less,

compared to the R. delemar outlier. The outliers were both processed in separate biological 

experiments, and both samples obtained a good read level and alignment level when 

sequenced and processed with the bioinformatics pipeline. As the cause could not be 

determined in either instance, and it is not recommended to calculate significant differential 

expression with two biological repeats, the outliers were kept in for analysis. It should 

therefore be noted that the results may be skewed due to the outliers presence. This will 

be extenuated due to the strict statistical thresholds imposed. To improve the results, a 

fourth biological repeat should be performed in the future, time and cost permitting.
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Figure 1. Principal component analysis of fungal genes differentially expressed across all 

samples. A) R. delemar wt and cured, macrophage engulfed or serum free DMEM (dulbecco's 

modified eagle medium) control. B) R. microsporus  wt and cured, macrophage engulfed or 

serum free DMEM control. Biological replicates (n=3) are shown for each sample. 

There are 2,493 genes that are significantly differentially expressed (Log fold change > 2; false 

discovery rate < 0.05) in R. delemar  across all conditions (Figure 2a), while R. 

microsporus only exhibits 40 genes significantly differentially expressed across all 

conditions (Log fold change > 2; false discovery rate < 0.05) (Figure 2b). The theme of a 

muted transcriptional response from R. microsporus is also seen within pairwise comparisons 

of conditions. Pairwise comparisons of differential expression across each experimental 

condition show similar trends in responses between R. delemar and R. microsporus, 

however R. microsporus responds with a reduced gene set (Figure 3). The limited 

response of R. microsporus may be due to a differential growth stage. As R. microsporus 

germinates slower than R. delemar, after 3 hours within the phagosome R. microsporus 

may not have reached the same morphological growth stage as  R. delemar, contributing to 

an apparent muted response. Pairwise comparisons showed the biggest shift in 

transcriptional response when comparing phagocytosed fungal spores to those unexposed 
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to macrophages, regardless of endosymbiont status. When phagocytosed (Figure 4), R. 

microsporus upregulates genes enriched in GO categories corresponding to 

thiamine metabolism, sulfur metabolism, glycerol metabolism, alcohol 

dehydrogenase activity and transmembrane transporter activity (hypergeometric test, 

corrected P value < 0.05). This is consistent with the fungal response seen to 

macrophage stress (Parente-Rocha et al. 2015), and the micronutrient scavenging 

response to nutritional immunity (Ballou and Wilson 2016; Shen et al. 2018; 

Andrianaki et al. 2018). Phagocytosed R. microsporus downregulated genes 

enriched in GO categories corresponding to rRNA processing, ribosome 

biogenesis and ribosome localization (hypergeometric test, corrected P value < 0.05) 

(Figure 4), consistent with growth arrest within the phagolysosome (Inglesfield et al. 

2018; Andrianaki et al. 2018)
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Figure 2. Clustering of fungal transcriptional changes. A) Heatmap displaying significantly differentially expressed genes in R. delemar. Expression 

levels are plotted in Log2, space and mean-centered (FDR < 0.001) B) Heatmap displaying significantly differentially expressed genes in R. 

microsporus. Expression levels are plotted in Log2, space and mean-centered (FDR < 0.001). Biological replicates (n=3) are shown for each sample.
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Figure 3. Differential expression of fungal genes in compared conditions. The graph displays 

the number of genes significantly differentially expressed (multiple comparisons corrected P 

value < 0.05) between samples listed on the X axis. Blue bars indicate genes with an increase 

in expression (LogFC > 2), whilst orange bars indicate genes with a decrease in expression 

(LogFC < −2). Averages are taken from data produced with 3 biological replicates (n=3) for 

each sample. 
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Figure 4. Clustering of fungal transcription with functional annotation. Heatmap displaying 

significantly differentially expressed genes in R. microsporus . Expression levels are plotted 

in Log2, space and mean-centered (FDR < 0.001). Biological replicates (n=3) are shown for 

each sample. Gene names and predicted functions can be found in the appendix 

(R.microsporus_SigDE).

Comparisons of R. delemar conditions (Figure 5) reveal that, upon phagocytosis, 

spores upregulate genes enriched in KEGG classifications corresponding to MAPK 

signalling, phenylalanine metabolism, tyrosine metabolism, glutathione metabolism and 

fatty acid synthesis (hypergeometric test, corrected P value < 0.05). Upregulation of these 

processes is consistent with intra-phagosomal survival (Yadav et al. 2011; Lorenz and 

Fink, 2005; Eisenman et al. 2011; Andrianaki et al. 2018).
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Unexposed R. delemar  spores upregulate genes enriched in KEGG classifications 

corresponding to ketone body synthesis, protein processing via the endoplasmic 

reticulum, amino sugar and nucleotide sugar metabolism (hypergeometric test, 

corrected P value < 0.05). This is consistent with metabolic activation and cell wall 

biogenesis (Figure 5). 

Figure 5. Functions of genes differentially expressed in R. delemar. Enriched KEGG categories 

for the up/down regulated genes over sample comparisons (listed on the X axis). The 

enrichment of the category is indicated by the colour bar. White corresponds to no 

enrichment, and yellow to red corresponds to the given P value of the enrichment. Data 

produced with 3 biological replicates (n=3) for each sample. 
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Previously identified duplicate gene pairs of R. delemar (Chapter 3, 4) were analysed for 

significant alternate expression (LogFC between genes within a pair > 2), dependent 

on endosymbiont status and macrophage exposure. Whilst all R. delemar spores 

appeared to alternately regulate oxygen, ROS and superoxide metabolism, only cured 

spores exposed to macrophages also differentially regulated glycolysis (Figure 6). This 

indicates that although the role of the endosymbiont appears lesser when the overall 

transcriptional response is viewed (Figure 1), the presence of the endosymbiont 

may aid fungal resistance to external stress by permitting metabolic flexibility, perhaps 

through regulation of metabolic pathways. A similar mechanism by which Burkholderia 

regulates sexual reproduction in R. microsporus has been observed, showing that 

endosymbionts have the ability to regulate host processes (Mondo et al, 2017). 

Figure 6. Heatmap displaying the difference in expression (LogFC) between duplicated gene 

pairs in the spores of R. delemar, wt (+E) or cured, which have been phagocytosed (+M) or 

remain unexposed to macrophages. 
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When comparing transcriptional profiles of wt and cured spores incubated in serum-free 

DMEM (sfDMEM) for 3 hours (time matched to phagocytosis assay), very few transcriptional 

changes in either species in response to curing were observed. In R. delemar, a single gene, 

predicted to be a putative protein phosphatase, was repressed. In R. microsporus , three 

genes were induced: an autophagy-related protein, a C2H2 zinc finger transcription factor, 

and ribosomal protein L2. 

Despite these small changes, loss of the endosymbiont appears to impact the size of 

transcriptional responses of both fungal species to macrophages (Figure 3), and Itabangi et al 

have shown the importance of the endosymbiont for virulence (Itabangi et al, 2019). 

Specifically, an overall increase in the number of fungal genes differentially regulated upon 

phagocytosis for both species can be observed. Exposure of wt R. microsporus to 

macrophages induced the expression of one gene with no known function and repressed 6 

genes. The repressed genes include an autophagy-related protein and a zinc finger 

transcription factor, as well as 4 unannotated genes (Figure 3). In contrast, when cured R. 

microsporus  spores were exposed to macrophages, 277 genes were significantly induced and 

82 repressed, compared to unexposed cured spores (Figure 3). Induced genes were enriched 

(hypergeometric test, corrected P value < 0.05) for the following GO categories: organelle 

organisation, pre-ribosome and ribosome activity, ATPase activity, hydrolase activity, 

pyrophosphatase activity, helicase activity, nucleic acid binding, RNA metabolism, nitrogen 

metabolism, chromatin silencing. Repressed genes were enriched (hypergeometric test, 

corrected P value < 0.05) for the following GO categories: oxidoreductase activity, hydrogen 

sulphide metabolism, glycolysis, sulphur metabolism, hexose catabolism, siderophore 
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activity, iron assimilation, nitrogen metabolism, carboxylic acid metabolism. This suggests an 

overall failure to properly respond to host stresses such as iron starvation in the absence of 

the bacterial endosymbiont. 

A similar impact of the endosymbiont was observed for R. delemar. While the overall fungal 

response to phagocytosis is characterized by a robust transcriptional response, induced genes 

in wt samples (1137 genes, Figure 3) were enriched for KEGG classifications corresponding to: 

alanine metabolism, PPAR signalling, aromatic compound biosynthesis and degradation, 

lysine metabolism, lipid metabolism, MAPK signalling, sugar metabolism, tyrosine 

metabolism, secondary metabolite biosynthesis (Figure 5). Repressed genes in wt samples 

(472 genes, Figure 3) were enriched for KEGG classifications corresponding to: carbohydrate 

metabolism, secondary metabolite biosynthesis, ketone body processing, protein processes, 

MAPK signalling (Figure 5). In contrast, induced genes in cured samples (1285 genes, Figure 

3) were enriched for KEGG classifications corresponding to: fatty acid metabolism, DNA

replication, amino acid metabolism, glycan metabolism, pyruvate metabolism and secondary 

metabolite processing (Figure 5). Repressed genes in cured samples (878 genes, Figure 3) 

were enriched for KEGG classifications corresponding to: sugar metabolism, amino acid 

metabolism, lipid metabolism, MAPK signalling, NOD-like receptor signalling. Again, this 

suggests that the endosymbiont has an overall suppressive impact on fungal transcription in 

response to macrophage challenge. 

When comparing the transcriptional responses of ortholog genes shared by R. delemar  and 

R. microsporus, we see only a small proportion behave similarly (213 genes, detailed

in the online appendix, Ortho_Genes). When phagocytosed, wt spores from both species 

upregulate ortholog genes involved in fatty acid 
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catabolism, transcription, regulation via polymerase II, and organelle organization. 

Phagocytosed cured spores from both species upregulate ortholog genes involved in RNA 

processing, chromosome organization and condensed chromosome pathways. When 

unexposed, we see wt spores upregulate ortholog genes involved in translocation, protein 

binding, siderophore activity, cobalmin processing, and post-translational protein targeting. 

Cured unexposed spores upregulate ortholog genes with roles in siderophore activity 

and transferase activity. A list of the 213 orthologs and their predicted functions can 

be found in online the appendix (Ortho_Genes). Overall, R. delemar and R. microsporus  

both respond transcriptionally to the presence of macrophages, however the size 

and composition of this response differs between species. 

Due to work which has linked iron scavenging to survival within the phagolysosome 

(Andrianaki et al. 2018), expression of genes predicted to be involved in ferrous iron 

transport was analysed. There are 12 genes in the R. delemar genome with predicted 

ferrous iron roles. While 8 showed no significant change over the tested conditions, 3 

(R0G3_006623, R0G3_007727, R0G3_011864) appeared highly expressed in wt and 

cured phagocytosed spores, compared to unexposed spores. The last gene, ROG3_009943, 

is highly expressed in wt spores unexposed to macrophages. Together, this suggests 

there may be condition dependent specialization in the expression of ferrous iron 

transport in R. delemar. 
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Figure 7. Single cell plot generated by Loupe Cell Browser (K-means clustering). The 10X 

single cell genomics pipeline requires use of the 10X genomics specific software to 

visualize single cell data. Unfortunately the software does not provide information on 

PCA axis units, although it is likely to represent semantic space.

The Macrophage Response

To investigate the innate immune response when challenged with R. delemar and 

R. microsporus, I conducted single cell RNA-Sequencing of J774.A1 murine

macrophages, unexposed and exposed for 3 hours, to the four types of pre-swollen spores. 

Transcription of both challenged and unchallenged macrophages displayed 

underlying population heterogeneity (Figure 7). The functions of genes highly 

expressed (Figure 8) and displaying reduced  expressed (Figure 9) within the mixed 

clusters span broad categories including metabolic processes, nucleotide processing, cell 

cycle processes and stress response pathways.  The heterogeneity displayed may be 

due to alternate cell cycle states of the macrophages sampled. Synchronisation of the 

macrophages prior to infection might reduce the heterogeneity seen here, and allow for 

better detection of the transcriptional response to infection, at a single cell level. 
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Figure 8. Functions classifications (GO terms) corresponding to genes which appear highly 
expressed (Log2FC > 2) within each cluster of single cells (cluster determined with K means 
clustering). Whilst cluster 3 (carbohydrate metabolism), 4 (binding activity) and 5 
(proteolysis) appear functionally distinct, clusters 1 and 2 highly express genes with a range 
of broad functions, which offer inconclusive results about the state of the macrophages 
within these clusters.

Figure 9. Functions classifications (GO terms) corresponding to genes which 
exhibit reduced expression (Log2FC < -2) within each cluster of single cells (cluster 
determined with K means clustering). None of the clusters appear functionally distinct, 
there are however functions which appear to be consistently down regulated 
between clusters, these include: cytokine signalling (cluster 1, 3, 5), chromatin organization 
(cluster 1, 3, 4), nucleotide metabolism (cluster 1, 2, 4), phosphate metabolism (cluster 
1, 2, 4) and response to stress (cluster 4, 5).
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Due to lack of access to individual single cell data for further autonomous manipulation 

(other than in the Loupe cell browser GUI), principal component analysis of the aggregated 

transcriptional data was performed. Despite the heterogeneity displayed (Figure 7), 

aggregated analysis reveals there is a clear difference in transcription between macrophages 

that have and have not been exposed to the fungi, which appears to drive the PCA 

clustering (Figure 10). To therefore identify the transcriptional patterns of genes 

responding to the spores, the expression of a subset of genes previously identified as 

immune response genes (Muñoz et al. 2018) was focused  upon for further analysis 

(Figure 11). 

Figure 10. Principal component analysis of macrophage genes differentially expressed across 

all samples. Single cell sequencing was performed on uninfected and infected macrophages. 

Transcriptional data from the experiment was analysed with the 10X genomics analysis 

pipeline, and aggregated prior to principle component analysis. 
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Across all exposed conditions, relative to unexposed macrophages, there was a profile 

consistent with cytokine activation, response to stimulus, and activation of the NF-Kb 

pathway. This was accompanied by repression of CCL5, which is involved in T-cell recruitment 

(Figure 11). However, different macrophage profiles can be seen in response to the two fungal 

species, and these are further influenced by the presence of the endosymbiont. While the 

response to wt R. delemar shows the most deviation from the macrophage-only control, 

exposure to cured R. delemar also elicited a strong and distinct macrophage response (Figure 

11). Exposure to wt R. delemar elicits increased expression of general markers of activation, 

including GTPase activity and MHC class II protein binding (LAG3 repressor of T-cell activation, 

H2-M2, IFN-gamma induced IIGP1, MX1, KCTD14, PNP2), growth factor binding, IL1 receptor 

agonist activity and endocytosis (SERPINE1, ENG, FGFBP3, GM8898, GCNT2, IL1F6). 

Specifically, we observe modest increases in the expression of IFN-γ responsive CXCL10 (3.1 

fold) and IRG1/IRG11 (5.9 fold), pro-inflammatory SAA3 (3.5 fold), and ENPP4 (2.8 fold), but 

also induction of the M2 polarizing PSTPIP2/21 (6.7 fold), the IL-4 responsive signalling 

modulator CISH (5.4 fold), and the vascular damage responsive F3/F31 (5.9 fold) (Martinez et 

al. 2013). These latter genes are not as strongly induced during exposure to R. microsporus, 

which may reflect the aggressive nature of infection by R. delemar relative to R. microsporus. 

In contrast, infection with cured R. delemar showed a decrease in the induction of these M2-

polarisation markers (PSTPIP2, 3.5 fold relative to uninduced). The transcriptional profile is 

instead shifted to include increased transcription of genes involved in G protein signalling and 

phosphoinositide binding (PDE7B, CCL1, SCARF1, RGS16, PLEKHA4) (Figure 11). 

164



A similar change in macrophage polarization was observed during exposure to wt and cured 

R. microsporus. For both wt and cured R. microsporus, expression of IFN-γ responsive CXCL10,

SAA3, and ENPP4 was comparable to unexposed macrophages. Compared to R. delemar, 

exposure to wt R. microsporus induced a more limited expression of genes with roles in 

cytokine activation, ERK1 and ERK2 regulation, and regulation of NF-kB cascade (Figure 11). 

There was also a weaker induction of the vascular damage responsive F3/F31 genes, and a 

relatively stronger upregulation of the PLA2G16 phospholipase, TRIM30D, SLC1A2 and the 

M2 polarizing IL-6. However, other key polarizing genes, particularly PSTPIP2/21, SAA3, and 

ENPP4 were only weakly induced. Overall, this profile suggests a weak M1-like activation 

consistent with poor phagocytosis and reduced overall antifungal activity that can be 

observed in macrophages interacting with endosymbiont-harbouring R.microsporus spores 

(Itabangi et al. 2019). 

Finally, cured R. microsporus induced a strong pro-inflammatory response, which included 

upregulation of CXCL3, the neutrophil chemoattractant, consistent with observations of 

differences in phagocyte recruitment in zebrafish upon infection with wt vs. cured spores 

(Itabangi et al. 2019). Markers of NF-kB activation were also strongly induced in this 

population. Cured R. microsporus  also strongly induced the expression of TNFRSF8 (CD30), a 

marker of lymphocyte activation occasionally associated with subcutaneous fungal infections. 

Overall, this is suggestive of a shift to a more pro-inflammatory profile. Itabangi et al. observe 

that cured R. microsporus is more sensitive to phagocyte-mediated killing and phagocyte 

recruitment compared to wt (Itabangi et al. 2019), to test whether a more successful response 

to the spores could be mounted via the induction of a pro-inflammatory response, further in 

vitro experiments were carried out (Figure 12). 
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Figure 11. Clustering of macrophage transcription. Heatmap displaying immune response 

genes significantly differentially expressed between macrophage populations. Expression 

levels of aggregated data are plotted in Log2 (FDR < 0.001). 

Modulating the Infection Outcome 

R. delemar exhibits rapid germination followed by hyphal extension (Sephton-Clark et al.

2018). The transcriptional profile observed in macrophages exposed to R. delemar is 

consistent with a strong damage response, likely prompted by the germination of R. delemar 

spores. I took the following approach to determine whether macrophages would be better 

able to control the infection if the fungi were slowed in their developmental progress. The 

necessity of genes involved in chitin synthesis and regulation appeared important for both R. 

delemar and R. microsporus in response to phagocytosis (Chapter 6). When fungal spores 
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were pre-treated with the chitin synthesis inhibitor Nikkomycin Z (24 μg/ml) they remained 

viable but exhibited reduced swelling. By challenging macrophages with spores pre-treated 

with Nikkomycin Z (24 μg/ml), macrophage survival was increased at 7.5 hours post infection 

(Figure 12). As the macrophages are better able to control these spores, this suggests that 

spores undergoing the initial stages of germination may offer less of a challenge for the 

macrophages. This is consistent by data shown by Itabangi et al., who examined macrophage 

response to both resting and swelling R. microsporus spores (Itabangi et al. 2019). 

The transcriptional data show a strong M2 alternative activation signal during R. delemar- 

macrophage interaction, but a weaker M2 polarisation during R. microsporus-macrophage 

interaction that was further shifted towards NF-kB-mediated M1 upon endosymbiont cure. 

To shift the macrophage polarization towards M1 classical activation, macrophages were pre-

treated with NF-kB activating lipopolysaccharide (LPS). This offered a protective effect upon 

Mucorales infection, significantly improved the ability of macrophages to control R. 

microsporus. At 7.5 hours post infection, 59.7% of macrophages survived when pre-treated 

with LPS, compared to 24.6% without (Figure 12). 
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Figure 12. Macrophage survival following exposure to R. delemar (wt) and R. microsporus 

spores (wt). Macrophages +/- LPS pre-treatment were infected with fungal spores 

(Multiplicity of infection (MOI) 5:1), pre-swollen in SAB consistent with single cell 

experiments (biological n=3). Macrophages were infected with fungal spores that were 

pre-treated with +/- Nikkomycin Z (24 μg/ml; biological n=3 for each sample). Macrophage 

survival was determined 7.5 hours post infection with time course live cell imaging. Asterisk 

denote significant differences between samples (*= p < 0.01), determined with the 

Wilcoxon-Mann-Whitney test, corrected for multiplicity with the Bonferroni method.
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Conclusions

These results show that the fungal response to innate immune cells differs by species in the 

Rhizopodaceae family. Although R. delemar and R. microsporus share a small conserved 

response to macrophage exposure, the majority of their response differs. Results show that 

the fungal transcriptional response appears largely unperturbed by the presence or lack of 

an endosymbiont, in the absence of stress. However, the presence of an endosymbiont 

greatly effects the response of the host. Activation of the host and inhibition of spore 

germination successfully modulates the infection outcome. 

Discussion

Surprisingly, the scale of the fungal response varied appreciably between species. As 

previously discussed, this may be an artifact of the differential growth rates these species 

display. This variation is also observed in other relatively closely related species; C. albicans 

and C. glabrata differ substantially in their responses to the host (Brunke and Hube, 2012). 

Unsurprisingly, the macrophage response (Figure 11) reflected in vitro observations; the 

more ‘M1-like’ the transcriptional response, the better the macrophages control the spores 

in vitro. Unfortunately, the macrophage single cell sequencing approach taken here (10X 

genomics single cell) resulted in limited meaningful single cell data. This was due to the 

unavailability of single cell data to the user, outside of their specified user pipeline (which 

provided inflexible and limited analysis options). To improve on the single cell analysis, 

further experiments utilising an alternative system such as Drop-Seq should be carried out. 
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As anticipated, activation of pro-inflammatory pathways increased macrophage survival in 

response to the spores. This consolidates several studies which demonstrate improved innate 

immune cell response to fungal pathogens when primed (Rogers et al. 2013; Municio et al. 

2013; Blasi et al. 1995). In addition, this analysis reveals profound differences in the host 

response to two related Rhizopus species. In particular, results show a M2/damage-

associated response during infection with wt R. delemar spores that is shifted towards an M1 

protective response upon infection with cured R. microsporus spores. The ability to 

germinate prior to phagocyte control also appears key to virulence, as blocking spore 

germination with the chitin synthase inhibitor Nikkomycin Z improves macrophage survival, 

and highlights the requirement for chitin synthase for spore development in these species.

Further Work

Future work focusing on modulation of the innate immune system in both in vitro and in vivo 

models would allow a better understanding of the innate immune response to Mucorales 

species. Modulation of pathways which include the genes identified here (Figure 11) with 

exogenous cytokines, signalling molecules and inhibitors would allow for further elucidation 

of the pathways involved in the macrophage response. Clinical modulation or stimulation of 

the immune system could provide protection against infection in high-risk patients. Topical or 

systemic germination inhibitors might also be explored as options for a prophylactic 

treatment in high risk patients. Antimycin A isomers and derivatives would be good 

candidates for this, however the cytotoxicity of Antimycin A itself makes it unsuitable for use 

in humans.
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Chapter 6: Germination Inhibition 

This chapter will introduce approaches which are capable of inhibiting and modulating fungal 

germination. My results demonstrate several compounds capable of inhibiting germination 

of Rhizopus spores. These compounds successfully inhibit germination through chitin 

synthase inhibition, electron transport chain inhibition and reactive oxygen species pathway 

regulation. Further to this, my results demonstrate inhibition of Rhizopus spore germination 

through treatment with natural compounds extracted from plants and lichen. Both 

compound screening and target based approaches have yielded compounds capable of 

germination inhibition, shedding light on the mechanisms which underpin germination. 
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Manipulation and Inhibition of Germination 

This work has been adapted from the book chapter “Spore Germination of Pathogenic 

Filamentous Fungi” (Sephton-Clark and Voelz 2017), for which I performed the 

literature search, wrote the manuscript, completed revisions, and prepared the figures. 

Germination is the developmental process underlying initiation of many 

fungal diseases. Thus, strategies that inhibit germination have been of much 

interest as a means to treat both human and plant fungal infections.  Inhibition of 

Mucorales spore germination by the host is likely key to preventing infection in 

healthy individuals, however germination inhibition often fails in 

immunocompromised infection models (Voelz et al. 2015; Rosowski et al. 2018). The 

process of germination is therefore an attractive therapeutic target, which has been 

explored for Aspergillus species previously. Germination inhibition may be reversible, as 

seen for multiple Aspergillus species when inhibited (Nogueira et al. 2019). There are 

multiple fungistatic and fungicidal drugs currently available to treat fungal 

infections, however most remain innefective against Rhizopus species. Given 

the impact of Rhizopus germination on the host, and limited treatments 

for mucormycosis, I attempted to identify germination inhibitors.

Manipulation of physical parameters is a common strategy employed to ensure food 

safety. Decreasing water potential can aid with fungicidal action, as the germination of 

Aspergillus niger species is inhibited by reduced water availability (Long, 2017; Ni, 2005). 

Lowering temperature is also a common method for inhibiting germination of food spoiling 

fungi (Eckert, 1967; Barth, 2009). The common food spoilage agent Rhizopus delemar will 

not germinate below 5 °C (Eckert, 1988), whilst the pathogen M. gypseum will 

only tolerate temperatures over 35 °C (Leighton and Stock 1969) demonstrating 

temperature is clearly a strong mechanism for regulating germination.  

Non-steroidal anti-inflammatory drugs (NSAIDs) such as Ibuprofen, have been shown to 

inhibit the germination of several fungal species capable of causing respiratory diseases, 

including Aspergillus niger (Dalmont, 2017). The use of aerosolized NSAIDs as a 

preventative measure has been suggested as a way to tackle these common afflictions, 

however one should be careful to note the appropriate controls for this study are absent, 

so conclusions which can be drawn remain limited. If effective, they could be especially 

useful in damp 172 housing where pathogens such as Aspergillus niger thrive (Dalmont, 

2017). 
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Furthermore, statins have been shown to decrease germination of the human 

pathogen Rhizopus oryzae, as well as increasing susceptibility to oxidative stress (Bellanger 

et al. 2016). 

The topical administration of cheap and accessible substances such as acetic acid to open 

wounds has been suggested as another treatment which is effective due to its inhibition of 

germination (Trzaska et al. 2015). Acetic acid has been shown to inhibit germination of 

mucormycosis causing species. The administration of acetic acid might provide effective 

means for preventing this hard-to-treat invasive disease in patients with deep tissue wounds 

which may have been exposed to contaminated soils (e.g. blast wounds) (Trzaska et al. 

2015). Furthermore, the germination of several pathogenic fungi can be inhibited by 

substances such as ethanol (Plumridge et al. 2004; Trzaska et al. 2015; Dao & Dantigny 

2011).  

Nanoparticles, an excellent alternative to traditional chemical treatments, are capable of 

inhibiting germination in the tobacco leaf pathogen P. tabacina. Administration of such Zinc 

nanoparticles to tobacco leaves has been suggested as a cheap and efficient way to reduce 

pathogenesis and crop losses, as the nanoparticles show effectivity at very low doses 

(Wagner et al. 2016).  

In addition, a range of biological strategies has been investigated. Several biomolecules can 

be used effectively to inhibit the germination of fungi. Chitosan derivatives which 

incorporate a pyridine were found to exhibit inhibition of germination on the plant 

pathogen B. cinerea, posing yet another method for the treatment of food or plants with a 

safe molecule, which would decrease plant disease by fungal infection (Jia et al. 2016). 

Similarly, the inhibition of germination of plant pathogens through biocontrol is a currently 

expanding field. Colonising crops with plant ‘safe’ bacteria or fungi, which produce 

molecules damaging to plant pathogens, can effectively control plant disease. 
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For example, organic compounds released by Streptomyces albulus have been shown to be 

capable of inhibiting germination of the plant pathogen Fusarium oxysporum (Wu, 2015). 

Pseudomonas antimicrobica produces a molecule capable of decreasing germination rates 

of the prolific fungal plant pathogen B. cinerea (Wu, 2015; Walker, 2001).  

Whilst many of these recently suggested approaches have great potential to offer new 

methods in combating fungal growth and disease, our current understanding of the 

underlying mechanisms of inhibition is limited and thus requires further study.  
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Results 

Results have been previously published or adapted from the following articles: “Pathways of 

Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus 

delemar”(Sephton-Clark et al. 2018) and “Host-pathogen transcriptomics of macrophages, 

Mucorales and their endosymbionts: a polymicrobial pas de trois” (Sephton-clark et al. 2019). 

For both I conceived, designed and performed the experiments, collected the data, performed 

the analysis and interpretation, wrote the manuscript, completed revisions, and prepared the 

figures. 

Germination Inhibitors Identified Through Transcriptional Studies 

Transcriptional and phenotypic results identified cell wall remodelling, respiration, REDOX 

and stress response to be key pathways differentially regulated during the transition from 

resting spore to swelling spore. To determine whether modulation of these pathways would 

lead to inhibition of germination, spores were treated with a chitin synthase inhibitor 

(Nikkomycin Z), a cytochrome c reductase inhibitor (Antimycin A) and exogenous reactive 

oxygen species (ROS) (Hydrogen peroxide).  

An increase in intracellular ROS can be observed in R. delemar over the course of germination 

(Figure 1a). I investigated the significance of ROS detoxification during germination by testing 

for resistance to exogenous (H2O2) and endogenous (mitochondrial-derived) ROS (Figure 1b). 

Treatment with 5 mM but not 1 mM H2O2 was sufficient to inhibit spore germination. In 

contrast, spores were highly sensitive to treatment with 1.5 or 10nM antimycin A. Inhibition 

of the mitochondrial cytochrome c reductase leads to an accumulation of superoxide radicals 
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within the cell. Furthermore, antimycin A may exert a dual effect, as the expression of storage 

molecule transcripts appears high in both ungerminated spores and the hyphal form. High 

sensitivity to inhibition of oxidative phosphorylation with antimycin A is consistent with 

reports that utilization of these storage molecules as energy reserves is important for the 

initiation and maintenance of growth (Elbein 1974; Novodvorska et al. 2016; Svanström et al. 

2014).  

When spores of R. delemar and R. microsporus were treated with the chitin synthesis inhibitor 

Nikkomycin Z (24-120 μg/ml), they failed to germinate (Figure 1c) and displayed less 

chitin/chitosan in their outer cell wall (Figure 1c: R. delemar 120 μg/ml, R. microsporus 24-

120 μg/ml). At Nikkomycin Z concentrations lower than 24 μg/ml, we see the spores are able 

to swell, however development appears halted after swelling. 
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Figure 1. Targeted germination inhibition of Rhizopus species a) Spores germinated for 0, 3, 

6, 12, and 24 h, stained to show ROS with carboxy-H2DCFDA. b) Germination is inhibited by 5 

mM hydrogen peroxide and over 1.5 nM antimycin A, as determined by live-cell imaging, after 

5 h of germination in SAB. The hydrogen peroxide control consists of an equivalent volume of 

H2O, and the antimycin A control consists of an equivalent volume of 100% ethanol. c) Chitin 

synthase inhibition of R. delemar and R. microsporus germination. R. delemar and R. 

microsporus treated with Nikkomycin Z in SAB, labels indicate concentration of inhibitor. 

Fluorescence indicates calcofluor white staining, and thus the availability of chitin/chitosan in 

the cell wall.  
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A screen identified compounds from a natural compound library, provided by 

Strathclyde University, capable of inhibiting germination of Mucorales species. The 

candidate identified to inhibit germination, A10, is an extract from either plant, lichen or 

fungi. A10 inhibits the metabolic activity of R. microsporus in a dose dependent manner 

(Figure 2), with high doses inhibiting as potently as the known inhibitor acetic acid (Trzaska 

et al. 2015). The flavonoid chrysin, a known antifungal (Shimura et al. 2007), was 

identified from a list of compounds (provided by Strathclyde University) as a potential 

active molecule within A10.    

Germination Inhibitors Identified Through Natural Compound Screening 
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Figure 2 

Metabolic activity and Biomass of Rhizopus microsporus spores when treated with increasing 

dosages of a plant extract supplied by Strathclyde, compared to acetic acid (AA) and DMSO 

controls. Metabolic activity correlates positively with readings at OD 450nm, Biomass to OD 

600nm. 
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Discussion 

The inhibitors identified in this work highlight the roles of chitin synthase and ROS signalling 

in regulating germination in Rhizopus species. Hydrogen peroxide has the potential to be 

used as a topical prophylactic treatment for high-risk patients, as solutions of  3-6% H2O2 

(3% = 0.88M) are well tolerated by the skin (Mahran et al. 2019). H2O2 appears fungicidal to 

Rhizopus species at 5mM, a concentration which is unlikely to cause skin irritation. Multiple 

pharmaceutical companies have attempted to develop Nikkomycin Z for clinical use as an 

antifungal (Galgiani, 2016), however it has not yet made it to market as an approved 

antifungal treatment. Nikkomycin Z serves as a good candidate for the treatment of 

mucormycosis, and should be explored further as a treatment option with in vivo models. 

The potential for germination inhibition with natural compounds should be further explored 

with high resolution mass spectrometry of the fungicidal A10, to determine the structures of 

compounds within A10. A germination screen with purified forms of these compounds 

would offer candidates for testing with mammalian cell lines, to determine toxicity and drug 

development suitability.
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Appendix 

ComPfam 

R. delemar R. microsporus q-value

PF01498 873 1 6.96E-127
PF07714 418 0 4.69E-60
PF00385 499 8 7.87E-60
PF13358 532 32 3.27E-42
PF03372 373 10 1.17E-39
PF08238 284 2 1.47E-36
PF13551 258 3 1.62E-31
PF00400 429 31 1.59E-30
PF00078 330 14 2.18E-30
PF13893 293 9 7.33E-30
PF07282 10 78 1.09E-28
PF00077 177 0 1.58E-24
PF13516 194 2 7.20E-24
PF13606 179 1 4.45E-23
PF12895 164 0 1.15E-22
PF13894 374 36 1.49E-21
PF08284 140 1 2.36E-17
PF07653 153 3 9.95E-17
PF00271 124 1 4.77E-15
PF12894 2 33 1.74E-13
PF13833 94 0 3.81E-12
PF02992 126 4 3.94E-12
PF13191 4 33 8.65E-12
PF09668 99 1 1.51E-11
PF13857 99 1 1.51E-11
PF14259 87 0 3.94E-11
PF00096 61 85 6.25E-11
PF03732 129 6 6.41E-11
PF07690 151 10 7.81E-11
PF13041 0 23 8.70E-11
PF13812 92 1 1.45E-10
PF12937 42 69 1.56E-10
PF13504 80 0 2.17E-10
PF12762 95 2 6.02E-10
PF13637 120 6 7.56E-10
PF00153 177 17 8.42E-10
PF00512 76 0 8.48E-10
PF08662 93 2 8.84E-10
PF04670 89 2 3.54E-09
PF01209 82 1 3.55E-09
PF00025 115 6 3.82E-09
PF13374 70 0 5.60E-09
PF13650 86 2 8.34E-09
PF00665 87 2 8.97E-09
PF05148 77 1 1.28E-08
PF08659 66 0 2.28E-08
PF12773 0 18 2.66E-08
PF03184 64 0 3.66E-08
PF09011 65 0 3.66E-08
PF00071 18 40 4.49E-08
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RHIMIDRAFT_288130
RHIMIDRAFT_288174
RHIMIDRAFT_307408
RHIMIDRAFT_79038
RHIMIDRAFT_267844
RHIMIDRAFT_221939
RHIMIDRAFT_248707
RHIMIDRAFT_203580
RHIMIDRAFT_270714
RHIMIDRAFT_283813
RHIMIDRAFT_195307
RHIMIDRAFT_307836
RHIMIDRAFT_290452
RHIMIDRAFT_232533
RHIMIDRAFT_253108
RHIMIDRAFT_257184
RHIMIDRAFT_245053
RHIMIDRAFT_245669
RHIMIDRAFT_87630
RHIMIDRAFT_314936
RHIMIDRAFT_240622
RHIMIDRAFT_234322
RHIMIDRAFT_138553
RHIMIDRAFT_242387
RHIMIDRAFT_196349
RHIMIDRAFT_99785
RHIMIDRAFT_252937
RHIMIDRAFT_198874
RHIMIDRAFT_138931
RHIMIDRAFT_271682
RHIMIDRAFT_313047
RHIMIDRAFT_294525
RHIMIDRAFT_272110
RHIMIDRAFT_252367
RHIMIDRAFT_96114
RHIMIDRAFT_251305
RHIMIDRAFT_239731
RHIMIDRAFT_281133
RHIMIDRAFT_289002
RHIMIDRAFT_197836

R. microsporus genes significantly (FDR<0.001) differentially expressed (40 genes). The
predicted functions for each gene can be found in the GO file, within the online appendix
(R_micro_GO).
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hypothetical protein HMPREF1544_02453 [Mucor circinelloides f. circinelloides 1006PhL]

hypothetical protein A0J61_00230 [Choanephora cucurbitarum]

cytochrome P450 [Syncephalastrum racemosum]

cytochrome P450 [Syncephalastrum racemosum]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein LRAMOSA00373 [Lichtheimia ramosa]

hypothetical protein LRAMOSA09367 [Lichtheimia ramosa]

hypothetical protein HMPREF1544_05937 [Mucor circinelloides f. circinelloides 1006PhL]

cytochrome P450 CYP5313 [Mucor circinelloides f. lusitanicus CBS 277.49]

hypothetical protein A0J61_00670 [Choanephora cucurbitarum]

hypothetical protein HMPREF1544_05316 [Mucor circinelloides f. circinelloides 1006PhL]

P450 monooxygenase [Mucor ambiguus]

cytochrome P450 CYP5313 [Mucor circinelloides f. lusitanicus CBS 277.49]

hypothetical protein HMPREF1544_10867 [Mucor circinelloides f. circinelloides 1006PhL]

cytochrome p450 monooxygenase [Mucor ambiguus]

cytochrome P450 CYP5313 [Mucor circinelloides f. lusitanicus CBS 277.49]

cytochrome P450 CYP5313 [Phycomyces blakesleeanus NRRL 1555(-)]

cytochrome P450 CYP5313 [Phycomyces blakesleeanus NRRL 1555(-)]

cytochrome P450 CYP5313 [Phycomyces blakesleeanus NRRL 1555(-)]

cytochrome P450 CYP5313 [Phycomyces blakesleeanus NRRL 1555(-)]

cytochrome P450 [Syncephalastrum racemosum]

hypothetical protein LRAMOSA00735 [Lichtheimia ramosa]

p450 monooxygenase [Lichtheimia corymbifera JMRC:FSU:9682]

p450 monooxygenase [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein BCR43DRAFT_510841 [Syncephalastrum racemosum]

cytochrome P450 [Syncephalastrum racemosum]

cytochrome P450 [Syncephalastrum racemosum]

cytochrome P450 [Syncephalastrum racemosum]

hypothetical protein [Absidia glauca]

cytochrome P450 [Absidia repens]

cytochrome P450 [Absidia repens]

cytochrome P450 [Hesseltinella vesiculosa]

hypothetical protein [Absidia glauca]

hypothetical protein [Absidia glauca]

cytochrome P450 [Absidia repens]

lanosterol 14-alpha demethylase [Hesseltinella vesiculosa]

RecName: Full=Lanosterol 14-alpha demethylase; AltName: Full=CYPLI; AltName: Full=Cytochrome P450 51; AltName: Full=Cytochrome P450-14DM; AltName: Full=Cytochrome P450-LIA1; AltName: Full...

hypothetical protein [Absidia glauca]

hypothetical protein [Parasitella parasitica]

hypothetical protein MUCCIDRAFT_110910 [Mucor circinelloides f. lusitanicus CBS 277.49]

lanosterol 14-alpha demethylase [Mucor circinelloides f. circinelloides 1006PhL]

cytochrome P450 [Mucor ambiguus]

cytochrome P450 [Mucor ambiguus]

hypothetical protein [Parasitella parasitica]

hypothetical protein HMPREF1544_11256 [Mucor circinelloides f. circinelloides 1006PhL]

cytochrome p450 superfamily protein [Mucor ambiguus]

hypothetical protein MUCCIDRAFT_162569 [Mucor circinelloides f. lusitanicus CBS 277.49]

hypothetical protein HMPREF1544_02140 [Mucor circinelloides f. circinelloides 1006PhL]

CYP5312 protein [Mucor circinelloides f. lusitanicus CBS 277.49]

cytochrome p450 4v2 [Lichtheimia corymbifera JMRC:FSU:9682]

cytochrome p450 monooxygenase [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein LRAMOSA01771 [Lichtheimia ramosa]

cytochrome p450 monooxygenase [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein LRAMOSA00755 [Lichtheimia ramosa]

cytochrome P450 [Absidia repens]

cytochrome p450 704c1-like [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein LRAMOSA08735 [Lichtheimia ramosa]

hypothetical protein [Absidia glauca]

cytochrome P450 CYP5203 [Phycomyces blakesleeanus NRRL 1555(-)]

hypothetical protein [Absidia glauca]

hypothetical protein [Absidia glauca]

hypothetical protein A0J61_01881 [Choanephora cucurbitarum]

hypothetical protein RMATCC62417_06674 [Rhizopus microsporus]

hypothetical protein RMATCC62417_12643 [Rhizopus microsporus]

cytochrome P450 [Rhizopus microsporus var. microsporus]

hypothetical protein RMCBS344292_04064 [Rhizopus microsporus]

cytochrome P450 [Rhizopus microsporus]

BcABA1, cytochrome P450 monooxygenase [Botrytis cinerea T4]

cytochrome P450 [Hesseltinella vesiculosa]

cytochrome P450 [Syncephalastrum racemosum]

hypothetical protein LRAMOSA03645 [Lichtheimia ramosa]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

cytochrome P450 [Rhizopus microsporus var. microsporus]

hypothetical protein RMATCC62417_02362 [Rhizopus microsporus]

hypothetical protein RMCBS344292_14484 [Rhizopus microsporus]

hypothetical protein RMATCC62417_17980 [Rhizopus microsporus]

hypothetical protein RMCBS344292_18706 [Rhizopus microsporus]

cytochrome P450 [Rhizopus microsporus]

CYP5208 protein [Mucor circinelloides f. lusitanicus CBS 277.49]

hypothetical protein [Parasitella parasitica]

cytochrome P450 [Mucor ambiguus]

BactB [Mucor circinelloides f. circinelloides]

hypothetical protein HMPREF1544_10037 [Mucor circinelloides f. circinelloides 1006PhL]

cytochrome P450 [Absidia repens]

CYP5206 protein [Phycomyces blakesleeanus NRRL 1555(-)]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein RO3G_16665 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_00866 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_08351 [Rhizopus delemar RA 99-880]

cytochrome P450 [Rhizopus microsporus var. microsporus]

hypothetical protein RMCBS344292_17241 [Rhizopus microsporus]

hypothetical protein RMATCC62417_08225 [Rhizopus microsporus]

cytochrome P450 [Rhizopus microsporus]

hypothetical protein RMCBS344292_03990 [Rhizopus microsporus]
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hypothetical protein RO3G_00211 [Rhizopus delemar RA 99-880]

cytochrome P450 [Rhizopus microsporus]

hypothetical protein RMATCC62417_01088 [Rhizopus microsporus]

hypothetical protein RMATCC62417_15808 [Rhizopus microsporus]

cytochrome P450 [Rhizopus microsporus var. microsporus]

cytochrome P450 [Rhizopus microsporus]

hypothetical protein RMCBS344292_00313 [Rhizopus microsporus]

hypothetical protein RO3G_12495 [Rhizopus delemar RA 99-880]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

cytochrome P450 [Syncephalastrum racemosum]

hypothetical protein LRAMOSA10222 [Lichtheimia ramosa]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

cytochrome P450 [Syncephalastrum racemosum]

cytochrome P450 [Syncephalastrum racemosum]

hypothetical protein [Parasitella parasitica]

cytochrome P450 [Mucor ambiguus]

hypothetical protein A0J61_01881 [Choanephora cucurbitarum]

cytochrome P450 CYP5203 [Mucor circinelloides f. lusitanicus CBS 277.49]

cytochrome P450 704C1-like [Mucor ambiguus]

hypothetical protein HMPREF1544_04052 [Mucor circinelloides f. circinelloides 1006PhL]

hypothetical protein [Parasitella parasitica]

hypothetical protein RMATCC62417_00219 [Rhizopus microsporus]

hypothetical protein RMATCC62417_15337 [Rhizopus microsporus]

cytochrome P450 [Rhizopus microsporus var. microsporus]

cytochrome P450 [Rhizopus microsporus]

hypothetical protein RMATCC62417_06674 [Rhizopus microsporus]

cytochrome P450 [Rhizopus microsporus var. microsporus]

hypothetical protein RMCBS344292_04064 [Rhizopus microsporus]

cytochrome P450 [Rhizopus microsporus]

cytochrome P450 [Hesseltinella vesiculosa]

hypothetical protein LRAMOSA10151 [Lichtheimia ramosa]

cytochrome p450 704c1-like [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein LRAMOSA08735 [Lichtheimia ramosa]

hypothetical protein [Absidia glauca]

hypothetical protein [Parasitella parasitica]

hypothetical protein RO3G_06009 [Rhizopus delemar RA 99-880]

cytochrome P450 [Rhizopus microsporus var. microsporus]

hypothetical protein RMCBS344292_12454 [Rhizopus microsporus]

cytochrome P450 [Rhizopus microsporus]

hypothetical protein RMATCC62417_14135 [Rhizopus microsporus]

hypothetical protein RMCBS344292_14501 [Rhizopus microsporus]

hypothetical protein RMATCC62417_06177 [Rhizopus microsporus]

hypothetical protein LRAMOSA10595 [Lichtheimia ramosa]

hypothetical protein LRAMOSA01665 [Lichtheimia ramosa]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein [Parasitella parasitica]

cytochrome P450 [Mucor ambiguus]

cytochrome P450 CYP5203 [Mucor circinelloides f. lusitanicus CBS 277.49]

hypothetical protein HMPREF1544_01794 [Mucor circinelloides f. circinelloides 1006PhL]

hypothetical protein LRAMOSA04912 [Lichtheimia ramosa]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

cytochrome P450 CYP5203 [Mucor circinelloides f. lusitanicus CBS 277.49]

cytochrome P450 [Syncephalastrum racemosum]

hypothetical protein LRAMOSA01155 [Lichtheimia ramosa]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

cytochrome P450 [Hesseltinella vesiculosa]

cytochrome P450 [Absidia repens]

hypothetical protein [Absidia glauca]

hypothetical protein [Absidia glauca]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein LRAMOSA07518 [Lichtheimia ramosa]

cytochrome P450 [Absidia repens]

cytochrome P450 [Hesseltinella vesiculosa]

cytochrome P450 [Hesseltinella vesiculosa]

CYP5205 protein [Phycomyces blakesleeanus NRRL 1555(-)]

cytochrome P450 [Syncephalastrum racemosum]

hypothetical protein LRAMOSA09445 [Lichtheimia ramosa]

hypothetical protein RO3G_10498 [Rhizopus delemar RA 99-880]

CYP5205 protein [Mucor circinelloides f. lusitanicus CBS 277.49]

BcABA2, cytochrome P450 monooxygenase [Botrytis cinerea T4]

cytochrome P450 CYP5313 [Phycomyces blakesleeanus NRRL 1555(-)]

cytochrome P450 CYP5313 [Phycomyces blakesleeanus NRRL 1555(-)]

cytochrome P450 CYP5313 [Phycomyces blakesleeanus NRRL 1555(-)]

cytochrome P450 [Hesseltinella vesiculosa]

hypothetical protein [Absidia glauca]

cytochrome P450 [Absidia repens]

hypothetical protein [Parasitella parasitica]

hypothetical protein BCR43DRAFT_510841 [Syncephalastrum racemosum]

hypothetical protein A0J61_00670 [Choanephora cucurbitarum]

cytochrome p450 monooxygenase [Mucor ambiguus]

hypothetical protein HMPREF1544_10867 [Mucor circinelloides f. circinelloides 1006PhL]

cytochrome P450 CYP5313 [Mucor circinelloides f. lusitanicus CBS 277.49]

hypothetical protein [Parasitella parasitica]

P450 monooxygenase [Mucor ambiguus]

hypothetical protein HMPREF1544_05316 [Mucor circinelloides f. circinelloides 1006PhL]

cytochrome P450 CYP5313 [Mucor circinelloides f. lusitanicus CBS 277.49]

hypothetical protein LRAMOSA00735 [Lichtheimia ramosa]

p450 monooxygenase [Lichtheimia corymbifera JMRC:FSU:9682]

p450 monooxygenase [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein LRAMOSA01501 [Lichtheimia ramosa]

cytochrome p450 [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein LRAMOSA00734 [Lichtheimia ramosa]

cytochrome P450 [Syncephalastrum racemosum]

cytochrome P450 [Syncephalastrum racemosum]

cytochrome P450 [Syncephalastrum racemosum]

cytochrome P450 [Syncephalastrum racemosum]

cytochrome P450 [Syncephalastrum racemosum]

hypothetical protein [Absidia glauca]

hypothetical protein [Absidia glauca]

cytochrome P450 [Absidia repens]

cytochrome P450 [Absidia repens]
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NAD-binding protein [Absidia repens]

hypothetical protein [Absidia glauca]

Peroxisomal 2,4-dienoyl-CoA reductase SPS19 [Choanephora cucurbitarum]

Putative 2,4-dienoyl-CoA reductase (NADPH2) [Rhizopus microsporus]

Putative 2,4-dienoyl-CoA reductase (NADPH2) [Rhizopus microsporus]

Putative 2,4-dienoyl-CoA reductase (NADPH2) [Rhizopus microsporus]

peroxisomal 2,4-dienoyl-CoA reductase [Hesseltinella vesiculosa]

2,4-dienoyl-CoA reductase [Absidia repens]

hypothetical protein [Absidia glauca]

hypothetical protein LRAMOSA10708 [Lichtheimia ramosa]

-dienoyl-reductase [Lichtheimia corymbifera JMRC:FSU:9682]

NAD(P)-binding protein [Hesseltinella vesiculosa]

hypothetical protein BCR43DRAFT_459156 [Syncephalastrum racemosum]

hypothetical protein [Absidia glauca]

carbonyl reductase family member 4-like protein [Syncephalastrum racemosum]

hypothetical protein [Parasitella parasitica]

hypothetical protein HMPREF1544_10064 [Mucor circinelloides f. circinelloides 1006PhL]

hypothetical protein MUCCIDRAFT_134408 [Mucor circinelloides f. lusitanicus CBS 277.49]

phospholipid-transporting ATPase [Mucor ambiguus]

NAD(P)-binding protein [Hesseltinella vesiculosa]

hypothetical protein [Absidia glauca]

3-oxoacyl-reductase FabG-like protein [Absidia repens]

3-oxoacyl-reductase [Rhizopus microsporus]

hypothetical protein RMATCC62417_16579 [Rhizopus microsporus]

hypothetical protein RMCBS344292_07747 [Rhizopus microsporus]

hypothetical protein LRAMOSA10250 [Lichtheimia ramosa]

3-oxoacyl-(acyl-carrier-protein) reductase [Lichtheimia corymbifera JMRC:FSU:9682]

3-ketoacyl-(acyl-carrier-protein) reductase [Lichtheimia corymbifera JMRC:FSU:9682]

BcABA4 [Botrytis cinerea T4]

hypothetical protein [Absidia glauca]

hypothetical protein BCR42DRAFT_446447 [Absidia repens]

hypothetical protein [Absidia glauca]

Putative Glucose 1-dehydrogenase [Rhizopus microsporus]

hypothetical protein PHYBLDRAFT_128144 [Phycomyces blakesleeanus NRRL 1555(-)]

3-oxoacyl-[acyl-carrier-protein] reductase FabG [Choanephora cucurbitarum]

3-hydroxyacyl-CoA-dehydrogenase, mitochondrial [Mucor ambiguus]

glucose 1-dehydrogenase [Mucor circinelloides f. circinelloides 1006PhL]

hypothetical protein MUCCIDRAFT_156993 [Mucor circinelloides f. lusitanicus CBS 277.49]

hypothetical protein [Parasitella parasitica]

hypothetical protein BCR43DRAFT_514859 [Syncephalastrum racemosum]

Putative Glucose 1-dehydrogenase [Lichtheimia ramosa]

short-chain dehydrogenase [Lichtheimia corymbifera JMRC:FSU:9682]

NAD(P)-binding protein [Hesseltinella vesiculosa]

hypothetical protein [Absidia glauca]

hypothetical protein BCR43DRAFT_453530 [Syncephalastrum racemosum]

3-oxoacyl-[acyl-carrier-protein] reductase FabG [Choanephora cucurbitarum]

hypothetical protein [Parasitella parasitica]

hypothetical protein MUCCIDRAFT_46792 [Mucor circinelloides f. lusitanicus CBS 277.49]

NAD(P)-binding protein [Mucor ambiguus]

3-oxoacyl-[acyl-carrier protein] reductase [Mucor circinelloides f. circinelloides 1006PhL]

hypothetical protein PHYBLDRAFT_26103 [Phycomyces blakesleeanus NRRL 1555(-)]

hypothetical protein RO3G_16300 [Rhizopus delemar RA 99-880]

Putative 3-oxoacyl-[acyl-carrier protein] reductase [Rhizopus microsporus]

NAD(P)-binding protein [Rhizopus microsporus]

NAD(P)-binding protein [Rhizopus microsporus var. microsporus]

Putative 3-oxoacyl-[acyl-carrier protein] reductase [Rhizopus microsporus]

Putative 3-oxoacyl-[acyl-carrier protein] reductase [Rhizopus microsporus]

Putative 3-oxoacyl-[acyl-carrier protein] reductase [Rhizopus microsporus]

hypothetical protein LRAMOSA06177 [Lichtheimia ramosa]

sex determination protein tasselseed-2 [Lichtheimia corymbifera JMRC:FSU:9682]

3-oxoacyl-(acyl-carrier-protein) reductase [Mucor ambiguus]

hypothetical protein HMPREF1544_11236 [Mucor circinelloides f. circinelloides 1006PhL]

hypothetical protein BCR42DRAFT_402595 [Absidia repens]

hypothetical protein [Absidia glauca]

hypothetical protein [Absidia glauca]

NAD(P)-binding protein [Hesseltinella vesiculosa]

hypothetical protein [Absidia glauca]

hypothetical protein [Absidia glauca]

hypothetical protein BCR42DRAFT_468603 [Absidia repens]

hypothetical protein [Absidia glauca]

hypothetical protein BCR42DRAFT_417976 [Absidia repens]

hypothetical protein BCR42DRAFT_338541 [Absidia repens]

hypothetical protein BCR42DRAFT_421293 [Absidia repens]

hypothetical protein BCR42DRAFT_395194 [Absidia repens]

hypothetical protein BCR42DRAFT_421288 [Absidia repens]

Sorbose reductase SOU1 [Choanephora cucurbitarum]

hypothetical protein [Parasitella parasitica]

L-xylulose reductase [Rhizomucor pusillus]

hypothetical protein HMPREF1544_00552 [Mucor circinelloides f. circinelloides 1006PhL]

hypothetical protein MUCCIDRAFT_148022 [Mucor circinelloides f. lusitanicus CBS 277.49]

3-oxoacyl-ACP reductase [Mucor ambiguus]

hypothetical protein RO3G_01452 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_01846 [Rhizopus delemar RA 99-880]

NAD(P)-binding protein [Rhizopus microsporus]

hypothetical protein RMCBS344292_12835 [Rhizopus microsporus]

NAD(P)-binding protein [Rhizopus microsporus var. microsporus]

hypothetical protein RMATCC62417_05492 [Rhizopus microsporus]

hypothetical protein RMATCC62417_10579 [Rhizopus microsporus]

hypothetical protein BCR42DRAFT_339880 [Absidia repens]

hypothetical protein PHYBLDRAFT_125203 [Phycomyces blakesleeanus NRRL 1555(-)]

hypothetical protein BCR43DRAFT_521475 [Syncephalastrum racemosum]

short-chain dehydrogenase reductase sdr [Lichtheimia corymbifera JMRC:FSU:9682]

hypothetical protein LRAMOSA11265 [Lichtheimia ramosa]

hypothetical protein BCR43DRAFT_455482 [Syncephalastrum racemosum]

hypothetical protein [Absidia glauca]

hypothetical protein BCR42DRAFT_365058 [Absidia repens]

hypothetical protein [Absidia glauca]

hypothetical protein BCR42DRAFT_492670 [Absidia repens]

hypothetical protein MUCCIDRAFT_151684 [Mucor circinelloides f. lusitanicus CBS 277.49]

hypothetical protein HMPREF1544_08721 [Mucor circinelloides f. circinelloides 1006PhL]

TerpG [Mucor circinelloides f. circinelloides]0.2
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hypothetical protein RO3G_07800 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_12412 [Rhizopus delemar RA 99-880]

hypothetical protein BCV71DRAFT_267961 [Rhizopus microsporus]

hypothetical protein RMATCC62417_05318 [Rhizopus microsporus]

hypothetical protein RMATCC62417_05318 [Rhizopus microsporus]

Putative STE/STE20/PAKA protein kinase [Rhizopus microsporus]

Putative STE/STE20/PAKA protein kinase [Rhizopus microsporus]

Putative STE/STE20/PAKA protein kinase [Rhizopus microsporus]

Pkinase-domain-containing protein [Rhizopus microsporus]

Pkinase-domain-containing protein [Rhizopus microsporus var. microsporus]

hypothetical protein RMCBS344292_11067 [Rhizopus microsporus]

hypothetical protein RMATCC62417_17169 [Rhizopus microsporus]

hypothetical protein BCV72DRAFT_71979 [Rhizopus microsporus var. microsporus]

hypothetical protein RMCBS344292_04428 [Rhizopus microsporus]

hypothetical protein RMATCC62417_09711 [Rhizopus microsporus]

hypothetical protein RMCBS344292_07609 [Rhizopus microsporus]

hypothetical protein RMATCC62417_07950 [Rhizopus microsporus]

TPR-like protein [Rhizopus microsporus var. microsporus]

hypothetical protein RMCBS344292_06885 [Rhizopus microsporus]

hypothetical protein RMATCC62417_07950 [Rhizopus microsporus]

hypothetical protein RO3G_03312 [Rhizopus delemar RA 99-880]

hypothetical protein RMATCC62417_14752 [Rhizopus microsporus]

hypothetical protein RMATCC62417_14752 [Rhizopus microsporus]

UPF0014-domain-containing protein [Rhizopus microsporus var. microsporus]

hypothetical protein RMATCC62417_07219 [Rhizopus microsporus]

hypothetical protein RMATCC62417_11126 [Rhizopus microsporus]

hypothetical protein BCV72DRAFT_231313 [Rhizopus microsporus var. microsporus]

hypothetical protein RMATCC62417_05403 [Rhizopus microsporus]

hypothetical protein BCV71DRAFT_279323 [Rhizopus microsporus]

hypothetical protein RMCBS344292_00256 [Rhizopus microsporus]

hypothetical protein RO3G_11943 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_14028 [Rhizopus delemar RA 99-880]

0.3
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hypothetical protein RMATCC62417_13746 [Rhizopus microsporus]

hypothetical protein RMATCC62417_13746 [Rhizopus microsporus]

hypothetical protein RMCBS344292_16129 [Rhizopus microsporus]

hypothetical protein RMATCC62417_15451 [Rhizopus microsporus]

hypothetical protein RMATCC62417_15451 [Rhizopus microsporus]

hypothetical protein RO3G_14096 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_03851 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_01805 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16636 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16675 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16666 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16672 [Rhizopus delemar RA 99-880]

GLP1 GID1-like protein [Physcomitrella patens]

hypothetical protein RO3G_16524 [Rhizopus delemar RA 99-880]

hypothetical protein RMATCC62417_02350 [Rhizopus microsporus]

hypothetical protein RMCBS344292_07419 [Rhizopus microsporus]

hypothetical protein BCV71DRAFT_178021 [Rhizopus microsporus]

hypothetical protein BCV72DRAFT_212589 [Rhizopus microsporus var. microsporus]

alpha/beta-hydrolase [Rhizopus microsporus var. microsporus]

hypothetical protein RO3G_08298 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_00099 [Rhizopus delemar RA 99-880]

alpha/beta-hydrolase [Rhizopus microsporus]

hypothetical protein RMCBS344292_02919 [Rhizopus microsporus]

hypothetical protein RO3G_12741 [Rhizopus delemar RA 99-880]

alpha/beta-hydrolase [Rhizopus microsporus]

alpha/beta-hydrolase [Rhizopus microsporus var. microsporus]

hypothetical protein RMCBS344292_07649 [Rhizopus microsporus]
0.6
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hypothetical protein RO3G_03851 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_01805 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16636 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16672 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16666 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16675 [Rhizopus delemar RA 99-880]

hypothetical protein BCV71DRAFT_178021 [Rhizopus microsporus]

hypothetical protein BCV72DRAFT_212589 [Rhizopus microsporus var. microsporus]

hypothetical protein RMCBS344292_07419 [Rhizopus microsporus]

hypothetical protein RMATCC62417_02350 [Rhizopus microsporus]

hypothetical protein RO3G_02078 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_12741 [Rhizopus delemar RA 99-880]

alpha/beta-hydrolase [Rhizopus microsporus]

hypothetical protein RMCBS344292_07649 [Rhizopus microsporus]

alpha/beta-hydrolase [Rhizopus microsporus var. microsporus]

GLP2 GID1-like protein [Physcomitrella patens]

hypothetical protein RO3G_00099 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_08298 [Rhizopus delemar RA 99-880]

hypothetical protein RMCBS344292_02919 [Rhizopus microsporus]

hypothetical protein RMATCC62417_02738 [Rhizopus microsporus]

alpha/beta-hydrolase [Rhizopus microsporus]

alpha/beta-hydrolase [Rhizopus microsporus var. microsporus]
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hypothetical protein RO3G_00099 [Rhizopus delemar RA 99-880]

GLP4 GID1-like protein [Physcomitrella patens]

hypothetical protein RO3G_02534 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_01805 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16636 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16672 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16666 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_16675 [Rhizopus delemar RA 99-880]

hypothetical protein RO3G_03851 [Rhizopus delemar RA 99-880]

hypothetical protein BCV72DRAFT_227955 [Rhizopus microsporus var. microspo...

hypothetical protein RMATCC62417_13084 [Rhizopus microsporus]

hypothetical protein RMCBS344292_04013 [Rhizopus microsporus]

hypothetical protein BCV71DRAFT_82860 [Rhizopus microsporus]
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