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Physics of supercritical state is understood to a much lesser degree compared to subcritical liquids.
Carbon dioxide in particular has been intensely studied, yet little is known about the supercritical
part of its phase diagram. Here, we combine neutron scattering experiments and molecular dynamics
simulations and demonstrate the structural crossover at the Frenkel line. The crossover is seen at
pressures as high as 14 times the critical pressure and is evidenced by changes of the main features
of the structure factor and pair distribution functions.
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INTRODUCTION

Supercritical fluids have unique properties that have
led to a rich variety of applications [1]. Rare gases, nitro-
gen, CO2 and H2O are among the most common super-
critical fluids. CO2 in particular is an important green-
house gas of Earth’s atmosphere, and in its supercritical
state is the main component (97%) in the atmosphere
of Venus. Supercritical CO2 is used in a great variety
of applications (see, e.g., applications in solubility, syn-
thesis and processing of polymers [2–4], dissolving and
deposition in microdevices [5], green chemistry and sol-
vation [6–12], green catalysis [9, 13–15], extraction [16],
chemical reactions [17], green nanosynthesis [18] and sus-
tainable development including carbon capture and stor-
age [19]). It has been widely appreciated that improving
fundamental knowledge of the supercritical state is im-
portant for the reliability, scale-up and widening of these
applications (see, e.g., Refs [1, 7, 9, 12, 15, 17]).

Compared to subcritical liquids, the supercritical state
is not well understood. Traditional understanding
amounted to a general assertion that this state is phys-
ically homogeneous, with no qualitative changes taking
place anywhere above the critical point [1]. The first chal-
lenge to this view was the Widom Line (WL). Close to
the critical point, the WL characterises persisting near-
critical anomalies such as the maximum in the heat ca-
pacity [20], which can be used to stratify different states
in the supercritical region. A different subsequent pro-

posal was based on the Frenkel line (FL) separating two
distinct states in the supercritical state with liquid-like
and gas-like dynamics. Differently from the WL, the FL
extends to arbitrarily high pressures and temperatures
(as long as chemical bonding is unaltered), is unrelated
to the critical point and exists in systems with no boiling
line or critical point [21–23]. The FL is also of practi-
cal importance because it corresponds to the solubility
maxima in supercritical CO2 [24].

Here, we combine neutron scattering experiments and
molecular dynamics (MD) simulations and show evidence
for the structural crossover of supercritical carbon diox-
ide at the Frenkel line. The crossover extends to pressure
as high as 14 times the critical pressure and is evidenced
by changes of the main features of the structure factor
and pair distribution functions. The neutron scattering
experiments evidencing a crossover at highly supercriti-
cal pressure are the first of its kind for CO2.

METHODS

We recall that particle dynamics combine solid-like
oscillations around quasi-equilibrium positions and dif-
fusive jumps between different positions below the FL,
the typical character of molecular motion in liquids [25].
Above the line, particle dynamics lose this oscillatory
component and become purely diffusive. This gives
a practical criterion to calculate the FL based on the
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disappearance of minima of the velocity autocorrela-
tion function (VAF) [22]. This criterion coincides with
the thermodynamic criterion cv = 2kB corresponding
to the disappearance of transverse-like excitations in a
monatomic system [26]. Since structure and dynamics
are related [27], the FL crossover was predicted to result
in a crossover of the supercritical structure.

The pressures we consider for both experiments and
MD simulations are 500 and 590 bar. The FL in CO2

was previously calculated using the VAF criterion [24],
giving us the following two state points of the predicted
crossover: (500 bar, 297 K) and (590 bar, 302 K). We re-
call that the FL extends to arbitrarily high pressure and
temperature above the critical point, but at low temper-
ature it touches the boiling line at around 0.8Tc, where
Tc is the critical temperature [22] (note that the system
does not have cohesive liquid-like states at temperatures
above approximately 0.8Tc [28], hence crossing the boil-
ing line at around 0.8Tc and above can be viewed as a
gas-gas transition [22].) The critical point of CO2 is (73.9
bar, 304.3 K), hence our state points correspond to near-
critical temperatures and pressures well above critical. In
this regard, we note that the supercritical state is often
defined as the state at P > Pc and T > Tc. This defini-
tion is loose, not least because an isotherm drawn on (P ,
T ) diagram above the critical point crosses the melting
line, implying that the supercritical state can be found
in the solid phase. As a result, one can meaningfully
speak about near-critical part of the phase diagram only
when discussing the location of the supercritical state
on the phase diagram [29]. As far as our state points are
concerned, they correspond to temperatures much higher
than the melting temperature and pressures extending to
14 times the critical pressure where near-critical anoma-
lies are non-existent [29].

A cylinder of carbon dioxide was obtained from BOC,
CP grade, and used without further purification. The
pressure of the cylinder was around 50 bar and a SITEC
intensifier and a SITEC hand pump gas was used to raise
the pressure. Capillaries were used to connect intensifier
manifold system to the cell. The flat plate pressure cell
was made from an alloy of Ti and Zr in the mole ratio
0.676:0.324, which contributes almost zero coherent scat-
tering to the diffraction pattern [30]. The cell consisted
of a flat section that was 12 mm thick and had four 6 mm
diameter holes running through it, so the occupied gas
space was 6 mm thick and the wall thickness was 3 mm
either side. The container was placed at right angle to
the neutron beam, which was approximately 30 mm x
30 mm in cross section. A bottom loading closed cycle
helium refrigerator was used to control the temperature
within ± 1 K, using He exchange gas at ∼20 mbar to
provide temperature uniformity. The employed temper-
atures and pressures are shown in Table I, where the
densities were calculated from the data available in the

NIST database [31].

TABLE I. T − P − d state points for neutron scattering
measurements. The values of d are taken from [31].

Texp (K) Pexp (bar) d (g/mL) Pexp (bar) d (g/mL)
250 500 1.1676 590 1.1821
270 500 1.1131 590 1.1306
290 500 1.0573 590 1.0784
310 500 1.0003 590 1.0257
330 500 0.9426 590 0.9729
340 500 0.9137 - -
350 500 0.8848 590 0.9204
360 500 0.8560 - -
370 500 0.8276 590 0.8688
380 500 0.7996 590 0.8436
390 500 0.7722 590 0.8188

Total neutron scattering measurements were per-
formed on the NIMROD diffractometer at the ISIS pulsed
neutron source [32]. Absolute values of the differential
cross sections were obtained from the raw scattering data
by normalising the data to the scattering from a slab of
vanadium of known thickness, and were further corrected
for background and multiple scattering, container scat-
tering and self-attenuation, using the Gudrun data anal-
ysis program [33]. Finally the data were put on absolute
scale of barns per atom per sr by dividing by the number
of atoms in the neutron beam (1 barn = 10−28m2).

F (Q) =
1

9
b2CHCC(Q) +

4

9
b2OHOO(Q) +

4

9
bCbOHCO(Q)

(1)

where bα is the neutron scattering length of atom α,
and the partial structure factor Hαβ(Q) is the three-
dimensional Fourier transform of the corresponding site-
site radial distribution function:

Hαβ(Q) = 4πρ

∫ ∞
0

r2(gαβ(r)− 1)
sinQr

Qr
dr (2)

and ρ is the atomic number density. Note that the
HOO(Q) and HCO(Q) terms include both the intra- and
inter-molecular scattering. The results are shown in
Fig. 1.

The molecular dynamics (MD) simulation package
DL POLY [34] was used to simulate a system of 30752
CO2 particles with periodic boundary conditions. The
potential for CO2 is a rigid-body non-polarizable po-
tential based on a quantum chemistry calculation, with
the partial charges derived using the distributed multi-
pole analysis method [35]. The electrostatic interactions
were evaluated using the smooth particle mesh Ewald
method in MD simulations. The potential was derived
and tuned using a large suite of energies from ab initio
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FIG. 1. Weighted sum of the experimental weighted partial
structure factors F (Q) for CO2 at (a) 500 bar and (b) 590 bar.
The curves for higher temperatures have been shifted along
the y-axis by 0.05 per set. (c) Position of the maximum of the
first peak in the total (weighted sum) experimental structure
factor as a function of temperature for CO2 at 500 bar (blue)
and 590 bar (red). The straight lines are visual guides.

density functional theory calculations of different molec-
ular clusters and validated against various sets of ex-

perimental data including phonon dispersion curves and
PV T data. These data included solid, liquid and gas
states, gas-liquid coexistence lines and extended to high-
pressure and high-temperature conditions [35]. We also
used another rigid-body non-polarizable potential devel-
oped by Zhang and Duan [36] and found the same results.

The MD systems were first equilibrated in the constant
pressure and temperature ensemble for 500 ps. The data
were subsequently collected from production runs in the
constant energy and volume ensemble. In order to reduce
noise and see the crossover clearly, data were averaged
over 500,000 frames, involving production runs of further
500 ps.

RESULTS AND DISCUSSION

Before analyzing the data, we recall that the FL cor-
responds to the qualitative change of particle dynamics:
from combined solid-like oscillatory and diffusive dynam-
ics below the line to purely diffusive gas-like dynamics
above the line. Therefore, the supercritical structure is
predicted to show the crossover between the liquid-like
and gas-like structural correlations. This is predicted
to be the case for functions characterizing the structure,
such as pair distribution function (PDF) and structure
factor (SF). In our analysis, we focus on meaningful fea-
tures such as maxima positions of PDFs and SFs.

The experimental weighted sum of the partial struc-
ture factors are plotted in Fig. 1 for two pressures. We
plot the first peaks position of SFs vs temperature in Fig.
1 and observe that it undergoes the crossover at temper-
atures close to 320 K and around 12% larger than the FL
crossover temperature predicted from the VAF criterion
mentioned earlier.

The SFs were Fourier transformed to obtain the exper-
imental PDF. As with previous experimental and mod-
elling results on Ar [27], Ne [37], CH4 [38], and especially
on H2O [39] pronounced changes of first peak position
in the PDF with temperature are observed, indicating
a well-defined crossover. When a system is compressed
or expanded, one expects the first nearest-neighbour dis-
tance, rfnn (given by the radial position of the first peak
in g(r)), and the system’s “length” (V 1/3) to be propor-
tional to each other unless the system undergoes a struc-
tural change. In other words the system structure under-
goes uniform compression. The first PDF peak position
divided by the position (r0) at the Frenkel temperature vs
the cube root of the volume divided by the volume (V0) at
the same reference temperature is shown in Fig. 2. For a
system undergoing uniform compression, V/V0 and r/r0
will be equal. If there is a phase transition at higher den-
sities, as there is in liquids across the melting line, this
rule cannot be extrapolated down to arbitrarily low vol-
umes and hence there will be an intercept: V

1
3 = αr+β,

upon which the gradient of V/V0 vs. r/r0 will depend.
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However as long as no structural changes occur, the gra-
dient will remain constant. Specifically, in a simple cubic
crystalline solid (atomic packing fraction 0.52) the con-
stant of proportionality between V/N and r is unity, in a
FCC lattice (packing fraction 0.74) the constant is 0.89,
and in a diamond cubic lattice (packing fraction 0.34),
the constant is 1.2. In gases, the fnn distance is largely
determined by the size, geometry, and interaction of the
constituent molecules (see, e.g., [40]) rather than the den-
sity. This linear relationship has been experimentally ob-
served in molten group 1 elements [41, 42] and liquid CS2

[43]. The fnn distance is most readily extracted from the
partial C-C PDFs. The experimental data give the total
PDF, but the peak corresponding to the fnn distance is
not profoundly changed, therefore the total PDF gives
a qualitative approximation of the fnn distance. In Fig.
2 we observe the crossover of the first PDF peak at a
temperature within 10% of the predicted crossover tem-
perature at the FL, signified by the change of gradients.
This qualitative behaviour is seen more clearly in the MD
results (Fig. 4).
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FIG. 2. First peak positions of experimental weighted sum
PDF for CO2 at (a) 500 bar and (b) 590 bar as a function of
volume. The vertical dashed lines show the reduced volumes
at the FL, and the straight lines are visual guides.

We now discuss the MD results. Examples of C-C
PDFs from MD simulations are shown in Fig. 3. We
observe a reduction in height, and corresponding broad-
ening of peaks with increasing temperature as expected.
The steepness of the first peak is related with the soft-
ness of the effective intermolecular potential, and its re-
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FIG. 3. (Colour online) Evolution of the simulated C-C pair
distribution functions with temperature at (a) 500 bar and
(b) 590 bar.

duction can be quantitatively related to the reduction of
the viscosity [44]. Fig. 4 displays the radial positions
of the first PDF peaks as a function of volume, as dis-
cussed above, which shows a crossover at densities near
the FL. Because of the reduced noise and abundance of
temperature points we can perform statistical analysis
of the data to quantify the crossover. We see the same
behaviour, including a much clearer crossover, for both
pressures. The constant of proportionality between V/N
and r is ≈ 3.4, implying a much more open arrange-
ment than the crystal systems quoted above. This is in
accordance with the density of CO2 at the FL (23346
mol/m3), less than half that of water (56501 mol/m3) at
the same pressure and temperature. In order to quantify
the crossover, we fitted the data to two different types
of function. The first was a single functional dependence
over the entire range. In order to avoid the extrapola-
tion errors associated with high order polynomials, the
trial functions we used were quadratic, or log plus linear:
f(x) = a + bx + c log(x), with a, b, and c the fitting pa-
rameters. The second set of functions was linear below a
certain crossover volume Vc, and either quadratic or log
plus linear above that volume (i.e. a piecewise function):
f(x) = Θ(Vc−V )[a+ bx] + Θ(V −Vc)[α+βx+γ log(x)],
with Θ[V ] the Heaviside step function and a, b, β, γ, and
Vc the fitting parameters (α depends on the other pa-
rameters in order to ensure continuity of the function).
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Generally speaking, adding more parameters to a fit-
ting function improves the numerical quality of the fit.
A priori, one can penalise having too many parameters
- this prevents the extreme situation of a perfect fit ac-
quired using a piecewise function with a number of sub-
domains equal to the number of data. The two closely
related quantitative measures of goodness of fit with
penalty terms for the number of parameters are the AIC
(Akaike Information Criterion) [45] and BIC (Bayesian
Information Criterion) [46]. Applied to our data, at both
pressures and with the quadratic and log plus linear vari-
ants, the AIC and BIC were substantially lower than −10
below those for the single function, representing a deci-
sive preference for two different functional dependences
above and below a certain volume (Vc). This volume
is shown in the vertical dotted line (Fig. 4) and corre-
sponds at both pressures to a temperature close to 350 K,
which is within 12-15% of the predicted crossover value.
Also plotted as insets in Fig. 4 are the residuals of the
low-volume linear fits which show a sharp and sudden
increase above the crossover volume, which would not
be the case if we had simply interpolated a straight line
between non-linear data.

Fig. 5 shows theoretical PDF peak heights. We note
that the PDF peak heights of a solid h = g(rpeak) − 1
are predicted [25, 47] to have a power-law relationship
with temperature, resulting in the following relation:
log h ∝ − log T with h = g(r)− 1 at the peak. The same
relation can be argued to apply to liquids below the FL
where the solid-like oscillatory component of molecular
motion is present [27]. This is because for small dis-
placements the energy is roughly quadratic and the dis-
placement distribution will be Gaussian. The height of
a Gaussian distribution follows a power-law relationship
with its variance, and thus with temperature. The peak
heights in Fig. 5 clearly show the crossover at the FL,
with the observed crossover temperatures differing from
the predicted ones by about 7-15%. This is in agreement
with the width of the FL crossover seen experimentally
and modelling on the basis of structural and thermody-
namic properties [37, 48].

Before concluding, we note that previous experiments
detecting the structural crossover at the FL involved X-
ray scattering in supercritical Ne [37], the combination of
X-ray with Raman scattering in supercritical CH4 [38],
and the combination of neutron and Raman scattering in
supercritical N2 [49] . Only one small-angle neutron scat-
tering experiment had been used to study the FL in CO2

in the vicinity of the critical point only [50]. Our current
neutron scattering experiment detecting the crossover at
the FL at highly supercritical pressures is the first of
its kind and importantly widens the range of techniques
used to detect the FL. It will stimulate further neutron
scattering experiments in important systems such as su-
percritical H2O where a pronounced crossover at the FL
was recently predicted on the basis of MD simulations
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FIG. 4. First peak position of simulated C-C PDF. The
straight lines are fitted to data below the FL and serve
as visual guides. The vertical dashed lines show the fitted
crossover volume and the volume at the FL. The insets show
the relative trend of the residuals of the linear fit.

[39].
In summary, our combined neutron scattering and

molecular dynamics simulations study has detected the
structural crossover in CO2 at pressures well above the
critical pressure and temperatures well in excess of melt-
ing temperature. The crossover is seen in the main fea-
tures of the SF and PDFs and corresponds to the pre-
dicted crossover at the FL. Apart from the fundamental
importance of understanding the supercritical state, the
FL corresponds to the solubility maxima of several so-
lutes in supercritical CO2 [24] and is therefore of practical
importance.
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