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Abstract  
Rapidly increasing global internet traffic, mobile internet users and the number of Internet of 

Things (IoT) connections are driving exponential growth in demand for data centre and 

network services, which in turn is driving their electricity demand. Data centres now account 

for 3% of global electricity consumption and contribute to 4% of the global greenhouse gas 

emissions. This study discusses the potential of reusing the waste heat from data centres. An 

overview of imbedding heat recovery systems into data centres is presented. The implications 

of economic cost and energy efficient heat recovery systems in data centre buildings are also 

discussed. The main problems with implementing heat recovery systems in existing data 

centre designs are (i) high capital costs of investment and (ii) low temperatures of the waste 

heat.  This study suggests alternatives that could allow data centre operators to utilise waste 

heat with more efficiencies. It also discusses how liquid-cooled data centres can be more 

efficient in utilising their waste heat than the air-cooled ones. One possible solution suggested 

here is that data centre operators can decrease their environmental impact by exporting waste 

heat to the external heat networks. The barriers in connecting datacentres to heat networks are 

discussed and suggestions to overcome those barriers have been provided.   

Keywords: Data centres, District heating, Waste heat recovery, Liquid cooling, Energy 
efficiency.  
 

1. Introduction  

Global internet traffic has tripled since 2015 and is expected to further double by 2022 to 4.2 

zettabytes per year (4.2 trillion gigabytes) [1, 2, 3]. The number of mobile internet users is 

expected to increase from 3.6 billion in 2018 to 5 billion by 2025, while the number of 
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Internet of Things (IoT) connections is expected to triple from 7.5 billion in 2018 to over 25 

billion by 2025 [4]. 

Most of the world’s Internet Protocol (IP) traffic goes through data centres (DCs). Greater 

connectivity is therefore driving up demand for data centre services and energy use (mostly 

electricity), with multiplying effects: for every bit of data that travels the network from data 

centre to end users, another 5 bits of data are transmitted within and among data centres [5]. 

Global data centre electricity demand in 2018 reached an estimated 198 TWh [6]. 

Heating and cooling in buildings and industry accounted for 50% of the total energy 

consumption in the Europe in 2012 [7]. Along with other industries, DCs are producing a 

reliable and stable waste heat source. As per a study in 2016 by Ascierto et al [8], DCs in 

Europe generate 56 TWh of waste heat. Thus, there is significant pressure on DC sector to 

reduce its energy consumption.  

DC operators are thus investing heavily in low energy designs such as implementing heat 

recovery systems [9, 10]. DCs are using various types of cooling solutions such as Computer 

Room Air Handling (CRAC) and water cooled systems. Another important concern is the cost 

effectiveness of implementing heat recovery systems into existing DCs. The choice of correct 

heat recovery system is thus, very important. Using data centre cooling solutions such as air 

handling unit (CRAC) provide opportunity to recover up to 50% energy from its waste heat 

[9]. Data centre heat recovery systems have been already used by data centres in Nordic 

countries. High heat density and efficient heat recovery allowed these countries to remove the 

waste heat efficiently and utilise it in district heating in Sweden and Finland [11]. Similarly, 

there is huge demand for data centre heat recovery systems all over Europe. This study 

analyses the present cooling systems in the data centres and suggests possible approaches to 

utilise the waste heat in existing DCs.   

2. Literature Review  

There are many studies have around the energy efficiency of DCs but only a few have 

discussed the utilisation of waste heat recovery from DCs. Typically, all medium-sized DCs 

produce low temperature waste heat. The real DCs energy efficiency has evaluated by Lu et al 

for potential of capturing the waste heat [12]. The study found that, 97 % energy consumption 

can be recovered as waste heat from the data centre’s total energy consumption. It showed 

that a DC operating at 1 MW waste heat capacity is enough to fulfil the heat demand of 

60,000 m2 space. An article by Ebrahimi et al. [13] analysed the thermodynamics of ultra-low 
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temperature waste heat recovery systems. The economic analysis of the study indicated a 

payback period for ultra-low temperature waste heat recovery system of 4 to 8 years. At 

present, the biggest barrier is high capital cost investment in low grade heat recovery systems.  

It is also to be noted that, operating temperature of the data centres also plays key role in 

energy consumption. A study by Carbo et al. noted that there is a 3% increase in the energy 

consumption when there is increase in the inlet water temperature for cooling [14].  Similarly, 

the same phenomenon was reported, where a server’s energy consumption increased by 

around 11 % when using an advanced microchip device. This indicates that there should 

always be a balance between server operating temperature and energy consumption. The 

possibility of using the DCs waste heat in London city District Heating (DH) has been 

discussed by Davies et al. [15]. The study predicted a profit of £875,000/year for 3.5 MW 

waste heat from a DC. Many studies forecast enormous saving in energy spend along with 

low payback periods, even though it is difficult to utilise the low-grade waste heat in the 

commercial market. However, these studies rarely discuss the actual possibilities and 

practicalities of utilising the data centre waste heat. Implementing the waste heat recovery 

system in the DCs can be quite complicated due to various logistical and economic factors. 

This study will discuss a systematic approach to analysis the waste heat recovery from a real 

DC.     

3. Methodology  

The potential for waste heat utilisation is evaluated by conducting a literature review on:  

• Measuring energy efficiency  
• Cooling technologies available for DCs  
• Utilisation of waste heat  
• Barriers in utilising the waste heat  

 
The potential for waste heat utilization from DCs was analysed by conducting a literature 

review on cooling technologies and solutions for waste heat utilisation. The methodology 

behind analysing energy efficiency metrics, the economic and emission analysis, and 

systematic change process for adapting to waste heat utilisation are presented below. 

Parssinen (2016) analysed 20 metrics includes six different energy-efficiency domains with 

consumption, seven technology domains and overlay metrics.  

Waste heat utilisation economics in DH are based on the assumption that waste heat will 

replace both solid fuel CHP and heat-only boiler (HOB) production in the DH network. 

Variable costs of heat production are determined the increased costs of electricity 
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consumption due to Heat Pumps (HP), reduction in fuel utilisation for CHP and HOB and the 

capital investment for HPs. Income loss from export of electricity from CHP was also 

considered. 

3.1 Measuring energy efficiency 
The ideal objective for a DC is to become a net-zero energy building (NZEB). In NZEB, 

servers are included in the overall energy plan of the building. DC energy contributes to the 

energy demand in advanced energy efficient buildings. DC operators should establish project 

targets for energy reuse effectiveness (ERE). Better ERE reduces the renewable energy 

requirements of the building [16]. 

ERE and power usage effectiveness (PUE) by themselves are not sufficient for engineering 

analysis purposes [17]. Additional metrics required include return temperature index (RTI), 

power density efficiency (PDE), performance per watt (PPW), workload power efficiency 

(WPE), network power usage effectiveness (NPUE), data center workload power efficiency 

(DWPE), fixed to-variable energy ratio (FVER), supply heat index (SHI), return heat index 

(RHI), system power usage effectiveness (sPUE), and data center energy productivity 

(DCeP). These metrics provide a more complete view of DCs energy usage and is used for 

energy efficiency optimisation and equipment selection.  

PUE and ERE are most common ways to evaluate the energy usage effectiveness and energy 

reuse in the DCs.  PUE is defined as the total annual energy divided by the total annual 

energy used in the IT [16]. PUE-based metrics are not useful for DC energy analysis. The 

PUE variables are difficult to measure and calculate when facilities or primary equipment are 

shared. With energy reuse, the PUE value could go below 1.0, but this is not allowed, which 

is contrary to PUE definition [18]. PUE ignores IT load changes, and it does not address the 

DC utilization level [19]. 

                                        PUE = 𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦
𝐼𝑇 𝐸𝑛𝑒𝑟𝑔𝑦

                                                                     (1) 

 

                          = 𝐶𝑜𝑜𝑙𝑖𝑛𝑔+𝑃𝑜𝑤𝑒𝑟𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛+𝑀𝑖𝑠𝑐+𝐼𝑇 
𝐼𝑇

 ; 1.0 ≤ PUE ≤ ∞                                     (2) 

 

ERE includes the reuse of energy from a DC to PUE which must be reused outside the DC. 

Energy Reuse Factor (ERF) can be used to calculate ERE from the site PUE [28]. The ERE 

and ERF equations are; 
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                             ERE = 𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦−𝑅𝑒𝑢𝑠𝑒 𝐸𝑛𝑒𝑟𝑔𝑦
𝐼𝑇 𝐸𝑛𝑒𝑟𝑔𝑦

 ; 0 ≤ ERE ≤ ∞                                         (3) 

3.2 Cooling Technologies in Data centres  
DC cooling is an essential part of DC efficiency. For safe functioning of servers, the air 

temperature in the servers should be maintained at 18 to 27 °C [20]. Traditionally, DC 

operators have tried to maintain them as cool as possible. However, with the rising costs of 

cooling, the system needs to optimised for each DC individually. 

Servers in DCs are packed in racks that are cooled by cold air entering from the front and hot 

air leaving from the back. Racks are usually arranged back-to-back to create cold and hot 

channels to avoiding the mixing of hot and cold airs and thus maximising the cooling 

efficiency. Fig. 1 shows a schematic of waste heat recovery system for a remote air-cooled 

DC, where waste heat is utilised in a DH network. The chilled water is pumped to the 

computer room air conditioner (CRAC). CRACs supply chilled air that is injected into the 

cold aisle via a perforated and raised floor. Waste heat is recovered from the hot aisles 

through ventilation or redirected to the CRAC. The collected waste heat can go through 

different stages, e.g., an evaporator and condenser and subsequently a HP to be able to be 

used in the reuse application (e.g., the DH network) [21]. 

 
Figure 1: Typical hot aisle air containment system in data centre with heat recovery system. 

 

3.3 Utilisation of waste heat:  
Modern cooling technologies such as liquid cooling increase the efficiency of heat recovery 

although it could equally be utilised from air-cooled DCs. DCs are beginning to capitalise on 

waste heat, but the scale of utilisation is still rather small considering its economic potential. 

This section discusses how and where waste heat could be utilised. 
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The main considerations in waste heat utilisation are the proximity of heat demand and 

profitability. The amount and quality of waste heat, and the profitability, depend a lot on the 

choice of cooling technologies. 

The best points for heat recovery are summarised in [10] and [15]. The best points in air-

cooled servers are at the return of air flow to the CRAC where heat can be captured between 

25 and 35°C, whereas liquid cooling can capturing it at 50–60°C due to capturing it closer to 

the central processing units (CPUs) and other components, which are hotter (up to 85 °C). 

The higher specific heat capacities of liquids allow circulating water temperature to be set 

close to 60°C without compromising CPU performance. This eliminates the need for chillers 

and CRACs [9] and can increase processor performance by 33% compared to air-cooled 

systems [22, 23]. Waste heat could also be captured in the chilled supply water as cold as 10–

20°C [15]. 

HPs could be used in DCs to upgrade the waste heat temperatures up to 95°C which would 

make it useful for many other processes (e.g DH networks). HPs in DCs have typical COP 

values of 2 to 7, depending on the number of cycles and the temperature [15]. Increased 

electricity consumption in HPs decreases the PUE value of the system but by utilising the 

waste heat, it decreases the ERE value and improves the energy efficiency of the DC. 

Various uses for waste heat exist, e.g. small-scale and location-specific solutions (e.g., heating 

swimming pools) do not require heavy investments as compared to large-scale installations 

e.g. connection to a DH network. Different applications for waste heat have been studied 

comprehensively, for example, in [9] for internal and external uses.  

Some DC projects with waste heat utilisation in Nordic countries are summarised in Table 1 

 
Table 1: DC Projects with Waste Heat Utilisation in Nordic Countries [21] 

 
3.4 Barriers for waste heat utilisation:   
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The main barriers limiting the utilisation of waste heat are studied in [10] and [24] and can be 

categorised as follows:  

• Low-quality heat and lack of heat demand 
• Seasonal variations in demand 
• Need for ancillary heat production 
• High investment costs and inconvenient infrastructure 
• Differing financial outcome expectations of DC and DH operators 
• Information security and reliability 
• Business models and mutual contracts 
• Thermodynamic limitations 
 

5. Conclusions  
There is enormous potential for waste heat utilisation from DCs. The barriers for waste heat 

utilisation are not technical but rather a lack of solutions for DC operators on profitability due 

to seasonal demand variations and capital costs due to an absence of established and 

transparent business models of selling waste heat to DH companies. Awareness of energy-

related costs must reach decision-makers in the ICT field. A standard way of measuring 

energy efficiency and waste heat potential needs to be established. In addition, there needs to 

be sufficient activities from government regulation and legislative enforcement to further 

enable transformation towards energy efficiency and waste heat utilisation. ERE and PUE 

values are symptoms of actions. In order to understand the causes and actions required, more 

detailed energy efficiency metrics, such as those suggested in this article, are required.  
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