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SUMMARY 

The faces of people who are sleep deprived are perceived by others as looking paler, less 

healthy, and less attractive compared to when well-rested. However, there is little research 

using objective measures to investigate sleep-loss-related changes in facial appearance. We 

aimed to assess the effects of sleep deprivation on skin colour, eye-openness, mouth-

curvature, and periorbital darkness using objective measures, as well as to replicate previous 

findings for subjective ratings. We also investigated the extent to which these facial features 

predicted ratings of fatigue by others and could classify the sleep condition of the person. 

Subjects (N =181) were randomised to one night of total sleep deprivation or a night of 

normal sleep (8-9 hours in bed). The following day (at approximately 14:00) facial 

photographs were taken and, in a subset (N =141), skin colour was measured using 

spectrophotometry. A separate set of participants (N = 63) later rated the photographs in terms 

of health, paleness, and fatigue. The photographs were also digitally analysed with respect to 

eye-openness, mouth-curvature, and periorbital darkness. Bayesian linear modelling revealed 

that neither sleep deprivation nor the subjects' sleepiness were related to differences in any 

facial variable. Similarly, there was no difference in subjective ratings between the groups. 

Decreased skin yellowness, less eye-openness, downward mouth-curvature, and periorbital 

darkness all predicted increased fatigue ratings by others. However, the combination of 

appearance variables could not accurately classify sleep condition. These findings have 

implications for both face-to-face and computerised visual assessment of sleep loss and 

fatigue. 

 

Keywords: 

Sleep loss, Experimental psychology, Perception, Face, Skin, Health 
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INTRODUCTION  

Humans are incredibly apt at extracting social information from the faces of others. Indeed, 

seeing a face for only 100ms is enough for lasting judgements to begin forming about the 

person (Willis and Todorov, 2006). A predisposition to reading faces may have significant 

evolutionary benefits. For example, we are able to predict whether someone is ill or not just 

by observing facial photographs (Axelsson et al., 2018), likely because of changes in skin 

colour and facial expression (Henderson et al., 2016). Judgements of ill-health can 

subsequently lead to avoidance behaviours, hypothesised to slow the spread of disease (Park 

et al., 2013). 

 

Humans may also be sensitive to sleep-loss-related facial cues. In a within-subjects study, one 

night of total sleep deprivation led participants to be rated as looking less healthy, less 

attractive, and more tired, compared to when they were well rested (Axelsson et al., 2010). 

Recently, it was also shown that these effects generalise to individuals who were sleep-

restricted (4 hours of sleep for 2 days; Sundelin et al., 2017). Moreover, when comparing 

facial photographs of patients with obstructive sleep apnea before and after treatment, patients 

post-treatment were rated as looking more alert, attractive, and youthful (Chervin et al., 

2013). However, since the measurements were taken up to 4 months following treatment, it is 

difficult to know whether the effects relate specifically to decreased sleep loss or a general 

improvement in health due to the treatment. 

 

Previous studies have also explored the specific facial cues that may lead to these changes in 

subjective judgement. For example, faces of sleep-deprived people were more likely to be 

rated as having hanging eyelids, red eyes, swollen eyes, dark circles under the eyes, pale skin, 

wrinkles/fine lines, and droopy corners of the mouth (Sundelin et al., 2013). Evidence of dark 
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circles under the eyes was not observed in a separate study comparing good to poor habitual 

sleepers, but poor sleepers did score higher on a skin aging index (Oyetakin-White et al., 

2015). Relatedly, eye-openness and mouth-curvature have been objectively measured 

following sleep restriction, showing a decrease in eye-openness, but no difference in mouth-

curvature (Talamas et al., 2016).  

 

Our increasing understanding about how sleep loss affects facial appearance opens future 

possibilities for creating algorithms that can automatically detect facial cues of fatigue. The 

rapid development of facial recognition technologies (Owen, 2018), means that soon fatigue 

recognition may need nothing more than a smartphone. Indeed, analysis of facial cues such as 

skin colour and shape of the mouth corners have already been successfully utilised to identify 

fatigue and sleep disorders (Chen et al., 2015; Espinoza-Cuadros et al., 2015; Peng et al., 

2017). Yet, since little empirical evidence currently exists, the best features on which to base 

automatic sleep loss and fatigue recognition remains an open question.  

 

Overall, evidence suggests that the effects of sleep loss are detectable in human faces. 

However, since the majority of the data come from subjective ratings, the extent to which 

such ratings parallel objective facial features is unknown. Attempting to identify specific 

facial cues effected by sleep loss via subjective ratings can be problematic due to the amount 

of shared variance with other (potentially confounding) environmental cues. The Brunswik 

lens model (Brunswik, 1956; Jones, 2018) proposes measuring along two dimensions: 1) cue 

validity, measuring whether features are a valid indicator of the underlying state and 2) cue 

utilisation, whether the cues are utilised by observers to formulate judgements. In this study, 

we investigate cue validity by measuring the effect of one night of total sleep deprivation on 

four objective aspects of appearance: general facial skin colour, eye-openness, mouth-
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curvature, and periorbital skin darkness (i.e. dark patches underneath the eyes). These specific 

features were chosen since they represent features that were most widely affected by sleep 

deprivation when measured via subjective ratings (Sundelin et al., 2013).  We investigate cue 

utilisation, by examining the extent to which these objectively measured facial cues predict 

subjective ratings of fatigue by others. 

 

We hypothesised that sleep deprivation would lead to increased facial paleness, decreased 

eye-openness, and increased periorbital darkness. Although not found after partial sleep 

restriction (Talamas et al., 2016), we expected sleep deprivation to also lead to negative 

mouth-curvature (more droopy corners of the mouth), since this was previously reported 

using subjective ratings in a study of total sleep deprivation (Sundelin et al., 2013). 

Additionally, we attempted to replicate the previous findings in ratings of decreased health, 

and increased paleness and fatigue of sleep-deprived faces. Cue utilisation was examined in 

an exploratory manner. Finally, we used a machine learning approach to investigate to what 

extent the combination of all measured facial appearance variables could accurately classify a 

persons’ sleep state.
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METHOD 

Participants 

Subjects 

181 healthy individuals (103 female; mean age = 25.39 years, standard deviation (SD) = 6.49 

years) took part in a study where subjects were randomised (while keeping an equal number 

of participants in each condition) into either one night of total sleep deprivation (N = 91) or a 

night of normal sleep at home (N = 90). Subjects completed an online screening, with 

exclusion criteria including health problems, poor habitual sleep, or a sleep need outside of 7–

9 hours per night, consuming more than 4 cups of coffee per day or being a current smoker 

(699 potential subjects were excluded at this point). One further subject was removed due to 

being outside of our age range requirement (18-45) at the time of testing. This upper age 

limitation was set to reduce any confounding effect of the changing sleep need seen in older 

adults.  The complete screening criteria can be found as a supplement to a previous 

publication (Holding et al., 2019). The study was approved by the Stockholm Regional 

Ethical Review Board (no. 2014/1766-32). All subjects gave written informed consent and 

received financial compensation for participation (non-sleep deprived 800SEK, sleep-

deprived 1500SEK). 

 

Raters 

63 additional individuals (32 female; mean age = 23.37 years, SD = 3.95 years) were 

recruited to rate the photographs of the subjects. These raters were obtained from the student 

population in Stockholm, Sweden. There were no exclusion criteria apart from being required 

to understand Swedish. Each rater gave written informed consent and was compensated with a 

cinema ticket. 
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Materials and Procedure  

Each subject was instructed to keep a daily sleep diary for three days before the test day, as 

well as wear an actigraph (GeneActiv Sleep, Activinsights, Kimbolton, UK or MotionWatch 

8, CamNtech, Cambridge, UK) on their non-dominant wrist. Subjects were given instructions 

to be in bed for 8-9 hours each night, turn off the lights at 23:00 ± 60 minutes, get up at 07:00 

± 60 minutes, and get 8 hours of sleep in that time. Subjects were asked to avoid naps for 4 

days before the test day, to abstain from alcohol, and not drink caffeinated drinks later than 

the morning of the day before the test day.  

After three days of this baseline sleep, i.e. on the day before the test day, subjects were 

informed of which condition they had been randomly assigned to. Those in the sleep-

deprivation condition were required to come to the lab at 22:00 that night, and those in the 

well-rested control condition were instructed to sleep one more night at home and arrive at 

10:00 the following day.  

During sleep deprivation, subjects were kept in a light-controlled sleep lab and free to choose 

their activities (e.g. study, use their mobile phone, or watch a film). A research assistant was 

present at all times to ensure that the subject remained awake. Low-sugar snacks were 

provided if the subject was hungry, and a 15-minute morning walk was taken to reduce the 

difference in light-exposure and activity compared to what well-rested control participants 

may experience while travelling from their home to the lab. 

At approximately 14:00 during the test day, subjects were photographed and rated their 

subjective sleepiness on the Karolinska Sleepiness Scale (KSS; Åkerstedt and Gillberg, 1990) 

Subjects were not permitted to wear makeup, jewellery, or glasses. All subjects wore an 
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identical dark-blue t-shirt and for subjects with longer hair, hair bands/clips were used to 

prevent hair from covering the face. While being photographed, subjects were instructed to sit 

comfortably, look straight into the camera, and relax their face. As a rule, ten photographs 

were taken, and after removing poor quality photographs (e.g. subject's eyes were closed), the 

most representative photograph of each subject was chosen by a person not involved in the 

study, and blind to the conditions. Photographs were taken using a digital camera (D90, 

Nikon Corporation, Tokyo, Japan; settings: f-stop = 11, shutter speed = 1/125, ISO = 200) 

with a white backdrop, professional flash lighting, and a white-balance card.  

Following the photo session, skin colour was measured at three facial locations (left/right 

cheek, and forehead) using a spectrophotometer (CM-700d, Konica Minolta Inc, Tokyo, 

Japan). This was done only for the last 141 subjects of the study, due to a delay in obtaining 

the equipment. Colour was assessed using the CIELAB system in three dimensions – dark-

light (L*), green-red (a*), and blue-yellow (b*). Higher values represent greater intensity of 

the second specified colour (i.e. higher a* value indicates greater skin redness). The CIELAB 

system has been used in previous studies investigating facial appearance, and is a well-

validated system for measuring skin colour in humans (Stephen et al., 2009; Tan and Stephen, 

2013).  

Rating procedure 

On a separate occasion, the selected photographs of the subjects' faces were shown to the 

raters. The images were presented using E-Prime (Version 3.0, Psychology Software Tools 

Inc., Sharpsburg, USA) on a laptop monitor (HP ZBook, 17.3", Hewlett-Packard Inc., Palo 

Alto, USA). The instructions were to rate the photographs according to one's first impression 

and to think of the photographs as if they had been taken five minutes ago. Subsequently, a 

trial block with four faces was presented to ensure that the raters understood the instructions. 
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The 181 facial photographs were then presented one at a time in a random order in three 

blocks, each block concerning one rating type (i.e. of fatigue, health, or paleness). Each face 

was thus presented three times, once in each block. Due to a programming error, while the 

fatigue and health blocks were in a randomised order (blocks 1 and 2) between raters, the 

paleness block was always last (block 3). The task was self-paced, but with a time limit of 5 

seconds per rating. Subjects were allowed to take a short break between each block. The 

session took approximately 30 minutes to complete. 

The faces were rated on seven-point scales pertaining to fatigue (in Swedish: trötthet; “How 

fatigued is this person?”, 1 - very fatigued, to 7 - very alert), health (in Swedish: hälsa; “How 

is this person’s health?”, 1 - very bad health, to 7 - very good health), and paleness (in 

Swedish: blekhet; “How pale is this person’s skin?”, 1 - not pale at all, to 7 - very pale). 

Participants were left to make their own interpretation of each word. To make for easier 

interpretation, the fatigue item was reverse scored in the analysis so that higher score 

represents greater fatigue.  

Image measurements 

Psychomorph version 6 (http://users.aber.ac.uk/bpt/jpsychomorph) and Webmorph (DOI: 

10.5281/zenodo.1073696) were used to define facial landmarks and construct illustrative 

facial averages of sleep-deprived versus well-rested participants (Figure 1) and the highest 

versus lowest fatigue-rated faces (Figure 2). Following previously used methodology 

(Talamas et al., 2016), the degree of eye-openness of each face was measured by dividing the 

vertical distance from the centre of the pupil to the top eyelid by the width of the eye inner 

canthus to outer canthus. Higher values represent greater eye-openness. Mouth-curvature was 

measured by subtracting the height of the mouth’s centre from the mean height of the left and 

right corners of the mouth, and then dividing by the width of the mouth (Talamas et al., 
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2016). This gives a continuum of data where negative values represent downturned corners of 

the mouth and positive values represent upturned corners. The colour of the faces in each 

photograph was analysed from cropped patches from the forehead and left/right cheek (see 

Figure S1). This was done to increase accuracy for the association between ratings and skin 

colour, as the colours in the images (and hence what the raters viewed) may vary slightly 

from the spectrophotometer data.  Periorbital darkness was measured using the photographs 

and analysing the lightness of cropped patches from below the left and right eyes (see Figure 

S2). Since we were interested in the difference relative to the subject’s skin colour, we 

subtracted this value from the lightness of the forehead region (same as the forehead region 

shown in Figure S1). A higher value represents that the periorbital area is darker relative to 

the forehead. 

 

[Suggested insert point for Figure 1 and Figure 2] 

Statistical procedure 

All data were analysed using statistical procedures with R (R Core Team., 2016). The data 

and statistical code can be viewed online (DOI: 10.5281/zenodo.1414101). Bayesian 

statistical models were estimated using Markov Chain Monte Carlo sampling using 10000 

iterations (1000 warmup) in 15 chains. A prior distribution (representing expectations under 

the null hypothesis) was set on the possible effects. This was always zero, with a standard 

deviation of a quarter of the highest possible score. Priors on eyelid-openness, mouth-

curvature, and periorbital darkness were set using a quarter of the range between the smallest 

and largest observed values. All other parameters used the default non-informative priors of 

the brms package (Bürkner, 2017; Kruschke and Meredith, 2018). 
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To analyse the effect of sleep deprivation on skin colour, cross-classified multilevel models 

were used, as the data contains both repeated measures (within-rater and within-face) and 

between-subjects (sleep deprivation vs well-rested controls) measurements. When analysing 

subjective ratings of health, fatigue, and paleness of the images as the response variables, 

ordinal models were used since Likert-type scales cannot be assumed to be interval data 

(Liddell and Kruschke, 2018). Multiple regression modelling was used to investigate the 

effects of sleep deprivation on eye-openness, mouth-curvature, and periorbital darkness as 

well as to analyse the predictors of subjective fatigue ratings. Identical analyses were also run 

for self-reported sleepiness scores, replacing subjects' condition as the independent variable. 

The fitted models provide a point effect estimate (the posterior median) and a probability 

distribution of plausible values (posterior distribution). Uncertainty around this point was 

quantified using the 95% Highest Density Interval (95%HDI; 2.5% and 97.5% quantiles of 

the posterior) representing the most credible estimated values. A Bayesian p-value, pMCMC, 

was also calculated. This is defined as two times the probability that the parameter value is 

less than or greater than zero, using the smaller of these probabilities (Hadfield, 2010). 

Parameter estimates were considered statistically “significant” if both (a) the 95% HDI did 

not overlap zero and (b) pMCMC < .05. 

In order to elucidate the meaningfulness of an effect, a ‘region of practical equivalence’ 

(ROPE) was included. ROPE is a range of values close to zero representing an effect that is 

too small to be meaningful. Effect sizes of less than Cohen’s d = .2 have been used in 

previous research as practically equivalent to zero (Pedersen et al., 2018), and correspond to 

the threshold conventionally associated with “small” effects (Cohen, 1988). However, there is 

no hard-and-fast rule, and the data can be reanalysed using one's own preferred ROPEs. To 

construct the upper and lower boundaries of the ROPE for each analysis, raw difference score 
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values corresponding to ± .2 standard deviation were calculated (Kruschke, 2018). The rule 

used in this study was that if 95% of the posterior distribution lies outside of the ROPE, the 

effect is meaningfully non-zero, and therefore the null hypothesis can be rejected. Similarly, if 

95% of the posterior distribution lies within the ROPE, any probable effect is too small to be 

meaningful and the null hypothesis can be accepted. Any other state suggests that more data 

are needed to accept or reject hypotheses at our specified level of certainty (95% probability). 

To allow for inter-interpretability between outcomes, all continuous predictors were centred 

and scaled so that 1 unit of the predictor represents a change across 2 standard deviations 

(95% of the data).  

Finally, we tested if the combination of all appearance variables could be used to accurately 

classify someone as being sleep deprived or well-rested. Following a procedure typically used 

in machine learning (Yarkoni and Westfall, 2017), the data was randomly split into a training 

set (70% of the data) and a testing set (30% of the data), while keeping an equal proportion of 

each sleep condition within both sets. Using the caret package (Kuhn, 2008) in R, a model 

was first fitted using a logistic regression with 10-fold cross-validation using the training 

dataset. The predictions made by this model was then tested against the withheld testing data 

set. Our measure of predictive success is the Area Under the Curve (AUC) of the Receiver 

Operating Curve and it’s 95% confidence interval. The AUC represents the efficiency of a 

model, incorporating both the sensitivity and specificity of the predictions. The maximum 

value for the AUC is 1.0, indicating perfect classification (100% sensitive, and 100% 

specificity). An AUC of 0.5 indicates no ability to classify  (50% sensitive and 50% 

specificity).  

 

RESULTS 
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Descriptive statistics for objective skin colour, other facial features, and subjective rater 

scores for sleep-deprived and well-rested participants can be seen in Table S1. Visualisations 

of the correlations between spectrophotometry colour values can be seen in Figure S2. 

 

Effect of sleep deprivation on self-reported sleepiness 

Subjects in the sleep deprivation condition reported higher sleepiness ratings (Mean = 5.14, 

SD = 1.94) compared to the well-rested group (Mean = 3.33, SD = 1.38).  

 

Effect of sleep deprivation on spectrophotometrically-measured skin colour and other 

facial features 

None of the three skin-colour variables, nor mouth-curvature, eye-openness, or periorbital 

darkness, showed any noticeable difference between conditions, as represented by a 95%HDI 

that overlapped zero. The null hypothesis that no meaningful effect exists for lightness or 

redness was accepted, since over 95% of the posterior distribution was within the ROPE. This 

criterion was not reached for yellowness, eye-openness, mouth-curvature, or periorbital 

darkness meaning that we cannot exclude that a small effect may exist. However, since 76-

88% of values were within the ROPE (representing 76-88% probability) it is unlikely that 

there was any clear difference between the two conditions. Full results can be seen in Table 1. 

The average faces of sleep-deprived versus well-rested participants, for men and women 

respectively, are illustrated in Figure 1.  

 

[Suggested insert point for Table 1] 
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Effect of sleep deprivation on rater judgments of fatigue, health, and paleness  

None of the facial ratings showed a significant difference between conditions (see Table 2). 

The ROPE contained the majority of the posterior distribution, suggesting higher probability 

of the null hypothesis (76-87%), however it did not reach the 95% probability threshold for 

accepting the null hypothesis. 

 

[Suggested insert point for Table 2] 

 

Association between self-reported sleepiness, spectrophotometrically-measured skin 

colour, and other facial features 

Skin-colour, eye-openness, mouth-curvature, and periorbital darkness did not show a 

significant association with the subjects' own sleepiness ratings (see Table 3). The ROPE 

contained between 22-77% of the posterior distribution, which does not reach the 95% 

probability threshold for accepting the null hypothesis. Full results can be seen in Table 3. 

 

[Suggested insert point for Table 3] 

 

Association between self-reported sleepiness on other-rated fatigue, health, and paleness  

None of the three factors rated in the facial images were significantly predicted by the 

subjects' own sleepiness (see Table 4). The probability that the effect was within the ROPE 

was between 53-70% which again does not reach the 95% probability threshold.  

 

[Suggested insert point for Table 4] 

 

What predicts perceived fatigue? 

In a multiple regression model, less eye-openness, less facial yellowness (measured from the 

images rather than the spectrophotometry), less mouth-curvature, and greater periorbital 
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darkness, all predicted increases in how fatigued the faces were rated on average (see Table 5 

and Figure 3). Additionally, for these four variables, the posterior distributions were found to 

be almost entirely outside of the ROPE, providing support that these represent meaningful 

effects. Facial redness and lightness did not show any association with perceived fatigue. To 

illustrate the most and least fatigued-appearing subjects, averaged images were made for the 

most fatigued-looking versus least fatigued-looking faces (10 subjects in each image), for 

men and women respectively, Figure 2. 

 

[suggested insert point for Table 5 and Figure 3] 

 

Sleep state classification 

The logistic model based on the training data set had a final AUC of 0.56 (95% CI: 0.46-0.66) 

representing very low ability to classify sleep condition. When used with the withheld testing 

dataset the AUC was 0.57 (95% CI: 0.46-0.66) again demonstrating very low ability of the 

model (and thus the facial cues) to classify sleep condition. 

 

DISCUSSION 

This study investigated the effect of sleep deprivation on both objective and subjective 

measures of facial appearance. It was predicted that sleep deprivation would lead to 

objectively increased facial paleness, less eye-openness, negative mouth-curvature, and 

increased periorbital darkness, as well as subjective ratings of looking more pale, less healthy, 

and more tired. However, the results do not appear to support these hypotheses. Neither sleep 

deprivation nor subjects’ self-reported sleepiness showed any relationship with 

spectrophotometry-measured lightness, redness, or yellowness. This is a surprising result 

considering the previous finding that sleep-deprived individuals were subjectively rated as 
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appearing more pale (Sundelin et al., 2013). However, consistent with the data from the 

spectrophotometry, we did not observe any distinct differences in how faces were rated with 

respect to fatigue, health, or paleness. This distinguishes the current study from previous ones 

finding associations between sleep loss and appearance (Axelsson et al., 2010; Sundelin et al., 

2017). In addition, we did not observe any changes in eye-openness, mouth-curvature or 

periorbital darkness after sleep deprivation, or in relation to self-reported sleepiness of the 

photographed subjects. This again is different to previous findings, especially regarding eye-

openness which has been shown to be decreased following sleep restriction (Talamas et al., 

2016).  

 

A key difference of this study compared to previous ones is the between-subjects design, i.e. 

the raters were presented with just one image of each subject, either sleep deprived or well-

rested. Previous experimental studies have focused on differences within subjects, always 

including two photographs of the same subject, one from each sleep condition. It seems 

possible that the effects of sleep loss on facial appearance is most easily distinguished if the 

observer has information about what the individual looks like well-rested. However, this 

might not explain why objectively measured eye-openness, which was previously found to 

have a medium effect size decrease following sleep restriction (Talamas et al., 2016), was not 

seen. One possibility is that the greater inter-individual variance in our sample compared to 

previous within-subject studies is what is obscuring the effects. However, given the 

substantially larger sample size, it should be possible to observe effects nonetheless. An 

alternative explanation is that because previous studies took photographs on two occasions, 

this may prime subjects (vis-à-vis demand characteristics (Nichols and Maner, 2008)) to look 

more or less tired at the second photo opportunity, as the reason for taking photographs might 

be more apparent then. This could, for example, take the form that subjects try to force their 
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eyes more open. Additionally, despite the findings of previous studies being consistent, they 

have all been relatively small (23-25 subjects), making the likelihood of unreliable results 

higher. A benefit of using Bayesian statistics along with the 95%HDI metric is that it is 

possible to discount certain effect sizes. For example, regarding subjective ratings of paleness 

in sleep-deprived faces, the boundary the 95%HDI was 0.53, suggesting that this is the largest 

unstandardised effect (on the 7-point scale) that is credible at the 95% probability threshold. 

This makes it clear that while no large between-subjects effects are realistic, it does not rule 

out smaller ones that may be hidden in the variance.  

 

An interesting aspect is that reduced skin yellowness, eye-openness, mouth-curvature, and 

periorbital darkness were all related to perceived fatigue, despite not being noticeably affected 

by sleep deprivation or associated with sleepiness. This suggests that despite having low cue 

validity, these features in fact have significant cue utilization. Raters clearly used these cues 

to evaluate fatigue in the photographs. This process could be an example of 

overgeneralisation of learnt associations, which are common during impression formation 

(Zebrowitz and Montepare, 2008). These overgeneralisations may be learnt from aquantances 

who show the effects very distinctly, or conceivably from television and film. 

 

A key implication of our findings regards the development of automatic fatigue-detection 

systems. Researchers are working to produce artificial intelligence systems to detect sleep 

loss and fatigue using facial cues similar to those investigated in this study (Gu and Ji, 2004; 

Peng et al., 2017; Vural et al., 2007). The current study indicates vulnerabilities in this 

methodology, since it appears that commonly extracted features may have high cue utility but 

in fact have lower cue validity. This could mean that predictions of sleep loss become based 

on incorrect assumptions regarding the physical effect of sleep loss on facial appearance. We 
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also underline the problems of using facial data from a single point in time. Automatic fatigue 

recognition systems would probably need to focus on within-person changes to be effective. 

On a more individual level, the results imply that while we are likely poor at judging whether 

strangers are fatigued based on a quick look, we may have more success with friends or 

colleagues, by virtue of knowing how they appear when alert. 

 

There are a number of limitations that should be considered as well as directions for future 

research. Firstly, we did not explicitly ask raters whether they could identify who was sleep 

deprived and who was not. While there was no association between subjects' self-rated 

sleepiness and how others rated their fatigue, it is possible that with a more direct question, 

others may be able to distinguish who is sleep deprived. Secondly, we did not stratify the 

results based on ethnicity or skin pigmentation (two trained coders classified over 85% of the 

faces as Caucasian), though we attempted to statistically control for this by including the 

other two spectrophotometer colour outcomes as covariates in each colour model. 

Nonetheless, future studies may benefit from investigating whether the effects of sleep loss on 

appearance varies depending on ethnicity. Thirdly, the rater sample was not stratified by 

insomnia symptoms, which previous evidence has shown to alter how individuals perceive 

tiredness in others (Akram et al., 2017). Fourthly, our measures of appearance focused on 

specific areas of the face and were only analysed using static images. An interesting future 

direction would be to learn more about how dynamic movements of the face act as cues of 

sleep loss to influence social judgements and impression formation. A handful of studies have 

shown that cues such as blink duration and body posture are associated with self-reported 

sleepiness (Anund et al., 2013; Ingre et al., 2006). Future studies analysing biological motion 

of sleep-deprived and fatigued people can give additional information on the validity of the 

presented cues, as well as indicating others.  Finally, while the between-subjects design of the 
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data allowed us to collect a large sample, the results suggest that any possible effects must be 

smaller than the variance in our sample allows us reliably to test for. Future studies will likely 

benefit from following participants over time in order to assess relative changes in 

appearance.  

 

Overall, we find that skin colour, eye-openness, mouth-curvature, and periorbital darkness 

were not impacted by one night of total sleep deprivation in a between-subjects design. These 

features nonetheless appear important for social signalling of fatigue as they predicted how 

individuals were rated. The results have implications for artificial-intelligence applications 

that attempt to identify fatigue through facial features by highlighting that accurate 

classification of fatigue and sleep loss through a single static image is problematic. We 

suggest that automatic recognition systems focused on detecting sleep-deprived or fatigued 

individuals should use data on changes within individuals.  
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Table 1. Effects of sleep deprivation on objective measures of skin colour and 

facial features 
 Estimate 

(posterior 

median) 

95% HDI pMCMC Probability 

effect is 

within ROPE 

 Null 

hypothesis 

decision 

  Low High    

Model 1. Lightness 

Fixed effects:       

Intercept 63.43 62.98  63.86 - - - 

Sleep deprivation 0.06 -0.56   0.69 .85 95.66% Accept 

Redness -7.55 -7.94  -7.18 < .001 0% Reject 

Yellowness -2.88 -3.33  -2.43 < .001 0% Reject 

Random effects:       

Face ID (intercept)  1.90 1.68 2.15 - - - 

 

Model 2. Redness 

Fixed effects:       

Intercept 12.48 12.22  12.74 - - - 

Sleep deprivation -0.03 -0.41   0.33 .87 96.63% Accept 

Lightness -6.82 -7.15  -6.49 < .001 0% Reject 

Yellowness -3.20 -3.50 -2.89 < .001 0% Reject 

Random effects:       

Face ID (intercept)  1.12 0.99 1.26 - - - 

 

Model 3. Yellowness 

Fixed effects:       

Intercept 16.76 16.39  17.13 - - - 

Sleep deprivation -0.04 -0.56  0.50 .89 88.49% Undecided 

Lightness -3.60 -4.17 -3.05 < .001 0% Reject 

Redness -4.34 -4.75  -3.91 < .001 0% Reject 

Random effects:       

Face ID (intercept)  1.62 1.42 1.82 - - - 

 

Model 4. Mouth-curvature 
Intercept 0.00 -0.01 0.02 - - - 
Sleep deprivation 0.00 -0.01 0.01 .89 82.45% Undecided 

 

Model 5. Eye-openness 
Intercept 0.20 0.19 0.20 - - - 

Sleep deprivation 0.00 -0.00 0.01 .60 76.16% Undecided 

 

Model 6. Periorbital darkness 

Intercept 7.45 6.81 8.12 - - - 
Sleep deprivation -0.15 -1.06 0.79 .75 80.00% Undecided 

       
Note. Results of six models showing changes in skin colour and facial features. Sleep deprivation was dummy coded and the 

intercept refers to the well-rested control condition. All continuous predictors are centred and scaled such that 1 unit of the 

predictor represents a change of 2 standard deviations (95% of the data). Random effect estimates represent the standard 

deviation. All values are on the latent scale. HDI = Highest density interval; pMCMC = Bayesian p value; ROPE = region of 

practical equivalence around zero (defined as less that Cohen’s d = 0.2). Specific ROPEs are as follows: Model 1 =  0±0.66; 

Model 2. = 0±0.41; Model 3 = 0±0.43; Model 4 = 0±0.01; Model 5 = 0±0.01; Model 6 = 0±0.62.  
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Table 2. Effects of sleep deprivation on rater-perceived fatigue, health, and 

paleness 
 Estimate 

(posterior 

median) 

95% HDI pMCMC Probability effect 

is within ROPE  

Null 

hypothesis 

decision 

  Low High    

Model 1. Fatigue 

Fixed effects:       

Sleep deprivation -0.10 -0.41 0.22 .54 86.68% Undecided 

Random effects:       

Face ID (intercept) 1.06 0.94 1.17 - - - 

Rater ID (intercept) 0.80 0.66 0.96 - - - 

Rater ID (slope of sleep 

deprivation) 

0.07 0.00 0.17 - - - 

 

Model 2. Health 

Fixed effects:       

Sleep deprivation 0.10 -0.19   0.39 .50 87.25% Undecided 

Random effects:       

Face ID (intercept) 0.97 0.87 1.08 - - - 

Rater ID (intercept) 1.27 1.04 1.51 - - - 

Rater ID (slope of sleep 

deprivation) 

0.10 0.00 0.20 - - - 

 

Model 3. Paleness 

Fixed effects:       

Sleep deprivation 0.20 -0.11   0.53 .21 76.48% Undecided 

Random effects:       

Face ID (intercept) 1.07 0.95 1.19 - - - 

Rater ID (intercept) 1.20 0.98 1.43 - - - 

Rater ID (slope of sleep 

deprivation) 

0.15 0.01 0.26 - - - 

       
Note. Results of three ordinal multilevel models predicting changes in subjective ratings. The same table including ordinal 

thresholds (intercepts) can be found in Table S2. Random effect estimates represent the standard deviation. All values are on 

the latent scale. HDI = Highest density interval; pMCMC = Bayesian p value; ROPE = region of practical equivalence around 

zero (defined as less that Cohen’s d = 0.2; Model 1: ±0.28; Model 2: ±0.27; Model 3: ±0.32).  
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Table 3. Association between self-reported sleepiness and objective measures of 

skin colour and facial features 
 Estimate 

(posterior 

median) 

95% HDI pMCMC Probability 

effect is 

within ROPE  

Null 

hypothesis 

decision 

  Low High    

Model 1. Lightness 

Fixed effects:       

Intercept 63.41 63.09  63.73 - - - 

Sleepiness -0.11 -1.16   0.94 .84 76.61% Undecided 

Redness -7.65 -8.04  -7.27 < .001 0% Reject 

Yellowness -3.05 -3.51 -2.61 < .001 0% Reject 

Random effects:       

Face ID (intercept)  1.88 1.65 2.12 - - - 

 

Model 2. Redness 

Fixed effects:       

Intercept 12.48 12.30 12.67 - - - 

Sleepiness 0.01 -0.67 0.69 .99 76.31% Undecided 

Lightness -6.77 -7.10 -6.43 < .001 0% Reject 

Yellowness -3.27 -3.58 -2.98 < .001 0% Reject 

Random effects:       

Face ID (intercept)  1.13 0.99 1.27 - - - 

 

Model 3. Yellowness 

Fixed effects:       

Intercept 16.74 16.47 17.01 - - - 

Sleepiness 0.33 -0.58 1.25 .48 53.28% Undecided 

Lightness -3.80 -4.36 -3.24 < .001 0% Reject 

Redness -4.53 -4.96 -4.10 < .001 0% Reject 

Random effects:       

Face ID (intercept)  1.61 1.41 1.81 - - - 

 

Model 4. Mouth-curvature 
Intercept 0.01 0.00 0.02 - - - 
Sleepiness -0.01 -0.03 0.02 .55 40.81% Undecided 

 

Model 5. Eye-openness 
Intercept 0.20 0.20 0.20 - - - 

Sleepiness -0.00 -0.01 0.01 .91 46.71% Undecided 

 

Model 6. Periorbital darkness 
Intercept 7.20 6.69 7.66 - - - 

Sleepiness -1.28 -3.07 0.64 .18 22.69% Undecided 

 
Note. Results of six models predicting changes in skin colour and facial features. All continuous predictors are centred and 

scaled such that 1 unit of the predictor represents a change of 2 standard deviations (95% of the data). Random effect 

estimates represent the standard deviation. All values are on the latent scale. HDI = Highest density interval; pMCMC 

= Bayesian p value; ROPE = region of practical equivalence around zero (defined as less that Cohen’s d = 0.2). Specific 

ROPEs are as follows: Model 1 = 0±0.65; Model 2 = 0±0.41; Model 3 = 0±0.43; Model 4 = 0±0.01; Model 5 = 0±0.01; 

Model 6 = 0±0.61.  
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Table 4. Association between self-reported sleepiness and rater-perceived 

fatigue, health, and paleness 
 Estimate 

(posterior 

median) 

95% HDI pMCMC Probability effect is 

within ROPE  
Null 

hypothesis 

decision 

  Low High    

Model 1. Fatigue 

Fixed effects:       

Sleepiness 0.20 -0.43 0.84 .54 53.23% Undecided 

Random effects:       

Face (intercept) 1.10 0.97 1.23 - - - 

Rater (intercept) 0.80 0.66 0.95 - - - 

Rater (Slope of 

sleepiness) 

0.16 0.00 0.34 - - - 

 

Model 2. Health 

Fixed effects:       

Sleepiness -0.02 -0.60 0.55 .93 64.52% Undecided 

Random effects:       

Face (intercept) 0.96 0.85 1.08 - - - 

Rater (intercept) 1.30 1.07 1.54 - - - 

Rater (Slope of 

sleepiness) 

0.12 0.00 0.28 - - - 

 

Model 3. Paleness 

Fixed effects:       

Sleepiness 0.01 -0.62 0.61 .99 69.98% Undecided 

Random effects:       

Face (intercept) 1.04 0.92 1.17 - - - 

Rater (intercept) 1.20 0.99 1.43 - - - 

Rater (Slope of 

sleepiness) 

0.18 0.00 0.38 - - - 

       
Note. Results of three ordinal multilevel models predicting changes in subjective ratings. Subjective sleepiness is centred and 

scaled such that 1 unit of the predictor represents a change of 2 standard deviations (95% of the data).  The same table with 

ordinal thresholds (intercepts) can be found in Table S3. Random effect estimates represent the standard deviation. All values 

are on the latent scale. HDI = Highest density interval; pMCMC = Bayesian p value; ROPE = region of practical equivalence 

around zero (defined as less that Cohen’s d = 0.2). Specific ROPEs are as follows: Model 1 = 0±0.28; Model 2 = 0±0.27; 

Model 3 = 0±0.32).  

 

 



 27 

 

Table 5. Association between facial appearance and rater-perceived fatigue 
 Estimate 

(posterior 

median) 

95% HDI pMCMC Probability 

effect is within 

ROPE 

Null hypothesis 

decision 

  Low High    

Intercept 2.52 2.43 2.60 - - - 

Lightness -0.03 -0.45 0.39 .90 46.90 Undecided 

Redness 0.06 -0.33 0.45 .77 48.26 Undecided 

Yellowness -0.59 -1.01 -0.19 < .001 1.42 Reject 

Mouth-curvature -0.71 -1.08 -0.35 < .001 0.08 Reject 

Eye-openness -0.73 -1.09 -0.37 < .001 0.06 Reject 

Periorbital darkness 0.47 0.10 0.85 .01 3.61 Reject 
Note. Results of a multiple regression model predicting fatigue ratings from facial appearance. All continuous predictors are 

centred and scaled such that 1 unit of the predictor represents a change of 2 standard deviations (95% of the data). All values 

are on the latent scale. HDI = Highest density interval; pMCMC = Bayesian p value; ROPE = region of practical equivalence 

around zero (defined as less that Cohen’s d = 0.2). ROPE = 0±0.13).  
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Figure 1. Averaged images of well-rested vs sleep deprived faces 
Top – female well-rested (left) vs female sleep deprived (right).  

Bottom – male well-rested (left) vs male sleep deprived (right). 

 

Figure 2. Averaged images of faces rated as least fatigued and most fatigued  

Top – ten female faces rated least fatigued (left) vs ten female faces rated most fatigued (right).  

Bottom – ten male faces rated least fatigued (left) vs ten male faces rated most fatigued (right). 

 

Figure 3. The estimated feature-specific effects on fatigue ratings (as a probability distribution) following 

an increase of 2 standard deviations. Red band represents region of practical equivalence (ROPE) defined 

as a less than a small effect (Cohen’s d < 0.2). Green-filled densities (solid outline) represent that the 

parameter shows a significant and meaningful effect. Grey-filled (no outline) densities represent that the 

parameter cannot be excluded from being zero or near zero. 
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