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Abstract: In the field of supervised machine learning, the quality of a classifier model is directly 

correlated with the quality of the data that is used to train the model. The presence of unwanted 

outliers in the data could significantly reduce the accuracy of a model or, even worse, result in a 

biased model leading to an inaccurate classification. Identifying the presence of outliers and 

eliminating them is, therefore, crucial for building good quality training datasets. Pre-processing 

procedures for dealing with missing and outlier data, commonly known as feature engineering, are 

standard practice in machine learning problems. They help to make better assumptions about the 

data and also prepare datasets in a way that best expose the underlying problem to the machine 

learning algorithms. In this work, we propose a multistage method for detecting and removing 

outliers in high-dimensional data. Our proposed method is based on utilising a technique called t-

distributed stochastic neighbour embedding (t-SNE) to reduce high-dimensional map of features 

into a lower, two-dimensional, probability density distribution and then use a simple descriptive 

statistical method called interquartile range (IQR) to identifying any outlier values from the density 

distribution of the features. t-SNE is a machine learning algorithm and a nonlinear dimensionality 

reduction technique well-suited for embedding high-dimensional data for visualisation in a low-

dimensional space of two or three dimensions. We applied this method on a dataset containing 

images for training a convolutional neural network model (ConvNet) for an image classification 

problem. The dataset contains four different classes of images: three classes contain defects in 

construction (mould, stain, and paint deterioration) and a no-defect class (normal). We used the 

transfer learning technique to modify a pre-trained VGG-16 model. We used this model as a feature 

extractor and as a benchmark to evaluate our method. We have shown that, when using this method, 

we can identify and remove the outlier images in the dataset. After removing the outlier images 

from the dataset and re-training the VGG-16 model, the results have also shown that the accuracy 

of the classification has significantly improved and the number of misclassified cases has also 

dropped. While many feature engineering techniques for handling missing and outlier data are 

common in predictive machine learning problems involving numerical or categorical data, there is 

little work on developing techniques for handling outliers in high-dimensional data which can be 

used to improve the quality of machine learning problems involving images such as ConvNet 

models for image classification and object detection problems. 
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1. Introduction 

Machine learning (ML) has shown huge advances in recent years. The potential of this field has 

also been elevated across a wide range of applications including image recognition [1–4], speech 

recognition [5–7], medical diagnosis [8–10], defect detection and construction health assessment [11–

17]. 

These recent advances in machine learning are attributed to several factors including the 

development of self-learning statistical models which allow computer systems to perform specific 

(human-like) tasks relying only on the learnt patterns, and also to the increase in computer processing 

power which support the analytical capabilities of these models [18–20]. In addition, the availability 

of enormous data in recent years, which allowed machine learning models to train on a large pool of 

examples is what gives machine learning their power [21]. Since machine learning is a “data-driven” 

field of artificial intelligence (AI), the quality of an ML model will be only as good or as bad as the 

data used to train the model [22]. The presence of outliers in the training data may lead to unreliable 

or even wrongly identified models [23,24]. Moreover, incorrect estimation of model parameters may 

also give rise to erroneous conclusions. A simple example to illustrate the effect of unwanted outliers 

on the results of data analysis is in statistical analysis, where the presence of outliers in the data can 

significantly affect the estimation of the mean and/or standard deviation of a sample data, which can 

lead to either over- or under-estimated values [25]. 

An outlier is defined as a data point that differs significantly from other data points within a 

given dataset [26–28]. Also known as abnormalities, anomalies, or deviants, outliers can occur 

naturally in any given distribution, for example, they may be a result of misprint errors, misplaced 

decimal points, transmission errors, or during exceptional circumstances such as earthquakes which 

can cause spikes in the measured data. The problem, as demonstrated earlier, is that only a few 

outliers are sometimes enough to distort the group results by altering the mean, variance, or by 

increasing variability of data. 

Current studies have shown that data analysis is considerably dependent on how outliers or 

missing values are treated [24,29–33]. Subsequently, many methods which address this issue have 

been proposed including [34], which suggests adding sparsity constraints to the data as a way to 

remove noise. Other work such as [35] proposed a way to achieve better performance by combining 

sparsity constraints with spatial information. 

In addition to enforcing sparsity constraints, there are other statistical methods for identifying 

and handling outliers: for example, such as the one presented by Kubica et al. [36], which uses an 

approach to identify corrupted fields, and then use the remaining non-corrupted fields to perform 

subsequent analysis. The authors argue that the proposed approach learns about a probabilistic 

model through three different components: a generative model of the clean data points, a generative 

model of the noise values, and a probabilistic model of the corruption process. Another method for 

handling outliers is based on rule creation such as the one proposed by Khoshgoftaar et al. [37]. Their 

approach is based on detecting noisy instances based on Boolean rules generated from the 

measurement data. They injected clean dataset, extracted from a NASA project for real-time 

predictions, with different levels of artificial noise and compared their approach to a classification 

filter designed to eliminate misclassified instances as noisy data. The authors demonstrated that their 

approach has outperformed the classification filter in detecting noisy instances at different noise 

levels. Clustering techniques, otherwise known as density-based, are clustering algorithms used for 

the task of class identification in a spatial database [38]. In their work on identifying density-based 

local outliers, Breunig et al. [39] assign each object a degree of being an outlier called the local outlier 

factor (LOF) depending on how isolated the object is concerning the surrounding neighbourhood. 

The authors used real-world datasets to demonstrate that such a method can be used to allocate 

meaningful outliers that cannot be identified using other existing approaches. Other handling 

methods include noise reduction which uses the 3-nearest neighbour classifier [40] and the voting 

ensemble [41,42] to identify and remove mislabelled occurrences. 

According to Committee. et al. [28], the need for outlier detection becomes particularly important 

when a similar type of data is gathered from � different groups to ensure which groups may cause 



Mathematics 2020, 8, 662 3 of 21 

 

outliers [28]. The authors discuss some statistical data preparation and management techniques 

which address data of this nature including regression analysis techniques such as the one proposed 

by Gentleman et al. [33], which aims at detecting outliers by using simple residuals adjusted by the 

predicted values and standardised residuals against the observed values. Support vector regression 

methods such as the one presented by Seo et al. [43] are outlier detection methods used for nonlinear 

functions with multi-dimensional input. The authors argue that standard support vector regression 

models, although they have achieved good performance, have practical issues in computational cost 

and parameter adjustments. The authors propose a “practical approach” to outlier detection using 

support vector regression which reduces computational time and defines outlier threshold suitably. 

Amongst all the other methods, perhaps the simplest methods for studying outlier identification 

are the ones based on the mean and variance of each group of data such as the one presented by 

Burke et al. [32], which is also the one adopted in this study. Simple plotting methods such as the 

boxplot shown in Figure 1 can be particularly useful to visualise the distribution of normal and outlier 

data points. 

In this current work, we start our research by asking the following questions: Can we determine 

outlier images in a class of images within training datasets? If so, can we improve the classification 

accuracy if the outlier images are eliminated? To answer these questions, we developed a multistage 

method based on using t-SNE to convert a high-dimensional vector of features extracted from images 

into low-dimensional probability density distribution based on similarities between these features. 

We then use the Interquartile range (IQR) measure, a simple descriptive statistical method, to identify 

any outlier values from the probability density distribution of the features. Our research is motivated 

by a similar work by Li et al. [44] on detecting and removing outliers from a training dataset to 

improve the accuracy of a machine learning model developed for multispectral burn diagnostic 

imaging. The authors used a dataset containing six different types of images: healthy, partial burn 

injury, full burn injury, blood, wound bed, and hyperaemia. The proposed method, which is based 

on the Z-test and univariate analysis, utilises the concepts of the maximum likelihood estimation [45] 

to estimate the mean and the standard deviation of a selected sub-sample located around the mean 

of the sample space. By firstly adjusting the size of the sub-set, and, secondly, weighing the 

probability distribution to generate a threshold, they were able to exclude potential outliers in the 

dataset. The originality of our work is in utilising t-SNE, to recursively generate a 2-dimensional 

probability distribution density of features extracted from each image in a dataset, and re-positioning 

the images depending on the degree of similarities between their features. By achieving this, all 

images that have features lay beyond the upper and lower fence are eliminated. Our proposed 

method can work with all image datasets intended for training ConvNets. 

There are three main stages involved in our proposed method, feature extraction using pre-

trained ConvNets, high-dimensionality-reduction using t-SNE, and, finally, determining the outliers. 

In the next section, we will introduce the concept of t-SNE with a mathematical representation. Next, 

we present a discussion about outlier handling, and, finally, transfer learning as feature extraction. 

2. T-Distributed Stochastic Neighbour Embedding (t-SNE) 

t-distributed stochastic neighbour embedding (or t-SNE) is a machine learning algorithm, 

developed by Laurens van der Maaten and Geoffrey Hinton [45] to visualise high-dimensionality 

data by assigning each data point a location in a two or three-dimensional map. They refer to high-

dimensional data as data that require more than two or three dimensions to represent [46]. 

Nowadays, many machine learning applications including convolutional neural network for 

image classification, segmentation and labelling [47–50], and natural language processing NLP 

[51,52] deal with varying (low-to-high) dimensionality data. For example, in bioinformatics, a study 

of cancerous tumours may require tens of variables to model the changes that occur at the cellular- 

and tissue-level [53–56]. In signal and image processing studies, an image is represented by sets 

containing the colour intensity of every pixel of that image. A small image of dimensions 28 × 28 is 

represented by a 784-dimensional vector, and each dimension (also referred to as feature) 
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corresponds to a one-pixel value. High-dimensional data such as images often require effective 

feature selection methods in order to obtain optimal accuracy [57]. 

t-SNE belongs to a group of non-linear dimensionality reduction techniques which also include 

Sammon mapping, curvilinear components analysis (CCA), Stochastic Neighbour Embedding (SNE), 

Locally Linear Embedding, Maximum Variance Unfolding, and Laplacian Eigenmaps [50]. There are 

also linear dimensionality reduction techniques which include Principal Components Analysis 

(PCA), and the classical multidimensional scaling (MDS) [50]. Dimensionality reduction methods, in 

general, aim to save as much important information about the structure of the high-dimensional data 

as possible during the transformation to the low-dimensional map. This is accomplished by 

modelling each high-dimensional object by a lower-dimensional (two- or three-dimensional) point in 

a way where similar objects with high probability will group by nearby points while those objects 

with lower probability will tend to group by distant points. This transformation (mapping) is most 

significant when the data (such as images) exist on multiple, but related, low-dimensional spaces 

including images and objects from multiple classes seen from multiple viewpoints [45]. In the context 

of machine learning, one can look at the transformation from high- to low-dimension (mapping) as a 

preliminary feature selection step after which pattern recognition algorithms are applied. 

3. Mathematical Notation 

Given a vector �̅ of � high-dimensional points ��, ��,⋯ ��, the Euclidean distances between a 

point ��  and a point ��  in the vector �̅ is converted into a conditional probability ��|�  which 

represents the similarity between point ��  and a point ��. In other words, the conditional probability 

��|�  represents the likelihood that the point ��  would pick ��  as its neighbour given that the 

probability density of neighbours is normally distributed (Gaussian) and centred at the point �� . 

Hence, the conditional probability ��|�  increases for nearby data points, whereas, for widely 

separated data points, ��|� will be almost insignificant. Mathematically, the conditional probability 

��|� can be represented by 

��|�  =  
exp (−||�� −  ��||�/2��

�)

∑ exp (−||��  −  ��||�/2��
�)���

 (1) 

where �� is the variance of the Gaussian centred at the point ��. 

Since the technique is concerned with modelling pairwise similarities, the conditional 

probability of a point to itself is set to zero, which is ��|�  =  0. 

Similarly, in the low-dimensional counterparts ��  and �� of the higher dimensionality �� and 

��, a conditional probability that models the similarities of the map points ��  to �� and denoted by 

��|� can be given by 

��|�  =  
exp (−||��  −  ��||�)

∑ exp (−||��  − ��||�)���

 (2) 

The conditional probability ��|�  is also set to zero ( ��|�  =  0 ) since this technique is only 

concerned with modelling pairwise similarities. 

As stated earlier, the purpose of the dimensionality reduction mapping is to find a low-

dimensional representation of the data which minimises the mismatches between ��|� and ��|�. In t-

SNE, this is repeatedly accomplished using gradient descent method for a given cost function � such 

that 

� =   � ��(��||��)   =   � � ��|� ���
��|�

��|�
��

�
 (3) 

The ��(��||��) is the Kullback–Leibler divergence function of ��||��  [45]. For any two discrete 

probability distributions ��  and �� , the Kullback–Leibler divergence ��(��||��) between them is 

defined as 
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��(��||��)  = − � ��(�) ��� �
��(�)

��(�)
�

�∈�
 (4) 

This is equivalent to 

��(��||��)  =  � ��(�) ��� �
��(�)

��(�)
�

�∈�

 (5) 

The above Equation (5) determines the expectation of the logarithmic difference between the 

probabilities ��  and ��. It can generalise for any continuous, random variable � in ��  and ��  as 

��(��||��)  =  � ��|�(�)
�

��

��� �
��|�(�)

��|�(�)
� �� (6) 

where ��|� and ��|� are the probability densities of ��  and �� . 

In the case when ��  and ��  are measured over continuous sets � and �, then we can re-write 

the Kullback–Leibler divergence function as 

��(��||��)  =  � ��� �
���

���
� ���

�

 (7) 

where 
���

���
 in (7) is called the Radon–Nikodym derivative of ��  with respect to �� . 

Using the chain rule, we can re-write (7) as 

��(��||��)   =  � ��� �
���

���
�

���

���

���
�

 (8) 

The above equation is said to be the entropy of �� with respect to �� . 

If ��|�  and ��|� are two absolutely continuous probability densities such that ��|�  =  
���

��
 and 

��|�  =  
���

��
, then for any given measure � on the set �, the Kullback–Leibler divergence from ��  to 

��  is written as 

��(��||��)   =  � ��� �
��|�

��|�
� ��

�

 (9) 

The minimization of the cost function in (3) is recursively performed using a gradient descent 

method using the following form: 

��

���
 =  2 ∑ (� ��|�  −  ��|�  +  ��|�  −  ��|�)(�� −  ��). (10) 

��  and �� are two map points. 

During every iteration, the updated gradient is added to an exponentially decaying sum of 

previous gradients in order to determine the new coordinates of the map points. This update is 

governed by the given formula: 

��  =  �(���)  +  �
��

���
 +   �(�)(�(���)  −  �(���)), (11) 

where �� is the gradient value at iteration �, �is the learning rate, and �(�)is a large momentum 

term, which is added to the gradient to improve the local minima. For more on the mathematical 

formulation of the t-SNE method, the readers are referred to [35, 45]. 

It is worthwhile to mention that the computational cost of t-SNE is �(��). However, as the cost 

function (Equation (3)) of t-SNE scales quadratically with respect to the number of objects N, its 

applicability is limited to datasets with few thousand input objects. With larger datasets, the learning 

process is expected to become slow and the memory requirements become larger. With the advances 

and affordability of high-end computer hardware, it is possible nowadays to preform t-SNE on very 

large datasets within minutes. 

  



Mathematics 2020, 8, 662 6 of 21 

 

4. Outlier Analysis 

Although there are various methods for detecting outliers, there is no unified definition that can 

mathematically define or determining whether or not an observation is an outlier [53]. Most statistical 

tests, however, assume that data are normally (Gaussian) distributed and outliers are data points that 

reside far away from the majority of other data points. Accordingly, one way to determine an outlier 

is to measure the distance between a data point and the centre of all data points. All the data points 

that are not within three standard deviations (SD) of the mean value are hence identified as outliers. 

This method, however, is not always practical since the mean and SD are statistically sensitive to the 

presence of outliers as explained earlier. Using the median and quartile range is more useful since 

both of these statistics are less sensitive to outliers. Additionally, box plots such as the one shown in 

Figure 1 can be used to visualise the presence of any outliers. 

 

Figure 1. Boxplot showing outliers. The upper and lower fences represent values more and less than 

75th and 25th percentiles (3rd and 1st quartiles), respectively, by 1.5 times the difference between the 

3rd and 1st quartiles. An outlier is defined as the value above or below the upper or lower fences. 

This method is called the interquartile range (IQR). It is a measure of variability in data and is 

based on dividing an ordered set of elements into quartiles as illustrated in Figure 1. IQR defines an 

outlier to be an observation that is outside the range [�� −  �(��  − ��), ��  +  �(��  −  ��) for some 

constant � [54]. The value ��  −  �� is referred to as IQR. 

In the context of probability density function (PDF), if IQR is projected on a normal (Gaussian) 

probability distribution density with a given mean � and a standard deviation �, then the median 

of IQR will be the equivalent to the mean, and the first quartile will correspond to −0.67 of the 

population while the third quartile corresponds to +0.67 as shown in Figure 2. 
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Figure 2. Interquartile range (IQR) projection on a normally distributed density. The median of IQR 

the equivalent to the mean 0 � . The value IQR = ��  − �� corresponds to 50% of the density 

distribution and the first quartile corresponds to −0.67 of the population while the third quartile 

corresponds to +0.67. 

5. Transfer Learning as Feature Extraction 

In deep learning problems, the assumption is that training and testing data have the same 

distribution and same feature space. This is not always true, however, since a properly-labelled data 

for training may exist in one domain, whilst the classification task may occur on another [55]. In 

addition, when the distribution of data is changed on the target domain (i.e., custom model), it also 

requires a complete re-build of the classifier network including a new training dataset. Building large 

datasets with enough labelled information can be quite challenging, particularly when data exist in 

different formats and/or is collected from various sources. This type of raw data may have many 

anomalies and unwanted information which degrade the accuracy of the machine learning algorithm 

[56]. In these cases, using transfer learning from one domain to another can be the best practice [57]. 

One way of implementing transfer learning is to use a well-structured network which is pre-

trained on large data and use its knowledge as a feature extractor for a new network. In our work, 

we used a pre-trained VGG-16 model to extract feature vectors from all images in our dataset. The 

VGG-16 model is trained on an ImageNet dataset which contains 14 million annotated images and 

contains more than 20,000 categories. 

To learn how feature extraction works, one should first understand the architecture of 

Convolutional Neural Networks (ConvNet). Strictly speaking, most of these network architectures 

use the same design principles—that is, applying a sequence of convolution layers followed by 

pooling layers to an input image. Using this structure, the spatial dimensions of each input from 

previous layers in the network is continuously reduced while the number of features extracted from 

the input image is increased (see Figure 3). 

When extracting features, the fully-connected layers in the pre-trained network are removed and 

the neural network is treated as a fixed feature extractor. In case of the VGG-16, the fully-connected 

layers generate 1000 different classes. The earlier layers (convolutional) in the pre-trained network 

are then trained on the new dataset as feature extractors only. For each input image, the VGG-16 

computes a 4096-dimensional feature map. With all feature maps extracted from all the images in the 

training dataset, a SoftMax classifier with n-classes (the number of classes in the new dataset) may be 

placed on top of the pre-trained network and trained again on the new dataset. 
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Figure 3. VGG-16 model. Diagram showing the architecture of the VGG-16 used in this study for 

feature extraction. Early convolution layers are re-trained on the custom dataset while the fully 

connected layers are used for classification. 

6. Methodology 

The dataset we used in this research contained images gathered from different resources: 

pictures taken by mobile phone, by a hand-held camera, and from copyright-free images scraped 

from the web. In order to increase the number of images in the dataset, the slice tool in Photoshop 

was used to create 224 × 224 thumbnails out of the large-sized images. In total, the number of images 

generated for this study was 2523 images. Each image in the dataset was assigned to one of four 

different classes: normal (image containing no defects), mould, stain, and paint deterioration (this 

includes peeling, blistering, flacking, and crazing). Assigning images to the right class (labelling) is 

the most crucial step in supervised machine learning. It is the key to a well-trained model and a high 

classification accuracy. The dataset was split randomly into 70% (1794 images) for training and the 

other 20% for testing (validation). The mould class in the training subset contained 448 images, the 

stain class also contained 448 images, paint deterioration contained 449 images, and, finally, the 

normal class also contained 449. The validation subset (732 images) was split equally between the 

four classes with 183 images each. Representative images from the dataset are shown in Figure 4. 
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Figure 4. Dataset used in this study. A sample of the dataset that was used to train our model showing 

different mould images (first row), paint deterioration (second row), stains (third row), and images 

with no defect (normal) in the fourth row. 

The first step in or multistage method is to use the pre-trained VGG-16 model to extract the maps 

of features of each image in the dataset. The model was developed in Python with the Tensorflow 

backend. The architecture of the VGG-16 model (illustrated in Figure 4) that we modified comprises 

five blocks of convolutional layers with max-pooling for feature extraction. The convolutional blocks 

are followed by three fully-connected layers and a final 1 × 1000 SoftMax layer (classifier). The 

original SoftMax layer was replaced by a 1 × 4 classifier to adapt our classification problem that is 

classifying three defects’ types and the normal type. The input to the ConvNet are 224 × 224 RGB 
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images. The first block consists of two convolutional layers with 32 filters, each of size 3 × 3. The 

second, third, and fourth convolution blocks use filters of sizes 64 × 64 × 3, 128 × 128 × 3, and 256 × 

256 × 3, respectively. 

We re-trained the newly modified model on the raw dataset allowing the weights (up to block 

five) to update during training. We used the early convolutional layers in the VGG-16 (up to the fifth 

block) as a generic feature extractor. The shape of the input at the last layer of the fifth block is 7 × 7 

× 512, as seen in Figure 5. The block is followed by another layer (flatten_1, Figure 6), which, as the 

name suggests, generates a vector of features of size 25,088. Figure 6 represents a summary of the 

modified VGG-16 model used in this study. 

 

Figure 5. VGG-16 architecture. The VGG-16 model that consists of five Convolution layers (in blue) 

each is followed by a pooling layer (in orange) and three fully-connected layers (in green), followed 

by a final SoftMax classifier (in purple). 
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Figure 6. Summary of the modified VGG-16 model. 

Once all features are extracted from the layer named flatten_1, the second step is the 

dimensionality reduction. We use t-SNE to reduce the 25,088-dimensions of the extracted vector of 

features into a map of two dimensions only. t-SNE achieves this by using an iterative approach, 

making small (sometimes large) adjustments to the mapped points. The process terminates when t-

SNE has found a locally optimal (or good enough) embedding. For each image, the newly two-

dimensional map can be looked at as a �, � position on a plane containing a total number of 2×� 

dimensional points, where � is the number of all images in the dataset. 

The final step is to use the interquartile range (IQR) on all the points in dimension 1 (�–points) 

and the points in dimension 2 (�–points) belonging to all images in every class. For each class of 

images, any point residing outside the range [��  −  1.5(��  − ��),  ��  +  1.5(��  − ��) is regarded 

as an outlier, and the corresponding image is removed from that class. Figure 7 illustrates the pipeline 

for identifying outlier images. The block of pseudocode in Algorithm 1 represents the steps for 

detecting outlier images. 
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Figure 7. Pipeline for defining outlier images. 

Algorithm 1 Identifying Outlier Images 

Load VGG-16 

Read raw dataset 

Create function train_vgg16(epochs: real number, data: raw dataset) 

Initialize i 1 

While i < epochs do 

   train VGG-16 on data 

End while 

Return (features map) 

End function 

 

Create function t-SNE(v: features map, dim:2, iter:1000) 

Initialise i  1 

� = variance of the Gaussian 

Repeat 

 For each pair of points �� and �� in v do 

If ��  =  �� then 

��|�  =  0 

Else do 

  Compute ��|�  =   
��� (�||�����||�/���

�)

∑ ��� (�||�����||�/���
�)���

 

   End if 

End for 

For each counterpart pair of points ��  and �� in low-dimension do 

If ��  =  �� then 

��|�  =  0 

Else do 

Compute ��|�  =  
��� (�||�����||�)

∑ ��� (�||�����||�)���
 

  End if 

End for 

i += 
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Until i = iter 

Write JSON_file  class, image_name, �� , �� 

return (JSON_file) 

End function 

 

Create function IQR(classes:JSON_file) 

outliers = [] 

For each class do 

 For each image_name do 

  If corresponding �� , and �� are NOT in [��  −  �(��  − ��), ��  +  �(�� −  ��) then 

   Outliers[] += image_name 

Else 

Continue 

End if 

End if 

End for 

Return (Outliers[]) 

End function 

 

Create function Main() 

Call train_vgg16() 

Call t-SNE() 

Call IQR() 

The results of applying the IQR are shown in Figure 8. Figure 8a represents the output of running 

IQR measure on the class containing images labelled as normal. The boxplot shows no outliers in this 

class. Figure 8b represents the output of running IQR measure on the class containing images labelled 

as deterioration. The boxplot shows two outliers in this class. The actual images corresponding to 

these two outliers are shown in Figure 9a,b. Figure 8c represents the output of running IQR measure 

on the class containing images labelled as mould. The boxplot shows only one outlier in this class. 

The corresponding images of this outlier are shown in Figure 9f. Finally, Figure 8d represents the 

output of running IQR measure on the class containing images labelled as a stain. The boxplot shows 

three outliers in this class. The corresponding images of the three outliers are shown in Figure 9c–e. 
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Figure 8. Summary of the interquartile range IQR boxplots. (a) shows no outlier images in the normal 

group; (b) IQR boxplot showing two outlier images in the deterioration class; (c) IQR boxplot showing 

one outlier image in the mould class; and (d) IQR boxplot showing three outlier images in the stain 

class. 

  

(b) (a) 

(c) (d) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9. Outlier images in the training dataset. (a,b) represent outlier images from the deterioration 

class; (c–e) represent outlier images from the stain class, and (f) is an outlier image from the mould 

class. 

7. Results 

To test our model before applying the t-SNE method, we first trained the modified VGG-16 

model using the dataset described earlier (over 50 epochs with a batch size of 32 images). After 

completing the training, the 25,088-dimension vector of features was extracted from the layer 

(flatten_1) at the end of block eight. All of the information including images names, labels, and 

extracted features were exported to a JSON file. The classification accuracy was tested using the 732 

non-used images mentioned earlier, which are dedicated to evaluating our model. The test accuracy 

without t-SNE was recorded at 81.25%. 

Image name: deterioration35.jpg 

Image name: stain65.jpg Image name: stain393.jpg 

Image name: deterioration359.jpg 

Image name: stain112.jpg Image name: mould308.jpg 
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After applying the t-SNE method and removing the outlier images from the dataset, we 

performed the exact training steps on the same model but using the “cleaned” dataset. We also used 

the same 732 non-used images dedicated to evaluate the model to test the accuracy. The test accuracy 

with using t-SNE was recorded at 87.5%. 

The summary of the performance of the model before applying our method is represented in 

Table 1 (first column) and Figure 10. The confusion matrix is represented in Figure 10a shows that 

the model has accurately classified 141 out of 183 images containing deterioration with a success rate 

of around 77%. In this class, the model miss-classified 14 images as mould and another 28 images as 

stain. For the mould class, the model was able to accurately identify 164 images out of the 183 with a 

success rate of around 89%. In this class, the model miss-classified six images as deterioration and 13 

images as stain. The success rate in the normal class was 100% while, in the stain class, the model was 

able to accurately classify 130 images only out of the 183 with a success rate of around 71%. In this 

class, the model miss-classified 48 images as deterioration and five images as mould. The figure also 

shows that the largest number of miss-classified defects occurs in the stain and deterioration classes. 

In the analysis summary presented in the first column in Table 1, which corresponds to the 

performance of the model before applying the method, it can be seen that the overall precision of the 

model ranges between 72% for detecting deterioration, 89% for mould, 100% for normal images, and 

76% for stain. The recall analysis shows similar results, with 77% for detecting deterioration, 89% for 

mould, 100% for normal, and 71% for stain. 

The summary of the performance of the model after applying our method is represented in 

Figure 10b and Table 1 (second column). The confusion matrix in this figure shows an increase in the 

number of images containing deterioration accurately classified to 151 out of 183 with a success rate 

of around 82%. In this class, the model miss-classified 16 images as mould while fewer images (16 

images) were miss-classified as stain. For the mould class, a slight increase in the number of images 

containing mould accurately identified with 165 images out of the 183 resulting in, nearly, the same 

success rate of around 89%. In this class, the model miss-classified four images only as deterioration 

and 14 images were miss-classified as stain. The success rate in the normal class remains at 100% 

while, in the stain class, the model performance has significantly improved by a difference of 17 

images. The model was able to accurately classify 147 images out of the 183 giving a significantly 

higher success rate of around 80%. In this class, only 30 images were miss-classified as deterioration 

and six images as mould. The figure also shows the significant decrease in the number of miss-

classified defects occurring in the stain and deterioration classes with 48 images before applying our 

model down to 30 after. In the analysis summary presented in the second column in Table 1 which 

corresponds to the performance of the model after applying the method, improvements in the 

accuracy can also be seen with an overall precision of the model ranging between 82% for detecting 

deterioration; nearly no change in the mould class with 89%, 100% for normal images, and, finally, 

83% for stain. The recall analysis shows similar results, with 82% for detecting deterioration, 90% for 

mould, 100% for normal, and 80% for stain. 
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(a) (b) 

Figure 10. Confusion matrix: (a) without t-SNE; (b) with t-SNE. 

Table 1. Accuracy analysis. 

Without t-SNE. With t-SNE. 

 Precision Recall F1-Score Precision Recall F1-Score 

Deterioration 0.72 0.77 0.74 0.82 0.82 0.82 

Mould 0.89 0.89 0.89 0.89 0.90 0.89 

Normal 1.00 1.00 1.00 1.00 1.00 1.00 

Stain 0.76 0.71 0.71 0.83 0.80 0.82 

8. Discussion and Conclusions 

In this current work, we proposed a multi-stage method for identifying and removing outliers 

in image datasets. Outliers, which are defined as extreme values that abnormally lie outside the 

overall pattern of a distribution of variables, are frequently encountered while collecting data from 

different resources. In machine learning applications, the presence of outliers in training datasets 

could significantly compromise the accuracy of the model. Outliers can be of two kinds: univariate 

and multivariate. Univariate outliers can be found when looking at a distribution of values in a single 

feature space. Multivariate outliers can be found in an n-dimensional space (of n-features) such as 

images. We used a dataset with a total of 2532 images to train a modified, by-transfer-learning, VGG-

16 model. The same model was also used to generate a vector of features of size 25,088-dimensions. 

Since handling data distributions in n-dimensional spaces can be challenging for humans, we used a 

reduction dimensionality technique called t-SNE to create a two-dimensional map of a dataset with 

images intended to train a ConvNet model. The two-dimensional (dimension1 and dimension2) map 

of images was analyzed using the IQR measure for detecting any outliers. For each class of images, 

any point that resides out of the range is outside the range [��  −  1.5(��  −  ��), ��  +  1.5(�� −  ��) 

and is regarded as an outlier and removed from that class. The results of applying the IQR showed 

no outliers in the “Normal” class, two outlier images in the deterioration class, one in the mould class, 

and three outlier images in the stain class. After removing these images from the dataset, the same 

model was trained again on the “clean” dataset. We used a dataset with a total of 2532 images to train 

a modified, by-transfer-learning, VGG-16 model. The model was used to generate a vector of features 

of size 25,088-dimensions. The model accuracy was then examined using a separate set of 732 images 

and 183 images for each class. The evaluation test before applying the t-SNE showed a consistent 

overall accuracy of 81.25%, with 77% of images containing deterioration correctly classified, 89% 

success rate in detecting images containing mould, a 100% for normal images, and only 71% of images 

containing stain were correctly detected. The results after applying our method showed that the 
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accuracy has risen significantly from 81.25% before using our method up to 87.5% after applying our 

method. The improvement in the classification accuracy was noticeable in the stain–deterioration 

classes where most of the miss-classification originally occurred. The percentage of the images 

containing deterioration which are accurately detected has increased up 83%, while the success rate 

in detecting images containing mould and normal remained at 89% and 100%, respectively. The other 

significant improvement can also be seen in the stain class with an increase in the success rate from 

71% up to 80%, with 147 of the images containing stain being correctly detected. 

Although using t-SNE can, sometimes, be computationally expensive (when large image 

datasets are involved), which is one of the disadvantages of dimensionality reductions techniques in 

general, there are, however, other alternatives, but less accurate than t-SNE such as Principal 

component analysis (PCA) which may give decent results should high accuracy not be critical. The 

reason is that PCA only performs linear transformation whilst t-SNE performs the nonlinear 

transformation. However, PCA can be used in adjunct to t-SNE to help reduce the complexity of high-

dimensional transformation, therefore reducing the overall computation time required to perform a 

complete transformation. In our work, we applied t-SNE over 1000 iterations; however, the number 

of iterations can be increased to achieve higher accuracy at the cost of the computation time. 

We recommend using this technique on raw datasets to improve the quality of the training and 

testing subsets. This can be particularly useful in applications such as medical imaging, for example, 

with datasets containing immunofluorescence and immunohistochemistry images, where 

distinguishing between different types of cells can be quite challenging. In such situations, assigning 

images to the wrong class is more likely to occur. Applying this technique guarantees that only 

relevant images are assigned to the right class and outlier images are filtered out. 

In our present study, however, we have only studied the effect of removing outlier images from 

datasets. We have shown that removing images identified as outliers would still improve the overall 

quality of the dataset, and consequently the accuracy of the model. We believe that further 

investigation can be conducted on re-assigning the outlier images rather than removing them. One 

possible way to do this is by using regression techniques such as the K-nearest neighbour algorithm. 

This is, however, beyond the scope of this research. 
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