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In memory of a pioneer in crystal engineering, Prof. Israel Goldberg, we report a series of new 

framework solids, based on the ligand tetrakis(4–pyridyl)porphyrin (TPyP). Spontaneous reactions 

of TPyP with seven different metal salts under liquid-liquid diffusion at ambient temperature show 

that the formation of ionic compounds is preferred to coordination polymers due to increased 

conformational freedom. Two coordination networks, {(HgI2)2(TPyP)}n·4nCHCl3∙2nTCE (TCE = 

1,1,2,2–tetrachloroethane), and {(Ba(μ1,1–NCS)(μ1,1,3–NCS)(H2O)(MeCN))2(TPyP)}n·4nH2O, 

displayed a new isomeric form of the known [(HgI2)2(TPyP)]∞ polymeric motif, and a two-
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dimensional honeycomb polymeric motif linked by hydrogen-bonding into a three dimensional 

moganite (mog) net, respectively. Four protonated porphyrinic salts, [H3TPyP][PF6]3∙0.5TCE, 

[H2TPyP][I3]2·2MeOH, [H4TPyP][UO2Cl4]2·6MeCN, and [H4TPyP][Th(NO3)6][NO3]2, were observed 

which hydrogen bond to give one- or two-dimensional networks, or in the case of 

[H4TPyP][UO2Cl4]2·6MeCN, a discrete dinuclear hydrogen-bonded complex. In one case, a neutral, 

hydrogen-bonded complex, Ce(NO3)3(MeOH)3(H2O)·TPyP·TCE·H2O, was formed which adopts a 

three-dimensional, self-penetrated variant of the face-centered cubic (fcc) network. These new 

structures represent hybrid organic-inorganic crystalline compounds in which the multidentate 

porphyrin units, having both hydrogen bonding, as well as coordination functionalities, are 

interlinked through the inorganic connectors into self-assembled three-dimensional architectures. 

This work shows the relative stability of noncovalently bound vs. coordination networks as well 

as the effective potential of the TPyP building block to construct supramolecular assemblies in the 

presence or absence of coordinating ions as linkers. 

 

1. Introduction 

Porphyrin derivatives are among the key synthetic building blocks in supramolecular chemistry. 

Shortly after Desiraju’s publication of the supramolecular synthon concept,1 a report by Kumar, 

Balasubramanian, and Goldberg described one of the first strategic applications of this concept, 

exploiting the rigidity and directionality of tetraphenylporphyrins with electron withdrawing 

groups at the para positions.2 Our group showed that the related tetrakis(4-pyridyl)porphyrin 

(TPyP) could be used to assemble supramolecular structures via the pyridyl nitrogen atoms with 

optical properties that could be tuned by independent metallation of the porphyrin core.3 
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Tetraphenylporphyrin derivatives and analogs continue to be used this way, for instance as 

spacers in metal organic frameworks which take advantage of the catalytic activity4,5 and optical 

properties6 of metallated porphyrins. 

Our group has continued research on the supramolecular chemistry of TPyP due to the flexibility 

of having up to four independently functionalizable, directional handles. A TPyP molecule 

functionalized with or coordinated to an arbitrary group at one pyridine position has at least 38 

potential derivatives considering only whether the other rings are free base, alkylated, 

protonated, or coordinating, and whether the core is metallated or not. Because TPyP can act as a 

ligand itself, even individual TPyP derivatives have been observed to have multiple polymeric 

structures, a phenomenon termed supramolecular isomerism.7 Interestingly, despite this very 

wide design space, TPyP appears rather under-explored compared to other tetraphenylporphyrin 

derivatives; the Cambridge Structural Database contains 235 entries with a tetrakis(4-

pyridyl)porphyrin core compared to 3695 entries for any tetraphenylporphyrin derivative (with 

or without a heteroatom at the 4-position).8  

There are a number of common structural and topological features that have been observed in 

architectures containing TPyP which are dictated by its rigidity and self complementarity. These 

features include a variety of one-dimensional chains,3,9-23 two-dimensional nets based on the (4, 4) 

topology10,20,24-50 which can be cross-linked into three dimensional networks,51-53 and three-

dimensional architectures including the NbO,11,54-57 CdSO4,58,59 PtS,60 face-centered cubic,61 and α–

polonium nets.61 Further, the architectures that have been encountered include a large number of 

potentially porous networks, often containing disordered solvent molecules.62-69 The range of 

architectures expands when TPyP is combined with noncovalently bound coformers. Zero 

dimensional systems can be attained when TPyP acts as a guest in host-guest complexes70-76 or is 
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completely surrounded by counterions.77-79 Access to permanent cations through alkylation has led 

to supramolecular systems held together through ionic interactions, including infinite ionic stacks 

with counterions (often other porphyrin derivatives)80-83 and the formation of polar and nonpolar 

segregated zones in dodecylated TPyP cations synthesized by our group as potential ionic liquid 

dyes.84 In metallated porphyrins the axial ligands can be used to introduce supramolecular 

functionality such as hydrogen bond85 and halogen bond donors.86-87 

Crystal engineering with TPyP and metal ions is particularly likely to lead to unanticipated 

structures. This is because metal ions may attack the coordinating sites in a number of ways and, 

in protic solvents, may promote the protonation of TPyP and form complex counterions. Herein 

we present the synthesis and structural characterization of a series of new TPyP-containing 

compounds which explore this structural variability. These include two coordination polymers, 

{(HgI2)2(TPyP)}n·4nCHCl3∙2nTCE (1, TCE = 1,1,2,2–tetrachloroethane), and {[Ba(μ-1,1–

NCS)(μ-1,1,3–NCS)(H2O)(MeCN))2(TPyP)}n·4nH2O (2); four protonated porphyrinic salts, 

[H3TPyP][PF6]3∙0.5TCE (3), [H2TPyP][I3]2·2MeOH (4), [H4TPyP][UO2Cl4]2·6MeCN (5), and 

[H4TPyP][Th(NO3)6][NO3]2 (6); and a neutral hydrogen-bonded complex, 

Ce(NO3)3(MeOH)3(H2O)·TPyP·TCE·H2O (7). These seven complexes show a wide range of 

topological and structural features, several of which have not been seen previously in compounds 

involving TPyP. 

2. Experimental 

2.1 Materials and methods. All chemicals were purchased from Aldrich (Milwaukee, WI), 

except for UO2Cl2 which was purchased from Isotope Products Laboratories (Valencia, CA).  
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The single crystals of 1–7 were grown using layering techniques at ambient temperatures as 

follows. 1: TPyP (31 mg, 50 μmol) dissolved in TCE–CHCl3–MeOH (2:2:1, 20 mL) was layered 

with a methanolic solution of HgI2 (46 mg, 0.1 mmol, 10 mL) to form 

{(HgI2)2(TPyP)}n·4nCHCl3∙2nTCE. 2: TPyP (31 mg, 50 μmol) dissolved in TCE–MeOH (3:1, 20 

mL) was layered with a MeCN solution of Ba(SCN)2∙3H2O (31 mg, 0.1 mmol, 10 mL) to form 

{(Ba(μ1,1–NCS)(μ1,1,3–NCS)(H2O)(MeCN))2(TPyP)}n·4nH2O. 3: TPyP (31 mg, 50 μmol) 

dissolved in TCE–MeOH (3:1, 20 mL) was layered with a methanolic solution of AgPF6 (25 mg, 

0.1 mmol, 10 mL) to form [H3TPyP][PF6]3∙0.5TCE. 4: TPyP (31 mg, 50 μmol) dissolved in TCE–

MeOH (3:1, 20 mL) was layered with a methanolic solution of CrI3 (43 mg, 0.1 mmol, 10 mL) to 

form [H4TPyP][I3]4·2MeOH. 5: TPyP (31 mg, 50 μmol) dissolved in TCE–MeOH (3:1, 20 mL) 

was layered with a MeCN solution of UO2Cl2 (34 mg, 0.1 mmol, 10 mL) to form 

[H4TPyP][UO2Cl4]2·6MeCN. 6: TPyP (31 mg, 50 μmol) dissolved in TCE–MeOH (3:1, 20 mL) 

was layered with a methanolic solution of Th(NO3)4·5H2O (57 mg, 0.1 mmol, 10 mL) to form 

[H4TPyP][Th(NO3)6][NO3]2. 7: TPyP (31 mg, 50 μmol) dissolved in TCE–MeOH (3:1, 20 mL) 

was layered with a methanolic solution of Ce(NO3)3·6H2O (43 mg, 0.1 mmol, 10 mL) to form 

Ce(NO3)3(MeOH)3(H2O)·TPyP·TCE·H2O. 

2.2 X-ray crystallography. Single crystal X-ray diffraction (SCXRD) data for single crystal 

structural determinations of complexes 1–7 were collected on a Bruker SMART CCD area 

detector-equipped diffractometer (Bruker AXS, Madison, WI) with graphite monochromated 

Mo-Kα radiation (λ = 0.71073 Ǻ). The crystals were cooled to -100 °C under a cold stream of 

nitrogen using an LT-2 cryostat (Bruker AXS). Intensities were corrected for Lorentz and 

polarization effects,88 and a multi-scan absorption correction89 was applied. The structures were 

solved by direct methods and refined on F2 using all data by full-matrix least-squares procedures 
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using SHELXL v.2017.90 Non-hydrogen atoms corresponding to ordered parts of the structure 

were readily located and refined anisotropically. Hydrogen atoms bonded to carbon were placed 

in calculated positions, and the coordinates were constrained to ride on the carrier atoms. Methyl 

group hydrogen atoms were refined using a riding-rotating model. Hydrogen atoms bonded to 

nitrogen were located from the difference Fourier maps in all cases, except for those in 3 and 7 

where hydrogen atoms on protonated nitrogen atoms were placed in calculated positions and 

constrained to ride on the nitrogen atoms. Hydrogen atoms bonded to oxygen were located from 

the difference Fourier maps in all cases, except for those in 7 and those on lattice water 

molecules in 2 which were omitted from the refinement but included in the formula. All 

hydrogen atom thermal parameters were constrained to ride on the carrier atoms. Topological 

analysis of the complexes was carried out using OLEX.91 Ellipsoid plots were generated using 

Olex2 v.1-2, 92 and packing plots were made using Mercury 4.1.0 (Cambridge Crystallographic 

Data Center, Cambridge, UK).93 

In both 1 and 3, highly disordered solvent molecules were found to be present which could not 

be satisfactorily modeled. These were removed from the atom list for refinement, and the 

SQUEEZE routine in PLATON94 was applied in each case. The contribution to the diffraction 

pattern of diffuse solvent and anion fragments was removed, and modified Fo
2 values were 

written to a new HKL file. The number of electrons per unit cell thus located was included in the 

formula, formula weight, calculated density, μ and F(000), and was determined to be either two 

molecules of TCE per TPyP for 1, or half a molecule of TCE per TPyP for 3. (Note: Due to the 

use of an older version of SQUEEZE, false CheckCIF alerts are generated for the presence of 

solvent accessible voids and mismatches between calculated and reported formulae, μ, and 

F(000) which would ordinarily be suppressed.) 
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The structure of 7 was found to be affected by twinning, with a twin law of -1 0 0 0 -1 0 1 0 1. 

The Flack parameter95,96 of the structure indicated that racemic twinning was occurring as well, so 

this was incorporated into the twin refinement. Possibly as a result of the twinning occurring in 

the crystal, the positions of the methanolic hydrogen atoms and those of both the coordinated and 

non–coordinated water molecules could not be determined from the difference Fourier map. A 

rigid group restraint was also applied to all thermal ellipsoids in 7 in order to compensate for the 

loss of data-to-parameters caused by twinning and other systematic errors.97 

Structure 1 has significant residual electron density peaks outside the Hg and I atom locations 

which may be caused by packing defects which result in these heavy atom sites occupying 

nearby locations and does not impact the interpretation of the structure, which is supported by 

the very characteristic coordination mode of Hg(II). Due to a software error, the estimated 

minimum and maximum X-ray transmission factors of 2 were not logged; these were applied 

using the same semi-empirical multi-scan method as the other structures with spherical harmonic 

equation orders of 5 and 8 and an estimated μ·r of equivalent sphere of 0.2. For structure 5 a 

hardware error on the final scan caused a fraction data to be unusable, resulting in low 

completeness, but not otherwise having serious effects on the refinement. In structures 5 and 6 

the bond lengths for several N-H bonds refined to unrealistically long values, this is most likely 

due to the dominating effects of the heavy atom in the structure. The free refinements of H atom 

positions in these structures were retained because the experimental confirmation of unrestrained 

H atom locations is of greater value to the study than the actual N-H bond distance. 

3. Results and Discussion 
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3.1 Crystallization and role of metal ions: Direct addition of the metal salts to solutions of TPyP 

led to immediate precipitation of powders, as did direct mixing of solutions of the metal salts and 

solutions of TPyP. Single crystals large enough for study by SCXRD methods could only be 

obtained by layering of a solution of the metal salt in a polar solvent, MeCN or MeOH, on top of 

a solution of TPyP in mixed TCE-MeOH or TCE-CHCl3-MeOH, allowing slow diffusion at room 

temperature. The metal-containing solutions are sources of both inorganic ions and protons from 

adventitious water or hydrated starting materials. These ions likely diffuse into the TPyP layer 

much faster than TPyP diffuses into the inorganic layer, given the much larger size and low 

solubility of TPyP. The crystallizations can thus be expected to take place mainly in the TPyP 

layer with inorganic ions as the limiting reactant. There are potentially many combinations of 

TPyP with the multiple inorganic ions entering the solution in each system, and the 

crystallizations indicate which of these combinations produces the most stable and least soluble 

crystal structure. 

All reactions are summarized in Scheme 1. The structures of 1 and 2 were determined to be 

coordination polymers, those of 3–6 were found to be porphyrinic salts, and 7 to be a hydrogen-

bonded complex. The results indicate that, in general, salts are more stable than coordination 

polymers directly linked by metal ions. The reason for this appears to be that, while the salts lack 

any interactions that are individually as strong as the metal-pyridine dative interaction would be, 

the protonated TPyP cation is far more flexible as a structural building block. H+ does not have a 

coordination sphere that needs to be filled, and thus the TPyP moiety can have any of a wide 

range of orientations with respect to the counterion. The counterion does not have to be strongly 

interacting, but it does have to fill space. While [PF6]- and [I3]- are able to dissociate from the 

metal-containing starting material and form metal-free salts, Cl- and [NO3]- do not, remaining 
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associated with the metal ions to form polyatomic anions even though the latter two anions are 

more basic. Compounds 1 and 2, incidentally, likely form coordination polymers because the 

metal starting materials, HgI2 and Ba(SCN)2, do not form stable anionic complexes in solvents 

like MeOH or MeCN, and their counterions are too small to stabilize an ionic lattice with TPyP 

counterions. Compound 7 is the exception to the above, forming neither a salt nor a coordination 

polymer, and in this unusual case the two neutral moieties happen to form a net that is capable of 

interpenetration, as discussed further. 
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Scheme 1: Crystallizations of 1-7 (solvents of crystallization omitted from product formulas). 



 11 

Regardless of whether TPyP is bridged directly through metal coordination or linked through a 

more complicated network of noncovalent interactions, its size and rigidity give it a decisive 

influence on the overall structure. The supramolecular features of the individual structures will 

be discussed in detail. 

3.2 Structure Descriptions and Topography 

Structure of {(HgI2)2(TPyP)}n·4nCHCl3∙2nTCE (1). Compound 1, formed from the reaction of 

TPyP and HgCl2, crystallizes in the orthorhombic space group Pnnm. The asymmetric unit 

consists of half a four–coordinate Hg(II) cation, two half I– anions, a quarter of a TPyP ligand, a 

CHCl3 solvent molecule, and further disordered solvent (determined to consist of two molecules 

of TCE per TPyP using the SQUEEZE routine in PLATON). The centroid of the porphyrin ring 

lies on a two–fold rotation axis and a perpendicular mirror plane to give a porphyrin with four 

symmetry equivalent pyridine groups (Figure 1a). The complex comprises tetrahedrally 

coordinated Hg(II) cations linking TPyP molecules to form one-dimensional metallamacrocyclic 

coordination polymers propagating along the crystallographic c-axis (Figure 1b). 
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Figure 1. (a) 50% Probability ellipsoid plot of 1; heavy dashed lines indicate extension of 

coordination polymer. (b) View of the one-dimensional coordination polymer formed by 1. (c) 

View down the c-axis showing the near-orthogonal herringbone packing of chains, with solvent 

molecules residing in small gaps along the chains. 

The overall structure of the coordination polymer is similar to several of those previously 

reported,10,13,16-17 but with a different packing arrangement of the chains. Instead of the planes of the 

porphyrin rings in adjacent chains being coplanar, the stacking of chains is offset, and adjacent 

stacks of chains pack nearly orthogonally. Due to this offset, adjacent TPyP molecules are too far 

apart to take part in π–stacking interactions; the closest approach is between the edges of two 

pyrrole rings at 5.74(1) Å (distances of less than 3.6 Å are expected for true interactions)98. In 

contrast to many of the one-dimensional polymers of this type formed from TPyP, where 

solvent-filled regions form between stacked chains,18 no such solvent domains are formed in the 
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structure, and the ordered CHCl3 and disordered TCE solvent molecules reside in the individual 

gaps between adjacent chains (Figure 1c).  

No strong interactions were found to occur between the CHCl3 solvent molecules and the 

polymeric chains, with no contacts between them within the sum of the van der Waals’ radii. 

This is unexpected, as these solvent molecules were seen to be fully ordered within the structure. 

As no topologically significant, strong and directional interactions take place between polymeric 

chains to create a two- or three-dimensional network, the topology of 1 is simply that of a 

metallamacrocyclic chain. 

This arrangement of chains can be considered as a herringbone packing motif when viewed 

down the c–axis (Figure 1c). Such a motif has been seen previously in a TPyP coordination 

polymer formed with HgBr2,14 however there are significant differences between the packing of 

these two structures. In the HgBr2 structure, orthogonal chains pack such that the HgBr2 linker of 

one chain interdigitates into the metallamacrocyclic ring of the next and forms interactions with 

the HgBr2 linkers of that ring. In contrast, in 1 no interdigitation occurs between chains, instead, 

the HgI2 groups are positioned so that an interaction may be seen between one I– anion and a 

pyrrole ring of the adjacent chain, at closest I···C distance of 3.665(9) Å. Beyond these, no other 

interactions take place between adjacent chains.  

 

Structure of {Ba(μ1,1–NCS)(μ1,1,3–NCS)(H2O)(MeCN))2(TPyP)}n·4nH2O (2). Compound 2, 

formed from the reaction of TPyP and Ba(SCN)2∙3H2O, crystallized in the triclinic space group 

𝑃1$. The asymmetric unit consists of one eight-coordinate Ba(II) cation, two SCN– anions, half a 

molecule of TPyP, a coordinated MeCN solvent molecule, and three water molecules, one of 
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which is coordinated (Figure 2a). The centroids of the porphyrin ring and of the SCN-bridged 

Ba dimers are found on a centers of symmetry. 

 

Figure 2. (a) 50% probability ellipsoid plot of 2; heavy dashed lines indicate extension of 

coordination polymer. (b) View along the a-axis of the two-dimensional coordination polymer, 

with non-coordinated water molecules omitted. (c) View down the c-axis of the three-dimensional 

hydrogen bonded net of 2; dashed green lines indicate strong hydrogen bond vectors. 

The structure of 2 is a particularly intricate, hierarchical 3D network comprised of inorganic one-

dimensional polymers crosslinked in two orthogonal directions by different interactions with the 

TPyP moieties. First, the square-antiprismatic Ba(II) coordination polyhedra form infinite edge-

sharing chains bridged directly by μ2-thiocyanate nitrogen atoms. The sulfur atom of one 

thiocyanate group further links these by coordinating to a separate Ba(II) center from the 
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nitrogen atom, as observed in the structure of K2Mg2(SCN)6·3H2O.99 These one-dimensional 

Ba(SCN)2 tapes run along the crystallographic c-axis and are linked along the (0 1 1) plane by 

coordination to trans pyridine groups of the TPyP. (Figure 2b). In this structure the porphyrin 

cores of the TPyP rings do not lie in the plane of the two-dimensional sheets but are tilted out of 

the plane so that the non-coordinating pyridine rings are pointed parallel to the (0 -1 1) plane. 

These groups accept strong hydrogen bonds from coordinating water molecules generating the 

overall three-dimensional network. Finally, the networks contain small pores running along the 

a-axis which appear to be occupied by cyclic tetramers of hydrogen bonded water molecules. 

The topology of the two-dimensional coordination polymeric net could be defined as a uninodal 

63, or honeycomb, hcb net,100 with nodes based on the Ba(II) cations (Figure 2c). Each node is 

linked to three other nodes, two via the links of the SCN– anions, the other via the coordinated 

TPyP. Compound 2 is the first TPyP–containing structure to show the 63 topology. It is also the 

second two-dimensional TPyP-containing structure where TPyP behaves as a simple linker, 

rather than as a four-connected node.58 This is likely due to the structural flexibility afforded to 

this type of linkage. The TPyP molecule can rotate freely about the axis passing through the C-C 

single bonds that connect the coordinating pyridine groups to the porphyrin core without 

perturbing the Ba(II) coordination environment. Similarly, the coordinated water molecule can 

rotate freely about the O-Ba bond axis and donate hydrogen bonds anywhere along the cone 

described the rotation of the O-H bonds about this axis.   

When the hydrogen bonds between non-coordinated pyridine rings and H2O molecules are taken 

into account, the resulting three-dimensional net is topologically more complex. The net 

becomes four–connected, comprising two topologically different nodes, one based on the 

centroid of the TPyP ligand, the other on the Ba(II) ions. The TPyP nodes are linked to four 
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different Ba nodes via coordination of two pyridines, and hydrogen bonding between the other 

two pyridines and H2O. The Ba nodes in turn are linked in a similar fashion to two different 

TPyP nodes, one by coordination, the other by hydrogen–bonding, and to two further Ba nodes 

via the bridging SCN– ligands. The short topological term of the TPyP nodes is, 42.62.82, while for 

the Ba nodes it is 4.64.8. This results in an overall network topology of (4.64.8)2.(42.62.82). This 

particular net is also known as the moganite (mog) net,101 and it is uncommon among coordination 

polymers, with only eight compounds described in their reports as having it.102 Databases within 

the Reticular Chemistry Structural Resource (RCSR)100 and within the Topos110 software package 

indicate that a few more unrecognized instances of the network have been found, with around 35 

other structures exhibiting the mog net in total and the closest related to 2 being a coordination 

polymer composed of [Dy(C2O4)2(OH2)2]n
- chains linked by tetrakis(3-carboxyphenyl)porphyrin 

zwitterions.111 

Structure of [H3TPyP][PF6]3·0.5TCE (3). Compound 3 was formed spontaneously from the 1:2 

molar reaction of TPyP and AgPF6 in TCE–MeOH. It crystallized in the monoclinic space group 

P21/c, and the asymmetric unit consists of half of a [H3TPyP]3+ cation, protonated with 75% 

occupancy on both unique pyridine N atoms, one ordered [PF6]- anion, one half of an ordered 

[PF6]- anion located on a special position, and disordered solvent (determined to consist of half a 

molecule of TCE per [H3TPyP]3+ cation using the SQUEEZE routine in PLATON57). The 

[H3TPyP]3+ ion and one of the [PF6]- ions reside on crystallographic inversion centers (Figure 3a). 

Further checks were conducted to ensure that the unmodeled solvent was not in fact another 

[PF6]- anion; however the number of electrons removed was not sufficient for that to be the case, 

and earlier attempts to model the disordered species suggested TCE, rather than [PF6]– to be 

present. Interestingly the reaction of AgPF6 with TPyP in this solvent system has been reported to 



 17 

produce the expected coordination polymer when conducted at -10 oC.15 We suspect that at room 

temperature, atmospheric water vapor provides a source of adventitious H+ which leads to the 

formation of a salt that is apparently more stable than the coordination polymer. 

 

Figure 3. 50 % Probability ellipsoid plot of 3. (b) Two-dimensional, hydrogen bonded network 

lying in the (1 0 2) plane. (c) 2x2x2 unit cell packing diagram viewed along a-axis. Dashed green 

lines indicate especially short contacts (at least 0.2 Å shorter than the sum of the Van der Waals 

radii). Disordered H atoms shown distributed across all sites. 

 

Hydrogen bonds form between both of the unique, partially protonated pyridines and one of the 

[PF6]- anions. In both cases a bifurcated interaction results, with N–H∙∙∙F donor-acceptor 
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distances ranging from 2.877(3) to 2.931(4) Å. Further short contacts also occur between the 

anions and the aromatic hydrogens of the [H3TPyP]3+ cations, with C–H∙∙∙F donor-acceptor 

distances ranging from 3.137(4) to 3.299(4) Å. The combination of the two sets of hydrogen 

bonding interactions gives rise to a two-dimensional network, formed in the (1 0 2) plane, 

although the specific nature of this net is complicated by the partial occupancies of the protons 

bound to the pyridine N atoms (Figure 3b). 

Packing of adjacent sheets occurs such that parallel [H3TPyP]3+ cations are diagonally offset by 

approximately half the length of the molecule, with a pyridine ring of one residing above the 

central cavity of the [H3TPyP]3+ of the other. This packing arrangement causes the [H3TPyP]3+ 

cations to stack, although the shortest distance (3.962 Å between carbon atoms of two pyrrole 

rings) is too long to indicate an interaction. The [PF6]- anion not involved in strong H bonding is 

positioned to form anion∙∙∙π interactions within pockets formed by two protonated pyridines and 

one pyrrole ring, where F- groups make short contacts to atoms on each of these rings that are 

perpendicular to the ring plane. These interactions anchor the anions in the centers of these 

pockets. The packing arrangement gives rise to small pores within the structure running along 

the crystallographic a-axis which are occupied by the disordered solvent molecules. 

Topological analysis of the two-dimensional sheets was complicated by the fact that the pyridine 

rings are only protonated with partial occupancy. However, since investigation of the difference 

Fourier map did not indicate preference for protonation at one N site over any other, the analysis 

was conducted as if the protonation had been complete. The topology was found to be that of a 

four-connected net, comprising two different nodes, one based on the centroid of the [H3TPyP]3+ 

cation, the other on the P atom of the [PF6]- anion. Each node is linked to four other nodes via the 
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hydrogen bonds formed between [H3TPyP]3+ and [PF6]–. This results in each node having the short 

topological term 44.62, more commonly known as a square grid (sql) or (4, 4) net.101  

 

Structure of [H2TPyP][I3]2·2MeOH (4). Compound 4 was formed spontaneously from the 

reaction of TPyP and CrI3, and crystallized in the triclinic space group 𝑃1$. The asymmetric unit 

consists of half of a [H2TPyP]2+ cation, two half, ordered I3
– anions, and a MeOH molecule 

(Figure 4a). The centroid of the porphyrin ring lies on a center of symmetry. The oxidation of 

the I– anions to I3
– observed here was also observed in the formation of another porphyrinic salt, 

(H4TPyP)Cl2(I3)2.38  

 

Figure 4. (a) 50 % Probability ellipsoid plot of 4. (b) One-dimensional hydrogen bonded chains 

viewed along the crystallographic ab-diagonal. (c) 2x2x2 unit cell packing diagram viewed down 

a. Dashed green lines indicate short (less than the sum of the Van der Waals radii) contacts. 

Protonated pyridine sites donate hydrogen bonds to lattice MeOH molecules, and these MeOH 

molecules then donate hydrogen bonds to the free base pyridine groups (N–H∙∙∙O and O-H···N 
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donor-acceptor distances are 2.68(1) and 2.78(1) Å, respectively). The combination of the two 

sets of hydrogen bonding interactions gives rise to one-dimensional hydrogen bonded 

macrocyclic chains of [H2TPyP]2+ cations and MeOH molecules, running along the 

crystallographic ab diagonal (Figure 4b). The I3
– anions are in turn held in place in the structure 

by weak interactions with the aromatic C–H groups of the [H2TPyP]2+ cations, at a C–H∙∙∙I donor-

acceptor distance of 3.966(8) Å. As no topologically significant, strong and directional 

interactions take place between the hydrogen bonded chains to create a two- or three-

dimensional network, the topology of 4 is simply that of a macrocyclic chain.  

The chains pack such that individual [H2TPyP]2+ cations are diagonally offset from each other by 

approximately half the length of the molecule, with a pyridine ring of one residing above the 

central cavity of the [H2TPyP]2+ of the other, in a similar fashion to that seen in 3. However, in 

this structure, the additional presence of the bulky I3
– anions result in the [H2TPyP]2+ cations not 

approaching each other as closely as was seen for 3. While the packing arrangement does cause 

pyrrole rings to stack parallel to each other (with the angle between ring planes being 2.7(4)°), 

the distance is too long to indicate an interaction. In addition, one of the pyridine rings is 

positioned so that one C–H group can form a C–H∙∙∙π interaction with a pyrrole ring of a 

neighboring [H2TPyP]2+ cation, with the shortest donor-acceptor distance (C–Hpyridine∙∙∙Npyrrole) being 

3.38(1) Å. This packing motif allows for the formation of small channels running down the 

crystallographic a–axis, which are occupied by the I3
– anions (Figure 4c). These pores are formed 

in two areas; beside the macrocyclic hydrogen–bonded ring, and beside the slightly interdigitated 

arrangement of the MeOH molecules, which creates discrete gaps between hydrogen bonded 

chains. 
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Structure of [H4TPyP][UO2Cl4]2·6MeCN (5). Compound 5, formed from the reaction of TPyP 

and UO2Cl2·3H2O, crystallized in the triclinic space group 𝑃1$. The asymmetric unit consists of 

half of a [H4TPyP]4+ cation, one [UO2Cl4]2– complex anion, and three molecules of MeCN arranged 

around a crystallographic inversion center located at the centroid of the TPyP cation. The 

[UO2Cl4]2– has the expected geometry in which four Cl- ligands are arranged equatorially around 

the trans-[UO2]2+ center. One set of hydrogen bonds occurs between one of the unique protonated 

pyridine rings and one of the unique MeCN solvent molecules, with a N–H∙∙∙N donor-acceptor 

distance of 2.80(1) Å. The other set of hydrogen bonds occurs between the remaining unique 

protonated pyridine and one of the Cl- ligands of the [UO2Cl4]2– anion, with a N–H∙∙∙Cl donor-

acceptor distance of 3.249(7) Å. These two sets of interactions give rise to the formation of 

discrete dinuclear hydrogen–bonded complexes, comprising one [H4TPyP]4+ cation, two [UO2Cl4]2– 

anions, and two molecules of MeCN (Figure 5a). The anions and solvent are further held in 

place by other weaker interactions with the cation, via a variety of C–H∙∙∙N, C–H∙∙∙O, and C–

H∙∙∙Cl interactions, with C–H∙∙∙acceptor distances of 2.46 to 2.65 Å, and C∙∙∙acceptor separations 

of 3.249(7) to 3.538(11) Å. 
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Figure 5. (a) 50 % Probability ellipsoid plot of 5. (b) Stacking of discrete hydrogen bonded 

moieties. (c) 2x2x2 unit cell packing diagram viewed down a. Dashed green lines indicate short 

(less than the sum of the van der Waals radii) contacts. 

The interactions within 5 result in a packing of adjacent [H4TPyP]4+ cations similar to those seen 

in 3 and 4, with a diagonal offset from each other by approximately half the length of the TPyP 

molecule, with a pyridine ring of one residing above the central cavity of the [H4TPyP]4+ of the 

other (Figure 5b). These rings form infinite stacks along the a axis, consequently organizing the 

anions into columns and creating channels along a filled by MeCN molecules (Figure 5c). As 

was the case in 4, the large anions prevent the formation of strong π-π interactions, with only a 

weak interaction occurring between adjacent pyrrole rings, with a centroid∙∙∙centroid distance of 

3.805(5) Å, and an angle between ring planes of 5.3(5)°. Once again, another set of π 
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interactions are found to occur, where the protonated pyridine rings form weak π∙∙∙anion 

interactions with one of the chlorides of the [UO2Cl4]2– anions.  

As no topologically significant, strong and directional interactions take place between the 

hydrogen bonded dinuclear species to create a network, the topology of 5 is simply that of a 

dinuclear hydrogen–bonded complex. The presence of a large number of potential hydrogen 

bond acceptors in 5 means that rather than one acceptor species being able to form a hydrogen–

bonded bridge between two protonated porphyrins, four discrete hydrogen bonds are formed. 

This results in the formation of the very unusual discrete hydrogen bonded complex. This is only 

the sixth discrete hydrogen bonded complex of TPyP that has been structurally characterized; the 

other five being hydrogen bonded clathrates between non-protonated TPyP and either acetic 

acid,54 or substituted phenols.112 

Structure of [H4TPyP][Th(NO3)6][NO3]2 (6). Compound 6 was formed from the reaction of 

TPyP and Th(NO3)4∙5H2O, and crystallized in the monoclinic space group C2/c. The asymmetric 

unit consists of half a [H4TPyP]4+ cation, protonated at both pyridine rings, one [Th(NO3)6]2- 

complex anion, and two non-coordinated [NO3]- anions (Figure 6a). The centroid of the 

porphyrin ring lies on a center of symmetry. [Th(NO3)6]2- is composed of a twelve–coordinate 

Th(IV) ion center ligated by exclusively bidentate [NO3]- groups resulting in a slightly distorted 

icosahedral coordination geometry typical for this species.113 Unlike complexes 1–5, complex 6 

does not contain any incorporated solvent molecules. 
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Figure 6. (a) 50% Probability ellipsoid plot of 6. (b, c) Views perpendicular to and along hydrogen 

bonded sheets, respectively. (d) 2x2x2 unit cell packing diagram viewed down c. Dashed green 

lines indicate short (less than the sum of the Van der Waals radii) contacts. 

Three sets of hydrogen bonds form in complex 6. All of these are between the protonated 

pyridine rings and the non–coordinated [NO3]- anions, with one pyridine forming a pair of 

hydrogen bonds to two O atoms on the same [NO3]- anion. These hydrogen bonds have N–H∙∙∙O 

donor-acceptor distances ranging from 2.676(7) to 3.157(7) Å. The combination of these 

hydrogen bonds gives rise to a two–dimensional hydrogen–bonded sheet, which resides in the (1 
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0 -1) plane (Figure 6b). The [Th(NO3)6]2– anions form a number of weaker C–H∙∙∙O interactions 

with the cations which occur at C–H∙∙∙O donor-acceptor distances from 2.984(7) to 3.435(7) Å. 

The bulky anions reside in the gaps between adjacent [H4TPyP]4+ cations, but out of the plane of 

the hydrogen bonded sheets. The positioning of the anions results in distortions of adjacent 

sheets in order to accommodate them, with all [H4TPyP]4+ cations being inclined slightly out of 

the plane of the sheets (Figure 6c).  

The packing of sheets is again similar to that seen for 3–5, with a diagonal offset of individual 

[H4TPyP]4+ cations of approximately half the length of the molecule where a pyridine ring of one 

resides above the central cavity of the [H4TPyP]4+ of the other. One of the pyridine rings of the 

[H4TPyP]4+ cation is positioned so that it can form a C–H∙∙∙π interaction with a pyrrole ring of a 

neighboring [H4TPyP]4+, with a C–H···N donor-acceptor distance of 3.465 Å. As was seen for 4 

and 5, the distortions within the hydrogen bonded sheets caused by the large anions prevent the 

formation of any stronger π–π interactions, the shortest centroid∙∙∙centroid distance between 

parallel [H4TPyP]4+ groups being 3.938(3) Å.  

The topology of the hydrogen-bonded sheets was again found to be a four–connected sql net.101 

However, in 6 there is only one type of node, based on the [H4TPyP]4+ moiety (in other structures, 

such as 3, the anion can also act as a node). Also, due to the presence of the bulky [Th(NO3)6]2– 

anions between the sheets the positioning of the connecting [NO3]- anions diverges significantly 

from the ideal position of centroid-centroid connectors. This degree of distortion away from the 

idealized net-form has not previously been seen in TPyP-containing sql nets.  
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Structure of Ce(NO3)3(MeOH)3(H2O)·(TPyP)·TCE·H2O (7). Compound 7 was formed 

spontaneously from the reaction of TPyP and Ce(NO3)3∙6H2O in TCE/MeOH. The resulting 

neutral complex crystallized in the monoclinic space group P21 twinned by a rotation mapping c 

onto the ac diagonal (see experimental). The asymmetric unit consists of a neutral TPyP 

molecule, a neutral Ce(NO3)3(MeOH)3(H2O) complex, and one molecule each of non-coordinated 

TCE and H2O (Figure 7a). The Ce(III) ion has a ten-coordinate geometry which can be described 

as a bicapped square antiprism, with two bidentate [NO3]- ligands occupying both capping and 

regular sites.  

 

Figure 7. (a) 50% Probability ellipsoid plot of 7. (b) Structure of an individual strong hydrogen 

bonded sheet.  (c) Interpenetration of hydrogen bonded sheets to give 3D network (all atoms of a 

single color are part of the same hydrogen bonded sheet). (d) Packing diagram (2x2x2 unit cells) 

viewed down a. 
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The complex shows six separate short contacts which could potentially be strong hydrogen 

bonds between ligands coordinated to the Ce(III) center, the pyridine nitrogen atoms of the 

TPyP, and the non-coordinated water molecule. The donor-acceptor distances for these contacts 

range from 2.62(2) to 2.86(2) Å. These hydrogen bonding interactions give rise to a complex 

three-dimensional network, which is further strengthened by a series of weaker C–H∙∙∙O 

interactions between both the methyl protons of the coordinated MeOH, the aromatic protons of 

the TPyP, and the oxygen atoms of the [NO3]- anions, with C–H∙∙∙O donor-acceptor distances 

ranging from 3.19(2) to 3.49(2) Å. 

The network can be broken down by investigating the connectivity of the strongest hydrogen 

bonds, which are between TPyP, lattice H2O molecules, and MeOH ligands on Ce(III) 

complexes. These hydrogen bonds link the components of the crystal into infinite sheets (Figure 

7b). These sheets are linked together through interpenetration to form a three dimensional 

network, as shown in Figure 7c, with interpenetrating sheets interacting only through weaker 

hydrogen bonds and dipole-dipole interactions. Each individual 2D sheet is symmetry 

equivalent, related by either a translation along a or a 21 screw operation. As was the case in 1, 

due to the relative orientations of the two–dimensional sheets, adjacent TPyP molecules are 

approximately orthogonal to each other; although in contrast to 1, nearest parallel TPyP 

molecules are separated by the TCE solvent molecules packing between them (Figure 7d). This 

separation of adjacent TPyP molecules by solvent prevents any of the aromatic rings from 

coming close enough to form a π-stacking interaction, the shortest distance between centroids 

being 4.2 Å. The TCE solvent molecules, however, are held in place within the network by 

forming bridging C–H∙∙∙π interactions with the TPyP molecules. These interactions allow the 
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TCE molecules to bridge across the cavities they reside in, with the shortest C-H···π donor to 

acceptor distances being 3.45(3) and 3.37(3) Å, respectively. 

Topological analysis also showed that the three-dimensional network is built up from linking of 

individual two–dimensional nets into a three-dimensional network through further hydrogen 

bonds. The individual two dimensional nets have the sql topology,101 with four–connected nodes 

based on both the Ce(III) complexes and the TPyP molecules. When considering the three–

dimensional net as a whole, it becomes apparent that the manner of linking of the sql nets 

together results in the three-dimensional net being self-penetrating, this being only the second 

reported self-penetrating network structure involving TPyP.114 

As a result of the interconnection of nets in the three–dimensional structure, the connectivity of 

the Ce–based nodes is increased to six, and their topology becomes more complex. The TPyP–

based nodes retain the 44.62 topology of the sql nets, while that of the Ce–based nodes becomes 

44.610.8, resulting in an overall network topology of (44.62).(44.610.8). The resulting net has the 

topology of the face-centered cubic net, fsc;61 although, the net observed in 7 is structurally 

different to those seen previously, both in terms of its construction, and, particularly, its self-

penetration. One other TPyP compound, {Cu(TPyP)Cu2Mo3O11}n, has been seen to exhibit the fsc 

net; however, it showed a more conventional form of the network.61 

4. Conclusions 

Following in Prof. Goldberg’s footsteps, we have studied a large array of metal salt TPyP 

reactions. The seven new TPyP-containing species which were prepared and crystallographically 

characterized are diverse and interesting. Two were coordination polymers (1-2), four were 

complexes of porphyrinic salts (3-6), and one was a neutral molecular complex (7). While a 
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previously known coordination mode was observed in 1, leading to a standard polymeric 

structure, more subtle effects led to an unusual packing motif for this type of polymeric structure. 

The structure of coordination polymer 2 showed was unique for its a previously unknown 

topology among TPyP structures, demonstrating only the second instance of TPyP behaving as a 

simple linker in a two–dimensional coordination polymer, and presenting a topologically 

uncommon three-dimensional through the linking of the coordination polymers by hydrogen 

bonding. The porphyrinic salts also showed features of interest. In the formation of the discrete 

hydrogen bonded dinuclear complex 5, the extension of this to a hydrogen–bonded network is 

seen to be blocked by abundance of hydrogen–bond acceptors in the system. In contrast the 

complexes 3, 4, and 6 all show the formation of hydrogen bonded networks, of topologies 

previously known for TPyP, but containing unusual features. The neutral molecular complex 

seen in 7 is also found to form an unusual hydrogen–bonded network, which shows a self–

penetrating variation on a previously known topology. 

Despite the similarities in reaction conditions, a broad range of structural types emerged, and the 

spontaneous self-assembly of the specific components led to a variety of structural and 

topological features not seen previously in structures involving TPyP. Although these 

crystallizations were undertaken in non-aqueous systems that were at best only weakly acidic, H+ 

was able to out-compete metal ions for access to the pyridine groups of TPyP in most cases. The 

driving force for proton abstraction in these conditions appears to be the formation of salts with 

large counterions that form fairly dense noncovalent networks, often with solvent-filled 

micropores. The diversity of structures, which includes not only different nets but also different 

protonation states and coordination numbers, indicates that the systems likely have very complex 

solution speciation from which one especially stable structure is favored and can crystallize 
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preferentially. Although this is a challenge for predicting the topology of TPyP based structures, 

it is extremely fruitful for allowing the discovery of unobserved topologies. Such studies could 

be particularly important in areas such as sensor development, where the spectroscopic response 

of particular supramolecular architectures provides a handle for discrimination.115 
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Synopsis: The supramolecular building block 5,10,15,20-tetra(4-pyridyl)porphyrin readily uses 

adventitious protons and metal complexes as well as direct coordination to assemble 

topologically variable supramolecular structures. 


