
Reversible Occurrence Nets and Causal
Reversible Prime Event Structures?

Hernán Melgratti1??, Claudio Antares Mezzina2? ? ?, Iain Phillips3,
G. Michele Pinna4†, and Irek Ulidowski5

1 ICC - Universidad de Buenos Aires - Conicet, Argentina
2 Dipartimento di Scienze Pure e Applicate, Università di Urbino, Italy

3 Imperial College London, England
4 Università di Cagliari, Italy

5 University of Leicester, England

Abstract. One of the well-known results in concurrency theory con-
cerns the relationship between event structures and occurrence nets: an
occurrence net can be associated with a prime event structure, and vice
versa. More generally, the relationships between various forms of event
structures and suitable forms of nets have been long established. Good
examples are the close relationship between inhibitor event structures
and inhibitor occurrence nets, or between asymmetric event structures
and asymmetric occurrence nets. Several forms of event structures suited
for the modelling of reversible computation have recently been developed;
also a method for reversing occurrence nets has been proposed. This pa-
per bridges the gap between reversible event structures and reversible
nets. We introduce the notion of reversible occurrence net, which is a
generalisation of the notion of reversible unfolding. We show that re-
versible occurrence nets correspond precisely to a subclass of reversible
prime event structures, the causal reversible prime event structures.

Keywords: Event Structures · Causality · Reversibility · Petri Nets

1 Introduction

Event structures and nets are closely related. Since the seminal papers by Nielsen,
Plotkin and Winskel [21] and Winskel [29], the relationship among nets and event
structures has been considered as a pivotal characteristic of concurrent systems.
The ingredients of an event structure are a set of events and a number of rela-
tions that are used to express which events can be part of a configuration (the

? The authors were partially supported by COST Action IC1405 on Reversible Com-
putation - Extending Horizons of Computing.

?? Partially supported by the EU H2020 RISE programme under the Marie Sk lodowska-
Curie grant agreement 778233, by the UBACyT projects 20020170100544BA and
20020170100086BA, and by the PIP project 11220130100148CO.

? ? ? Partially supported by the project DCore ANR-18-CE25-0007 and the INdAM–
GNCS project Reversible Concurrent Systems: from Models to Languages.

† Partially supported by RAS Project SardCoin, CUP: F72F16003030002.

2 H. Melgratti, C. A. Mezzina, I. Phillips, G. M. Pinna, I. Ulidowski

snapshot of a concurrent system), modelling a consistency predicate, and how
events can be added to reach another configuration, modelling the dependencies
among the events. On the net side, the ingredients boil down to constraints on
how transitions may be executed, and usually have a structural flavour.

Since the introduction of event structures there has been a flourish of in-
vestigations into the possible relations among events, giving rise to a number
of different definitions of event structures. We first mention the classical prime
event structures [29] where the dependency between events, called causality, is
given by a partial order and the consistency is determined by a conflict relation.
Flow event structures [6] drop the requirement that the dependency should be a
partial order, and bundle event structures [18] are able to represent OR-causality
by allowing each event to be caused by a member of a bundle of events. Asym-
metric event structures [3] introduce the notion of weak causality that can model
asymmetric conflicts. Inhibitor event structures [2] are able to faithfully capture
the dependencies among events which arise in the presence of read and inhibitor
arcs. In [4] event structures, where the causality relation may be circular, are
investigated, and in [1] the notion of dynamic causality is considered. Finally,
we mention the quite general approach presented in [27], where there is a unique
relation, akin to a deduction relation. To each of the aforementioned event struc-
tures a particular class of nets corresponds. To prime event structures we have
occurrence nets, to flow event structures we have flow nets, to bundle event
structures we have unravel nets [7], to asymmetric and inhibitor event struc-
tures we have contextual nets [3,2], to event structures with circular causality
we have lending nets [4], to those with dynamic causality we have inhibitor un-
ravel nets [8] and finally to the ones presented in [27] 1-occurrence nets are
associated.

Recently a new type of event structure tailored to model reversible compu-
tation has been proposed [24,26]. In particular, in [24], reversible prime event
structures have been introduced. In this kind of event structure two relations are
added: the reverse causality relation and the prevention relation. The first one is
a standard dependency relation: in order to reverse an event some other events
must be present. The second relation, on the contrary, identifies those events
whose presence prevents the event being reversed. This kind of event structure
is able to model both causal-consistent reversibility [9,23,15] and out-of-causal-
order reversibility [25,13]. Causal-consistent reversibility relates reversibility with
causality: an event can be undone provided that all of its effects have been un-
done first. This allows the system to get back to a past state, which was possible
to reach by just the normal (forward) computation. This notion of reversibility
is natural in reliable distributed systems since when an error occurs the system
tries to go back to a past consistent state. Examples of application of causal-
consistent reversibility to model reliable systems include transactions [10,14] and
rollback protocols [28]. Also, there are applications in program analysis and de-
bugging [12,17]. The out-of-causal-order reversibility does not preserve causes,
and this feature makes it suitable to model biochemical reactions where, for ex-

Reversible Occurrence Nets and Causal Reversible Prime Event Structures 3

ample, a bond can be undone ‘out-of-order’ thus leading to a new state that was
not present before.

Reversibility in Petri nets has been studied in [22,19] with two different ap-
proaches. In [22] reversibility in an acyclic Petri net is obtained by adding a new
kind of tokens, called bonds, that keep track of the execution history. Bonds are
rich enough to permit modelling of both the causal-consistent and out-of-causal
order reversibility. In [19] a notion of unfolding of a P/T (place/transition) net,
where all the transitions can be reversed, has been proposed. By resorting to
standard notions of the Petri net theory [19] provides a causal-consistent re-
versible semantics for P/T nets. This exploits the well-known unfolding of P/T
nets into occurrence nets [29], and is done by adding for each transition its re-
versible counterpart. We also note that a problem of making a Petri net reversible
(meaning every computation is able to reach back to the initial state) has been
solved by showing how to add a minimal number of additional transitions [5].

In this paper we study what kind of nets can be associated with reversible
prime event structures. To this aim we introduce reversible occurrence nets,
which are occurrence nets enriched with additional transitions (called reversing
transitions) that undo the effects of executing the ordinary transitions.

Each reversing transition (event in the occurrence net dialect) is associated
with a unique transition that produces the effects that the reversing transition
undoes. A reversing event associated with an event e can be executed in a re-
versible occurrence net only when all the events caused by e have been previously
reversed. If this is not possible then the reversing event cannot be executed.
This means that some events in a reversible event structure may prevent the
occurrence of a reversing event. A reversible occurrence net where the reversing
events have been removed is just an occurrence net. This discussion suggests
a natural way of relating reversible occurrence nets and reversible prime event
structures: the causality relation is the one induced by the occurrence net while
the prevention relation is induced by the inverse of causality: a reversing event
associated with e is prevented by any event that causally depends on e. In this
way we associate a reversible occurrence net with a causal reversible prime event
structure [24,26], which is a subclass of reversible prime event structures.

We also show how to obtain a reversible occurrence net from a causal re-
versible prime event structure. The ingredients that are used are just the causal-
ity relation and the set of reversible events. We prove that the two formalisms
have the same configurations. Hence, this gives us the precise correspondence
between causal reversible prime event structures and reversible occurrence nets.
We do not consider non-causal reversible prime event structures here; however,
we hint at how this can be done in Section 5.

Structure of the paper. Section 2 reviews some preliminary notions for nets and
event structures, including reversible prime event structures. Section 3 recalls the
well-known relationship between prime event structures and occurrence nets. The
core of the paper is Section 4 where we first introduce reversible occurrence nets
and then we show how to obtain a reversible occurrence net from an occurrence

4 H. Melgratti, C. A. Mezzina, I. Phillips, G. M. Pinna, I. Ulidowski

net. We then show how to associate a causal reversible prime event structure
with a reversible occurrence net, and vice versa. Section 5 concludes the paper.

2 Preliminaries

We denote with N the set of natural numbers. Let A be a set, a multiset of A is a
function m : A→ N. The set of multisets of A is denoted by µA. We assume the
usual operations on multisets such as union + and difference −, and k ·m stands
for the scalar multiplication of m by k, i.e., (k ·m)(a) = k ·m(a) for all a ∈ A.
We write m ⊆ m′ if m(a) ≤ m′(a) for all a ∈ A. For m ∈ µA, we denote with
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise.
When a multiset m of A is a set, i.e. m = [[m]], we write a ∈ m to denote that
m(a) 6= 0, and often confuse the multiset m with the set {a ∈ A | m(a) 6= 0}.
Furthermore we use the standard set operations like ∩, ∪ or \. Given a set A and
a relation < ⊆ A×A, we say that < is an irreflexive partial order whenever it is
irreflexive and transitive. We shall write ≤ for the reflexive closure of a partial
order <.

2.1 Petri nets

We review the notion of Petri net along with some auxiliary notions.

Definition 1. A Petri net is a 4-tuple N = 〈S, T, F,m〉, where S is a set of
places and T is a set of transitions (with S ∩ T = ∅), F ⊆ (S × T) ∪ (T × S) is
the flow relation, and m ∈ µS is called the initial marking.

Given a net N = 〈S, T, F,m〉 and x ∈ S ∪ T , we define the following sets:
•x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}, which can be viewed as multisets.
If x ∈ S then •x ∈ µT and x• ∈ µT ; analogously, if x ∈ T then •x ∈ µS and
x• ∈ µS. A multiset of transitions A ∈ µT , called step, is enabled at a marking
m ∈ µS, denoted by m [A〉 , whenever •A ⊆ m, where •A =

∑
x∈[[A]] A(x) · •x.

A step A enabled at a marking m can fire and its firing produces the marking
m′ = m − •A + A•, where A• =

∑
x∈[[A]] A(x) · x•. The firing of A at a

marking m is denoted by m [A〉m′. We assume that each transition t of a net N
is such that •t 6= ∅, meaning that no transition may fire spontaneously. Given
a generic marking m (not necessarily the initial one), a (step) firing sequence
(shortened as fs) of N = 〈S, T, F,m〉 starting at m is defined as: (i) m is a
firing sequence (of length 0), and (ii) if m [A1〉m1 · · · mn−1 [An〉mn is a firing
sequence and mn [A〉m′, then also m [A1〉m1 · · · mn−1 [An〉mn [A〉m′ is a firing
sequence. Let us note that each step A such that |A| = n can be written as
A1 + · · · + An where for each 1 ≤ i ≤ n it holds that Ai = [[Ai]] and |Ai| = 1,
and m [A〉m′ then, for each decomposition of A in A1 + · · ·+An, we have that
m [A1〉m1 . . .mn−1 [An〉mn = m′. When A is a singleton, i.e. A = {t}, we write
m [t〉m′. The set of firing sequences of a net N starting at a marking m is
denoted by RNm and it is ranged over by σ. Given an fs σ = m [A1〉σ′ [An〉mn,
we denote with start(σ) the marking m, with lead(σ) the marking mn and

Reversible Occurrence Nets and Causal Reversible Prime Event Structures 5

with tail(σ) the fs σ′ [An〉mn. tail(σ) is defined only when σ has length greater
than 0. Given a net N = 〈S, T, F,m〉, a marking m is reachable iff there exists
an fs σ ∈ RNm such that lead(σ) is m. The set of reachable markings of N is
MN = {lead(σ) | σ ∈ RNm }. Given an fs σ = m [A1〉m1 · · ·mn−1 [An〉m′, we
write Xσ =

∑n
i=1Ai for the multiset of transitions associated to fs. We call Xσ

a state of the net and write St(N) = {Xσ ∈ µT | σ ∈ RNm } for the set of states
of N .

Definition 2. A net N = 〈S, T, F,m〉 is said to be safe if each marking m ∈MN

is such that m = [[m]].

In this paper we consider safe nets N = 〈S, T, F,m〉 where each transition can
be fired, i.e. ∀t ∈ T ∃m ∈MN . m [t〉 , and every place is reachable (i.e., marked
in at least one reachable marking).

2.2 Prime event structures

We now recall the notion of prime event structure [29].

Definition 3. A prime event structure (pes) is a triple P = (E,<,#), where

– E is a countable set of events,
– < ⊆ E × E is an irreflexive partial order called the causality relation, such

that ∀e ∈ E. {e′ ∈ E | e′ < e} is finite, and
– # ⊆ E × E is the conflict relation, which is irreflexive, symmetric and

hereditary with respect to <: if e # e′ < e′′, then e # e′′ for all e, e′, e′′ ∈ E.

Intuitively, e < e′ models that e′ can occur only after e, while e # e′ indicates
that e and e′ are mutually exclusive. Given an event e ∈ E, bec denotes the
set {e′ ∈ E | e′ ≤ e}. A set of events X ⊆ E is left-closed if ∀e ∈ X.bec ⊆ X.
Given a set X ⊆ E of events, we say that X is conflict free, written CF(X),
iff for all e, e′ ∈ X it holds that e 6= e′ ⇒ ¬(e # e′). Given X ⊆ E such
that CF(X) and Y ⊆ X, then also CF(Y). When adding reversibility to peses,
conflict heredity may not hold. Therefore, we rely on a weaker form of pes by
following the approach in [24].

Definition 4. A pre-pes (ppes) is a triple P = (E,<,#), where

– E is a set of events,
– # ⊆ E × E is an irreflexive and symmetric relation,
– < ⊆ E×E is an irreflexive partial order such that for every e ∈ E. {e′ ∈ E |
e′ < e} is finite and conflict free, and

– ∀e, e′ ∈ E. if e < e′ then not e # e′.

A ppes is a prime event structure in which conflict heredity does not hold, and
since every pes is also a ppes the notions and results stated below for ppeses
also apply to peses.

6 H. Melgratti, C. A. Mezzina, I. Phillips, G. M. Pinna, I. Ulidowski

Definition 5. Let P = (E,<,#) be a ppes and X ⊆ E such that CF(X). For
A ⊆ E, we say that A is enabled at X if A∩X = ∅ and CF(X∪A), and ∀e ∈ A.
if e′ < e then e′ ∈ X. If A is enabled at X, then X can reach Y = X ∪ A, and

is written as X
A−→ Y .

Definition 6. Let P = (E,<,#) be a ppes and X ⊆ E such that CF(X). X
is a forwards reachable configuration if there exists a sequence A1, . . . , An, such

that Xi
Ai−→ Xi+1 for all i, and X1 = ∅ and Xn+1 = X. We write Confppes(P)

for the set of all (forwards reachable) configurations of P .

When a ppes is a pes we shall write Confpes(P) instead of Confppes(P), with
Confpes(P) = Confppes(P) holding. A pes can be obtained from a ppes.

Definition 7. Let P = (E,<,#) be a ppes. Then hc(P) = (E,<,]) is the
hereditary closure of P , where] is derived by using the following rules

e # e′

e] e′
e] e′ e′ < e′′

e] e′′
e′] e

e] e′

The following proposition relates ppes to pes [24].

Proposition 1. Let P = (E,<,#) be a ppes. Then

– hc(P) = (E,≤,]) is a pes,
– if P is a pes, then hc(P) = P , and
– Confppes(P) = Confpes(hc(P)).

2.3 Reversible prime event structures

We now focus on the notion of reversible prime event structure. The definitions
and the results in this subsection are drawn from [24]. In reversible event struc-
tures some events are categorised as reversible. In addition to the usual causality
and conflict relations, reversible event structures incorporate two new ones that
relate events and those representing the actual undoing of the reversible events.
The undoing of events is represented by removing them (from a configuration),
which is achieved by executing the appropriate reversing events.

Definition 8. A reversible prime event structure (rpes) is the tuple P = (E,U,
<,#,≺, .) where (E,<,#) is a ppes, U ⊆ E are the reversible/undoable events
(with reverse events being denoted by U = {u | u ∈ U} and disjoint from E, i.e.,
U ∩ E = ∅) and

– . ⊆ E × U is the prevention relation,
– ≺ ⊆ E × U is the reverse causality relation and it is such that u ≺ u for

each u ∈ U and {e ∈ E | e ≺ u} is finite and conflict-free for every u ∈ U ,
– if e ≺ u then not e . u,
– the sustained causation � is a transitive relation defined such that e � e′

if e < e′ and e ∈ U , then e′ . e, and

Reversible Occurrence Nets and Causal Reversible Prime Event Structures 7

– # is hereditary with respect to �: if e # e′ � e′′, then e # e′′.

The ingredients of an rpes partly overlap with those of a pes: there is a causal-
ity relation (<) and a conflict one (#) and the two are related by the sustained
causation relation�. The new ingredients are the prevention relation and the re-
verse causality relation. The prevention relation states that certain events should
be absent when trying to reverse an event, e.g., e . u states that e should be ab-
sent when reversing u. The reverse causality relation e ≺ u says that u can be
executed only when e is present.

Example 1. Let P = (E,U,<,#,≺, .) where E = U = {a, b, c}, a < b and a ≺ a,
b ≺ b, c ≺ c, c ≺ a with b . a and no conflict. Then a � b because a < b and
b . a. P states that b causally depends on a and that c is concurrent w.r.t. both
a and b. Note that every event is reversible in P because U = E. As expected,
the reverse causality relation ≺ is defined such that every reverse event requires
the presence of the corresponding reversible event, i.e., e ≺ e for all e ∈ E.
Additionally, it also requires c ≺ a, i.e., a can be reversed only when c is present.
The prevention relation states that a cannot be reversed when b is present, i.e.,
b . a.

Definition 9. Let P = (E,U,<,#,≺, .) be an rpes and X ⊆ yE be a set of
events such that CF(X). For A ⊆ E and B ⊆ U , we say that A ∪ B is enabled
at X if

– A ∩X = ∅, B ⊆ X and CF(X ∪A),
– ∀e ∈ A, e′ ∈ E. if e′ < e then e′ ∈ X \B,
– ∀e ∈ B, e′ ∈ E. if e′ ≺ e then e′ ∈ X \ (B \ {e}),
– ∀e ∈ B, e′ ∈ E. if e′ . e then e′ 6∈ X ∪A.

If A ∪B is enabled at X then X
A∪B−→ Y where Y = (X \B) ∪A.

Example 2. Consider the rpes in Example 1. We have, e.g., ∅ {a,c}−→ {a, c} {a}−→ {c}
and ∅ {a}−→ {a} {b}−→ {a, b} {c,b}−→ {a, c} {b}−→ {a, b, c}. While ∅ {a}−→ {a} holds, ∅ {a}−→
{a} {a}−→ {} does not hold; this is because a ≺ a and c ≺ a require that a and c are

in the configuration ({a}) for {a} to be enabled. Also ∅ {a,c}−→ {a, c} {b}−→ {a, c, b}
holds but {a, c, b} {a}−→ {b, c} does not hold since, given b . a, the presence of b
prevents the execution of a.

Reachable configurations are sets of events that can be reached from the empty
set by performing events or undoing previously performed events.

Definition 10. Let P = (E,U,<,#,≺, .) be an rpes and let X ⊆ E be a set of
events such that CF(X). We say that X is a (reachable) configuration if there
exist two sequences of sets Ai and Bi, for i = 1, . . . , n, such that

– Ai ⊆ E and Bi ⊆ U for all i, and

8 H. Melgratti, C. A. Mezzina, I. Phillips, G. M. Pinna, I. Ulidowski

– Xi

Ai∪Bi−→ Xi+1 for all i with X1 = ∅ and Xn+1 = X.

The set of configurations of P is denoted by Confrpes(P).

Example 3. The set of configurations of P defined in Example 1 is Confrpes(P) =
{∅, {a}, {c}, {a, b}, {a, c}, {a, b, c}} as illustrated by the sequences shown in Ex-
ample 2.

As discussed in Section 1, rpeses accommodate different flavours of reversibil-
ity. Henceforth, we focus on causal-consistent reversibility [9,16], which is one
of the most common models of reversibility in distributed systems, in which an
event can be reversed only when all the events it has caused have already been
reversed. In the setting of rpeses we consider these two forms of causal-consistent
reversibility.

Definition 11. Let P = (E,U,<,#,≺, .) be an rpes. Then P is cause-respecting
if for any e, e′ ∈ E, if e < e′ then e� e′. P is causal if for any e ∈ E and u ∈ U
the following holds: e ≺ u iff e = u, and e . u iff u < e.

Example 4. The rpes P in Example 1 is a cause-respecting rpes. However P is
not causal because of c ≺ a, which means that c has to be present for a to be
reversed even if c does not causally depend on a. If we remove c ≺ a then we
obtain a causal rpes.

Example 5. An example of out-of-causal order reversibility can be obtained from
the definition of the rpes P in Example 1 by replacing b . a by a . b. Then, we

have ∅ {a}−→ {a} {b,c}−→ {a, b, c} {a}−→ {b, c}. Note that a can be reversed even in the
presence of the event b, which causally depends on a.

Cause-respecting and causal rpeses enjoy the following useful properties [24].

Proposition 2. Let P = (E,U,<,#,≺, .) be an rpes. Let X be a left-closed
and conflict-free set of events in E and let A,B ⊆ U . Then

– if P is cause-respecting and X
A∪B−→ X ′, then X ′ is also left-closed,

– if P is cause-respecting and X
B−→ X ′, then X ′

B−→ X,

– if P is causal and X
A∪B−→ X ′, then X ′

B∪A−→ X.

Example 6. The above properties do not hold when an rpes is not cause-respecting

or not causal. Consider the rpes in Example 5. We have that {a, b, c} {a}−→ {b, c}
but {b, c} is not left-closed.

A particular rôle will be played by the configurations that can be reached
without executing any reversible event.

Definition 12. Let P = (E,U,<,#,≺, .) be an rpes and X ∈ Confrpes(P) be a
configuration. X is forwards reachable if there exists a sequence of sets Ai ⊆ E,

for i = 1, . . . , n, such that Xi
Ai−→ Xi+1 for all i, with X1 = ∅ and Xn+1 = X.

Reversible Occurrence Nets and Causal Reversible Prime Event Structures 9

The set {b, c} in Example 6 is a reachable configuration which is not forwards
reachable. The configurations of a cause-respecting rpes are forwards reachable
(see [24]).

Proposition 3. Let P = (E,U,<,#,≺, .) be a cause-respecting rpes, and let
X be a configuration of P. Then X is forwards reachable.

3 Occurrence nets and prime event structures

We review the notion of occurrence nets [21,29]. Given a net N = 〈S, T, F,m〉,
we write <N for the transitive closure of F , and ≤N for the reflexive closure
of <N . We say N is acyclic if ≤N is a partial order. For occurrence nets, we
adopt the usual convention and refer to places and transitions respectively as
conditions and events, and correspondingly use B and E for the sets of conditions
and events ([29]). We will often confuse conditions with places and events with
transitions.

Definition 13. An occurrence net (on) C = 〈B,E, F, c〉 is an acyclic, safe net
satisfying the following restrictions:

– ∀b ∈ B. •b is either empty or a singleton, and ∀b ∈ c. •b = ∅,
– ∀b ∈ B. ∃b′ ∈ c such that b′ ≤C b,
– for all e ∈ E the set bec = {e′ ∈ E | e′ ≤C e} is finite, and
– # ⊆ E ×E defined as e #0 e

′ iff e, e′ ∈ E, e 6= e′ and •e ∩ •e′ 6= ∅, x # x′

iff ∃y, y′ ∈ E such that y #0 y
′ and y ≤C x and y′ ≤C x′, is an irreflexive

and symmetric relation.

The intuition behind occurrence nets is the following: each condition b represents
the occurrence of a token, which is produced by the unique event in •b, unless
b belongs to the initial marking, and it is used by only one transition (hence if
e, e′ ∈ b•, then e # e′). On an occurrence net C it is natural to define a notion
of causality among elements of the net: we say that x is causally dependent on
y iff y ≤C x. Occurrence nets are often the result of the unfolding of a (safe)
net. In this perspective an occurrence net is meant to describe precisely the
non-sequential semantics of a net (a semantics where concurrency is faithfully
represented), and each reachable marking of the occurrence net corresponds to a
reachable marking in the net to be unfolded. Here we focus purely on occurrence
nets and not on the nets they are unfoldings of.

Definition 14. Let C = 〈B,E, F, c〉 be a on and X ⊆ E be a set of events.
Then X is a configuration of C whenever CF(X) and ∀e ∈ X. bec ⊆ X. The set
of configurations of the occurrence net C is denoted by Confon(C).

Given an occurrence net C = 〈B,E, F, c〉 and a state X ∈ St(C), it is easy
to see that it is conflict free, i.e. ∀e, e′ ∈ X. e 6= e′ ⇒ ¬(e # e′), and left closed,
i.e. ∀e ∈ X. {e′ ∈ E | e′ ≤C e} ⊆ X.

The following propositions make clear the relations between prime event
structures, occurrence nets, states of the occurrence nets and configurations of

10 H. Melgratti, C. A. Mezzina, I. Phillips, G. M. Pinna, I. Ulidowski

b3 b4 b5

b2 b4 b2 b3

b2 b2 b3

b1 b3

b1
b1 b1

e1 e2 e1 e2

e1

e2

e1 e2

e3 e4

C1 C2 C3 C4

Fig. 1. Some occurrence nets

the prime event structures. Proofs are standard and can be found in papers
investigating prime event structures and occurrence nets.

Proposition 4. Let C = 〈B,E, F, c〉 be an occurrence net and X ∈ St(C). Then
X ∈ Confon(C).

Occurrence nets and prime event structures are connected as follows ([29]).

Proposition 5. Let C = 〈B,E, F, c〉 be an occurrence net. Then P(C) = (E,≤C ,
#) is a pes, and Confon(C) = Confpes(P(C)).

Example 7. Figure 1 illustrates some (finite) occurrence nets (nets are depicted
as usual). We can associate peses to them as follows. The net C1 has two con-
current events, which are neither causally ordered nor in conflict; hence < and
are empty. The events e1 and e2 in C2 are in conflict, i.e., e1 # e2, while they
are causally ordered in C3, namely e1 < e2, but not in conflict. Finally, in C4 we
have e1 < e3 and e2 < e4 and e1 # e2. Additionally, conflict inheritance give us
e1 # e4, e2 # e3 and e3 # e4.

Conversely, every pes can be associated with an occurrence net. With #(A)
we denote the set of events A such that ∀e, e′ ∈ A. e 6= e′ ⇒ e # e′.

Proposition 6. Let P = (E,<,#) be a pes and let ⊥ 6∈ E be a new symbol.
Then E(P) = 〈B,E, F, c〉 defined as follows

– B = {(a,A) | a ∈ E ∪ {⊥} ∧A ⊆ E ∧#(A) ∧ (a 6= ⊥ ⇒ ∀e ∈ A. a < e)},
– F = {(b, e) | b = (a,A) ∧ e ∈ A} ∪ {(e, b) | b = (e,A)}, and
– c = {(a,A) | (a,A) ∈ B ∧ a = ⊥}.

is an occurrence net, and Confpes(P) = Confon(E(P)).

4 Reversible occurrence nets and causal reversible prime
event structures

We now introduce the notion of reversible occurrence nets. A similar notion has
been proposed in [19] for adding causal-consistent reversibility to Petri nets by

Reversible Occurrence Nets and Causal Reversible Prime Event Structures 11

making reversible every event in the unfolding of the net. In this work we deal
with a generalised version of reversible occurrence nets in which transitions may
be irreversible, i.e., we do not require every transition of a net to be undoable.
The intuition behind reversible occurrence nets is the following: we add special
transitions (events in the classical occurrence net terminology) to an occurrence
net which, when executed, undo the execution of other (standard) transitions.
When we remove these special transitions from a reversible causal net we obtain
a standard occurrence net.

Definition 15. A reversible occurrence net (ron) is a tuple R = 〈B,E,U, F, c〉
where 〈B,E, F, c〉 is a safe net such that

– U ⊆ E and ∀u ∈ U . ∃! e ∈ E \ U such that •u = e• and u• = •e,
– ∀e, e′ ∈ E. •e = •e′ ∧ e• = e′• ⇒ e = e′,
–

⋃
e∈E(•e ∪ e•) = B, and

– CE\U = 〈B,E \ U,F ′, c〉 is an occurrence net, where F ′ is the restriction of
F to the transitions in E \ U .

The events in U are the reversing ones and we often say that a reversible oc-
currence net R is reversible with respect to U . We write E for the set of events
E \U and CE instead of CE\U . The first condition in Definition 15 implies that
each reversing event u ∈ U is associated with a unique event e that causes the
effects that u is intended to undo; hence e here is a reversible event. Moreover,
the second condition ensures that there is an injective mapping h : U → E that
associates each event u ∈ U with a different event e ∈ E such that •e = u• and
e• = •u, in other words, each reversible event has exactly one reversing event.
The third requirement guarantees that all conditions (places) of the net appear
at least in the pre or the postset of some event (transition), i.e., there are no
isolated conditions. The last condition ensures that the net obtained by deleting
all reversing events is an occurrence net.

Example 8. We present some reversible occurrence nets in Figure 2. The revers-
ing events are drawn in red, and their names are underlined. The events e1 and
e2 in R1 are both reversible, while e1 is the only reversible event in R2. In R3

the events e1, e3 and e4 are the reversible ones.

We prove that the set of reachable markings of a reversible occurrence net is
not influenced by performing reversing events.

Proposition 7. Let R = 〈B,E,U, F, c〉 be an ron. Then MR = MCE
.

Proof. One direction is trivial, namely MCE
⊆MR. For the other direction, we

first observe that ¬(c [e〉) holds for all e ∈ U . This is because CE is an occurrence
net, and this implies that ∀b ∈ c. •b is either ∅ or it contains elements in Er,
and ∀e ∈ U . •e ∩ b• = ∅. Now we show that if an event u ∈ U is executed
then the corresponding event h(u) has been executed before. W.l.o.g. we assume
that all the events executed before u are the events in E \ U . Consider the fs
σ [u〉σ′, then we have lead(σ) [u〉 , which means that •u ⊆ lead(σ), but the

12 H. Melgratti, C. A. Mezzina, I. Phillips, G. M. Pinna, I. Ulidowski

b4 b5

b2 b4 b2 b3

b2 b3

b1 b3 b1

b1

e1 e2e1 e2 e1e1 e2

e1 e2e1

e3e3 e4 e4

R1 R2 R3

Fig. 2. Some reversible occurrence nets

conditions •u have been produced by the execution of a unique event, namely
h(u). Now we prove that σ [u〉m can be reached without executing both u and
h(u). Consider the marking lead(σ), as σ [u〉 we know that h(u)• ⊆ lead(σ).
Now σ can be rewritten as σ′′ [h(u)〉σ′′′ and h(u) is concurrent with all the
events in σ′′′, which means that σ can be rewritten as σ̂ [h(u)〉 lead(σ). Now we
have m = lead(σ̂) which implies that each reachable marking can be reached
executing the events in E \ U only, hence MR ⊆MCE

.

A consequence of the above proposition is the following corollary, which es-
tablishes that each marking can be reached by using just forward events.

Corollary 1. Let C = 〈B,E,U, F, c〉 be an ron and σ be an fs. Then, there
exists an fs σ′ such that Xσ′ ⊆ E and lead(σ) = lead(σ′).

Definition 16. Let R = 〈B,E,U, F, c〉 be an ron, and X ⊆ E be a set of for-
ward events. Then, X is a configuration of R whenever CF(X) and ∀e ∈ X. bec∩
E ⊆ X. The set of configurations of R is usually denoted with Confron(R).

A configuration of a reversible occurrence net R with respect to U is a subset of
E\U ; consequently, the reversing events (i.e., the ones in U) that may have been
executed to reach a particular marking are not considered as part of the con-
figuration. Observe that, differently from occurrence nets, St(R) 6= Confron(R)
because the former may contain also reversing events. However, as a consequence
of Corollary 1, there is no loss of information.

Proposition 8. Let R = 〈B,E,U, F, c〉 be an ron. Then X ∈ Confron(R) iff
X ∈ Confon(CE).

We show how to construct a reversible occurrence net from an occurrence net,
once we have identified the events to be reversed.

Definition 17. Let C = 〈B,E, F, c〉 be an occurrence net and U ⊆ E be the set
of reversible events. Define R(C) = 〈B, Ê, U ×{r}, F̂ , c〉 be the net where Ê and
F̂ are defined as follows:

– Ê = E × {f} ∪ U × {r}, and

Reversible Occurrence Nets and Causal Reversible Prime Event Structures 13

– F̂ = {(b, (e, f)) | (b, e) ∈ F} ∪ {((e, f), b) | (e, b) ∈ F} ∪
{(b, (e, r)) | (e, b) ∈ F} ∪ {((e, r), b) | (b, e) ∈ F}.

The mapping h : U × {r} → E × {f} is defined as h(e, r) = (e, f).

The construction above simply adds as many events (transitions) as those to
be reversed. The preset of each added event is the postset of the corresponding
event to be reversed, and its postset is defined as the preset of the event to be
reversed. The events in U × {r} are the reversing events.

Proposition 9. Let C = 〈B,E, F, c〉 be an occurrence net, U ⊆ E be the set of
reversible events, and R(C) = 〈B, Ê, U × {r}, F̂ , c〉 be the net in Definition 17.
Then, R(C) is a reversible occurrence net with respect to U × {r}.

Proof. We just have to prove that R(C) is a safe net; the other conditions are
satisfied by construction. First we observe that if b 6∈ c and •b is not a singleton
in R(C) then •b contains at most one event of the form (e, f), and it contains
at least one of the form (e′, r), and these are originated by the events in b• in
C. In the case b ∈ c and •b is not empty, then again •b contains only events of
the form (e′, r), and these are originated by the events in b• in C. Assume it is
not, and assume that b ∈ B is the condition which receives a token when it is
already marked. As C is an occurrence net, if the condition is marked then the
event e ∈ E such that b ∈ e• has been executed and none of the events e′ ∈ E
such that e′ ∈ b• (if any) have yet been executed. Thus in R(C) the event (e, f)
has been executed and none of the events (e′, f) ∈ b• has been executed yet. To
be marked again an event of the form (e′′, r) ∈ •b should have occurred, but this
is impossible as none of the events (e′, f) ∈ b• have been executed, and among
these also (e′′, f), contradicting the fact that the condition b is marked again.

Example 9. Consider the occurrence net C1 in Figure 1, and assume that both
events are reversible. The net R1 in Figure 2 is R(C1) (after renaming events with
the convention that (e, f) is named as e and (e, r) as e). The ron R3 in Figure 2
is R(C4), with C4 in Figure 1 and the set of reversible events U = {e1, e2, e4}.

From ron to rpes: As is usually done for occurrence nets, we now associate
each reversible occurrence net with a reversible prime event structure. Given
an ron R = 〈B,E,U, F, c〉, we denote the set of events {e′ | e <R e′} by dee.
Observe that this set is not necessarily conflict-free.

Proposition 10. Let R = 〈B,E,U, F, c〉 be a reversible occurrence net with
respect to U , then Cr(R) = (E′, U ′, <,#,≺, .) is its associated rpes, where

– E′ = E and U ′ = h(U),
– < is <CE

, and # is the conflict relation defined on the occurrence net CE,
– e . e′ whenever e ∈ de′e, e ≺ e′ whenever e = e′, and �=<.

Proof. First of all it is quite clear that (E′, <,#) is a ppes (if we close < reflex-
ively we get indeed a pes), as it is obtained by CE . The relation ≺ ⊆ E′ × U ′

14 H. Melgratti, C. A. Mezzina, I. Phillips, G. M. Pinna, I. Ulidowski

satisfies the requirement that e ≺ e and that {e′ | e′ ≺ e} is finite for each e ∈ U ′
as it contains just e. If e ≺ e then not e . e as e 6∈ dee. The sustained causation
relation � coincides with the relation < and so the conflict relation is inherited
along this relation. Furthermore, for e ∈ U ′, if e < e′ for some e′, then we have
that e′ . e, as required. We can then conclude that Cr(R) is an rpes.

Example 10. Consider the reversible occurrence net R3 in Figure 2. The asso-
ciated rpes has the events {e1, e2, e3, e4} and the reversible events {e1, e3, e4}.
The causality relation of the associated ppes is e1 < e3, e2 < e4, the conflict
relation is generated by e1#e2, and it is inherited along�, which coincides with
<. The reverse causality stipulates that e1 ≺ e1, e3 ≺ e3 and e4 ≺ e4 and finally
e3 . e1, as to be allowed to undo e1 it is necessary to undo e3 first.

The following result states that the rpes associated to a reversible occurrence
net is causal, hence cause-respecting.

Proposition 11. Let R = 〈B,E,U, F, c〉 be a reversible occurrence net with
respect to U and Cr(R) = (E′, U ′, <,#,≺, .) be the associated rpes. Then Cr(R)
is a causal rpes.

Proof. Easy inspection of the construction in Proposition 10. The sustained
causality � clearly coincides with <. If e ≺ e′ then e′ = e and by construc-
tion if e . e′ then e′ < e as e ∈ de′e.

We show that each configuration of an ron is a configuration of the correspond-
ing rpes, and vice versa.

Theorem 1. Let R = 〈B,E,U, F, c〉 be a reversible occurrence net with respect
to U and Cr(R) = (E′, U ′, <,#,≺, .) be the associated rpes. Then X ⊆ E′ is a
configuration of R iff X is a configuration of Cr(R).

Proof. As Cr(R) is a cause-respecting and causal rpes we have that each config-
uration is forward reachable, and the forward reachable configurations are pre-
cisely those conflict-free and left-closed of the ppes Cr(R) = (E′, <,#), which
correspond to the configurations of the occurrence net RE .

We stress that a reversing event in a reversible occurrence net is enabled at
a marking when the conditions in the postset of the event to be reversed are
marked. This may happen only when all the events that causally depend on the
event to be reversed have either been executed and reversed or have not been
executed at all. Thus every ron enjoys causally consistent reversibility [9,15],
and consequently cannot implement the so called out-of-causal order reversibil-
ity [13]. In contrast, rpeses are able to model out-of-causal order reversibility
(as illustrated in Example 5).

Proposition 12 below formalises what are called mixed-reverse transitions
in [11], namely a correspondence between the steps in a reversible occurrence
net and the sequences of reachable configurations of the associated rpes. We
now introduce some auxiliary notation. Let R = 〈B,E,U, F, c〉 be an ron, and
X ⊆ E be a configuration of R, we write mark(X) to denote the marking reached
after executing the events in X; this marking can be expressed as (c∪X•)\ •X.

Reversible Occurrence Nets and Causal Reversible Prime Event Structures 15

Proposition 12. Let R = 〈B,E,U, F, c〉 be a reversible occurrence net and
Cr(R) = (E′, U ′, <,#,≺, .) be its associated rpes. Let X ∈ Confron(R) and
A ⊆ E be a set of events such that mark(X) [A〉 . Then Â∪B is enabled at X in
Cr(R), where Â = {e ∈ A | e 6∈ U} and B = {e ∈ A | e ∈ U}.

Proof. By Theorem 1 we know that X ∈ Confrpes(Cr(R)). We have to check that
Â ∪ B is enabled at X. As mark(X) [A〉 we know that •A ⊆ mark(X), hence
A ∩X should be equal to ∅. Furthermore for any e ∈ A ∩ U , as mark(X) [{e}〉 ,
we have that h(e) ∈ X (otherwise the conditions enabling e would not have
been produced), and then we have that B = {h(e) | e ∈ B} ⊆ X. Finally, as
mark(X) [A〉 , we have that CF(X ∪ Â) holds. Consider now e ∈ Â, and e′ < e.
Clearly e′ ∈ X \ B. Assume the contrary, then e′ ∈ B and there exists an
e′ ∈ A ∩U such that h(e′) = e′, but then we have that ¬mark(X) [A〉 . Consider
now e ∈ B (which means that e ∈ A∩U) and e′ ≺ e. As Cr(R) is a causal rpes,
we know that e′ = e and e ∈ X \(B\{e}). Take now e ∈ B and e′.e. This means
that e′ ∈ dee which implies that e 6∈ X, and also that e 6∈ Â. By Definition 9 we
can conclude that Â ∪B is enabled at X. Finally we observe that mark(Y) = c′

where mark(X) [A〉 c′ and X
Â∪B−→ Y .

From rpes to ron: Correspondingly to what is usually done when relating nets
to event structures, we show that if we focus on causal rpeses then we can relate
them to reversible occurrence nets. The construction is indeed quite standard
(see [29,4] among many others), but we do need a further observation on causal
rpes.

Proposition 13. Let P = (E,U,<,#,≺, .) be a causal rpes. Then, # is in-
herited along <, i.e. e # e′ < e′′ ⇒ e # e′′.

Proof. In general we have that, given an rpes, (E,�,#) is a pes [24]. But in a
causal rpes we have that � is indeed the transitive closure of <.

A consequence of this proposition is that the conflict relation is fully charac-
terized by the causality relation.

The same intuition underlying the introduction of reversible occurrence net
can be used in associating a net to a causal rpes like the one used to associate
an occurrence net to a pes.

Definition 18. Let P = (E,U,<,#,≺, .) be a causal rpes, and ⊥ 6∈ E be a
new symbol. Define Er(P) as the Petri net 〈B, Ê, F, c〉 where

– B = {(a,A) | a ∈ E ∪ {⊥} ∧A ⊆ E ∧#(A) ∧ a 6= ⊥ ⇒ ∀e ∈ A. a� e},
– Ê = E × {f} ∪ U × {r},
– F = {(b, (e, f)) | b = (a,A) ∧ e ∈ A} ∪ {((e, f), b) | b = (e,A)} ∪

{(b, (e, r)) | b = (e,A)} ∪ {((e, r), b) | b = (a,A) ∧ e ∈ A}, and
– c = {(a,A) | (a,A) ∈ B ∧ a = ⊥}.

In essence the construction above takes the pes associated to an rpes and con-
structs the associated occurrence net, which is then enriched with the reversing
events (transitions). The result is a reversible occurrence net.

16 H. Melgratti, C. A. Mezzina, I. Phillips, G. M. Pinna, I. Ulidowski

Proposition 14. Let P = (E,U,<,#,≺, .) be a causal rpes. Then Er(P) =
〈B, Ê, U × {r}, F, c〉 as defined in Definition 18 is a reversible occurrence net
with respect to U × {r}.

Proof. By construction Er(P)E×{f} is a occurrence net. The other requirements
can be easily checked. For each (e, r) there exists a unique event (e, f), and if two
events share the same preset and postset they are clearly the same event. Each
condition b ∈ B is clearly related to an event in E×{f} hence in Ê \ (E′×{r}).

Theorem 2. Let P be a causal rpes. Then X ′ is a configuration of Er(P) iff X
is a configuration of P, where X ′ = {(e, f) | e ∈ X}.

Proof. Let P = (E,U,<,#,≺, .). Consider X ∈ Confrpes(P). As P is a cause-
respecting and causal rpes we have that X is forward reachable, hence X is a
configuration of the ppes (E,<,#), which we denote with P , and then X ′ =
{(e, f) | e ∈ X} is a configuration also of the occurrence net associated to this
event structure as, by Proposition 1, we have that Confppes(P) = Confpes(hc(P)).
For the converse it is enough to observe that, up to renaming of events, Cr(Er(P))
is indeed P.

Clearly, if we start from a reversible occurrence net, we get an rpes from
which a reversible occurrence net can be obtained having the same states (up to
renaming of events).

Corollary 2. Let R be a ron. Then St(Er(Cr(R))) = St(R).

Example 11. Consider the rpes with four events {e1, e2, e3, e4} such that e1 <
e3 and e2 < e4, e1 is in conflict with e2 and this conflict is inherited along
<. Furthermore, let e1 and e3 be reversible, and e3 . e1. The construction in
Definition 18 gives the net below.

(⊥, {e2})

(⊥, {e1, e2})

(⊥, {e1})

(e1, ∅)

(e2, ∅)

(e1, {e3})

(e2, {e4}) (⊥, {e4})

(⊥, {e3})

(e3, ∅)

(e4, ∅)
(⊥, {e1, e4})

(⊥, {e2, e3})

(⊥, {e3, e4})

e1

e1

e2

e3

e3

e4

5 Conclusions and future work

The constructions we have proposed to associate a reversible occurrence net to a
causal reversible prime event structure, and vice versa, are certainly driven by the
classical ones (see [29]) for relating occurrence nets and prime event structures.

Reversible Occurrence Nets and Causal Reversible Prime Event Structures 17

The consequence of this approach is that the causality relation, either the one
given in an rpes or the one induced by the flow relation in the occurrence net
obtained ignoring the reversing events, is the one driving the construction. One
of the other two relations of an rpes is substantially ignored (and we obtain from
a ron a causal rpes where the reverse causality relation just says that an event
can be reversed only after it has occurred) whereas the second (prevention) is
tightly related to the causality relation: b is caused by a precisely when b prevents
undoing of a. The notion of reversible occurrence net we have proposed suggests
this construction, so the problem of finding which kind of net would correspond
to, for example, a cause-respecting or even an arbitrary rpes remains open and
certainly deserves to be investigated. It is however interesting to observe that
the construction in Definition 18 gives a reversible occurrence net even when
the rpes one started with is not a causal rpes. Consider the rpes with two
events {e1, e2} such that e1 < e2 and where the conflict and the prevention
relations are empty. The only reversible event is e1 and e1 ≺ e1. The set {e2}
is a reachable configuration: we can remove e1 from a reachable configuration
{e1, e2} by performing the event e1. This is an example of out-of-causal order
computation. Given this rpes, our construction produces the following ron,
which does not have {e2} among its configurations.

(⊥, {e1})
(e1, ∅) (e1, {e2}

(⊥, {e2}) (e2, ∅)

e1

e2

e1

The constructions we have proposed are somehow the more adherent to what
is usually done, based on the interpretation that causality implies that the event
causing some other event somehow produces something that is used by the latter.
This is not the only interpretation of what causality could mean. In fact, causality
is often confused with the observation that two causally related events appear
ordered in the same way in each possible execution, and when we talk about
ordered execution, it should be stressed that this can be achieved in several
ways, for instance using inhibitor arcs. Consider the net C:

b1 b2

b3 b4

e1

e2

C

b1 b2

b3 b4

e1

e1

e2

C ′

b1 b2

b3 b4

e1

e1

e2

C ′′

Here the event e2 can be executed only after the event e1 has been executed.
However, e1 does not produce a token (resource) that must be used by e2. If we
simply make the event e1 reversible but do nothing to prevent reversing of e1

18 H. Melgratti, C. A. Mezzina, I. Phillips, G. M. Pinna, I. Ulidowski

before e2 is reversed, then we would obtain the net C ′. We could do better in
C ′′ where we model prevention using so-called read arcs [20]. Hence, using in-
hibitor or read arcs seem feasible ways forward to capture more precisely the
new relations of rpeses, including prevention. A similar approach has been al-
ready pursued in [8] to model so-called modifiers that are able to change the
causality pattern of an event. This suggests that, for arbitrary rpeses, we need
to find relations different from the flow relation to capture faithfully (forward
and reverse) causal and prevention dependencies. This will be the subject of
future research.

Acknowledgments: The authors would like to thank the reviewers for useful
comments and suggestions.

References

1. Y. Arbach, D. S. Karcher, K. Peters, and U. Nestmann. Dynamic Causality in
Event Structures. Logical Methods in Computer Science, 14(1), 2018.

2. P. Baldan, N. Busi, A. Corradini, and G. M. Pinna. Domain and event struc-
ture semantics for Petri nets with read and inhibitor arcs. Theoretical Computer
Science, 323(1-3):129–189, 2004.

3. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures and processes. Information and Computation, 171(1):1–49, 2001.

4. M. Bartoletti, T. Cimoli, and G. M. Pinna. Lending Petri nets. Science of Com-
puter Programming, 112:75–101, 2015.

5. K. Barylska, M. Koutny, L. Mikulski, and M. Pia̧tkowski. Reversible computation
vs. reversibility in Petri nets. Science of Computer Programming, 151:48–60, 2018.

6. G. Boudol. Flow Event Structures and Flow Nets. In Semantics of System of
Concurrent Processes, LNCS 469, pages 62–95, 1990.

7. G. Casu and G. M. Pinna. Flow unfolding of multi-clock nets. In G. Ciardo and
E. Kindler, editors, Petri Nets 2014, LNCS 8489, pages 170–189, 2014.

8. G. Casu and G. Michele Pinna. Petri nets and dynamic causality for service-
oriented computations. In Proceedings of SAC 2017, pages 1326–1333. ACM, 2017.

9. V. Danos and J. Krivine. Reversible communicating systems. In CONCUR 2004,
LNCS 3170, pages 292–307, 2004.

10. V. Danos and J. Krivine. Transactions in RCCS. In CONCUR 2005, LNCS 3653,
pages 398–412, 2005.

11. D. de Frutos-Escrig, M. Koutny, and L. Mikulski. Reversing steps in Petri nets.
In PETRI NETS 2019, LNCS 11522, pages 171–191, 2019.

12. E. Giachino, I. Lanese, and C. A. Mezzina. Causal-consistent reversible debugging.
In FASE 2014, LNCS 8411, pages 370–384, 2014.

13. S. Kuhn and I. Ulidowski. A calculus for local reversibility. In RC 2016, LNCS
9720, pages 20–35, 2016.

14. I. Lanese, M. Lienhardt, C. A. Mezzina, A. Schmitt, and J-B. Stefani. Concurrent
flexible reversibility. In ESOP 2013, LNCS 7792, pages 370–390, 2013.

15. I. Lanese, C. A. Mezzina, and J-B. Stefani. Reversibility in the higher-order π-
calculus. Theoretical Computer Science, 625:25–84, 2016.

16. I. Lanese, C. A. Mezzina, and F. Tiezzi. Causal-consistent reversibility. Bulletin
of the EATCS, 114, 2014.

Reversible Occurrence Nets and Causal Reversible Prime Event Structures 19

17. I. Lanese, A. Palacios, and G. Vidal. Causal-consistent replay debugging for mes-
sage passing programs. In FORTE 2019, LNCS 11535, pages 167–184, 2019.

18. R. Langerak. Bundle event structures: A non-interleaving semantics for LOTOS.
In FORTE ’92, IFIP Transactions C-10, pages 331–346, 1993.

19. H. C. Melgratti, C. A. Mezzina, and I. Ulidowski. Reversing P/T nets. In COOR-
DINATION 2019, LNCS 11533, pages 19–36, 2019.

20. U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6), 1995.
21. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoretical Computer Science, 13:85–108, 1981.
22. A. Philippou and K. Psara. Reversible computation in Petri nets. In RC 2018,

LNCS 11106, pages 84–101, 2018.
23. I. Phillips and I. Ulidowski. Reversing algebraic process calculi. Journal of Logic

and Algebraic Programming, 73(1-2):70–96, 2007.
24. I. Phillips and I. Ulidowski. Reversibility and asymmetric conflict in event struc-

tures. J. Logic and Algebraic Methods in Programming, 84(6):781–805, 2015.
25. I. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the mod-

elling of the ERK signalling pathway. In RC 2012, LNCS 7581, pages 218–232,
2013.

26. I. Ulidowski, I. Phillips, and S. Yuen. Reversing event structures. New Generation
Computing, 36(3):281–306, 2018.

27. R. J. van Glabbeek and G. D. Plotkin. Configuration structures, event structures
and Petri nets. Theoretical Computer Science, 410(41):4111–4159, 2009.

28. M. Vassor and J-B. Stefani. Checkpoint/rollback vs causally-consistent reversibil-
ity. In RC 2018, LNCS 11106, pages 286–303, 2018.

29. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, LNCS 255, pages 325–392, 1987.

	Reversible Occurrence Nets and Causal Reversible Prime Event Structures

