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Abstract

Metabolomics is a well-established approach for investigation of the

metabolic state of an organism usually conducted via high-throughput meth-

ods and focusing on quantification and identification of small molecules. A

popular analytical technique used in metabolomics is 1H NMR spectroscopy.

The data obtained in NMR experiments contains a wealth of information on

metabolites in a sample and their chemical structure. To help uncover this

information and find patterns in the data, statistical and machine learning

methods must be applied.

The work presented in this thesis demonstrates applications of prob-

abilistic generative modelling, with particular focus in Latent Dirichlet

Allocation (LDA), as a tool for information recovery in 1H NMR data sets

obtained in metabolomics research. LDA is an example of a topic model.

The model is based on a generative process which can be thought of as a

source of the data. Topics are latent variables which select co-occurring

metabolites in a sample. In turn, NMR spectra can be represented in the

latent variable space.

We present applications of LDA in three scenarios. (1) How LDA can

be used to simulate NMR spectra; such spectra demonstrate that LDA is a

valid model for NMR data and also provide synthetic data for evaluation

of statistical models. (2) Unsupervised learning with LDA to uncover

patterns in the NMR data; we use synthetics and real NMR data with

knowledge of key biomarkers from a prior study and conclude that LDA

was successful in the recovery of useful topics. (3) Supervised learning with

SLDA and combined latent variable models with ElasticNet regression where

we investigate NMR data from The Multi-Ethnic Study of Atherosclerosis

(MESA) study which is paired with clinical variables such as BMI. The goal

was to examine if topics can be informative about clinical outcomes.
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Chapter 1

Introduction

In this chapter, we provide background material referred to or otherwise

used in the subsequent chapters. We begin by introducing metabolomics

and NMR spectroscopy, followed by probabilistic and latent variable models.

We close with the aims and objectives of this thesis as we all a short overview

of the following chapters.

1.1 Metabolomics

Metabolic profiling, also called metabolomics and metabonomics refer

to a subdomain of systems biology which investigates the chemistry of

metabolism (Nicholson et al., 1999; Fiehn, 2002; Nicholson and Lindon,

2008). Definitions of metabolomics and metabonomics originally varied

slightly but in recent years the terms are used interchangeably, and this is

how we treat them in this thesis. The investigation is usually conducted

via high-throughput methods, focusing on quantification and identification

of small molecules. The small molecule is defined as having a molecular

mass less than 1500Da. A defining strength of metabolomics is an abil-
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CHAPTER 1. INTRODUCTION

ity to capture a snapshot of all metabolic activities of an organism. A

metabolome is a complete set of metabolites in a specific type of sample

(usually bio-fluid) of a particular organism, for example, The Human Urine

Metabolome (Bouatra et al., 2013). Some of the metabolic activities are

governed by genes, some by interactions with the environment (for instance,

ethanol in human bio-fluids is present if alcohol was consumed) and some by

biological conditions such as a disease. Additionally, metabolomics can be

used to capture dynamic changes in metabolism over multiple time-points,

although due to cost the number of time-points is usually small (<20). In

summary, metabolomics adds to genomics and other omics another view

at the inner workings of a biological system, and it is a valuable tool in

multiple domains, including but not limited to toxicology (Coen et al.,

2008), molecular epidemiology (Holmes et al., 2007), personalised medicine

(Nicholson, 2006), plant genomics (Roessner et al., 2001; Fiehn et al., 2000),

and clinical research for diagnostic applications (Gowda et al., 2008).

The most common analytical methods in metabolomics are mass spec-

trometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. In this

thesis, we focus exclusively on 1H NMR spectroscopy. 1H NMR is very well

suited for biological samples, usually bio-fluids because it detects molecules

containing protons (1H) which are to be found everywhere in biochemistry.

NMR is very good at providing structural information about the molecules.

Usually NMR spectroscopy is used as an untargeted technique i.e. there

is no filtering to some set of interesting metabolites and NMR resonances

are coming from all metabolites present in a sample. One of the major

disadvantages of NMR is low sensitivity, a sample must be provided of a

certain mass or sometimes concentrated. There are many challenges in
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CHAPTER 1. INTRODUCTION

NMR metabolomics data. Some resonances come from known metabolites

that we expect to be present in a sample, and others come from unidentified

molecules. This makes it challenging to identify peaks in NMR spectra. The

problem of identification is magnified by the fact that peaks from different

molecules can overlap. A high number of peaks1, among those many, are

correlated, and noise present in the signal is inherent to the nature of

NMR spectroscopy. Another challenge can be a relatively small number

of subjects. This is usually caused by the cost and complexity of setting

up experiments with live subjects. High variability in the responses from

individuals can be observed even if the replicates are highly homogenous

(Nicholson et al., 2002).

Metabolomics and NMR data mining methods

To gain biological insight from complex patterns found in NMR data,

both unsupervised and supervised machine learning methods are frequently

employed. Principal component analysis (PCA) is an unsupervised method

which is routinely applied to metabolomics data. PCA is one of the oldest

unsupervised methods; its origin can be found in Pearson (1901). A modern

description can be found in Wold et al. (1987) and Jackson (2003). We

give an overview of PCA later in this chapter. Among supervised methods,

partial least squares PLS (Wold et al., 2001) remains a popular choice. In

this thesis, in Chapter 4, we use another supervised method called ElasticNet

(Zou and Hastie, 2005) which is a doubly regularised regression method that

combines penalties of Lasso and Ridge regression. This thesis proposes to

expand unsupervised and supervised tool-kits used in NMR metabolomics
1Around 200 metabolites can be identified in human urine using NMR, Bouatra et al.

(2013).
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CHAPTER 1. INTRODUCTION

by applications of topic models in particular Latent Dirichlet Allocation.

Challenges in metabolomic NMR data processing

The primary source of variation in NMR data comes from the proton

resonance when it relaxes from the excited state to the equilibrium. We

describe the principles of NMR in the next section. However, sources of

variation can also be technical, coming from NMR equipment, or biological

factors, e.g. pH of the sample. The former are usually corrected by the

equipment software, the latter need careful consideration and preprocessing.

For example, Nicholson et al. (2002); Dieterle et al. (2006) note that in

urine samples, concentrations can vary significantly between individuals

even if they are not subjected to any biological challenge. To reduce the

concentration variability between samples, we apply normalisation. The

standard procedure is to divide all spectral bins in a sample by a sum of

all the intensities. Another variant of normalisation could be achieved by

dividing each sample by the area under the spectrum. The area can be

approximated by use of the trapezium rule. There are more sophisticated

methods of normalisation in NMR such as probabilistic quotient normalisa-

tion described in Dieterle et al. (2006). Another preprocessing technique

common in metabolomics is centring and scaling. Those operations are

performed on spectral bins across all samples. The most common centring

technique is by subtracting the mean from each bin. We apply this approach

when we fit PCA models. Scaling is usually applied to account for different

concentrations in biological samples by normalising the NMR spectra to

a unified, virtual concentration. The usual method of scaling is to divide

all the values in given spectral bins across all samples by the standard

12



CHAPTER 1. INTRODUCTION

deviation. Lastly, metabolomics samples, urine, in particular, will expose

shifts in peaks between samples due to, mainly, differences in pH but also

due to other factors like temperature. This problem can be addressed but

defining broad spectral bins and calculating the area under the spectrum

or applying a special procedure on full resolution data to move peaks, so

they are aligned between samples. Two examples of such algorithms are

the Recursive Segment-Wise Peak Alignment by Veselkov et al. (2009) and

metabolite deconvolution and quantification from complex NMR spectra by

using the Bayesian Automated Metabolite Analyser for NMR (BATMAN)

by Hao et al. (2014).

1.2 1H NMR spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a broadly used chemical

analysis technique with applications in medicine and biochemistry (Hausser

and Kalbitzer, 1991) including metabolomics (Nicholson et al., 1999). NMR

is possible with any nucleus which has a non-zero nuclear spin quantum

number, for example, 1H or 13C. 1H NMR spectroscopy is one of the major2

experimental techniques in metabolomics as hydrogen is universally present

in metabolic molecules. The methods described later in this thesis have

only been applied to 1H NMR data, therefore, this section focuses only on
1H NMR spectroscopy.

NMR is a mature technique. The method for measuring magnetic

nuclear moment, which is a cornerstone of NMR, was first described by

Rabi et al. (1938). The significance of the discovery was quickly recognised

as NMR produces a lot of information on chemical structure. Rabi was
2Mass spectrometry (MS) is another major one.
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CHAPTER 1. INTRODUCTION

made the Nobel Prize laureate in physics in 1944. Later, Bloch and Purcell

worked on the extension of NMR to liquids and solids which earned them

the Nobel Prize in Physics in 1952. Since then, NMR has been continuously

perfected. Contemporary apparatus is capable of performing 1GHz NMR.

Such a strong static magnetic field allows obtaining high-resolution spectra

which is particularly useful for investigating complex molecules as it reveals

distinct signals which otherwise would overlap.

NMR requires minimal sample preparation, usually only pH buffering

as signal shifts can occur due to sample acidity. NMR is a non-destructive

technique allowing samples to be reused in subsequent experiments. More-

over, live samples are allowed, for example, most hospitals will routinely

perform magnetic resonance imaging (MRI) scans on humans. This section

focuses on the fundamental principles of NMR, which is mostly based on

textbooks by Hore (2015) and Keeler (2011).

Nuclei have a mass, a charge and a spin3. Atomic spins come in different

forms, but for our purposes, the interesting quantum spin number is ½.

Examples of nuclei with I = ½ are 1H and 13C. According to 2I + 1 rule4,

a nucleus with the quantum spin number I = ½ has only two energy levels

labelled with the magnetic quantum number m = −½ and m = ½. Some

nuclei do have I = 0 and thus will not have a magnetic spin. These can not

be used in NMR (there are no distinct energy levels), a notable example is
12C. The protons at each energy level have a unique spin orientation (see

left panel in fig. 1.3).

Let us now address the behaviour of an atomic nucleus in a magnetic
3We use spin, angular momentum and magnetic dipole moment as interchangeable

terms.
42I + 1 rule determines the number of energy levels for nuclei with a quantum spin

number I.

14



CHAPTER 1. INTRODUCTION

field. We start with a simple analogy. A compass needle without the earth

magnetic field would point in a random direction. The earth’s field applies

energy to the needle, so it points along the direction of the earth’s magnetic

field. We can apply some external energy (e.g. with a finger) to change the

needle’s direction. If we let go of the needle, it will return to its original

state (”ground state”). A proton could be thought of as a tiny magnet.

Without a static external magnetic field, its spin would point in a random

direction. After application of some external static magnetic field usually

called B0 in NMR literature, the proton’s spin will align with the direction

of B0. There are only two possible spin orientations for a proton: parallel

or anti-parallel to B0.

The intensities of the NMR signal depend on the differences in the

populations of the energy levels. Those differences are determined by the

Boltzmann distribution which depends on the sample temperature, the

applied field B0 and the gyromagnetic ratio γ specific for a proton. If we

fix temperature to, for example, room temperature, an increase in B0 will

add to spin excess (more nuclei in ground state). In NMR, the parallel and

anti-parallel spins cancel out, on average, and only an excess of nuclei in

the ground state is detectable.

A basic NMR experiment consists of three main phases: initial static

magnetisation, radio frequency (RF) pulse and spin relaxation. Firstly, a

sample at room temperature is placed in an external homogeneous magnetic

field B0. This will make the protons arrange themselves in two split energy

states. The spins will either be oriented parallel (ground state) to B0 or

will be oriented anti-parallel (excited state) to B0. The nuclei precession is

about the axis of B0, and its frequency is called Larmor frequency.
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In the next step, the sample is hit with an electromagnetic pulse of a

broad range of radio frequencies (RF). This event will equalise the number

of protons in each energy state. The aggregate magnetisation vector m is a

sum of all the parallel and anti-parallel spins. To get m in a 90° plane we

need to apply RF pulse for the right amount of time, usually very short,

e.g. 1ms. Because the RT pulse aims to force the spins to precess in a 90°

plane to the B0 it is called 90° pulse.

After the RF pulse, there is a relaxation period in which the protons go

back to the equilibrium arrangement. There will be slightly more protons in

the ground state, in order of one in 105 at room temperature. If populations

were equal, we would describe the system as saturated or demagnetised,

and no NMR signal would be observed5. Those ”returning” to equilibrium

protons will emit energy in the form of photons of a characteristic frequency

(known as resonances) which can be detected by the spectrometer with

a coil which detects induced voltage from the procession of spins in the

ground state. This voltage gives a free induction decay (FID) signal, see

Figure 1.1.

The human eye is not a good instrument to see the frequencies in FID

plot. Fourier transform is used to convert the signal from the time domain

to the frequency domain. The result can be plotted as a spectrum, i.e.

frequencies are on the x-axis, and intensities are on the y-axis. In NMR

x-axis is a chemical shift with zero chosen arbitrarily, usually a frequency

of a special internal standard molecule. The intensities are proportional

to the number of protons in particular chemical environments, but the

values on the y-axis are not of any natural meaning as the area under the

curve is proportional to a number of nuclei at each frequency. Also, NMR
5We could think of all parallel and all anti-parallel spins cancelling out each other.
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Figure 1.1: Illustration of a free induction decay transform from the time domain
to frequency domain. On the left, there are FID from two hypothetical nuclei A
and B. Nucleus A has slightly lower frequency then nucleus B. In this case, the
frequencies are exaggerated for illustration purposes, real FIDs are not readable
by the human eye. The middle plot illustrates combined, total FID from all
nuclei in a sample. The right panel illustrates the signal converted from the time
domain to the frequency domain. The transformation is obtained via Fourier
transform. FID is a complex number with real and imaginary parts; here we plot
only a real part. We can observe a higher frequency from nucleus B on the left
and lower frequency A on the right. Figure adapted from Pearce (2010)

spectra are often normalised therefore y-values will bear different meaning

depending on the preprocessing.

With time the procession induced by 90° pulse dies away, and the nuclei

come to their equilibrium. This process is called relaxation. There are

two types of relaxation: T1 and T2 relaxation. The former is known as

spin-lattice relaxation and it is related to nuclei returning to the equilibrium

state; T1 affects the height of a peak. The latter is known as spin-spin

relaxation; it is a random process in which the exchange of energy between

spins causes loss of magnetisation; T2 affects the width of a signal.

Chemical shift is essential to NMR applications in metabolomics and

chemistry in general. A proton bonded to another nucleus will have electrons

around it from its chemical bond. Those electrons will induce electronic

currents leading to a tiny local magnetic field. This local field shields or
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de-shields the proton from external field B0. This effect will change the

resonance frequency of such proton to be slightly different from just a bare

proton, and it may be higher or lower depending on the electron density

resulting from a bond configuration. The phenomenon of shifting of the

resonance frequency is called chemical shifts6.

Chemical shift gives information about the chemical structure, and

it is a key to the identification of molecules. All protons from identical

environments are chemically equivalent. Their specific bonding configuration

makes them indistinguishable from each other; for example, it would be

impossible to number them in any meaningful way. All protons from a

particular environment will give one NMR signal. In practice, chemical

shifts are frequently considered as empirical parameters. NMR experts can

recognise a “fingerprint” of a molecule just by looking at a spectrum and

identify it without analysing why a chemical shift occurred precisely in this

unique way.

Figure 1.2: NMR spectrum and associated terms. It is important to note that
the NMR spectrum is labelled from right to left (i.e. zero is on the right). Terms
downfield and upfield come from the physics interpretation of NMR. Figure
adapted from Pearce (2010)

NMR spectrum x-axis represents resonance frequencies of protons present
6Also called nuclear shielding because the electrons shield B0.
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in the sample. Those depend on the chemical environment of each proton.

NMR apparatus has a characteristic frequency at which it operates and with

it an associated strength of B0; both parameters affect the horizontal axis

scale. The x-axis could be labelled with the frequencies expressed in Hz, but

this would be impractical. The chemical shifts are very small compared to

the characteristic frequency of the apparatus so comparison of the spectra

from machines operating at different frequencies would be inconvenient.

A remedy for these issues is to express x-axis as δ, a dimensionless scalar

which traditionally, is labelled in ppm (parts per million). δ quantifies the

extent of nuclear shielding. To emphasise that 1H proton is used as the

NMR isotope, we sometimes write the x-axis label as δ(1H).

Chemical shift scale is always expressed in relation to a reference molecule

and adjusted to zero at a resonance frequency of the reference molecule.

Two molecules, tetramethylsilane (TMS) and 3-(Trimethylsilyl)propanoic

acid (TSP) are popular choices for 1H NMR. Other nuclei will have different

standards. What makes TMS and TSP good choices for a zero point is

that the protons on both molecules are more shielded than in many organic

compounds. The more shielding, the lower the frequency (see fig. 1.2) so

TMS and TSP show far on the right of the δ scale. When reading NMR

spectra, it is worth noting what reference molecule was used as this will

affect the values of δ, but fortunately only slightly as TMS and TSP are

related therefore they are close on the chemical shift scale.

The formula for chemical shift is δ = 106(
ν0−νref
νref

) where ν0 is a frequency

of molecule of interest and νref is a frequency of reference molecule. For

example, let us consider two compounds TMS and benzene. If we use

300MHz spectrometer, a proton on benzene absorbs a frequency of 2181Hz
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more than the protons on TMS. If we use 60MHz spectrometer then the

protons on benzene absorb 436Hz more than the protons on TMS. Let us

now convert both benzene frequencies to ppm scale: δ = 106 2181Hz
300×106Hz

≈

106 436Hz
60×106Hz

≈ 7.27

Figure 1.3: Spin-spin coupling principle. On the left, a bare proton signal. The
proton is not bound, so it will give a single line. On the right, a proton which is
bound to 13C. The signal from the bound proton will be split into two lines, a
doublet. The line split because the resonance frequency of the proton depends on
the spin direction of the bound carbon nuclei. If the carbon spin is anti-parallel,
∆E will increase, and the signal will move to the left. For the proton bound to
the carbon with parallel spin, the ∆E will decrease, and the signal will move to
the right. Figure inspired by Hore (2015)

Lines in a spectrum always come from the energy level transitions, see

Figure 1.3. Let us consider the formate ion H13COO– , where the proton

from formic acid H13COOH is dissociated in aqueous solution. Energy level

splitting for HC↓ (C↓ means 13C carbon in spin configuration anti-parallel

to B0) is larger than splitting for bare proton H. When 13C is in parallel

spin configuration HC↑ energy level splitting is smaller than for 1H alone.

Higher energy ∆E moves the NMR line to the left (higher frequency), lower

∆E moves NMR line to the right (lower frequency). In the formate ion

H13COO– , this results in the 1H NMR line from its single proton to split

into a doublet.

There is a rule of thumb for determining the type of multiplet arising

from a particular chemical environment of a given proton. This rule is

called n+1, and it refers to a number of protons involved in a neighbouring
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environment. For example, let us consider ethanol. CH2 is split into

quadruplet because it has a neighbour CH3; CH3 is split into a triplet

because its neighbour is CH2.

The area under the curve (AUC) is proportional to the number of protons

in the signal. The amplitudes of the signal or more accurately integrals

are proportional to the number of nuclei going back to the equilibrium

(after an RF pulse is applied) which in turn is proportional to the total

number of molecules of that type. AUC remain constant as the number

of molecules in the sample did not change. If AUC is fixed, a broader line

forces a smaller amplitude. It is worth remembering that the signal gets

closer to the background noise when the amplitude becomes smaller. This

makes the overall spectrum look much noisier.

The chemical exchange is another important phenomenon which affects

the pattern of NMR peaks. There are two regimes: slow exchange and

fast exchange. Free induction decay (FID) happens on a certain timescale

which is quite slow, e.g. one second. A fast exchange takes place when the

exchange rate (molecules per second) is orders of magnitude faster than the

FID time. A spectrometer will register only an average signal in the fast

exchange regime. In contrast, we observe slow exchange when reaction time

is below an FID time scale, e.g. 10−1 (1/10 per second, i.e. 1 molecule per

10 seconds). In this regime, two distinct populations of molecules in two

different states are present. Over the FID time scale, these two populations

will give two distinct signals. In the fast exchange, in the timescale of FID,

the spectrometer cannot distinguish between the two populations as the

reaction is too fast. This results in observing a single, average signal.

NMR is often praised for its advantages such as minimal sample prepara-

21



CHAPTER 1. INTRODUCTION

tion, the non-destructive nature of the NMR experiment, and the ability to

analyse live samples. However, there are some drawbacks to the technique.

Firstly, there is the low sensitivity of NMR which is caused by the way that

NMR works; the apparatus can only detect the excess of nuclei in the energy

ground state. This very small difference in populations of the two energy

states (in the order of one per hundred thousand at room temperature)

makes NMR a low sensitive method. A solution to overcome this limitation

is the use of concentrated samples. Another approach is to repeat the

experiment many times in order to achieve the required signal and sufficient

information.

Another limitation of 1-dimensional 1H NMR is that the spectra can have

heavily overlapping signals thereby making the identification of molecules

very challenging or even impossible. This problem is particularly pronounced

in some biological samples where large molecules are present, giving vastly

complicated spectra with significant overlap between peaks. Those areas of

overlap make it hard to identify particular peaks, whereas smaller peaks

may be overshadowed entirely and lost to the researcher.

1.3 Probabilistic and Latent variable models

Latent variable models are statistical models in which we assume that the

observed data arises from the interplay of unobserved and latent variables.

In the context of 1H NMR metabolomics, we observe spectra which are

a manifestation of metabolites present in a sample. We know that those

metabolites and their concentration are not random but a result of biological

processes of an organism.

Probabilistic modelling is a framework to express uncertainty about
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models in a language of probability theory. Bayesian statistics methods are

used to infer latent variables. The cornerstone of Bayesian statistics is the

Bayes rule, which in the context of modelling, can be written as:

p(model|data) = p(data|model)× p(model)

p(data)

The interpretation of the above equation is that the probability of the

model given observed data (posterior probability) is equal to the likelihood of

the data given the model, times a prior probability of the model normalised

by the probability of data (also called evidence). The prior probability of

the model is our current belief that the model is correct. Upon observing

new data, we calculate new posterior probability using previous posterior as

a prior. In practice, the model usually refers to the parameters of the model

which are frequently expressed as probabilities. It is, of course, possible

to come up with an entirely new model but this would leave the existing

model unexplored.

As a concrete example let us consider modelling of a collection of text

documents where each document exhibits a number of themes or topics.

A part of a model is a collection of parameters which describe how much

each document exhibits each topic. For each document, we have a vector

of probabilities across topics which sums up to one. Another part of the

model is a collection of topics; each topic can be represented as a vector of

probabilities across the whole vocabulary (again, probabilities sum up to

one). In this example, the data point is a text document consisting of a list

of words. Such a list can be represented as a vector of the counts of all the

document’s words across the whole vocabulary existing in all documents. As

a very first step, we assign some, perhaps using our intuition, probabilities
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for our model – we define the prior p(model). Next, we calculate how

likely is our document given our model p(data|model) and how likely is

our document under all the possible7 model’s parameters p(data). Now

we have all the components to calculate the posterior probability of the

model. We repeat this process for all documents using the posterior from

the previous step as the prior in the current step. Now we have the posterior

after processing all the documents. To obtain a different (and possibly

better) model, we change the parameters of the model and repeat the whole

procedure. This process is repeated multiple times, each time giving us the

posterior p(model|data) for the specific values of the model’s parameters.

Finally, we choose the best model using a criterion of our choice, e.g.

maximum a posteriori (MAP).

The above example is a very high-level description of Bayesian inference

with its guiding principle that the models which are not consistent with

data lose credibility whilst the models consistent with data gain credibility.

1.3.1 Latent Dirichlet Allocation

Topic modelling is a case of applying hierarchical Bayesian models (Jordan

et al., 1999; Wainwright and Jordan, 2008) to grouped data. In this context,

grouped data means a collection, for example, a collection of text documents,

images, or NMR spectra. Latent Dirichlet Allocation (LDA) is the simplest

topic model.

LDA is also a probabilistic model. Probabilistic modelling assumes

the existence of a generative process which shapes our data. The process
7There can be exponentially many possible model’s parameters. In practice, the

marginal probability p(data) might not be possible to calculate exactly, but many methods
of approximation exist.
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is probabilistic and random; it includes hidden (latent) variables. The

latent variables drive the underlying pattern of the data. For example, in

text documents, the hidden variables reflect the thematic structure of the

collection. Our goal is to find this hidden structure. The way of inferring

the latent variables is by using posterior probability. Probabilistic modelling

is a standard tool in scientific data analysis. A recent review of the field is

given by Ghahramani (2015).

It is natural to see that the topics exist outside of the document collection

(also known as the corpus). Per-corpus topic distribution over the vocabulary

remains constant, but per-document topic distribution varies from one

document to another. A document exhibits multiple topics, and a topic

can be used in many documents thus LDA is a mixed membership model

(Erosheva et al., 2004). This is different from mixture models where one

document can only be associated with one topic, in this case, called a

component or a cluster. Mixed membership models are particularly suitable

for grouped data such as a collection of documents or a collection of NMR

spectra.

The LDA model was introduced by Blei et al. (2003), but a more

accessible presentation can be found in the author’s later review paper (Blei,

2012). The original context for LDA was natural language processing (NLP)

for modelling text document collections. Topics in text documents can be

intuitively understood as they answer the question of what the documents

are about. For example, a document can be about metabolomics and data

analysis, while another document is about genetics and evolution. Despite

NLP origins, LDA is a general purpose probabilistic model, i.e. there are no

underlying assumptions which would bind LDA exclusively to NLP. LDA
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and its variants can be and have been, applied to all kinds of data, for

example, to toxicogenomics data (Chung et al., 2015; Lee et al., 2016),

bioinformatics (Liu et al., 2016), healthcare data (Lu et al., 2016), image

classification and annotation (Chong et al., 2009) to name just a few. A

thorough and recent review by Boyd-Graber et al. (2017) provides even

more examples.

Previous to LDA, Pritchard et al. (2000) constructed a similar model

for populations genetics, but their paper did not present the model as a

universal method. In the paper, individuals are assigned to populations

depending on their genotypes, but they could be members of multiple

populations depending on their genetic heredity. Credit must be given to

the LDA authors (Blei, Ng and Jordan) for their ability to recognise the

broad appeal of topic modelling and, eventually, for establishing a sizeable

niche around LDA in a broader field of probabilistic models and machine

learning.

Figure 1.4 shows an LDA model in three perspectives, on top we have

an intuitive view of a generative process for LDA, the middle represents a

view from a data representation point of view (as matrices), and lastly at

the bottom there is a plate notation for LDA which is a standard notation

describing probabilistic graphical models (PGM).

Generative process for LDA

The generative process for LDA is a random process which serves as an

assumption for the LDA model. For simplicity, let us illustrate the mechanics

of generative LDA using context from the original paper by Blei et al. (2003)

describing a collection of text documents which are treated as a sequence

26



CHAPTER 1. INTRODUCTION

of words. In topic modelling, the order of words in the documents is not

deemed necessary. What is important is only what words are present and

how often they occur in a given document. This approach is called a bag-

of-words model. This is a simplification, but we do not attempt to generate

human-readable text documents. Bag-of-words is an assumption which

allows creating a simple model with the potential for successful Bayesian

inference. Topics encapsulate co-occurring words in documents. The order

of words is not essential to detect the co-occurrence.

The LDA generative process is a random process which is visually

represented at the top part of Figure 1.4. The process can be defined in the

form of an algorithm which is represented as a flowchart in Figure 1.5. We

assume that an observed text document was created via the mechanics of

this process. We further assume that each document will contain a fixed

number of words N .

K topics (K=3 in Figure 1.4) are defined outside of the document

collection. Figure 1.4 illustrates the process with only one document but to

generate a collection of D documents, it would be repeated D times with the

same K topics. Each topic is a list of all vocabulary words with probabilities

differentiating between topics. Formally, a topic is a probability distribution

βk over the fixed vocabulary of V words. The vocabulary contains all

possible words to be used in all generated documents. In topic modelling

literature, topics are usually depicted as incomplete lists of words showing

only most probable words. When we think about simulation, defining topics

would be an initial step. Row vectors βk are stacked vertically to form the

matrix β of size K × V (rightmost in the middle of Figure 1.4).

The proportions of topics per document θd (rows of the leftmost matrix
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Figure 1.4: LDA model. The text from Muncey et al. (2010)

in the middle of Figure 1.4) drive the selection of topics for words in the said

document. We use a Dirichlet distribution with a parameter α to obtainθd

for each document8. The histogram on the top left in Figure 1.4 represents

θd, which is a K-vector. There are D such vectors, and they are stored as

rows in matrix θ. The different proportions of topic per each generated
8Sometimes Dirichlet distribution is referred to as distribution over distributions.
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document is a distinguishing feature of the LDA model.

Once per-document topic distribution θd is determined we use it to

generate topic indicators for words. In Figure 1.4, for simplicity, we show

only a dozen of topic indicators which are colour coded with a topic colour.

In reality, there are N topic indicators, each per every word of a document.

To obtain zn we sample from a categorical distribution with probabilities

θd. Sampling from the categorical distribution with probabilities θd can be

compared to rolling K-sided die which is not fair, distribution θd defines the

probability of each side. Each zn is an integer between one and K indicating

a topic for each word in a document.

Topic indicator zn gives a row index in matrix β. Selecting k-th row

gives us βk which is a probability distribution itself. Sampling from this

distribution yields wn which is an integer between one and V indicating

the n-th word in a document. The generative process for LDA can be

expressed more formally as an algorithm. Figure 1.5 shows a flowchart for

this algorithm.

Graphical models

The goal of the LDA model is to discover topics in a collection of data. The

data is observed but topic structure, θ and β are hidden. We want to infer

topic structure from the observed data using a computational procedure. If

we look at the generative process for LDA as a way of ”constructing” the

data, the inference is akin to reversing this process. We want to know the

topic structure, θ and β which plausibly could generate the observed data.

Probabilistic modelling framework allows us to express the generative

process for LDA as a joint probability of all variables, both observed and
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Inputs: 
- topic matrix β
- per-document topic prior α 
- number of documents D
- number of words per doc N

Let document 
counter start with 1

d=1

Is d less or equal D?
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matrix w (dim: D x N)

NO

Choose distribution 
of topics for current 

document by 
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θd ~ Dir(α)

YES

Let word 
counter start 
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Is n less or equal N?
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Increase d by 1

Choose topic 
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YES

Let k=zd,n 
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row in matrix 
β to obtain βk
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from topic k 
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wd,n ~ Cat(βk)

 wd,n ∊ {1..V}

Increase n by 1

Figure 1.5: Generative process for LDA flowchart

hidden. The joint probability allows us to compute the posterior distribution

which is a conditional probability of hidden variables given the observed

data. The remainder of this section will give details about how to obtain

the joint probability in probabilistic graphical models (PGM) and LDA in

particular.

The LDA model can be described using plate notation which is a

standard method of describing PGM. Joint distribution of random variables

is represented as a directed graph where nodes represent random variables

and edges represent conditions. Simple cases for two and three variables are
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shown in Figure 1.6. A random variable at the end of an arrow is conditioned

on a random variable at the start of an arrow. Plate notation helps to

describe how joint probability factors out to a product of conditionals

probabilities using the probability product rule also called the general

product rule or chain rule (not to be confused with chain rule from calculus).

I II III

b

a a

b c

c b a

Figure 1.6: Simple graphical models. Nodes represent random variables, edges
represent conditioning. A random variable at the end of an arrow is conditioned
on a random variable at the start of an arrow. Joint probability of a model is
given by the product rule: (I) p(a, b) = p(a|b)p(b) (II) p(a, b, c) = p(a|b, c)p(b)p(c)
(III) p(a, b, c) = p(a|b)p(b|c)p(c)

Figure 1.7 illustrates the key concept of plate notation. A plate around

a random variable is a shorthand for repetition. For example, in a document

with N words, instead of repeating an for each word, we can put a plate

around variable a. Plate notation makes it possible to express models with

a large number of random variables concisely. The joint probability of the

model in Figure 1.7 is given by Equation 1.1. Note how plate notation

naturally translates into a product of conditional probabilities.

p(a1, a2, ..., aN−1, aN , b) = p(a1|z)p(a2|z)...p(aN−1|z)p(aN |z)p(b)

= p(b)
N∏

n=1

p(an|b)
(1.1)

31



CHAPTER 1. INTRODUCTION

a

b

a1 a2 ... aN−1 aN

b

N

Figure 1.7: Plate notation on the left is a shorthand for a tree on the right. Joint
probability can be expressed as a product of p(b) and conditional probabilities of
an. The joint probability for this model is given by Equation 1.1

Figure 1.8 illustrates a more complex model, where a set of N random

variables is conditionally dependent on a random variable which itself

is repeated D times. An example of such an arrangement could be D

documents, each with N words. The two plate arrangement translates into

a double product of conditional probabilities:

p({a}, {b}) =
N∏

n=1

D∏
d=1

p(an,d|bd)p(bd) (1.2)

b a N
D

Figure 1.8: Plate notation with two plates, one embedded in another. Embedded
plates translate to a double product of conditional probabilities. The joint
probability for this model is given by equation 1.2

The LDA model in plate notation is presented in the bottom part of

Figure 1.4. The black circles are fixed values (not random variables), and

in this case they denote Dirichlet priors. They are hyper-parameters of the

model. α is the prior of per-document topics, η is the prior of per-corpus
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topic distribution over vocabulary. The grey circle means that words wd,n

are observable variables, i.e. the input data. The white circles are the

latent variables which are to be inferred. θd is the topic distribution for a

document d, βk is the word distribution for topic k and zd,n is the topic

indicator for the n-th word in document d. The joint probability for the

LDA model is:

p({β}, {θ}, {z}, {w}) =
K∏
k=1

p(βk|η)
D∏

d=1

p(θd|α)
N∏

n=1

p(zn,d|θd)p(wd,n|zd,n, βzd,n)

(1.3)

Approximate posterior inference

The first step in inferring the topic structure from a document collection is

computing posterior distribution for the LDA model:

p({β}, {θ}, {z}|{w}) = p({β}, {θ}, {z}, {w})
p({w})

(1.4)

The numerator in Equation 1.4 is a joint probability as given by Equation

1.3. The denominator, p({w}), is the marginal probability of the data (also

known as evidence) which is the probability of observing all the documents

in our collection under all potential topic models. All potential topic models

give rise to a large space which makes the computation of the marginal

probability intractable, i.e. in practice we can not calculate the evidence

p({w}). In consequence, it is not possible to calculate an exact posterior

probability. This problem is not unique to LDA; it affects most of the

Bayesian models. However, we are rarely interested in calculating the

posterior of just one model. Usually we want to compare models in order
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to select the one which most likely represents the data. When comparing

two models the evidence cancels out because p({w}) does not depend on a

model so its value is the same in both cases. We still need to calculate the

joint probability for each model. Here the idea of Bayesian approximation

proves useful.

The approximation of the posterior is based on an idea of finding a

probability distribution which is similar to the true posterior. The two

most common types of approximation methods applied to the inference in

LDA are (a) sampling-based algorithms such as Gibbs sampling (Casella

and George, 1992; Resnik and Hardisty, 2010) and (b) variational methods

(Jordan et al., 1999; Wainwright and Jordan, 2008). In this thesis, we

used only Gibbs sampler which is a Markov chain Monte Carlo algorithm

(MCMC, Gilks et al. (1996)).

Gibbs sampling is based on an idea of construction of a Markov chain

(Neal, 1993) whose stationary distribution is an approximation of the pos-

terior of interest. The Markov chain is defined as a sequence of random

variables; each is depending only on its predecessor. These random variables

represent latent topic structure for our data. Steyvers and Griffiths (2007)

provide a readable description of a collapsed Gibbs sampler (CGS) for

LDA. Further details can be found in Griffiths and Steyvers (2004) and

Griffiths (2002). Derivation of CGS equations for LDA is a challenging task

for non-statisticians; full derivations are provided in Carpenter (2010) and

Heinrich (2008). A tutorial on the practical implementation of CGS for

LDA is given by Darling (2011).
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Figure 1.9: Topic models and NMR

LDA and NMR

Mapping of terminology between topic modelling and NMR is given in Table

1.1 and Figure 1.9. The basic idea is that a collection of NMR spectra is

an analogue to a collection of documents. Each spectrum consists of peaks

whose amplitude and location come from metabolites present in a sample.

A metabolite here means a set of NMR peaks; it is a counterpart of a word

in a text document. If a word is present multiple times in a text document,

we would state its count. In the NMR domain this is analogous to a level

of a metabolite.

We must avoid the word concentration because in chemistry its meaning

is specific; it is an amount of a compound in a total volume of a mixture, and

it is always expressed in some units. In this thesis, we use the term relative

concentration which is a unit-less number expressing a virtual amount of

a compound in a simulated NMR spectrum. Relative concentrations only

make sense compared to each other. For example, let us assume that we
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simulate using the generative process for LDA, an NMR spectrum with only

two compounds: X and Y. In a text document world, we would say that we

generated a document of the length of 1000. There are 200 Xs and 800 Ys.

In the NMR world, we would state that the relative concentrations between

compounds X and Y were 200 and 800, meaning that there is four times

more Y than X.

There is a potential ambiguity when we talk about words in documents

and metabolites in NMR. A phrase number of words in a document means

document length in words, understanding that some words will be repeated

many times. In the NMR spectrum, a number of metabolites means how

many different molecules (regardless of their levels) are there. Therefore,

document length does not have a good translation to the NMR domain.

When this ambiguity occurs in this thesis, we use the term word even if

we talk about NMR spectra. For example, ”we simulate 1000 words NMR

spectrum” means the total relative concentration of all metabolites will sum

up to 1000.

The topics are a thematic pattern running within a set of documents.

In NMR metabolomics, the underlying biological process in the organism

determines a composition of metabolites in a sample which is investigated.

A biological process is an analogue of a topic. As with topic in text docu-

ments, a biological topic is a list of all compounds of interest with assigned

probabilities. In this thesis, topics in NMR are sets of metabolites (often

identified with KEGG IDs) and assigned probabilities. The metabolites

associated with a biological process represented by a topic have high proba-

bilities while remaining compounds have low probabilities (zero or close to

zero).
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The generative model for LDA and the bag-of-words model assumption

would not produce human-readable text documents. However, in the NMR

domain, the words are entries for metabolites from HMDB (Wishart et al.,

2018), including peaks’ amplitude, location and number of NMR observable

protons. This allows us to place simulated peaks in the correct places and

with plausible amplitudes thus resulting in realistic looking spectra. This

makes using LDA an excellent choice for simulating NMR spectra.

Table 1.1: Mapping of terminology used in text documents and in NMR
metabolomics

Text documents NMR metabolomics
a word a metabolite e.g. Glucose

a word count a metabolite’s relative concentration or level
a document an NMR spectrum

a length of a document total concentration of all metabolites in a sample
a topic a biological condition, process or set of metabolites

a vocabulary a list of all metabolites of interest

1.4 Aims and objectives

1H NMR data contains a wealth of information about the metabolic state

of an organism. However, unveiling this information is always a challenge.

Development and applications of novel statistical methods to find patterns

in 1H NMR data is an ongoing effort which aims at providing better tools

for the metabolomics research community. In this thesis, we propose and

evaluate applications of generative probabilistic models for information

recovery in 1H NMR metabolomics. We focus on a very successful, in

other domains, but novel for 1H NMR metabolomics, the Latent Dirichlet

Allocation model. Our overall aim is to assess the applicability of LDA to

analyse 1H NMR metabolomics data. In particular, we set out to investigate
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the following:

1. Can the generative process for LDA be used as a basis to simulate 1H

NMR metabolomics data?

2. Can LDA as an unsupervised method recover interesting topics to

drive biological discovery?

3. Can LDA as a supervised method predict response variables associated

with clinical outcome and highlight topics relevant to the response

variables?

The remainder of this thesis is structured as follows.

Chapter 2 focuses on examining the generative process for LDA as

a method for simulating 1H NMR data. The goal is to show that the

generative process for LDA can produce realistic looking spectra. This

gives a foundation for using LDA to infer topics from existing NMR data.

Simulating NMR data is also useful on its own. We often need simulated

spectra with known parameters, something which is not always feasible

using data from NMR experiments, to test and evaluate statistical models.

Simulating with LDA adds to the existing toolkit (for example Muncey

et al. (2010)) available to metabolomics researchers.

In Chapter 3 we turn to use the LDA model for inference of topics in

synthetic and real NMR data sets. The inference is in unsupervised learning

mode where no metadata about samples (spectra) is fed into the model; the

only input is a matrix of spectra. We are able to evaluate the results as we

know the ground truth for the simulated data and have prior publications

with key results for the real data. In both cases, LDA was successful in

recovering interesting topics which were consistent with the ground truth

and with previous results.

38



CHAPTER 1. INTRODUCTION

Chapter 4 seeks to investigate applications of topic models in supervised

learning. We use a variant of LDA which caters for modelling a response

variable with each spectrum, called SLDA. We also use topics (components)

from LDA, SLDA and PCA as a latent representation of NMR data and

combine those with ElasticNet which is a linear regression model. We apply

all those methods to a data set which comes from The Multi-Ethnic Study

of Atherosclerosis (MESA) study. In this data set each spectrum is paired

with multiple clinical variables such as BMI, glucose levels and cholesterol

levels. The goal of the modelling was to examine if inferred topics can be

informative about clinical outcomes. We successfully showed that the topics

were indicative of glucose levels and HDL cholesterol levels.
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Chapter 2

Simulation of 1H NMR

metabolomic spectra using

Latent Dirichlet Allocation

2.1 Introduction

NMR spectra of bio-fluids are complex because of a large number of com-

pounds in a sample, and the resonances overlap, noise and variation between

samples (e.g. peak shifts). To unravel biologically meaningful information,

advanced statistical methods and machine learning algorithms must be

employed. Such an approach has a chance to make sense of large amounts

of data coming from high-throughput experiments. Development of new

methods requires training and testing data of specific, pre-programmed

characteristics. Using data from NMR experiments for the development

of new methods is problematic because of the untargeted (NMR detects

all metabolites), nature of NMR. Artificial mixtures of pure compounds

could be prepared, e.g. Takis et al. (2017), and used as samples to produce
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“clean” data, however, such an approach is time-consuming and expensive.

A solution to this problem is to simulate NMR spectra. Such simulation

can be implemented as a software tool which allows specifying a list of

metabolites and their concentrations. The fundamental physics of NMR

(see Section 1.2) makes it easy to simulate multi-compound spectra as a

linear combination of spectra of pure compounds. This will ensure that

peaks are present in correct positions, and where overlapping they will add

up forming the right shape, and their amplitudes will be guided by the

parameters of the simulation.

Another point we would like to emphasise is that our simulations are not

meant to compete with other simulators like MetAssimulo by Muncey et al.

(2010). We do not want to generate the most realistic looking spectrum.

We aim to simulate spectra which can be used for verification of machine

learning algorithms and assessment of inference in probabilistic models. We

do not add features which would add more realism to the simulated spectra

such as peak shifts or noise. Such phenomena are deemed unwanted, and

data preprocessing steps are taken to remove them. In the next chapter,

we propose LDA as machinery to infer topics from NMR spectra. We need

means for testing those tasks by providing data of known characteristics.

We hope that the models we propose can infer information embedded in

the data, and thereby enables us to move on to other types of data, e.g.

experimental data from metabolomics studies.

Earlier we defined that the topics are distributions over metabolites, i.e.

each metabolite will have assigned some probability. Each topic has the

same list of metabolites, but the probabilities will be different. In practice,

we use only top metabolites from a topic; this allows us to treat topics as
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sets of metabolites, which simplifies describing, comparing and reasoning

about topics. For example, in a simulation with 40 metabolites we defined

four topics, and we assign the first ten metabolites to the first topic. What

it means in technical terms is that the first topic is a vector of length 40

(all metabolites present in the simulation), but only the first ten get non

zero probabilities, say 0.1, the rest are assigned zero probabilities.

Topics can be thought of as themes running across NMR samples.

We could imagine topics representing metabolites characteristic for usual

experimental groups, i.e. treatment topic and control topic or disease topic

and healthy topic. It is important to realise that those topics contain all

the metabolites of interest. The topics differ in probabilities assigned to

the metabolites. The topics could also broadly be related to biological

processes. For example, a biological process could be associated with a

metabolic pathway or some of their combination. The interpretation of

topics is very flexible. We can talk about very broad topics, e.g. a normal

urine topic which contains metabolites present in normal human urine or

a very narrow topic, the one consisting of a single metabolite. If we could

discover topics in existing data sets, it would help to explore patterns in

those data sets and perhaps be used as a driver for further analysis. This

will be addressed in the two other chapters which build on the tools and

simulated data developed here.

In this chapter, we develop a simulation method for NMR spectra based

on the generative process for LDA. We describe the generative process

for LDA and how it maps into NMR spectroscopy. We give details of

how spectra are assembled from pure compounds spectra and how those

are simulated using Lorentzian with parameters retrieved from HMDB.
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Finally, we investigate simulated spectra with visualisations and Principal

Component Analysis (PCA). We also simulate complex spectra based on 40

normal human urine metabolites and compare this to a real spectrum from

the INTERMAP project. We conclude that our method gives good results.

We can simulate groups of spectra exhibiting different topics and detect

those groups with PCA. Comparison of spectra simulated with normal

human urine metabolites to the real NMR spectra shows that our method

can produce realistically looking NMR spectra.

2.2 Data sets

2.2.1 HMDB data

Human Metabolome Database (HMDB, Wishart et al. (2018)) was our pri-

mary source of information about metabolites and their properties. We also

used human urine standard concentrations data included in the MetAssimulo

package (Muncey et al., 2010) which were in turn derived from HMDB. We

build a local database with the following information about each metabolite:

KEGG ID, InChIKey, standard name, list of peaks (each peak data is a pair:

ppm position and amplitude), number of protons, standard concentration.

Although HMDB is already limited to human metabolism, we add a filter in

our internal metabolites database to include only molecules found in any H.

sapiens metabolic pathways in KEGG database (Kanehisa and Goto, 2000).

KEGG IDs are well-established identifiers for small molecules present

in metabolic pathways. KEGG IDs are frequently present in HMDB, and

we use them when they are there. If they are absent, we use Chemical

Translation Service (Wohlgemuth et al., 2010) developed by The Fiehn
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laboratory at UC Davis to translate between InChIKey and KEGG ID. We

do not import molecules for which we could not establish KEGG ID.

Peak data are read from XML files provided by HMDB. For each

metabolite, there will usually be multiple spectra present. We always

choose 1H NMR spectra from samples with the following conditions: the

temperature of a sample must be between 20C and 30C; the solvent must

be H2O and pH between 6.9 and 7.9. If there are no spectra within such

parameters, we do not include this molecule in our database. We chose

those because they are the conditions that relate to normal human urine

which is the primary example of bio-fluid which we simulate in this chapter.

Standard concentrations are sourced from HMDB and from MetAssimulo

which was also derived from HMDB and reviewed by an expert. Usually,

there are multiple entries per metabolite for its concentrations, and we

always manually select an entry for a normal healthy adult.

Another required parameter for 1H NMR simulations is the number of

NMR observable protons1 in a given metabolite. This information is not

readily accessible in HMDB. We manually inspect the multiplets tables

for a given molecule and sum up the values in Hs columns. This process

is not easy to automate because there are many syntactic or otherwise

obvious errors in the multiplets tables. We attempt to correct those errors

to the best of our ability. If reading from multiplet tables fails, we count

the protons manually from the chemical structure diagrams. We collected

standard concentrations and number of protons for 40 metabolites which

are characteristic for normal human urine and match with those available

in MetAssimulo.

Finally, for demonstration and visualisation purposes we use three virtual
1Some protons will be missing due to the aqueous solution of the sample.
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molecules. They are toy molecules designed to be easily spotted by eye in

the spectra plots. The first, Metabolite Singlet (A), consisting of a singlet

at 1.0 ppm. The second, Metabolite Doublet (B) consists only of a doublet

at 2.00 and 2.025 ppm. The third one, Metabolite Triplet (C), consists only

of a triplet at 3.00, 3.025 and 3.05 ppm. Metabolites B and C are purely for

visualisation purposes as they could not arise from a real NMR experiment

as triplets and doublets never exist on their own.

2.2.2 INTERMAP data

The INTERnational study of MAcro/micronutrients and Blood Pressure

(INTERMAP) study (Stamler et al., 2003; Holmes et al., 2008) is a source

of real NMR spectra that we use to compare against the simulated spectra

(see Section 2.4.3). The study was an epidemiologic study to investigate how

nutrition and which nutrients in particular influence blood pressure. There

were 4680 participants from 17 diverse population samples in China, Japan,

UK, and the USA. The study produced NMR data from urine samples from

each participant, and we obtained ∼4000 spectra.

2.3 Methods

2.3.1 Simulating NMR spectra

The basic idea is to combine the spectra of pure compounds. Figure 2.1

illustrates the process. We used a subset of Human Metabolome Database

(HMDB, Wishart et al. (2018)) to obtain information on pure compounds,

in particular, peak positions (chemical shifts) and amplitudes, and the

number of NMR detectable protons. Those are the critical parameters
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Repeat for every metabolite

Inputs: 
- topic matrix β
- per-document topic prior α 
- number of words per spectrum N
- list of metabolites V
- number of ppm bins

Generative process 
for LDA

(see section 1.3)

Simulated 
concentrations 

vector of length V
(how much of each 

metabolite)

Simulation of a single spectrum

Iterate list of 
metabolites V
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function to 
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spectrum for 
each peak
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the peaks 
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single 
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Normalise 
metabolite 

spectrum and 
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spectra of all 

metabolites to 
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Output: 
Final spectrum (1D 
vector of length number 
of ppm bins)

Figure 2.1: A spectrum simulation flowchart

for simulating an NMR spectrum of a pure compound. Using such an

approach, the multiplet information, e.g. J-couplings, is not required as

spectra simulated with Lorentzian function produce equivalent output at

all peak locations. An NMR peak is modelled using a Lorentzian function

(see details below). For each molecule, spectra representing its peaks are

modelled and concatenated. The result is a spectrum with one or more

peaks representing a metabolite. Each spectrum is normalised by dividing

it by the area under the curve. Finally, each spectrum is multiplied by the

number of protons in the molecule. This ensures that pure compounds’

spectra are on the same relative scale and can be combined to create spectra

representing a mixture of metabolites.
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In a real NMR experiment, a sample will contain a particular mixture

of molecules. Their concentrations (usually measured in mM) are directly

reflected in the spectrum. In our simulations, we do not replicate real con-

centrations, only relative concentrations. The terms ”levels” and ”simulated

concentrations” are also used to distinguish the outcomes of simulations

from real chemical concentrations present in real samples. For example, a

simple two molecule simulation could produce metabolites levels of 100 and

200. Their relative concentration is 1:2. As we do not use any units, such

as mM, we only know that there was twice as much of the second molecule

compared to the first one. The relative concentrations are obtained from

a generative process which is based on a random process underlying the

Latent Dirichlet Allocation(LDA) model. We construct a linear combination

of the pure compounds spectra using, as coefficients, relative concentrations

obtained from the LDA-based generative process described later in this

chapter.

Our model for a single peak is a Lorentzian function is given by the

equation:

L(x;x0, H, δ) =
H

1 + (x−x0

δ
)2

where x0 is a position of the centre of a peak, H is an amplitude (a

maximum at x0), and δ is half of the peak’s width at half of its intensity.

The use of Lorentzian function comes from the application of Fourier

transform to the signal from free induction decay (FID) which is in the time

domain. Fourier transform provides a spectrum in frequency domain. FID

is exponentially decaying, and Fourier transform of an exponential function

is a Lorentzian function, so it makes a good choice for a peak model.
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In our simulations, we always use a fixed value for the half-width

parameter δ which is 0.00166(6) ppm; it translates to 1Hz assuming 600MHz

spectrometer frequency i.e. 0.00166(6) × 600MHz ÷ 106 = 1Hz. The

intensity at x0 ± 1Hz will have half of the H.

To calculate a spectrum of a pure compound, we obtain all the parame-

ters of its peaks (location x0 and amplitude H) from HMDB and use them

to evaluate the Lorentzian function on the whole ppm range, usually from

0.0 to 10.0 ppm. All the spectra representing peaks of a metabolite are

added up to form its spectrum. The whole spectrum is normalised, by

using approximation via the trapezium rule, to have the area under the

curve equal to one. The last step in forming a single metabolite spectrum

is scaling it by the number of protons in the molecule to ensure that the

spectra can be later combined with some other metabolites’ spectra. For

example, if we had only two compounds in the sample, in equal proportions,

but one has twice as many protons as the other, the area under the peaks

from the former should be twice as large as the area under the peaks under

the latter. Let us represent a spectrum with just one peak as a vector L

(we use boldface for vectors). The length of such vector is the number of

spectral bins B. For example, let B = 20, 000 bins representing for values

between b0 = 0.0 ppm and b19,999 = 10.0 ppm form the bins vector B.

So now, each element of the vector L which we denote as Li is given by

Lorentzian function with parameters x0, H and δ:

Li(bi;x0, H, δ) =
H

1 + ( bi−x0

δ
)2

where bi are elements of B for i = 1 . . . B. We defined single peak

spectrum vector Li, we can formulate a spectrum of a metabolite (there
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will be M metabolites in final full spectrum) containing P peaks, Sn:

Sm =

∑P
i=1 Li∫ xmax

xmin

∑P
i=1 Li

× #protonsm

The integral in the denominator is approximated using the trapezium

rule.

Finally, we want to assemble a spectrum consisting of all the M metabo-

lites in a simulation. Each metabolite has a specific relative concentration.

To calculate the final full spectrum Sall consisting of M metabolites, a

linear combination of individual metabolites spectra Sm using relative

concentrations Cm as coefficients is applied:

Sall =
M∑

m=1

CmSm

Section 1.3.1 explained how the generative process for LDA works. We

apply this process to simulate the relative concentrations Cm which produce

plausible looking spectra. As an example, let us focus on metabolites related

to normal human urine, see Table 2.1. We arrange the 40 metabolites in

four topics, ten metabolites per topic. This means that all 40 metabolites

are present in each topic, but only ten will have non-zero probabilities i.e.

each topic has ten different metabolites with non-zero probabilities. We use

those topics, along with θ and β to generate documents where words are

metabolites, in particular, our words are KEGG IDs of the normal urine

metabolite set. These documents, or rather their word counts are used to

simulate NMR spectra by first constructing spectra for each metabolite in

the document, and then combining them, using word counts as relative

concentrations. We repeat the process if we want to construct a data set

of spectra sharing similar patterns. As mentioned before, each document-
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spectrum will be different but still exposing the same underlying topics.

Multiple data sets can be produced from the same topics setup by changing

θ for each batch of spectra. We will see this approach later in this chapter.

In summary, we simulate NMR spectra by a linear combination of pure

compounds. We use a subset of HMDB to obtain critical characteristics

of pure compound spectra, i.e. a list of peaks with their positions and

amplitudes and the number of protons in the metabolites. We use this

information to model pure compounds with the Lorentzian function. The

next step is to simulate the relative concentrations of each metabolite using

the LDA generative process with predefined topics, θ and β. This allows us

to obtain a random composition of metabolites but with a level of control

via topic proportions per document and topics as distributions over all

metabolites of interest. In the following section, we will present detailed

simulations, explore their properties and compare simulated spectra with

real NMR data.

2.4 Results

2.4.1 Single spectrum simulations

Ethanol is frequently used as a molecule to demonstrate the basics of NMR.

We start with the most straightforward simulation possible, just with one

metabolite, ethanol, no topics, no relative concentrations. The result is

shown in Figure 2.2. Ethanol in aqueous solution shows only two multiplets

in the NMR spectrum: a triplet and a quadruplet. There is no resonance

from the OH group at physiological pH as the proton from the OH group is

exchanged between the molecule and the solvent. At a more acidic pH, the
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Table 2.1: Normal, human urine metabolites. The list was derived from the
MetAssimulo package (Muncey et al., 2010) and used with permission from the
authors.

KEGG-ID Name Concentration (µM)

1 C00791 Creatinine 13200.00
2 C00047 L-Lysine 4220.40
3 C01586 Hippuric acid 2640.00
4 C00158 Citric acid 2022.00
5 C00062 L-Arginine 1130.50
6 C00037 Glycine 1029.00
7 C00135 L-Histidine 948.00
8 C00245 Taurine 834.24
9 C00160 Glycolic acid 752.00
10 C00058 Formic acid 583.00
11 C00064 L-Glutamine 485.80
12 C00186 L-Lactic acid 441.00
13 C00065 L-Serine 396.00
14 C00417 cis-Aconitic acid 393.00
15 C00082 L-Tyrosine 361.02
16 C00300 Creatine 343.00
17 C00581 Guanidoacetic acid 300.00
18 C00041 L-Alanine 290.00
19 C00031 D-Glucose 264.00
20 C01904 D-Arabitol 250.80
21 C00311 Isocitric acid 250.00
22 C00719 Betaine 245.52
23 C01004 Trigonelline 223.00
24 C00033 Acetic acid 200.00
25 C00042 Succinic acid 166.32
26 C01620 Threonic acid 132.00
27 C00642 p-Hydroxyphenylacetic acid 92.40
28 C02336 D-Fructose 85.00
29 C01026 Dimethylglycine 81.84
30 C02918 1-Methylnicotinamide 80.50
31 C00026 Oxoglutaric acid 77.00
32 C00984 D-Galactose 58.08
33 C00386 Carnosine 46.20
34 C00123 L-Leucine 39.60
35 C00149 L-Malic acid 34.32
36 C05984 2-Hydroxybutyric acid 32.27
37 C00073 L-Methionine 30.00
38 C00025 L-Glutamic acid 22.59
39 C00327 Citrulline 14.26
40 C00881 Deoxycytidine 8.58
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Figure 2.2: Ethanol in aqueous solution shows two multiplets in the NMR
spectrum: a triplet and a quadruplet
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Figure 2.3: Glycine and Acetic acid

Next, we show how a simulated spectrum is constructed in a slightly

more complicated scenario, so all moving parts are present, but the setup is

still simple enough to see what is going on by eye. Our setup consists of only

two metabolites: Glycine (KEGG ID C00037) and Acetic acid (KEGG ID

C00033). There are two topics: topic A, where Glycine has a probability 1.0,

and Acetic acid has a probability of 0.0 and topic B, where the probabilities

are reversed. For simplicity, in this experiment both topics were set to be

equally probable. Relative concentrations of 503 for Glycine and 497 for

Acetic acid (1000 in total) were obtained.
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We purposely chose these two metabolites because they have only one

resonance each. Glycine has a singlet at 3.54 ppm and Acetic acid a singlet

at 1.91 ppm. In NMR spectroscopy the concentration of a molecule is

proportional to the area under the curve (AUC) shown in its spectrum.

However, if a molecule has only one singlet resonance, then AUC can be

approximated by this singlet’s amplitude. In our simulated spectrum, the

Acetic acid’s amplitude is 46 and Glycine’s amplitude is 22.8. When we

take the number of protons in each molecule (Glycine 2 protons, Acetic acid

4 protons) into account, the ratio 503∗4
497∗2 is approximately equal to the ratio

of amplitudes 46
22.8

which is ∼ 2, as expected.

2.4.2 Multiple spectra simulations

So far we have reported only single spectra simulations. The concept of

topics, which is a key feature of LDA and its generative process, was not

playing any significant part. In this section, we set out to investigate how

topics can be used in multi-spectra simulations. We use Principal component

analysis (PCA), which is a standard tool in NMR metabolomics, to test if

it is possible to distinguish between sets of spectra generated with distinct

topic proportions.

Let us start with a simulation of 100 spectra using two topic system

(Figure 2.4). We use two virtual molecules which are useful for visualisations

as they are extremely easy to recognise. Molecule A contains only a single

at 1.0 ppm. Molecule B contains only a doublet at 2.0 ppm. There are two

topics: topic A where metabolite A has a probability of 1.0 and metabolite

B has a probability of 0.0; and topic B where the probabilities are reversed.

The distribution of topics for each spectrum is determined by sampling
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Figure 2.4: Two topic system simulation of 100 spectra. Topic A always selects a
singlet, while topic B always selects a doublet. Top panel: Every 10th spectrum
out of 100 simulated (spectra were sorted). Bottom panel: first and only PCA
loadings visualisation confirm that the topics are anti-correlated.

from the Dirichlet distribution with parameter α = [1, 1]. Setting a uniform

α will result in samples which are, on average, equally distributed, i.e. all

pairs are equally probable and they sum up to one thus no topic is dominant.

For each spectrum, we simulate 1000 words so the relative concentrations

will sum up to 1000. The probability of each metabolite is in this case

determined by the document level of topic distribution as the probabilities

of words within the topics are set to 1.0 for the topic metabolite, and zero
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for the other metabolite. To give a concrete example, let θ = [0.73, 0.27].

For the first (out of 1000) word, we sample a topic indicator zn, and it

comes as topic A with a probability of 0.73 and as topic B with a probability

of 0.27. We then choose topics according to those probabilities. If A is

chosen, then we select metabolite A with probability 1.0 because metabolite

B has zero probability in topic A. This leads to a significant variability

between simulated spectra, but the key observation is that if the relative

concentration of metabolite A goes up then the concentration of metabolite

B must go down (and vice versa). We could say that the occurrence of

metabolites A and B among 100 spectra is anti-correlated. An average

simulated concentration will be about the same as no topic was dominant.

Once all 100 spectra are simulated, we run a standard PCA on them. In

the case of the two topic system, the first principal component explains all

the variance as the system had only one degree of freedom. In the principal

component space, all 100 spectra lie on a straight line.

Figure 2.5 illustrates the results of an experiment with three simple

topics. Each topic consists of only one virtual metabolite with non zero

probability. The virtual metabolites are used only for demonstration and

visualisation purposes. The metabolites are called Singlet, Doublet and

Triplet. They consist of resonances suggested by their names, and they are

located at 1.0, 2.0 and 3.0 ppm. Three hundred spectra are simulated in

total, three batches of 100 spectra where one of the virtual metabolites is

dominant. As before, each spectrum has the topic proportions sampled from

the Dirichlet distribution with a specific parameter α. We use non-uniform

α, always heavily skewed towards the dominant topic for 100 spectra batch.

The first batch is simulated using αSinglet = [10, 1, 1], those spectra will
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Figure 2.5: Three topic PCA

mostly consist of the topic Singlet, which also assigned a probability of

1.0 to a virtual metabolite Singlet. The two other batches of spectra are

simulated with the analogous parameters, namely αDoublet = [1, 10, 1] and

αTriplet = [1, 1, 10]. With α constructed that way and 1000 words per

spectrum, the average relative concentrations are ∼800 for the principal

metabolite and ∼ 100 and ∼ 100 for the other two metabolites.

We use PCA to check if the batches of spectra simulated with varying

parameters can be differentiated. PCA transforms the peaks’ coordinate

system to a new coordinate system called principal components (PC). The

first PC axis points in the direction of the highest variance in the data (in

this case 300 spectra simulated with three topics). The second PC axis

points in the direction of the second highest variance, etc. For the three
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topics setup, the results from PCA are as follows. 66.5% of the variance in

all 300 spectra is explained by the first principal component (PC1). 33.5%

is explained by PC2. As expected, PC1 and PC2 explain all the variance;

thus we can project all 300 spectra to a 2D space and retain all of the

information. The top left panel of Figure 2.5 is entitled ”PCA scores”. It

shows all spectra in the PC space where each point represents a spectrum.

Because we know the ground truth about the underlying topics, we can

colour each data point, a spectrum, in the PC space by its dominant topic.

The scores plot here does not look similar to the real NMR data because

the parameters for the topic proportions per spectrum were chosen to be

quite extreme for demonstration purposes. We observe that the scatter plot

of the PCA scores resembles a simplex triangle which is characteristic of

the Dirichlet distribution. We conclude that PCA can differentiate spectra

generated for distinct topics.

The PCA loadings plots, the top right panel (Figure 2.5) illustrate how

many spectral variables (bins) are in the original coordinate system. Peaks

in ppm, contribute to the PC space. We observe that the majority of

variables are around point (0, 0), i.e. they do not contribute to the PC

space, those are regions between peaks. There are some points away from

the loadings origin; those bins contribute to the PC space.

Next, instead of looking at all the spectral variables, we focus on mul-

tiplets. By recording a multiplet’s top value, we approximate how much

a given virtual metabolite contributed to the PC space (see Figure 2.5

bottom panels Loadings 1 and Loadings 2). In this case, all variables which

constitute a Singlet at 1.0 ppm contribute about -0.36 to PC1 and 0.04 to

PC2. Analogously, the variables that form a Doublet at 2.0 ppm contributed
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about 0.1 to PC1 and 0.2 to PC2. The variables of the Triplet at 3.0 ppm

contributed about 0.04 to PC1 and -0.13 to PC2. This is consistent with

the scores plot: mostly positive values of PC1 for topics of the Doublet and

Triplet and negative PC1 values for the topic Singlet. Similarly, positive

values of PC2 for the Singlet and Doublet topics and negative values for

the PC2 for the Triplet topic.

PC1
250 200 150 100 50 0 50 100

PC2

100

50

0

50

100
150

PC3

100

50

0

50

PCA scores topic A
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Figure 2.6: Four topic PCA

We move on to a next experiment which increases the complexity of the

simulated spectra. Forty normal human urine metabolites were arranged

in four topics, ten metabolites per topic. Within each topic, the ten
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principal metabolites have equal probabilities of 0.1 (the remaining 30 have

probabilities zero). Similarly, as before, we simulate batches of 100 spectra

where a single topic is dominant. For topic proportions per spectrum, we

use the Dirichlet distribution with α where the position of the dominant

topic is set to 10 and the rest is set to 1, e.g. for first 100 spectra batch,

the first topic is dominant, so α = [10, 1, 1, 1]. Repeating this procedure

for each topic will result in 400 spectra. We run PCA on all the spectra as

before. The PC components explain the variance in this data as follows:

PC1 0.51, PC2: 0.29, PC3: 0.18 and PC4: 0.01. The four PCs explain

98% of the variance in the data. We conclude that PCA explains the data

well, as expected. We visualise the PCA results with 3D scatter of the PCA

scores, see Figure 2.6. The scatter plot resembles a tetrahedron with points,

spectra in PC space, gravitating towards its corners, depending on which

topic was dominant for a particular spectrum. This result shows that topic

driven NMR spectra simulations can be separated into groups based on

their topic composition using techniques widely used on real metabolomics

data.

2.4.3 Comparing simulated spectra to the real NMR

data

In our final simulation in this chapter, we compare the simulated spectrum

with a real NMR spectrum from the INTERMAP study (Stamler et al.,

2003). The simulated spectrum is based on just one topic which contains

40 metabolites found in normal human urine (see Table 2.1). The topic

distribution, in this case, is not applicable as we have only one topic. The

metabolites probabilities within this topic are based on standard concentra-
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Figure 2.7: 100 hundred spectra were simulated using normal human urine
metabolites (see Table 2.1). We compare simulated spectra with the real NMR
data from the INTERMAP study (Stamler et al., 2003). Top left: a mean
spectrum out of 100 simulated spectra. Bottom left: an INTERMAP spectrum
which is the most similar to the mean simulated spectrum. Top right: a single
simulated spectrum which is the most similar to the INTERMAP spectrum.
Bottom right: a single simulated spectrum which is the most dissimilar to the
INTERMAP spectrum. The similarity was determined by computing a distance
between spectra using the correlation coefficient as a metric. We identified nine
peaks which help to compare the spectra by eye: (1) Lysine, (2) Arginine, (3)
Citric acid, (4) Hippuric acid, (5) Creatinine, (6) Glycine, (7) Formic acid, (8)
Lactic acid, (9) Histidine.

tions as reported in HMDB (Wishart et al., 2018) and the Human Urine

Metabolome study by Bouatra et al. (2013), also see column ”concentrations”

in Table 2.1.

60



CHAPTER 2. SIMULATION OF 1H NMR METABOLOMIC SPECTRA USING LATENT
DIRICHLET ALLOCATION

One hundred spectra were simulated, and their mean was compared

with a real spectrum from the INTERMAP study, see figure 2.7. We note

many similarities, most notably Lysine (1) and Arginine (2) which are

at a high level in the real spectrum. We simulated those high levels of

Lysine and Arginine by increasing the values of standard concentrations

by the tenfold as we wanted to match the real spectrum which came from

an individual who had those high levels. The other metabolites worth

highlighting are Citric Acid (3), Hippuric Acid (4), Creatinine (5), Glycine

(6), Formic acid (7), Lactic acid (8) and Histidine (9). It is worth noticing

that we only used 40 metabolites while the real INTERMAP spectrum

comes from an untargeted study and contains at least ∼ 100 metabolites.

Despite this, both simulated and INTERMAP spectra display similarities

in many places. Adding more metabolites to our simulation would improve

this resemblance.

2.5 Discussion

In this chapter, we set out to test if NMR spectra, as encountered in

metabolomics, could be simulated using a generative process based on

Latent Dirichlet Allocation (LDA). LDA can infer topics for a variety of

types of data (Blei, 2012). It was not clear that the generative process for

LDA can produce reasonable looking NMR spectra which contain predefined

internal patterns. After all, the bag-of-words approach in text document

rules out generating documents in any human language. In this chapter,

we demonstrate that the generative process for LDA was successful in

producing such NMR spectra. The benefit is twofold: (a) we know that

LDA can model NMR spectra, (b) we have tools to test LDA inference of
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topics in the next chapter. The latter is essential as LDA by its nature is

unsupervised, so the evaluation of its performance on real NMR data is

difficult, if not impossible, because the true underlying topics are unknown.

We claim that the benefit of our method is its simplicity and also that it

provides a reasonable degree of control over simulated data. Its simplicity

is that the inputs for the simulations are just basic information about the

metabolites used, lists of their peaks locations and amplitudes; Θ and β

to define topics and their parameters. Having multiple Θ allows to easily

generate data sets simulating experimental groups, i.e. not only treatments

and controls but more complex scenarios. Real NMR data comes from

untargeted experiments, and the ground truth is unknown. Our approach

addresses this problem by providing simulated NMR spectra with a known

composition.

2.5.1 Potential limitations

Fixed variance

There is no control over the variance of relative concentrations in our gener-

ative model. Let us illustrate this with an example. Our last simulation was

with only one topic of a normal urine simulation. In this case, our generative

model reduces to simple sampling from a multinomial distribution. Each

spectrum consists of 1000 samples from the same multinomial distribution

(because we have a single topic) which uses probabilities β1 = [p1, p2, . . . pm],

m = 40 in this case, for each metabolite which are derived from standard

concentrations. This simplification highlights a potential limitation of our

simulation method, namely, the variance in a multinomial distribution, sim-

ilar to a binomial distribution, depends only on β1, so it is fixed because β1
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is constant. Therefore there is no option to specify variance in our simulated

spectra. Each metabolite’s variance is defined by npi(1− pi) where p_i is a

probability of i-th metabolite. For example, the probability of Citric acid is

pcitric = 0.06. When a spectrum is generated with n = 1000 words, Citric

acid’s theoretical standard deviation is
√

1000 ∗ 0.06 ∗ (1− 0.06) ≈ 7.51.

In the actual simulation, 100 spectra, the mean level of Citric acid was 61.32

(minimum was 44.0 and maximum was 79.0), the standard deviation was

7.66 which is very close to the theoretical value of 7.51. We could change

n and pi to influence the variance of the i-th metabolite, but we can not

directly specify it as we would be able in the case of sampling from, for

example, a Gaussian distribution.

Semi-realistic spectra

Our aim with the simulation is to produce semi-realistic spectra with known

ground truth to test the probabilistic models. Our simulation does not

produce some artefacts found in real NMR data, such as noise or peak

shifts. Those are usually unwanted in statistical modelling and as such are

removed by data preprocessing steps like de-noising and peak alignment

(Veselkov et al., 2009; Hao et al., 2014). Producing highly realistic spectra

is not critical for our purposes. Also, there are simulators with the goal of

generating realistic data, for example, MetAssimulo (Muncey et al., 2010).

Future work

The method that we have developed here should be considered as a proof of

principle. Future work would include turning this project into a tool which

has some user interface, to allow researchers to simulate data rapidly and
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iterate the results. At the moment the simulation process is cumbersome to

set up and require knowledge of the implementation internals. Running-time

of the simulation is another issue which could be improved. As mentioned

earlier, the simulation could be extended with some features of real spectra

like the addition of noise and peak shifts. The simulation software could also

use more parameters which are fixed at the moment, such as the width of a

peak. Finally, the database of metabolites could potentially be extended

beyond what is presented here.
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Chapter 3

Unsupervised Latent Dirichlet

Allocation for information

recovery in 1H NMR

metabolomics

3.1 Introduction

In the previous chapter, we showed how the generative process could be

used for the simulation of NMR spectra. We concluded that the LDA-based

generative process produces realistic-looking spectra. In this chapter we

investigate the opposite approach, i.e. can LDA successfully infer topics in

NMR spectra?

Researchers in NMR metabolomics often face the following challenge.

There is a matrix of data, where rows are spectra and columns are spectral

bins. Samples can originate from individuals who might be divided into

groups by some key, e.g. disease, clinical outcome and similar. The research
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question is if there is interesting biology to be revealed from this data?

Metabolites frequently participate in several metabolic pathways, and they

play different roles ranging from being a key component in the system

to having only some auxiliary function. This leads us to propose mixed

membership models such as Latent Dirichlet Allocation as a good model

for such biological constructs. LDA has not been applied in modelling of

NMR metabolomics; therefore, we hope that this new application will be a

useful addition to a toolbox for metabolomics practitioners. We propose

to use LDA as an exploratory tool to identify interesting patterns in data

without any prior knowledge. This is an unsupervised learning task, and it

could be thought of as a step in early stage analysis. In a fitted LDA model,

some topics might be important for the underlying biological process or

for differentiating between groups. Such topics can indicate metabolites

for further analysis. For example, a pairwise investigation of selected

metabolites to demonstrate what exactly drives the differentiation between

the groups (or not). We will follow this approach to analyse S. mansoni

data in this chapter.

LDA is useful in this scenario as it provides interpretable results. Other

latent variable methods such as PCA can also perform this task, but their

strength is not in interpretability of the model. Once the latent variable

model is fitted to the data, it is possible to use it to drive further analysis.

We demonstrate how we approached such analysis in the case of S. mansoni

data set (see Sections 3.2.2 and 3.4.2).

To assess the usefulness of LDA in NMR metabolomics, we tested the

method on sets of simulated data with increasing complex structure but

of known ground truth and real NMR data from S. mansoni study by Li
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et al. (2011). The authors of the study found discriminating biomarkers

using linear modelling which we use as a baseline.

Evaluation of the results was by relating to prior knowledge about the

data and also by using the Jaccard index when applicable. Jaccard index is

used to compare topics pairwise. It measures the similarity of two sets, and

it is calculated by dividing the size of the intersection over the size of the

union. For two set A and B the equation is:

J(A,B) =
|A ∩B|
|A ∪B|

A Jaccard of 1.0 means two sets are identical, a Jaccard of 0.0 means

two sets do not share elements. In the case of simulated data, we know the

ground truth in the form of topic compositions and probabilities of each

topic; we can compare parameters of simulations with inferred parameters

of the model. We compared results from LDA to PCA, comparing topics

and components. PCA is a popular unsupervised method in metabolomics

(Ebbels et al., 2011). PCA can also be seen as a latent variable model but

its goal and assumptions are different from the LDA model.

A note about terminology. In LDA, a topic is a distribution over

vocabulary or in our case a set of all bins in the spectra of interest. Let

V be the size of this set. Each topic can be thought of as a list of length

V where each metabolite has been assigned a probability. The probability

is what makes topics different between them. The list can be sorted in

descending order by probability and shortened to top N elements (usually

N = 10). In this text, we frequently use the term “topic” in reference to

the top N list. Sometimes we may mean the full list, but it always should

be clear from the context which one is it. We use this simplification because
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it helps to think about, compare and visualise topics.

3.2 Data sets

3.2.1 Simulated data

We used two toy data sets described in the previous chapter: two and three

topics systems (see Section 2.4.2). Although those are very simple, we want

to be consistent and follow the pattern of testing by increasingly complex

simulated data sets.

Four topic simulations data set was constructed using normal urine

metabolites arranged in four sets, forty metabolites in total (see Table 3.1).

Each topic can be thought of as a set of metabolites characteristic to some

biological condition. The four topic simulation represents an experiment

with four biologically different groups of individuals each associated with one

topic. We simulate 100 samples1 per group. The metabolites were selected,

so each topic had some metabolites with high standard concentration and

some with low standard concentration. This way each topic could produce

spectra with some high and some smaller peaks (see Table 3.2).

There are two variants of four topic simulation: (a) the topics do not

share any metabolites resulting in non-overlapping arrangement (Table 3.2)

and (b) there is some overlap between the sets, i.e. some metabolites are

shared between topics forming an overlapping arrangement (Table 3.3).

Those two arrangements represent an idea of having increasingly complex

data sets therefore increasing the challenge for modelling tools.

Simulated topics are distributions over all metabolites2, we assign equal
1In the context of this chapter, samples and NMR spectra are used interchangeably.
2Technically a topic is a vector of length V, where V is a total number of metabolites,
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Table 3.1: Normal, human urine metabolites used for four topic simulations. The
list was derived from the MetAssimulo package (Muncey et al., 2010) and used
with permission from the authors.

KEGG-ID Name Concentration (µM)

1 C00791 Creatinine 13200.00
2 C00047 L-Lysine 4220.40
3 C01586 Hippuric acid 2640.00
4 C00158 Citric acid 2022.00
5 C00062 L-Arginine 1130.50
6 C00037 Glycine 1029.00
7 C00135 L-Histidine 948.00
8 C00245 Taurine 834.24
9 C00160 Glycolic acid 752.00
10 C00058 Formic acid 583.00
11 C00064 L-Glutamine 485.80
12 C00186 L-Lactic acid 441.00
13 C00065 L-Serine 396.00
14 C00417 cis-Aconitic acid 393.00
15 C00082 L-Tyrosine 361.02
16 C00300 Creatine 343.00
17 C00581 Guanidoacetic acid 300.00
18 C00041 L-Alanine 290.00
19 C00031 D-Glucose 264.00
20 C01904 D-Arabitol 250.80
21 C00311 Isocitric acid 250.00
22 C00719 Betaine 245.52
23 C01004 Trigonelline 223.00
24 C00033 Acetic acid 200.00
25 C00042 Succinic acid 166.32
26 C01620 Threonic acid 132.00
27 C00642 p-Hydroxyphenylacetic acid 92.40
28 C02336 D-Fructose 85.00
29 C01026 Dimethylglycine 81.84
30 C02918 1-Methylnicotinamide 80.50
31 C00026 Oxoglutaric acid 77.00
32 C00984 D-Galactose 58.08
33 C00386 Carnosine 46.20
34 C00123 L-Leucine 39.60
35 C00149 L-Malic acid 34.32
36 C05984 2-Hydroxybutyric acid 32.27
37 C00073 L-Methionine 30.00
38 C00025 L-Glutamic acid 22.59
39 C00327 Citrulline 14.26
40 C00881 Deoxycytidine 8.58

V=40 in this case. 69
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Table 3.2: Topics which are the basis for the four non-overlapping topics simulation
data set. Each topic is a set of 10 metabolites. The metabolites are represented
by their KEGG IDs. Prior probability for each metabolite in a topic is 0.1.

Topic 0 Topic 1 Topic 2 Topic 3

1 C00791 C00047 C01586 C00158
2 C00062 C00037 C00135 C00245
3 C00160 C00058 C00064 C00186
4 C00065 C00417 C00082 C00300
5 C00581 C00041 C00031 C01904
6 C00311 C00719 C01004 C00033
7 C00042 C01620 C00642 C02336
8 C01026 C02918 C00026 C00984
9 C00386 C00123 C00149 C05984
10 C00073 C00025 C00327 C00881

probabilities to metabolites specific to a topic and zero probability to the

rest. For example, in Topic 0 (see Table 3.2), the ten metabolites have a

probability of 0.1 and all others have a probability of 0.0.

Each sample most likely contains all forty metabolites specified in the

simulation, but only those metabolites which constitute a topic will result

in higher concentrations. This is because the way we define the topics’

probabilities for simulation. The proportions of topics for each sample

are not fixed, but they are sampled from the Dirichlet distribution with a

non-uniform parameter vector α. For example, if topic zero is the chosen

topic for a group, we sample from Dirichlet with α = [10; 1; 1; 1]. A

possible sample looks like this: [0.901; 0.073; 0.014; 0.014]. Indeed, the first

probability is large, 0.9, and the rest are small but non zero. Intuitively we

would expect this sample from such α. However, sampling from Dirichlet

with this particular α can also yield probabilities like this3: [0.455; 0.214;

0.087; 0.243]. The first component is much lower, less than 0.5 but more
3Those are real samples from Dirichlet distribution with α = [10; 1; 1; 1] as imple-

mented in NumPy.
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interestingly the second and the last probabilities are more than one in five.

This sample highlights that it cannot be expected that the non-driver topics

will have minuscule probabilities. Therefore metabolites from all topics will

have a non-zero contribution in each sample and each sample is most likely

to contain all forty metabolites.

Table 3.3: Topics which are the basis for the four overlapping topics simulation
data set. Each topic is a set of 12 metabolites. The metabolites are represented
by their KEGG IDs. Prior probability for each metabolite in a topic is 1

12 .
Metabolites which are shared among topics are marked in red.

Topic 0 Topic 1 Topic 2 Topic 3

1 C00791 C00047 C00123 C00149
2 C00062 C00037 C00025 C00327
3 C00160 C00058 C01586 C00158
4 C00065 C00417 C00135 C00245
5 C00581 C00041 C00064 C00186
6 C00311 C00719 C00082 C00300
7 C00042 C01620 C00031 C01904
8 C01026 C02918 C01004 C00033
9 C00386 C00123 C00642 C02336
10 C00073 C00025 C00026 C00984
11 C00047 C01586 C00149 C05984
12 C00037 C00135 C00327 C00881

3.2.2 S. mansoni data set

The study was designed to investigate biomarkers in a mouse model infected

with Schistosoma mansoni. Schistosomiasis is a tropical disease caused by

contact with larvae of S. mansoni which is present in water reservoirs in

Africa, Asia and South America. When a human consumes the contaminated

water, they become a host for a parasite and an adult worm of S. mansoni

develops.

The experimental design of the study was as follows. Ten mice were

infected with S. mansoni. Another ten mice remained uninfected and acted
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Figure 3.1: Two metabolites from the S. mansoni study are presented as a time
course data. Left panel: phenylacetylglycine (PAG) at 7.43ppm, right panel:
2-oxoadipate (OAP) at 2.22ppm. Thick solid lines represent fitted smooth splines
for each group mean. Dashed lines represent time courses of individuals fitted
as smooth splines, circles are raw data points. Shaded regions are confidence
intervals calculated by resampling of individual curves with replacement.

as a control group. The study collected urine, plasma and faecal samples.

We used only the urine data. The samples were collected on day 0 at which

point the treatment group was infected with the parasite. Samples of urine

were subsequently collected on days: 13, 27, 34, 41, 48, 53, 55, 56, 57, 59, 61,

67 with the last sample collected on day 73. Time courses for two selected

metabolites phenylacetylglycine (PAG) at 7.43ppm and 2-oxoadipate (OAP)

at 2.22ppm are visualised in Figure 3.1. The sample collection was done

at the same time points for both experimental groups. One mouse in the

control group died mid-experiment, and it was not included in the data.
1H NMR spectroscopy was used as the analytical technique to deter-

mine the metabolic content of the samples. The data were analysed using

multivariate techniques such as PCA and a series of linear models were

constructed at each time point to find significant differences between treat-
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Table 3.4: Identified metabolites in the S. mansoni study (urine specific). Signal
multiplicities - s: singlet; d: doublet; t: triplet; m: multiplet; q: quadruplet.
Adapted from Li et al. (2011)

Full name Short
name

Chemical shift and signal multiplic-
ity

1 hippurate Hip 3.97(d);7.84(d);7.55(t);7.64(t)
2 3-methyl-2-

oxovalerate
MOV 2.93(m);1.1(d);1.7(m);1.46(m);0.9(t)

3 2-oxoadipate OAP 2.77(t);1.82(m);2.22(t)
4 2-oxoisocaproate OIC 2.61(d);2.1(m); 0.94(d)
5 2-oxoisovalerate OIV 3.02(m);1.13(d)
6 p-cresol glu-

curonide
p-CG 7.06(d);7.23(d);2.3(s)

7 phenylacetyl-
glycine

PAG 7.43(m);7.37(m);3.75(d);3.68(s)

8 taurine Tau 3.43(t);3.27(t)
9 trimethylamine N-

oxide
TMA-N 3.28(s)

10 3-ureidopropionic
acid

UPA 2.38(t);3.31(t)

11 acetate Ace 1.93(s)
12 arginine Arg 3.78(t);1.92(m);1.65(m);3.20(t)
13 citrate Cit 2.66(d);2.54(d)
14 3-carboxy-2-

methyl-3- oxo-
propanamine

CMOPA 2.49(m);1.08(d);3.19(m);3.56(m);3.72(m)

15 creatine CRE 3.03(s);3.92(s)
16 creatinine CRT 3.03(s);4.05(s)
17 dimethylamine DMA 2.72(s)
18 lactate Lac 4.11(q);1.32(d)
19 lysine Lys 3.78(t);1.92(m);1.47(m);3.03(t);1.72(m)
20 N-acetyl glycopro-

tein fraction
N-AG 2.06(s)

21 2-oxoglutarate OGT 3.01(t);2.45(t)
22 pyruvate Pyr 2.36(s)
23 scyllo-inositol S-In 3.33(s)
24 succinate Suc 2.41(s)

ments and control groups. The study found differences between experimental

groups starting on day 41. Urinary biomarkers of the infection were found

with hippurate, phenylacetylglycine (PAG) and 2-oxoadipate topping the

list. The list of all identified metabolites in urine (only some of them show
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differences between the groups) is given in table 3.4 (Li et al., 2011).

3.3 Methods

This chapter uses models and methods described earlier in this thesis. LDA

was introduced in Chapter 1. NMR spectra simulations were described in

Chapter 2.

From spectra to high-level variables

To improve interpretability of outputs from LDA and PCA models we use

coarse grain variables such as metabolites (as in the simulated data sets)

or bins associated with particular NMR resonances as in the case of the

S. mansoni data set (multiple bins per metabolite are possible). We did

not attempt to run LDA and PCA on high resolution spectra4. Topics

formed with such a high number of strongly correlated variables would not

be informative.

The S. mansoni data set was manually processed to obtain high-level

variables (see Section 3.3.1 for details). Whilst the simulated data sets

were processed algorithmically. The simulation produced high-resolution

data but we processed each spectrum in the data set to produce a vector of

concentration per metabolite. The details of this algorithm are as follows.
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Figure 3.2: Identification of metabolites and their concentrations from simulated
spectra flowchart
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Identification of metabolites and their concentrations

from simulated spectra

Our primary goal is not to solve the problem of identifying metabolites and

their concentrations in a spectrum. Our goal is to find sets of co-occurring

metabolites in samples. Peak identification is only an auxiliary task. Our

method consists of three main tasks which are performed for each spectrum

(see Figure 3.2):

1. Construction of a list of candidate peaks. Those peaks should be

distinct and non-overlapping to increase the chance of identification

of a metabolite.

2. Attempt to identify the metabolites for all candidate peaks. This

step produces a list of identified metabolites in the spectrum. The list

is usually shorter than the list of candidate peaks due to a possible

failure of identification of some peaks.

3. Estimate levels of each identified metabolite.

The first task is to find distinct, non-overlapping peaks. We are interested

in non-overlapping peaks because eventually we want to estimate levels.

Peaks where there is overlap from multiple metabolites would make the

task of level estimation hard if not impossible. Firstly, we identify all the

peaks. We achieve this by calculating the first-order difference for the whole

spectrum, looking at where it is zero and checking if it changed from positive

before the plateau point to negative after5. This procedure is a discrete

analogue of finding maxima of continuous functions with the first derivative.

Once all the peaks are found, they were sorted by amplitude (the highest
4High resolution means ≥ 10,000 spectral bins.
5We used Python package PeakUtils v1.3
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first). Next, we iterate through this sorted list to find non-overlapping peaks.

A decision if a peak is non-overlapping is made by calculating a ratio of

two areas: (a) the vicinity area (VA) around the peak using the trapezium

rule and (b) the peak area (PA) under the Lorentzian function modelling a

hypothetical peak with the same amplitude as the candidate. If the ratio
PA
V A

is between 0.5 and 1.5, then the peak is classified as non-overlapping.

Once the candidate peaks are identified, an attempt is made to identify

the metabolites from those peaks. This is achieved by using peak information

from the Human Metabolome Database (Wishart et al., 2018). HMDB is a

database of known metabolites and their properties including the standard

chemical shifts. Finding a peak in HMDB means we know the metabolite.

For each candidate peak, we search HMDB to find peaks which are closest

to it. We limit our search to find the peaks only in a particular vicinity

around the candidate peak. This search can result in one of three cases:

(a) there are no peaks found in HMDB, (b) there is precisely one peak

found and (c) there are multiple peaks found. In (a) we mark the candidate

peak as unknown and move on to the next candidate. If (b), we assume

that we successfully identified the metabolite. Lastly, in the case of (c), we

apply the following procedure to decide which one to choose. For each peak

found, we look at the metabolite and all its peaks. We try to locate those

metabolite’s peaks in the spectrum under investigation. We keep a count

score which is increased by one for each metabolite’s peak also found in the

spectrum. The metabolite with the highest count score is assigned to the

candidate peak.

The last task is to determine the identified metabolites’ levels. For each

metabolite we simulate a new spectrum with just this one metabolite. This

77



CHAPTER 3. UNSUPERVISED LATENT DIRICHLET ALLOCATION FOR INFORMATION
RECOVERY IN 1H NMR METABOLOMICS

simulation is based on peak information from HMDB and uses the same

methods, based on the Lorentzian function, as described before. Let us

call this single molecule spectrum a canonical spectrum of the metabolite.

A single molecule spectrum gives us values of peaks’ heights for one unit

of the molecule. Next, we look for a peak, belonging to the metabolite,

with maximum amplitude in the spectrum under investigation. A ratio

of the maximum amplitude of a metabolite’s peak from the spectrum of

interest and its counterpart peak in the canonical spectrum is the relative

concentration we are looking for. We repeat this procedure for all identified

metabolites in the spectrum.

3.3.1 S. mansoni data set preprocessing

We obtained raw data generated in S. mansoni study from Li et al. (2011).

It consisted of 260 NMR spectra in the spectral range of 0-10 ppm with

the resolution of 0.0005 ppm, 20,000 variables in total. This data was

provided as a MATLAB file with a matrix of which the rows were samples

and columns were spectral bins. Metadata was included as three vectors for

sample identification: group ID, animal ID and day of measurement. The

spectra were already preprocessed, so TSP, urea and water regions were

removed. Further, we processed the data in the following way:

1. Rows of the matrix were sorted by group, day and animal ID (this

helped with the manual part of the alignment procedure as it is easier

to look at sorted samples).

2. Automatic alignment was performed using the method by Veselkov

et al. (2009)

3. Manual alignment was carried out to optimise the output from the
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previous step (in-house Matlab tool based on the method by Veselkov

et al. (2009))

4. The data was downsampled by a factor of 10 to reduce computational

run-time. The trapezium rule (MATLAB’s trapz function) was

applied to every ten spectral bins of the original data resulting in one

new spectral bin accumulating the original values corresponding to a

bin size of 0.005 ppm.

5. The probabilistic quotient method was applied to normalise the data

(in-house MATLAB script based on the method of Dieterle et al.

(2006))

6. A single spectrum (sample 91) was removed as it had bad water

suppression resulting in high negative values.

7. Finally, the data were manually inspected, and high-level variables

were created based on NMR resonances which we could manually

identify. This resulted in a matrix of 260 rows and 38 variables

corresponding to metabolites in Table 3.4. This matrix constitutes

an input for the software implementation of LDA and PCA.

3.4 Results

3.4.1 Simulated data results

This section will cover the results for simulated data sets for which we know

the ground truth. The data sets will be progressively more complicated as

we want to raise the difficulty of inference.
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Two and three topics systems

The two and three topics simulated data is the same as in the previous

chapter (see Section 2.4.2) where we applied PCA to it. Here we use LDA,

and have obtained the following results. For the two topic system, an

average (over 100 spectra) Jaccard index between the identified metabolites

in the spectra and all metabolites is 0.97. The simulation topics are also

well recovered.

For the three topic system, the identification of metabolites is solid

with a Jaccard index of 0.93. The simulation topics of the three topic

system are also recovered well. In summary, we established that LDA could

successfully infer topics from those toy data sets. Now let us move on to

more complicated data.

Four topics simulations

We run four experiments using four topics simulation data (see section

3.2.1). Recall that the simulated topics were arranged in two ways: (a)

topics do not share metabolites and (b) there are some shared metabolites

between the topics. We refer to the former as non-overlapping topics and

to the latter as overlapping topics, see panels A in figures 3.3 and 3.4. For

visualisation in this section we use binary heat maps where the top 10 (or

12 in case of overlapping topics) metabolites are assigned a value of one

and shown in light colour while the remaining metabolites in topics (rows)

are assigned zero and are shown in dark colour. This technique helps us

to focus on comparing inferred topics (panels B, C and D) with simulated

topics (panels A).

Using those two data sets, with overlapping and non-overlapping topics,
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we run two types of simulations: a full simulation including generating

NMR spectra and a simplified version where we omit the NMR spectra

simulation step and run LDA inference on just simulated concentrations

matrix as obtained from the LDA-based generative process described in the

previous chapter. The motivation to do this simplification is to probe how

the loss of information arising from peak overlap in NMR spectra will affect

topic inference. Peak overlap makes it harder to determine concentrations

and also to identify smaller peaks which can be buried in the overlap area.
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Figure 3.3: Results for the Four non-overlapping topics. Binary heat maps with
the top 10 metabolites are shown in light colour. The metabolites are labelled
by their KEGG IDs. (A) simulated topics, (B) LDA inferred topics for a data
set with NMR spectra, (C) PCA components for a data set with NMR spectra,
(D) PCA components for a data set with no NMR spectra (only simulated
concentrations).

First we look at the results of simplified experiments with no spectra

simulation, both non-overlapping and overlapping, see Figure 3.3, panel D

and Figure 3.4, also panel D. LDA can recover all topics perfectly. The heat

maps, in this case, are not informative as the inferred topics are identical

as simulated topics. An interesting point to note is that PCA (visualised in
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panels D) can recover only three topics and fails to recover the last one. The

variance explained by principal components is [0.33; 0.32; 0.32; 0.0] for the

non-overlapping case and [0.39; 0.37; 0.21; 0.0] for the overlapping case.

All the data can be explained by the first three principal components. In

particular, the last topic is missed altogether by PCA in the non-overlapping

case, i.e. no principal component contains metabolites from simulated topic

3, see Figure 3.3, panel D. This is an example of the data where LDA can

recover more information than PCA.
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Figure 3.4: Results for Four overlapping topics, results. Binary heat maps with
the top 12 metabolites shown in light colour. The metabolites are labelled by
their KEGG IDs.(A) simulated topics, (B) LDA inferred topics for a data set with
NMR spectra, (C) PCA components for a data set with NMR spectra, (D) PCA
components for a data set with no NMR spectra (only simulated concentrations).

Now we move on to the non-overlapping data set with NMR simulations

and metabolites identification from the spectra. Topic recovery for the

non-overlapping topics experiment is illustrated in figure 3.3, panel B for

LDA and panel C for PCA. In the case of LDA, note that topic 0 and

topic 1 are recovered well, one out of ten metabolites are missing, resulting

in a Jaccard index of 0.82. Topic 2 and topic 3 are recovered slightly
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worse. Two out of ten metabolites are missing, producing a Jaccard index

of 0.67. Moving on to PCA results, the variance explained by principal

components is [0.65; 0.1; 0.06; 0.05]. Components 0 and 1 do not map

well to the first two simulated topics, but component 2 misses only one

metabolite of simulated topic 2 resulting in a Jaccard index of 0.82. Lastly,

component 3 misses two metabolites of simulated topic 3 (Jaccard 0.67). We

conclude that LDA performed well in topic recovery especially given that

metabolites identification in the simulated spectra is an imperfect process.

PCA performed visibly worse, with only two components giving a Jaccard

index greater than 0.5.

Finally, we turn to our most complex experiment in this section: over-

lapping topics with NMR spectra simulation. Figure 3.4 depicts simulated

topics in the top panel A (each topic consists of 12 metabolites), inferred

topics for LDA in panel B and PCA in panel C. Topic 0 is recovered very

well, only one metabolite is missed (Jaccard 0.85), topic 1 is recovered

perfectly (Jaccard 1.0), topic 2 is missing two metabolites (Jaccard 0.71)

and the last topic is missing 3 metabolites (Jaccard 0.6). This is a good

performance from LDA in this complex scenario. PCA variance explained

by the principal components is [0.52; 0.19; 0.13; 0.04]. The highest Jaccard

index, 0.41, is for the first and the last component only, the two other

topics are not recovered (Jaccard index less than 0.26). Overall PCA per-

forms worse in this experiment than in the non-overlapping case. LDA

seems to perform marginally better in the overlapping scenario than in the

non-overlapping scenario.
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Figure 3.5: S. mansoni: Binary heat maps of inferred topics with the top 10
metabolites shown in light colour. (top) LDA inferred topics, (bottom) PCA
components. In red, metabolites previously found (Li et al., 2011) to differentiate
between experimental groups (see Table 3.4).

3.4.2 S. mansoni data set results

In this section, we will cover the results of a real NMR data set from

the S. mansoni study described in section 3.2.2. We will use the findings

from Li et al. (2011) which describes the study in detail, to act as the

reference point as there is no ground truth in this case. Hippurate, pheny-

lacetylglycine (PAG) and 2-oxoadipate (OAP) were showing the strongest

connection with disease. p-cresol glucuronide (p-CG), creatine (CRE), 3-

ureidopropionate (UPA), 2-oxoisovalerate (OIV), 2-oxoisocaproate (OIC),

taurine (Tau), trimethylamine (TMA-N) and pyruvate (Pyr) were found to

be involved in S. mansoni infection. In figure 3.5 and table 3.5, the metabo-

lites which were found useful for differentiation between the experimental
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groups are marked red.

In figure 3.5, we use the idea of binary heat map again to visualise

the topics inferred by LDA and PCA. In the LDA case, we observe that

topics three and four include hippurate, 2-oxoadipate(OAP), phenylacetyl-

glycine(PAG), the three most reliable differentiators between the groups

found previously in Li et al. (2011). For PCA, the results are less consistent:

components 0 and 1 cover OAP bins, components 2 and 4 cover hippurate

bins and component 3 cover PAG bins. We notice that the same metabolite

bins are split between components while in LDA they are mostly mem-

bers of the same topic. Variance explained by the principal components is

[0.56; 0.21; 0.12; 0.05; 0.02].

A useful view of the LDA model is to plot NMR spectra in topic space,

see Figure 3.6. Each spectrum is reduced to five latent dimensions. A

spectrum is obtained from a sample from an individual at a time point,

therefore a given animal will have multiple points in the plot, corresponding

to 14 time points. The spectra are visualised in scatter plots, each plot for

a pair of topics. Additionally, the samples are marked by shape, depending

on the group, and colour depending on the time. Diamond shape represents

controls and circles represent treatments; lighter shades indicate early

samples and darker for late samples. The samples were split into early

and late with day 41 acting as a division line, so each individual has five

early data points and nine late points. The idea behind early and late data

points is that the S. mansoni infection is not immediately symptomatic,

the effects of infection are present only in the later stage. Figure 3.5 reveals

that topics 3 and 4 contain many metabolites previously shown as involved

in the separation between the groups. Topic 2 overlaps with topic 3, so it
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Figure 3.6: S. mansoni: NMR spectra in LDA topic space. Each animal has
multiple points in a pair plot, corresponding to 14 time points. The samples were
split into early and late with day 41 acting as a division line, so each individual
has five early data points and nine late points. The late treatment samples seem
to be well separated from the other points for Topic 3 and Topic 4. Topic 2
shares five metabolites with Topic 3 so the separation of late treatment samples
can be observed as well. T-test and Kolmogorov-Smirnov test for late treatments
were run on the topics, see Tables A.1 and A.2 in Appendix A
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is also expected to be associated with distinguishing between the groups.

Indeed, the late treatment samples seem to be well separated from other

points if we carefully examine the rows for Topic 3 and Topic 4. Topic 2

shares five metabolites with Topic 3 so the separation of late treatment

samples can be observed as well. For comparison, a similar analysis can

be performed on the PCA model. Figure 3.7 presents projections of the

spectra to the principal component space, also referred to as PCA scores.

Component 2, when plotted against other components seems to separate

late treatments from the rest of the samples.

Table 3.5: Two selected topics inferred with LDA on S. mansoni data. The
previous study of the data (Li et al., 2011) found biomarkers (in red) differen-
tiating between the experimental groups. The top 10 metabolites in the two
selected topics include many of these red biomarkers. We investigated closer
remaining (black) metabolites. Two of them N-acetyl-glycoprotein (N_AG) and
2-oxoglutarate (OGT) seem related to S. mansoni infection, we marked them
with asterisk (more details in Section 3.4.3).

Topic 3 Topic 4

Pyr_2.36_s OGT_3.01_t *
p-CG_2.3_s Hip_7.55_t
p-CG_7.23_d Hip_7.84_d
PAG_3.68_s Hip_7.64_t
PAG_3.75_d OGT_2.45_t *
p-CG_7.06_d OAP_2.22_t
PAG_7.37_m Hip_3.97_d
PAG_7.43_m OAP_1.82_m
N-AG_2.06_s * OIC_2.61_d
CRT_4.05_s OAP_2.77_t

3.4.3 Potential new biomarkers

Topic 3 and 4 contain many metabolites found previously as the ones driving

separation between the groups. Table 3.5 list the top metabolites in the two

topics, red colour indicates previously identified metabolites. Let us look

87



CHAPTER 3. UNSUPERVISED LATENT DIRICHLET ALLOCATION FOR INFORMATION
RECOVERY IN 1H NMR METABOLOMICS

0 1000

500

0

500

1000
C

om
p.

 0

0 1000

0

500

1000

1500

C
om

p.
 1

0 1000

0

500

1000

1500

0 1000
400

200

0

200

400

C
om

p.
 2

0 1000
400

200

0

200

400

250 0 250
400

200

0

200

400

0 1000

200

0

200

C
om

p.
 3

0 1000

200

0

200

250 0 250

200

0

200

250 0 250

200

0

200

0 1000
Comp. 0

100

0

100

200

C
om

p.
 4

0 1000
Comp. 1

100

0

100

200

250 0 250
Comp. 2

100

0

100

200

250 0 250
Comp. 3

100

0

100

200

0 200
Comp. 4

100

0

100

200

S. mansoni data - samples in PCA space

group
early controls
late controls
early treatments
late treatments

Figure 3.7: S. mansoni: NMR spectra in PCA space. Each animal has multiple
points in a pair plot, corresponding to 14 time points. The samples were split
into early and late with day 41 acting as a division line, so each individual has
five early data points and nine late points. Component 2, when plotted against
other components seems to separate the late treatments from the rest of the
samples. T-test and Kolmogorov-Smirnov test for late treatments were run on
the principal components, see Tables A.3 and A.4 in Appendix A.
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closer at two metabolites which were not previously indicated: N-acetyl-

glycoprotein (N_AG) and 2-oxoglutarate (OGT). N_AG was found by Li

et al. (2011) as related to S. mansoni infection in faecal water, but our data is

from urine. Wu et al. (2010) found elevated levels of N-acetyl-glycoprotein in

plasma spectra in mice infected by Schistosoma japonicum, another species

of Schistosoma. N-acetyl-glycoprotein seems to be a candidate biomarker.

2-oxoglutarate (OGT) was found by Wang et al. (2004) to be associated

with S. mansoni infection in mice (urine samples). OGT is an intermediate

of the tricarboxylic acid cycle. Disturbance of this cycle was found to

be significant in the S. japonicum study by Wu et al. (2010). Figure 3.8

explores the relationships between four selected metabolites, two already

identified as discriminatory for S. mansoni infection (p-CG and PAG) and

two new ones N_AG and OGT. It can be determined from the scatter plots

if the metabolites are higher or lower between the late treatments and the

other samples. For example, PAG and p-CG shows late treatment samples

to the right from the others, indicating that PAG and p-CG levels are higher

than controls and early samples. This is consistent with the results from Li

et al. (2011).

3.5 Discussion

In this chapter we investigated LDA inference on a variety of NMR metabolomics

data sets in a meaningful way. LDA proved to be capable of modelling

NMR data. We started with simulated data where LDA performed better

than PCA in topic recovery. The comparison with PCA could be challenged

as simulated data was produced with the LDA-based generative model.

We recognise that this was an advantage for LDA. However, as shown in
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Figure 3.8: S. mansoni: a pairwise study of selected metabolites levels: two
already identified as discriminatory for S. mansoni infection (p-CG and PAG)
and two new ones N_AG and OGT. T-test and Kolmogorov-Smirnov test for
late treatments were run on the metabolites levels, see Tables A.5 and A.6 in
Appendix A.

Chapter 2 the simulated spectra are a reasonable approximation of real

data sets. This could have been a fair point against LDA having a sort of
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home advantage in experiments where only simulated concentrations were

used (recall that LDA performed flawlessly), but once NMR spectra are

simulated, translation to the NMR domain and associated loss of informa-

tion makes it a levelled playing field for all models.6. It is noteworthy that

that overlapping topics scenario, which is an attempt to mimic how topics

would be in real biological systems, was not harder to infer compared to

non-overlapping topics. Early on we speculated that perhaps the overlap-

ping metabolites would be non-informative variables. It turned out that

LDA picked correctly fourteen out of sixteen instances (a single square in

Figure 3.4) which were shared between topics. Lastly, PCA did not perform

as well but most notably it utterly failed to recover the last topic in the

non-overlapping scenario.

In the case of the S. mansoni data set, LDA performed well, capturing

all previously known metabolites associated with the disease. The model

also suggested new metabolites to investigate. Two of the metabolites we

selected for a follow-up analysis proved to be interesting from the biology

point of view. PCA did not perform well, only component 2 seems to help

to differentiate between the groups. Li et al. (2011) used PCA as well, and

they did not find it helpful for differentiation between groups.

Limitations

Commonly in NMR metabolomics data analysis, multiple spectral bins may

represent the same metabolite. Such variables will be correlated although not

perfectly, as a single bin frequently contains signals from other metabolites.

LDA attempts to group variables which change together within a sample
6The reader is kindly asked to excuse those sports metaphors, this section was written

during FIFA World Cup 2018.
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into topics. Therefore a topic may contain multiple bins related to the same

metabolite. This is usually not a problem as observed in the results of S.

mansoni data. What may be a potential problem for LDA in the context of

NMR metabolomics is that metabolites with multiple bins can overshadow

metabolites with only one bin, especially if the concentration in the latter is

relatively low. Effectively, the multi-bin metabolites have a stronger signal

and this can bias the analysis in their favour. We did not find a way to

mitigate this bias with the application on LDA.

Our algorithm for identifying metabolites and estimating concentrations

is not very sophisticated. Finding peaks in NMR spectra could easily grow

into a separate project. Figuring out concentrations in peak overlap regions

can be very difficult. Our algorithm finds only peaks present in a local

database which is limited to normal urine metabolites. Real life NMR data

will be subject to peak shifts which we do not address.

Future work

The method described above is only the first attempt at applying LDA to

NMR data. We focused on achievable tasks to prove that this approach

works. The scope of future work is outlined as follows:

1. Topics are sets of metabolites; high probability metabolites within a

set tend to covary in a sample. Those metabolites could be mapped to

a biological process or a metabolic pathway. Such mapping, although

never perfect, could be a useful tool for providing an interesting angle

to look at NMR spectra and connect them to the underlying biology

of the sample.

2. Detailed analysis of metabolites could be extended and driven by
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more than just LDA topics. Metabolites with high PCA loadings

could be considered.

3. More latent variable methods could be investigated to compare with

LDA, for example, Non-negative Matrix factorisation.

4. In simulated data experiments, we chose the number of topics to be

the same as the original simulation. What would happen if we chose

other K, i.e. if simulation K and inference K are different? Five topics

were chosen for S. mansoni as the smallest K where previously known

metabolites were captured coherently. However, for a data set without

any prior information, how would we choose the number of topics?

5. Each topic is a probability distribution over all metabolites of interest,

i.e. each metabolite has been assigned a probability. Different topics

are the same list of all the metabolites of interest but with different

probabilities assigned. In practice, we always focus on the highest

probability metabolites, usually the top 10 in the list. However, 10 was

an arbitrarily chosen number. Other options need to be investigated.

Is there an optimal top N number?
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Chapter 4

Supervised Latent Dirichlet

Allocation for continuous

response in 1H NMR data

4.1 Introduction

This chapter will continue to focus on topic models but this time in a

supervised learning context. We will apply a variant of the LDA model,

called SLDA, which is extended to push topics composition according to a

continuous variable representing a measured response variable, for example

some clinical outcome like BMI. The continuous response variables are

associated with each document or spectrum.

We are more interested in an interpretable model than prediction metrics

but, of course, they should be satisfactory at least. The interpretability of

the model is our primary objective. We want to find interesting patterns in

data, not to predict response variables from unseen NMR spectra. We claim

that a small number of topics consisting of spectral bins are interpretable
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Figure 4.1: MESA study, sample spectrum of serum. Figure courtesy of Gonçalo
Graça (private communication)

for a human researcher. In contrast, PCA, a popular method in NMR

metabolomics, can be used as a latent variable model but its loadings do not

easily lend themselves to interpretation. Although we could normalise the

loadings and take their absolute value, so they fall in [0,1] range, they are

not as easily interpretable as probabilities in topics which can be understood

intuitively.

4.2 Data sets

4.2.1 MESA data set

We obtained untargeted one-dimensional (1D) serum 1H NMR metabolomics

spectra of participants from the Multi-Ethnic Study of Atherosclerosis

(MESA), see sample spectrum in Figure 4.1. The MESA study (Bild et al.,

2002) set out to investigate the cardiovascular disease (CVD) in a sample

of 6500 men and women aged over 40 years from the US. The proportions

of ethnicity were as follows: 38% White, 28% African-American, 23%

Hispanic, and 11% Asian (of Chinese descent). Each sample was associated

with 86 measurements such as coronary calcium, ventricular mass, carotid
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intimal-medial wall thickness, blood pressures, standard CVD risk factors,

socio-demographic factors, and life habits. We provide more details on how

we preprocessed the data in Section 4.3.3.

4.3 Methods

4.3.1 Supervised LDA model

A supervised Latent Dirichlet Allocation (SLDA) model builds on the LDA

model to include a response variable which is associated with a document.

SLDA model in plate notation is depicted in Figure 4.2. Yd is a continuous

response variable associated with a document or spectrum. The model

was first introduced in Mcauliffe and Blei (2008) and refined in Blei and

McAuliffe (2010). The later version uses the generalised linear model (GLM)

by McCullagh and Nelder (1989) to model the Yd response variable. In the

original version, which we use here, the Yd response variable is assumed to

be distributed by the Gaussian distribution with mean η and variance σ2.

K

D

N

θd Zd,n Wd,nα βk

η, δ2 Yd

Figure 4.2: SLDA model plate diagram
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4.3.2 Linear regression of latent variable models

Our primary model in this chapter is SLDA. However, we additionally fit

three other models for comparison. They are a combination of latent variable

models with linear regression which is a way of turning an unsupervised

method into a supervised method.

Figure 4.3 gives an overview of the process in which we combine latent

variable models with linear regression. At the top, we have a spectrum

within a process of digitisation is converted into N bins (or columns in

matrix X). N can be quite large for high-resolution spectra, in order of tens

of thousands. At the same time, the number of samples M is usually in

the order of hundreds or thousands. The conventional way of storing NMR

spectra is in the form of a matrix (let us call it X) of size M ×N . Fitting

linear models in a situation where the number of columns is much higher

than the number of rows may be problematic. We reduce the number of

columns by applying a latent variable model to the matrix X. Such models,

LDA or PCA, will create new variables (K latent variables) and represent

spectral data expressed in the new coordinates. The result is matrix T.

Matrix T is much easier to work with because the number of latent variables

is much smaller than N. So far we did not take into account the response

variables related to NMR spectra. The linear regression can fit matrix T

along with response variable vector b. The result is linear coefficient matrix

B which is used to predict values of the response variable.

We use ElasticNet (Zou and Hastie, 2005) as our linear regression model

of choice. We use ElasticNet because it works well for correlated features

(Hastie, 2015). The latent variable models we combine with ElasticNet are

SLDA, LDA and PCA. SLDA combined with ElasticNet means that the
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Figure 4.3: Linear regression of latent variable models
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topics from sLDA (but not predictions) are used as features for ElasticNet.

We expect that topics from sLDA will be different to unsupervised LDA

topics. In the case of combined models, we first fit latent variable models;

next, we fit ElasticNet to the spectra from the training set represented

in the latent variable space. For example, if we take a topic model with

K = 10 topics, a spectrum which originally was represented by 444 bins is

transformed into 10 latent variables. ElasticNet is fitted on those 10 latent

variables and will result in 10 linear coefficients, one per variable.

4.3.3 MESA data set preprocessing

Clinical variable selection

We obtained data files containing 3948 spectra. Each spectrum is associated

with 86 clinical variables; some are continuous, some categorical and some

binary. Here, we list a subset of the variables to give an idea what sort

of information was recorded for each spectrum: age, sex, height, weight,

BMI, ethnicity, smoking, education, blood pressure (SBP, DBP), glucose

level, LDL and HDL cholesterol levels and many others. Due to the long

running-time required to fit the sLDA model1, we narrowed down the list

to six clinically important variables: height, BMI, total cholesterol, LDL

cholesterol, HDL cholesterol and glucose level. Height act as a negative

control variable, we do not expect to find a metabolic signature related to

height in the cohort of adults 40 years old and older. Glucose level acts as

a positive control since the glucose signal in the spectra is directly present

in the data. We expect glucose to be present in the inferred topic is some

particular way. BMI and three cholesterol variables were chosen as they
1For K=20 topics and 10,000 iterations of Gibbs sampler, it takes about 48h to fit a

single variable sLDA model using a virtual server on Google Cloud Platform.
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play a role in atherosclerosis, which is central to the MESA study. Each of

our variables of interest is represented in multiple spectral bins.

Spectral bin selection and annotation adjustment

The MESA spectrum data file was obtained as a matrix of 3948 rows and

710 columns. Each row represents an NMR spectrum of a serum sample

from participants of the MESA study. The columns are manually created

bins based on high-resolution spectra. An expert NMR spectroscopist

manually annotated about 500 bins. Each annotation specifies one or more

metabolites. We did not use the bins without annotations for modelling

as we would not be able to interpret the topics. We also eliminated bins

representing ethanol (possibly part of the diet), bins without a metabolite

signal (noise only bins), and bins annotated as a baseline. Lastly, we

eliminated two bins related to L-Lactic acid due to its very high peak,

compared to the other bins; this is similar to the removal of common words

in documents which would have a high word count. Also, L-Lactic acid is

not important in the context of our selected clinical variables. In total, there

were 444 bins left which we used for analysis. The bins annotations describe

potential signal sources2 and, of course, several bins could be associated

with a single molecule. This leads to a significant repetition in the bin

annotations; there are only 169 distinct annotations for 444 bins. Out of 169

annotations, 131 falls into only three broad categories: glucose related(55),

cholesterol related(14) and fatty acyl chains related(62). We used this

fact to simplify the annotations by using those three labels instead of the

original lists of candidate source metabolites. The remaining 38 annotations
2As an example annotation, here is a list for bin #6: CH3(CH2)n (fatty acyl

chains); CH3 (C26 and C27 from Cholesterol); unknown 5.
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were changed to ”other”. This simplification allowed us to focus on the

interpretability of the topic models, concretely, our inferred topics consist

of bin numbers and simple annotations instead of using original lists which,

although they may be precise from the chemistry point of view, are difficult

to read when presented in a topic format.

Selection of spectra for train and test sets

Not all samples in the MESA data set were associated with clinical variables;

some values were missing. In our analysis, we use only samples for which

we have all the values of our selected six clinical variables. Because we

operate in a supervised learning regime, we can evaluate the performance

of our models. We split all the samples into two groups: training and

test sets. The training set is used for inferring latent variables (topics and

principal components). The test set is used to calculate the performance of

the models. This is a standard approach in machine learning to ensure that

models do not overfit to data. We decided on splitting the data set into

1000 spectra for training and 200 spectra for testing. This was primarily

influenced by our experience of training the models and their run-times.

Training on ∼3,500 spectra was too slow. Special care was taken to select

spectra for which the train and test clinical variables were balanced between

classes. The train and test classes are balanced if 90% confidence intervals

endpoints of both sets were within 10% from each other and also their

means were within 10% from each other. For example, this is how this split

works for Glucose. The 1000 train spectra have a mean Glucose of 98.66,

and the endpoints of the range that contains 90% of that data are 48.31

and 149.02. The test set consists of 200 spectra for which the mean Glucose
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was 96.38 and the endpoints of the range that contains 90% are 50.21 and

142.55. The final split train/test consists of 1000 train spectra and 200 test

spectra for which class balance conditions are fulfilled for all six clinical

variables of our choice thus we are able to use the same train/test sets for

all MESA modelling in this chapter.

4.3.4 Model evaluation

The evaluation of models in this chapter is twofold: (a) strength of prediction

and (b) interpretability of topics. Part (a) is straightforward as we can

use some standard prediction metrics. Part (b) is not easily quantifiable;

we evaluate topics in the context of the clinical variable in question. For

example, when fitting models with Glucose levels, do we observe topics

related to Glucose?

The two prediction metrics we use here are the Pearson product-

moment correlation coefficient r, and the normalised root mean square

error (NRMSE). The former is a standard measure for linear dependency

between two variables. We use a correlation coefficient to assess linear de-

pendency between values of clinical variables from the test set (200 values)

versus predicted values from the models. We arbitrary chose a cut-off value

r > 0.75 as a boundary to indicate a satisfactory relationship between test

values and predictions.

NRMSE is used to asses errors in predictions from our models. A mean

square error (MSE) is a standard measure of goodness of prediction. Its

value is an average squared error: 1
N

∑N
1 (yi − ŷ)2 where yi are data points

and ŷ is a mean value. The reason for squaring the errors is somewhat

traditional and can serve, to our knowledge, three reasons: (a) squaring
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makes all errors positive values so they can be summed up meaningfully, (b)

squaring the errors makes larger errors more pronounced, (c) MSE can be

used as an objective function in optimisation algorithms such as gradient

descent which require differentiable objective functions in order to work3.

Lastly, we take the square root of MSE (it becomes RMSE) so that the

errors are on the same scale as the yi values, and we normalise RMSE by the

standard deviation of the response variable to be able to compare NRMSE

between clinical variables. The full formula for NRMSE is:

NRMSE =

√
1
N

∑N
1 (yi − ŷi)2√

1
N−1

∑N
1 (yi − ȳ)2

where yi is the observed clinical variable for the i-th sample in the test

set, ŷi is i-th predicted value and ȳ is the observed mean value.

NRMSE < 1.0 can be interpreted as: on average errors are less that

one standard deviation. We deem the models with NRMSE < 1.0 and

r > 0.75 to be satisfactory in the prediction task for the clinical variables.

We are primarily interested in the interpretability of our models, but of

course, those models must fit the data, at least in a satisfactory manner.

We use prediction metrics to select good models in order to investigate

topics and try to interpret the patterns found (or lack of).

Choosing number of latent variables

One of the usual problems with any latent variable models is how to decide

on a number of variables K. There are suggestions in the literature (Murphy,

2012), but they are usually of a theoretical nature and not always practical
3We potentially could use absolute value of errors |yi − ŷi| as we do not require

differentiability (|x| is not differentiable at zero).
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to apply. For example, in the case of SLDA, running-time can take days

for a large enough data set and a number of topics. Any strategy requiring

fitting the model for a range of Ks and calculating some score to help to

find optimal K is not feasible for us due to its high cost. Our solution

to this problem was by fixing K for 2, 5, 10, 15 and 20 topics. This

approach provides some insight as to what happens when a number of

topics increases.

4.4 Results

4.4.1 MESA study data

In this section, we describe the results of fitting models to the MESA

data. Our primary model is SLDA, but we also fit additional models:

PCAEN, LDAEN and SLDAEN. The EN suffix indicates that those are

a combination of latent variable models (PCA, LDA and SLDA) with

ElasticNet linear regression. All models were fitted for each of our chosen

clinical variables: height, BMI, total cholesterol, LDL cholesterol, HDL

cholesterol and glucose. Each model for each clinical variable is fitted with

five different topic numbers K = 2, 5, 10, 15, 20. This gives 20 variants per

clinical variable, 120 variants in total.

Convergence in topic models

All our models other than the PCA use collapsed Gibbs sampling for

inference. Gibbs sampler is a Markov Chain Monte Carlo (MCMC) type of

algorithm. It is a standard procedure for MCMC to assess the convergence

of the log-likelihood of the model to target distribution in the data. The
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Figure 4.4: Assessing sLDA model convergence on Glucose example

key question is how many iterations of Gibbs sampling must be performed,

so that the Markov Chain converges to its stationary distribution. This

number of iterations must be executed in a reasonable amount of time,

given available hardware. Within the timescale of our project, a reasonable

amount of time translates to a couple of days at most. This depends on

hardware; we used 24-core virtual machines on Google Cloud Platform.

We run our experiments using an increasing number of iterations Niter:

starting with 2000, moving to 5000 and finally reaching 10,000 iterations

where all our models are converged. Each time we plotted log-likelihood

as in Figure 4.4. This Figure is specific to SLDA and Glucose as a clinical

variable, but it gives a general idea of how those plots work. The left

panel shows the value of not normalised log-likelihood over a number of

iterations. In this kind of plot, we look for the likelihood to plateau to the

right (high end of the number of iterations). The values of non-normalised

log-likelihood might be high. With high values of this magnitude, it may

be hard to assess if the log-likelihood plateaued or not. The solution to this
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problem is in the right panel of Figure 4.4. In this plot, we show the first

differences between the last ND = 200 values of the likelihood. The first

difference is defined as D[n] = loglikelihood[n+1]− loglikelihood[n] where

n = Niter −ND, . . . , Niter. The idea is that if the log-likelihood converged,

the differences should oscillate around zero, as seen in this case on the

right panel. To put a numeric measure on this visual intuition, we created

a metric representing a log-likelihood difference standard score (LDSS)

defined as the mean of the differences, D̄, over the standard deviation of

the differences:

LDSS =
D̄√

1
N

∑N−1
1 (Di − D̄)2

A value of LDSS less than 1.0 is an indicator that the model converged

successfully. In fact, for all our models, for each of the six variables of interest,

we observed LDSS < 0.2 with the number of iterations Niter = 10, 000 and

the number of differences ND = 2000, giving us confidence that the Gibbs

sampling procedure converged successfully.

Prediction results

Six clinical variables were used for fitting the models. We defined the

conditions for a model to be considered satisfactory in the prediction task

to be NRMSE < 1.1 and r > 0.7. Models for two clinical variables:

HDL cholesterol and Glucose, fulfilled these criteria. The models for other

variables did not produce adequate results. Table 4.1 presents detailed

results for the two clinical variables: Glucose and HDL cholesterol. We

wish to highlight a number of observations. (A) the SLDA model prediction

is satisfactory but using just topics from SLDA and combining them with
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linear regression provides better results. (B) Unsupervised LDA topics

combined with ElasticNet is as good, or slightly better than SLDAEN,

suggesting that SLDA did not infer better-related topics with regards to

the response variable. (C) PCA combined with ElasticNet outperforms

topics models in the prediction task. This is perhaps unsurprising as the

objective of PCA is to find a direction of greatest variability in the data thus

providing excellent representation in the lower dimension. Topic models on

the other hand focus on proving easy interpretability of the model which

might not help the linear regression score highly on the prediction task.

100 200 300

glucose true

80

90

100

110

120

130

140

150

g
lu

co
se

 p
re

d
ic

te
d

SLDA corr coeff: 0.762

100 200 300

glucose true

60

80

100

120

140

160

180

200

g
lu

co
se

 p
re

d
ic

te
d

LDAEN corr coeff: 0.905

100 200 300

glucose true

50

100

150

200

250

300

350

g
lu

co
se

 p
re

d
ic

te
d

PCAEN corr coeff: 0.958

40 60 80 100

hdl_chol true

38

40

42

44

46

h
d
l_

ch
o
l 
p
re

d
ic

te
d

SLDA corr coeff: 0.761

40 60 80 100

hdl_chol true

30

40

50

60

70

h
d
l_

ch
o
l 
p
re

d
ic

te
d

LDAEN corr coeff: 0.739

40 60 80 100

hdl_chol true

30

40

50

60

70

80

90

100

h
d
l_

ch
o
l 
p
re

d
ic

te
d

PCAEN corr coeff: 0.826
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Figure 4.5: Scatter plots for K=15 topics

Nevertheless, in many cases, the performance of all the models is compa-

rable suggesting that topic models have proven to come up with reasonable

latent variables to represent the data. For illustration see Figure 4.5, show-

ing the case with K = 15, top row panels represent models for Glucose and
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bottom row panels for HDL cholesterol. The models are arranged from

left to right in order of performance, on the left SLDA, LDAEN in the

middle, and PCAEN on the right. The metrics from Table 4.1 show which

models perform the best but by examining the scatter plots we note that

although there are differences, all models capture the linear nature of the

relationship between the predicted values and the actual values from the

test set. Looking at the scale of the axes we note that SLDA makes more

substantial errors in the prediction than PCA which has both axes on the

same scale. Errors can also be visually assessed by looking at the spread of

the “cloud” where the data points form. For example, for HDL cholesterol,

the left panel for SLDA has NRMSE≈1.0 while the right panel for PCAEN

has NRMSE=0.56.

We investigate how to choose a number of topics by fixing K for 2, 5, 10,

15 and 20 topics and watching how it influences the prediction performance

metrics. First, let us notice that very high values for K will defeat our

goal of having interpretable models. In the most extreme case, K would

approach a number of spectral bins. This would increase the prediction

performance in the models with linear regression as ElasticNet is very

effective in picking up variables in the data, so the prediction metrics are

rather good. We confirmed this by running ElasticNet on all 444 spectral

bins, i.e. without any latent variable models, and obtained correlations

coefficients and NRMSE which were better than any of the models with

latent variables. On the other hand, K=2 reduces the dimensionality of the

spectra too much, resulting in poor prediction performance. This approach

gives some insight as to what happens when a number of topics increases

but it is possible only in supervised learning. In unsupervised learning it
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is hard to construct such a metric because we do not make a prediction,

an error cannot be calculated. A goodness of fit metric could help to

make a judgement about choices of a number of topics. One such metric

is perplexity. Its origin is the information theory and it is frequently used

in natural language processing as a metric to evaluate how well the model

predicts a set of documents w. Perplexity is defined as:

perplexity(w) = exp

{
− 1

D

D∑
d=1

log p(wd|β,θd)

}
Lower perplexity indicates a better fit between the model and the

data. The model is less surprised or perplexed by the sample. In practice,

perplexity may not always agree which human intuition. Chang et al. (2009)

show that for text documents, perplexity and human perceived topics may

not be correlated, and sometimes may even be anti-correlated. There are

alternatives to perplexity which were investigated by Wallach et al. (2009).

Despite the differences in the prediction performance, we consider that

for K=10 and K=15 all the models performed, at least at a satisfactory

level and this conclusion allows us to focus on the interpretation of the

topics. Our primary goal was to find topics which may potentially lead to

interesting biological insights, not a prediction of clinical variables from

NMR spectra.

In Appendix B (page 134) we included a full listings of topics (from

SLDA and LDA) and principal components inferred from MESA data.

Before we present the selected findings, we describe the format we use for

reporting topics. Here is an example topic:

LDA 10 topics
Topic 0
reg. coef. hdl_chol: 34.323
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reg. coef. glucose: -26.383
53 fatty acyl chains
5 cholesterol
6 cholesterol
4 cholesterol
502 other
7 cholesterol
282 other
119 fatty acyl chains
120 fatty acyl chains
283 glucose

In the first line, a model name and a number of topics are stated. Here

we show4 Topic 0. Next, we have regression coefficients for this topic from

the linear regression model. In the case of LDA and PCA, there will be

two regression coefficients values for the two variables that we focus on:

HDL cholesterol and Glucose. LDA and PCA models are unsupervised

methods, so the clinical variables do not play any part in fitting the topics;

there is just one set of topic irrespective of any clinical variables. Next, we

have a list of the top ten spectral bins in the topics, in order of importance.

Each row consists of a bin number5 and a label. The labels are simplified

bins annotations (see Section 4.3.3 for details). Notably, in this particular

topic, we have four adjacent bins with contributions from cholesterol and a

positive regression coefficient for HDL cholesterol indicating that this topic

has a positive contribution in cholesterol prediction.

We now focus on the SLDA results for Glucose. We fitted the SLDA

model for Glucose for K=2, 5, 10, 15 and 20 topics. For K=2 none of the

two topics emphasises Glucose, which is consistent with the metrics in Table

4.1 where all the models for K=2 and Glucose yielded insufficient correlation

coefficients. For K=5, the topic with the highest regression coefficient of

336.08 contains nine Glucose bins:

SLDA 5 topics
Topic 3, reg. coef. 336.08
4 cholesterol

4Topics are numbered starting with zero (Python convention).
5Full list of spectral bins with annotations is available in Appendix B (page 134).
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309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
323 glucose
501 glucose
365 glucose

We have a similar situation for K=10 and K=15. We present the topics

with the highest regression coefficients.

SLDA 10 topics
Topic 7, reg. coef. 328.28
4 cholesterol
53 fatty acyl chains
309 glucose
502 other
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
323 glucose

In the case of K=15, we observe that topic 10 is almost identical to

Topic 3 for K=5. The only difference is that the last two bins are in reverse

order.

SLDA 15 topics
Topic 10, reg. coef. 352.843
4 cholesterol
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
323 glucose
365 glucose
501 glucose

It is also worth noting that for K=15 and K=20 there are topics which

consist exclusively of Glucose bins, for example:

SLDA 15 topics
Topic 11, reg. coef. 90.959
367 glucose
309 glucose
325 glucose
283 glucose
289 glucose
311 glucose
388 glucose
368 glucose
500 glucose
399 glucose

111



CHAPTER 4. SUPERVISED LATENT DIRICHLET ALLOCATION FOR CONTINUOUS
RESPONSE IN 1H NMR DATA

The results above show that the SLDA models for Glucose not only give

good prediction performance but also give topics which are clearly Glucose

focused. This is an important confirmation that we can model clinical

variables using SLDA. We expected this result as Glucose is directly present

in the NMR spectra. Although a Glucose pattern might seem simple to

find, its metabolic profile is complex, with many peaks which frequently

overlap with other molecules. We must note that LDA and PCA also have

Glucose only topics. LDA for all values of K other than K=2 (for tables

with K=2 see Appendix B, page 134) produced all Glucose topics with high

correlation coefficients.

LDA 5 topics
Topic 3
reg. coef. glucose:

370.689
367 glucose
309 glucose
325 glucose
311 glucose
388 glucose
500 glucose
501 glucose
365 glucose
323 glucose
310 glucose

LDA 10 topics
Topic 7
reg. coef. glucose:

400.667
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
501 glucose
365 glucose
323 glucose
310 glucose

LDA 15 topics
Topic 13
reg. coef. glucose:

391.078
309 glucose
367 glucose
325 glucose
311 glucose
388 glucose
500 glucose
365 glucose
501 glucose
323 glucose
310 glucose

LDA 20 topics
Topic 14
reg. coef. glucose:

461.921
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
323 glucose
500 glucose
501 glucose
365 glucose
310 glucose

The third principal component (PC3) from PCA is all Glucose. This is an

important observation as PCA models the directions of the most significant

variability in the data. PC3 inform us that, regardless of any clinical

variables, the MESA data set strongly vary in the direction associated with
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Glucose bins. Glucose bins are variables which tend to vary together in this

data set.

Principal component 3 (PC3)
reg. coef. glucose: 0.129
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
323 glucose
500 glucose
501 glucose
365 glucose
310 glucose

This explains why SLDA and LDA inferred the Glucose topics. The

SLDA model is perhaps not more useful in this case compared to LDA or

PCA combined with linear regression which can provide as good or a better

result.

We wow switch focus to the HDL cholesterol results. For K=2 only

PCAEN gives a satisfactory prediction indicating that key spectral bins are

present in the two first principal components (we only list top ten scores):

Principal component 1 (PC1)
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
8 cholesterol
6 cholesterol
57 fatty acyl chains
120 fatty acyl chains
119 fatty acyl chains
123 other

Principal component 2 (PC2)
4 cholesterol
281 other
5 cholesterol
282 other
52 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
51 fatty acyl chains
309 glucose

Out of all the bins in PC1 and PC2, let us focus on spectral bins 4 to

8 related to cholesterol and bins 51-53 and 81 related to fatty acyl chains.

Those bins play a role in the topics which scored the highest correlation

coefficients in the SLDA and LDA models. Let us start with SLDA:
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SLDA, 5 topics
Topic 1, reg. coef. 169.752
53 fatty acyl chains
4 cholesterol
281 other
502 other
5 cholesterol
282 other
52 fatty acyl chains
6 cholesterol
51 fatty acyl chains
7 cholesterol

SLDA, 10 topics
Topic 2, reg. coef. 187.643
53 fatty acyl chains
4 cholesterol
281 other
5 cholesterol
282 other
502 other
52 fatty acyl chains
51 fatty acyl chains
6 cholesterol
119 fatty acyl chains

SLDA, 15 topics
Topic 1, reg. coef. 196.7
53 fatty acyl chains
4 cholesterol
281 other
5 cholesterol
282 other
502 other
52 fatty acyl chains
6 cholesterol
119 fatty acyl chains
118 fatty acyl chains

SLDA, 15 topics
Topic 11, reg. coef. 181.526
53 fatty acyl chains
4 cholesterol
5 cholesterol
502 other
282 other
6 cholesterol
281 other
7 cholesterol
120 fatty acyl chains
52 fatty acyl chains

Similar topic composition exists for the LDA topics. Here are LDA

topics with the highest correlation coefficients for HDL cholesterol.

LDA, 5 topics
Topic 1
reg. coef. hdl_chol: 233.040
53 fatty acyl chains
4 cholesterol
281 other
502 other
5 cholesterol
282 other
52 fatty acyl chains
6 cholesterol
51 fatty acyl chains
7 cholesterol

LDA, 10 topics
Topic 2
reg. coef. hdl_chol: 232.685
53 fatty acyl chains
4 cholesterol
281 other
52 fatty acyl chains
282 other
5 cholesterol
502 other
51 fatty acyl chains
50 fatty acyl chains
118 fatty acyl chains

LDA, 15 topics
Topic 14
reg. coef. hdl_chol: 209.533
4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
49 other
356 other
354 other
117 fatty acyl chains
53 fatty acyl chains

LDA, 20 topics
Topic 19
reg. coef. hdl_chol: 237.779
4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
117 fatty acyl chains
356 other
53 fatty acyl chains
354 other
118 fatty acyl chains
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4.5 Discussion

In this chapter, we evaluated SLDA, a probabilistic model for supervised

learning, in the context of NMR metabolomics data with continuous response.

We chose six response variables to test SLDA, and obtained good predictive

metrics for two: Glucose and HDL Cholesterol. We compared the prediction

results of SLDA with three other models which were a combination of the

latent variable models and ElasticNet linear regression. We repeated all the

modelling for K=2, 5, 10, 15 and 20 topics. We found that the predictive

performance of most models was good with the exception of K=2. The poor

performance of K=2 can be explained by the fact that NMR metabolomics

data is inherently multivariate and extreme reduction of dimensionality

to just 2D leads to too much loss of information. PCA combined with

ElasticNet was slightly superior when the performance metrics were carefully

scrutinised, but the interpretability of principal components was not as

easy as it was for topics. SLDA and LDA topics were similar. Overall,

on this data, LDA combined with ElasticNet is the best combination of

interpretability and prediction.

Good prediction metrics are important but in the context of metabolomics

(and omics in general) interpretability of the models is as important if not

more. We analysed inferred topics from our models and found that they are

informative in the context of the response variable. Especially good topics

were inferred for Glucose. Glucose may seem to be a simple metabolite

to predict in urine. However, its complex NMR signature (see Fig 4.6)

consisting of 48 peaks could be seen as complex as an NMR profile of a

biological process, in which a dozen of metabolites always respond together.

This makes glucose a good model for a more complex set of metabolites. In
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Figure 4.6: 1H NMR spectrum of D-Glucose is a complex profile consisting of 48
peaks. Image source: HMDB Wishart et al. (2018).

conclusion, topic models are an efficient way of finding a high-level pattern

in data. They work well, both in supervised and unsupervised contexts. In

supervised mode, they give good prediction results, but their main strength

is interpretability.

4.5.1 Future work

Work presented in this chapter would benefit from the following extensions

and further research:

1. Evaluation of the models on other NMR metabolomics data sets.

2. Evaluation of other approaches to deciding on the number of topics

K.

3. Trying other inference methods such as variational inference because

Gibbs sampling is an inherently slow procedure.

4. We tested our models only for continuous variables, thus other types

of response variables, e.g. binary should be investigated.
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Table 4.1: A Comparison of the supervised sLDA and unsupervised LDA/PCA
combined with regression. The models with names ending in EN are combinations
with ElasticNet (see section 4.3.2). The column ’prediction’ summarises the
two numerical metrics (corr. coeff. and NRMSE) as follows: ’good’ means
NRMSE < 1.1 and corr.coeff. > 0.7 and ’very good’ means NRMSE < 0.5
and corr.coeff. > 0.9. sLDA and LDA models were inferred with Gibbs sampler.
Each Gibbs sampler run for 10,000 iterations but the first 2,000 iterations were
discarded (burn-in).

corr. coeff. NRMSE prediction LDSS
variable name K model

glucose

2

PCAEN 0.284 0.967
LDAEN 0.161 0.996 0
SLDAEN 0.162 0.996 0
SLDA 0.162 0.994 0

5

PCAEN 0.94 0.364 very good
LDAEN 0.914 0.476 very good 0.015
SLDAEN 0.887 0.571 good 0.02
SLDA 0.668 1.705 0.02

10

PCAEN 0.945 0.356 very good
LDAEN 0.923 0.492 very good 0.021
SLDAEN 0.876 0.612 good -0.005
SLDA 0.736 0.883 good -0.005

15

PCAEN 0.958 0.317 very good
LDAEN 0.905 0.556 good 0.177
SLDAEN 0.858 0.647 good 0.016
SLDA 0.762 0.774 good 0.016

20

PCAEN 0.958 0.32 very good
LDAEN 0.909 0.585 good 0.09
SLDAEN 0.864 0.622 good 0.005
SLDA 0.794 1.333 0.005

hdl_chol

2

PCAEN 0.771 0.636 good
LDAEN 0.358 0.932 0
SLDAEN 0.359 0.932 0
SLDA 0.359 0.954 0

5

PCAEN 0.776 0.632 good
LDAEN 0.754 0.671 good 0.015
SLDAEN 0.757 0.666 good 0.021
SLDA 0.733 0.782 good 0.021

10

PCAEN 0.817 0.579 good
LDAEN 0.744 0.69 good 0.021
SLDAEN 0.745 0.689 good 0
SLDA 0.713 0.823 good 0

15

PCAEN 0.826 0.564 good
LDAEN 0.739 0.696 good 0.177
SLDAEN 0.719 0.721 good 0.035
SLDA 0.761 1.091 good 0.035

20

PCAEN 0.828 0.563 good
LDAEN 0.749 0.685 good 0.09
SLDAEN 0.738 0.698 good 0.017
SLDA 0.666 1.179 0.017
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Conclusions

In this chapter, we discuss the conclusions of the results chapter, some

general conclusions, and long-term future work.

Simulations

In Chapter 2, we investigated if the generative process for Latent Dirichlet

Allocation can successfully simulate NMR metabolomics spectra. It was

shown by Blei (2012) that LDA can infer topics for various data types but

the reversed process, simulation, was not investigated perhaps because the

bag-of-words model for text is unsuitable for generating text documents.

Our novel approach to simulate NMR spectra with specified underlying

data patterns is reported in this thesis (see Chapter 2). We successfully

demonstrated that the generative process for LDA can produce such realistic

looking NMR spectra and tested that the predefined patterns can be found

by standard tools like PCA. We have confidence that LDA is a valid model

for NMR metabolomics spectra. This also gives us tools (Chapter 3) to

assess the inferred topics in an unsupervised scenario where the evaluation

of performance is difficult without data with known ground truth.
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Unsupervised learning

Chapter 3 is an investigation of LDA inference on NMR metabolomics data

sets. We began with simulated data from Chapter 2. The LDA inference

of topics performed well, also in comparison with PCA. The most complex

simulation with overlapping topics resembling a real biological system was

a highlight of the LDA performance were it inferred correctly 87.5% of

the metabolites which were shared between topics and missed only 10%

of non-shared between topics metabolites. For the S. mansoni data set,

LDA also performed well, finding all the metabolites associated with the

disease indicated in the literature but also suggested new metabolites to

investigate.

Supervised learning

Chapter 4 focused on evaluation SLDA, a supervised probabilistic model,

in the context of NMR metabolomics data with continuous response. We

modelled six response variables, two of them yielded good predictive metrics:

Glucose and HDL Cholesterol. For comparison with SLDA, we trained three

other models. Those models were a hybrid of latent variable models and

ElasticNet linear regression. A decision about the ”right” number of topics

was approached empirically by modelling for K=2, 5, 10, 15 and 20 topics.

The predictive performance of most models was good except for K=2. K=2

represents reducing the dimensionality of multivariate data to points on a

2D plane. Such a process most likely removes too much information from

the data. Overall, on MESA data, all models performed well, but LDA

combined with ElasticNet struck a good balance between interpretability

and prediction performance. Interpretability of models in omics may be even
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more critical than their predictive performance. For example, informative

topics were inferred for Glucose. Glucose has a complex metabolic profile

that can be compared to a biological process where a dozen metabolites

always respond together. In supervised mode, topic models give good

prediction results, but their main strength is interpretability.

5.1 Future work

There is a number of possible additions to the results chapters. Our

simulations work should be considered as a proof of principle. Creating a

software tool for this work could be considered. For example, providing

a user’s interface to allow researchers to simulate data and iterate on the

results. The simulation engine could be extended to include features of

real NMR spectra such as baseline noise or peak shifts. More parameters

could be added, for example, the width of a peak. A broader and more

comprehensive database of metabolites could be extended to include more

molecules available for simulation.

Considering the unsupervised LDA chapter, we note that metabolites

with high probabilities vary together in a sample so that they could be

mapped to a biological process. Such mapping could provide a new perspec-

tive to look at NMR metabolomics data and contribute to new biological

insights. Another possible extension of the proposed analysis in Chapter

3 is to combine metabolites highlighted in topics of just one model, e.g.

metabolites with high PCA loadings. Also, more latent variable methods

could be investigated to be compared with LDA, for example, Non-negative

Matrix factorisation (Lee and Seung, 2001).

Future work on the supervised learning from Chapter 4 could include
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evaluation of the models on other NMR metabolomics data sets. Although

the MESA data set was a large NMR study, further testing on other NMR

metabolomics data sets would be a good idea. We tested our models only

for continuous variables, other types of the response variable, for example,

a binary response. Such a task would require to adjust the choice of our

models. ElasticNet would need to be replaced with Logistic Regression. The

SLDA model would need adjustment to cater for non-continuous variables by

modelling the response variable with the Generalized Linear Model (GLM)

instead of Normal distribution. In every dimensionality reduction method,

choosing a number of lower dimensions K (in our case a number of topics)

is always a challenge. It would be beneficial to survey other approaches

and evaluate their usefulness to our problem. Lastly, Gibbs sampling in our

experience was slow so perhaps other inference methods such as variational

inference (VI) would bring improvement in running-time of models training.

Long-term future work, outside of what is related to the results chapters,

could look at broader possibilities of using probabilistic models in NMR

metabolomics. There are many other types of LDA models. It could be

desirable to survey them and see what possibilities there are for our domain.

For example, Dynamic Topic Model (Blei and Lafferty, 2006) can capture

how topics evolve over time. This could have applications for metabolomics

studies with time courses. The Dynamic Topic Model seems to work for

short time series which is what we usually get in metabolomics. We could

observe some topic representing a quiescent state, nothing much happening,

maybe another couple of topics representing some aspects of infection or a

topic is quiescent initially, then indicates infection and then it is quiescent

again but differently than at the beginning.
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Visualisation of topics is an exciting avenue to explore. In this thesis,

we only presented topics by listing the top ten of their variables. There

are sophisticated and interactive ways to visualise topic models, most

notable is LDAVis (Sievert and Shirley, 2014) which would be interesting to

explore. The apparent problem is the presentation of interactive methods

in written material, but this should not be a reason not to pursue this line

of investigation.
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Appendix A

Unsupervised learning:

Statistical tests for the S.

mansoni data

Table A.1: Two-tailed p-values for Kolmogorov-Smirnov test applied pairwise
on S. mansoni NMR spectra in LDA topic space for late treatments group (see
Figure 3.6). The p-value smaller 1% (marked red) indicates that we can reject
the null hypothesis of equal averages for the given pair of topics.

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

Topic 0
Topic 1 0.0875
Topic 2 3.06e-05 0.00391
Topic 3 1.51e-05 1.57e-09 8.5e-17
Topic 4 0.0401 0.529 0.0065 1.02e-11
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Table A.2: Two-tailed p-values for t-test applied pairwise on S. mansoni NMR
spectra in LDA topic space for late treatments group (see Figure 3.6). The
p-value smaller 1% (marked red) indicates that we can reject the null hypothesis
of equal averages for the given pair of topics.

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

Topic 0
Topic 1 0.15
Topic 2 4.59e-06 0.0025
Topic 3 0.000979 4.08e-07 3.62e-15
Topic 4 0.0024 0.206 0.0057 4.19e-11

Table A.3: Two-tailed p-values for Kolmogorov-Smirnov test applied pairwise
on S. mansoni NMR spectra in principal component space for late treatments
group (see Figure 3.7). The p-value smaller 1% (all in this case) indicates that
we can reject the null hypothesis of equal averages for the given pair of principal
components.

Comp. 0 Comp. 1 Comp. 2 Comp. 3 Comp. 4

Comp. 0
Comp. 1 5.99e-10
Comp. 2 5.99e-10 2.92e-11
Comp. 3 1.01e-08 0.00132 2.24e-10
Comp. 4 5.99e-10 0.00391 3.92e-24 7.32e-06

Table A.4: Two-tailed p-values for t-test applied pairwise on S. mansoni NMR
spectra in principal component space for late treatments group (see Figure
3.7). The p-value smaller 1% (marked red) indicates that we can reject the null
hypothesis of equal averages for the given pair of principal components.

Comp. 0 Comp. 1 Comp. 2 Comp. 3 Comp. 4

Comp. 0
Comp. 1 0.115
Comp. 2 0.00117 0.0484
Comp. 3 0.211 0.326 1.25e-07
Comp. 4 0.9 0.0054 4.4e-17 2.01e-05
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Table A.5: Two-tailed p-values for Kolmogorov-Smirnov test applied pairwise to
study the selected metabolites levels for late treatments group (see Figure 3.8).
The p-value smaller 1% (all in this case) indicates that we can reject the null
hypothesis of equal averages for the given pair of metabolites levels.

PAG_7.43_m p-CG_2.3_s N-AG_2.06_s OGT_3.01_t Pyr_2.36_s

PAG_7.43_m
p-CG_2.3_s 3.49e-12
N-AG_2.06_s 0.000746 1.8e-23
OGT_3.01_t 1.61e-06 1.59e-30 3.86e-14
Pyr_2.36_s 1.73e-25 1.51e-05 2.26e-39 5.55e-42

Table A.6: Two-tailed p-values for t-test applied pairwise to study the selected
metabolites levels for late treatments group (see Figure 3.8). The p-value smaller
1% (marked red) indicates that we can reject the null hypothesis of equal averages
for the given pair of metabolites levels.

PAG_7.43_m p-CG_2.3_s N-AG_2.06_s OGT_3.01_t Pyr_2.36_s

PAG_7.43_m
p-CG_2.3_s 4.49e-31
N-AG_2.06_s 0.116 1.78e-19
OGT_3.01_t 2.93e-08 2.03e-24 7.03e-14
Pyr_2.36_s 4.13e-33 1.16e-10 1.27e-46 3e-34
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Appendix B

Supervised learning: MESA

data full results

Listing B.1: Glucose-SLDA, 2 topics
----------------
glucose SLDA, 2 topics
---------------
Topic 0, reg. coef. 90.92

53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
6 cholesterol
8 cholesterol
57 fatty acyl chains
120 fatty acyl chains
123 other

119 fatty acyl chains

Topic 1, reg. coef. 100.728
53 fatty acyl chains
4 cholesterol
502 other
281 other
5 cholesterol
123 other
6 cholesterol
7 cholesterol
52 fatty acyl chains
367 glucose

Listing B.2: Glucose-SLDA, 5 topics
----------------
glucose SLDA, 5 topics
---------------
Topic 0, reg. coef. 104.469

53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
8 cholesterol
6 cholesterol
4 cholesterol
57 fatty acyl chains
120 fatty acyl chains
123 other

Topic 1, reg. coef. 105.045
53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
6 cholesterol
8 cholesterol
4 cholesterol
144 fatty acyl chains
57 fatty acyl chains

120 fatty acyl chains

Topic 2, reg. coef. 72.096
53 fatty acyl chains
4 cholesterol
281 other
502 other
5 cholesterol
7 cholesterol
52 fatty acyl chains
282 other
6 cholesterol
51 fatty acyl chains

Topic 3, reg. coef. 336.08
4 cholesterol
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
323 glucose
501 glucose
365 glucose

Topic 4, reg. coef. 54.971
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4 cholesterol
123 other
281 other
502 other
5 cholesterol
367 glucose

309 glucose
325 glucose
283 glucose
399 glucose

Listing B.3: Glucose-SLDA, 10 topics
----------------
glucose SLDA, 10 topics
---------------
Topic 0, reg. coef. 21.43

53 fatty acyl chains
5 cholesterol
6 cholesterol
7 cholesterol
282 other
119 fatty acyl chains
283 glucose
120 fatty acyl chains
118 fatty acyl chains
333 other

Topic 1, reg. coef. 109.676
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
8 cholesterol
6 cholesterol
502 other
57 fatty acyl chains
120 fatty acyl chains
119 fatty acyl chains
123 other

Topic 2, reg. coef. 44.824
53 fatty acyl chains
4 cholesterol
281 other
282 other
5 cholesterol
52 fatty acyl chains
502 other
51 fatty acyl chains
50 fatty acyl chains
118 fatty acyl chains

Topic 3, reg. coef. 10.586
53 fatty acyl chains
6 cholesterol
5 cholesterol
4 cholesterol
333 other
372 glucose
123 other
7 cholesterol
526 other
289 glucose

Topic 4, reg. coef. 6.898
53 fatty acyl chains
4 cholesterol
50 fatty acyl chains
49 other
281 other
5 cholesterol
282 other
52 fatty acyl chains
154 other

6 cholesterol

Topic 5, reg. coef. 30.368
502 other
53 fatty acyl chains
4 cholesterol
5 cholesterol
6 cholesterol
123 other
7 cholesterol
220 fatty acyl chains
225 fatty acyl chains
226 fatty acyl chains

Topic 6, reg. coef. 110.82
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
6 cholesterol
8 cholesterol
502 other
144 fatty acyl chains
57 fatty acyl chains
120 fatty acyl chains
119 fatty acyl chains

Topic 7, reg. coef. 328.28
4 cholesterol
53 fatty acyl chains
309 glucose
502 other
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
323 glucose

Topic 8, reg. coef. 77.762
4 cholesterol
502 other
281 other
123 other
367 glucose
309 glucose
325 glucose
399 glucose
368 glucose
289 glucose

Topic 9, reg. coef. -2.341
53 fatty acyl chains
6 cholesterol
5 cholesterol
7 cholesterol
282 other
119 fatty acyl chains
120 fatty acyl chains
283 glucose
502 other
118 fatty acyl chains
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Listing B.4: Glucose-SLDA,15 topics
----------------
glucose SLDA, 15 topics
---------------
Topic 0, reg. coef. 8.385

53 fatty acyl chains
445 other
444 other
72 other
73 other
443 other
446 other
168 other
165 other
167 other

Topic 1, reg. coef. 43.483
53 fatty acyl chains
4 cholesterol
282 other
5 cholesterol
281 other
502 other
6 cholesterol
52 fatty acyl chains
119 fatty acyl chains
120 fatty acyl chains

Topic 2, reg. coef. 14.565
53 fatty acyl chains
8 cholesterol
502 other
81 fatty acyl chains
57 fatty acyl chains
52 fatty acyl chains
7 cholesterol
9 cholesterol
147 fatty acyl chains
16 other

Topic 3, reg. coef. 20.161
123 other
5 cholesterol
333 other
126 other
6 cholesterol
124 other
119 fatty acyl chains
120 fatty acyl chains
356 other
357 other

Topic 4, reg. coef. 119.323
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
6 cholesterol
8 cholesterol
120 fatty acyl chains
57 fatty acyl chains
123 other
119 fatty acyl chains

Topic 5, reg. coef. 11.013
123 other
333 other
5 cholesterol
126 other
4 cholesterol
502 other
6 cholesterol
124 other
356 other
120 fatty acyl chains

Topic 6, reg. coef. 35.044
53 fatty acyl chains
5 cholesterol
6 cholesterol
7 cholesterol
4 cholesterol
502 other
282 other
119 fatty acyl chains
120 fatty acyl chains

283 glucose

Topic 7, reg. coef. 7.25
53 fatty acyl chains
123 other
5 cholesterol
6 cholesterol
7 cholesterol
126 other
332 glucose
367 glucose
502 other
119 fatty acyl chains

Topic 8, reg. coef. 43.73
502 other
5 cholesterol
4 cholesterol
6 cholesterol
123 other
220 fatty acyl chains
226 fatty acyl chains
225 fatty acyl chains
224 fatty acyl chains
221 fatty acyl chains

Topic 9, reg. coef. 120.851
53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
6 cholesterol
8 cholesterol
144 fatty acyl chains
123 other
5 cholesterol
120 fatty acyl chains

Topic 10, reg. coef. 352.843
4 cholesterol
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
323 glucose
365 glucose
501 glucose

Topic 11, reg. coef. 90.959
367 glucose
309 glucose
325 glucose
283 glucose
289 glucose
311 glucose
388 glucose
368 glucose
500 glucose
399 glucose

Topic 12, reg. coef. 5.367
4 cholesterol
50 fatty acyl chains
49 other
281 other
52 fatty acyl chains
154 other
51 fatty acyl chains
53 fatty acyl chains
160 other
282 other

Topic 13, reg. coef. 8.721
4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
117 fatty acyl chains
49 other
372 glucose
118 fatty acyl chains
354 other

Topic 14, reg. coef. 34.584
4 cholesterol
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281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
117 fatty acyl chains

49 other
118 fatty acyl chains
356 other
53 fatty acyl chains
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Listing B.5: Glucose-SLDA, 20 topics
----------------
glucose SLDA, 20 topics
---------------
Topic 0, reg. coef. 7.513

8 cholesterol
7 cholesterol
81 fatty acyl chains
57 fatty acyl chains
9 cholesterol
147 fatty acyl chains
10 cholesterol
56 fatty acyl chains
11 cholesterol
148 fatty acyl chains

Topic 1, reg. coef. 3.453
123 other
372 glucose
126 other
81 fatty acyl chains
213 fatty acyl chains
375 glucose
356 other
374 glucose
399 glucose
357 other

Topic 2, reg. coef. 18.062
53 fatty acyl chains
4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
117 fatty acyl chains
49 other
118 fatty acyl chains
81 fatty acyl chains

Topic 3, reg. coef. 23.368
53 fatty acyl chains
4 cholesterol
7 cholesterol
144 fatty acyl chains
81 fatty acyl chains
275 other
8 cholesterol
145 fatty acyl chains
57 fatty acyl chains
499 other

Topic 4, reg. coef. 10.337
289 glucose
309 glucose
325 glucose
367 glucose
388 glucose
311 glucose
283 glucose
365 glucose
500 glucose
501 glucose

Topic 5, reg. coef. 29.572
53 fatty acyl chains
6 cholesterol
7 cholesterol
5 cholesterol
4 cholesterol
502 other
120 fatty acyl chains
119 fatty acyl chains
52 fatty acyl chains
118 fatty acyl chains

Topic 6, reg. coef. 14.934
53 fatty acyl chains
502 other
6 cholesterol
7 cholesterol
5 cholesterol
4 cholesterol
120 fatty acyl chains
119 fatty acyl chains
232 fatty acyl chains

231 fatty acyl chains

Topic 7, reg. coef. 6.019
53 fatty acyl chains
17 other
22 other
16 other
21 other
27 other
26 other
7 cholesterol
72 other
18 other

Topic 8, reg. coef. 114.534
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
8 cholesterol
502 other
6 cholesterol
120 fatty acyl chains
57 fatty acyl chains
119 fatty acyl chains
123 other

Topic 9, reg. coef. 13.55
53 fatty acyl chains
4 cholesterol
49 other
50 fatty acyl chains
281 other
5 cholesterol
282 other
154 other
6 cholesterol
52 fatty acyl chains

Topic 10, reg. coef. 9.46
123 other
126 other
356 other
400 glucose
399 glucose
368 glucose
367 glucose
124 other
357 other
7 cholesterol

Topic 11, reg. coef. 14.224
502 other
5 cholesterol
6 cholesterol
123 other
4 cholesterol
220 fatty acyl chains
226 fatty acyl chains
225 fatty acyl chains
16 other
224 fatty acyl chains

Topic 12, reg. coef. 115.548
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
8 cholesterol
144 fatty acyl chains
6 cholesterol
120 fatty acyl chains
57 fatty acyl chains
119 fatty acyl chains

Topic 13, reg. coef. 5.774
502 other
6 cholesterol
5 cholesterol
445 other
123 other
444 other
7 cholesterol
120 fatty acyl chains
72 other
73 other

Topic 14, reg. coef. 340.676
4 cholesterol

138



APPENDIX B. SUPERVISED LEARNING: MESA DATA FULL RESULTS

502 other
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
5 cholesterol
500 glucose
501 glucose

Topic 15, reg. coef. 128.103
502 other
5 cholesterol
282 other
123 other
6 cholesterol
367 glucose
309 glucose
283 glucose
325 glucose
501 glucose

Topic 16, reg. coef. 20.483
17 other
16 other
22 other
72 other
21 other
26 other
27 other
73 other
445 other
18 other

Topic 17, reg. coef. 10.922

4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
280 other
50 fatty acyl chains
333 other
220 fatty acyl chains
218 fatty acyl chains
225 fatty acyl chains

Topic 18, reg. coef. 39.455
4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
333 other
280 other
220 fatty acyl chains
225 fatty acyl chains
218 fatty acyl chains

Topic 19, reg. coef. 12.665
4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
280 other
50 fatty acyl chains
220 fatty acyl chains
332 glucose
225 fatty acyl chains
218 fatty acyl chains

Listing B.6: hdl-chol-SLDA-2-topics.txt
----------------
hdl_chol SLDA, 2 topics
---------------
Topic 0, reg. coef. 17.958

53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
6 cholesterol
8 cholesterol
57 fatty acyl chains
120 fatty acyl chains
123 other

144 fatty acyl chains

Topic 1, reg. coef. 59.685
53 fatty acyl chains
4 cholesterol
502 other
281 other
5 cholesterol
123 other
6 cholesterol
7 cholesterol
52 fatty acyl chains
367 glucose

Listing B.7: hdl-chol-SLDA-5-topics.txt
----------------
hdl_chol SLDA, 5 topics
---------------
Topic 0, reg. coef. 23.974

53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
8 cholesterol
6 cholesterol
4 cholesterol
57 fatty acyl chains
120 fatty acyl chains
123 other

Topic 1, reg. coef. 169.752
53 fatty acyl chains
4 cholesterol
281 other
502 other
5 cholesterol
282 other
52 fatty acyl chains
6 cholesterol
51 fatty acyl chains
7 cholesterol

Topic 2, reg. coef. 54.86
53 fatty acyl chains
4 cholesterol
7 cholesterol
502 other
81 fatty acyl chains
6 cholesterol
5 cholesterol
281 other
8 cholesterol
144 fatty acyl chains

Topic 3, reg. coef. 16.538
367 glucose
309 glucose
325 glucose
311 glucose
388 glucose
365 glucose
500 glucose
501 glucose
323 glucose
310 glucose

Topic 4, reg. coef. -8.608
123 other
280 other
72 other
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126 other
333 other
16 other
50 fatty acyl chains

73 other
17 other
445 other

Listing B.8: hdl-chol-SLDA-10-

topics.txt
----------------
hdl_chol SLDA, 10 topics
---------------
Topic 0, reg. coef. 18.698

53 fatty acyl chains
5 cholesterol
6 cholesterol
7 cholesterol
4 cholesterol
502 other
282 other
120 fatty acyl chains
119 fatty acyl chains
283 glucose

Topic 1, reg. coef. 18.353
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
8 cholesterol
502 other
6 cholesterol
57 fatty acyl chains
120 fatty acyl chains
119 fatty acyl chains
123 other

Topic 2, reg. coef. 187.643
53 fatty acyl chains
4 cholesterol
281 other
5 cholesterol
282 other
502 other
52 fatty acyl chains
51 fatty acyl chains
6 cholesterol
119 fatty acyl chains

Topic 3, reg. coef. 12.036
502 other
4 cholesterol
5 cholesterol
6 cholesterol
123 other
333 other
372 glucose
309 glucose
388 glucose
289 glucose

Topic 4, reg. coef. 23.858
53 fatty acyl chains
50 fatty acyl chains
49 other
5 cholesterol
4 cholesterol
282 other
6 cholesterol

154 other
160 other
448 other

Topic 5, reg. coef. 27.394
502 other
5 cholesterol
4 cholesterol
6 cholesterol
123 other
220 fatty acyl chains
226 fatty acyl chains
225 fatty acyl chains
224 fatty acyl chains
221 fatty acyl chains

Topic 6, reg. coef. 25.01
53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
6 cholesterol
8 cholesterol
144 fatty acyl chains
5 cholesterol
120 fatty acyl chains
57 fatty acyl chains

Topic 7, reg. coef. 38.684
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
501 glucose
365 glucose
323 glucose
310 glucose

Topic 8, reg. coef. 71.53
4 cholesterol
281 other
123 other
52 fatty acyl chains
51 fatty acyl chains
280 other
72 other
73 other
126 other
282 other

Topic 9, reg. coef. 1.474
50 fatty acyl chains
49 other
53 fatty acyl chains
526 other
4 cholesterol
275 other
154 other
160 other
51 fatty acyl chains
499 other
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Listing B.9: hdl-chol-SLDA-15-

topics.txt
----------------
hdl_chol SLDA, 15 topics
---------------
Topic 0, reg. coef. 6.188

7 cholesterol
6 cholesterol
5 cholesterol
8 cholesterol
57 fatty acyl chains
120 fatty acyl chains
283 glucose
121 fatty acyl chains
9 cholesterol
56 fatty acyl chains

Topic 1, reg. coef. 196.7
53 fatty acyl chains
4 cholesterol
281 other
5 cholesterol
282 other
502 other
52 fatty acyl chains
6 cholesterol
119 fatty acyl chains
118 fatty acyl chains

Topic 2, reg. coef. -0.119
53 fatty acyl chains
502 other
4 cholesterol
5 cholesterol
444 other
445 other
72 other
52 fatty acyl chains
73 other
282 other

Topic 3, reg. coef. 11.453
53 fatty acyl chains
4 cholesterol
333 other
502 other
289 glucose
309 glucose
368 glucose
283 glucose
282 other
5 cholesterol

Topic 4, reg. coef. 27.436
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
8 cholesterol
6 cholesterol
57 fatty acyl chains
120 fatty acyl chains
119 fatty acyl chains
123 other

Topic 5, reg. coef. 5.333
5 cholesterol
6 cholesterol
502 other
4 cholesterol
281 other
7 cholesterol
289 glucose
50 fatty acyl chains
49 other
526 other

Topic 6, reg. coef. -3.139
53 fatty acyl chains
5 cholesterol
6 cholesterol
4 cholesterol
7 cholesterol
502 other
119 fatty acyl chains

52 fatty acyl chains
120 fatty acyl chains
118 fatty acyl chains

Topic 7, reg. coef. 10.051
5 cholesterol
6 cholesterol
7 cholesterol
289 glucose
281 other
435 other
119 fatty acyl chains
262 other
372 glucose
304 other

Topic 8, reg. coef. 33.821
502 other
4 cholesterol
5 cholesterol
6 cholesterol
123 other
220 fatty acyl chains
226 fatty acyl chains
7 cholesterol
225 fatty acyl chains
224 fatty acyl chains

Topic 9, reg. coef. 42.684
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
8 cholesterol
144 fatty acyl chains
6 cholesterol
120 fatty acyl chains
119 fatty acyl chains
57 fatty acyl chains

Topic 10, reg. coef. 69.639
4 cholesterol
123 other
281 other
502 other
52 fatty acyl chains
51 fatty acyl chains
280 other
282 other
50 fatty acyl chains
126 other

Topic 11, reg. coef. 59.159
4 cholesterol
123 other
281 other
367 glucose
309 glucose
325 glucose
399 glucose
311 glucose
283 glucose
388 glucose

Topic 12, reg. coef. 21.133
50 fatty acyl chains
49 other
4 cholesterol
281 other
154 other
160 other
282 other
448 other
52 fatty acyl chains
170 other

Topic 13, reg. coef. 33.546
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
323 glucose
501 glucose
365 glucose
310 glucose
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Topic 14, reg. coef. 41.126
4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
53 fatty acyl chains

50 fatty acyl chains
49 other
117 fatty acyl chains
8 cholesterol
118 fatty acyl chains
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Listing B.10: hdl-chol-SLDA-20-

topics.txt
----------------
hdl_chol SLDA, 20 topics
---------------
Topic 0, reg. coef. 6.654

7 cholesterol
8 cholesterol
57 fatty acyl chains
9 cholesterol
81 fatty acyl chains
56 fatty acyl chains
147 fatty acyl chains
10 cholesterol
124 other
125 other

Topic 1, reg. coef. 8.582
49 other
50 fatty acyl chains
154 other
160 other
448 other
170 other
449 other
173 other
446 other
313 other

Topic 2, reg. coef. 4.781
53 fatty acyl chains
444 other
445 other
7 cholesterol
8 cholesterol
72 other
73 other
443 other
446 other
81 fatty acyl chains

Topic 3, reg. coef. 28.157
53 fatty acyl chains
144 fatty acyl chains
81 fatty acyl chains
7 cholesterol
145 fatty acyl chains
6 cholesterol
8 cholesterol
120 fatty acyl chains
146 fatty acyl chains
119 fatty acyl chains

Topic 4, reg. coef. 9.218
282 other
280 other
72 other
73 other
289 glucose
17 other
22 other
27 other
21 other
26 other

Topic 5, reg. coef. -7.811
53 fatty acyl chains
5 cholesterol
6 cholesterol
7 cholesterol
4 cholesterol
120 fatty acyl chains
283 glucose
502 other
119 fatty acyl chains
8 cholesterol

Topic 6, reg. coef. 10.49
53 fatty acyl chains
6 cholesterol
5 cholesterol
7 cholesterol
4 cholesterol
502 other
81 fatty acyl chains

275 other
120 fatty acyl chains
144 fatty acyl chains

Topic 7, reg. coef. 13.419
53 fatty acyl chains
502 other
5 cholesterol
4 cholesterol
6 cholesterol
52 fatty acyl chains
220 fatty acyl chains
226 fatty acyl chains
118 fatty acyl chains
16 other

Topic 8, reg. coef. 15.302
53 fatty acyl chains
502 other
7 cholesterol
81 fatty acyl chains
123 other
4 cholesterol
6 cholesterol
224 fatty acyl chains
221 fatty acyl chains
122 fatty acyl chains

Topic 9, reg. coef. 11.497
53 fatty acyl chains
5 cholesterol
289 glucose
372 glucose
6 cholesterol
282 other
73 other
72 other
4 cholesterol
22 other

Topic 10, reg. coef. 29.685
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
6 cholesterol
8 cholesterol
120 fatty acyl chains
502 other
5 cholesterol
119 fatty acyl chains
57 fatty acyl chains

Topic 11, reg. coef. 181.526
53 fatty acyl chains
4 cholesterol
5 cholesterol
502 other
282 other
6 cholesterol
281 other
7 cholesterol
120 fatty acyl chains
52 fatty acyl chains

Topic 12, reg. coef. 39.08
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
6 cholesterol
8 cholesterol
144 fatty acyl chains
5 cholesterol
502 other
120 fatty acyl chains
119 fatty acyl chains

Topic 13, reg. coef. 29.046
502 other
4 cholesterol
5 cholesterol
123 other
220 fatty acyl chains
224 fatty acyl chains
221 fatty acyl chains
225 fatty acyl chains
226 fatty acyl chains
121 fatty acyl chains
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Topic 14, reg. coef. 24.607
309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
323 glucose
500 glucose
365 glucose
501 glucose
310 glucose

Topic 15, reg. coef. 61.639
123 other
309 glucose
325 glucose
399 glucose
500 glucose
311 glucose
388 glucose
501 glucose
400 glucose
365 glucose

Topic 16, reg. coef. 71.425
123 other
309 glucose
325 glucose
399 glucose
311 glucose
388 glucose
500 glucose
400 glucose
501 glucose
365 glucose

Topic 17, reg. coef. 44.984
289 glucose
282 other
367 glucose
368 glucose
72 other
73 other
17 other
16 other
332 glucose
280 other

Topic 18, reg. coef. 45.428
4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
333 other
117 fatty acyl chains
368 glucose
280 other
116 fatty acyl chains

Topic 19, reg. coef. 50.631
4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
117 fatty acyl chains
53 fatty acyl chains
280 other
116 fatty acyl chains
115 fatty acyl chains

Listing B.11: LDA-2-topics.txt
----------------
LDA, 2 topics
---------------
Topic 0, reg. coef. hdl_chol: -25.737

reg. coef. glucose: -5.289
53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
6 cholesterol
8 cholesterol
57 fatty acyl chains
120 fatty acyl chains
123 other

119 fatty acyl chains

Topic 1, reg. coef. hdl_chol: 25.694
reg. coef. glucose: 5.289

53 fatty acyl chains
4 cholesterol
502 other
281 other
5 cholesterol
123 other
6 cholesterol
7 cholesterol
52 fatty acyl chains
367 glucose

Listing B.12: LDA-5-topics.txt
----------------
LDA, 5 topics
---------------
Topic 0, reg. coef. hdl_chol: -75.742

reg. coef. glucose: -5.642
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
8 cholesterol
6 cholesterol
57 fatty acyl chains
4 cholesterol
120 fatty acyl chains
123 other

Topic 1, reg. coef. hdl_chol: 233.040
reg. coef. glucose: -68.511

53 fatty acyl chains
4 cholesterol
281 other
502 other
5 cholesterol
282 other

52 fatty acyl chains
6 cholesterol
51 fatty acyl chains
7 cholesterol

Topic 2, reg. coef. hdl_chol: -78.972
reg. coef. glucose: -30.121

53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
6 cholesterol
8 cholesterol
4 cholesterol
144 fatty acyl chains
57 fatty acyl chains
120 fatty acyl chains

Topic 3, reg. coef. hdl_chol: -39.823
reg. coef. glucose: 370.689

367 glucose
309 glucose
325 glucose
311 glucose
388 glucose
500 glucose
501 glucose
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365 glucose
323 glucose
310 glucose

Topic 4, reg. coef. hdl_chol: -35.474
reg. coef. glucose: -263.401

4 cholesterol
123 other
281 other

502 other
5 cholesterol
6 cholesterol
50 fatty acyl chains
282 other
51 fatty acyl chains
280 other

Listing B.13: LDA-10-topics.txt
----------------
LDA, 10 topics
---------------
Topic 0, reg. coef. hdl_chol: 34.323

reg. coef. glucose: -26.383
53 fatty acyl chains
5 cholesterol
6 cholesterol
4 cholesterol
502 other
7 cholesterol
282 other
119 fatty acyl chains
120 fatty acyl chains
283 glucose

Topic 1, reg. coef. hdl_chol: -97.851
reg. coef. glucose: 36.482

53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
8 cholesterol
502 other
6 cholesterol
57 fatty acyl chains
120 fatty acyl chains
119 fatty acyl chains
123 other

Topic 2, reg. coef. hdl_chol: 232.685
reg. coef. glucose: -60.518

53 fatty acyl chains
4 cholesterol
281 other
52 fatty acyl chains
282 other
5 cholesterol
502 other
51 fatty acyl chains
50 fatty acyl chains
118 fatty acyl chains

Topic 3, reg. coef. hdl_chol: -46.869
reg. coef. glucose: -16.594

502 other
4 cholesterol
5 cholesterol
6 cholesterol
53 fatty acyl chains
123 other
333 other
372 glucose
309 glucose
388 glucose

Topic 4, reg. coef. hdl_chol: 63.374
reg. coef. glucose: -27.574

53 fatty acyl chains
4 cholesterol
50 fatty acyl chains
49 other
5 cholesterol
282 other
281 other
6 cholesterol
154 other

160 other

Topic 5, reg. coef. hdl_chol: 12.913
reg. coef. glucose: -40.995

502 other
5 cholesterol
4 cholesterol
6 cholesterol
123 other
220 fatty acyl chains
226 fatty acyl chains
225 fatty acyl chains
224 fatty acyl chains
221 fatty acyl chains

Topic 6, reg. coef. hdl_chol: -95.996
reg. coef. glucose: 4.169

53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
6 cholesterol
8 cholesterol
144 fatty acyl chains
5 cholesterol
120 fatty acyl chains
57 fatty acyl chains

Topic 7, reg. coef. hdl_chol: -52.856
reg. coef. glucose: 400.667

309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
500 glucose
501 glucose
365 glucose
323 glucose
310 glucose

Topic 8, reg. coef. hdl_chol: -49.870
reg. coef. glucose: -250.550

4 cholesterol
281 other
123 other
52 fatty acyl chains
51 fatty acyl chains
280 other
72 other
73 other
126 other
17 other

Topic 9, reg. coef. hdl_chol: 0.160
reg. coef. glucose: -14.692

50 fatty acyl chains
49 other
53 fatty acyl chains
526 other
275 other
4 cholesterol
154 other
160 other
280 other
500 glucose
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Listing B.14: LDA-15-topics.txt
----------------
LDA, 15 topics
---------------
Topic 0, reg. coef. hdl_chol: -38.598

reg. coef. glucose: 6.480
7 cholesterol
6 cholesterol
5 cholesterol
8 cholesterol
283 glucose
120 fatty acyl chains
57 fatty acyl chains
121 fatty acyl chains
9 cholesterol
285 other

Topic 1, reg. coef. hdl_chol: 165.257
reg. coef. glucose: -32.584

53 fatty acyl chains
4 cholesterol
282 other
281 other
502 other
5 cholesterol
52 fatty acyl chains
119 fatty acyl chains
283 glucose
120 fatty acyl chains

Topic 2, reg. coef. hdl_chol: -52.674
reg. coef. glucose: 43.449

53 fatty acyl chains
8 cholesterol
81 fatty acyl chains
4 cholesterol
52 fatty acyl chains
57 fatty acyl chains
51 fatty acyl chains
281 other
9 cholesterol
147 fatty acyl chains

Topic 3, reg. coef. hdl_chol: 14.700
reg. coef. glucose: -22.942

53 fatty acyl chains
4 cholesterol
5 cholesterol
6 cholesterol
333 other
502 other
282 other
119 fatty acyl chains
368 glucose
283 glucose

Topic 4, reg. coef. hdl_chol: -92.198
reg. coef. glucose: 83.763

53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
8 cholesterol
6 cholesterol
120 fatty acyl chains
123 other
57 fatty acyl chains
119 fatty acyl chains

Topic 5, reg. coef. hdl_chol: -8.966
reg. coef. glucose: -55.404

4 cholesterol
5 cholesterol
333 other
502 other
6 cholesterol
50 fatty acyl chains
289 glucose
283 glucose
49 other
368 glucose

Topic 6, reg. coef. hdl_chol: 30.507
reg. coef. glucose: 10.789

53 fatty acyl chains
5 cholesterol

4 cholesterol
6 cholesterol
502 other
52 fatty acyl chains
282 other
119 fatty acyl chains
7 cholesterol
118 fatty acyl chains

Topic 7, reg. coef. hdl_chol: -8.065
reg. coef. glucose: -65.208

5 cholesterol
4 cholesterol
6 cholesterol
333 other
372 glucose
123 other
289 glucose
119 fatty acyl chains
52 fatty acyl chains
136 other

Topic 8, reg. coef. hdl_chol: 35.813
reg. coef. glucose: -29.580

502 other
5 cholesterol
6 cholesterol
4 cholesterol
123 other
220 fatty acyl chains
226 fatty acyl chains
225 fatty acyl chains
16 other
224 fatty acyl chains

Topic 9, reg. coef. hdl_chol: -98.220
reg. coef. glucose: 67.366

53 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
144 fatty acyl chains
6 cholesterol
8 cholesterol
120 fatty acyl chains
119 fatty acyl chains
123 other

Topic 10, reg. coef. hdl_chol:
-74.844 reg. coef. glucose:
-124.932

123 other
502 other
72 other
73 other
282 other
126 other
16 other
280 other
17 other
445 other

Topic 11, reg. coef. hdl_chol:
-93.756 reg. coef. glucose:
-139.211

123 other
72 other
73 other
126 other
280 other
17 other
445 other
16 other
444 other
282 other

Topic 12, reg. coef. hdl_chol: 70.155
reg. coef. glucose: -34.005

4 cholesterol
50 fatty acyl chains
49 other
281 other
154 other
282 other
51 fatty acyl chains
52 fatty acyl chains
160 other
448 other
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Topic 13, reg. coef. hdl_chol:
-55.664 reg. coef. glucose:
391.078

309 glucose
367 glucose
325 glucose
311 glucose
388 glucose
500 glucose
365 glucose
501 glucose
323 glucose
310 glucose

Topic 14, reg. coef. hdl_chol:
209.533 reg. coef. glucose:
-96.007

4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
49 other
356 other
354 other
117 fatty acyl chains
53 fatty acyl chains

Listing B.15: LDA-20-topics.txt
----------------
LDA, 20 topics
---------------
Topic 0, reg. coef. hdl_chol: -76.920

reg. coef. glucose: 33.682
7 cholesterol
8 cholesterol
81 fatty acyl chains
57 fatty acyl chains
9 cholesterol
147 fatty acyl chains
56 fatty acyl chains
10 cholesterol
148 fatty acyl chains
121 fatty acyl chains

Topic 1, reg. coef. hdl_chol: 43.983
reg. coef. glucose: -29.485

49 other
50 fatty acyl chains
282 other
5 cholesterol
154 other
160 other
448 other
445 other
449 other
446 other

Topic 2, reg. coef. hdl_chol: 5.909
reg. coef. glucose: -25.327

7 cholesterol
5 cholesterol
445 other
444 other
6 cholesterol
282 other
73 other
72 other
8 cholesterol
446 other

Topic 3, reg. coef. hdl_chol: -64.913
reg. coef. glucose: 26.756

53 fatty acyl chains
144 fatty acyl chains
7 cholesterol
81 fatty acyl chains
145 fatty acyl chains
8 cholesterol
6 cholesterol
146 fatty acyl chains
120 fatty acyl chains
57 fatty acyl chains

Topic 4, reg. coef. hdl_chol: -74.723
reg. coef. glucose: -85.615

333 other
280 other
368 glucose
289 glucose
72 other
73 other
283 glucose
17 other
262 other

6 cholesterol

Topic 5, reg. coef. hdl_chol: -19.221
reg. coef. glucose: 11.734

53 fatty acyl chains
7 cholesterol
6 cholesterol
5 cholesterol
4 cholesterol
120 fatty acyl chains
8 cholesterol
119 fatty acyl chains
283 glucose
118 fatty acyl chains

Topic 6, reg. coef. hdl_chol: 92.975
reg. coef. glucose: -44.033

4 cholesterol
502 other
5 cholesterol
282 other
6 cholesterol
7 cholesterol
120 fatty acyl chains
232 fatty acyl chains
231 fatty acyl chains
220 fatty acyl chains

Topic 7, reg. coef. hdl_chol: -30.068
reg. coef. glucose: 13.606

53 fatty acyl chains
49 other
50 fatty acyl chains
7 cholesterol
6 cholesterol
526 other
81 fatty acyl chains
8 cholesterol
120 fatty acyl chains
119 fatty acyl chains

Topic 8, reg. coef. hdl_chol: -30.279
reg. coef. glucose: 39.684

53 fatty acyl chains
7 cholesterol
6 cholesterol
275 other
81 fatty acyl chains
5 cholesterol
120 fatty acyl chains
119 fatty acyl chains
8 cholesterol
269 other

Topic 9, reg. coef. hdl_chol: -68.851
reg. coef. glucose: -113.482

53 fatty acyl chains
333 other
289 glucose
372 glucose
72 other
368 glucose
73 other
262 other
22 other
526 other

Topic 10, reg. coef. hdl_chol:
-95.181 reg. coef. glucose:
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41.523
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
8 cholesterol
6 cholesterol
123 other
57 fatty acyl chains
120 fatty acyl chains
147 fatty acyl chains

Topic 11, reg. coef. hdl_chol:
-24.160 reg. coef. glucose:
59.120

53 fatty acyl chains
81 fatty acyl chains
6 cholesterol
120 fatty acyl chains
119 fatty acyl chains
52 fatty acyl chains
5 cholesterol
468 other
51 fatty acyl chains
118 fatty acyl chains

Topic 12, reg. coef. hdl_chol:
-55.403 reg. coef. glucose:
44.024

53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
6 cholesterol
502 other
144 fatty acyl chains
8 cholesterol
120 fatty acyl chains
119 fatty acyl chains
57 fatty acyl chains

Topic 13, reg. coef. hdl_chol:
-31.531 reg. coef. glucose:
-51.261

502 other
5 cholesterol
4 cholesterol
6 cholesterol
123 other
220 fatty acyl chains
225 fatty acyl chains
226 fatty acyl chains
16 other
224 fatty acyl chains

Topic 14, reg. coef. hdl_chol:
-12.222 reg. coef. glucose:
461.921

309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
323 glucose
500 glucose
501 glucose
365 glucose
310 glucose

Topic 15, reg. coef. hdl_chol:

171.528 reg. coef. glucose:
-67.669

502 other
4 cholesterol
5 cholesterol
282 other
281 other
6 cholesterol
220 fatty acyl chains
119 fatty acyl chains
225 fatty acyl chains
120 fatty acyl chains

Topic 16, reg. coef. hdl_chol:
-94.683 reg. coef. glucose:
52.063

123 other
309 glucose
325 glucose
399 glucose
311 glucose
400 glucose
388 glucose
365 glucose
500 glucose
501 glucose

Topic 17, reg. coef. hdl_chol:
-80.819 reg. coef. glucose:
-143.089

289 glucose
367 glucose
368 glucose
280 other
332 glucose
72 other
17 other
16 other
73 other
262 other

Topic 18, reg. coef. hdl_chol:
214.828 reg. coef. glucose:
-111.346

4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
333 other
117 fatty acyl chains
356 other
354 other
118 fatty acyl chains

Topic 19, reg. coef. hdl_chol:
237.779 reg. coef. glucose:
-112.838

4 cholesterol
281 other
52 fatty acyl chains
51 fatty acyl chains
50 fatty acyl chains
117 fatty acyl chains
356 other
53 fatty acyl chains
354 other
118 fatty acyl chains
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Listing B.16: PCA-20-topics.txt
----------------
PCA, 20 topics
---------------
Topic 0, reg. coef. hdl_chol: -0.002

reg. coef. glucose: 0.001
53 fatty acyl chains
7 cholesterol
81 fatty acyl chains
502 other
8 cholesterol
6 cholesterol
57 fatty acyl chains
120 fatty acyl chains
119 fatty acyl chains
123 other

Topic 1, reg. coef. hdl_chol: 0.031
reg. coef. glucose: -0.029

4 cholesterol
281 other
5 cholesterol
282 other
52 fatty acyl chains
7 cholesterol
502 other
81 fatty acyl chains
51 fatty acyl chains
309 glucose

Topic 2, reg. coef. hdl_chol: 0.008
reg. coef. glucose: 0.129

309 glucose
325 glucose
367 glucose
311 glucose
388 glucose
323 glucose
500 glucose
501 glucose
365 glucose
310 glucose

Topic 3, reg. coef. hdl_chol: 0.005
reg. coef. glucose: -0.018

502 other
6 cholesterol
5 cholesterol
7 cholesterol
281 other
144 fatty acyl chains
53 fatty acyl chains
8 cholesterol
123 other
220 fatty acyl chains

Topic 4, reg. coef. hdl_chol: -0.005
reg. coef. glucose: 0.000

502 other
144 fatty acyl chains
5 cholesterol
6 cholesterol
81 fatty acyl chains
7 cholesterol
145 fatty acyl chains
8 cholesterol
57 fatty acyl chains
123 other

Topic 5, reg. coef. hdl_chol: -0.002
reg. coef. glucose: -0.028

144 fatty acyl chains
145 fatty acyl chains
5 cholesterol
6 cholesterol
281 other
502 other
146 fatty acyl chains
282 other
7 cholesterol
51 fatty acyl chains

Topic 6, reg. coef. hdl_chol: -0.001
reg. coef. glucose: 0.001

49 other
50 fatty acyl chains

160 other
150 fatty acyl chains
449 other
170 other
448 other
168 other
154 other
281 other

Topic 7, reg. coef. hdl_chol: -0.005
reg. coef. glucose: -0.002

7 cholesterol
281 other
8 cholesterol
282 other
5 cholesterol
6 cholesterol
4 cholesterol
53 fatty acyl chains
57 fatty acyl chains
123 other

Topic 8, reg. coef. hdl_chol: 0.063
reg. coef. glucose: -0.043

282 other
123 other
52 fatty acyl chains
51 fatty acyl chains
81 fatty acyl chains
144 fatty acyl chains
8 cholesterol
57 fatty acyl chains
6 cholesterol
145 fatty acyl chains

Topic 9, reg. coef. hdl_chol: -0.013
reg. coef. glucose: -0.005

123 other
282 other
126 other
7 cholesterol
52 fatty acyl chains
502 other
283 glucose
399 glucose
400 glucose
4 cholesterol

Topic 10, reg. coef. hdl_chol: 0.000
reg. coef. glucose: 0.008

333 other
372 glucose
332 glucose
367 glucose
81 fatty acyl chains
8 cholesterol
366 glucose
289 glucose
213 fatty acyl chains
4 cholesterol

Topic 11, reg. coef. hdl_chol: 0.003
reg. coef. glucose: -0.011

281 other
4 cholesterol
8 cholesterol
280 other
57 fatty acyl chains
119 fatty acyl chains
282 other
444 other
72 other
445 other

Topic 12, reg. coef. hdl_chol: -0.024
reg. coef. glucose: -0.041

445 other
444 other
281 other
72 other
73 other
4 cholesterol
446 other
443 other
52 fatty acyl chains
168 other

Topic 13, reg. coef. hdl_chol: -0.000
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reg. coef. glucose: 0.063
333 other
8 cholesterol
81 fatty acyl chains
57 fatty acyl chains
280 other
52 fatty acyl chains
4 cholesterol
5 cholesterol
9 cholesterol
332 glucose

Topic 14, reg. coef. hdl_chol: 0.055
reg. coef. glucose: 0.110

444 other
445 other
333 other
17 other
280 other
368 glucose
289 glucose
52 fatty acyl chains
51 fatty acyl chains
262 other

Topic 15, reg. coef. hdl_chol: -0.000
reg. coef. glucose: -0.016

333 other
372 glucose
368 glucose
57 fatty acyl chains
444 other
445 other
5 cholesterol
22 other
8 cholesterol
21 other

Topic 16, reg. coef. hdl_chol: 0.024
reg. coef. glucose: -0.000

282 other
51 fatty acyl chains
52 fatty acyl chains
5 cholesterol
7 cholesterol

57 fatty acyl chains
81 fatty acyl chains
275 other
368 glucose
367 glucose

Topic 17, reg. coef. hdl_chol: -0.000
reg. coef. glucose: -0.000

275 other
51 fatty acyl chains
52 fatty acyl chains
282 other
72 other
73 other
435 other
262 other
332 glucose
57 fatty acyl chains

Topic 18, reg. coef. hdl_chol: -0.027
reg. coef. glucose: -0.001

57 fatty acyl chains
275 other
16 other
52 fatty acyl chains
17 other
51 fatty acyl chains
22 other
21 other
15 cholesterol
26 other

Topic 19, reg. coef. hdl_chol: -0.000
reg. coef. glucose: 0.000

289 glucose
72 other
73 other
444 other
445 other
332 glucose
275 other
375 glucose
57 fatty acyl chains
262 other
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Appendix C

Software

Software for this thesis was developed and run on Ubuntu Linux 18.04. All the

code was written with Python v3.5.4 (using Anaconda Distribution v5.0.1).

Our software

Our Python modules are availavle on Github, see https://github.com/dataoverflow/

ezNMR for details.

3rd party software

The important packages along with the versions are listed in table C.1.

From modelling point of view the two most important libraries are scikit-

learn and slda. scikit-learn is the most popular Python library for Machine

Learning. We used scikit-learn for PCA and ElasticNet. slda is imple-

mentations of Gibbs sampling for supervised and unsupervised LDA. This

package was used for all the LDA related work. It can be installed as a

binary in Anaconda Distribution, alternatively the sources are available at

https://github.com/dataoverflow/slda.
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APPENDIX C. SOFTWARE

Table C.1: Used Python libraries

Name Version

bioservices 1.5.2
cython 0.26.1
cythongsl 0.2.2
gsl 2.2.1
matplotlib 2.1.0
numpy 1.13.3
pandas 0.20.3
PeakUtils 1.3.0
scikit-learn 0.19.1
scipy 0.19.1
seaborn 0.8.0
slda 0.1.6
statsmodels 0.8.0
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