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and non self-adjoint operators

Abstract

The overall aim of this dissertation is to investigate some problems in spectral anal-

ysis for self-adjoint and non self-adjoint operators which arise in different contexts of

physics.

In the first part of this thesis we study the problem of localisation of complex eigen-

values of non Hermitian perturbations of self-adjoint operators realised by means of

complex potentials. In particular, we focus our attention on two different operators.

The first one is the Laplacian defined on the real half line. The other is a second order

two dimensional operator which arises in the context of the physics of materials, in

particular from the study of the Hamiltonian of a double layer graphene. For both we

provide Keller-type estimates on the localisation of complex eigenvalues.

The existence of trapped waves solutions for a set of equations describing the dynamics

of a stratified two layers fluid of different densities, confined in a ocean channel of fixed

width and varying depth and subject to rotation is studied in the second chapter. The

existence of these solutions is then recovered by proving the existence of points in the

point spectrum of a two dimensional operator pencil. We prove that, under some

smallness assumptions on the difference between the two fluid densities and some

geometric assumption of the channel’s shape, the problem has positive solution.

The last part of this dissertation focuses on existence of particular Wronskian type

of solutions for the KdV equation of the type of complex complexitons. We study

these solutions both from a dynamical point of view when seen evolving in time, and

also for fixed values of time if regarded as potentials for a spectral problem for the

Schrödinger operator.
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Introduction

Dico paura, perché allora non avrei saputo definire con altra parola più

vera il mio turbamento. Sebbene avessi letto libri e romanzi, anche

d’amore, in realtà ero rimasto un ragazzino semi-barbaro; e forse, anche,

il mio cuore, approfittava, a mia insaputa, della mia immaturità e

ignoranza, per difendermi contro la verità?

E. Morante, L’Isola di Arturo

This dissertation presents some of the studies the author has undertaken during his

doctoral studies. The aim is to include the original results while collocating them

among the most relevant ones present in literature and to provide the reader with

additional details. The collection includes works in spectral analysis which span a

broad variety. They not only can be placed into distinct mathematical areas but they

also differ in terms of research objectives.

In particular, the opportunity or not to settle the problem in the framework of the

theory of self-adjoint operators draws a clear division into two different families of

problems. Of course such distinction is yet too coarse and it requires some elucidations.

It is a fact that any closed and densely-defined operator H is self-adjoint if it satisfies

any two of the following properties:

• Normal HH∗ = H∗H,

• Symmetric Hψ = H∗ψ for every function ψ in the domain of H,

• Real spectrum σ(H) ⊂ R,

and conversely every self-adjoint operator satisfies all three of the properties above.

Therefore every non self-adjoint operator can be classified according to the properties

illustrated above, as having either only one or none of them.
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In this dissertation we study, in particular, a certain type of operators for which none

of the properties listed above hold. They are of the form

H = H0 + V (x)

where H0 is in general self-adjoint and V (x) is a complex perturbation. Particular

attention will be paid to determining the nature of the spectrum and the localisation

of the eigenvalues in the complex plane. We note that in this context, the set of tools

available in the complex case is very limited. Results such as the variational char-

acterisation of the eigenvalue valid in the self-adjoint case and the spectral theorem,

which extends to normal operators [26] and that can be furthermore generalised to

symmetric operators [41], do not hold any more. In the words of E. B. Davies [33]:

“ Studying non-selfadjoint operators is like being a vet rather than a doc-

tor: one has to acquire a much wider range of knowledge, and to accept

that one cannot expect to have as high a rate of success when confronted

with particular cases. ”

This dichotomy and the impossibility for the Hermitian and the non-Hermitian cases

to cohabit under a unified theory, besides a range of different phenomena which are

observed separately in each specific case, can be partially justified by an uneven suc-

cess that they encountered in time, especially when used to describe mostly physic

scenarios. In the last century there have been very few mathematicians attracted to

the study of non self-adjoint perturbation problems from a mathematical perspective

and among them, the most prominent names are those of Naimark and Pavlov. Their

efforts were mainly devoted to the understanding of the structure of the spectrum

of the Laplacian endowed with complex potentials and of the scattering theory for

operators with dissipative terms.

While the mathematical community seemed to be not very engaged, new impulses

to this field have come from other disciplines. A very simple yet meaningful example

which shows how complex potentials naturally arise in physics is borrowed from optics.

The following argument lacks rigour but provides an heuristic interpretation of a

complex physical quantity.

Let us assume that we want to describe how an electromagnetic impulse

2



travels in a anisotropic waveguide with refractive index Ri. If a planar

wave of frequency f propagates through a medium along the x-direction

with velocity v, its electric field E is described in its generality by

E = E0 exp {i2πf (t− (x/v))}

and its velocity of propagation is related to c (see [75]), the speed of light

in vacuum and the index Ri by

v =
c

Ri

.

What happens when the index Ri is complex. Substituting the above

expression for the velocity in the one of E, a damping term appears. When

considering I the intensity of the signal, which is proportional to the square

of the modulus of the electric field, we have

I = const.|E0|2e−2πf Im(Ri)x/c.

This simple computation shows how absorption phenomena in light propagation can

be described by means of complex refractive indexes, which are in turn derived in

mathematical terms as complex eigenvalues of an appropriate spectral problem where

the perturbative term has then to be complex.

In fact, in the last twenty years an increasing interest in the use of complex potentials

and eigenvalues has appeared in many other disciplines. A partial list of studies where

complex potentials have already been used includes works on biological populations

[127], improvements in numerical simulation [68] and dynamics of nuclear, atomic and

molecular system in open physical models [8, 123, 128].

In studying the spectrum of non self-adjoint operator of the type H = H0 +V (x), and

in particular its complex eigenvalues, two different types of results are usually sought:

uniform bounds valid for all the eigenvalues or bounds for the sum of the their moments

or more general functions of them. The former deals in its most inclusive form with

the possibility of having bounds of the type

f(λ) ≤ g(V (x)),
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where λ stands for any eigenvalue of H and f and g are two positive functions while the

latter, instead, can be interpreted as a generalisation of the Lieb-Thirring inequality∑
λ∈σd

f(λ) ≤ g(V (x)).

In this dissertation we will mainly focus our attention on problems of the first type,

namely those concerning localisation results for complex eigenvalues. Nonetheless,

some results of the second type will also be recalled. In particular, we will consider

the special case when f(λ) = |λ|0, which is related to the eigenvalue counting function.

A useful fact first appeared in [2] in 1999 is the extension of the validity of the Birman-

Schwinger principle [13, 146] to the context of non self-adjoint operators. In its sim-

plest formulation it provides a correspondence between any eigenvalue λ of the oper-

ator H = H0 +V (x) and the eigenvalue −1 of the operator V |V |−1/2(H0−λ)−1|V |1/2,

often referred to in literature as the Birman-Schwinger Operator. In the same paper,

the most significant consequence which followed simply from an application of the

Birman-Schwinger principle was the extension of a classical real Keller-type estimate

for the Laplacian to complex potentials V (x) ∈ L1(R). In particular Davies proved

that, under only the integrability assumption, any non positive real eigenvalue λ of

the operator −∂2
xx + V (x) defined on the whole real line must lie in a disk, i.e.

|λ|1/2 ≤ ‖V ‖1

2
.

The paper [2] can be considered in many respect a milestone in the context of spectral

analysis of non self-adjoint perturbation. The Birman-Schwinger principle can be

indeed regarded as the most powerful tool that mathematicians have now available for

the analysis of the distribution of complex eigenvalues in combination with resolvent

estimates. The first chapter of this thesis will be completely dedicated to the study

of such problems.

We start with some classical results on spectral analysis which are needed to set

up properly the spectral problem we want to study in the non self-adjoint context.

This is really a preliminary section and the majority of the statements will be given

without proof. Subsequently we present the main results, up to date in the literature

on complex perturbations, mostly about the Schrödinger operator, showing the link
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which exists between the geometry of the region where the complex eigenvalues lie in

the complex plane and the regularity of the operator’s kernel. It will be discussed,

in particular, the use of the uniform Sobolev estimates first proved in 1987 by Kenig,

Ruiz and Sogge and their more recent refinements, formulated in terms of Schatten

norms, have produced progressively improved estimates on the localisation of complex

eigenvalues. The two following sections in the same chapter are dedicated to original

results.

In Section 3 we study a family of a one-dimensional Schrödinger operator defined on

the half line endowed with an inverse square potential

H0,ν : u(x)→
(
− d2

dx2
+

(ν2 − 1/4)

x2

)
u(x).

The main results of this section are contained in Theorem 1.21 and Theorem 1.22.

They both provide a description of the region in the complex plane where eigenvalues

for different values of ν > 0 of the perturbed problem lie, for a complex potential

respectively in L1(0,∞) and some weighted Lp(0,∞) spaces with p > 1 .

The presence of weights in the estimates is directly connected to the classical de-

composition of the multi-dimensional radial Laplacian operator into a direct sum of

one-dimensional operators defined on the half line of the type of H0,ν , for opportune

values of ν. As we will see in more detail at the end of that section, some numerical

evidences suggests that the region Srd , where complex eigenvalues lie for the radial

Laplacian in Rd with d ≥ 2, depends in fact not trivially on the angle that eventually

the eigenvalue spans with the real positive axes. Therefore, we infer that the shape

of Srd does not resemble any more a circle as it happens in Davies’ example. Instead,

for all integer dimensions, the shapes seem to look all alike the typical droplet shape,

which was in fact firstly found in [62] in dimension one for the operator H0,1/2 defined

on the half positive line with the Dirichlet condition at the origin, as shown in Figure

1.

We note that shapes different from the circle one for the region where the complex

eigenvalues might lie have been observed also in other works. We mention the work

of Davies and Nath [36] which has been the first result showing consistently such

characteristic and the paper of Enblom [47] where the operator H0,1/2 is studied in

the Banach space Lp(0,∞).
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Figure 1: Continuous line: from the outer most, the plot of the regions Srd for d = 3, 4, 5, 6. Dashed
line is the limit case, d = 2.

Another relevant example of such phenomenon is contained in Section 4. There,

we study the complex perturbations of the second order differential operator defined

on L2(R2) which comes from the formulation of the bilayer-graphene’ Hamiltonian.

This section is based on the results contained in [141]. In the recent past, graphene

and agglomerations of it in several layers stacked together have reached a worldwide

spotlight. Its promising applications in technology in fact made it one of the most

studied and fashionable material of the last decade, attracting a number of researchers

which is likely to increase in future. Thus the relevance of our study.

In particular, the operator of the bilayer graphene reads as

Dm =

(
m 4∂2

z̄

4∂2
z −m

)
, ∂z̄ =

1

2

( ∂

∂x1

+ i
∂

∂x2

)
, ∂z = ∂z̄, (x1, x2) ∈ R2.

The main results of this section on the localisation of complex eigenvalues are in The-

orem 1.25 and Theorem 1.27. Recently, improved results for the same operator have

been produced by Cuenin [30] using an adaptation of the uniform Sobolev estimates

for the operator Dm. As mentioned earlier, these uniform estimates have been ini-

tially used to improve the localisation results for the Laplacian. Differently to what

happens for the two dimensional Schrödinger operator, where the lower end point in

the uniform estimates has to be excluded, this need not to happen for the bilayer

graphene operator. There results will be recalled in Section 1.4.4.

The final section contains a brief introduction on the problem of counting the number

6



of eigenvalues which are generated by complex perturbations.

We leave the field of complex perturbations of Hermitian operators to move to a more

classical argument in spectral analysis.

The problem that will be addressed in the second chapter is the existence of trapped

modes for a model of two layers of Rotating Shallow Water equation. From a phys-

ical point of view, such model is extensively used as a good approximation for the

atmospheric and oceanic motion of fluids at mid-latitudes. It is employed specifically

in models where the spatial scales of longitude and latitude are of several orders of

magnitude bigger than the typical depth dimension. For what concerns the Earth’s

rotation effects, they come into play when the fluid motions evolve with a time scale

that is comparable or, as in our case, bigger than the time scale of the Earth’s ro-

tation. For example, at mid-latitudes the Coriolis rotation frequency is of the order

of 10−4s−1. With scales of motion of 106m and maximal wind velocities of the or-

der 10m/s, the time scale of the fluid motion dynamic is 105s, of the order of days.

Therefore, in this case, the effects of the earth’s rotation are important in the model

[114]. The time scale regime is then translated in our analysis in a constraint for the

spectral parameter, as done in equation (2.21).

The principal result of this chapter is contained in Theorem 2.5 and its proof relies

heavily on the one layer case [87] where the existence of trapped modes for a model of

a single layer RSW equation was proved under simple geometric assumptions of the

waveguide, in particular on the curvature which has to satisfy some integral conditions.

Under the same assumptions and by means of similar techniques used for the single

layer case, it is possible, in the particular regime where the difference of the densities

in the two layers are small enough, to extend the result of existence of trapped waves

also in the case of two layers.

The existence of trapped wave solutions of such problems is in fact linked to the

existence of points in the discrete spectrum for a second order, self-adjoint, operator

pencil restricted to an unbounded region S ⊆ R2. In particular, we study the spectral

7



problem for the operator pencil Aγ

Aγ(ω)

(
ψ

h

)
= 0,

where

Aγ(ω)

(
ψ

h

)
: = Lγ

(
ψ

h

)
− 1

ω
Mγ

(
ψ

h

)
with Lγ andMγ two matrix valued differential operators definined for (ξ, η) ∈ R×[0, δ]

Mγ :=
α(η)

p(ξ, η)

(
f H1G

f2

G
1
H2

f H1

H2

)(
−i ∂
∂ξ

)
,

Lγ :=

−1
p

[
∂
∂ξ

(
1
p
∂
∂ξ

)
+ ∂

∂η

(
p ∂
∂η

)]
+ α(η) ∂

∂η
0

0 − 1
p2

∂2

∂ξ2
− ∂2

∂η2
+ 1

p3
∂p
∂ξ

∂
∂ξ
−
(

1
p
∂p
∂η

+ α(η)H1

H2

)
∂
∂η

+ λ2(η)

 ,

and p(ξ, η) = 1 + ηγ(ξ), where γ(ξ) is the curvature of the waveguide.

We observe that the condition on the two densities of the fluids to be very close, which

is fundamental in our proof, has already appeared naturally in the study of multilayer

shallow water equations. The same smallness condition in fact has been imposed in

the classical works of Allen [5], where trapped waves were studied for a two layer

shallow water regime in straight channel and later extended by Mysak [125], to whom

we refer for a compendium on stratified and multi layered shallow water models.

In particular, we consider in detail the case where the operator is defined on a region

which is a non intersecting strip of infinite length and finite width. For historical

reasons, usually the term adopted in literature to refer to such type of regions is

waveguide. This terminology is rooted to problems formulated in the classical theory

of acoustics and electromagnetism that originated from the study of the dynamics of

waves in channels. In particular, the existence of points in the discrete spectrum when

applied to such type of problems is related to existence of standing waves, namely to

solutions of the original dynamical problem of the form

Ψ(x, y, t) := ψ(x, y) ζ(t).

8



where (x, y) ∈ R2 and ζ(t) is a periodic function in time. The literature already avail-

able in this field is extensive and these type of problems turned out to be relevant in

many different contexts. They have found applications, for example, to the design of

optoelectronic circuits in two-dimensional photonic crystal waveguides [120] in engi-

neering, in natural sciences have been applied to the description of the electromagnetic

interaction between the ionosphere and the Earth [131] and more in fluid dynamics

to the theory of inviscid fluids flowing in a channel [37, 49]. We have mentioned here

only few examples of where the spectral theory for operators defined on waveguides is

relevant with the aim of giving the reader a glimpse of the vastness of applications in

the scientific production and the relevance of the topic. Despite being set up in vari-

ous contexts, the majority of these problems when voided of their physical meanings

reduce to the study of very similar operators and they only differ from the physical

interpretation given to the spectral parameter.

Of course, in such settings, boundary conditions for the operator have to be introduced

on ∂S. In the examples cited above, the operator in question is often the Laplacian,

or little modification of it, with imposed boundary conditions of type of Neumann or

mixed Neumann-Dirichlet. What are the respective structures of the spectrum in these

cases? Let us consider firstly the simplest case consisting in channel with constant null

curvature (a straight channel). By separation of variables it is an easy computation

to show that, regardless of the boundary conditions imposed, the spectrum of the

Laplacian consists only of its continuous part which is typically a left-bounded interval

of the real line which extends to positive infinity. Therefore, modification of this

setting should be sought in order for the discrete spectrum to appear.

In literature, the existence of eigenvalues has been established under different circum-

stances. They vary from geometric assumptions, for example local deformations of

the boundary [53], introduction of obstacles inside the channel in the case of acoustics

waveguides [37] and sheared waveguides [21]. Further modifications can be introduced

when modelling impurities by mean of potentials [51] which are usually of the type of

delta interactions. We refer to the paper of Krejčǐŕık and Kř́ıž [98] and to the refer-

ence therein for a richer presentation of the topic, a more detailed descriptions on the

cases mentioned so far along with some additional modifications, and for methodolo-

gies which have not been mentioned above, responsible again for a non empty point

spectrum.

9



Recent developments in the study of superconductivity in nano-materials and physics

of crystals have lead the attention of the mathematicians community to the study

of the case of pure Dirichlet boundary conditions too. Those, arise for example as

natural conditions for the wavefunctions of Schrödinger operator when describing a

model of two semiconductors made of different materials [74], interacting at theirs

boundaries. In this case, by analogy of the names (acoustic-electromagnetic) given in

the Neumann case, these waveguides are called quantum waveguides.

A very important result, firstly formulated by Exner and S̆eba [52] and subsequently

extended by a number of different authors, is the existence of discrete spectrum for

the Dirichlet Laplacian under the sufficient condition of any non trivial shape of the

waveguide. This purely geometric condition on the boundary and in particular on its

curvature, does not emerge in fact for the Neumann cases. The differences between

the Dirichlet and Neumann Laplacian are also in the nature of the eigenvalues: while

in the former case they lie outside the essential spectrum, in the latter this does

not happen [7, 49] and the stability of such point is a delicate matter. As an in

between situation, the case of mixed boundary condition was studied is [98]. There,

it was proven the existence of trapped modes in the case when the strip is bent in the

‘direction of the Dirichlet boundary’.

The second chapter is organised as follows: in the first section we briefly recall some

definitions and results for operator pencils. Subsequently we introduce the equation

governing the fluid motion along with the physical and geometric constraints firstly

for a straight channel and after for a general admissible geometry of the channel. In

Section 6 we then introduce the operator pencil, we study its essential spectrum in

Section 7 and finally produce our main result, Theorem 2.5, in Section 8 of the same

chapter.

The third chapter deals with the existence of a particular class of complex solutions

for the KdV equation

ut + 6uux + uxxx = 0,

of the family of Complex Complexiton solutions, which are found by the so called
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Wronskian method,

u(x, t) = − ∂2

∂x2
lnW (cosh(k1F (k1, x, t)), sinh(k2F (k2, x, t)), . . . ,

cosh(k2N−1F (k2N−1, x, t)), sinh(k2NF (k2N , x, t))),

where F (k, x, t) = (x− 4k2t) and ki ∈ C for i = 1, . . . , 2N .

We regard firstly these solutions as potentials for a spectral problem for the one

dimensional Laplace operator. In particular these potentials are isospectral in time,

and their shapes are exactly the shapes of the complexiton solutions for the KdV

equation that we aim to study.

We study, for t = 0, the discrete spectrum which originates from such perturbations

and we prove that any potential of the type of u(x, 0) is reflectionless for any complex

choice of 2N distinct waveumbers. This result extends to any real time then from the

isospectrality property.

We also consider the particular case when k2i = k2i−1 for i = 1, . . . , N

V (x, t) = − ∂2

∂x2
lnW (cosh(k1F (k1, x, t)), sinh(k1F (k1, x, t)), . . . ,

cosh(kNF (kN , x, t)), sinh(kNF (kN , x, t))),

These solutions appear to be in many respects the complex counterparts of the classical

multisoliton solutions, which were initially introduced in [103] and [66] for two and

N -real interacting solitons respectively. We study the main characterising properties

of such complex solutions like localisation and boundedness for all real times, which

in particular suggests the comparison between these solutions and their real multi-

solitons counterparts. In fact, we will not be able to provide a complete proof for

boundedness and localisation in the general case and we will leave it as an open

conjecture, supporting it with numerical examples.

It is impossible to mention the KdV equation without briefly recalling its historical

origin and its indissoluble bound with the developments of a theory for the solitons.

It was, in fact, the 1834 when firstly J. S. Russell observed and brought up to the

attention of the scientific community with the name of Great Primary Wave of Trans-

lation a certain type of water waves which were able to travel for very long distance
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in a straight channel without disappearing or changing shape. The recognition of the

shape of such waves in terms of hyperbolic functions η(x, t) = a cosh−2(b(x− ct−x0))

which followed, was a result of works of Airy, Boussinesq and Rayleigh, but it was

only in the 1895, when two Dutch mathematicians, Korteweg and his student de Vries

formulated explicitly the equation which was then named after them, which describes

the time evolution of a one dimensional small amplitude surface gravity wave in the

shallow water context. They also proved that a class of solutions for this equation is

given by the cnoidal waves, which are expressed in terms of the cn(x;m) function∗.

The KdV equation consists in fact of two qualitatively different terms. The first and

non-linear one, is the term which appears in the inviscid Burger equation, whose

solutions’ main feature is to come to a shock in finite time while the other term is

responsible for the dispersive effect. The balance of these two opposite tendencies,

the former which shrinks while the latter that stretches out the shape of the solution,

is at the origin of the soliton-like solution existence.

For a long time, the interest for the KdV equation was only limited to the field of fluid

dynamics and the study of surface waves. The study of Zabusky and Kruskal [159] in

the 1965, invested the KdV equation of new meanings, giving a decisive impulse to the

study of non-linear and dispersive equations. The KdV equation was in fact found by

Zabusky and Kruskal as the continuous limit of the Fermi-Ulam-Pasta lattice model†

and it was in this context that the expression soliton was introduced firstly. They

also pointed out the main features which characterise these solutions: they noted that

these waves can only travel rightward and that the speed increases with the amplitude

of the waves. They also ”collide elastically”, i.e. they restore the original shape after

a short period of interaction whose only effect, probably due to the non-linear term,

is that the faster wave is capable to reach a further position which would not in the

absence of any interaction. The last phenomenon goes under the name of phase shift.

Despite the word soliton contains the suffix -on which is usually utilised in particle

∗For details on cn(x;m), the cosine elliptic function of modulus m we refer to Abramowitz [3].
We note here that for m→ 1, such functions are good approximations of the hyperbolic cosh−2

†The Fermi-Ulam-Pasta lattice is a one-dimensional system which consists of a sequence of springs
of the same type whose elasticity property is ruled by a non linear version of the Hooke law. If the
force exerted is supposed to be of the form F = −k(∆ + α∆p), where ∆ is the displacement form
the equilibrium position for each spring, then in the continuous limit one derives the KdV and the
mKdV (modified-KdV) respectively for p = 2 and p = 3.
The mKdV reads as ut + 6uuxx + uxxx = 0.
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physics nomenclature and which suggests the interpretation of these objects in that

context, in fact the question of what happens during the interaction of such waves

is not come yet to a conclusive answer. Different hypothesis have been advanced

to explain the phenomenon depending whether the waves are classically considered

massive objects and so they bounce off each other elastically or, more recently, whether

the solitons should be considered capable to cross each other by mean of exchange

of energy [77], mass [121] or energy-mass [18]. We note that different interpretations

correspond, in general, to different exact multi-soliton formulae proposed in literature.

We refer to the papers [11] and [76] for a detailed introduction and a review of different

definitions.

Since being brought to new life by Zabusky and Kruskal, the KdV equation has found

application so far in a vastness of different fields, which spans water waves, ion-acustic

waves in plasma (where u represents the density of the plasma) as well as in non-linear

optics, biology and telecommunication in the study of signals’ transmission through

fibre optics. For more details, in particular on the latter application, and for other

reference we refer to Turitsyn and Mikhailov [155].

We are interested in the case when the solutions of the KdV are complex. Separating

the real and imaginary parts u(x, t) = p(x, t) + iq(x, t) in the equation, we obtain the

following coupled system for real quantitiespt + 6(ppx − qqx) + pxxx = 0,

qt + 12(pxq + pqx) + qxxx = 0.

Complex versions of the KdV equation like the one just presented and more general

versions of coupled KdV-like systems together with their solutions have been recently

attracting interest from a variety of different disciplines. For example, in [121] a

coupled KdV system has been used to address the problem of the soliton’s collision

mentioned earlier. Other generalisations of the complex KdV equation arise likewise

in physically relevant systems such as the theory of water waves, e.g. in the case of

irrotational systems [108, 107], or for two-wave modes in a shallow stratified liquid

[69] and in the physics of plasma for the case of Bose-Einstein condensates [20]. Not

only, the complex KdV equation has found relevant applications also in the physics

of atmospheric systems [110], or in nano-physics for example in the model of growth

13



of a crystal structure [93]. More recent experimental observations of complex solitons

with real energies in optical systems can be found in the context of PT -symmetry

and complex deformations of integrable equations [23, 27].

The third chapter is structured as it follows: we start by introducing the Lax’s for-

mulation of the KdV equation and the associated spectral problem. This gives us

the chance to introduce the terminology related to the KdV’s solutions, in particular

we will recall the different types of solution obtained in literature with the method

of the Wrosnkian. In the second section we introduce the class of solutions we aim

to study and we discuss their boundeness and localisation properties in time, along

with numerical simulations which explain the phase shift phenomenon also happening

in the complex case. In the last section of the same chapter we study the spectral

problem which arise for such complex perturbations of the Laplace operator.

In the last chapter we will summarise the results presented in this document and

present new ideas for future works. We will also take the chance to gather some of

the attempts tried which lead not to any satisfactory results. In particular, we will

introduce in more detail the problem of counting the complex eigenvalues of complex

perturbations of the operator H0,ν and we will try to extend a result valid for the

case ν = 1/2 already present in literature. Subsequently, we will move to the topic of

complex solutions of the KdV and there will be shown different approaches that can

lead to a proof of the absence of singularities for the complexiton solutions introduced

in the third chapter. All of them involve the study of a particular Wronskian.
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1
Uniform Eigenvalue Bounds for

complex perturbation

In this chapter we study the problem of localisation of complex eigenvalues for non-

Hermitian perturbation of self-adjoint operators. The results here are obtained using

the Birman-Schwinger principle in conjunction with estimates of the operator’s ker-

nels. The original results contained in Section 4 have been published in [141] while

the new results contained in Section 3 have been submitted and collected in the paper

[56].

1.1 The non self-adjoint problem

In this section we provide the tools needed in order to define the spectral problem for a

non self-adjoint operator. These classical results are well known in literature and can

be found in several textbooks. In order to preserve the consistency of the document

and to facilitate the readability of it we privilege the approach provided in Kato’s

monograph [89] chapters III - VI. Useful references are as well the textbooks of Birman

[15], Edmunds [44], Gesztesy [71] and Schmudgen [145]. We begin by recalling some

basic definitions and properties of the spectral sets for closed operators. There follow
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some stability results of the spectral sets and the definitions of sectorial operators and

forms. We conclude this introductory section by discussing the Birman-Schwinger

principle in its most general formulation.

1.1.1 The spectrum of a closed operator: terminology and essential

properties

We start by fixing the notation and introducing very basic concepts of spectral sets

and their fundamental properties. In the following, we will always assume T to be a

closed operator defined on a Hilbert space H endowed with an inner product 〈·, ·〉.

Definition 1.1. An operator (T,D(T )) defined on H is said to be closed if for any

Cauchy sequence {un} of functions in the operator’s domain such that un → u ∈ D(T ),

the sequence {Tun} is also convergent and its limit is Tu.

Let’s consider a linear operator (T,D(T )) defined on a Hilbert space H. Then the

range and respectively the kernel of the operator T are the sets

Ran(T ) := {Tu ∈ H | u ∈ D(T )}
Ker(T ) := {u ∈ D(T ) ∈ H | Tu = 0}

We also recall the definition of the nullity and the deficiency number for a linear

operator.

Definition 1.2. Given a closed linear operator T the nullity and the deficiency num-

bers of T are respectively the dimensions of the kernel Ker(T ) and the dimension of

the subspace H/Ran(T ), the cokernel of the operator T ,

nul(T ) := dim Ker(T ),

def(T ) := dim (H/Ran(T )) .

The index of the operator T will be then defined as

ind(T ) := nul(T )− def(T ).

We recall that the numerical range of an operator T is the (convex) set of the complex
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plane defined as

Num(T ) := {〈Tu, u〉 | u ∈ D(T ), ‖u‖ = 1} ,

and introduce the following notation when referring to the resolvent of an operator T

at the point z

RH(z) = (T − z)−1

Definition 1.3. A complex number z ∈ C is called a quasi-regular point for the

operator T if there exists a number c > 0, which might depend on z, such that

‖(z − T )u‖ ≥ c‖u‖ for all u ∈ D(T ).

The set of the quasi-regular points of T is often referred to as the quasi-regularity

domain of T and it will be denoted by

ρ̂(T ) := {z is a quasi-regular point of T}.

For any point z ∈ ρ̂(T ) we define the function d(T, z) := def(T − z). If z0 ∈ ρ̂(T ) is

such that d(T, z0) = 0, then z0 will be called a regular point.

We collect in the following some of the main properties of the regularity domain. For

all the proofs of the following propositions we refer the interested reader to Schmud-

gen’s textbook [145], Chapter 2.

Proposition 1.1. Let T be a linear closed operator on H and z ∈ C.

(i) z ∈ ρ̂(T ) if and only if RH(z) is a bounded operator, RH(z) ∈ B(Ran(T − z)),

namely T − z has a bounded inverse defined on the closed subspace Ran(T − z).

(ii) ρ̂(T ) is a open subset of C.

(iii) ρ̂(T ) admits a decomposition into a union of open connected components ρ̂(T ) =

∪n∈N∆n, and the function d(T, z) is constant on each ∆n.

(iv) If z ∈ C \ Num(T ), then z ∈ ρ̂(T ).

We finally recall the definitions of the resolvent set and the spectrum for a closed

linear operator.
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Definition 1.4. The resolvent set of a closed operator (T,D(T )) is defined as the

open set

ρ(T ) := {z ∈ C | (z − T )−1 exists, is defined on the whole H and ‖(z − T )−1‖ <∞}.

Its complement in the complex plane is called the spectrum of the operator T and is

clearly a closed set

σ(T ) := C \ ρ(T ).

We observe that from the definition above the closeness condition imposed to the op-

erator is a necessary condition on the operator in order to have a meaningful definition

of the resolvent set. In fact, it follows from the closed graph theorem that if T is not

closed then the resolvent set reduces to the trivial case of the empty set.

The following provides a characterization of the resolvent set in terms of nullity and

deficiency number. It is an immediate consequence of Proposition 1.1 and again of

the Closed Graph theorem.

Proposition 1.2 (IV.5.2 Kato [89]). Let T be a closed operator, then

ρ(T ) = {z ∈ C | nul(T − z) = def(T − z) = 0}

Therefore from Proposition 1.2, the resolvent set of on operator T is the set of points

z ∈ C such that def(T − z) = 0 and it coincides with the set of regular points defined

in Definition 1.3.

Definition 1.5. An operator T is said to be compact if and only if T transforms

every weakly convergent sequence into a strongly convergence sequence. The set S∞

of compact operators on the Hilbert space H is a closed subspace in the space of all

bounded operators.

In this chapter we will focus solely on the study of the spectrum of non self-adjoint

spectral problems, in particular on the localisation of complex eigenvalues which arise

due to perturbations of the type of potential. A particularly important role in the

theory of perturbed operator is played by the class of Fredholm operators, which will

be defined in Definition 1.6. As it will be shown in the following, they provide a useful
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tool for the characterisation of the part of the spectrum which stays stable under some

appropriate small perturbations introduced in Definition 1.7.

Definition 1.6. An operator T is said to be Fredholm if its range Ran(T ) is closed

and both the nullity and deficiency numbers are finite, nul(T ), def(T ) <∞.
Similarly, an operator T is said to be semi-Fredholm if its range Ran(T ) is closed and

at least one of the nullity and deficiency numbers are finite.

Definition 1.7. An operator T is said to be relatively compact with respect to T0, or

simply T0-compact if D(T0) ⊂ D(T ) and for every bounded pair of sequences {fn} ⊂
D(T0) and {T0fn}, the set {Tfn} is precompact, namely there exists a subsequence

which converges in norm.

What follows is a useful characterisation for the T0-compactness.

Proposition 1.3. A linear operator T is T0-compact if and only if D(T0) ⊂ D(T )

and the composition T (T0 − z0)−1 is compact for some z0 ∈ ρ(T0).

We note that the previous characterization extends easily to any z0 ∈ ρ(T0) by means

of the first resolvent identity

(T − z1)−1 − (T − z0)−1 = (z0 − z1)(T − z1)−1(T − z0)−1.

In other words, the T0-compactness is equivalent to have T0-boundedness with T -

bound equal to zero. In the following we see how the T0-compactness preserves both

closability and the property of an operator of being (semi)-Fredholm.

Theorem 1.4 (IV.1.11 Kato [89]). Let T and T0 two linear operators defined on the

Hilbert space H and let T to be T0- compact. If T0 is closable, S = T + T0 is also

closable, the closure of T0 and S have the same domain and T is also S- compact. In

particular S is closed if T is closed.

Theorem 1.5 (IV.5.26 Kato [89]). Let T0 be a closed semi-Fredholm operator. If T

is a T0-compact operator then the closed operator S = T + T0 is also semi-Fredholm

with ind(S) = ind(T0).

In the following, we recall the definition of the essential spectrum given in the general

case of a closed operator. This is in fact the part of the spectrum which will remain
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stable under the perturbative additional terms. We observe that in literature there

have been suggested several different notions for the essential spectrum, all of them

based on different assumptions of regularity of the operator (T − z). We refer to the

last section of Chapter 1 in Edmunds’ classical book [44], where the main ones are

presented and discussed in some details.

Definition 1.8. For a closed operator T defined in a Hilbert space H we call the

essential resolvent set

ρess(T ) = {z ∈ C | Ran(T − z) = Ran(T − z) and (T − z) is semi-Fredholm }.

Its complement in the complex plane is called the essential spectrum

σess(T ) := C \ ρess(T ).

The essential spectrum is therefore the set of all the points z in the complex plane

such that either the range of the operator T − z is not closed or the range is closed

but the nullity and the deficiency numbers are both equal to infinity. Of course we

have the following inclusion

ρ(T ) ⊂ ρess(T ), σess(T ) ⊂ σ(T ).

We finally state the main stability result for the essential spectrum.

Theorem 1.6 (IV.5.35 Kato [89]). The essential spectrum is conserved under rela-

tively compact perturbations. More precisely, let T0 be closed and let T be a T0-compact

operator. Then T0 and T0 + T have the same essential spectrum

σess(T0) = σess(T0 + T ).

Theorem 1.4 implies that the operator T0 + T is closed and so the stability of the

essential spectrum is a direct consequence of Theorem 1.5.

Remark 1.1. From Definition 1.7 of relative compactness and from the second identity

for the resolvent

R(T+T0)(z0)−RT0(z0) = R(T+T0)(z0)TRT0(z0).
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it follows that a sufficient condition for the spectrum to be conserved is the existence

of a point z0 in the resolvent sets of both T and T0, z0 ∈ ρ(T0) ∩ ρ(T ) such that the

difference (T − z0)−1 − (T0 − z0)−1 is a compact operator.

We conclude by noting that, from the following identity

RT2(z)−RT1(z) = (ξ − T2)RT2(z)
(
RT2(ξ)−RT1(ξ)

)
(ξ − T1)RT1(z),

it follows that if a point z0 ∈ ρ(T0) ∩ ρ(T ) is such that the difference of the two

resolvent operators exists and is compact, then the same is true for any other point

ξ ∈ ρ(T0) ∩ ρ(T ).

For future reference we recall the Weyl’s criterion for points in the essential spectrum.

Proposition 1.7 (Weidmann [157], Thm 7.24). Let T a self-adjoint operator on a

Hilbert space H. Then λ ∈ σess(T ) if and only if there exists a sequence ψn ∈ D(T ),

‖ψn‖H = 1, such that

i) conveges weakly to 0: ψn ⇀ 0 as n→∞,

ii) ‖(T − λ)ψn‖H → 0 as n→∞.

Remark 1.2 ([40]). If T ≥ 0, a weaker version of Proposition 1.7 holds for ψn ∈ D(T 1/2)

the quadratic form domain of T , where ii) is replaced by

ii’) ‖(T − λ)ψn‖(D(T 1/2)∗ → 0 as n→∞

where

‖ψ‖(D(T 1/2)∗ = sup
φ∈D(T 1/2)

〈φ, ψ〉
〈Tφ, φ〉+ ‖φ‖

.

It remains to discuss the part of the spectrum which is not included in the essential

part. The essential resolvent set is an open set and it is also in general the union

of countably many components ∆n which are connected open sets. According to

Theorem IV.5.7 in Kato [89] and Theorem 3.7.4 in Birman [15], the index ind(T − z)

as well as both the deficiency def(T − z) and nullity nul(T − z) numbers are constant
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on each component ∆n

ind(T − z)|z∈∆n := in,

def(T − z)|z∈∆n := dn

nul(T − z)|z∈∆n := nn

except for some isolated values of zn,j ∈ C. In the very special case of dn = nn = 0

it happens that ∆n ⊂ ρ(T ) and zn,j are isolated points in the spectrum σ(T ). Since

this particular situation is often encountered when studying perturbed operators (also

in the non self-adjoint context), we will refrain from providing details for the more

general case. We refer again to Kato’s book [89] for a thorough examination and

examples of operators whose essential spectrum reveals a very complicate form. It

will not be the case of our analysis, which we will be always restricted to operators

with essential spectrum contained in the real line.

Definition 1.9. Let T a closed operator, and let z ∈ C such that z ∈ σ(T ) is an

isolated point. Then we define the Riesz projection of T with respect to z as

PT (z) =
1

2πi

∫
γ

(T − z)−1

where the contour γ is a closed counterclockwise oriented curve which encloses the

point z and no other points of the spectrum of T .

Definition 1.10. Let T be a closed operator. A point of the spectrum z ∈ σ(T ) is

called an eigenvalue of finite type if it is isolated and if dim Ran(PT (z)) <∞. We also

introduce two functions, ma(z) and mg(z), which count respectively the algebraic and

the geometric multiplicity of each eigenvalue.

The algebraic multiplicity of an eigenvalue z is the dimension of the range of

the associated Riesz projection, ma(z) = dim Ran(PT (z)).

The geometric multiplicity of an eigenvalue z is the number of linearly indepen-

dent eigenfunctions, mg(z) = dim Ker(T − z).

From the fact that Ran(PT (z)) =
⋃
n∈N Ker((z−T )n), it easily follows that in general

mg(z) ≤ ma(z).
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The set

σd(T ) := {z ∈ C | z ∈ σ(T ) and z is an eigenvalue of finite type}.

is called the discrete spectrum of T .

Proposition 1.8. Let T be a closed operator. Consider an open and connected set

Ω ⊂ C \ σess(T ). Suppose furthermore that it has non-empty intersection with the

resolvent set, Ω∩ ρ(T ) 6= ∅. Then the points in Ω which are also part of the spectrum

must be eigenvalues of finite type

σ(T ) ∩ Ω ⊂ σd(T ).

A proof of the previous proposition can be found in Gohberg [72] Theorem XVII.2.1.

We note that a sufficient condition for the previous theorem for operators such that

their essential spectrum is entirely contained in the real line is the existence in both

the upper and the lower half complex plane of points of the resolvent ρ(T ). In our

analysis, every operator which will be studied will have its essential spectrum entirely

contained in the real line. What follows is a characterization of the essential spectrum

in terms of dim Ran(PT (z)).

Proposition 1.9. Let T be a closed operator and let z ∈ σ(T ) be an isolated point.

Then z ∈ σess(T ) if and only if its algebraic multiplicity is ma(z) =∞.

Remark 1.3. From the characterization of isolated points in the essential spectrum in

Proposition 1.9 and the definition of the discrete spectrum given in Definition 1.10 it

follows immediately that

σess(T ) ∩ σd(T ) = ∅.

While in general for selfadjoint operators T0 it holds true that the decomposition of

the spectrum falls into two disjoint components

σ(T0) = σess(T0) ∪̇σd(T0)

this is not in general true in the non-selfadjoint case. See for instance the illustrative

example provided by Kato [89] in IV.5.24. Nonetheless the disjoint decomposition of

23



the whole spectrum still follows in our case due to Proposition 1.8 and the fact that

we will always verify the hypothesis of σess(T0) ⊂ R.

1.1.2 Sectorial forms and operators

We begin with recalling the property of sectoriality for quadratic forms and closed

operators defined on a Hilbert space H with an inner product 〈·, ·〉. In the following,

we will consider Sc,θ to be a sector in the complex plane with vertex c ∈ R and

half-angle θ ∈ R
Sc,θ = {z ∈ C | | arg(z − c)| ≤ θ} ⊂ C.

Definition 1.11. A quadratic form (q,D(q)) on H is said to be sectorial if there

exists a real vertex c ∈ R and a half-angle θ ∈ [0, π/2) such that its numerical range

is contained in the sector Sc,θ ⊂ C

Num(q) := {q(u) | u ∈ D(q), ‖u‖H = 1} ⊂ Sc,θ.

Definition 1.12. A closed operator (T,D(T )) defined on H is said to be m-sectorial

if T is sectorial and T is quasi accretive, that is, if there exists c ∈ R and θ ∈ [0, π/2)

such that

Num(T ) ⊂ Sc,θ

and such that the operator T − z is invertible with a bounded inverse and operator

norm which satisfies

‖(T − z)−1‖ ≤ 1

|Re(z)|
if Re(z) < c.

Note 1.4. We note that any m-accretive operator is densely defined.

The following representation theorem establishes the link between sectorial forms and

sectorial operators, providing the way to construct a m-sectorial operator starting

from a sectorial form. This result will be important in the following sense: it provides

the right interpretation of the spectral problem

H0u+ V (x)u = λu
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for non self-adjoint operators which arise from complex potential perturbations in

terms of the respective sectorial forms.

Theorem 1.10 (Kato [89] VI.2.1). Let t[·, ·] be a densely defined, closed, sectorial

form in the Hilbert space H. Then there exists an m-sectorial operator T such that

i) D(T ) ⊂ D(t) and t[u, v] = 〈Tu, v〉 for every u ∈ D(T ) and v ∈ D(t);

ii) D(T ) is a core of t;∗

iii) if u ∈ D(t), w ∈ H and t[u, v] = 〈w, v〉 holds for every v belonging to a core of t,

then u ∈ D(T ) and Tu = w.

The m-sectorial operator T is uniquely determined by condition (i) and in particular

we note that this implies that the numerical range of the operator T is a dense subset

of the numerical range of the sectorial form t.

Remark 1.5. It follows from the sectoriality property that the resolvent set of the

operator which is generated from a quadratic form as in Theorem 1.10 covers the

exterior of the numerical set

C \ Num(T ) ⊂ ρ(T ).

We continue the excursus on the sectorial forms with an approximation result.

Theorem 1.11 (Kato [89] VI.3.6). Let t be a densely defined, closed, sectorial form

and let tn be a sequence of forms with D(tn) = D(t) such that

|t[u]− tn[u]| ≤ rn‖u‖2 + sn Re(t)[u] u ∈ D(t),

where the constants rn, sn > 0 tend to zero as n→∞. Then the following holds

i) The forms tn are closed and sectorial for sufficiently large n,

ii) If T and Tn denote the m-sectorial operators associated to t and to tn then every

λ ∈ ρ(T ) belongs to ρ(Tn) for sufficiently large n and we have that the resolvent

(Tn − λ)−1 converges in norm to (T − λ)−1 as n tends to infinity.
∗see III.3 Kato [89] for the definition of the core of an operator.
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Remark 1.6. Note that the previous result does not guarantee any convergence for

the spectrum in the case of non Hermitian operators. We refer to Kato [89] section

IV.3.2 for the lower semi-discontinuity of the spectrum of closed operators.

We conclude the subsection by recalling the property of relative boundedness for

quadratic forms and the subsequent theorem which ensures the stability of the prop-

erty for a form to be sectorial under the assumption of relatively boundedness.

Definition 1.13. Let (q,D(q)) be a sectorial form on a Hilbert space H. A form

(p,D(p)) on H is said to be relatively bounded with respect to q or simply q-bounded

if D(p) ⊂ D(q) and there exist two non negative constants a, b ∈ R such that

|p(u)| ≤ a‖u‖2 + b|q(u)|, u ∈ D(q).

The infimum of all constants b for which a corresponding constant a exists such that

the last inequality holds, is called the q-bound of p. Note that the same definition

holds if the quadratic forms are replaced by linear operators.

Theorem 1.12 (Kato [89] V.1.33). Let (q,D(q)) be a sectorial form and let (p,D(q))

a q-bounded form with b < 1 in the sense of definition 1.13. Then the form p + q is

also sectorial.

1.1.3 Non self-adjoint operator generated by complex perturbations

In this subsection we address the question of how to interpret the spectral problem

generated by a complex perturbation. We make use of the results introduced in the

last subsection to define the spectral problem for an appropriate class of potentials

in terms of sectorial forms and we study firstly the stability of the essential spectrum

under such perturbations. Let us consider the problem of complex perturbation of

selfadjoint operators we want to study firstly in the case where the selfadjoint operator

is bounded from below.

For simplicity, let (H0,D(H0)) be a non negative selfadjoint operator on a Hilbert

space H. Let V (x) a complex valued potential and consider its polar decomposition

V = U |V | where U is the partial isometry in the polar decomposition of V . Due to

the positivity of the term |V |, we take the square root of it which yields the following
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decomposition

V = V2V1,

V1 =
(
U |V |1/2

)
, V2 = |V |1/2.

(1.1)

Regarding now V1 and V2 as two densely defined closed operators on H, we require

D(H0) ⊆ D(Vj) and the additional compactness assumption

Vj(H0 + λ)−1 ∈ S∞ for a λ ∈ ρ(H0) (1.2)

for j = 1, 2. It is readily seen, see for example Frank’s paper [58], that condition

(1.2) implies that for every ε > 0 there is a positive constant Cε such that for all

u ∈ D(H
1/2
0 )

|(V1u, V2u)| ≤ ε‖H1/2
0 u‖2 + Cε‖u‖2,

namely that the form generated by the potential V is in fact relatively bounded with

respect to the one which generates H0 and that the bound is zero.

This in turn implies, by mean of Theorem 1.10, that the quadratic form

q(u) = 〈H0u, u〉+ 〈V1u, V2u〉

with D(q) = D(H
1/2
0 ) generates an m-sectorial operator H with form domain D(q)

such that its operator domain D(H) is a dense subspace of D(q) and H = H0 +V (x).

In the last part of this subsection we discuss briefly the explicit example for the case

H0 = −∆ on Rd where d ≥ 1 and we provide a simple description of the class of

admissible potentials. We refer to the papers o [39], [58] for a thorough and more

general approach.

Of course σess(H0) = [0,∞) and the operator is non-negative, therefore bounded from

below. We assume that V (x) ∈ Lp(Rd) with

p ∈


[d/2,∞) d ≥ 3,

(1,∞) d = 2,

[1,∞) d = 1.

(1.3)

The following theorem guarantees that the operator H = H0 + V is well defined and

it follows as a direct consequence of Theorem 1.11 on sectorial forms.
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Theorem 1.13. Let H0 = −∆ and consider V (x) ∈ Lp(Rd) as in (1.3) and let Vn a

compactly supported C∞(Rd) sequence of potentials with ‖V − Vn‖Lp → 0 as n→∞.

Then the operator H = H0 + V is well defined through its quadratic form and every

λ ∈ ρ(H) belongs to ρ(Hn), where Hn = H0 + Vn, for sufficiently large n. Moreover,

‖(H0 + V − λ)−1 − (H0 + Vn − λ)−1‖ → 0 for λ ∈ ρ(H0 + V ).

In fact, under the same conditions on the potential V , it also implies the stability of

the essential spectrum.

We introduce now the Neumann-Schatten class for operator Sp which extends the

definition of the class of compact operator S∞ given in Definition 1.5. We say that a

compact operator T belongs to Sp for p ≥ 1 if

‖T‖pp := tr(T ∗T )p/2 =
∑
j

spj <∞ (1.4)

where the sj are the singular values of T , namely the eigenvalues of
√
T ∗T .

Theorem 1.14 (Simon [147] Theorem 4.1). If f, g ∈ Lp(Rd) with 2 ≤ p ≤ ∞, then

f(x)g(i∇) ∈ Sp and

‖f(x)g(i∇)‖p ≤ (2π)−d/p‖f(x)‖p‖g(x)‖p.

Corollary 1.15. Let V ∈ Lp(Rd) where p ≥ 2 if d ≤ 3, and p > d/2 if d ≥ 4. Let H0

to be the usual laplacian −∆. Then for λ ∈ C \ [0,∞) we have

‖V (x)(λ−H0)−1‖pp ≤ C(p, d)‖V ‖pLp
|λ|d/2−1

dist(λ, [0,∞))p−1

In particular the operator V (x)(λ−H0)−1 is compact if V ∈ C∞(Rd) and has compact

support.

It follows the stability result on the essential spectrum which we promised earlier.
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Theorem 1.16. Let us consider H0 = −∆ and H = H0 +V (x) where V (x) ∈ Lp(Rd)

is a complex valued potential such that p satisfies (1.3). Then

σess(H0) = σess(H)

and

σ(H) = σess(H) ∪̇σd(H).

The fact that σess(H0) = σess(H) follows by Theorem 1.6 in conjunction with Remark

1.1. Consider the sequence Vn defined in Theorem 1.13, the compactness for the

difference of the resolvent operators is then easily deduced from∥∥(R(H0+V )(λ)−RH0(λ)
)
−
(
R(H0+Vn)(λ)−RH0(λ)

)∥∥ =
∥∥(R(H0+V )(λ)−R(H0+Vn)(λ)

)∥∥ .
We note that the right hand side of the previous identity tends to zero by Theorem

1.13. Furthermore, Corollary 1.15 and the second resolvent identity implies that for

every n ∈ N the difference (H0 + Vn− λ)−1− (H0− λ)−1 is compact and compactness

is stable under norm convergence. The disjointness of the discrete and the essential

part of the spectrum is a consequence of Proposition 1.8.

Remark 1.7. Note that the previous results hold for any lower order perturbation of

a selfadjoint, bounded from below operator H0 as seen in Laptev and Safronov [102].

1.1.4 The Birman-Schwinger principle

In the previous section we have provided the correct interpretation of the perturbed

operator H = H0 +V via sectorial forms. This classical approach relies heavily on the

selfadjointness of the initial operator H0 and on its boundedness from below, which

was indeed a necessary assumption in order to obtain the perturbed operator via the

generated sectorial forms. In this case, a straightforward extension of the selfadjoint

version of the Birman-Schwinger principle [13, 146] implies that to any eigenvalue

λ ∈ C ∩ ρ(H0) of the operator H = H0 + V there corresponds an operator

B(λ) := V1R0(λ)V2, (1.5)
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called the Birman operator which has −1 as eigenvalue, where V1 and V2 Note thatin

the definition of the Birman operator come from the polar decomposition introduced

in (1.1). Indeed, let us rewrite (H0 + V )ψ = λψ as (H0 − λ)ψ = −V ψ, so that it

follows

ψ = −R0(λ)V ψ.

Setting φ = V1ψ, the identity above can be rewritten as V −1
1 φ = −R0(λ)V2φ or

equivalently

−φ = V1R0(λ)V2φ.

In a more general setting, the requirement for the operator H0 to be bounded from

below need not be satisfied, as for example happens for the Dirac operator. It might

be the case that the operator H0 is even not selfadjoint itself! Thus, these possibilities

pose a challenge on how to interpret correctly the operator H0 + V and consequently

how to state the correspondent Birman-Schwinger principle. In the following we recall

two theorems given in [71], where the problem of defining the operator H, its Birman-

Schwinger counterpart and the relative principle has been addressed in its maximum

generality. These results, as noted in [71], generalise the respective results valid in the

selfadjoint case proved respectively by Kato [88] and Konno and Kuroda [95].

Theorem 1.17. Let H and K be Hilbert spaces and let H0 : H → H, A : H → K and

B : K → H be closed densely defined operators. Suppose that ρ(H0) 6= ∅ and that the

following hold

i) AR0(z) ∈ B(H,K) and R0(z)B ∈ B(K,H).

ii) For some z ∈ ρ(H0), the operator AR0(z)B has bounded closure

Q(z) := AR0(z)B∗ ∈ B(K).

iii) −1 ∈ ρ(Q(z0)) for some z0 ∈ ρ(H0).

Then there exists a closed densely defined extension H of H0 + BA whose resolvent

R(z) = (H − z)−1, z ∈ ρ(H) is given by

R(z) = R0(z)−R0(z)B(IdK +Q(z))−1AR0(z) ∈ B(H), z ∈ ρ(H0) ∩ ρ(H),
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with

ρ(H0) ∩ ρ(H) = {z ∈ ρ(H0) | −1 ∈ ρ(Q(z))}.

The previous theorem allows to define the spectral problem also for an operator H0 not

bounded from below. The following provides the generalised version of the Birman-

Schwinger principle for unbounded from below operators.

Theorem 1.18. Let H and K be Hilbert spaces and let H0 : H → H, A : H → K and

B : K → H be closed densely defined operators which satisfy the condition of Theorem

1.17. Assume furthermore that λ0 ∈ ρ(H0) and that

iv) The operator Q(z) ∈ S∞ for all z ∈ ρ(H0).

Then

Hf = λ0f, 0 6= f ∈ D(H), implies Q(λ0)g = −g

where z0 is fixed in the condition of Theorem 1.17 and g = (λ0− z0)−1Af . Conversely

Q(λ0)g = −g, 0 6= g ∈ K implies Hf = λ0f,

where f = R0(λ0)B∗g ∈ D(H). Moreover λ0 and −1 have the same finite geometric

multiplicity and the subspaces ker(H − λ0) and ker(Id + Q(λ0)) are isomorphic. In

particular, if z ∈ ρ(H0), then

z ∈ ρ(H) if and only if − 1 ∈ ρ(Q(z)).

Finally, the stability of the essential spectrum

σess(H0) = σess(H)

also holds.

Remark 1.8. It follows that λ is an eigenvalue of H, then any norm of the correspond-

ing Birman-Schwinger operator B(λ) as in (1.5) has to be greater than one.
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1.2 Literature review on the Laplace operator

In this section we provide an excursus on the most representative results present in

literature about uniform bounds for complex eigenvalues which arise in the spectral

problem of the type

−∆u+ V (x)u = λu, (1.6)

where V (x) is a complex-valued potential.

In order to better understand the non self-adjoint case we will briefly recall the classical

results valid for real valued potential. Let λ ∈ (−∞, 0) be a negative eigenvalue of

(1.6) defined in L2(Rd). Then

|λ|γ ≤ L1
γ,d

∫
Rd
|V (x)|γ+d/2 dx, γ ∈

[1
2
,∞) d = 1,

(0,∞) d ≥ 2.
(1.7)

The one dimensional case of (1.7) was proved firstly by Spruch and later independently

by Keller [91], who also found an explicit formula for the optimal potential which gives

the equality in (1.7). The constant L1
γ,d does not depend on the potential V (x) and an

explicit expression for d = 1 is known for any γ ≥ 1/2, where in particular L1
1/2,1 = 1/2,

while numerical values are known for d = 2, 3 [22]. We refer to the classical work of

Lieb and Thirring [109] for the proofs of these facts and for a discussion on the relation

between the constant L1
γ,d and the optimal constant Lγ,d present in the Lieb-Thirring

inequality. The latter provides an estimate of the sum of the eigenvalues moments of

the type

∑
j

|λj|γ ≤ Lγ,d

∫
Rd
|V (x)|γ+d/2 dx, γ ∈


[

1
2
,∞
)

d = 1,

(0,∞) d = 2,

[0,∞) d ≥ 3.

(1.8)

Of course, we immediately observe that L1
γ,d ≤ Lγ,d. For results on existence, unique-

ness and stability for the optimal potential which attains the equality (1.7) in the case

d ≥ 2 we refer to the paper [22] and the references therein.

The question which we aim to address in this chapter is the following:
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Is it possible to formulate a uniform bound on the moments of complex

eigenvalues similar to the quantitative bound stated in Equation (1.7) for

real potentials, of the type

|λ|γ ≤ Cγ,d

∫
Rd
|V (x)|γ+d/2 dx, (1.9)

where Cγ,d is a constant which depends only on the dimension and the ex-

ponent γ and V (x) is a complex valued potentials?

Of course, it is natural to think that an attempt which should be tried at first should

be to look for estimates which extend from the real case to the complex one without

any modifications in the statements. The difficulties in proving such statements lie

in the fact that none of the tools used in the self-adjoint case can be reproduced for

the complex case. As we shall see in further examples in this chapter, in general

the passage from real to complex potential is not always straight forward and major

differences may appear between statements formulated in the two different contexts.

The first result in the literature on uniform bounds on the location of complex eigen-

values was obtained by Davies and collaborators [2] for the case of the Schrödinger

operator for d = 1 and γ = 1/2. They proved that for any non positive eigenvalue

λ ∈ C \ [0,∞),

|λ|1/2 ≤ 1

2

∫
R
|V (x)| dx. (1.10)

As we can see, the optimal constant which appears above for complex potentials is

the same which is obtained in the case of real potentials. Due to the simple Green’s

function formulation for the one dimensional Laplacian, the proof of inequality (1.10)

is in fact very brief and it relies on the Birman-Schwinger principle, ref. Section 1.1.4

(in particular Remark 1.8) and on an immediate L∞ estimate of the kernel of the

Birman operator, as defined in (1.5),

1 ≤
∫
R2

|V (x)|e
−2 Re(z)|x−y|

4|z|2
|V (y)| dx dy ≤ 1

4|z|2

∫
R2

|V (x)||V (y)| dx dy,

where λ = −z2.
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In the same paper it was also shown that an estimate similar to (1.10) holds for any

eigenvalues λ ∈ C, namely without the restriction for the eigenvalue to be off from

the positive half line, with a different constant

|λ|1/2 ≤ 3

2

∫
R
|V (x)| dx. (1.11)

The bound stated above was proved under a stronger assumption for a potential

‖V (x)eγx‖L1 with γ > 0. The same assumption also guarantees the finiteness of the

number of eigenvalues which is proved in the same paper using simple results on

number of zeroes of analytic functions and techniques of inverse scattering. It is not

surprising that such result holds under this assumption. As we will see in Subsection

1.5.1 similar type of results on the finiteness of the eigenvalues had been previously

obtained under very similar assumptions by Naimark, Blashak and Gaymov, to name

just a few.

Different interesting results, valid for potentials with slower decaying rate at infinity,

were obtained by Davies and Nath [36] for V (x) /∈ L1(R). They considered potentials

of the type V (x) = W (x) + X(x) where W (x) ∈ L1(R) is complex and integrable

and X(x) ∈ L∞0 is bounded, measurable and vanishing at infinity and studied the

location of the eigenvalues of the operator Hp, defined by the differential expression

−d2/dx2 + V (x) and acting on Lp(R). They constructed two different methods to

estimate the spectrum. The first one works only for H2 and gives a description of

the resolvent set. The second method, instead, works for any realisation Hp and

it provides a region R which can be computed numerically, such that σ(Hp) ⊆ R
for any p ≥ 1. The methodology applied and the scope of this paper remain an

isolated attempt in literature in the direction of studying the spectral properties of

such slow decaying complex potential on the real line. Nonetheless this work marks

some important features, such as for example the lack of boundedness for the region

where the eigenvalues for complex perturbed operators might lie. A further evident

novelty is about the shape of the region where the discrete spectrum lies. In particular,

Figure 1.1 shows that the distance from the origin of the eigenvalues depends upon

the angle in the complex plane of the eigenvalue itself and so it suggests that if an

estimate like (1.9) exists, then the constant can depend as well on the phase of λ. The

same picture also shows that a qualitative different behaviour of the spectrum should
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Figure 1.1: Comparison of the two methods. The continuous line is the contour of the region R ⊇
σ(Hs) whereas the dashed line describes σ(H2) obtained with the L2 method. The operator is Hs :=

− d2

dx2 + c|x|−1/2, acting on Ls(R) and the complex constant c ∈ C is such that|c| = 1.

be expected near the essential spectrum [0,∞).

A first analytical evidence of the special role that the essential spectrum plays is

contained in a paper from Frank-Laptev-Lieb and Seiringer [60], where the authors

prove two different versions of a Lieb-Thirring type inequality for a complex valued

potential, for eigenvalues respectively in the left complex half plane and for eigenvalues

inside the sector in the complex planes Cχ := {λ | | Im(λ)| ≤ −χRe(λ), χ > 0} (see

Theorem 1 and its corollary). In passing by we mention the recent paper of Someyama

[148] where under the additional hypothesis for the potential of being dilation analytic

(see assumption 2.1 in the paper) a version of the LT inequality, valid for any non

positive eigenvalues, is obtained in terms of the Lγ+d/2-norm of the rotated potential

V (e±iπ/4x).

In the same paper [60], the authors derive bounds not only on the sum of the moments

of the eigenvalues but also on single eigenvalues which we state in Theorem 1.19. These

results represent a first attempt to a multidimensional generalisation of the Keller type

estimates (1.10) proved in [2] in the one-dimensional case, yet they depend on the sign

of the real part of λ and the statement has to be split into two cases again.

Theorem 1.19 (Frank-Laptev-Lieb-Seiringer [60]). Let γ ≥ 1/2 if d = 1, γ > 0 if

d = 2 and γ ≥ 0 if d ≥ 3.
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For any eigenvalue with non-positive real part

|λ|γ ≤ 2γ/2+d/4L1
γ,d

∫
Rd
|V (x)|γ+d/2 dx.

For any eigenvalue with non-negative real part

|λ|γ ≤ 2γ/2+d/4L1
γ,d

(
1 +

2 Re(λ)

| Im(λ)|

)γ+d/2 ∫
Rd
|V (x)|γ+d/2 dx.

where L1
γ,d is the constant defined in (1.7).

This theorem provides bounds for the real positive powers of the modulo of the

eigenvalue λ in terms of the (γ + d/2)-norm of the potential V (x) and a constant

C1
γ,d := 2γ/2+d/4L1

γ,d independent from the particular potential shape. Additionally,

for eigenvalues lying in the right half complex plane, the estimate involves also the

term
(

1 + 2 Re(λ)
| Im(λ)|

)γ+d/2

which comprises real and imaginary part of λ. It turns out

that this additional term does not guarantee any more the boundedness of the region

in the complex plane where the eigenvalues might lie.

As already noted, the estimates provided by the LT inequality in [60] require for the

eigenvalues in the right half complex plane to be away from the positive real half

line, in particular those are valid for λ contained in the region Cχ. The eigenvalues

which can possibly accumulate at the essential spectrum, require therefore a deeper

investigation and were excluded at first. A detailed analysis of these eigenvalues was

carried successively in a paper by Laptev and Safronov [102], where in Theorem 3

and Theorem 4, results on the accumulation rate of the eigenvalues to the essential

spectrum of the operator −∆ + V (x) were provided. Furthermore, in the same paper

the following uniform bound on complex eigenvalues was also proved.

Theorem 1.20. Let V (x) ∈ Lp(Rd) a complex measurable function, where p ≥ 1 if

d = 1, p > 1 id d = 2 and p ≥ d/2 if d ≥ 3. Then every eigenvalue λ of the operator

−∆ + V (x) lying in the right half complex plane satisfies the estimate

| Im(λ)|p−1 ≤ |λ|d/2−1C

∫
Rd
|V (x)|p dx. (1.12)
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As we can see, the estimate stated above generalises to higher dimensions the bound

(1.10), which is reattained in (1.12) in the case p = d = 1. We observe that the

presence of the term | Im(λ)| leaves (1.12) far from the optimal form as stated in

(1.9), as well as it does not imply the boundedness of the region where the complex

eigenvalues lie. While formula (1.12) is, in fact, not very satisfactory, this result is

still worth mentioning as in its proof are consistently introduced general ideas which

will be found in the subsequent literature on similar topic.

So far bounds for the Birman operator B(λ) have been considered only in terms of

its operator norm. The possibility of having improved results comes froom refined

estimates formulated for operators in Neumann-Schatten classes Sp, in particular

estimates of integral operators in terms of the Schatten norms ‖ ·‖p. The main idea in

the proof of Theorem 1.20 is to estimate the rightmost term in the following inequality

1 ≤ ‖B(λ)‖ ≤ ‖B(λ)‖p ≤ ‖|V (x)|1/2 | −∆− λ|−1/2‖2
2p (1.13)

when p > d/2, by means of Simon’s trace ideal estimate (see Theorem 1.14), valid for

operators of the type β(x)α(i∇) and by the Czwikel’s inequality valid for the weak

Neumann-Schatten class for the case p = d/2. See Laptev’s paper [102] and reference

therein for more details on the latter case.

In order to obtain a finite region in the complex plane, Safronov [139] showed that a

sufficient condition for the eigenvalues to be located in a ball of finite radius is that

the potentials have to decay faster than a Coulomb potential

|V (x)| ≤ L

(1 + |x|2)p/2
, L > 0, 1 < p < 3.

This assumption, in particular, yields a bound for the operator norm of the Birman

Schwinger operator.

Laptev and Safronov [102] conjectured the validity of the following generalisation of

(1.10) to dimensions higher than one.

Conjecture 1.14. Let d ≥ 2 and 0 < γ ≤ d/2 and let V (x) ∈ Ld/2+γ(Rd) be a

complex valued potential. Then for any eigenvalue λ /∈ R+ of the operator −∆+V (x)

|λ|γ ≤ C

∫
Rd
|V (x)|d/2+γ dx (1.14)
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where C depends only on γ and the dimension d.

It is interesting to note that the conjecture excludes real positive values of λ and

furthermore forbids the case γ > d/2. The argumentation which supports such choice

is quite heuristic and refers back originally to the Wigner-Von Neumann’ example in

combination with the possibility, at least in principle, to create complex eigenvalues

by adding small enough complex perturbations to the Wigner potentials in order to

push a real eigenvalue out from the essential spectrum. It turns out that, for values

γ > d/2, the operator H = −∆ + V (x) may have arbitrary large positive eigenvalues

even for a real potential V (x). Therefore the possibility, at least in principle, that

this property can be generalised to complex potentials justifies the exclusion of the

range γ > d/2. For a review on the case γ > d/2 we refer to the paper of Arai [6].

More recently Frank and Simon [59] have constructed a sequence of potentials, which

extends the Wigner-Von Neuman ones, which support again the exclusion of the case

γ > d/2 from the formulation of the conjecture for the same reasons as just explained

above. In particular, they proved that for any dimension d ≥ 1, there is a sequence

of radial potential Vn such that 1 is an eigenvalue of ∆ + Vn in L2(Rd) and such that

‖Vn‖Lp tends to zero as n→∞ for any p > d.

To the best of our knowledge, Conjecture 1.14 has been proved in its original form,

only in the case 0 < γ ≤ 1/2 and this result is due to Frank [57]. The proof relies

upon an adaptation of the uniform Sobolev inequalities

‖(−∆− λ)−1‖Lp(Rd)→Lp′ (Rd) ≤ Cp,d|λ|−
d+2
2

+ d
p ,

p ∈
[

2d
d+2

, 2(d+1)
d+3

]
d ≥ 3

p ∈
(
1, 6

5

]
d = 2

(1.15)

proved by Kenig, Ruiz and Sogge [92] in another context. We observe that the unifor-

mity property comes from the fact that for sufficiently large value of |λ| the estimates

are independent of the spectral parameter. From their application, a substantial im-

provement of (1.13) follows from, where now the fundamental estimate reads as

1 ≤ |(φ,B(λ)ψ)| ≤ Cp,d|λ|−
d+2
2

+ d
p‖V ‖

L
p

2−p
‖φ‖2‖ψ‖2

for p = 2(2γ + d)/(2γ + d + 2) and any test functions ψ, φ ∈ L2(Rd). We observe

that Frank’s result has been successively extended by Frank and Simon [59] to any
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eigenvalues λ ∈ C of −∆ + V in L2(Rd).

We note that a consequence of the validity of the estimate (1.14) for 0 < γ ≤ 1/2 is

that the potentials have to hold some integrability condition and in particular they

need to decay at infinity faster than |x|−2d/(d+1). In fact, by introducing weighted

Lebesgue spaces, a weaker formulation of (1.15) holds

‖(−∆−λ)−1‖L2(ω−1)→L2((ω)) ≤ Cp,d,α‖ω‖Lα,p|λ|−1+α
2 , for

4/3 < α < 2, d = 2

2d
d+1

< α ≥ 2, d ≥ 3

(1.16)

where ‖·‖Lα,p is the norm in the Morrey-Campanato space of functions Lα,p(Rd) which

is defined as

‖V ‖Lα,p := sup
x,r

rα(∫Br(x)
|V (y)|p dy
rd

)1/p
 .

The advantage of using weighted uniform resolvent estimates is the possibility of

including potentials which a slower decay than the one stated previously, namely up

to |x|−ρ where ρ > 1. In particular for the specific choice ω = (1 + |x|2)α, one obtains

from (1.16) the same condition found by Safronov [139].

For sake of completeness we mention that, in fact the Lp-norm in (1.14) has been

substituted with weaker norms firstly in Frank [57] with the Morrey-Campanato norm

and more recently by Lee and Seo [105] with a Kerman-Saywer norm. We refer to the

respective papers for the definitions and details on their respective results.

We observe that the range of validity of the classical uniform Sobolev inequality (1.15)

expressed in terms of p corresponds exactly to the case γ ∈ (0, 1/2]. Therefore, (1.15)

will not provide any further help in order to prove the conjecture for γ > 1/2.

Following the same idea of modifying (1.15) to a general formulation of the type

‖(−∆− λ)−1‖X′→X ≤ Cγβ,

as done for example in (1.16) in order to allow in (1.14) slower decaying potentials

with X = L2(ω), in the following we collect two other different versions of the uni-

form Sobolev estimates which have been used, respectively, to prove the conjecture

restricted to radial potential and to show that a modified version of the conjecture is
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valid for any potential, both in the case d ≥ 2 and 1/2 < γ < d/2.

The former modified version was proved by Frank and Simon [59] for operators defined

in the Banach space X = Lp(R+, r
d−1;L2(Sd−1)) and for values β = −d/2 + d/p + 1

and 2(d + 1)/(d + 3) < p < 2d/(d + 1). The proof of it relies on estimates of one

dimensional operators on the half real line and it is based on the decomposition of the

radial Laplacian’s resolvent into a direct sum of orthogonal operators, whose existence

comes from the existence of spherical harmonics for the Laplacian restricted to the

unitary sphere Sd−1 of dimension d− 1.

In particular Frank and Simon [59] proved that for any dimensions d ≥ 2, any radially

symmetric potential V (|x|) and any non-positive eigenvalue λ of the operator −∆ +

V (|x|) defined on L2(Rd) satisfies

|λ|γ ≤ Dγ,d

∫
Rd
|V (x)|γ+d/2 dx = Dγ,d

∫
R+

|V (r)|γ+d/2 rd−1 dr, 1/2 < γ < d/2,

(1.17)

where Dγ,d is a positive constant independent from the potential V (x). We refer to

Subsection 1.3.4 for more details on the spherical harmonics decomposition and for a

numerical results that shows the constant Dγ,d depends in fact on the phase of the

complex number λ.

A second refined version of the uniform Sobolev inequality (1.15), obtained by Frank

[58] in a different paper, provides a bound for the Schatten norm of the Birman

operator relative to −∆ + V (x) for any dimension d ≥ 1 and γ ≥ 1/2

‖B(λ)‖2(γ+d/2) ≤ Cd,γ dist(λ, [0,∞))α|λ|β‖V ‖2
2(γ+d/2), (1.18)

where

α = −1 +
(d+ 1)/2

γ + d/2
, β = − 1

2(γ + d/2)
.

This estimate represents a substantial improvement of the classical uniform estimate

(1.15) and it was obtained by complex interpolation between two estimates for the

Birman operator B(λ), valid respectively in terms of its d+ 1 and ∞-Schatten norm.

We refer to the paper of Frank and Sabin [63] for the description of the complex

interpolation method and for the proof of the bounds mentioned above.

The so enhanced version of the Sobolev estimate (1.18) can be used to improve the
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result of Laptev and Safronov in the chain (1.13)

1 ≤ ‖B(λ)‖ ≤ ‖B(λ)‖2(γ+d/2)

and therefore customarily derive the following bound for complex eigenvalues of the

Schrödinger operator −∆ + V (x) in Rd, for d ≥ 1 and γ ≥ 1/2

|λ|1/2 dist(λ, [0,∞))γ−1/2 ≤ Cγ,d

∫
Rd
|V (x)|γ+d/2 dx. (1.19)

We note that the previous formula is not quite close to the one (1.14) formulated by

Laptev and Safronov in their conjecture and again the finiteness for the modulus of the

eigenvalues is not guaranteed when approaching the positive half line. Nonetheless by

observing that Re(λ) ≤ |λ| it is possible to draw some conclusions on the accumulation

property to the essential spectrum of the eigenvalues. Indeed, it follows that if λj is a

sequence of eigenvalues of−∆+V (x) in L2(Rd) such that Re(λ)→∞, then Im(λ)→ 0

provided V (x) ∈ Lγ+d/2(Rd). A similar phenomenon was also pointed out earlier in

Laptev and Safronov [102] under different yet similar assumption on the potential.

We ought mention that results concerning estimates in Schatten norms of the kernel

of the Laplace operator for complex potentials have been also obtained by Demuth

Hansmann and Katriel [38, 39] in a series of papers antecedent the works of Frank

[58] and Frank and Sabin [63]. Demuth and collaborators considered the class of p-

relatively compact potentials with respect to a general positive self-adjoint operator

H0 and derived, with the aid of results of the Jensen’s type of inequality coming from

complex analysis theory for zeroes of analytic functions in a disc (results introduced at

first instance by Borichev Golinskii and Kupin [19]), estimates on the distribution and

sum of moments of complex eigenvalues. We will not enter into details of these type

of results. We are also aware of the fact that important results on the complex Lieb-

Thirring inequality have been omitted in order to keep this dissertation focused on

localisation’s type of results. We refer the interested reader to the papers mentioned

so far and to the references therein contained, in particular to Frank’s paper [58] where

the author compare his results with the ones obtained in [38, 39].

In conclusion we mention some additional results which have been obtained by employ-

ing newly derived uniform Sobolev estimate for different operators from the Laplacian.
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In particular we mention the work of Mizutani [122] on the operator H0 = −∆ + σ
x2

on Rd with d ≥ 3 and σ ≥ −1/4 where bounds similar to those obtained by Frank [58]

have been deduced for potentials in the weak-Lebesgue class, extending (1.19) in the

case σ = 0. We also mention the results on the fractional Laplacian, fractional Bessel

and Dirac operators obtained by Cuenin [29] by proving uniform resolvent bounds in

operator and Schatten norms. In a different paper, Cuenin [30] derived also uniform

estimates for the two dimensional bilayer Graphene operator, extending the results

previously obtained in [141] by the author together with Laptev and Safronov. We

refer to Section 4 of this chapter for more details on it.
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1.3 Second order operator on the half line with Hardy potential

In this section we study the problem of localisation of complex eigenvalues for a

specific family of Schrödinger operators defined on L2(0,∞) and subject to complex

perturbation. The operators in question are defined via the differential expression

H0,ν : u(x)→
(
− d2

dx2
+

(ν2 − 1/4)

x2

)
u(x) (1.20)

and are subject to Dirichlet boundary condition which are assumed to hold at the

origin. The case ν = 1/2 was investigated by Frank, Laptev and Seiringer [62].

Our aim is to extend the results valid for ν = 1/2 to a larger class of operators

corresponding to positive real ν > 0. We will also study the case of potentials in

weighted-Lp spaces. Using the information derived in the latter case we also show

that, in fact, the region where complex eigenvalues of −∆ + V (|x|) defined in L2(Rd)

for d ≥ 2 might appear has a different shape from the one of a ball centred at the

origin. In particular, we provide an explicit formulation of the best constant found by

Frank and Simon in [59] in the proof of the Conjecture1.14 for the case 1/2 < γ > d/2.

1.3.1 The case ν = 1/2

Due to an explicit formula for the Green’s function for the operator H0, 1
2
, the existence

of a sharp bound for complex eigenvalues of the perturbed operator was established

in [62] in terms of elementary functions. In fact, in the case ν = 1/2, any eigenvalue

λ = |λ|eiθ ∈ C \ [0,∞) of the operator H0, 1
2

+ V (x) on the half line subject Dirichlet

boundary conditions at origin satisfies

|λ|1/2 ≤
(

1

2
sup
y≥0

∣∣ei cot(θ/2)y − e−y
∣∣) ∫ ∞

0

|V (x)| dx (1.21)

for any integrable potential V (x) ∈ L1(0,∞). Comparing the expression (1.21) with

the analogous result (1.10) by Davies [2] valid for the operator H0,1/2 defined on the

whole line, we notice that the additional Dirichlet condition imposed at the origin

implies that a different shape of the region, where eventually the eigenvalues might

arise, is found. In contrast to what happens in the setting of the whole real line, when

the bound is in fact expressed only in terms of the modulus of the complex eigenvalue
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and where the optimal shape is a ball centred at the origin of constant radius 1/2, in

the half line case an explicit dependence of such bound upon the phase of the complex

eigenvalue is in place, and it implies a break in the symmetry and a different shape

from the circle’s one.

In particular, certain type of potentials of the form V (x) = cδ(x − b) realise the in-

equality (1.21) in fact as an equality. This can be in turn interpreted as a confirmation

of the optimality of the result proved. It happens that in practice, the problem with

such delta potentials can be solved explicitly and the constants b ∈ R and c ∈ C can

be continuously varied so that the unique eigenvalue which is originated from the per-

turbed operator describes the continuous contour in figure 1.2. Later in this section,

we will reproduce similar computations for the general case ν ≥ 1/2, proving again

the sharpness of our results.

Figure 1.2: Continuous line: the plot of the maximal value of 4|λ| in the half-line case. Dashed line:
the corresponding bound on the whole line. Ref. [62]

1.3.2 Uniform bounds

We start by introducing some notation. We define the following differential expression

H := H0,ν + V (x), (1.22)

where V (x) is a complex-valued potential and the associated eigenvalue problem

Hu = λu.
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In the following we will understand H as the operator generated by a sesquilinear

form. We refer to Section 2.1.2 for the details on how this construction is realised.

We note that the classical Hardy inequality guarantees the boundedness from below

of the so obtained form. In particular it follows that

σess(H) = σess(H0,ν) = [0,∞),

and that the spectrum σ(H) of the operator H is discrete in C\σ(H0,ν). (See Theorem

1.16 and its following Remark 1.7.) The green’s function of the operator H0,ν is

Gν(x, y, z) =


π
2i

√
xH

(1)
ν (
√
zx)
√
yJν(
√
zy) if y ≤ x,

π
2i

√
xJν(
√
zx)
√
y H

(1)
ν (
√
zy) if y > x,

(1.23)

where Jν(z) and H
(1)
ν (z) are respectively the Bessel and Hankel function of first kind of

order ν. For details on the derivation of the previous formula we refer to the classical

textbook of Titchmarsh [153] and to [50] for the case 0 < ν < 1, ν 6= 1/2, when the

Storum-Liuville problem in zero is of limit circle type. Here and after we consider the

complex square root function with branch cut on C \ (0,∞).

We note that, being H0,ν selfadjoint, the Green’s function is symmetric in its two

variables

Gν(x, y, z) = Gν(y, x, z).

We introduce the polar decomposition relative to the potential V (x) as

V (x) = V1(x)V2(x) :=
(
V (x)|V (x)|−

1
2

)
|V (x)|

1
2 ,

and so the Birman-Schwinger operator

B(λ) : = V1R(λ)V2, (1.24)

where R(λ) stands for the resolvent operator (H0−λ)−1. We proceed now customarily

by recalling the correspondence which holds between the eigenvalues of an operator

and those of the relative Birman-Schwinger one. It holds that λ being an eigenvalue

of the perturbed H is equivalent to the case of −1 being an eigenvalue of the operator
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B(λ). Therefore a necessary condition for λ to be an eigenvalues consists in the

numerical radius of the Birman-Schwinger operator to be at least 1, thus that the

following inequality

1 ≤
∣∣∣∣∫ ∞

0

∫ ∞
0

V̄2(x)Gν(x, y, λ)V1(y)f̄(x)g(y) dy dx

∣∣∣∣
must be satisfied for all f and g with unitary L2-norm. It follows the main result

regarding complex integrable potentials.

Theorem 1.21. Let ν > 0 and λ ∈ C \ [0,∞) such that λ = |λ|eiθ where θ ∈ (0, 2π).

Let λ be a complex eigenvalue of the operator H0,ν +V (x) where V (x) ∈ L1(0,∞) with

Dirichlet boundary condition at the origin. Then there exists a constant C(ν, θ) such

that

|λ|1/2 ≤ C(ν, θ)

∫ ∞
0

|V (x)| dx, (1.25)

where the constant C(ν, θ), which depends upon the angle θ and the order ν, is

C(ν, θ) =
π

2
sup

0≤y≤x<∞

(√
x|H(1)

ν (xeiθ/2)|√y|Jν(yeiθ/2)|
)
. (1.26)

Furthermore, for ν ≥ 1/2 the bound (1.25) is sharp, meaning that for given m ∈ R and

θ ∈ (0, 2π), there exist b > 0 and c ∈ C such that |c| = m and the unique eigenvalue

of H = H0,ν + cδ(x− b), is

λ = |c|2C(ν, θ)2 eiθ.

Remark 1.9. We observe that for the case ν = 1/2, the formulation of the constant

C(ν, θ) given in (1.26) coincides with the expression in the round bracket of (1.21).

Proof of the Theorem 1.21. In the first instance we will consider the spectral param-

eter λ lying on the unit circle. Let s = λ = eiθ where θ ∈ (0, 2π). By means of the

Schur’s inequality, we estimate the operator norm of B(λ) as

46



∣∣∣∣∣
∫∫

B(λ)f̄(x)g(y) dy dx

∣∣∣∣∣ ≤
(∫∫

|V̄2(x)|2 |Gν(x, y, s)| |g(y)|2 dy dx

∫∫
|V̄1(y)|2 |Gν(x, y, s)| |f(x)|2 dy dx

)1/2

≤ ‖f‖L2‖g‖L2 sup
x∈(0,∞)

∫ ∞
0

|V (y)||Gν(x, y, s)| dy

≤ ‖f‖L2‖g‖L2 sup
x,y∈(0,∞)

|Gν(x, y, s)|
∫ ∞

0

|V (y)| dy.

(1.27)

As previously observed, the Green’s function Gν(x, y, s) is symmetric in its variable

x and y. Therefore it will be sufficient to consider the above supremum in the sector

0 ≤ y ≤ x <∞. Thus, we define the constant

C(ν, θ) = sup
0≤y≤x<∞

|Gν(x, y, s)| =
π

2
sup

0≤y≤x<∞

(√
x|H(1)

ν (xeiθ/2)|√y|Jν(yeiθ/2)|
)
.

In order to estimate the quantity defined above, we need to recall the asymptotic

behaviour of the Bessel’s functions Jν(z) and H
(1)
ν (z) near zero and infinity. We

collect them in the following and we refer to Olver [132] for the details of the proof.

Let z ∈ C, then:

Jν(z) ∼
(1

2
z)ν

Γ(ν + 1)
for z → 0,

H(1)
ν (z) ∼ − i

π
Γ(ν)

(z
2

)−ν
for z → 0.

(1.28)

and

Jν(z) ∼
√

2

π

√
1

z

(
cos(z − νπ

2
− π

4
) + e| Im(z)|O(1)

)
for z →∞,

H(1)
ν (z) ∼

√
2

π

√
1

z
ei(z−

νπ
2
−π

4
) for z →∞,

(1.29)

It follows that the finiteness of the constant C(ν, θ) comes now immediately from the

regularity of the Bessel’s function and from the asymptotics reported in (1.28) and

(1.29).
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Let us consider now the general case, when the spectral parameter λ ∈ C \ [0,∞] is

given by λ = |λ|eiθ. From a rescaling argument, we immediately deduce that

sup
0≤y≤x<∞

π

2

√
x|H(1)

ν (x
√
λ)| sup

y∈(0,x)

√
y|Jν(y

√
λ)| = C(ν, θ)

|λ|1/2

and this complete the proof of (1.25).

We note that for small values of the angle θ and for ν > 1/2, the supremuum of

the function
√
y|Jν(ys)| for y ∈ (0, x) is in general not attained at the end point x.

This phenomenon can be easily understood by the fact that the Bessel function Jν(x)

with real argument is a bounded oscillating function and such oscillatory behaviour

inherited by
√
y|Jν(eiθy)| for small values of the angle θ.

Let us now focus on the case ν ≥ 1/2 and the sharpness problem.

Let us recall now some well known facts about the Bessel and Hankel function of first

order. We begin with a representation formula for the modified Bessel function Kν(z),

Kν(z) =
1

Γ(ν + 1/2)

( π
2z

)1/2

e−z
∫ ∞

0

e−ttν−1/2

(
1 +

t

2z

)ν−1/2

dt, (1.30)

valid for Re(ν) > −1/2 , | arg(z)| < π (see [62])

The followings provide the existing link between the Hankel functions and the modified

Bessel function introduced above

H(1)
ν (z) =

2

iπ
e−iνπ/2Kν(ze−iπ/2) arg(z) ∈

(
−π

2
, π
)
,

H(2)
ν (z) = − 2

iπ
e−iνπ/2Kν(zeiπ/2) arg(z) ∈

(
−π, π

2

)
.

(1.31)

By means of Jν(z) = 1
2

(
H

(1)
ν (z) +H

(2)
ν (z)

)
and from the formulae above, it also

follows a similar result for the Bessel function of first kind

Jν(z) =
i

2π

(
e−iνπ/2Kν(ze−iπ/2)− eiνπ/2Kν(zeiπ/2)

)
| arg(z)| < π

2
, (1.32)
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together with the following analytic continuation property

Jν(ze
imπ) = eimνπJν(z), m ∈ Z. (1.33)

We use the above properties for Bessel and Hankel functions to re-write in a more

convenient way the constant C(ν, θ). We have that

|
√
xH(1)

ν (x)| =

∣∣∣∣∣
√

2

π

1

Γ(ν + 1
2
)
e−xe

i(θ−π)/2
∫ ∞

0

e−ttν−
1
2

(
1 +

t

2xei(θ−π)/2

)ν− 1
2

dt

∣∣∣∣∣
= α(ν)e−x sin(θ/2)g(xei(θ−π)/2),

(1.34)

where, for convenience, we set the following quantities

α(ν) =

√
2√

πΓ(ν + 1
2
)
,

g(xei(θ−π)/2) =

∣∣∣∣∣
∫ ∞

0

e−ttν−
1
2

(
1 +

t

2xei(θ−π)/2

)ν− 1
2

dt

∣∣∣∣∣ .
Obviously, the term e−x

√
|λ| sin(θ/2) is decreasing in x. Less obviously, for ν ≥ 1/2 also

the term g(x
√
|λ|ei(θ−π)/2) appears to be decreasing in x from numerical simulations.

We conclude then

C(ν, θ) =
π

2
sup

0≤y≤x<∞

(√
x|H(1)

ν (xeiθ/2)|√y|Jν(yeiθ/2)|
)

=
π

2
sup

0≤y<∞

(√
y|H(1)

ν (yeiθ/2)|√y|Jν(yeiθ/2)|
)

=
α(ν)2

4
sup

0≤y<∞

[
g(xei(θ−π)/2)g(xei(θ+π)/2)

∣∣∣∣(e−2x sin(θ/2) g(xei(θ−π)/2)

g(xei(θ+π)/2)
− 1

)∣∣∣∣]
(1.35)

In particular, the monotonicity of the term g(xei(θ−π)/2) makes possible to prove the

sharpness of the estimate (1.25) in the case V (x) = cδ(x−b). We proceed by standard

arguments. Let us consider u(x) the wave function solution of

H0,νu(x) + cδ(b− x)u(x) = λu(x).
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Let c1 and c2 be two complex constants such that

u(x) =
√
xH(1)

ν (
√
λx) for x > b,

u(x) = c1

√
xJν(
√
λx) + c2

√
xH(1)

ν (
√
λx) for x < b.

(1.36)

Imposing the Dirichlet condition at the origin and the continuity condition at point b

for u(x), it immediately yields

c1 =
H

(1)
ν (
√
λb)

Jν(
√
λb)

and c2 = 0.

We conclude by imposing the discontinuity jump at point b for the derivatives[
c1
d

dx

(√
xJν(
√
λx)
)
− d

dx

(√
xH(1)

ν (
√
λx)
)]

x=b

= c
√
bH(1)

ν (
√
λ b)

which by means of the Wronskian of Bessel’s functions formula

W
{
Jν(z), H(1)

ν (z)
}

=
2i

πz

reduces to
2i

π
= cbH(1)

ν (
√
λ b)Jν(

√
λ b). (1.37)

One can then set c = |c|eiφ and l =
√
λ b to derive from (1.37) the following√

|λ| = |c| |Gν(l, l, e
iθ/2)|

θ/2 = φ+ arg(Gν(l, l, e
iθ/2))

and obtain respectively the values for l and φ such that |Gν(l, l, e
iθ/2)| = C(ν, θ)

and second identity above is verified. We finally find b = l(|Gν(l, l, e
iθ/2)|)−1. We

emphasize the need of equations (1.30)- (1.33) in order to derive the phase of c from

equation (1.37).

Remark 1.10. For 0 < ν < 1/2, the function g(z) is not a decreasing function. The

same is so true for
√
x|H(1)

ν (zx)|, which changes drastically its qualitatively behaviour

near zero (see formula (1.28)). This in turn implies that the two supremuum in (1.26)

needs not to be attained on the diagonal. In fact, numerical experiments show that
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Figure 1.3: Continuous lines: plot of the numerical value of the constants 4C(ν, θ) as function of the
angle, for different values of ν = 1, 3/2, 2, 5/2. The dashed line is the case ν = 1/2, plotted as refer-
ence.

for ν = 1/4 and θ = π10−3, the maximum of the function Gν(x, y, e
iθ) is achieved at

the point (x, y) = (2.85212, 1.2624).

Figure 1.4: The plot of the positive part of the function 102[|Gν(x, y, eiθ)| − supx |G(x, x, eiθ)|] over
the grey-shaded region R = {(x, y) ∈ [0, 5] × [0, 3] | y ≤ x} for the following values ν = 1/4,
θ = 10−3π.

The absence of such monotone behaviour and the impossibility of expressing C(ν, θ)

as a supremuum of a single variable ultimately makes ineffective the use of delta

potentials and poses the question whether the constant is sharp or not.

Despite what we have observed in Remark 1.10, Figure 1.4 suggests that the discrep-

ancy between the value of the constant C(ν, θ) as obtained in (1.26) and the value of

the function supx |G(x, x, eiθ)| is relatively small. Approximating the value of C(ν, θ)

by the latter function we obtain the following qualitative plots.
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Figure 1.5: Continuous lines: plot of the numerical approximations of the constant C(ν, θ) as function
of the angle, for different values of ν = 1/3, 1/4, 1/8, 1/250. The dashed line is the case ν = 1/2 is
plotted as reference. There is no appreciable difference between the plot we obtain for ν = 1/250 and
smaller values of this parameter.

1.3.3 The case V (x) ∈ Lp

In this section we suggest a different estimate type from the one used in the previous

section, for the term at the top of the inequality chain (1.27). In particular we derive

estimates valid for potentials in weighted Lp(0,∞) spaces; the weights, which might at

first look artificial, are in fact justified from the decomposition of the multi-dimensional

case of the radial Laplacian in spherical harmonics, as for example done in Frank and

Simon [59]. Following the ideas adopted in the proof of the formula (1.17) we derive

in Equation 1.43 similar estimates for the eigenvalues of the spectral problem for H0,ν

on the half line.

We proceed denoting by G̃ν(x, e
iθ) the quantity G̃ν(x, e

iθ) := supy∈(0,∞) |Gν(x, y, θ)|

G̃ν(x, e
iθ) =

π

2
max

(
sup
y∈(0,x)

√
x|H(1)

ν (xeiθ/2)|√y|Jν(yeiθ/2)|,

sup
y∈(x,∞)

√
y|H(1)

ν (yeiθ/2)|
√
x|Jν(xeiθ/2)|

) (1.38)

where θ ∈ (0, 2π). Let us now introduce a weight function w(x) such that

∫ ∞
0

|V (x)|G̃ν(x, e
iθ) dx ≤

(∫ ∞
0

(w(x)|V (x)|)
d
2

+γ dx

) 2
d+2γ

(∫ ∞
0

G̃ν(x, e
iθ)βw(x)−β dx

) 1
β

(1.39)
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where β satisfies (γ + d
2
)−1 + β−1 = 1. We furthermore assume the weight function to

be a homogeneous function of degree α. For this reason let us introduce w(x) = xα

for any positive α such that α
(
d
2

+ γ
)

= d − 1. This, together with the previous

assumption made on β gives the following values

α = 2(d− 1)/(d+ 2γ) (1.40)

and

β =
d+ 2γ

d+ 2γ − 2
. (1.41)

Let us finally introduce the constant C̃(ν, θ) as

C̃(ν, θ) :=

(∫ ∞
0

G̃ν(x, θe
iθ)βw(x)−β dx

) 1
β

. (1.42)

We can now formulate the main results of this section in the following theorem.

Theorem 1.22. Let ν > 0 and λ ∈ C \ [0,∞) such that λ = |λ|eiθ where θ ∈ (0, 2π).

Let λ be a complex eigenvalue of the operator H0,ν + V (x) with Dirichlet boundary

condition at the origin for any real value of d ≥ 2(1−γ) such that 0 < γ < d/2. Then

there exists a constant C̃(ν, θ) such that

|λ|γ ≤ C̃(ν, θ)
d
2

+γ

∫ ∞
0

xd−1|V (x)|
d
2

+γ dx, (1.43)

where the constant C̃(ν, θ), which depends upon the angle θ and the order ν, is defined

in (1.42).

Proof. From the properties of the Bessel functions (1.28) and (1.29), we deduce that

the function G̃ν(x, s) defined in (1.38) is a bounded function on x ∈ (0,∞) which

converges to zero at the origin with order one

G̃ν(x, s) ∼ O(x) for x→ 0,

G̃ν(x, s) ∼ O(1) for x→∞.

Therefore, the condition 0 < γ < d/2 provides the convergence of the integral in the

second factor of right hand side of (1.39). From a homogeneity argument, it follows
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that for general λ ∈ C we have(∫ ∞
0

G̃ν(x, λ)βw(x)−β dx

) 1
β

=
C̃(ν, s)

|λ|
1−α
2

+ 1
2β

,

and so the proof is complete.

Remark 1.11. Note that the condition d ≥ 2(1 − γ), or equivalently d/2 + γ ≥ 1, is

essential in order to use the Holder inequality to obtain (1.39).

Remark 1.12. In the special case of d = 1, the constraint 0 < γ < d/2 extends so that

γ is allowed to take also the value d/2. In fact, following the notation introduced in

the proof of Theorem 1.22, we have α = 0 and β = ∞. We thus recover exactly the

estimate proved in Theorem 1.21

-0.5 0.5 1.0

-0.5

0.5

Figure 1.6: Continuous lines: from the outer most, plots of the numerical approximation value of the
constant C̃(ν, θ) as function of the angle, for different values of ν = 1, 3/2, 2, 5/2 in (1.43), with γ =
1/2 and d = 3. The dashed line corresponds to the case ν = 1/2.

Let us define Sd,ν the region where the complex eigenvalues of H might lie according

to (1.43). For fixed values of d and γ and for fixed value of the norm of the potential

equal to one, numerical evidences suggest not only that the contour of the region

Sd,ν changes with varying the angle in the complex plane but, according to what

would happen for a real potential, for greater values of ν the region Sd,ν shrinks,

concentrating around the origin. It seems, in fact, the case that the regions appear to
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Figure 1.7: Continuous lines: from the outer most, plots of the numerical approximation value of the
constant C̃(ν, θ) as function of the angle, for different values of ν = 1, 3/2, 2, 5/2 in (1.43), with γ =
1/2 and d = 5. The dashed line corresponds to the case ν = 1/2.

be ordered in a monotonic inclusion order Sd,ν′ ⊆ Sd,ν for ν < ν ′, as shown in Figure

1.6 and Figure 1.7.

In particular, the estimates obtained above for the half line problems provide some

important insights on the shape of the region Srd ⊆ C, the region where lie the complex

eigenvalues of the multi-dimensional Laplacian restricted to radial functions endowed

with complex radial perturbations. This operator will be investigated in the next

subsection.

1.3.4 The radial Laplacian in Rd

As mentioned earlier, an interesting consequence which can be drawn from the prop-

erties of the complex spectrum of the perturbed operators H0,ν is about the geometry

of the region Srd in the complex plane where eigenvalues of the multi dimensional

Laplacian can be found when a radial complex perturbation is introduced. A first

result in this direction was produced by Frank and Simon [59] by proving the validity

of the Laptev-Safranov’s conjecture [102] (1.14) for radial potentials and for values of

γ ∈ (0, d/2) as shown in (1.17).
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Let us consider the d-dimensional Laplacian in polar coordinates

∆df =
1

r(d−1)

∂

∂r

(
r(d−1)∂f

∂r

)
+

1

r2
∆S(d−1)f

where ∆S(d−1) is the Laplace-Beltrami operator on S(d−1), the unitary (d− 1)-sphere.

It is a well known fact that the eigenspaces El of the Laplace-Beltrami operator on

the d-sphere, with l = 0, 1, 2, . . . corresponding to the eigenvalue cl,d := l(l + d − 2)

yield the following direct sum decomposition

L2(S(d−1)) =
∞⊕
l=0

Ed
l

where El are close, pairwise orthogonal and such that for each of them there exists

a basis of orthonormal spherical harmonics Yl,m where the index m runs on an ap-

propriate set of finite cardinality which depends on l. We observe that the subspaces

Ẽl =
{
f(x) = R(r)Yl,m(ω) | r ∈ (0,∞), ω ∈ S(d−1)

}
reduces the operator −∆+V (|x|).

It follows that

−∆d + V (|x|) =
⊕
l,m

h̃dl ,

where

h̃dl := − ∂2

∂r2
− (d− 1)

r

∂

∂r
+
l(l + d− 2)

r2
+ V (r),

with D(h̃dl ) = L2((0,∞), r2ξdr) and ξ =
(
d−1

2

)
. By mean of the unitary transformation

R(r) → u(r) = rξR(r), (see for example Teschl [151] for the case d = 3), and from

the definition of H0,ν given in (1.20), the above operators simplifies to

hdl := H0,N(d,l) + V (|x|), D(h̃l) ⊆ L2(0,∞),

where

N(d, l) =

∣∣∣∣√cl,d + ξ(ξ − 1) + 1/4

∣∣∣∣ .
It finally follows the decomposition of the spectrum of the operator −∆d + V (|x|) in

terms of

σ(−∆d + V (|x|)) =
⋃
l

σ(hdl ).
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From the property Sd,ν′ ⊆ Sd,ν for ν < ν ′, we in fact conclude that

σd(−∆d + V (|x|)) ⊆ Sd,N(d,0).

This in turn implies that the shape of the region Srd where the complex eigenvalues of

the Laplacian with complex radial perturbation and restricted to radial functions lie,

depends in fact on the phase of the eigenvalue itself. In particular, for d = 3 the shape

of Sr3 is determined by the contour corresponding to the value ν = 1/2 in Figure 1.6,

and for d = 5 by the one corresponding to ν = 3/2 in Figure 1.7. In general,when

l = 0, a little algebra shows that there is a simple formulation N(d, 0) = d−2
2

.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1.8: Continuous lines: from the outer most, plot of the contour of the regions Srd for d =
3, 4, 5, 6 obtained respectively for the values ν = 1/2, 1, 3/2, 2. The dashed line is an approximation
to the limit case d = 2 and ν = 0.
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1.4 Dirac-like operators: Bilayer Graphene

The operator D = Dm + V defined in (1.45) below and which will be studied in the

section arises from the Hamiltonian formulation of the energy of a system made of

two layers of a bi-dimensional graphene’s sheets, when a complex potential is applied.

Again, we seek information on the region where complex eigenvalues lie. Hereafter we

discuss the results obtained by Ferrulli Laptev and Safronov in [141]. Heuristically,

one can think of the operator Dm as a sort of square root of the bi-harmonic operator

−∆2 as much as it is possible to interpret a Dirac operator as a square root of the

classical Laplacian. Under this point of view, our results aim to extend the ones

proved by Cuenin Laptev and Tretter [31], where an explicit formulation of the region

where the eigenvalues might lie is given for the Dirac operator defined on the real line.

From D2
m = ∆2 +m2, see equation (1.48), we deduce that the spectrum of Dm is the

set

σ(Dm) = σess(Dm) = (−∞,−m] ∪ [m,∞).

Our results show that the eigenvalues of D are located near the edges of the absolutely

continuous spectrum, i.e. near the points ±m. Since the spectrum of the unperturbed

operator has two edges, our results resemble some of the theorems of the Cuenin’s

paper [31] related to the Dirac operator. However, the main difference between the

two papers is that we study a differential operator on a plane, while the latter deals

with operators on a line.

In the following we briefly recall the main result valid for the Dirac operator and then

pass to the study of the graphene operator.

1.4.1 One dimensional Dirac case

Consider the operator H = H0 + V defined on L2(R;C2) where V is a 2× 2 matrix-

valued function with entries in the Banach space L1(R) +L∞(R) where H0 is the one

dimensional free Dirac operator:

H0 = −ic~ d
dx
σ1 +mc2σ3, σ1 :=

(
0 1

−1 0

)
, σ3 :=

(
1 0

0 −1

)
(1.44)
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where σ1 and σ3 are the Pauli matrices, c is a positive constant which usually stands

for the speed of light, ~ is the reduced Planck constant, i the complex unit and m is

the particle’s mass which could take eventually complex values and the potential V

might be a non-Hermitian matrix.

The operator H0 can be understood in fact, by means of Fourier transform, as the

square root of a Schrödinger’s like operator. It is indeed unitarily equivalent to the

operator √− d2

dx2
+m2 0

0 −
√
− d2

dx2
+m2


and so the spectrum of H0 has only the essential component which reads as σ(H0) =

σess(H0) = (−∞,−m] ∪ [m,∞).

Theorem 1.23 (Cuenin, Laptev , Tretter [31]). Let V = (Vij)
2 with Vij ∈ L1(R) for

i, j = 1, 2 be such that

‖V ‖1 < 1.

Then every non-embedded eigenvalue z ∈ C \ σ(H0) of H lies in a region R which is

the disjoint union of two disks with same radius

z ∈ R := D(mx0, |mr0|) ∪D(−mx0, |mr0|)

where

x0 :=

√
‖V ‖4

1 − 2‖V ‖2
1 + 2

4(1− ‖V ‖2
1)

+
1

2
r0 :=

√
‖V ‖4

1 − 2‖V ‖2
1 + 2

4(1− ‖V ‖2
1)

− 1

2
;

in particular the spectrum of the massless Dirac operator, corresponding to the case

m = 0 with non Hermitian potential V is R.
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Figure 1.9: The Region R described in Theorem1.23 for different values of ‖V ‖1 and fixed mass m =
1.

1.4.2 The Graphene operator

We consider now the graphene case. It turns out that the Hamiltonian of the two layers

structure, near the Fermi points†, can be approximated via a second order operator

defined on the whole R2. The derivation of such operator follows after the use of the

tight-binding methodology in order to describe a model for the free electrons in the

graphene sheets.

From a a nano-material point of view, graphene is a two dimensional material made

of a single layer of carbon atoms which are arranged in a honeycomb lattice structure.

The structure is made possible by the bounds which are present between the various

atoms. Those bounds are realised by a number of electrons that each carbon atom

shares with its neighbours. In particular, out of six electrons of which every carbon

atom is made of, only one does not participate into the formation of such bounds

and is free to move and thus potentially to allow the graphene’ sheet to conduct

electricity. In fact, graphene is a zero-gap semiconductor, meaning that it cannot be

fully categorized either as a perfect conductor (metals) nor as a perfect insulator. The

zero gap terminology means that the conductance and valence bands, respectively the

energy bands at which the material turns out to be a conductor or an insulator, have

no separation. This implies that for any small variation of energy, off from the Fermi

†Points in the momentum space where the energy of the system is close to the Fermi level
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level ‡, a change in the nature of the material itself is achievable.

From a physical point of view, it turns out that, for energies sufficiently close to the

Fermi level, the behaviour of the free (conducting) electrons can be described using a

second order differential operator defined on R2 of the Dirac-like type.

In particular, the operator of the bilayer graphene reads as

Dm =

(
m 4∂2

z̄

4∂2
z −m

)
, ∂z̄ =

1

2

( ∂

∂x1

+ i
∂

∂x2

)
, ∂z = ∂z̄, (x1, x2) ∈ R2.

While not engaging in details for the derivation of the operator defined above, we

will try to explain why this operator falls into the class of the Dirac-like one, at least

heuristically. For this purpose, a meaningful interpretation of the following figures

can help.

(a) Case m = 0. (b) Case m 6= 0.

Figure 1.10: Low-energy band structure. Ref. [137]

They describe the four (which reduce to only two, in the case of single layer) energy

bands near the value of the Fermi level (In the plot the Fermi level corresponds to zero).

In particular they show the dependence of the energy (kinetic) over the parameters

kx, ky which can be interpreted as the physical momentum operator components. In

mathematical terms, these two graphs can be interpreted as the plots of the symbols

of the operators responsible for describing the Hamiltonian of the system. We can

‡The Fermi energy is the value for which there is a 50% of possibility to find any electron in the
solid at the thermodynamic equilibrium with that energy level.
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see in the zoom in, how for values of the energy near the Fermi level and for m = 0,

the plot seems to have a linear behaviour, which re interpreted in terms of a symbol

of an operator makes clear the connection with the Dirac one. We can also visualise

the meaning of the zero gap given before. In fact the two bands collide in two points

creating no gap. Gap which is in fact induced in the second plot, where m 6= 0. In

practical experiences in laboratory, a mass gap can be introduced by physical strains

or impurities of the lattice which alter the symmetry of the geometry.

We refer to the collection [137] and to Mc Cann’s [119] for both the derivation of

the Hamiltonian, for a detailed introduction of the tight-binding methodology used

for the derivation of the operators in question and for further details on graphene’s

electronic properties.

1.4.3 Uniform bounds of the resolvent norm

Let us consider the following operators acting on the Hilbert space L2(R2;C2)

D = D0 +mγ0 + V = Dm + V, (1.45)

D0 =

(
0 4∂2

z̄

4∂2
z 0

)
, γ0 =

(
1 0

0 −1

)
where ∂z̄ and ∂z denote the Wirtinger derivative operators on R2

∂z̄ =
1

2

( ∂

∂x1

+ i
∂

∂x2

)
, (x1, x2) ∈ R2,

∂z =
1

2

( ∂

∂x1

− i ∂
∂x2

)
, (x1, x2) ∈ R2.

The potential V is a not necessary self-adjoint matrix-valued function

V (x) =

(
V1,1(x) V1,2(x)

V2,1(x) V2,2(x),

)

where the matrix elements are allowed to take complex values.

For p ≥ 1 we consider the spaceM2,2(C) of the 2×2 complex-valued matrices endowed

62



with the Frobenius norm | · | for the matrix V (x)

|V (x)| =
√ ∑

i,j=1,2

|(V (x))i,j|2 (1.46)

and consider the space Lp(R2;M2,2(C)) of the M2,2(C)-valued measurable function

on R2 with finite Lp-norm

Lp(R2;M2,2(C)) =

V (x) : ‖V (x)‖pp =

∫
R2

( ∑
i,j=1,2

|(V (x))i,j|2
)p/2

dx <∞

 .

The domain of D is the Sobolev space H2(R2;C2). In the following we will refer to

Dm = D0 +mγ0, where

Dm =

(
m 4∂2

z̄

4∂2
z −m

)
, (1.47)

as the free energy bi-dimensional two layers Graphene Hamiltonian’s operator with

mass m. For future reference, we list some elementary properties satisfied by D0 and

Dm.

D2
m =

(
m2 + ∆2 0

0 m2 + ∆2

)
,

D2
0 − µ2 = (D0 + µ)(D0 − µ),

(Dm − k)−1 = (Dm + k)(D2
m − k2)−1.

(1.48)

In view of the identities (1.48), we note that |Dm| is unitarily equivalent to
√

∆2 +m2.

Thus the spectrum of the operator Dm consists only of its essential part

σ(Dm) = σess(Dm) = {±(p2 +m2)1/2 | p ∈ R}.

In the following we will assume that V (x) admits a factorisation

V (x) = B(x)A(x),

such that Theorem 1.17 and Theorem 1.18 hold for H0 = Dm and the perturbations

V (x) leave the essential spectrum of the perturbed operator D unchanged.
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It is an easy computation to see that the resolvent operator for Dm admits a decom-

position in terms of the massless operator D0

(Dm − k)−1 = (mγ0 + k − µ)(∆2 − µ2)−1 + (D0 − µ)−1,

= (mγ0 + k − µ)(∆2 − µ2)−1 + (D0 + µ)(∆2 − µ2)−1,
(1.49)

where

µ2 = k2 −m2. (1.50)

The operator (∆2 − µ2)−1 is an integral operator with kernel gµ(x, y)

gµ(x, y) =
i

8µ

(
H

(1)
0 (
√
µr)−H(1)

0 (i
√
µr)
)
, (1.51)

where x, y ∈ R2, r = |x− y| is the usual Euclidean distance between two points in R2

and H
(1)
0 (z) is the Hankel function of first kind and zero order. This is a consequence

of the fact that it is possible to express the fundamental solution of the Helmoltz

equation for the bi-harmonic operator in terms of the fundamental solution of the

Helmoltz equation for the Laplacian operator. Namely, the following decomposition

holds true

(∆2 − µ2)−1 =
1

2µ

(
(−∆− µ)−1 − (−∆ + µ)−1

)
.

Equation (1.51) simply follows after noting that 4−1iH
(1)
0 (
√
µr) is the kernel of the

operator (−∆− µ)−1.

For the sake of clarity and to have a short notation at hand, we introduce the auxiliary

function

G(z) = H
(1)
0 (z)−H(1)

0 (iz),

so that the kernel (1.51) of the operator ∆2 − µ2 can be re-written as

gµ(x, y) =
i

8µ
G(
√
µ|x− y|). (1.52)

Remark 1.13. We note here that in fact the points z ∈ C in which the function

G(z) will be evaluated are of the particular shape z =
√
λ|x| where |x| ∈ R and

λ =
√
k2 −m2 ∈ C. Even though in the following, k ∈ C will be the complex

eigenvalue of the perturbed operator D and so it will be free to lie everywhere in the
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complex plane, the presence of the double complex square root in the formulation

of G(z) let us to restrict from now on, without loss of generality, to the case where

z ∈ Q, where Q = {z ∈ C|Rez ≥ 0, Imz ≥ 0} is the first quadrant of the complex

plane.

The remark above is of some importance in view of the following lemma, since it

restricts the domain of the function G(z) to the ‘good one’.

Lemma 1.24. Consider z ∈ Q in the first quadrant of the complex plane. If |z| < 1/2

then the following estimates hold true for the function G(z):

(i) |G(z)| ≤ C,

(ii) |G′(z)| ≤ C|z| ln(|z|−1),

(iii) |G′′(z)| ≤ C ln(|z|−1).

If instead |z| ≥ 1/2, then the asymptotic behaviour of G(z) and its derivates is deter-

mined by the following

|G(z)|+ |G′(z)|+ |G′′(z)| ≤ C√
|z|
.

All the constants are independent from z ∈ Q.

Proof. We start proving the first statement which holds for |z| < 1/2. We recall the

formula for the Hankel function H
(1)
n (z)

H(1)
n (z) = Jn(z) + iYn(z) z ∈ C

where Jn and Yn are the n-order Bessel functions of first and second kind respectively,

so that

G(z) = J0(z)− J0(i z) + i
(
Y0(z)− Y0(i z)

)
z ∈ C. (1.53)

The behaviour of the function G(z) for values of |z| < 1/2 is determined by analysing

the expansion formula for the Hankel function near zero. We have, see for example
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Olver [132] chapter 10,

Jn(z) =
(z

2

)n ∞∑
k=0

(−1)k
( z

2

4
)k

4!Γ(n+ k + 1)
(1.54)

Yn(z) = −
( z

2
)−n

π

n−1∑
k=0

(n− k − 1)!

k!

(
z2

4

)k
+

2

π
ln
(z

2

)
Jn(z)

−
( z

2
)n

π

∞∑
k=0

(ψ(k + 1) + ψ(n+ k + 1))
(− z2

4
)k

k!(n+ k)!

(1.55)

where ψ(x) = Γ′(x)/Γ(x). In particular, for n = 0 we obtain

J0(z) =
∞∑
k=0

(−1)k
z2k

(k!)22k2
= 1− z2

4
+
z4

26
− . . . ,

Y0(z) =
2

π
J0(z)

(
log(

z

2
) + γ

)
+

2

π

( 1
4
z2

1!
− (3/2)

(1
4
z2)2

(2!)2
+ (11/6)

(1
4
z2)3

(3!)2
− . . .

)
,

where γ is the Euler-Mascheroni constant. By means of the expansion formulae above

we observe that in (1.53) the logarithmic singularity present at the origin disappear,

and therefore it follows the boundedness of |G(z)| < C for |z| < 1/2.

Similar arguments apply to the estimates of the first and second derivatives

d

dz
G(z) =

d

dz
H

(1)
0 (z)− i d

dz
H

(1)
0 (iz), z ∈ C, (1.56)

d2

dz2
G(z) =

d2

dz2
H

(1)
0 (z) +

d2

dz2
H

(1)
0 (iz), z ∈ C, (1.57)

where
d

dz
H

(1)
0 (z) = −H(1)

1 (z), (1.58)

d2

dz2
H

(1)
0 (z) = H

(1)
0 (z)− 1

z
H

(1)
1 (z). (1.59)

Equation (1.54) and (1.55) for n = 1 read

J1(z) =
+∞∑
k=0

(−1)k
(z/2)1+2k

k!(k + 1)!
z ∈ C
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Y1(z) = J1(z) log(z)− 1

π

∞∑
k=0

(−1)k
(z/2)1+2k

k!(k + 1)!

[
−2γ + 2

k∑
n=1

1

n
+

1

k + 1

]
− 2

πz

= J1(z) log(z)− g(z)− 2

πz
,

where g(z) is bounded. Equations (1.56) together with (1.58) and the formulas above

imply that the behaviour of | d
dz
G(z)| is completely determined by the term

|J1(z) log(z)| ∼ |z| ln(|z|−1).

The term | d2
dz2
G(z)| can be estimated using similar arguments and we omit the details.

On the other hand, the behaviour of G(z) for |z| > 1/2 can be easily determined by

observing that for ν > 0 and z ∈ Q, where we recall Q = {z ∈ C|Rez ≥ 0, Imz ≥ 0},
the following holds

Kν(−iz) =
πi

2
eνiπ/2H(1)

ν (z),

where, as seen in the previous section in formula (1.30), the following integral repre-

sentation formula holds

Kν(z) =
e−z

(ν − 1/2)!

√
π

2z

∫ ∞
0

e−ttν−1/2
(
1 +

t

2z

)ν−1/2
dt, | arg z| < π.

which can be found in Abramowitz [3].

Theorem 1.25. Let k /∈ σ(Dm) be an eigenvalue of the operator D, 1 < p < 4/3 and

set

ω(k,m) =
(√∣∣∣k +m

k −m

∣∣∣+

√∣∣∣k −m
k +m

∣∣∣+ 1
)
.

Then there exists a constant Cp which depends on p such that

Cp
∫
R2 |V (x)|pdx
|µ|p−1

ω(k,m)p ≥ 1, µ2 = k2 −m2. (1.60)

In particular, if m = 0:

|k|p−1 ≤ Cp

∫
R2

|V (x)|pdx, 1 < p < 4/3.

Proof. Let’s first consider the case when the mass m = 0 and µ ∈ C is a complex
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number, and consider the operator (D0 − µ)−1. It is an integral operator with kernel

the matrix ρµ(|x− y|)

ρµ(|x− y|) =
i

8µ

(
µG(
√
µ|x− y|) ∂2

z̄G(
√
µ|x− y|)

∂2
zG(
√
µ|x− y|) µG(

√
µ|x− y|).

)
(1.61)

It follows that its Frobenious norm (1.46) is

|ρµ(|x− y|)| = 1

8|µ|

√
2|µ|2|G(

√
µ|x− y|)|2 + |∂2

z̄G(
√
µ|x− y|)|2 + |∂2

zG(
√
µ|x− y|)|2,

(1.62)

where the second order derivative reads as

4∂2
z̄G(
√
µ|x− y|) = µG′′(

√
µ|x− y|)

[ ∑
i=1,2

(xi − yi)2

|x− y|2
]

+ 2i µG′(
√
µ|x− y|)2

[ ∏
i=1,2

(xi − yi)
|x− y|

]
,

(1.63)

and for which we have the following estimate

|∂2
z̄G(
√
µ|x− y|)|2 ≤ C|µ|2

(
|G′′(√µ|x− y|)|2 + |G′(√µ|x− y|)|4

)
. (1.64)

As a consequence, if we denote by ρθ(|x− y|) the kernel of the operator (D0 − eiθ)−1

then

|ρθ(r)| ≤ C ln r−1, if r < 1/2, (1.65)

and

|ρθ(r)| ≤ Cr−1/2, if r > 1/2. (1.66)

The positive constants in the inequalities (1.65) and (1.66) do not depend on θ ∈
(0, π/2). In particular, we deduce the following Lq-estimate for the kernel

Mq = sup
θ

sup
x∈R2

∫
R2

|ρ̃θ(|x− y|)|q dy <∞

which holds uniformly for θ ∈ (0, π/2) if and only if q > 4. We observe that the latter

condition simply follows from (1.66).
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Let U be the partial isometry in the polar decomposition for V = U |V | and consider

its following factorization:

V = AB, A := U |V |1/2 B := |V |1/2. (1.67)

Let us estimate now the norm of the operator T = A(D0 − eiθ)−1B whose kernel is

τ(x, y) = A(x)ρθ(|x− y|)B(y).

For this purpose we estimate the sesqui-linear form of this operator

(Tu, v) =

∫
R2

∫
R2

v̄(x)A(x)ρθ(|x− y|)B(y)u(y) dxdy,

so that, for 1
p

+ 1
q

= 1 we have

|(Tu, v)|2 =
∣∣∣∫

R2

∫
R2

v̄(x)A(x)ρθ(|x− y|)B(y)u(y) dxdy
∣∣∣2

≤
∫
R2

∫
R2

|v(x)|2|ρθ(|x− y|)||V (y)| dxdy
∫
R2

∫
R2

|V (x)||ρθ(|x− y|)||u(y)|2 dxdy

≤
(

sup
x

∫
R2

|ρθ(|x− y|)||V (y)| dy
)2

||u||2 ||v||2

≤
(∫

R2

|ρ̃θ(|x− y|)|q dy
)2/q

||V ||2p ||u||2 ||v||2.

Thus the following estimates

||T || ≤M1/q
q ||V ||p, 1 < p < 4/3

holds uniformly for the angle θ ∈ (0, π/2).

Similarly, it follows the estimate for the sequilinear form for the operator Tµ = A(D0−
µ)−1B for µ ∈ C \ σ(D0)
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|(Tµu, v)| =
∣∣∣∫

R2

∫
R2

v̄(x)A(x)ρµ(|x− y|)B(y)u(y) dxdy
∣∣∣

≤
∫
R2

∫
R2

| ¯v(x)||A(x)||ρθ(
√
|µ||x− y|)||B(y)||u(y)| dxdy

≤ 1

|µ|2

∫
R2

∫
R2

|v̄(x/
√
|µ|)||A(x/

√
|µ|)||ρθ(|x− y|)||B(y/

√
|µ|)||u(y/

√
|µ|)| dxdy

≤M1/q
q

1

|µ|2
‖V (·/

√
|µ|)‖p‖u(·/

√
|µ|)‖ ‖v(·/

√
|µ|)‖ ≤ M

1/q
q ‖V ‖p
|µ|(1−1/p)

‖u‖ ‖v‖.

(1.68)

Consequently,

‖Tµ‖ ≤
M

1/q
q ‖V ‖p
|µ|(p−1)/p

. (1.69)

Following a strategy similar to the one used for the term Tν , and from the definition

of the Frobenius norm given in (1.46) it is an easy computation to check that it holds

also

||A(mγ0 + k − µ)(∆2 − µ2)−1B|| ≤ C||V ||p
ω(k,m)

|µ|(p−1)/p
, 1 ≤ p < 4/3, (1.70)

where we set

ω(k,m) =
(√∣∣∣k +m

k −m

∣∣∣+

√∣∣∣k −m
k +m

∣∣∣+ 1
)
.

In fact we observe that the kernel of the operator (∆2−µ2)−1 is the matrix iG(
√
µ|x−

y|)/(8µ)I2×2, where I2×2 ∈ M2,2(C) is the identity matrix, which has the same be-

haviour of ρθ(
√
|µ||x− y|) at infinity and is bounded near the origin.

We can finally state the estimate for the operator Dm. From equation (1.49) we have

that the kernel splits in

(Dm − k)−1 = (mγ0 + k − µ)(∆2 − µ2)−1 + (D0 − µ)−1

=

(
m+ k − µ 0

0 −m+ k − µ

)
(∆2 − µ2)−1 + (D0 − µ)−1.

(1.71)
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The former representation with the estimates (1.69) and (1.70) leads to the final

||A(Dm − k)−1B||p ≤ C
ω(k,m)p

|µ|p−1

∫
R2

|V (x)|pdx, µ2 = k2 −m2. (1.72)

The statement of the theorem follows from the fact that if k is an eigenvalue of

D = Dm + V , then ||A(Dm − k)−1B|| ≥ 1 due to the Birman-Swinger principle.

Figure 1.11: The region R of the complex plane which contains the discrete spectrum of the operator
D + V described in (1.60) for different values of C

∫
R2 ‖V ‖p, where m = 1 and p = 1.2.

The previous theorem gives an estimate which can be refined if more information

about the region where the eigenvalue k lies are available, in particular similarly to

what happens in [60] if we consider eigenvalues away from the essential spectrum.

Let’s fix the value of the mass m ∈ R and consider α ∈ R such that 0 < α < π. We

define

Sm
−α,α := {z +m2 ∈ C | −α ≤ arg(z) ≤ α}

a sector of the complex plane with vertex centred in m2 with opening angle 2α. Let’s

suppose now that the eigenvalue k /∈ Smα for some admissible value of α. It follows that

the corresponding value of
√
µ lies in the sector Sβ,π/2−β which is completely inside
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the in first quadrant of the complex plane and where β = α/4 and m = 0 has been

omitted. This in turn gives the possibility to improve the estimate for |z| > 1/2 in

Lemma 1.24. We can indeed assume that the decay of the function |G(z)| at infinity

goes with an exponential rate, as well as does it for |G′(z)| and |G′′(z)|, and so we

can drop off the constraint on the exponents and allow the estimate in the theorem

to hold for any p and q real and conjugated.

Theorem 1.26. Consider m ∈ R and 0 < α < π. Let k /∈ (σ(Dm) ∪ Smα ) be an

eigenvalue of the operator D. Then for every p > 1 it holds true the following:

C
∫
R2 |V (x)|pdx
|µ|p−1

(√∣∣∣k −m
k +m

∣∣∣+

√∣∣∣k +m

k −m

∣∣∣+ 1
)p
≥ 1, µ2 = k2 −m2, (1.73)

where the constant C = C(α) depends only on the angle spanned by α.

In particular, if m = 0, then

|k|p−1 ≤ C

∫
R2

|V (x)|pdx.

Moreover, if ‖V (x)‖∞ <∞, then it holds true:

(√∣∣∣k−mk+m

∣∣∣+

√∣∣∣k+m
k−m

∣∣∣+ 1
)

|µ|
≤ C‖V ‖∞ (1.74)

Proof. The proof follows exactly the same steps of the proof of the Theorem 1.25

therefore we will note produce them again. We only note that under the more strict

hypothesis on k /∈ (σ(Dm) ∪ Smα ), we have that

Mq = sup
x∈R2

∫
R2

|ρ̃θ(|x− y|)|q dy =

∫
R2

|ρ̃θ(|x− y|)|q dy <∞

holds uniformly for θ ∈ [ε, π/2− ε] for ε > 0 and for all the real 1 ≤ q <∞.

In the spirit of the proof given for the previous theorems we present now a different

type of estimate which holds true for the operator D.
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Theorem 1.27. Let k /∈ σ(Dm) be an eigenvalue of the operator D. Let µ2 = k2−m2.

Then

C

(
| ln |µ|| sup

x∈R2

∫
|x−y|<(2|µ|)−1

|V (y)| dy + sup
x∈R2

∫
R2

(
1 + | ln |x− y||

)
|V (y)|dy

)
+

+ C

∫
R2

|V (x)|dx
(√∣∣∣k −m

k +m

∣∣∣+

√∣∣∣k +m

k −m

∣∣∣+ 1
)
≥ 1.

(1.75)

Proof. Again, we use the representation formula (1.49)

(Dm − k)−1 = (mγ0 + k − µ)(∆2 − µ2)−1 + (D0 − µ)−1.

The estimate for the operator (mγ0 + k− µ)(∆2 − µ2)−1 is derived as in the previous

theorems and reads as in (1.70) with p = 1.

We are left with the estimate of the norm of the operator Tµ = A(D0 − µ)−1B for

Imµ > 0 where again A and B come from the factorization of the potential V in

(1.67). The operator (D0 − µ)−1 is the integral operator with kernel ρµ(|x − y|) =

ρθ(
√
|µ||x− y|) where ρθ(r) satisfies (1.65) and (1.66) for µ = eiθ|µ|. As before, we

consider the sesqui-linear form of this operator

(Tµu, v) =

∫
R2

∫
R2

v̄(x)A(x)ρµ(|x− y|)B(y)u(y) dxdy,

for which the following estimate holds

|(Tµu, v)|2 =
∣∣∣∫

R2

∫
R2

v̄(x)A(x)ρµ(|x− y|)B(y)u(y) dxdy
∣∣∣2

≤
(

sup
x∈R2

∫
R2

|ρµ(
√
|µ||x− y|)||V (y)| dy

)2

||u||2 ||v||2

Therefore we deduce

||Tµ|| ≤ sup
x∈R2

∫
R2

|ρ̃µ(|x− y|))||V (y)| dy = sup
x∈R2

∫
R2

|ρθ(
√
|µ||x− y|))||V (y)| dy.

Let us define the region Σx
µ = {y ∈ R2 | |µ||x − y| < 1/2} ⊆ R2. We can then split
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the above integral into two complementary regions so to obtain

sup
x∈R2

∫
R2

|ρ̃θ(
√
|µ||x− y|))||V (y)| dy

= sup
x∈R2

(∫
Σxµ

|ρ̃θ(
√
|µ||x− y|))||V (y)| dy +

∫
R2\Σxµ

|ρ̃θ(
√
|µ||x− y|))||V (y)| dy

)
≤ C

(
| ln |µ|| sup

x∈R2

∫
Σxµ

|V (y)| dy + sup
x∈R2

∫
R2

(
1 + | ln |x− y||

)
|V (y)|dy

)
,

where we used (1.65) and (1.66) to obtain the last inequality.

The estimate above in turn implies

||Tµ|| ≤ C
(
| ln |µ|| sup

x∈R2

∫
|x−y|<(2|µ|)−1

|V (y)| dy + sup
x∈R2

∫
R2

(
1 + | ln |x− y||

)
|V (y)|dy

)
.

From

||A(Dm − k)−1B|| ≤ ||A(mγ0 + k − µ)(∆2 − µ2)−1B||+ ||Tµ||

we deduce

||A(Dm−k)−1B|| ≤ C
(
| ln |µ|| sup

x∈R2

∫
|x−y|<(2|µ|)−1

|V (y)| dy+sup
x∈R2

∫
R2

(
1+| ln |x−y||

)
|V (y)|dy

)
+

+C

∫
R2

|V (x)|dx
(√∣∣∣k −m

k +m

∣∣∣+

√∣∣∣k +m

k −m

∣∣∣+ 1
)
.

Now the statement of our theorem follows from the fact that if k is an eigenvalue of

D = Dm + V , then ||A(Dm − k)−1B|| ≥ 1 due to the Birman-Swinger principle.

Remark 1.14. In view of (1.75), we note that if m = 0, then for small V , the complex

eigenvalues of D are situated in a circle of radius r which is roughly estimated by

r ≈ exp
(
− C∫

R2 |V |dx

)
as

∫
R2

|V (y)|dy,
∫
R2

|V (y)| ln(x− y)dy → 0.

contrarily to what happen to the one dimensional Dirac operator, as described in

Theorem 1.23, where the spectrum has to be real.
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1.4.4 Uniform estimates in Schatten class

In this last section we recall the results obtained by Cuenin [30] which extend the ones

proved in Section 1.4.3.

The following result should be interpreted as the analogue for the bilayer graphene

operator of the Laplacian uniform resolvent estimates (1.15).

Proposition 1.28 (Cuenin [30]). Let 1 ≤ q ≤ 3/2. There exists C > 0 such that for

any A,B ∈ L2q(R2;M2,2(C)) and z ∈ ρ(Dm) we have the inequality

‖A(Dm − z)−1B‖
S

max(q,αq,1/2,2) ≤ C|k(z)|
2
q
−2(|ζ(z)|+ |ζ(z)|−1)‖A‖2q‖B‖2q (1.76)

where

αq,1/2,2 =


2(d−1−r)q

d−q if d
d−r ≤ q ≤ 1 + r

2rq+
2rq−d(q−1)

if 1 ≤ q ≤ d
d−r

for r > 0, 1 ≤ q ≤ 1+r and where 2qr+ = 2qr+ε with ε > 0 any positive real number.

Theorem 1.29 (Cuenin [30]). Let V (x) ∈ Lq(R2;M2,2(C)) with 1 ≤ q ≤ 3/2 and

consider

k(z)4 := z2 −m2, ζ(z) :=
z +m

k2(z)
.

Then the following estimates hold for D = Dm+V with some constant Cq independent

of V , z and m:

i) If 1 < q ≤ 3/2, then any eigenvalue z ∈ σp(D) satisfies

|k(z)|2q−2

(1 + |ζ(z)|+ |ζ(z)|−1)q
≤ Cq‖V ‖qq. (1.77)

ii) If q = 1, then there exists c1 > 0 such that if ‖V ‖1 < c1, then

σp(D) ⊂
{
z ∈ C | |z ±m| ≤ c1m‖V ‖2

1

}
if m > 0 (1.78)

whereas σp(D) = ∅ for m = 0.

The proof of the results in Theorem 1.29 follows customarily by means of the resolvent

estimates 1.28 and the Birman-Schwinger principle, following the arguments given in
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the proof of Frank [57] valid for the Schrödinger operator which we have already

encountered in Section 1.2.

It is interesting to note how the range for the exponent 1 < q ≤ 3/2 is exactly the

same as in Frank [57]

zq−1 ≤ Cq‖V ‖q

that corresponds in terms of the notation previously introduced, to the case 0 < γ ≤
1/2. As noted by Cuenin, it is indeed not surprising as in fact both −∆ and Dm

are second order differential operators. Even more interesting is the difference which

exists though for the case q = 1, namely γ = 0. We have already discussed in Section

1.2 that for the Laplacian an estimate like the previous one cannot hold due to the

singularity of the fundamental solution which blows up logarithmically at the origin.

Differently from the latter case, the estimates valid for the Graphene operator turn

out to in fact to be totally legitimate for the operator Dm when q = 1.
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1.5 Additional results

1.5.1 Number of eigenvalues and stability of the spectrum

In this last subsection we introduce the problem of studying the number of eigenvalues

of complex perturbed self-adjoint operators. The scope of this section is not to produce

an exhaustive text, rather to highlight the most important results on this topic which

appeared close to the treatment of the localisation problem. We commence with a

brief historical introduction.

Before the important paper [2] published in 1999, the literature available on this topic

consisted of a scarce number of papers. A prosperous period, which turned out to be a

fruitful one especially for problems related to the study of the number of eigenvalues.

is the one which spans the 50’s and 60’s of last century. In the following we will review

some of the most important results produced during that period. Starting from the

works of Naimark on the spectrum of operators of the type

−y′′ + q(x) y = 0,x ∈ (0,∞)

y′(0)− h y(0) = 0,h ∈ C.
(1.79)

where q(x) ∈ R and the non self-adjointness condition was implemented by introduc-

ing a complex constant h in the formulation of the boundary condition at zero and

eventually by considering at the same time complex valued potentials. Naimark [126]

proved, under some smallness property of the potential of the type∫ +∞

0

|q(x)|eε|x| dx <∞, ε > 0, (1.80)

the finiteness of the number of eigenvalues and the finiteness of their multiplicities.

Similar results were later proved by Blashak [16] on the whole real line and Martirosjan

[116] and Murtazin [124] for the two and three dimensional cases. Results on the

finiteness of the eigenvalues and their multiplicities were also extended by Gasymov

[67] to the case of potentials of the type q(x) = l(l+1)
x2

+V (x), where V (x) is a complex

valued perturbation.

Would similar results hold under weaker conditions for the potential than the one
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presented in (1.80)? A deep result was proved by Pavlov [133] later the same decade.

He proved, using methods of inverse spectral theory, that under the milder assumption

for the poteintail q(x)

sup
x∈(0,∞)

|q(x)|eε
√
x <∞, and

∫ ∞
0

x|q(x)| dx <∞

the problem (1.79) has yet finitely many eigenvalues (of finitely multiplicity). Pavlov

showed also that this result is in fact sharp. He proved, in fact, that for any β ∈
(0, 1/2) and any point s ∈ (0,∞) in the essential spectrum there exists a real potential

V (x) such that

sup
x∈(0,∞)

|V (x)|eεxβ <∞

and such that the problem (1.79) has infinitely many eigenvalues accumulating at

the point s. Even more interestingly, this result not only showed the sharpness of

the exponent 1/2, but shed some light on the differences which occur between the

self-adjoint and non self-adjoint case. If we restrict to real potential, the Bargmann’s

estimate says that it is possible to control the number of the eigenvalues of a (self-

adjoint) operator L by mean of a certain integral of the potential. More precisely

[144], for c > −1/4 and q ∈ L1
loc(0,∞) the number N of the negative eigenvalues of

the operator

L := −y′′ + c

x2
+ q(x)

must satisfy

N
√

4c+ 1 <

∫ ∞
0

q−(r)r dr,

where q−(r) = min{0, q(r)}. In particular, from the Pavlov’s result valid for β ∈
(0, 1/2), one deduces the impossibility of extending the Bargmann’s type of bounds

on the number of eigenvalues valid for real potential in the self-adjoint case to the non

self-adjoint one. Pavlov’s type of results on the finiteness of eigenvalues were later

extended by Pavlov himself to the three dimensional case and later by Davies [2] and

Tunca-Baraimov [154] to the whole real line. We observe that the proofs given by the

latter authors rely on topological arguments and they require the same decay’s rate

at infinity for the potential introduced by Pavlov. More recently, Kir [94] showed that
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the operator

L := −y′′ +
(
ν2 − 1/4

x2
+ V (x)

)
y, x ∈ (0,∞)

with boundary condition limx→0 x
−ν−1/2y(x) = 1, where ν ∈ C with Re(ν) > 0, such

that the potential satisfies∫ ∞
a

|V (x)| dx <∞ and

∫ a

0

x|V (x)| dx <∞

has at most a countable number of eigenvalues which can accumulate to a bounded

interval in R+. If, additionally, there exists ε > 0 such that∫ ∞
0

xV (x)eεx dx <∞ (1.81)

then the number of eigenvalues is finite as well as their multiplicities.

It has to be observed that the results mentioned so far have left, in fact, two funda-

mental questions unanswered. The first one regards the existence of any quantitative

bound on the number of complex eigenvalues. In fact, while addressing the problem

of the cardinality of the set of eigenvalues, the results mentioned so far do not provide

any uniform bound on the number of them. The second question which is left open

is whether the Pavlov’s results about the cardinality of the set of eigenvalues and its

accumulation points set can be extended to operators where the non self-adjointness

property comes only from the perturbative term and not in the boundary condition.

The answer to the latter question for the operator −∆ + V (x) defined either on Rd

or Rd
+ := {(x1, . . . , xd) | xd > 0} was given by Bögli [17] showing the existence of

bounded, decaying at infinity complex potentials, that have infinitely many eigenval-

ues in the lower half complex plane that accumulate at every point of the essential

spectrum [0,+∞). We observe that such potentials are obtained via a constructive

method. An interesting consequence which follows from Bögli’s results is that the

Lieb-Thirring inequality

∑
λ∈σ(H)\[0,∞)

|λ|p−d/2 ≤ Cd,p

∫
Rd
V (x)p dx

which holds for real potentials for any p ≥ d/2 if d ≥ 3, p > 1 if d = 2 and p ≥ 1 if
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d = 1, cannot hold in the non self-adjoint case if p > d. It is again another evidence

of the fact that one should not in principle expect that results valid for real potentials

can be extended straightforwardly in the self-adjoint case for complex perturbations.

For what concerns the existence of quantitive bounds on the number of eigenvalues, a

partial answer was given for odd dimensions by Frank, Laptev and Safronov [61] for

the operator −∆ + V (x) defined either on the half line [0,∞) or Rd with d odd.

Theorem 1.30 ( [61]). Consider d odd. The number N of eigenvalues of −∆ + V

in respectively L2(0,∞) with Dirichlet boundary condition and L2(Rd), counting the

algebraic multiplicities, satisfies for any ε > 0

N ≤ Cd
ε2

(∫
eεx|V (x)|(d+1)/2 dx

)2

. (1.82)

where, when d = 1, the constant C1 = 1 and the integral has to be thought over

the half line. The proof of the theorem is based on a trace formula approach. In

particular it exploits the correspondence existing between the zeros of the n-order

regularised determinant function of the Birman operator and the eigenvalues of the

original problem. The estimate on the number of eigenvalues then follows after novel

resolvent bounds in the Schatten classes of Birman operator, obtained by complex

interpolation similarly as done by Frank and Sabin in [63] combined with results on

bounds on the number of zeroes of analytic functions. For sake of completeness,

we recall that similar results on the number of eigenvalues have been obtained by

other authors for different type of operators. We mention the results of Stepin [150]

for the Laplacian in any dimension and of Hulko on the discrete Laplacian [81] and

discrete Dirac operator [82] and the results of Korotyaev and Safronov [96] on the

three-dimensional Stark operator.

We conclude this subsection by recalling some results on the non existence of eigen-

values, which can be interpreted as a particular circumstance in terms of estimates on

the number of eigenvalues.

We observe that for d ≥ 3, the uniform Sobolev estimates (1.15) holds in particular

for the left end point p = 2d/(d + 2). An interesting consequence of this fact is that

this allows to extend (1.14) to the case γ = 0 for d ≥ 3, and interpret the inequality

so obtained in terms of sufficient condition on the norm of the potential from which
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it follows the absence of complex eigenvalue for sufficiently small potential,

D0,d

∫
Rd
|V (x)|d/2 dx < 1, (1.83)

with D0,d = C
d/2
p,d where Cp,d is the same as in (1.15). In particular D0,3 = 4/33/2π2.

This result, proved firstly by Frank [57] for λ ∈ C\ [0,∞) and later extended by Frank

and Simon [59] to any λ ∈ C, opens up to the matter of existence of Virtual level in

the non selfadjoint case. If d ≥ 3, for the Schrödinger operator on the whole space

Rd it is well known that no eigenvalues can appear outside the essential spectrum

for small enough real (negative) potential. Therefore the previous result might be

interpreted as a generalisation of this phenomenon for complex potentials.

An improved version of (1.83), where a refined constant is found, is proved by Fanelli

and collaborators [54] for the Schrödinger operator again for d ≥ 3. In particular, the

result in the special case of d = 3 is proved under more general condition coming from

a form subordination approach which allows to extend Frank’s result for example to

potentials of the Hardy type

|V (x)| ≤ a

(
d− 2

2

)2
1

|x|2
, a < 1

for which the left term in (1.83) would be otherwise infinite. We conclude this chapter

mentioning that similar stability property of the spectrum under complex perturba-

tions have been proved by Cossetti [28] for Lame’ operators.
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2
Trapped modes for a two layer rotating

shallow water model in a waveguide

In this chapter we prove the existence of trapped mode solutions for a model of

two layers of rotating shallow water equation. In particular, these solutions are in

fact connected to the existence of eigenvalues for a second order, self-adjoint operator

pencil defined in a planar curved waveguide and subject to mixed boundary condition.

The main result of this chapter given in Theorem 2.5 establishes the existence of

points in the discrete spectrum under geometric assumptions on the curvature of the

waveguide and on the depth profile. The results of this chapter will also be included

in the forthcoming paper [55].

2.1 Spectrum of a self-adjoint operator pencil

Similarly to the previous chapter, we start by a very brief section where some classical

results in the context of self-adjoint operators, in particular valid for operator pencils

are recalled.

Let us consider T1, T2 two operators on a Hilbert space (H, 〈·, ·〉) and let us assume

82



them to be self-adjoint for the rest of this section. Further, consider the spectral

problem T1f = λT2f and the linear operator pencil A associated to such problem

A(λ)f := T1f − λT2f, D(A) = D(T1) ∩ D(T2) (2.1)

Definition 2.1. We say that λ ∈ C belongs to the spectrum of the pencil A, λ ∈ σ(A),

if for such value λ the operator A(λ) is not invertible. If T1 and T2 are self-adjoint,

it’s easily seen that λ ∈ R. Furthermore, the following extends to the pencil case the

definition of essential and discrete spectrum given in the second chapter.

λ ∈ σess(A), λ belongs to the essential spectrum of the pencil A, if for this value

of λ the operator A(λ) is not Fredholm.

λ ∈ σd(A), λ belongs to the discrete spectrum of the pencil A, if for this value of

λ there exists a non trivial solution φ ∈ D(A) of the problem A(λ)φ = 0. Such

λ will be called again an eigenvalue of the pencil.

In what follows we give a generalisation of the estimate on the spectrum of a operator

pencil via the variational characterisation. See Theorem 4.5.2 in Davies [34] for the

details of the proof in the case T2 = Id.

Let us define, for any finite-dimensional subspace L ⊆ D(A) the following quantities

λs(L) := inf
f∈L

〈T1f, f〉
〈T2f, f〉

, λi(L) := sup
f∈L

〈T1f, f〉
〈T2f, f〉

.

Let us fix, for any n ∈ N the following Rayleigh-Ritz quantities

λin := inf{λi(L) | L ⊆ D(A), dim(L) = n},
λsn := sup{λs(L) | L ⊆ D(A), dim(L) = n}.

Of course, the sequence (λin) is non-decreasing and (λsn) in non-increasing, therefore

we can consider respectively their limits

lim
n
λin = λi lim

n
λsn = λs.

It then follows the following estimates on the upper and lower bound for the essential

spectrum of a pencil operator.
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Proposition 2.1 (Johnson, Levitin, Parnovski [87]). Let A be the pencil operator as

in (2.1) and λin, λ
s
n, λ

i, λn defined as above. Let’s suppose σess(A) 6= ∅. Then

i) λi = inf σess(A) <∞. Furthermore, every λin < λi is an eigenvalue, each repeated

according to its multiplicity.

ii) −∞ < supσess(A) = λs. Furthermore, every λsn > λs is an eigenvalue, each

repeated according to its multiplicity.

Remark 2.1. Note that in fact, Proposition 2.1 holds in a weaker form where L ⊆
D(A1/2) is a subspace of the form domain of A and the expressions 〈Tif, f〉 are inter-

preted in terms of the quadratic forms associated to Ti. We refer to Section 1.1.2 in

Chapter 1 for results on quadratic forms.

In view of Proposition 2.1, a simple criterion for the existence of point in the discrete

spectrum follows. We present here only the case when the supremum of the essential

spectrum is taken into account. An analogous version holds when the infimum is

considered.

Proposition 2.2. Suppose there exists a function g ∈ D(A1/2) such that

〈T1g, g〉
〈T2g, g〉

> λs.

Then σd(A) 6= ∅.

2.2 The Rotating Shallow Water model

In this section we introduce the fluid-dynamic problem from where the pencil spectral

problem originates. We present the set of equations, specified for each layer, that

describe in a rotating spatial reference frame the time evolution of the horizontal

velocity components together with the incompressibility conditions for the two fluids

which are subject to the shallow water regime. We start from a description of the

waveguide geometry and the fluid layers’ structure. It follows a list of assumptions:

the majority of them are introduced because intrinsically related to the nature of

the physical model we are considering, whereas some others should be considered as

auxiliary mathematical simplification, necessary to perform a certain analysis.

84



2.2.1 Geometric assumptions

We will consider the fluid occupying a channel C ⊆ R3. This region will be fully

identified in terms of a planar strip S ⊆ R2 contained in the plane spanned by the

unit vectors eξ and eη and by its topography. We denote by ez = eξ× eη, the vertical

direction perpendicular to the plane (ξ, η) and we also assume that it coincides with

the direction of the rotation axes. In particular, we will consider strips of constant

width δ > 0 along the direction eη which extend indefinitely, both ways, along the

longitudinal direction eξ. The channel depth will be modelled by means of the function

H(ξ, η). The other two lateral boundaries of C, respectively obtained for η ∈ {0, δ},
are understood in our problem respectively as the coastal border and the vertical

surface where the shallow water meets the open ocean.

From the assumption of constant width, in order to determine the geometry of the

strip it suffices to introduce an infinite planar curve Γ : R → R2, the coastal profile,

defined as

Γ := {ξ → (X(ξ), Y (ξ)) , ξ ∈ R},

where the components X(ξ) and Y (ξ) are two smooth functions of the arc-length

variable ξ, so that

|Γ ′|2 = X(ξ)′
2

+ Y (ξ)′
2

= 1.

Associated to it, we also define the normal vector field P (ξ) and the signed curvature

γ(ξ) defined at each point ξ

P (ξ) = (−Y ′(ξ), X(ξ)′), γ(ξ) = X ′′Y ′ − Y ′′X ′.

Let us fix now a planar transformation Λ : R2 → R2 defined as follows

Λ : (ξ, η) → Γ(ξ) + ηP (ξ) =

X(ξ)− ηY ′(ξ)

Y (ξ) + ηX ′(ξ),
(2.2)

Then, the strip Sγ associated to the coastal profile Γ is uniquely determined (see

Kreyszig [99], II.20) by its curvature γ and is the image through the transformation
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Λ of the straight band S0 := {(x, y) | x ∈ R, y ∈ [0, δ]}

Sγ = Λ(S0).

Figure 2.1: Coastal boundary: continuous line ∂cS := Λ(R, 0). Open ocean boundary: dashed line
∂oS := Λ(R, δ).

We make the following assumptions.

[ CPT ] γ(ξ) to be a smooth function with compact support contained in [−R,R] for

some positive R > 0.

[ N-I ] In order to avoid self-intersection of the channel we introduce the two quantities

κ+ = sup
ξ∈[−R,R]

γ(ξ), κ− = − inf
ξ∈[−R,R]

γ(ξ)

and we make the additional assumption that concerns the existence of a positive

constant 0 ≤ Θ < 1 such that

κ± ≤ δ−1Θ. (2.3)

[ TOP ] We assume a non flat topography of the channel. In particular we restrict to

depth profile of the form

H(ξ, η) = H1 +H2(η), H2(0) = 0 (2.4)

where H1 is a positive constant and H2(η) depends in fact only from the distance

from the coast. We furthermore restrict our settings to the case of monotone

increasing depth so that the depth profile derivative is non-negative

H ′(y) = H ′2(y) > 0, y ∈ [0, δ). (2.5)
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In practical use of this model, the constant H1 is chosen equal to the height of the

first layer when the fluids are at rest.

Figure 2.2: Cross section of the channel C in the plane (y, z). Assumption [TOP] implies the validity
of the picture above for any value of x ∈ R.

2.2.2 The fluid motion equations

We introduce now the set of equations that describe the dynamics of the fluid in the

rotating shallow water regime. For simplicity, we do it in the case of straight strip,

following the approach proposed in [104]. We refer to it also for their derivation and

their physical interpretation (see Chapter III.16, equations 44-47).

In the following, for i = 1, 2, we have that ui(x, y), vi(x, y) represent the two fluid

velocity components in the i-th layer along the x and y direction (respectively ξ

and η in curvilinear coordinates). We make the additional assumption on the fluids

velocities.

[ R-L ] We restrict our study only to the rigid lid case. This approximation requires

that variations of the free surface at the top of the fluids are negligible compared

to any other physical quantity of the problem.
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[ H-V ] We assume that for both fluids, their vertical velocity components can be

neglected. Therefore the velocities will have only horizontal components.

The displacement of the two fluid layers interface from the equilibrium position H1

will be modelled using the function η2(x, y). The subscripts in the following equations

are introduced, coherently to what’s done before, to distinguish the two layers

The equations for the horizontal velocities in first layer are

∂tu1 − fv1 +
1

ρ1

∂xp
0
1 = 0 (2.6a)

∂tv1 + fu1 +
1

ρ1

∂yp
0
1 = 0, (2.6b)

and respectively for the second layer we have

∂tu2 − fv2 +
1

ρ2

∂xp
0
1 +G∂xη2 = 0 (2.6c)

∂tv2 + fu2 +
1

ρ2

∂yp
0
1 +G∂yη2 = 0. (2.6d)

We conclude with the incompressibility condition of the two fluids

H1(∂xu1 + ∂yv1)− ∂tη2 = 0 (2.6e)

∂x(H2u2) + ∂y(H2v2) + ∂tη2 = 0. (2.6f)

In the equations above

[ PRS ] p0
1 denotes the value of the pressure at the bottom of the channel, therefore

assumed to be independent from the depth p0
1 = p0

1(x, y). In particular it is

constant in time and its spatial derivatives are supposed to be very small.

[ DNS ] 0 < ρ1 < ρ2 are two positive different constants that describe the density of

the two fluids. They are also supposed to be constant in time.

[ ROT ] The Coriolis constant f > 0 which describes the rotation velocity of the refer-

ence frame.
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[ RGR ] The reduced gravity constant G > 0, introduced in LeBlond [104] in equation

(16.9) as

G = g

(
1− ρ1

ρ2

)
.

In the following, we will require G� 1 to be small.

Finally, we note the absence of the term η1 in equations (2.6a), consequence of the

rigid lid assumption [R-L].

2.3 The problem in the straight strip S0

In this section we aim to simplify the formulation of the problem and reduce the

number of equations. In this section we also specialise the solutions into the form of

trapped modes. We proceed firstly considering the mass conservation equations (2.6e)

and (2.6f). Adding them yields

div
(
(H1u1 +H2u2, H1v1 +H2v2)

)
= 0, (2.7)

so that the vector field in bracket results to be divergence free. Let us introduce

then the function ψ(x, y) which will referred to as the Total Volume Stream Function,

defined by means of its derivatives

ψx = H1v1 +H2v2

ψy = −(H1u1 +H2u2).
(2.8)

We note that with such choice of ψ, equation (2.7) is automatically satisfied. Pro-

ceeding further, we obtain the second derivatives of the stream function

ψxx = H1xv1 +H2xv2 +H1v1x +H2v2x

= H1v1x +H2v2x

ψyy = −(H1yu1 +H2yu2 +H1u1y +H2u2y)

= −H2yu2 − (H1u1y +H2u2y),
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which combined together provide equation

(H1v1x +H2v2x)− (H1u1y +H2u2y) = ∆ψ +H2yu2. (2.9)

Since the height function H2 is function of the only variable y, from now on we will

use the prime symbol and H ′2 to indicate the partial derivative of H2 with respect to

y.

We proceed with the derivation of the vertical vorticity equation in each layer; to this

end we cross differentiate the velocity fields in the two layers by considering ∂x(2.6b)-

∂y(2.6a) and ∂x(2.6d)- ∂y(2.6c). We then get

(v1x − u1y)t +
f

H1

η2t = 0 (2.10)

(v2x − u2y)t −
f

H2

(
η2t +H ′2v2

)
= 0. (2.11)

Note that by direct calculation from equation (2.6e) and (2.6f) we can replace the

divergence of the two velocity fields with the following quantities

(u1x + v1y) =
η2t,

H1

, (u2x + v2y) =
−η2t −H ′2v2

H2

.

As done in [104] in equation 16.49a, we introduce the following auxiliary function

h = η2 −
1

ρ1g
p0

1.

Remark 2.2. We observe that, by the physical assumptions made in [PRS], it follows

that for ι = x, y, t, it holds

∂ιh ' ∂ιη2.

The problem will be fully addressed by studying the evolution in time of the two

quantities h and ψ. We need therefore to find a convenient way to express each single

velocity component in terms of the stream function ψ and the interface h. We start

by introducing, at least formally, the differential operator

T = ∂tt + f 2.
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Taking the derivative in time of equation (2.6a) and adding it to equation (2.6b)

multiplied by the factor f , we deduce

T u1 = fv1t −
1

ρ1

p0
1xt − fv1t −

f

ρ1

p0
1y.

In a completely analogous way, we also derive the following identities

T v1 = −fu1t −
1

ρ1

p0
1yt + fu1t +

f

ρ1

p0
1x,

T u2 = fv2t −
1

ρ2

p0
1xt −Gη2xt − fv2t −

f

ρ2

p0
1y − fGη2y

= − 1

ρ2

(p0
1xt + fp0

1y)−G(η2xt + fη2y)

=
ρ1

ρ2

T u1 −G(η2xt + fη2y),

T v2 = −fu2t −
1

ρ2

p0
1yt −Gη2yt + fu2t +

f

ρ2

p0
1x + fGη2x

= − 1

ρ2

(p0
1yt − fp

0
1x)−G(η2yt − fη2x)

=
ρ1

ρ2

T v1 −G(η2yt − fη2x).

Remark 2.3. From the assumption [RGR] it follows that the values of the densities

for the two layers are very close. This allows in our future computations to ignore the

factor ρ1
ρ2

in the equations above involving u2 and v2.

The above observation on the densities, together with the Remark 2.2 yields

T (u2 − u1) = −G(hxt + fhy), (2.12a)

T (v2 − v1) = −G(hyt − fhx). (2.12b)

We use then the above identities together with the properties of the stream function

given in (2.8) in order to express the quantities T u1 in terms of only the two quantities
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ψ and h. We have

T u1 =
1

H
T (H1u1 +H2u2 −H2u2 +H2u1)

=
1

H
T (−ψy −H2(u2 − u1))

= − 1

H
T ψy −

H2

H
T (u2 − u1)

= − 1

H
T ψy +

H2

H
G(hxt + fhy),

and analogously we deduce the whole suite

T u1 =
1

H

[
−T ψy +H2G(hxt + fhy)

]
(2.13a)

T u2 =
1

H

[
−T ψy −H1G(hxt + fhy)

]
(2.13b)

T v1 =
1

H

[
T ψx +H2G(hyt − fhx)

]
(2.13c)

T v2 =
1

H

[
T ψx −H1G(hyt − fhx)

]
(2.13d)

We now introduce the auxiliary function α(y) as the logarithmic derivative of the

depth profile H(y)

α(y) =
H ′2(y)

H(y)
= (lnH)′(y). (2.14)

We specify now the form of the solutions sought, by means of the following additional

hypothesis on the time dependence of ψ and h. With use the following ansatz for the

functions ψ and h:

ψ(x, y, t) = ψ(x, y)e−iωt h(x, y, t) = h(x, y)e−iωt. (2.15)

2.3.1 Stream function equation

We proceed firstly in deriving the equation that is satisfied by the stream function ψ

and we start considering equation (2.9); we observe that multiplying equation (2.10)

and (2.11) respectively by H1 and H2, summing them up and then deriving in time,
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it produces the left hand side of (2.9), so that it yields

∆ψt +H ′2u2t − fH ′2v2 = 0. (2.16)

Using equations (2.13b), (2.13d) and (2.15) in (2.16), we get

iω∆ψ + iωH ′2u2 + fH ′2v2 = 0. (2.17)

It follows from (2.13b) that

iωH ′2u2 = iω H ′2
1

H

(
−ψy −

GH1

T
(−iωhx + fhy)

)
= iω H ′2

1

H

(
−ψy +

GH1

T
(iωhx − fhy)

)
,

and from (2.13d) that

f H ′2v2 = f H ′2
1

H

(
ψx −

H1G

T
(−iωhy − fhx)

)
= f H ′2

1

H

(
ψx +

H1G

T
(iωhy + fhx)

)
,

Substituting this in the equation (2.17) we deduce

iωH∆ψ +H ′2 ·
{
f ψx − iωψy

+ hx

(
(iω)2H1G

T
+ f 2H1G

T

)
+ hy

(
iωf

H1G

T
− iωf H1G

T

)}
= 0,

which simplifies to

iωH∆ψ + f H ′2ψx − iωH ′2ψy + hxH
′
2

f 2 − ω2

T
H1G = 0.

From the identification between the time derivative and its spectral parameter ω, we

note that T = (f 2 − ω2), so that the previous equation ultimately reduces to

−∆ψ + α(y)ψy = − i
ω
α(y)(fψx +GH1hx). (2.18)

93



2.3.2 Fluid interface motion equation

We now consider the equation for the interface h. Starting from equation (2.11) and

subtracting from it equation (2.10) we get

(v2 − v1)xt − (u2 − u1)yt − f
H

H2H1

ht = f
H ′2
H2

v2. (2.19)

We study the left hand side (LHS) and the right hand side (RHS) of equation (2.19)

separately. Recalling equations (2.12) and replacing the time derivative with −iω we

derive

(u2 − u1)yt = −iωG
T

(iωhxy − fhyy),

(v2 − v1)xt = −iωG
T

(iωhxy + fhxx),

and in view of them, the left hand side of (2.19) now reads as

LHS = −iω f G
T

∆h+ iωf
H

H2H1

h.

Further, we deduce the RHS from equation (2.13d),

RHS = f
H ′2
H2

1

H

(
ψx +

iω

T
H1Ghy +

f

T
GH1 hx

)
so that the identity (2.19) finally reads as

− iωG∆h+ iω(f 2−ω2)
H

H2H1

h =
H ′2
H2H

[
(f 2−ω2)ψx + G(iωH1hy + fH1hx)

]
. (2.20)

We observe that in equation (2.20), the dependence on the spectral parameter ω is

non linear. For this reason we linearise it, dropping all the terms that come with

powers of the spectral parameter strictly higher than degree one. We note that, in

fact, this is equivalent to consider the approximation

f 2 − ω2 ≈ f 2, (2.21)

namely we are seeking solutions whose time frequency is negligible with respect to the

Earth rotation frequency.
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Thus the non linear problem reduces to the linear pencil case

−∆h− α(y)
H1

H2

hy + λ2h = − i
ω

f

G

α(y)

H2

(
fψx +H1Ghx

)
(2.22)

where

λ2(y) :=
f 2

G

1

H1

H(y)

H2(y)
. (2.23)

2.4 The problem in the curved strip Sγ

In this section we rewrite equations (2.18) and (2.22)

−∆ψ + α(y)ψy = − i
ω
α(y)(fψx +GH1hx),

−∆h− α(y)
H1

H2

hy + λ2(y)h = − i
ω

f

G

α(y)

H2

(
fψx +GH1 hx

)
,

valid in a straight strip, in the curvilinear coordinate system (ξ, η), more suitable for

a generic geometry of the strip.

We start from pointing out here how the metric is affected by the change of the

reference system. A simple calculation yields that the Jacobian of the transformation

Λ : R2 → R2 introduced in (2.2) is

p(ξ, η) = 1 + ηγ(ξ). (2.24)

We continue now presenting the differential operators in the new curvilinear coordinate

system. In particular, we have that the gradient of any given scalar field f ∈ R and

the divergence of any vector field v ∈ R× R read as

∇(x,y)f =
1

p

∂f

∂ξ
eξ +

∂f

∂η
eη, (2.25)

div(x,y)(v) = ∇(x,y) · (v1, v2) =
1

p

[
∂v1

∂ξ
+
∂(pv2)

∂η

]
. (2.26)
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For future reference we list here the well known identities

div(−∇f) = −∆f,
1

H
∇H · ∇f =

H ′2
H

∂f

∂y
, ez · ∇f ×∇H =

∂f

∂x
H ′2

where we recall ez = eξ × eη is the unitary vector perpendicular to the plane (ξ, η)

and where the depth profile depends only on the transversal direction to the coast η.

Let us rewrite equation (2.18) in a compact form as

iω

[
div(∇ψ)− 1

H
∇H · ∇ψ

]
+

1

H
ez ·

[
∇(fψ +GH1h)×∇H

]
= 0. (2.27)

By the identities in (2.25) and (2.26), the expressions in the square brackets in (2.27)

read in curvilinear coordinates respectively as

iω

[
1

p

(
∂

∂ξ

(
1

p

∂ψ

∂ξ

)
+

∂

∂η

(
p
∂ψ

∂η

))
− 1

H

∂H

∂η

∂ψ

∂η

]
,

and

1

H
ez ·

[(
1

p

∂(fψ +GH1h)

∂ξ
eξ +

∂(fψ +GH1h)

∂η
eη

)
×
(
∂H

∂ξ
eξ +

∂(H)

∂η
eη

)]
,

thus transforming equation (2.27) into

iω

{
1

p

[
∂

∂ξ

(
1

p

∂ψ

∂ξ

)
+

∂

∂η

(
p
∂ψ

∂η

)]
− 1

H

∂H

∂η

∂ψ

∂η

}
+

1

p

1

H

∂(fψ +GH1h)

∂ξ

∂H

∂η
= 0.

Finally, by expanding all the derivatives and substituting the term α(η) as previously

defined in equation (2.14)

α(η) =
∂H

∂η

1

H(η)
(2.28)

we obtain

− 1

p2

∂2ψ

∂ξ2
+

1

p3

∂p

∂ξ

∂ψ

∂ξ
− 1

p

∂p

∂η

∂ψ

∂η
+ α(η)

∂ψ

∂η
− ∂2ψ

∂η2
= − i

ω

[
1

p
α(η)

∂

∂ξ
(fψ +GH1h)

]
.

(2.29)

Remark 2.4. We emphasize here that in the case G ≡ 0, namely when the two densities
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are the same ρ1 ≡ ρ2, equation (2.27) reduces to equation (1.8) in [86]

iω

[
div(∇ψ)− 1

H
∇H · ∇ψ

]
+

1

H
ez ·

[
f∇ψ ×∇H

]
= 0.

We consider now the second equation (2.22): by simple combination of the formulae

for the gradient in curvilinear coordinates (2.25) and the one for the divergence (2.26)

we have that in particular

∆h =
1

p

[
∂

∂ξ

(
1

p

∂h

∂ξ

)
+

∂

∂η

(
p
∂h

∂η

)]
,

∇h · ∇H =
∂H

∂η

∂h

∂η
.

By means of these identities, it is an easy computation to derive the general form in

curvilinear coordinates for the equation (2.22)

− 1

p2

∂2h

∂ξ2
−∂

2h

∂η2
+

1

p3

∂p

∂ξ

∂h

∂ξ
−
(

1

p

∂p

∂η
+ α(η)

H1

H2

)
∂h

∂η
+λ2(η)h = − i

ω

[
f

G

1

p

α(η)

H2

∂

∂ξ
(fψ +GH1h)

]
(2.30)

We conclude this section by pointing out two immediate identities which involve

p(ξ, η), the Jacobian of the coordinates transformation. The first shows the change in

the volume metrics

dSγ = p(ξ, η) dS0 = p(ξ, η) dξdη, (2.31)

while the second, is a simple property which will be useful in future computations

∂p

∂η
=
p− 1

η
. (2.32)

2.5 Boundary Condition

In this section we discuss the boundary conditions that arise in the spectral problem

we are going to solve. The two boundaries, as determined in Figure 2.1, are the coast

line ∂cS and the cross-section ∂oS where the water regime changes from the shallow

one to the open ocean one. For sake of clarity, we are going to present them in the
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straight case geometry: we will observe, though, that the conditions derived will be

independent from the particular location along the coast. Therefore the extension of

the results to any admissible coastal shape will follow immediately.

In order to retrieve the information on the boundaries, we make the following as-

sumptions on the nature of our solutions. As first instance we consider the free wave

solutions to the equations (2.29) and (2.30), namely solutions of the form

ψ(x, y, t) = Re(l(y)ei(kx−ωt)), h(x, y, t) = Re(b(y)ei(kx−ωt)). (2.33)

We note that those particular solutions do not belong to the space of integrable

functions of the geometric domain but they are meaningful when considering the

problem as a collection of different one-dimensional transversal problems, for any

value ξ ∈ R.

Remark 2.5. We note that for every choice of k and ω in (2.33) we get different cor-

responding boundary conditions. In practical problems, their values are determined

from physical arguments which lie outside our research interests. We therefore re-

place them respectively with κ0 and ω0, remarking the fact that these are fixed real

quantities.

2.5.1 The coast

The normal velocities of the fluids at the coast line must be null, meaning v1 = v2 = 0.

From (2.8) we thus obtain that the longitudinal derivative of the stream function must

be null as well

ψx(x, 0) = 0.

Therefore, being the stream function defined up to a constant we set with no loss of

generality the impermeability condition

ψ(x, y) = 0 for y = 0. (2.34)

For what concern the interface, we note that H2(0) = 0 holds true together with the

fact that ψx(x, 0) = 0. Therefore the interface equation (2.22) reduces by mean of
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(2.33) to

− by(y) +
f 2

GH ′2(0)
b(y) = f

κ0

ω0

b(y), (2.35)

from which it follows the following Robin boundary condition

hy(x, y) = a0 h(x, y) for y = 0, (2.36)

where

a0 = f

(
f

GH ′2(0)
− κ0

ω0

)
. (2.37)

2.5.2 The open ocean

The boundary condition for the stream function and the fluids interface at the cross

section will be recovered by imposing a continuity matching condition between the so-

lutions inside the channel (ψ, h) satisfying the shallow water regime and those outside

the channel (ψ̃, h̃) which satisfy the open ocean regime. The latter is characterised by

the condition of flat topography H ′2(δ) = 0, which in turns implies

α(δ) = 0.

It immediately follows from this condition that the ψ̃, the stream function prolonged

outside the channel, satisfies the Laplace equation −∆ψ̃ = 0. By mean of (2.33), it

transforms into l̃yy(y)− κ2
0l̃(y) = 0 from which we easily derive a solution

l̃(y) = Ce−|κ0|(y−δ),

where C is any real constant. Thus, it follows that the stream function at the open

ocean cross section satisfies the Robin boundary condition of the type

ψy(x, y) = −|κ0|ψ(x, y) for y = δ. (2.38)

Similarly, the extended interface function h̃ satisfies

−∆h̃+
f 2

G

H(δ)

H1H2(δ)
h̃ = 0,
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from which it follows

−b̃yy(y) + κ2
0b̃(y) + λ2

δb(y) = 0

where we set for convenience λδ to be the internal Rossby radius the following quantity

λδ =

√
f 2

G

1

H1

H(δ)

H2(δ)
.

Then, arguing as before, we deduce the following boundary condition for the interface

function at the open ocean cross section

hy(x, y) +
√
λ2
δ + κ2

0h(x, y) = 0 for y = δ. (2.39)

Remark 2.6. In view of (2.38) we will assume in the following κ0 > 0.

2.6 The operator pencil

In this section we rewrite the equations (2.29) and (2.30) in a vectorial form in terms

of a operator pencil spectral problem related to the spectral parameter ω introduced

in (2.15). In the following we will provide the precise mathematical formalisation of

the operators along with their spectrum properties.

2.6.1 The operators Aγ, Lγ and Mγ

We start from introducing the differential expressions of the two matrix valued oper-

ators Lγ and Mγ as

Lγ :=

−1
p

[
∂
∂ξ

(
1
p
∂
∂ξ

)
+ ∂

∂η

(
p ∂
∂η

)]
+ α(η) ∂

∂η
0

0 − 1
p2

∂2

∂ξ2
− ∂2

∂η2
+ 1

p3
∂p
∂ξ

∂
∂ξ
−
(

1
p
∂p
∂η

+ α(η)H1

H2

)
∂
∂η

+ λ2(η)


(2.40)

and

Mγ :=
α(η)

p(ξ, η)

(
f H1G

f2

G
1
H2

f H1

H2

)(
−i ∂
∂ξ

)
. (2.41)
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Equations (2.29) and (2.30) can be therefore now expressed by these two operators

and written in a vectorial form as follow

Aγ(ω)

(
ψ

h

)
= 0, (2.42)

where Aγ is the pencil operator

Aγ(ω)

(
ψ

h

)
: = Lγ

(
ψ

h

)
− 1

ω
Mγ

(
ψ

h

)
(2.43)

In order to describe the domain of the operator defined in (2.43), we introduce the

following weighted Lebesgue spaces

L2(C;w1, w2) : =

{
(ψ, h)

∣∣C ⊂ Sγ,∫
C

|ψ|2w1 <∞,
∫
C

|h|2w2 <∞
}

(2.44)

endowed with the scalar product

〈

(
ψ1

h1

)
,

(
ψ2

h2

)
〉
L2(C;w1,w2)

=

∫∫
C

(
ψ1(ξ, η)ψ2(ξ, η)w1(ξ, η) + h1(ξ, η)h2(ξ, η)w2(ξ, η)

)
dSγ,

(2.45)

where w1 and w2 are two positive weight functions. Similarly, we consider the Sobolev

space

H2(C;w1, w2) : =
{

(ψ, h)
∣∣(Diψ,Djh) ∈ L2(C;w1, w2), |i|, |j| ≤ 2

}
endowed with the natural metric inherited from L2(C;w1, w2), where i and j are two

positive multi index. We finally define the domain of the operator Aγ to coincide with

the Hilbert space

H̃2
w1,w2

(Sγ) : =
{

(ψ, h) ∈ H2(Sγ;w1, w2)
∣∣cond. (2.34), (2.36), (2.38), (2.39) hold

}
.

(2.46)

In the following, we will study the spectrum of the operator Aγ using the variational

principles introduced in the first section of this chapter. In particular, we will interpret

equation (2.42) in its weak formulation and thus, we need to settle our problem in the

context of the standard theory of quadratic forms. We firstly seek conditions on the
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weights w1 and w2 so to guarantee the symmetry of Lγ and Mγ as operators defined

on the domain H̃2
w1,w2

.

For future convenience, let us define two auxiliary operators

L0,1 : ψ → −∆ψ + α(y)∂yψ,

L0,2 : h→ −∆h− α(y)
H1

H2

∂yh+ λ2(y)h.

and consider

L0 =

(
−∆ + α(y)∂y 0

0 −∆− α(y)H1

H2
∂y + λ2(y)

)
=

(
L0,1 0

0 L0,2

)
(2.47)

and

M0 = α(y)

(
f GH1

f2

G
1
H2

f H1

H2

)(
−i∂x

)
. (2.48)

2.6.2 Symmetry properties

Lemma 2.3. The operators Lγ, Mγ are symmetric operators on H̃2
w1,w2

for the fol-

lowing choice of the weights

w1(η) = H−1(η), (2.49)

w2(η) =
G2

f 2

H1H2(η)

H(η)
. (2.50)

Proof. As the symmetry property does not depend on the particular shape of the

channel, we will show it in the particular case of the straight strip. Therefore we will

assume in the following that p(ξ, η) = 1 or equivalently γ(ξ) = 0.

We start the analysis from the operator L0. Given two pairs (ψ1, h1), (ψ2, h2) in the

domain H̃2
w1,w2

, we want to show

〈L0

(
ψ1

h1

)
,

(
ψ2

h2

)
〉
L2(S0;w1,w2)

= 〈

(
ψ1

h1

)
,L0

(
ψ2

h2

)
〉
L2(S0;w1,w2)

. (2.51)
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Equation (2.51) can be formally rewritten in the compact form

〈L0

(
ψ1

h1

)
,

(
ψ2

h2

)
〉
L2(S0;w1,w2)

= 〈L0,1ψ1, ψ2〉L2(S0;w1)
+ 〈L0,2h1, h2〉L2(S0;w2)

(2.52)

where the definition of the space of weighted integrable functions L2(Sγ;w1, w2) is

given in (2.44).

By mean of Lemma 2.6 and from the boundary condition (2.34), (2.38)

ψ(x, y) = 0 for y = 0,

ψy(x, y) = −|κ0|ψ(x, y) for y = δ,

we deduce

〈L0,1ψ1, ψ2〉L2(S0;w1)
=

∫
R

∫ δ

0

∇ψ1 · ∇ψ2w1(y) dxdy +

∫
R

∫ δ

0

∇ψ1 · ∇w1(y)ψ2 dxdy+∫
R

∫ δ

0

∂yψ1α(y)ψ2w1(y) dxdy +

∫ ∞
−∞

κ0ψ1(x, δ)ψ2(x, δ)w1(δ)dx.

(2.53)

Similarly from Lemma 2.7 and from (2.36) (2.39)

hy(x, y) = a0h(x, y) for y = 0,

hy(x, y) +
√
λ2
δ − κ2

0h(x, y) = 0 for y = δ.

we have

〈L0,2h1, h2〉L2(S0;w1)
=

∫
R

∫ δ

0

∇h1 · ∇h2w2(y) dxdy +

∫
R

∫ δ

0

λ2(y)h1h2w2 dxdy

+

∫
R

∫ δ

0

(
∇h1 · ∇w2(y)h2 − ∂yh1α(y)

H1

H2(y)
h2w2(y)

)
dxdy

+
√
λ2
δ + κ2

0w2(δ)

∫ ∞
−∞

h1(x, δ)h2(x, δ) dx

+ w2(0)a0

∫ ∞
−∞

h1(x, 0)h2(x, 0) dx

(2.54)
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From (2.53) we derive the sufficient conditions for the L0,1 symmetry are

∂xw1 = 0

∂yw1 = −α(y)w1

(2.55)

from which it follows

w1(y) = H−1(y) > 0. (2.56)

Similarly the conditions for L0,2 are

∂xw2 = 0

∂yw2 = α(y)
H1

H2

w2.
(2.57)

For what concerns the operator M0, we note that the weights do not depend on the

variable x. On the other hand, the matrix M is not symmetric and this give rise to the

extra mixing condition on the weights. Thus, in order to have a symmetric operator

we have to impose

M12w1 = M21w2

which immediately implies

w2 =
G

λ2(y)
=
G2

f 2

H1H2

H
=
G2

f 2
H1H2w1 ≥ 0. (2.58)

It is now easy to check that such choice for w2 does satisfy the condition in (2.57).

Remark 2.7. We note that from (2.4) it follows that w2(0) = 0.

2.6.3 Quadratic form

We are now able to introduce formally the spectral problem. We start from the

operator Lγ and we consider the quadratic form QL which originates from it

QL(ψ, h) := 〈Lγ

(
ψ

h

)
,

(
ψ

h

)
〉
L2(Sγ ;w1,w2)

. (2.59)

Combining the results in Lemma 2.8 and Lemma 2.9, in particular equations (2.107)
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and (2.108), and from the Remark 2.7 it follows that

QL(ψ, h) = 〈Lγ

(
ψ

h

)
,

(
ψ

h

)
〉
L2(Sγ ;w1,w2)

=

∫
R

∫ δ

0

[
1

p(ξ, η)

∣∣∣∣∂ψ∂ξ
∣∣∣∣2 + p(ξ, η)

∣∣∣∣∂ψ∂η
∣∣∣∣2
]
w1(η) +

[
1

p(ξ, η)

∣∣∣∣∂h∂ξ
∣∣∣∣2 + p(ξ, η)

∣∣∣∣∂h∂η
∣∣∣∣2
]
w2(η)dηdξ

+

∫
R

∫ δ

0

p(ξ, η)G|h(η)|2 dη dξ + κ0w1(δ)

∫
R
p(ξ, δ)|ψ(ξ, δ)|2 dξ

+
√
λ2
δ + κ2

0w2(δ)

∫
R
p(ξ, δ)|h(ξ, δ)|2 dξ.

(2.60)

The respective quadratic form domain D(QL) := H̃1
0 (Sγ, ∂cSγ;w1, w2) is then obtained

considering the closure of

C̃∞0 (S, ∂cS) :=
{

(φ1, φ2) ∈ C∞(F ) |F ⊆ S, supp(φ1) ∩ ∂cS ∩ F = ∅,

∃ r1, r2 > 0s.t.φi(ξ, η) = 0 for |ξ| ≥ ri, i = 1, 2
}

with respect to the scalar product induced by the form

〈

(
ψ1

h1

)
,

(
ψ2

h2

)
〉
H̃1
0(Sγ,∂cSγ,(w1,w2))

= 〈

(
ψ1

h1

)
,

(
ψ2

h2

)
〉
L2(Sγ ;w1,w2)

+ 〈

(
∇ψ1

∇h1

)
,

(
∇ψ2

∇h2

)
〉
L2(Sγ ;w1,w2)

.

In principle, in order for the expression (2.43) to make sense as sum of forms, we

should consider the quadratic form which arise from the operator Mγ. As we shall

see in the forthcoming sections, we will restrict our analysis to particular type of test

functions, for which the operator Mγ reduces to a multiplication operator and the

relative quadratic form to a simple integral with no derivatives involved. Therefore

we omit the details and we conclude observing that from now on, we will understand

the expression 〈Aγ

(
ψ

h

)
,

(
ψ

h

)
〉 for (ψ, h) ∈ D(QL) in terms of the quadratic form of

the operator Lγ defined in (2.60) with domain D(QL).
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2.6.4 Transversal problem

We introduce in this section an auxiliary problem, or more precisely a family of prob-

lems, which will be useful in establishing the nature of the essential spectrum of the

pencil operator Aγ. We are going to carry out the computations in the special case of

a straight geometry, namely we will assume equivalently p(ξ, η) ≡ 1 on the curvature

γ(ξ, η) ≡ 0 to be constant.

We proceed with a formal substitution

ψ(x, y) = eiσxψ̃(y), h(x, y) = eiσxh̃(y), σ > 0 (2.61)

where σ will be the running index. Substituting the ansatz (2.61) into equation (2.18)

and (2.22) and dropping the tildes for the sake of clarity, we deduce

ω
(
−ψ′′(y) + α(y)ψ′(y) + σ2ψ(y)

)
= σ α(y)

(
fψ(y) +GH1h(y)

)
(2.62)

ω
(
−h′′(y)− α(y)

H1

H2

h′(y) +
[
σ2 + λ2(y)

]
h(y)

)
= σf

α(y)

H2

( f
G
ψ(y) +H1h(y)

)
(2.63)

Using a notation similar to the one which has been used for the operator pencil

problem, we define by mean of the equations (2.62) and (2.63) the transversal spectral

problem as

aσ,0(ω)

(
ψ

h

)
: = ω lσ,0

(
ψ

h

)
− mσ,0

(
ψ

h

)
= 0. (2.64)

We note that the operators in the expression (2.64) have to be interpreted as defined

on their relative quadratic form domains and the problem in its variational form. We

avoid presenting once again them in full details as they might be considered as a

special case of the ones introduced in the previous section. Note that D(aσ) does not

change for different values of σ.

In order to determine the essential spectrum for the general problem we need to
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investigate the functional associated to the Rayleigh quotient

Jσ

(
ψ

h

)
=


〈lσ,0

(
ψ

h

)
,

(
ψ

h

)
〉

〈mσ,0

(
ψ

h

)
,

(
ψ

h

)
〉


−1

. (2.65)

In the trasversal problem, the operator mσ,0 is simply a multiplication operator, there-

fore its quadratic form reads straightforwardly

〈mσ,0

(
ψ

h

)
,

(
ψ

h

)
〉 = σ

∫ δ

0

α(y)
(
fψ(y) +GH1h(y)

)
ψ̄(y)w1(y) dy

+ σ

∫ δ

0

fα(y)

GH2

(
fψ(y) +GH1h(y)

)
h̄(y)w2(y) dy

=
σ

f

∫ δ

0

α(y)
(
fψ(y) +GH1h(y)

)(
fψ(y) +GH1h(y)

)
w1(y) dy

=
σ

f

∫ δ

0

α(y)
∣∣fψ(y) +GH1h(y)

∣∣2w1(y) dy,

(2.66)

where we used w2 = G2

f2
H1H2w1 as in (2.58).

For what concerns the term involving lσ,0, after some computations similar to the ones

undertaken in the general case Lγ (for example in Lemma 2.8 and Lemma 2.9), it is

readily seen that

〈lσ,0

(
ψ

h

)
,

(
ψ

h

)
〉 =

∫ δ

0

(
|ψ′(y)|2 + σ2|ψ(y)|2

)
w1(y) +

(
|h′(y)|2 + σ2|h|2(y)

)
w2(y) dy

+G

∫ δ

0

|h|2 dy + κ0w1(0)|ψ(δ)|2 +
√
λ2
δ + κ2

0w2(δ)|h(δ)|2.

(2.67)

It follows straightforwardly that

〈mσ,0

(
ψ

h

)
,

(
ψ

h

)
〉 > 0, 〈lσ,0

(
ψ

h

)
,

(
ψ

h

)
〉 > 0.
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For any fixed value of σ > 0, the spectrum of the transversal problem is purely discrete.

We are interested in the behaviour of the maximum value of the spectrum

ωσ = sup (spec(aσ))

as a function of σ. In the formula above have used the formalism spec(aσ) to refer

to the spectrum of the operator (aσ), in order to avoid a repetition of the symbol σ

which could have created some ambiguity in the notation. In particular

ωσ = sup
ψ̃,h̃∈D(aσ)

Jσ
(
[ψ̃, h̃]T

)
corresponding to λs1 in the notation introduced for the variational principle presented

in Proposition 2.1.

2.7 Essential spectrum

In this section we study the properties of the essential spectrum of the pencil operator

Aγ.

Proposition 2.4. It holds

σess(Aγ) = σess(A0) =
⋃
σ∈R

spec(aσ) =

[
− sup

σ∈R
ωσ, sup

σ∈R
ωσ

]
. (2.68)

We omit the proof of the previous proposition, as the major challenge in it would be

the presence of long and tedious computations which are based, though, on standard

arguments belonging to the spectral theory on waveguides.

We briefly mention that σess(A0) ⊆ σess(Aγ) follows after a Neumann-Dirichlet brack-

eting argument. The other inclusion, namely, σess(Aγ) ⊆ σess(A0) can be shown by

separation of variables which allows to find a Weyl’s sequence (ref. Proposition 1.7)

of explicit functions in the curved strip for any point in the essential spectrum of

the operator defined on the straight strip. We refer to [87], Lemma 3.5 and Lemma

3.6 and reference therein. We also refer to [98] for an illustrative case of the Lapla-

cian. The other equalities follow from a separation of variables and the variational
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characterisations of the spectrum.

Let us define then the supremum of the essential spectrum by Ω∗. It then follows that

Ω∗ : = supσess(A0) = sup
σ∈R

ωσ = sup
σ∈R

sup
ψ,h∈D(aσ)

Jσ
(
[ψ, h]T

)
= sup

ψ,h∈D(aσ)

sup
σ∈R

Jσ
(
[ψ, h]T

)
.

(2.69)

Let us consider σ > 0 and introduce now two auxiliary quantities J (1) and J (2), so

that the expression for functional Jσ, definied in (2.65) can be reformulated in terms

of them as follows
〈l0

(
ψ

h

)
,

(
ψ

h

)
〉

〈m0

(
ψ

h

)
,

(
ψ

h

)
〉


−1

=

(
σJ (1)

(
ψ

h

)
+

1

σ
J (2)

(
ψ

h

))−1

, (2.70)

where

J (1)

(
ψ

h

)
= f

∫ δ
0
ψ(y)2w1(y) + h(y)2w2(y) dy∫ δ

0
α(y) |fψ(y) +GH1h(y)|2w1(y) dy

(2.71)

and

J (2)

(
ψ

h

)
=

(
f

∫ δ

0

ψ′(y)2w1(y) + h′(y)2w2(y) +Gh(y)2dy + κ0w1(δ)|ψ(δ)|2

+
√
λ2
δ + κ2

0w2(δ)|h(δ)|2 ·

)
(∫ δ

0

α(y) (fψ(y) +GH1h(y))2w1(y) dy
)−1

.

(2.72)

We observe that the quantity defined in (2.71), is bounded away from zero. In fact, it

is easy to show, similarly to how is done in [87], that there exists a positive constant

K > 0 such that

J (1)

(
ψ

h

)
≥ K

supy∈[0,δ] χ(y)

infy∈[0,δ] α(y)w1(y)
> 0,
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where χ(y) = min
(
w1(y), H2(y)w1(y)

H1

)
> 0.

From (2.70), it follows immediately that 0 < ωσ < ∞ and ωσ → +0 as σ → ∞ and

that the value of σ which realises the internal sup in (2.69) is given by

σ∗
(
[ψ, h]T

)
=

√
J (2)([ψ, h]T )

J (1)([ψ, h]T )
.

Maximising with respect to σ we obtain

Jσ
(
[ψ, h]T

)
≤ Jσ∗

(
[ψ, h]T

)
where we recall σ∗ = σ∗([ψ, h]) depends on the test functions.

Finally, maximising Jσ∗
(
[ψ, h]T

)
with respect to the test functions, we obtain

Ω∗ = Jσ•([ψ∗, h∗]
T ) <∞ (2.73)

where the explicit expression for σ• is given in (2.75). Being the operator −i∂x a first

order operator, it follows that

spec(aσ) = − spec(a−σ)

thus we finally conclude

σess(Aγ) = σess(A0) = [−Ω∗,Ω∗] . (2.74)

If we interpret the inverse of ω as the quantity which is usually considered as the

classical spectral parameter, equation (2.74) shows the presence of a band gap between

the two components of the essential spectrum, a precondition needed for the existence

of non embedded eigenvalues.

Remark 2.8. Let the maximising test functions be (ψ∗, h∗) ∈ D(aσ). It follows by
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(2.71) and (2.72) that the value of σ• has the following explicit expression

σ• = σ∗([ψ∗, h∗]) =

√
J (2)([ψ∗, h∗])

J (1)([ψ∗, h∗])

=

(∫ δ

0

ψ′∗(y)2w1(y) + h′∗(y)2w2(y) +Gh(y)2
∗ dy

+
(
k0w1(δ)|ψ∗(δ)|2 +

√
λ2
δ + k2

0|h∗(δ)|2w2(δ)
))1/2

·

(∫ L

0

ψ∗(y)2w1(y) + h∗(y)2w2(y) dy

)−1/2

.

(2.75)

Remark 2.9. Let ψ∗ and h∗ as in Remark 2.8. Then they solve equations (2.62) and

(2.63) with ω = Ω∗ and σ = σ•,

Ω∗

(
−ψ′′∗(y) + α(y)ψ′∗(y) + σ2

•ψ∗(y)
)

= σ• α(y)
(
fψ∗(y) +GH1h∗(y)

)
(2.76)

Ω∗

(
−h′′∗(y)− α(y)

H1

H2

h′∗(y) +
[
σ2
• + λ2

]
h∗(y)

)
= σ•f

α(y)

H2

( f
G
ψ∗(y) +H1h∗(y)

)
(2.77)

where σ• is defined in (2.75) and Ω∗ in (2.73)

Ω∗ =

〈mσ•

(
ψ∗

h∗

)
,

(
ψ∗

h∗

)
〉

〈lσ•

(
ψ∗

h∗

)
,

(
ψ∗

h∗

)
〉
. (2.78)

Remark 2.10. We note here that all the quantities defined so far as well as all the

test functions realising the maximum they do depend in fact upon the choice for the

real quantities κ0 and ω0. In practical applications, these quantities are determined

by physical considerations and the knowledge of the geometry of the problem.
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2.8 Discrete spectrum

In this section we finally state and prove the main result which concerns the existence

of discrete spectrum for the operator Aγ under some hypothesis on the topography

and geometry of the channel.

Theorem 2.5. Consider the pencil problem for Aγ defined in (2.42) with γ ∈ C∞(R)

such that supp γ b [−R,R] for a real R > 0 and such that (2.3) is satisfied. Assume

additionally that

α(η) > 0, (2.79a)

α′(η) ≤ 0. (2.79b)

where α is as defined in (2.14).

Then for sufficiently small values of G there exists a constant Cα > 0, which depends

only on the topography of the channel, such that σdis(Aγ) 6= ∅ whenever the curvature

γ(ξ) satisfies ∫
R
γ(ξ) dξ > Cα

∫
R
γ(ξ)2 dξ. (2.80)

The proof for the existence of at least one eigenvalue proceeds similarly to the one hold-

ing for the single layer case. As the latter, it relies on a modification of a variational

principle, based on the characterization of the supremum of the essential spectrum in

terms of the Rayleigh quotient and a density argument.

It is important to note that all the results that we have obtained depend in fact on

G. In other words, for a fixed channel γ, (2.59) defines rather a family of quadratic

form indexed by G. This implies in turn that also ψ∗, h∗ and thus σ•, Ω∗ depend on

G. As noted before, these quantities are well known for the case G = 0.

2.8.1 The one layer case

We have observed in Remark 2.4 that the case when only one layer is present can

be seen as a special case of the two layers problem where G ≡ 0 in equation (2.18)

and the operator L reduces to L0,1. In this particular setting, the statement of our
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theorem 2.5 simply translate into the one stated in Theorem 4.1 in Johnson, Levitin

and Parnovski [86].

2.8.2 Proof of the main result

Proof of Theorem 2.5. We begin by observing that, by mean of Proposition 2.2, the

statement of Theorem 2.5 would follow if we were able to find a pair (Ψ̃, h̃) ∈ D(Aγ)
belonging to the form domain such that the respective Rayleigh quotient is strictly

greater than Ω∗, namely the supremum of the essential spectrum

(Ψ̃, h̃) ∈ D(Aγ) s.t.

〈Mγ ·

(
Ψ̃

h̃

)
,

(
Ψ̃

h̃

)
〉

〈Lγ ·

(
Ψ̃

h̃

)
,

(
Ψ̃

h̃

)
〉
> Ω∗. (2.81)

Unfortunately, finding such pair (Ψ̃, h̃) ∈ D(Aγ) is an unrealistic task, as it means

to almost know the eigenfunctions themselves. We will bypass this difficulty using

the technique introduced in [37] where the existence of discrete spectrum was proved

for acoustic waveguides with obstacles, and later in [87] that allows to work with

localised test functions which approximate the pair (Ψ̃, h̃) ∈ D(Aγ) sought in (2.81).

Heuristically we justify the use of the localisation argument by the fact that both in

Davies’ paper and in the shallow water regimes, the geometric perturbations which

are responsible for the creation of point in the discrete spectrum are found within

a compact subset of the strip S. Therefore, it is in that part of the strip where

modifications of the free solutions and respective conditions on the Rayleigh quotient

have to been found.

Let us fix some notation. Let’s define the portion of the strip S of length 2r as

Srγ = Λ ([−r, r]× [0, δ]) (2.82)

where Λ is the planar transformation defined in (2.2). Further, consider a smooth

cut-off function χr(ξ, η) such that χr(ξ, η) = χr(ξ) ∈ C∞c (Sγ) and

χr(ξ) ≡ 1 for ξ ∈ Srγ , (2.83)
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for any r > R, where R > 0 has been introduced in [CPT].

The argument proceed as follows. Let us suppose that there exists a pair of functions

(Ψ,Υ), may be not in the domain of the quadratic form, such that their restrictions

(Ψr,Υr) = (Ψ(ξ, η)χ1,r(ξ),Υ(ξ, η)χ2,r(ξ))

satisfy, for all r > R, the following inequality

〈Mγ ·

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉Srγ

〈Lγ ·

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉Srγ

> Ω∗ ∀r > R, (2.84)

where we used the abbreviation 〈·, ·〉Srγ for the the scalar product defined in (2.45)

with C = Srγ . This, in particular, implies that the quantity

a := Ω∗ 〈Lγ ·

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉Srγ − 〈Mγ ·

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉Srγ < 0

is negative for any r > R. Therefore, it follows that if the condition in (2.84) is

satisfied, then having (2.81) with (ψ̃, h̃) = (Ψr,Υr) is equivalent to

Ω∗ 〈Lγ ·

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉Sγ\Srγ − 〈Mγ ·

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉Sγ\Srγ < −a, (2.85)

where we observe that (−a) > 0 is a positive constant. Now the argument ends by

noting that the last inequality comes from the arbitrary choice of the cut-off func-

tions χ1,r(ξ) and χ2,r(ξ) and the value r sufficiently large. We refer to the proof of

Proposition 4 in [37] for the details in the case of the Laplacian on a waveguide with

obstacles.

We conclude by noting that the choice (Ψ̃, h̃) = (Ψr,Υr) for sufficiently big r > 0

would settle the argument and prove Theorem 2.5.

We are therefore left with proving (2.84). A suitable pair of candidates for the choice
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of the functions Ψ and Υ is

Ψ(ξ, η) = ψ∗(η)eiσ•ξ, Υ(ξ, η) = h∗(η)eiσ•ξ, (2.86)

where we recall the pair (ψ∗, h∗) realises (2.75)- (2.78).

Let us continue with some other preliminary considerations. From (2.78) we observe

that

0 < Ω∗ =

〈mσ•

(
ψ∗

h∗

)
,

(
ψ∗

h∗

)
〉

〈lσ•

(
ψ∗

h∗

)
,

(
ψ∗

h∗

)
〉

=

〈M0

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉Sr0

〈L0

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉Sr0

for any r > 0 (2.87)

follows since the phase factors in (2.86) simply cancel out.

Note 2.11. In the following, all the quadratic forms 〈·, ·〉 have to be interpreted re-

stricted to Srγ , namely they all should be understood as 〈·, ·〉Srγ . We omit the additional

subscript, avoiding a heavy notation. We also recall the fact that in Srγ the functions

(Ψr,Υr) and (Ψ,Υ) coincide by (2.83).

Moreover, we observe that the quadratic forms corresponding to the operators Mγ

are independent from the curvature

〈M0

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉 = 〈Mγ

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉 (2.88)

and are definite positive. Taking into account the relations in (2.87) and (2.88) we

define the quantity

Dγ : = 〈Lγ

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉 − 〈L0

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉 (2.89)

and note that the condition (2.84) is equivalent to have

Dγ < 0, ∀r > R. (2.90)
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From Lemma 2.11 we have that Dγ decomposes into

Dγ = S2 + I1 ·
∫ r

−r
γ(ξ) dξ, (2.91)

where the following estimate

S2 ≤ I2 ·
∫ r

−r
γ(ξ)2 dξ.

is proved in Lemma 2.12. Therefore, letting Cα : = −I2I1 and observing that

Dγ ≤ −I1 ·
(
Cα
∫ r

−r
γ(ξ)2 dξ −

∫ r

−r
γ(ξ) dξ

)
,

we deduce that the condition Dγ < 0 is equivalent to ask I1 < 0 plus the additional

condition on the curvature (2.80).

Substituting the explicit expression of σ• given in (2.97) in the definition of I1 given

in (2.110), we deduce that condition I1 < 0 is equivalent to∫ δ

0

B(η) dη ·
(
δM(δ) +

∫ δ

0

η (A(η) +N(η)) dη
)

−
∫ δ

0

ηB(η) dη ·
(
δM(δ) +

∫ δ

0

A(η) +N(η) dη
)
< 0,

(2.92)

where

A(η) := |ψ′∗(η)|2w1 + |h′∗(η)|2w2, (2.93)

B(η) := |ψ∗(η)|2w1 + |h∗(η)|2w2, (2.94)

N(η) : = G|h∗(η)|2, (2.95)

M(δ) := κ0|ψ∗(δ)|2w1(δ) +
√
λ2
δ + κ2

0|h∗(δ)|2w2(δ). (2.96)

It follows that equation (2.75) can be re-written in terms of the quantities introduced

above as

σ2
• =

∫ δ
0
A(η) +N(η) dη +M(δ)∫ δ

0
B(η) dη

. (2.97)

116



Let us define for convenience the following quantity

P(δ) : =
1

2

(∫ δ

0

ψ2
∗(η)α(η)w1(η)−

∫ δ

0

h2
∗(η)

α(η)

H2

w2(η)
)
. (2.98)

From Lemma 2.15 and Lemma 2.14, and in particular by means of (2.117) and (2.118),

the inequality in (2.92) transforms into

∫ δ

0

B(η) dη ·

(
− 1

2
B(δ) − P(δ) +

σ•
Ω∗

1

f

∫ δ

0

η
α(η)

H(η)
(fψ∗ +GH1h∗)

2 dη

)

−
∫ δ

0

ηB(η) dη ·

(
σ•
Ω∗

1

f

∫ δ

0

α(η)

H(η)
(fψ∗ +GH1h∗)

2 dη

)
< 0,

(2.99)

where we observe that the terms which are multiplying σ2
• cancel out.

Finally, the theorem will be proved if we show that (2.99) holds. For this purpose,

let us break it into smaller parts, singling out terms which will be proved individually

to be negative, eventually under some additional conditions. The first term which we

will consider is the one involving P(δ). We note that

2P(δ) =

∫ δ

0

ψ2
∗(η)α(η)w1(η)−

∫ δ

0

h2
∗(η)

α(η)

H2

w2(η) =

∫ δ

0

α(η)

f 2H

(
f 2ψ2

∗(η)−G2h2
∗(η)

)
dη.

(2.100)

Therefore a sufficient condition for the term involving P(δ) to be negative is

f 2ψ2
∗(η)−G2h2

∗(η) > 0. (2.101)

Let us assume G small enough, then from (2.77) we have that

h∗ ≈
σ•
Ω∗

H1

H
ψ∗ (2.102)

thus, condition (2.101) is equivalent to

H2f 2 −Gσ
2
•

Ω2
∗
> 0. (2.103)

Note that, in fact, the quantity σ2
•

Ω2
∗

depends ultimately on G, therefore condition
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(2.103) might not hold. This is not the case as it is readily seen that the quantity σ2
•

Ω2
∗

tends to the (finite) value coming form the single layer case when G = 0.

The second expression that we want to show to be negative is

∫ δ

0

B(η) dη ·

(
σ•
Ω∗

1

f

∫ δ

0

η
α(η)

H(η)
(fψ∗ +GH1h∗)

2 dη

)

−
∫ δ

0

ηB(η) dη ·

(
σ•
Ω∗

1

f

∫ δ

0

α(η)

H(η)
(fψ∗ +GH1h∗)

2 dη

)
≤ 0.

(2.104)

We are not able to show inequality (2.104) directly, due to its complicated expression.

Nonetheless, the validity of this inequality follows by a continuity argument. We noted

in Remark 2.4 that when G = 0, the problem reduces to the single layer one. In this

case, it was shown in [86] that inequality (2.104) holds (see Lemma 4.5 and Lemma

4.6 in the same paper), and so it extends, by continuity of the problem and in view

of (2.102) to the case when G is a small positive constant. We emphasize that the

condition (2.79a) is always verified by means of (2.5) and that together with (2.79b)

are conditions needed for the existence of trapped modes in the single layer case.

Inequality (2.99) is finally proved true after noting the following trivial inequality

−B(δ)

2

∫ δ

0

B(η) dη < 0.

Thus the theorem is proved.

2.9 Auxiliary results

In this last section we collect for the reader’s convenience, some technical and auxiliary

results which have been used in the previous sections. The proofs are straightforward

and will be occasionally omitted.

Lemma 2.6. It holds

〈L0,1ψ1, ψ2〉L2(S0;w1)
=

∫
R

∫ δ

0

∇ψ1 · ∇ψ2w1(y) dxdy +

∫
R

∫ δ

0

∇ψ1 · ∇w1(y)ψ2 dxdy

−
∫ ∞
−∞

∂yψ1ψ2w1

∣∣∣y=δ

y=0
dx+

∫
R

∫ δ

0

∂yψ1α(y)ψ2w1(y) dxdy
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Proof. It is a simple application of integration by part together with the decay prop-

erty at infinity of ψ1, ψ2.

〈L0,1ψ1, ψ2〉L2(S0;w1)
= 〈−∆ + α(y)∂yψ1, ψ2〉L2(S0;w1)

=

∫
R

∫ δ

0

∇ψ1 · ∇ψ2w1(y) dxdy +

∫
R

∫ δ

0

∇ψ1 · ∇w1(y)ψ2 dxdy

−
∫ δ

0

∂xψ1ψ2w1

∣∣∣x=∞

x=∞
dy −

∫ ∞
−∞

∂yψ1ψ2w1

∣∣∣y=δ

y=0
dx

+

∫
R

∫ δ

0

∂yψ1α(y)ψ2w1(y) dxdy

=

∫
R

∫ δ

0

∇ψ1 · ∇ψ2w1(y) dxdy +

∫
R

∫ δ

0

∇ψ1 · ∇w1(y)ψ2 dxdy

−
∫ ∞
−∞

∂yψ1ψ2w1

∣∣∣y=δ

y=0
dx+

∫
R

∫ δ

0

∂yψ1α(y)ψ2w1(y) dxdy

(2.105)

Similarly, it follows

Lemma 2.7.

〈L0,2h1, h2〉L2(S0;w1)
=

∫
R

∫ δ

0

∇h1 · ∇h2w2(y) dxdy +

∫
R

∫ δ

0

∇h1 · ∇w2(y)h2 dxdy

−
∫ ∞
−∞

∂yh1h2w2

∣∣∣y=δ

y=0
dx+

∫
R

∫ δ

0

λ2(y)h1h2w2 dxdy

−
∫
R

∫ δ

0

∂yh1α(y)
H1

H2(y)
h2w2(y) dxdy

(2.106)

Lemma 2.8. It holds

〈L0,1ψ, ψ〉L2(S0;w1)
=

∫
R

∫ δ

0

1

p(ξ, η)
|∇ψ|2w1(y) dξdη +

∫ ∞
−∞

κ0|ψ(ξ, δ)|2w1(δ)p(ξ, δ) dξ.

(2.107)
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Proof. From equation (2.105) for the weight choice (2.55) we have that

〈L0,1ψ1, ψ2〉L2(S0;w1)
=

∫
R

∫ δ

0

∇ψ1 · ∇ψ2w1(y) dxdy +

∫ ∞
−∞

κ0ψ1(x, δ)ψ2(x, δ)w1(δ) dx.

Then the statement follows from (2.25) and (2.31)

〈L0,1ψ, ψ〉L2(S0;w1)
=

∫
R

∫ δ

0

1

p2(ξ, η)
|∇ψ|2w1(y)p(ξ, η)dξdη +

∫ ∞
−∞
κ0|ψ(ξ, δ)|2w1(δ)p(ξ, δ) dξ

=

∫
R

∫ δ

0

1

p(ξ, η)
|∇ψ|2w1(y) dξdη +

∫ ∞
−∞

κ0|ψ(ξ, δ)|2w1(δ)p(ξ, δ) dξ.

Lemma 2.9. It holds

〈L0,2h, h〉L2(S0;w2)
=

∫
R

∫ δ

0

1

p(ξ, η)
|∇h|2w2(y) dξdη +

∫
R

∫ δ

0

G|h|2 p(ξ, η) dξdη

+
√
λ2
δ + κ2

0w2(δ)

∫ ∞
−∞
|h(ξ, δ)|2p(ξ, η) dξ

+ w2(0)a0

∫ ∞
−∞
|h(ξ, 0)|2 dξ

(2.108)

Proof. From equation (2.106) for the weight choice (2.57) we have that

〈L0,2h1, h2〉L2(S0;w2)
=

∫
R

∫ δ

0

∇h1 · ∇h2w2(y) dxdy +

∫
R

∫ δ

0

λ2(y)h1h2w2 dxdy

+
√
λ2
δ + κ2

0w2(δ)

∫ ∞
−∞

h1(x, δ)h2(x, δ) dx

+ w2(0)a0

∫ ∞
−∞

h1(x, 0)h2(x, 0) dx

From the fact that from (2.58) we have

λ2(y) =
G

w2

.
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Then the statement follows from (2.25) and (2.31)

〈L0,2h, h〉L2(S0;w2)
=

∫
R

∫ δ

0

1

p(ξ, η)2
|∇h|2w2(η) p(ξ, η) dξdη +

∫
R

∫ δ

0

G

w2

|h|2w2 p(ξ, η) dξdη

+
√
λ2
δ + κ2

0w2(δ)

∫ ∞
−∞
|h(ξ, δ)|2p(ξ, η) dξ

+ w2(0)a0

∫ ∞
−∞
|h(ξ, 0)|2 dξ

=

∫
R

∫ δ

0

1

p(ξ, η)
|∇h|2w2(y) dξdη +

∫
R

∫ δ

0

G|h|2 p(ξ, η) dξdη

+
√
λ2
δ + κ2

0w2(δ)

∫ ∞
−∞
|h(ξ, δ)|2p(ξ, η) dξ

+ w2(0)a0

∫ ∞
−∞
|h(ξ, 0)|2 dξ

Lemma 2.10. The quantity 〈Lrγ

(
ψ

h

)
,

(
ψ

h

)
〉
L2(Sγ ;w1,w2)

for (Ψr,Υr) as in (2.86) reads

as

〈Lγ

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉
L2(Sγ ;w1,w2)

=

=

∫ r

−r

∫ δ

0

[1

p
σ2
•|ψ∗(η)|2 + p|ψ′∗(η)|2

]
w1(η) dηdξ +

[1

p
σ2
•|h∗(η)|2 + p|h′∗(η)|2

]
w2(η) dηdξ

+

∫ r

−r

∫ δ

0

pG|h∗(η)|2 dηdξ + κ0w1(δ)

∫ r

−r
p(ξ, δ)|ψ∗(ξ, δ)|2 dξ

+
√
λ2
δ + κ2

0w2(δ)

∫ r

−r
p(ξ, δ)|h∗(ξ, δ)|2 dξ
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〈L0

(
Ψr

Υr

)
,

(
Ψr

Υr

)
〉
L2(S0;w1,w2)

=

=

∫ r

−r

∫ δ

0

[
σ2
•|ψ∗(η)|2 + |ψ′∗(η)|2

]
w1(η) dηdξ +

[
σ2
•|h∗(η)|2 + |h′∗(η)|2

]
w2(η) dηdξ

+

∫ r

−r

∫ δ

0

G|h∗(η)|2 dηdξ + κ0w1(δ)

∫ r

−r
|ψ∗(ξ, δ)|2 dξ

+
√
λ2
δ + κ2

0w2(δ)

∫ r

−r
|h∗(ξ, δ)|2 dξ

Proof. The proof is a simple substitution.

Lemma 2.11. We can rewrite Dγ defined in (2.10) in terms of (2.93), (2.94), (2.95)

and (2.96) as the following sum

Dγ = S2 + I1 ·
∫ r

−r
γ(ξ) dξ (2.109)

where

I1 : =

∫ δ

0

η
(
A(η) +N(η)

)
dη − σ2

•

∫ δ

0

ηB(η) dη + δM(δ), (2.110)

S2 : =

∫ r

−r

∫ δ

0

η2γ2(ξ)

1 + ηγ(ξ)
σ2
•B(η) dη dξ. (2.111)

Proof. From Lemma 2.11 and from the definition of Dγ we have

Dγ =

∫ r

−r

∫ δ

0

[(1− p
p

)
σ2
•|ψ∗(η)|2 + (p− 1)|ψ′∗(η)|2

]
w1(η)

+
[(1− p

p

)
σ2
•|h∗(η)|2 + (p− 1)|h′∗(η)|2

]
w2(η) dηdξ

+

∫ r

−r

∫ δ

0

(p− 1)G|h∗(η)|2 dηdξ

+ κ0w1(δ)

∫ r

−r
(p(ξ, δ)− 1)|ψ∗(ξ, δ)|2 dξ

+
√
λ2
δ + κ2

0w2(δ)

∫ r

−r
(p(ξ, δ)− 1)|h∗(ξ, δ)|2 dξ.
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We also have the following identities

1

p
− 1 = − ηγ(ξ)

1 + ηγ(ξ)
= −ηγ(ξ) +

η2γ(ξ)2

1 + ηγ(ξ)
,

p− 1 = ηγ(ξ),

and in particular

p(ξ, 0)− 1 = 0 p(ξ, δ)− 1 = δγ(ξ)

from which it follows that

Dγ =

∫ r

−r

∫ δ

0

η2γ2(ξ)

1 + ηγ(ξ)
σ2
•
(
|ψ∗(η)|2w1 + |h∗(η)|2w2

)
dη dξ

+

∫ r

−r

∫ δ

0

ηγ(ξ)
[
|ψ′∗(η)|2w1 + |h′∗(η)|2w2 +G|h∗(η)|2

− σ2
•
(
|ψ∗(η)|2w1 + |h∗(η)|2w2

)]
dη dξ

+ δ
(
κ0w1(δ)|ψ∗(δ)|2 +

√
λ2
δ + κ2

0w2(δ)|h∗(δ)|2
)∫ r

−r
γ(ξ) dξ.

Rearranging the terms in the above equality we finally get after (2.110) and (2.111)

Dγ =

∫ r

−r

∫ δ

0

η2γ2(ξ)

1 + ηγ(ξ)
σ2
•B(η) dη dξ

+

∫ r

−r
γ(ξ) dξ ·

(∫ δ

0

η
(
A(η) +N(η)− σ2

•B(η)
)
dη dξ + δM(δ)

)

= S2 +

∫ r

−r
γ(ξ) dξ · I1.

Lemma 2.12. Using the same argument used for the single layer case, the quantity

S2 ≥ 0 can be estimated by

S2 =

∫ r

−r

∫ δ

0

η2γ2(ξ)

1 + ηγ(ξ)
σ2
•B(η) dη dξ ≤

∫ r

−r
γ(ξ)2 dξ · I2 (2.112)
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with

I2 : = σ2
• max{1, 1

1−Θ
}
∫ δ

0

η2B(η) dη. (2.113)

Proof. The inequality in (2.112) follows after noting the following elementary facts

(1 + ηγ(ξ))−1 ≤ 1 if γ(ξ) ≥ 0,

(1 + ηγ(ξ))−1 ≤ (1−Θ)−1 if γ(ξ) ≤ 0,

where the latter follows from the fact that 1− ηξ ≥ 1− κ−δ and the property of Θ in

(2.3).

We continue with a series of technical lemmas.

Lemma 2.13. We have∫ δ

0

ηA(η) dη = −δM(δ)− 1

2

(
ψ2
∗(δ)w1(δ) + h2

∗(δ)w2(δ)
)
− 1

2

∫ δ

0

ψ2
∗(η)α(η)w1(η)

+
1

2

∫ δ

0

h2
∗(η)α(η)

H1

H2

w2(η)− σ2
•

∫ δ

0

η(ψ2
∗w1 + h2

∗w2)

+
σ•
Ω∗

1

f

∫ δ

0

η
α(η)

H(η)
(fψ∗ +GH1h∗)

2 dη −
∫ δ

0

ηN(η) dη.

(2.114)

Proof. We start from∫ δ

0

ηA(η) dη =

∫ δ

0

η|ψ′∗(η)|2w1 dη +

∫ δ

0

η|h′∗(η)|2w2 dη.

Expanding the addends by making use of iterated integration by part, we have∫ δ

0

η|ψ′∗(η)|2w1 dη = δψ∗(δ)ψ
′
∗(δ)w1(δ)−

∫ δ

0

ψ∗(η)
(
ηψ′∗(η)w1(η)

)′
= −κ0δψ

2
∗(δ)w1(δ)−

∫ δ

0

ψ∗(η)ψ′∗(η)w1(η)

+

∫ δ

0

ηψ∗(η)
(
−ψ′′∗(η) + ψ′∗(η)α(η)

)
w1(η)
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so that plugging (2.76) into the above expression we deduce∫ δ

0

η|ψ′∗(η)|2w1 dη =− ψ2
∗(δ)w1(δ)(δ κ0 + 1/2)− 1

2

∫ δ

0

ψ2
∗(η)α(η)w1(η)+

+

∫ δ

0

ηψ∗(η)
( σ•

Ω∗
α(η)(fψ∗(η) +GH1h∗(η))− σ2

•ψ∗(η)
)
w1(η)dη

(2.115)

where we have used the fact that∫ δ

0

ψ∗ψ
′
∗w1 dη =

1

2
ψ2
∗(δ)w1(δ) +

1

2

∫ δ

0

ψ2
∗α(η)w1(η) dη.

Similarly, by mean of equations (2.77) and (2.58) we also deduce∫ δ

0

η|h′∗(η)|2w2 dη = −δ
√
κ2

0 + λ2
δh

2
∗(δ)w2(δ)−

∫ δ

0

h∗(η)h′∗(η)w2(η)

−
∫ δ

0

ηh∗(η)
(
h′′∗(η) + h′∗(η)α(η)

H1

H2

)
w2(η)

= −h2
∗(δ)w2(δ)(δ

√
κ2

0 + λ2
δ + 1/2) +

1

2

∫ δ

0

h2
∗(η)α(η)

H1

H2

w2(η)

+

∫ δ

0

ηh∗(η)
(σ•f

Ω∗

α(η)

H2

(
f

G
ψ∗(η) +H1h∗(η))− σ2

•h∗(η)
)
w2(η) dη

−
∫ δ

0

ηN(η) dη,

(2.116)

So the statement follows by summing the two quantities above.

Lemma 2.14. We have that∫ δ

0

η (A(η) +N(η)) dη + δM(δ) =− 1

2
B(δ)− σ2

•

∫ δ

0

ηB(η) dη

+
σ•
Ω∗

1

f

∫ δ

0

η
α(η)

H(η)
(fψ∗ +GH1h∗)

2 dη − P (δ)

(2.117)

Proof. It simply follows from the above lemma and the definition of P(δ) in (2.98).
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Lemma 2.15. We have that

M(δ) +

∫ δ

0

A(η) +N(η) dη = −σ2
•

∫ δ

0

B(η) dη +
σ•
Ω∗

1

f

∫ δ

0

α(η)

H(η)
(fψ∗ +GH1h∗)

2 dη

(2.118)

Proof. It easily follows from the following identities∫ δ

0

|ψ′∗(η)|2w1 dη =− ψ2
∗(δ)w1(δ)κ0

+

∫ δ

0

ψ∗(η)
( σ•

Ω∗
α(η)(fψ∗(η) +GH1h∗(η))− σ2

•ψ∗(η)
)
w1(η) dη,

∫ δ

0

|h′∗(η)|2w2 dη =− h2
∗(δ)w2(δ)

√
κ2

0 + λ2
δ

+

∫ δ

0

h∗(η)
(σ•f

Ω∗

α(η)

H2

(
f

G
ψ∗(η) +H1h∗(η))− σ2

•h∗(η)
)
w2(η) dη

−
∫ δ

0

N(η) dη,
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3
Complex soliton-like solution for the

Korteweg-de Vries equation

This chapter is dedicated to the study of a certain class of complex solutions of the

Korteweg-de Vries equation. The study of such solutions obtained via the Wronskian

method, also known as Darboux-Crum method in scattering theory, will be carried

both in terms of their time evolution and also scattering properties when regarded at

a fixed time as potentials for a spectral problem.

It will be shown by means of numerical simulations that the solutions introduced in

(3.21) may be considered in many respects as the natural extension of the classical

real multisoliton solutions firstly introduced in [66]. We will see in fact that many

characterising qualitative aspects of the dynamics present in the real solutions are

also found in their complex counterparts. We furthermore characterise in Theorem

3.4 the discrete spectrum of the spectral problem for the Laplacian where the solutions

defined in (3.21) at time zero play the role of complex potentials. We also study the

reflection scattering property of such perturbed operators.
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3.1 Lax’s formulation and solution’s nomenclature

We commence with introducing the Lax’s formulation of the KdV equation in terms

of two linear operators and after that we will explain the terminology used to indicate

the solutions.

We recall that the KdV equation reads, regardless of whether the variables are real

or complex, as

ut + 6uux + uxxx = 0, t, x ∈ R. (3.1)

A major breakthrough in the study of the equation (3.1) and more generally in the

context of integrable systems was given by Lax [103] in the 1968. He showed in fact

that the non-linear KdV equation could be viewed as a system of two linear equations.

Let us consider the two operators

Lφ :=
(
−∂2

xx − u(x, t)
)
φ, (3.2)

Mφ := (ux(x, t)− (2u(x, t) + 4λ)∂x)φ (3.3)

and the following problem

Lφ = λφ (3.4)

where the function u(x, t) plays in equation (3.2) the role of a time dependent potential

and λ = λ(t) is a (time dependent) parameter. We do not regard (3.4) as a spectral

problem as it might be a misleading terminology since no integrability is required at

this stage. As showed in Ablowitz [1], the time-dependence of the associated solutions

of (3.4) reads as

φt = Mφ. (3.5)

Then from a simple manipulation of the terms introduced above and taking into

account the identities in (3.1),(3.2) and (3.4) it follows that

φtxx = [ux(λ− u) + uxxx + 6uux]φ− (4λ+ 2u)(λ− u)φx,

φxxt = [(λ− u)ux − ut + λt]φ− (λ− u)(4λ+ 2u)φx.

Therefore, from purely algebraic arguments we have that the compatibility of the two
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equations above φtxx = φxxt and u(x, t) being solution of the equation (3.1) follows if

and only if

∂tλ = 0. (3.6)

The property (3.6) is referred as the isospectrality property of the KdV equation while

the pair of operators introduced in (3.2) and (3.3) is called the Lax pair.

Remark 3.1. In the following we will use the notation u(x, t) when interested in time

behaviour of the solutions of (3.1) whereas we will prefer the notation V (x, t) or simply

V (x) when interested in seeing them as potentials in a spectral problem.

Let us consider for the moment the situation when u(x, t) ≡ 0 and solutions of the

problem (3.4) are in the form of a travelling function φ(x, t) = φ(kx − ωt). Then

from (3.3), we deduce that M coincides with −4∂xxx, which in turn implies that the

dispersion relation (3.5) has to be nonlinear and of the form ω = 4k3.

Any real solution of the problem (3.4) then reads as a linear combination of the two

independent solutions for arbitrary real constant C1 and C2

φ(x, t) = φ0 = C1x+ C2 if λ = 0,

φ(x, t) = φλ = C1 cos

(
1

2

√
λ(x− λt)

)
+ C2 sin

(
1

2

√
λ(x− λt)

)
if λ > 0,

φ(x, t) = φλ = C1 cosh

(√
|λ|(x− |λ|t)

2

)
+ C2 sinh

(√
|λ|(x− |λ|t)

2

)
if λ < 0.

(3.7)

The Lax formalism, combined with some algebraic properties of the Wrosnkian deter-

minant, makes very easy to construct a wide class of solutions for the KdV equation

which go under the name of Wrosnkian solutions. A glimpse on this method will be

given in the next couple of paragraphs.

These solutions were firstly studied by Satsuma [143] and Freeman and Nimmo [64]

and later extended by Matveev [117] to the so called generalised Wronskian solutions.

Since the technique employed to derive such solutions for the KdV equation in its

most generality is nowadays widely used to derive solutions for many other integrable

system∗, a detailed construction of such solutions is not included in this thesis. We

∗We say that an equation of a system is integrable if there exists a Lax pair associated to it
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present directly their most generic formulation and refer to the papers [111, 113] for

a thorough derivation. See also Proposition 3.3 in Section 3.

Proposition 3.1 (Ma [111] ). Given λ1, . . . , λN ∈ R the function

u(x, t) = 2∂2
xx

[
lnW (φ1, . . . ,

1

(k1 − 1)!
∂k1−1
λ1

φ1, . . .

. . . , φN , . . . ,
1

(kN − 1)!
∂kN−1
λN

φN)
]
,

(3.8)

is solution of (3.1), where φj(x, t) is the solution corresponding to λj defined in (3.7)

and where the function W (·, . . . , ·) is the Wronskian determinant

W (f1, . . . , fN)(x) := det

[(
d

dxi−1
fj

)
ij

]
, x ∈ R (3.9)

We note that in fact the Wrosnkian need not be positive and that (∂xx ln) f is a short

notation to indicate f ′′f−f ′2
f2

. Depending on the sign of the spectral parameters, the

following particular cases arise.

Definition 3.1. The following terminology is adopted for u(x, t) in (3.8). If

λ1, . . . , λN > 0, then u(x, t) is called a positon, and if

λ1, . . . , λN < 0, then u(x, t) is called a negaton

of order (k1 − 1, . . . , kN − 1) to indicate the order of derivatives with respect to the

parameter λ. In particular, from the above formulation it follows that the classical

N-soliton solution is a special case of N -negaton of order (0, . . . , 0):

u(x, t) = 2∂2
xx lnW (φλ1 , . . . , φλN ).

where φλi is as in (3.7) with C2 = 0.

We observe that if λ = 0 it is possible to obtain the so called rational solutions of the

form

u(x, t) = 2∂2
xx lnW (l1, . . . , lN),
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where we have that

sinh
(1

2
k(x− k2t

)
=
∞∑
i=0

li(x, j)k
2i+1.

For details and explicit examples we refer again to [111, 113].

What happens if instead of real λ, we consider a complex parameter in (3.4)? Heuristi-

cally, it is easy to realise that the complexification of the (spectral) parameter leads to

a mix between trigonometric and hyperbolic functions in the solutions of the (spectral)

problem.

Similar to the case of real parameters, solutions of (3.1) which originate from com-

plex eigenvalues are called Complexiton solutions. We shall differentiate between real

and complex complexitons and point out immediately that it is possible to derive

real solution of the KdV equation by mean of an ad hoc combinations of complex

wavenumbers. These solutions are described by a generalisation of the formula (3.8)

to the pairs of real and complex parts of the relative eigenfunctions. We refer to

[113] (see section 4.3) and references therein for a comprehensive exposition on real

complexitons and for their general formulation.

One of the first example in literature of a solution for the real KdV equation obtained

via complex wavenumbers appeared in 1984 in the paper of Jaworski [83]. Its formula

is given by an extension of the Miura’s N -soliton formulae, initially introduced in [66],

to a pair of conjugated complex wavenumbers k1, k2 = k1 by setting

uJ(x, t) := 2 [ln det(I + C)]xx ,

where I is the 2× 2 identity matrix and C = C(x, t) = (cmn(x, t))mn with

cmn(x, t) =
2(kmkn)1/2

km + kn
e−(km+kn)x+4(k3m+k3n)t

for m,n = 1, 2. Let us consider λ ∈ C. We adopt the following notation for the
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fundamental solutions of equation (3.4),

Ψk(x, t) = cosh

(
k

2
(x− k2t)

)
,

Φk(x, t) = sinh

(
k

2
(x− k2t)

)
,

(3.10)

where now k ∈ C is a complex wave number, and λ = −k2

4
and consider

u(x, t) = 2∂xx lnW (Ψk(x, t),Ψk(x, t)), (3.11)

where k = Re(k) − i Im(k) stands for the complex conjugate of k. Then, by simply

showing the explicit formula it is possible to see that uJ(x, t) coincides with (3.11).

Thus, the Javorsky solution is a particular case of a real complexiton solution. Such

solution was described by Jaworski as breathers-like in analogy with the breather

solutions† found by Wadati [156] for the mKdV equation. We point out that Jaworski’s

solution (3.11) and, in general, complexiton solutions obtained using the generalised

Wronskian method presented in Ma [111] are real and singular. As the main purpose

of this chapter is to study a particular type of complex solutions of the KdV equation,

we will not provide any further details on the real case. We end this section by briefly

mentioning the fact that real complexiton solutions have been found as well for the

Toda lattice [111] and for the Boussinesq equation [112].

3.2 Non singular Complex Complexiton

In what follows we present a class of complex solutions which stay finite at all time

and that for many reasons can be understood as the respective complex version of

the real multi-soliton solutions. Besides the finiteness, these solutions appear to be

localised and travelling. In analogy with the breather solutions, though, their shape is

not fixed in time, therefore they can be considered as travelling waves only up to spa-

tial oscillations. Furthermore, the solutions also exhibit the phase shift phenomenon

typical of the interaction of several solitons.

†Breathers have been defined by Lamb [100] as localised oscillatory solutions (wave-packet) whose
envelope and oscillatory part move at different velocities. We also note that in [4] the characterising
property used to define a breather is as in (3.14).
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In the last decade a growing interest in complex soliton-like solutions for integrable

systems has been registered, in particular for the complex KdV equation. However

the question of existence of non singular solutions seems to be little studied. Among

the few results, we mention the work [160] where an example of non-singular complex

complexiton solution was given without a formal proof. In fact, the example in [160]

has a very intricate formulation, which after some analysis turns out to be equivalent

to the one we give below in (3.13)‡. Recently, other examples of non singular complex

solution of the KdV equation have been produced. In [27] a new type of solution has

been introduced under the name of regularised degenerate multi-solitons. Those are

extensions to complex wave-numbers of the so-called degenerate solutions obtained via

the Wronskian method (see for instance Matveev [118]) where a translation method is

applied in order to avoid a blow up. Further, in [158] non singular complex solutions

for the KdV equation have been obtained by operating a Miura’s transform to non

singular complex solution of the mKdV equation (modified KdV) .

Let us consider λ = −k2

4
. With the notation introduced in (3.10) we define

u1(x, t) = 2∂xx(ln Ψk(x, t)) (3.12)

and

u2(x, t) = 2∂xx(lnW (Ψk(x, t),Φk(x, t))). (3.13)

Both (3.12) and (3.13) are solutions of the KdV equation (3.1), but as we shall see in

the following, are qualitatively different. For future reference, we explicitly re-write

the formulae of the solutions (3.12) and (3.13) as

u1(x, t) =
k2

2 cosh2 f
,

u2(x, t) =


0, if Im(k) Re(k) = 0,

(k
2 − k2)(k

2
cosh2 f + k2 sinh2 f)

2
(
k| cosh f |2 − k| sinh f |2

)2 otherwise,

where we set for brevity

f = f(x, t) :=
k

2
(x− k2t).

‡The results in [160] were known to the author only on a subsequent time once the formulation
and studies of the class of complexitons was mostly concluded.
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3.2.1 Periodicity and spatial localisation

We start by deriving a periodicity formula for the two complexitons introduced in

equations (3.12) and (3.13). For the sake of simplicity, we restrict our analysis to the

single complex soliton u1(x, t) with k = α+iβ; the same arguments can be reproduced

to extend the result to the case of u2(x, t). As observed earlier, from the fact that the

wave number is now a complex quantity, we shall not expect the shape of the solution

to remain unchanged in time, but should expect a space-time periodicity. Namely, in

what follows we determine two real quantities X and T , eventually depending on k,

such that

ui(x+X, t) = ui(x, t+ T ). (3.14)

We observe that in order to find such quantities, it suffices to derive them for (3.10),

the fundamental solutions of the spectral problem. Setting for convenience

2f1(x, t) = αx− (α3 − 3αβ2)t

2f2(x, t) = βx− (3α2β − β3)t,
(3.15)

and using the summation formulae for the hyperbolic functions, we obtain

cosh

(
k

2
(x− k2t)

)
= cosh(f1(x, t)) cos(f2(x, t)) + i sinh(f1(x, t)) sin(f2(x, t)). (3.16)

Observing that the trigonometric and hyperbolic terms in (3.16) have respectively the

same argument and that equation (3.14) has to be satisfied for all t, x ∈ R, we are left

with solving the equation

cosh(f1(x+X, 0)) cos(f2(x+X, 0)) = cosh(f1(x, T )) cos(f2(x, T )).

This reduces after simple manipulation and by means of (3.15) to the systemX = −(α2 − 3β2)T

X = −(3α2 − β2)T + 2π/β,
(3.17)
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which has the solution

T (k) =
π

|k|2 Im(k)
, X(k) =

−πRe(k3)

|k|2 Im(k) Re(k)
. (3.18)

We are now in the position to formulate our main result which describes the motion

of real and complex parts of u1(x, t) and u2(x, t).

Proposition 3.2. Let u1(x, t) and u2(x, t) be the complex solutions of the KdV equa-

tion given by (3.12) and (3.13) with wave number k = α+ iβ ∈ C. Then, for j = 1, 2,

the following statements hold:

(i) For the values of k situated on the two lines in the complex plane α = ±
√

3β

(that is, arg k = ±π/6+πm, m ∈ Z) both the real and imaginary part of uj(x, t)

are localised, oscillating and non-travelling waves centred at the origin.

(ii) For the values of k situated in the region of the complex plane defined by α2 −
3β2 > 0 both the real and imaginary part of uj(x, t) are localised oscillating waves

travelling to the right.

(iii) For the values of k situated in the region of the complex plane defined by α2 −
3β2 < 0 both the real and imaginary part of uj(x, t) are localised oscillating waves

travelling to the left.

In addition, u2 is non-singular for all real x and t, whereas u1 has countably many

singular points in the space-time plane.

Proof. The proof of the first statement is immediate once we observe that a non-

travelling periodic wave corresponds to having the spatial periodicity parameterX(k) =

0 in (3.18), which happens when α = ±
√

3β. The other two statements simply follow

from the observation that, once we have expressed (3.12) or (3.13) as a travelling wave

u(x− ct), its velocity c is given by mean of (3.18) by

c(k) = −X(k)

T (k)
=

Re(k3)

Re(k)
= (α2 − 3β2).

Thus, it remains to analyse the eventuality of when solutions uj are singular. We

find the blow-up points for u1 by a direct calculation (see e.g. [158] for a different
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approach which uses the Miura’s trasnformation). To identify the time and location

for the blow-up points for u1(x, t) we simply note that they occur when cosh(f) = 0,

namely f(x, t) = i
(
π
2

+mπ
)
, with m ∈ Z. This condition is equivalent tof2(x, t) = π/2±mπ

f1(x, t) = 0
m ∈ Z, ⇐⇒

xm = (α2 − 3β2)tn

tm = π/2+πm
2β|k|2

m ∈ Z.

(3.19)

We turn our attention now on u2(x, t): the absence of singular points comes form

from its definition, specifically from the fact that the a necessary and sufficient blow-

up condition for consists in

k| cosh f |2 − k| sinh f |2 = 0,

which is equivalent to arg(k) = mπ
2

where m ∈ Z. We note that the previous condition

is in fact equivalent to require the Wronskian to be null. The localisation of u1 and

u2 is immediate from their explicit formulae.

Remark 3.2. It is important to remark that, from (3.15), the spatial oscillations move

at a speed determined by f2 which is in general different from the one of the envelope

of the wave, in fact determined by the expression f1.

Remark 3.3. We note that Proposition 3.2 provides a simple proof of the results

claimed in [160].

Unfortunately, it is not straightforward to generalize the results on localisation and

non-singularity to the case of general solutions, involving several pairs of complex

conjugated wavenumbers. In the following we formulate our conjecture. For i =

1, . . . , N let ki ∈ C be N distinct complex numbers with non zero real and imaginary

part such that ki 6= ±kj,±kj for i 6= j. Consider

WN(x, t) : = W (Ψk1 ,Φk1
,Ψk2 ,Φk2

, . . . ,ΨkN ,ΦkN
) (3.20)

the Wronskian associated with the N pairs {(ki, ki)}i=1,...,N .

Conjecture 3.2. The complex multisoliton VN(x, s) defined as

VN(x, t) : = 2∂xx lnWN(x, t) (3.21)
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is a non singular complex solution of (3.1) for all real x and t.

Remark 3.4. We note that a positive answer to the conjecture would follow by proving

that WN(x, t) 6= 0 for all x, t.

Remark 3.5. In the formulation of Conjecture 3.2 the condition introduced on the

wavenumbers ki 6= ±kj,±kj for i 6= j is justified by a following simple argument. If

ki = ±kj, then from the parity of the hyperbolic cosine it follows that WN ≡ 0. On

the other hand, if ki = ±kj, then we obtain a generalisation of the Javorsky’s solution

(3.11), which is singular.

3.2.2 Numerical examples

In the following we gather a sequence of snapshots obtained from a simulation con-

ducted with the software Mathematica. In the first sequence, shown in Figure 3.2,

we plot the real and imaginary parts of the function u2(x, t) at different times for the

value k = 1/
√

3+i. As predicted in Proposition 3.2, the support of the solution moves

to the left.
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Figure 3.2: The blue line corresponds to Re(u2(x, t)). The orange line corresponds to Im(u2(x, t)).

In the second sequence of plots we examine only the real part of the function VN(x, t)

defined in (3.21) for N = 2, k1 =
√

3 + i and k2 =
√

3 + 3/2i. We can observe

at once the localisation property, the phase shift phenomenon and the fact that the

solution doesn’t blow up at any time. Each snapshots contains three plots taken at

three different times to which correspond three different lines. The continuous line

refers to the middle time, the second in the list in the caption. The dotted and the

dashed ones refer respectively to the first and third time listed in the description.

We observe that the pictures always split into two parts: one, which is coloured in

blue, is originated from the presence of the wavenumber k2, the other in red comes

from the presence of k1. The blue one is moving leftward over time whereas the red

portion isn’t, except for the time interval over which it happens that the two parts

interact, ( see Figures 3.4a and 3.4b) producing a purple tone. These peculiarities have

been in fact introduced in Proposition 3.2 for each single component, that we might

shortly address as single-soliton element, of which consists the multisoliton solution.

In particular, we can observe from the motion of the red single-soliton the phase shift

phenomenon.
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(h) t = −1.21,−0.72,−0.32

Figure 3.3: Real part of VN before the interaction
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(b) t = −0.32,−0.07, 0.44

Figure 3.4: Real part of VN during the interaction
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Figure 3.5: Real part of VN after the interaction

We produce two more pictures, Figure 3.6 and Figure 3.7 which describe the same

situation studied in the second sequence of plots, now evolving over a continuous

interval of time. In this case the phase shift is even more evident, especially when

observed from above.
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Figure 3.6: The real part of VN (x, t) defined in (3.21) for k1 =
√

3 + i and k2 =
√

3 + 3/2i. The time
interval is t ∈ [−3, 3] .

Figure 3.7: The real part of VN (x, t) defined in (3.21) for k1 =
√

3 + i and k2 =
√

3 + 3/2i this time
seen from above. The time interval is t ∈ [−3, 3]. This view emphasize the phase-shift phenomenon.
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3.3 Spectral properties of Wronskian potentials

In this last section we regard the solutions V (x, t) defined in (3.28) as potentials for

the spectral problem introduced in (3.4) below and in particular our interest will be

focused on the structure of the point spectrum. Furthermore, we will see that such

potentials are in fact Reflectionless§, namely their reflection coefficients, defined as in

(3.3) are identically zero. This is again a sign of the strict connection which holds

between the complex solutions introduced in (3.21) with the classical real multisoliton

ones.

The interest in real reflectionless potentials dates back to the 1930s with the works of

Epsteim [48] and Eckart [43] in the context of quantum mechanics on the potential of

the Pöschl-Teller type

− c

2ma2

ν(ν + 1)

cosh2(x/a)
.

It is a remarkable feature of such potentials that they do not reflect at any real energy

if ν is a positive integer number (see Lekner [106]). The literature on this topic is

extensive, therefore we mention only the works of Kay and Moses [90] and Gardner,

Greene, Kruskal and Miura [66] as the most representative ones for our discussion. In

the former case, the results on the Pöschl-Teller potentials were extended in a optics

context while in the latter the study of such potentials was carried in the context of

inverse scattering theory, and in particular in the formulation of the real multisoliton

solution for the KdV equation. We refer then to Ablowitz’s textbook [1] and the

extensive references contained therein for more details.

Lately, a renewed interest in reflectionless potentials has been brought up by a thriving

use in physical models of complex potentials. See for example the work of Horsley-

Longhi [79] on the deformation of reflectionless potentials and the works [142], [24]

respectively on the reflection property and the spectrum structure of the Pöschl-

Teller potential with ν ∈ C. As mentioned in the introduction, those potentials arise

typically in the study of effective Hamiltonians in optics or electromagnetism problems

when there are regions where the waves get amplified or dissipated. They appear as

§Since the potentials studied in this section are complex, this might lead to some ambiguity in the
terminology. We refer to the reflectionless property in the usual way as it is done for real potentials
(see for example Ablowitz [1]) therefore for scattering waves of the form eikx for k ∈ R. See (3.27)
for the definition of the transmission and reflection coefficients.
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well in the study of meta-materials [85]. Also, such potentials have become very

popular after [10, 9] where complex potentials with real spectrum in the context of

PT theory where firstly introduced.

In the previous sections we have presented solutions of the KdV equation which were

generated using Wronskian method. In particular, this method is a simple combination

of the Lax’s formulation of the KdV equation in terms of a pair of compatible linear

operators L and M which we defined respectively in (3.2) and (3.3) and the Darboux-

Crum method. The latter, firstly introduced by Darboux and subsequently extended

by Crum, provides a scheme which generates, starting from a collection of generalised-

eigenfunctions, a sequence of new potentials and relative eigenfunctions. We briefly

recall it. Since it relies on purely algebraic arguments, we will not include a proof.

For the details we refer to Matveev [118].

Proposition 3.3 (Matveev [118]). Let us consider the following spectral problem for

a general potential Q(x)

− ∂2

∂x2
u(x)−Q(x)u(x) = λu(x) (3.22)

and a set of {φλi}i=1,...,n+1 solutions to it associated to n+1 distinct values {λi}i=1,...,n+1.

Let us consider the function

φλn+1 [n](x) =
W (φλ1 , φλ2 , . . . , φλn+1)

W (φλ1 , φλ2 , . . . , φλn)
(3.23)

where W (·, . . . , ·) is the Wronskian operator, defined in (3.9).

Then φλn+1 [n](x) is solution of the new spectral problem

− ∂2

∂x2
φλn+1 [n](x)−QNew(x;n)φλn+1 [n](x) = λn+1φλn+1 [n](x) (3.24)

where

QNew(x;n) = 2
∂2

∂x2
lnW (φλ1 , φλ2 , . . . , φλn). (3.25)

In the following we are going to study the scattering properties of solutions of a

spectral problem. We therefore introduce hereby some notation which will be useful

in the following.
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Definition 3.3. Let k ∈ R and consider two pairs of solutions of (3.4) (ψ(x), ψ̃(x))

and (φ(x), φ̃(x)) such that they posses the following asymptotic behaviour at infinity

ψ(x, k) ∼ eikx

ψ̃(x, k) ∼ e−ikx
as x→ +∞, (3.26a)

φ(x, k) = a(k)ψ̃(x, k) + b(k)ψ(x, k) ∼ e−ikx

φ̃(x, k) = −ã(k)ψ(x, k) + b̃(k)ψ̃(x, k) ∼ eikx
as x→ −∞. (3.26b)

We set
τ(k) = a(k)−1

ρ(k) = b(k)a(k)−1
(3.27)

which are called respectively the transmission and reflection coefficients ¶. The func-

tions (ψ(x), ψ̃(x)) and (φ(x), φ̃(x)) are often in literature indicated with the name of

Jost solutions.

We are now in the position of formulating the main result of this section:

Theorem 3.4. Let k1, k2, . . . , kM ∈ C be M = 2N distinct complex numbers with non

null both real and immaginary parts, be N ∈ N and let

V (x) = − ∂2

∂x2
lnW (cosh(k1x), sinh(k2x), . . . , cosh(k2N−1x), sinh(k2Nx)). (3.28)

Consider the problem

− ∂2

∂x2
u(x)− V (x)u(x) = λu(x)

Then V (x) is reflectionless, namely |ρ(k)| ≡ 0 for any k ∈ R. and the problem has

2N-complex eigenvalues λi = −k2i
4

for i = 1, . . . , 2N .

Proof. To begin with, we prove the statement for the simple case N = 1 and without

loss in generality we assume for the rest of the proof

Re(k1) ≥ Re(k2) > 0. (3.29)

¶Those are part of the scattering data, used in order to reconstruct solutions of initial data
problem for the KdV by mean of the inverse scattering method. When the potential is real, they
satisfy |τ(k)|2 + |ρ(k)|2 = 1. We refer to Ablowitz [1] for further details.
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In order to prove the reflectionless property we start by introducing the so-called

Jost solutions. Let κ ∈ C and consider the generalised eigenfunction obtained by the

Darboux-Crum method as introduced in Proposition 3.3

g(x, κ) =
W (Ψk1 ,Φk2 , e

κt)

W (Ψk1 ,Φk2)
.

From the multilinearity property of the Wronskian and the determinant formula for

the Vandermonde matrix (4.17), we expand the numerator and the denominator of

the previous expression as a sum of exponentials

W (Ψk1 ,Φk2) = (k2 − k1)
(
e(k1+k2)x + e−(k1+k2)x

)
+ (k2 + k1)

(
e(k1−k2)x + e−(k1−k2)x

)
(3.30)

and

W (Ψk1 ,Φk2 , e
κt) = (k2 − k1)

(
c1(κ)e(k1+k2)xeκx + c2(κ)e−(k1+k2)xeκx

)
+ (k2 + k1)

(
c3(κ)e(k1−k2)xeκx + c4(κ)e−(k1−k2)xeκx

)
(3.31)

where 
c1(κ) = (κ− k1)(κ− k2)

c2(κ) = (κ+ k1)(κ+ k2)

c3(κ) = (κ− k1)(κ+ k2)

c4(κ) = (κ+ k1)(κ− k2)

(3.32)

Let us consider κ = ik where k ∈ R. Then from (3.31) and (3.30) it follows that

g(x,±ik) ∼ c1(±ik)e±ikx x→ +∞,

g(x,±ik) ∼ c2(±ik)e±ikx x→ −∞.

Then the following choice for the Jost solutions

ψ(x, k) =
g(x, ik)

c1(ik)
, ψ̃(x, k) =

g(x,−ik)

c1(−ik)

146



as in Definition 3.3, yields

a(k) =
c1(−ik)

c2(−ik)
=

∏
j=1,2(−ik − kj)∏
j=1,2−ik + kj

, b(k) = 0,

and so the potential is reflectionless. Unlike the case of real potentials, we observe

that there is in general no conservation of energy. Indeed, for k ∈ R, (k 6= 0) and

k1, k2 ∈ C such that k1 6= k̄2, we have in general that |a(k)| 6= 1, where the inequality

tends to an equality only in the asymptotic regime

lim
k→±∞

1

|a(k)|
= 1.

Exceptionally, if k2 = k̄1, then a simple calculation shows that for all k ∈ R

1

|a(k)|
= 1,

and the potential is said to be non-dissipative.

Let us now turn our attention to the spectrum. We have already observed that g(x, κ)

is a solution of (3.4) with λ = −κ2

4
. What is left to be proved is that g(x, κ) is actually

an eigenfunction for such λ. Let us rewrite g(x, κ) as

g(x, κ) =
e(k1+k2)x

e(k1+k2)x

(
c1(κ) + c2(κ)e−2(k1+k2)x + k2+k1

k2−k1

(
c3(κ)e−2k2x + c4(κ)e−2k1x

)
1 + e−2(k1+k2)x + k2+k1

k2−k1 (e−2k2x + e−2k1x)

)
eκx

(3.33)

or

g(x, κ) =
e−(k1+k2)x

e−(k1+k2)x

(
c2(κ) + c1(κ)e2(k1+k2)x + k2+k1

k2−k1

(
c3(κ)e2k1x + c4(κ)e2k2x

)
1 + e2(k1+k2)x + k2+k1

k2−k1 (e2k2x + e2k1x)

)
eκx

(3.34)

Let us consider for example the case κ = k1. In order to study the behaviour of g(x, κ)

for x→ +∞ we consider the factorisation introduced in (3.33) and after noting that

c1(k1) = c3(k1) = 0 we easily deduce the exponential decay. On the other hand, from

the assumptions (3.29) and by simply looking at (3.34) we deduce the decay at minus

infinity. The case κ = k2 follows similarly.

Let us now consider the case N > 1. Again, from the assumption Re(k1) ≥ Re(k2) ≥
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. . . ,Re(k2N) > 0 we only have to address the case for x→∞. Similar considerations

done in order to obtain (3.33) and (3.34) lead us to claim that

g(x, κ) ∼ e(k1+···+k2N )x

e(k1+···+k2N )x

∑
c(κ, k1, . . . , k2N)eΩ(k1,...,k2N )

(K + o(exp(−x)))
eκx, (3.35)

where K is a constant and the summation runs over a set of cardinality 22N . In

particular, for any j ∈ {1, 2, . . . , 2N}, we have that Ω(k1, . . . , k2N) can be expressed

as following

Ω(k1, . . . , k2N) =

− (2kj + qj(k1, . . . , k2N)) (])

−qj(k1, . . . , k2N) ([)
(3.36)

where qj(k1, . . . , k2N) are homogeneous polynomials of degree 1 of the form

qj(k1, . . . , k2N) = (2k1)
±1+1

2 + · · ·+ (2kj−1)
±1+1

2 + (2kj+1)
±1+1

2 + · · ·+ (2k2N)
±1+1

2

such that Re(qj) ≥ 0. The coefficients c(κ, k1, . . . , k2N) appearing in (3.35), which

are the generalisation of those introduced in (3.32) for N = 1, are as well products

of terms
∏2N

j=1(κ ± kj) where, for any j ∈ {1, 2, . . . , 2N} the sign which has to be

considered is plus if kj appears in Ω(k1, . . . , k2N) (case ]) or minus otherwise (the case

[). In particular,

c(κ = kj, k1, . . . , k2N)

 6= 0 (])

= 0 ([).
(3.37)

We conclude from (3.35),(3.36) and (3.37) that g(x, kj) decays exponentially at plus

infinity. Indeed, when in the case (]), the term Ω(k1, . . . , k2N) is enough to compensate

ekjx whereas when in the case ([), the divergent term ekjx disappear by mean of (3.37).

In a very similar fashion of what done in the case N = 1, the reflectionless property

of the potential follows as well, where now

a(k) =

∏2N
j=1(ik + kj)∏2N
j=1(−ik + kj)

, b(k) = 0.

Again, in the special case k2j+1 = k2j for j = 1, . . . , N , we have |a(k)| = 1 for any real

k.

Remark 3.6. We conclude that the potentials VN(x, t) introduced in (3.21) are reflec-
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tionless and non-dissipative for all real time t ∈ R.
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4
Conclusion

E se io che sono scienziato-ricercatore posso anche non saperlo,

le rondini no, le rondini sanno quello che fanno.

Ecco, alzo lo sguardo dalle mie mani al cielo.

Non è mai nero il cielo dell’Hoggar, neppure quando non c’è luna.

Viola, turchino cupo, blu dell’oltremare scuro, ma non nero.

Troppe stelle.

M. Maggiani, Il viaggiatore notturno

We have arrived at the last chapter of the dissertation, end of this journey. Each

argument studied in this document will be hereby summarised and accompanied with

some conclusive considerations. Furthermore, this space will be taken up in order to

present some open questions which the author hasn’t been able to answer during the

duration of his doctoral studies. The aim of this chapter is then to show some of the

solution’s attempts tried which hadn’t been very successful and to introduce the ideas

on which them rely. The character of this chapter is intended to be less formal and

more prone to a direct exposition.
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Complex perturbation and number of eigenvalues

In the first chapter of this thesis we discussed the localisation problem of com-

plex eigenvalues for non-Hermitian operator defined via complex perturbation of self-

adjoint operators. In Subsection 1.1.3 and Subsection 1.1.4 we have presented the

correct interpretation which should be given to the expression Hu = λu, via the the-

ory of forms for semi-bounded operators and via some more general theorems valid

for a broader class of operators. We have also introduced the Birman-Schwinger prin-

ciple which has been at the basis of all results of the chapter. Subsequently we have

commented upon the main results regarding complex perturbation of the Schrödinger

operator, in particular showing the connection existing between resolvent estimates

and localisation of eigenvalues. In the third section of the same chapter we have

introduced the problem of localisation of eigenvalues for the operator defined as in

(1.20)

H0,ν : u(x)→
(
− d2

dx2
+

(ν2 − 1/4)

x2

)
u(x)

on L2(0,∞), and extended to any ν ∈ R the results proved by Frank et al. [62] for

H0,1/2. In particular, we showed

|λ|1/2 ≤ C(ν, θ)

∫ ∞
0

|V (x)| dx,

and by mean of numerical experiments we found a qualitative accordance between the

shape of region where the complex eigenvalue lie in the case ν = 1/2 and the shape

obtained for a general real value of ν > 0, reporting in all cases the typical drop-

shaped form (see Figure 1.3 and Figure 1.5). We also proved the sharpness of our

result for the case ν ≥ 1/2 by mean of complex delta potentials. This methodology

unfotunately does not provide any positive answer when 0 < ν < 1/2, leaving the

sharpness property unsettled. Furthermore, we have proved the following type of

estimate

|λ|γ ≤ C̃(ν, θ)
d
2

+γ

∫ ∞
0

xd−1|V (x)|
d
2

+γ dx.

For particular values of ν then, the estimate above has been useful to draw information

on the localisation for the complex eigenvalues of the radial Laplacian subject to radial

potential. In particular we have seen that for the d-dimensional radial Laplacian, the
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eigenvalue lie in a region which is the same determined for H0, d−2
2

.
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Figure 4.1: Continuous lines: from the outer most, plot of the contour of the regions Srd for d =
3, 4, 5, 6 obtained respectively for the values ν = 1/2, 1, 3/2, 2. The dashed line is an approximation
to the limit case d = 2 and ν = 0.

Future work on number of eigenvalues

For ν = 1/2, Frank Laptev and Safronov [61] have proved a quantitative estimate on

the number of eigenvalues of H0,1/2 that we have presented in Theorem 1.30. It is the

author’s belief that such result should hold also in the general case ν ∈ R.

As seen in Section 1.5.1, under the stronger assumptions (1.81), Kir has proved the

finiteness of the eigenvalue’s number for any ν ∈ C such that Re(ν) > 0. In what

follows we repeat pedantically the method proposed in Frank et al. [61] , introducing

the needed modifications in order to deal with the case ν ∈ R+.

We begin with recalling a general results on the number of zeros of analytic functions.

Proposition 4.1 (Frank et al. [61]). Let η < 0. Let b(k) be an analytic function in

{Im(k) > η} such that for every η′ > η it holds true

b(k) = 1 + o(|k|−1) as |k| → ∞ in {Im(k) > η′}. (4.1)

Suppose, moreover , that for η′ sufficiently close to η, it also holds

ln |b(k)| ≤ A(η′)|k|−β on {Im(k) = η′} (4.2)

where A(η′) ≥ 0 is positive and β > 1.
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Then the zeros kj of b(k) in the upper half plane {Im(k) ≥ 0}, repeated according to

multiplicities, satisfy ∣∣{j | Im(kj) ≥ 0}
∣∣ ≤ cβA|η|−β (4.3)

where

A = lim
η′→η

A(η′), cβ =
1

2π

∫
R

1

(1 + t2)β/2
dt, c2 =

1

2
.

In particular, we will apply the previous result to the function a(k), which will be the

regularized second order determinant of the Birman-Schwinger operator B(λ)

a(k) = det
2

(
1 +B(k2)

)
=
∏
j

(
(1 + λj(B(k2))) exp

(
−λj(B(k2))

) )
, (4.4)

where we recall B(λ) has been defined in (1.24). Providing a detailed introduction to

the theory of regularised determinant would require a number of results and defini-

tions. We will not enter in further details for which we refer to Frank et al. [61] and

reference therein and we will restrict to the following estimates which are the only

ones needed in our analysis.

Lemma 4.2 (Frank et al. [61]). Suppose B(k2) be Hilbert-Schmidt. Then

ln |a(k)| ≤ 1

2
‖B(k2)‖2

2; (4.5)

Moreover, let 0 ≤ θ < 1 such that ‖B(k2)‖ ≤ θ. Then there exists a constant Γ(θ) so

that

| log a(k)| ≤ Γ(θ)‖B(k2)‖2
2. (4.6)

Remark 4.1. We observe that there is a one to one correspondence between the zeros of

the function a(k) and the eigenvalues of the operator H defined in (1.22). In particular

the order of the zeros coincide with the algebraic multiplicity of the eigenvalues.

In the first chapter we have recalled the link between the modified Bessel function
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Kν(z),

Kν(z) =
1

Γ(ν + 1/2)

( π
2z

)1/2

e−z
∫ ∞

0

e−ttν−1/2

(
1 +

t

2z

)ν−1/2

dt,

for Re(ν) > −1/2 , | arg(z)| < π. with the Hankel functions

H(1)
ν (z) =

2

iπ
e−iπ/2νKν(ze−iπ/2) arg(z) ∈

(
−π

2
, π
)
,

H(2)
ν (z) = − 2

iπ
e−iπ/2νKν(zeiπ/2) arg(z) ∈

(
−π, π

2

)
and Bessel function

Jν(z) =
i

2π

(
e−iνπ/2Kν(−iz)− eiνπ/2Kν(iz)

)
, | arg(z)| < π

2
.

We use the above properties for Bessel and Hankel functions to re-write them in a

more convenient way for our analysis. We have the following.

Lemma 4.3. Consider z ∈ C with Im(z) < 0. Then there exist two functions J̃ν(z)

and H̃
(1)
ν (z) such that

|H(1)
ν (z)| =

√
2

π

1

Γ(ν + 1/2)

e− Im(z)√
|z|

H̃(1)
ν (z) (4.7)

|Jν(z)| =
√

2

π

1

Γ(ν + 1/2)

e− Im(z)√
|z|

J̃ν(z) (4.8)

with the following asymptotic behaviour at the origin and at infinity

H̃(1)
ν (z) ∼O(

1

zν−1/2
) for z →0,

J̃ (1)
ν (z) ∼O(zν−1/2) for z →0,

H̃(1)
ν (z) ∼O(1) for z →∞,

J̃ (1)
ν (z) ∼O(1) for z →∞.

(4.9)

Proof. By mean of the analytic continuation formulae for Bessel functions

sin(νπ)H(1)
ν (zeimπ) = − sin((m− 1)νπ)H(1)

ν (z)− e−iνπ sin(mνπ)H(2)
ν (z),
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Jν(ze
imπ) = eimνπJν(z),

where m ∈ Z. Formulae (4.7) and (4.8) then follow from the representation formulae

for Jν(z) and H
(1)
ν (z) in terms of the modified Bessel function Kν(z) recalled above.

The asymptotics claimed in (4.9) can be obtained after a direct comparison with the

ones stated in (1.28) and (1.29).

In the following statement we speculate what should now represent the extension of

Theorem 1.30 to any ν ≥ 0.

Conjecture 4.1. Let ν ≥ 0, then for any ε > 0 the number N of eigenvalues of the

operator H = H0,ν + V (x) with Dirichlet boundary condition, counted with algebraic

multiplicities, satisfies the following

N ≤ 1

ε2
Λ(ν)

(∫ ∞
0

eεx|V (x)| dx
)2

, (4.10)

where Λ(ν) is a positive constant which depends only on ν.

The entire proof would rely on the observation made in Remark 4.1, namely on the

fact that there is a one to one correspondence between the eigenvalues of H and the

zeros of the function a(k) defined in (4.4) in combination with Proposition 4.1. In the

following, we present the steps that would lead to a validation for the condition (4.2)

for a(k) by means of the results in Lemma 4.2 and estimates on the Hilbert-Schmidt

norm of the Birman operator B(k2)

‖B(k2)‖2
2 =

∫ ∞
0

∫ ∞
0

|V (x)||Gν(x, y, k
2)|2|V (y)| dy dx. (4.11)

Let us consider the case k ∈ C, with fixed imaginary part Im(k) < 0. From (4.11)
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and (1.23) we have that

‖B(k2)‖2
2 ≤

1

Γ(ν + 1/2)4

1

|k|2

(∫ ∞
0

|V (x)|e−2 Im(k)xH̃(1)
ν (kx)2

∫ x

0

|V (y)|e−2 Im(k)yJ̃ (1)
ν (ky)2 +

∫ ∞
0

|V (x)|e−2 Im(k)xJ̃ (1)
ν (kx)2

∫ ∞
x

|V (y)|e−2 Im(k)yH̃(1)
ν (ky)2

)

≤ 1

|k|2
Λ(ν)

(∫ ∞
0

|V (x)|e−2 Im(k)x

)2

(4.12)

where, similarly to what’s been done for the uniform bound, we define

Λ(ν) =
1

Γ(ν + 1/2)4
sup

θ∈(π,2π)

sup
x∈(0,∞)

H̃(1)
ν (xeiθ)2 sup

y∈(0,x)

J̃ν(ye
iθ)2 (4.13)

The statement then would follow by taking Im(k) = − ε
2

with ε > 0 and from equations

(4.9). We note that, in fact, the same estimates combined with (4.6) yields assumption

(4.1).

Remark 4.2. Note that the in fact, the supremum in (4.13) implies that the function

H̃
(1)
ν (xeiθ)2 supy∈(0,x) J̃ν(ye

iθ)2 has to be evaluated over the whole lower half-complex

plane. The finiteness of the bound (4.13) is yet unknown.

Remark 4.3. We observe that the validity of an estimate like (4.10) formulated in

Theorem 4.1 would provide an estimate on the number of eigenvalues for the radial

Laplacian in any dimension greater than one. In particular, if for odd dimensions

quantitative results on the number of complex eigenvalues have been obtained by

Frank et al. [61] even for the non-radial Laplacian, in the case of even dimensions

nothing is known at the moment and Theorem 4.1 might be helpful to get closer to

new results also in the latter case.

Trapped modes for a two layer RSW model

The subject of the second chapter of this dissertation is the existence of eigenvalues

outside the essential spectrum for self-adjoint, second order differential operator pen-

cil. In particular we considered operators that arise in the study of trapped waves

in the context of a system of two layer shallow water model in a channel embedded
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in a rotating reference system. The channel is assumed to be of constant width but

variable depth, which depends only on the distance form the coastal line. Our results

extend those proved by Johnson et al. [87] valid for the single layer case.

As in the case of a single layer, we have made several auxiliaries assumptions. Among

the most important ones we have considered the rigid lid approximation, which means

that we have supposed the top of the water volume to be unchanged through the time

and fixed to the shape of a straight surface. This has in particular allowed to consider

only certain type of waves, called of Class 2 according to the classification given in

Johnson et al. [87]. These waves, which distinguish from the ones of Class 1, are ‘slow

in time’ and typically their characteristic time is of the same order or bigger compared

to the rotation’s period one.

Waves of Class 2 vanish in absence of depth change or rotation. It is then the simul-

taneous presence of non trivial topography for the bottom combined with the effects

coming from the rotation of the frame of reference and the non trivial geometry of

the channel that guarantee the existence of such slow waves and in particular, from a

spectral theory point of view, produce points in the discrete spectrum.

Differently to the case of a single layer, when it suffices to study the problem only

in terms of the Volume Flux Stream-function, in the presence of two distinct layers

of fluids at different densities, it is also needed to study the displacement function of

the interface between the two fluids from the position of equilibrium when the fluids

are at rest. This, in particular, gives rise to a system of two coupled equations which

cannot be studied separately. Therefore the main difficulty in studying this problem.

The proof of the main result contained in Theorem 2.5 relies, similarly to what happens

in the single layer case, on a specific estimate (2.90) which involves the quadratic

forms of the operators in question. A thorough analysis of its terms combined with

the results which hold in the single layer case, yields the validation of (2.90) also in

the case of two layers when the difference between the two densities is sufficiently

small.
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Complex Complexiton solutions for the KdV equation

The third chapter has been dedicated to the study of a certain class of complex

solutions of the KdV equation, generated using the Wronskian method, which belong

to the class of complex complexitons. This particular class of solutions represents to

many extent the complex counterpart to the classical real multi-soliton solutions found

by Zabusky and Kruskal [159]. They are defined by mean of the following formula

VN(x, t) : = 2∂xx lnWN(x, t)

where

WN(x, t) : = W (Ψk1 ,Φk1
,Ψk2 ,Φk2

, . . . ,ΨkN ,ΦkN
)

is the Wronskian associated with the N pairs {(ki, ki)}i=1,...,N and

Ψk(x, t) = cosh

(
k

2
(x− k2t)

)
,

Φk(x, t) = sinh

(
k

2
(x− k2t)

)
,

for ki ∈ C, N distinct complex numbers with non null real and imaginary part such

that ki 6= ±kj,±kj for i 6= j.

Solutions of the type of VN(x, t) have been found in literature, to the best of the

author’s knowledge, only in a single paper by Zhang et al. [160]. It was there claimed,

without any proof, the property of finiteness at all times. As we have seen in the third

chapter, this is not the only feature which characterise the solutions VN(x, t). They

in fact reproduce the phase-shift phenomenon along with the possibility of modelling

fully elastic collisions. Despite the very simple and elegant formulation which defines

these solutions, we have been able to prove all these properties only for the case N = 1.

In the following are gathered some attempts made in order to generalise these results

to a generic value of N ∈ N, in particular we will consider the problem of absence of

singularities.

As observed in the Remark 3.4, the absence of singularities is equivalent to the con-

dition WN(x, t) 6= 0 for all real x and t. Let us give a bit more details on what it

means.
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In order to simplify the expressions, let us first redefine k/2 → k with no loss of

generality. We also denote

F = F (k, x, t) : = (x− 4k2t).

which, specified of a particular ki will be denoted with

Fi = F (ki, x, t) : = (x− 4k2
i t).

Note that F (k, x, t) = F (k, x, t) and ∂xFk = 1. In what follows we use the following

short notation

Ψ(kiFi) = cosh(kiFk1), Φ(kiFi) = sinh(kiFk1)

With abuse of notation, we will indicate with WN either the Wronskian of a 2N × 2N

complex matrix itself defined as

WN =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ(k1F1) Φ(k1F1) Ψ(k2F2) . . . . . . Ψ(kNFN) Φ(kNFN)

k1Φ(k1F1) k1Ψ(k1F1) k2Φ(k2F2) . . . . . . kNΦ(kNFN) kNΨ(kNFN)
...

...
...

...
...

...
...

...
...

...
...

...
...

...

k2N−2
1 Ψ(k1F1) k

2N−2

1 Φ(k1F1) k2N−2
2 Ψ(k2F2) . . . . . . k2N−2

N Ψ(kNFN) k
2N−2

N Φ(kNFN)

k2N−1
1 Φ(k1F1) k

2N−1

1 Ψ(k1F1) k2N−1
2 Φ(k2F2) . . . . . . k2N−1

N Φ(kNFN) k
2N−1

N Ψ(kNFN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.14)

or the matrix itself, whose determinant is the Wronskian stated above, whose i−th

row reads

[
WN

]
i

=


(
k2i−2

1 Ψ(k1F1), k
2i−2

1 Φ(k1F1), . . . . . . , k2i−2
N Ψ(kNFN), k

2i−1

N Φ(kNFN)
)
, if i is odd,(

k2i−1
1 Φ(k1F1), k

2i−1

1 Ψ(k1F1), . . . . . . , k2i−1
N Φ(kNFN), k

2i−1

N Ψ(kNFN)
)
, if i is even.
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We also note that WN = AN ◦BN is the Hadamard product of two block matrices

AN =



Ψ(k1F1) Φ(k1F1) . . . . . . Ψ(kNFN) Φ(kNFN)

Φ(k1F1) Ψ(k1F1) . . . . . . Φ(kNFN) Ψ(kNFN)
...

...
...

...
...

...
...

...
...

...
...

...

Ψ(k1F1) Φ(k1F1) . . . . . . Ψ(kNFN) Φ(kNFN)

Φ(k1F1) Ψ(k1F1) . . . . . . Φ(kNFN) Ψ(kNFN)


=


Â1 . . . . . . ÂN
... . . . . . .

...
... . . . . . .

...

Â1 . . . . . . ÂN



and

BN =



1 1 . . . . . . 1 1

k1 k1 . . . . . . kN kN
...

...
...

...
...

...
...

...
...

...
...

...

k2N−2
1 k

2N−2

1 . . . . . . k2N−2
N k

2N−2

N

k2N−1
1 k

2N−1

1 . . . . . . k2N−1
N k

2N−1

N


=


1 . . . . . . 1

B̂1 . . . . . . B̂N

B̂◦21 . . . . . . B̂◦2N
... . . . . . .

...

B̂◦N−1
1 . . . . . . B̂◦N−1

N



which is a block-Vandermonde matrix, where

B̂i
◦j

= B̂i ◦ B̂i ◦ · · · ◦ B̂i︸ ︷︷ ︸
j− times

.

The blocks are

Âj =

(
Ψ(kjFj) Φ(kjFj)

kjΦ(kjFj) kjΨ(kjFj)

)
, B̂j =

(
k2
j kj

2

k2
j kj

2

)
.

Proceeding by induction, let us suppose WN 6= 0. From the determinant formulae for

block matrix it follows that

WN+1 = WN · det
(
B̂◦NN+1 ◦ ÂN+1 − PNANQN

)
(4.15)

where PN and QN are two blocks matrix of dimensions respectively 1×N and N × 1

of the shape

PN =
(
B̂◦N1 ◦ Â1 . . . . . . . . . B̂◦NN ◦ ÂN

)
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and

QN =
(
ÂN+1 B̂N+1 ◦ ÂN+1 . . . . . . . . . B̂◦N−1

N+1 ◦ ÂN
)T

Of course, formula (4.15) has the great advantage of expressing the determinant at

the inductive step as a product. Unfortunately, the second factor is far from being an

easy computations, mainly for the reason that there is a sum of matrices (which does

not get along with the determinant function) and for the explicit form of the matrix

PNANQN which is very intricate.

Another possible approach which might be successful in proving that WN is never zero

consists in using perturbation theory arguments. Let us restrict to the case of N = 2

and t = 0 for the sake of simplicity and clarity. Then we have

W2 =

∣∣∣∣∣∣∣∣∣∣
Ψ(k1F1) Φ(k1F1) Ψ(k2F2) Φ(k2F2)

k1Φ(k1F1) k1Ψ(k1F1) k2Φ(k2F2) k2Ψ(k2F2)

k2
1Ψ(k1F1) k

2

1Φ(k1F1) k2
2Ψ(k2F2) k

2

2Φ(k2F2)

k3
1Φ(k1F1) k

3

1Ψ(k1F1) k3
2Φ(k2F2) k

3

2Ψ(k2F2)

∣∣∣∣∣∣∣∣∣∣
=

2∏
i=1

(
|ekix|2

2

)4

·

∣∣∣∣∣∣∣∣∣∣
(1 + e−2k1x) (1− e−2k1x) (1 + e−2k2x) (1− e−2k2x)

k1(1− e−2k1x) k1(1 + e−2k1x) k2(1− e−2k2x) k2(1 + e−2k2x)

k2
1(1 + e−2k1x) k

2

1(1− e−2k1x) k2
2(1 + e−2k2x) k

2

2(1− e−2k2x)

k3
1(1− e−2k1x) k

3

1(1 + e−2k1x) k3
2(1− e−2k2x) k

3

2(1 + e−2k2x)

∣∣∣∣∣∣∣∣∣∣
=

2∏
i=1

(
|ekix|2

2

)4

· det (B2 +B2 ◦ C2)

(4.16)

where C2 is the singular matrix

C2 =


e−2k1x −e−2k1x e−2k2x −e−2k2x

−e−2k1x e−2k1x −e−2k2x e−2k2x

e−2k1x −e−2k1x e−2k2x −e−2k2x

−e−2k1x e−2k1x −e−2k2x e−2k2x


and B2 is the Vandermonde matrix with entries k1, . . . , kN . From the fact that BN
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and in particular B2 in non singular ∗ , what are the conditions on B2 ◦ C2 such that

the perturbation leaves the matrix non singular?

The following facts hold true.

• If A is non singular then if ‖A−1E‖p < 1, then A+ E is non singular.

• ‖A ◦B‖2
2 ≤ ‖A∗A‖2‖B∗B‖2 (See [78])

• 1 ≤ ‖A−1‖‖A‖

Then

‖B−1
2 (B2 ◦ C2)‖2 ≤ ‖B−1

2 ‖2‖(B2 ◦ C2)‖2 ≤ ‖B−1
2 ‖2‖B2‖2

√
‖C∗2C2‖2 < 1

would be enough to be proven.

We conclude by observing that a complexification approach similar to the one intro-

duced in [18], namely the study of the function WN(z, t) for z ∈ C and in particular

the study of the dynamics of its poles in the complex plane, might provide elucidations

on the dynamics of the real and complex part of the solitons studied in this thesis

and provide as well an interpretation of the phase shift phenomenon happening also

in the complex case.

∗

Let Vn =


1 1 . . . 1
α1 α2 . . . αn
...

... . . . . . .
αn1 αn2 . . . αnn

 , then det(Vn) =
∏

1≤i<j≤n

(αj − αi) (4.17)
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