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ABSTRACT 

Prostate cancer is one of the most common malignancies and the fifth leading cause of 

cancer related deaths in males, worldwide. It is commonly treated using androgen 

deprivation therapy (ADT), but around 25% develop ADT resistance and are called 

Castration-Resistant Prostate Cancers (CRPCs). Therapies currently used for CRPC 

treatment include: the new generation anti-androgen enzalutamide, the taxane 

cabazitaxel and carboplatin. Despite the prolonged survival resulting from these 

treatments, CRPC is still incurable. Recent evidence suggests that long non-coding RNAs 

(lncRNAs) promote drug resistance.  The lncRNA HORAS5 (i.e. linc00161) regulates drug 

response in different cancers and is upregulated in CRPC versus hormone-sensitive 

patient-derived xenografts (PDXs), thereby stimulating pro-survival mechanisms. This 

project has investigated whether HORAS5 has a role in CRPC response to therapy. CRPC 

cells have been treated with different concentrations of cabazitaxel, carboplatin and 

enzalutamide. Cabazitaxel exposure increases HORAS5 expression, in androgen 

receptor-positive (AR+) and -negative (AR–) prostate cancer cells and HORAS5 

overexpression decreases cabazitaxel sensitivity and cell apoptosis. HORAS5 RNA 

interference (RNAi) increases cabazitaxel sensitivity and cell apoptosis. Next-generation 

RNA sequencing and real time qPCR have shown that the anti-apoptotic factor BCL2A1 

is significantly upregulated upon HORAS5 overexpression in AR- prostate cancer cells 

exposed to cabazitaxel. BCL2A1 silencing decreases cell count and increases apoptosis 

of prostate cancer cells exposed to cabazitaxel. HORAS5 and BCL2A1 upregulation is 

associated with decreased survival in prostate cancer patients and HORAS5 is 

upregulated in clinical samples from prostate cancer patients exposed to taxanes. 

Transfection of CRPC cells with HORAS5-targeting antisense oligonucleotides (ASOs) 

efficiently reduces HORAS5 expression, thereby decreasing cabazitaxel IC50 when tested 

in combination with this drug. Overall, this project shows that HORAS5 stimulates 

BCL2A1 expression in prostate cancer cells, thereby reducing caspase-mediated 

apoptosis. This leads to increased cabazitaxel resistance. The clinical relevance of 

HORAS5 expression and the effect of HORAS5-targeting ASOs shown in this thesis 

highlight the translational potential of HORAS5 modulation. This work sheds light on the 

relevance of lncRNAs in cancer drug resistance and proposes the use of HORAS5 as a 

future therapeutic target to increase therapy efficacy in CRPC. 
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1 CHAPTER 1: INTRODUCTION 
 

1.1. Prostate cancer: overview and progression 

Prostate cancer is a neoplasm arising in the prostate, which is a small, walnut-shaped 

organ that represents the most common site of neoplastic transformation in the male 

human body (Antony et al., 2014). The prostate is a gland of the male reproductive 

system (fig.1.1A), located around the urethra, at the base of the bladder where it exerts 

its main function, i.e. secreting proteins into the seminal fluid to provide protection and 

nourishment to sperm (Crea, Venalainen, et al., 2016). Histologically it is composed by 

a pseudo-stratified epithelium constituted by luminal, basal and neuroendocrine cells 

(NECs) (fig.1.1B) (Crea, Venalainen, et al., 2016). Luminal cells represent the most 

abundant cell type; their main function is to produce keratins and secretory proteins, 

such as the prostate specific antigen (PSA).  Basal cells express different kinds of keratins 

and other proteins; NECs represent the least frequent component (<1%) of the prostate 

normal epithelium and express neuroendocrine (NE)-specific markers (Crea, Venalainen, 

et al., 2016).  
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                               A 

 

                           B                                                                          

 

Figure1.1| Representation of prostate`s location in the human body and schematic 
representation of the cellular structure of prostate epithelium. 
A. The prostate is a small gland of the male reproductive system, which becomes bigger 

with age (The Cleveland Clinic Foundation, 2017). B. The cellular structure of prostate 

epithelium consists of an inner layer with secretory luminal cells surrounded by a layer 

of basal cells in contact with the basement membrane that separates stromal cells from 

the epithelium. NECs spread throughout the epithelium and form just the 1% of it. Each 

cell type has specific characteristics and expresses specific proteins (in brackets); 

modified from Rybak et al., 2014 (Rybak, Bristow and Kapoor, 2014).  

 

The neoplastic transformation of the prostate epithelium is more frequent in older 

individuals. Prostate cancer is a heterogeneous disease (Crea, Quagliata, et al., 2016) 

which represents the most commonly diagnosed malignancy worldwide (Fan Liancheng, 
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Wang Yanqing, Chi Chenfei, Pan Jiahua, Shangguan Xun, Xin Zhixiang, Hu Jianian, Zhou 

Lixin, Dong Baijun, 2017) and the second cause of cancer-related deaths among men in 

western countries. Worldwide, the incidence of prostate cancer is rising and this is 

partially attributable to the increasing life expectancy (Lin et al., 2017). The majority of 

prostate cancers are driven by the activation of the androgen receptor (AR) signalling 

(fig.1.2), triggered by the interaction of AR with androgens, mainly produced by the 

testis, which stimulates pathways involved in proliferation and survival (Stice et al., 

2017). Prostate cancers have been suggested to originate from the luminal lineage with 

an over-activation of AR, which triggers epithelial proliferation and favours the 

accumulation of genetic mutations (Xin, 2013). A second theory suggests that basal cells 

can also originate prostate cancer, via acquisition of luminal lineage features (Xin, 2013). 

Prostate cancer is a heterogeneous disease, since it can be characterized by various 

phenotypical, histological and molecular characteristics. Some stages of cellular and 

molecular transformation of the prostate epithelium have been recognised and often 

associated with prostate cancer progression:   

1. Prostatic intra-epithelial neoplasia (PIN) is characterized by hyperplasia of the 

luminal epithelium, decrease in the number of basal cells that are still present 

and enlargement of nuclei and nucleoli. Although PIN has not been clinically 

demonstrated to be a precursor of prostate cancer, some PIN cases are at the 

initial stage of the malignant transformation, especially when high grade PIN is 

identified. High grade PIN has an increase in the expression of proliferation 

markers and of telomerase activity. In PIN it is possible to find some mutations 

such as loss of function of PTEN, loss of heterozygosity in the NKX3.1 homeobox 

gene and upregulation of nuclear MYC protein; 
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2. Localized adenocarcinoma has a luminal phenotype characterized by the total 

absence of p63 and other markers of basal cells. It is characterized by some 

mutations like the loss of PTEN and the TMPRSS2-ERG fusion, occurring in 50% 

of adenocarcinoma cases; 

3. Metastatic prostate cancer is a phenotypically heterogeneous stage but 

molecular and cytogenetic analyses have shown that multiple metastases in the 

same patient are clonally related and that it could originate from selective 

pressure such as therapeutic intervention, promoting selective proliferation of 

these clones during the tumour progression. Some molecular features of this 

stage are MYC overexpression, ETS activation and deletion of PTEN (Shen and 

Abate-Shen, 2010; Shtivelman, Beer and Evans, 2014). 

In most cases, prostate cancer is initially hormone-dependent and can be effectively 

treated with androgen deprivation therapy (ADT, i.e. chemical castration). It has been 

shown that after prolonged ADT, a substantial fraction (25%) of adenocarcinomas 

develops resistance to this therapy, mainly as a consequence of genetic and epigenetic 

alterations that allow for a ligand-independent activation of AR. These cancers are 

therefore called castration-resistant prostate cancer (CRPC). 

Despite the development of new therapies, CRPC is still incurable. Therefore, the 

identification of more effective therapeutic targets is of paramount importance and can 

help explain the origin and evolution of CRPC. In the next sections, the clinical 

progression of prostate cancer from the most common form to the most aggressive 

subtypes is outlined (fig.1.2).  
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Figure1.2| The clinical progression of prostate cancer from the hormone-dependent 
forms treated with local and hormonal therapy to the most aggressive forms after the 
acquisition of castration resistance. 
Most common therapies for CRPC are shown in red.  

 

1.1.1. Hormone-dependent Prostate cancer 

In 1941 Huggins established that prostate cancer was a hormone-dependent disease 

and could regress after castration. For this discovery, he won the Nobel Prize in 1966 

(Toledo-pereyra, 2001). Male sex hormones are called androgens; testosterone and 

dihydrotestosterone are the most abundant androgens. Testosterone is mainly 

produced in the testes and its production is stimulated by luteinizing hormone (LH) 

produced in the pituitary gland, which is stimulated by luteinizing hormone-releasing 

hormone (LHRH), released by the hypothalamus (fig.1.3). The adrenal gland produces 

the remaining testosterone. Once produced, androgens are secreted into the prostate 

where they bind and activate the AR (National Cancer Institute, 2014), a member of the 

nuclear steroid receptor superfamily of ligand-dependent transcription factors (TFs) (Lu 

et al., 2006). When inactive, the AR is located inside the cytoplasm of prostate cells, but 

upon binding to androgens, it changes its conformation and translocates into the 
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nucleus (Hsu et al., 2017). Here, the AR creates homodimers, which recruit co-regulators 

to bind specific elements of the DNA, called androgen response elements (AREs); the 

AREs are located in the transcription regulation regions (e.g. promoters) of AR-target 

genes such as PSA. With this mechanism, androgens trigger the expression of several 

genes, thereby promoting the growth and function of the prostate that can result in 

uncontrolled proliferation. When this process is uncontrolled, it triggers the 

development and progression of hormone-dependent prostate cancers and it is 

therefore an ideal target to inhibit prostate cancer growth (National Cancer Institute, 

2014; Shtivelman, Beer and Evans, 2014). 

                                                                                                                                                                             

Figure1.3| Process of hormone production and activation to regulate androgens-AR 
interaction, thereby promoting prostate growth. 
When this signalling pathway is uncontrolled prostate cells can initiate a malignant 

transformation.  
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Hormone-dependent prostate cancer is first diagnosed based on abnormally increased 

level of circulating PSA. PSA levels of 3 ng/ml or higher are considered critical for further 

investigation (Pezaro, Woo and Davis, 2014). Since elevated levels of PSA are frequently 

associated with non-neoplastic conditions, several areas of the prostate are biopsied, in 

order to confirm the presence of neoplastic cells.  Subsequently, confirmed prostate 

cancers are graded based on Gleason Score. Higher scores are associated with less 

differentiation and worse prognosis.  Different imaging techniques (MRI, CT scans) are 

used to visualize the neoplasm and determine the stage (local vs. metastatic prostate 

cancer). The most common sites of prostate cancer metastasis are pelvic lymph nodes, 

bones, liver and lung. 

Localized hormone-dependent prostate cancers are commonly treated with surgery 

(prostatectomy) and/or radiotherapy (Toledo-pereyra, 2001; National Cancer Institute, 

2014); when prostate cancer spreads to different sites and becomes metastatic, ADT is 

commonly employed; ADT reduces the levels of androgens, blocking the signalling 

pathway described above (fig.1.3). The main hormonal treatments in prostate cancer 

are: LHRH agonists, LHRH antagonists and reversible AR antagonists. 

LHRH agonists reduce the levels of testosterone produced by the testicles. LHRH 

agonists can be injected under the skin from once a month to once a year, according to 

the specific drug used. At the beginning of the treatment LHRH agonists produce a brief 

and very low increase of testosterone that is called flare and can give side effects such 

as pain in bones if the tumour has spread to there (American Cancer Society, 2016). 

Subsequently, the LHRH agonists saturate the LHRH receptors and permanently inhibit 

testosterone production.  
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LHRH antagonists reduce testosterone levels more quickly and do not produce tumour 

flare like LHRH agonists. They are given once a month per injection under the skin and 

this is connected to some side effects such as pain, redness and swelling at the injection 

site. LHRH agonists and antagonists can stop the testicles from producing androgens, 

but other cells in the body, including prostate cancer cells themselves, can still produce 

small amounts, which can fuel cancer growth (American Cancer Society, 2016).  

Other drugs stop androgens from working rather than suppressing androgen levels. 

They are called anti-androgens and prevent the interaction between androgens and AR, 

by competing with androgens for binding the AR (Lu et al., 2006). Examples of anti-

androgen are bicalutamide, apalutamide and darolutamide. Anti-androgens are taken 

daily as pills. 

An anti-androgen can also be combined with orchiectomy or with an LHRH agonist as 

first-line hormone therapy. This is called combined androgen blockade (CAB) and has 

shown just small incremental benefits for patients (American Cancer Society, 2016). 

There are also newer types of anti-androgens, such as abiraterone acetate (AA) and 

enzalutamide, which can be helpful when prostate cancer develops resistance to 

chemical castration and is therefore able to grow even in low or undetectable levels of 

androgens. This will be discussed in further detail later in this thesis (section 1.2.1). 

 

1.1.2. Castration-resistant Prostate Cancer   

CRPC is an incurable form of prostate cancer due to the ability of cancer cells to evade 

ADT-dependent growth inhibition. CRPC is often metastatic and associated with poor 

prognosis (Fan Liancheng, Wang Yanqing, Chi Chenfei, Pan Jiahua, Shangguan Xun, Xin 
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Zhixiang, Hu Jianian, Zhou Lixin, Dong Baijun, 2017). In the next sections are described 

the main characteristics of hormone resistant prostate cancers. 

1.1.2.1. CRPC  

After several cycles of ADT, some prostate cancers start to become resistant to 

castration therapy, since they need very low or undetectable levels of androgens to 

proliferate (National Cancer Institute, 2014). CRPC cells acquire this potential mainly 

through genetic and epigenetic alterations that increase the production or the activity 

of AR molecules (fig.1.4). This is possible via several processes:  

1) The overexpression or genetic amplification of the AR gene.  

2) AR mutations that increase AR affinity to androgens, or production of splice 

variants that lack the ligand-binding domain.  

3) It is also possible that the hormone-independent phenotype occurs without any 

direct change in the AR locus; for example, the emergence of CRPC can be 

ascribed to alterations in signalling pathways that modulate the activity or 

expression of the AR (Schroder, 2008). An example is the capacity of CRPC cells 

to induce AR expression via NF-kB, a TF activated by the phosphoinositide 3-

kinases (PI3K)/protein kinase B (AKT) signalling pathway (Y. Kim et al., 2017).  

4) CRPC cells can independently produce androgens, thereby self-sustaining 

neoplastic proliferation.  

Hence, most CRPCs maintain AR expression and are still classified as adenocarcinomas.  

CRPCs are associated with poorer prognosis and shorter survival (from around 10 years 

to around 1 year) than the hormone-sensitive prostate cancers and the mortality rate is 

still high (Lin et al., 2017). Even if CRPC remains currently an incurable disease, 

chemotherapeutics (e.g. cabazitaxel) and second-generation hormonal therapies (e.g. 
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enzalutamide and AA) can effectively increase CRPC patient survival (de Bono et al., 2010; 

Scher et al., 2012; Ryan et al., 2013, 2015; Crea, Venalainen, et al., 2016; de Wit et al., 2019). 

Since the hormone-resistance is often due to the alteration of the AR pathway, some of 

these new strategies to treat CRPC aim to inhibit AR signalling (Y. Kim et al., 2017). They 

will be discussed in the next sections of this thesis. 

However, these new therapies can also have a role in the further clinical progression of 

prostate cancer. Despite not clinically proven, there are studies suggesting that 

enzalutamide may exert a selective pressure that can promote the selection of AR 

negative (AR-) prostate cancer cells, which can further evolve in anaplastic prostate 

cancers such as NEPC  (Aggarwal et al., 2018; Y. Zhang et al., 2018), a prostate cancer 

subtype, which is resistant to all hormone therapies, particularly aggressive and rapidly 

lethal, which will be described in the next section (X. Xu et al., 2017).  
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Figure1.4 | Mechanisms of prostate cancer proliferation in androgen-dependent 
prostate cancer and CRPC cells. 
Left panel: activation of AR via binding with androgens and release from the heat-shock 

protein which binds the inactive form in the cytoplasm. The androgen-AR complex 

migrates into the nucleus where it dimerizes and interacts with coactivators to bind AREs 

to activate the transcription of AR-target genes. Right panel: mechanisms that trigger 

the proliferation of CRPC cells with low or undetectable levels of androgens: 

amplification of AR gene; mutations that increase the affinity of AR to androgens; 

production of constitutively active AR due to the lack of ligand-binding domains; 

activation of alternative pathways to upregulate AR or to stimulate cancer proliferation 

in AR independent manner. 

 

1.1.2.2. Anaplastic prostate cancer 

A minority of prostate cancers are resistant to all types of hormonal therapies, highly 

metastatic and characterized by low levels of AR expression with low or undetectable 

PSA and/or NE phenotype (Beltran et al., 2016; Tsaur et al., 2019). These characteristics 

fall within the classification of “anaplastic” CRPC (Tsaur et al., 2019). When anaplastic 

CRPC has clear NE differentiation, with expression of NE markers and phenotype, the 

tumour is called NEPC (Tsaur et al., 2019). NEPCs represent around the 0.5-2% of newly 

diagnosed prostate cancers, but almost 50% of CRPCs (Crea, Venalainen, et al., 2016). 

NEPCs are composed of small NE–like cells with big nucleus and small cytoplasm 
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(Clermont et al., 2015).  Most NEPCs are AR- (X. Xu et al., 2017) (fig.1.5A), even if some 

studies show that a fraction of NEPCs retain some AR expression (Crea, Venalainen, et 

al., 2016). In any case, NEPC cells do not rely on AR activation for proliferation and 

survival. Moreover NEPC does not express adeno-prostate cancer markers such as PSA 

(Lin et al., 2014; Zaffuto et al., 2017) (fig.1.5A). The absent PSA expression hinders 

diagnosis at an early stage and monitoring of the progression of the tumour.  NEPC cells 

express several NE proteins, such as synaptophysin, chromogranin A (CHGA), neural 

specific enolase and a variety of neuropeptides (Nouri et al., 2017) (fig. 1.5A). Due to 

this molecular and phenotypic heterogeneity, several studies focused on the cellular 

origin of NEPC. The two main models postulate that NEPC can be created via malignant 

transformation of normal NEC or via transdifferentiation of adeno-prostate cancer cells 

into NEPC cells. These models are discussed below. 

1) Transformation of non-neoplastic NECs (Crea, Venalainen, et al., 2016): NECs, luminal 

and basal prostatic cells are the main components of the normal prostatic epithelium. 

Here, NECs regulate epithelial cell growth and differentiation. Unlike the other cell 

types, NECs do not require the presence of androgens to function properly and to 

proliferate (X. Xu et al., 2017). Hence, it has been hypothesized that several cycles of 

ADTs can induce the proliferation and subsequently the neoplastic transformation of 

NECs, which would generate NEPCs. 

2) Transdifferentiation from adeno-prostate cancer cells into NEPC cells (Lin et al., 2014; 

Crea, Venalainen, et al., 2016; Lee et al., 2017)(fig.1.5B): Under particular conditions, 

adeno-prostate cancer cells could transdifferentiate into NEPC by losing AR expression 

and by acquiring NEC markers, via a mechanism that is still not completely elucidated. 

DNA Sequencing studies from clinical samples indicate that some NEPC clones derive 
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from CRPC-Adeno cells (Lee et al., 2017). Pre-clinical experimental data support this 

model: AR+ LNCaP cells are capable of transdifferentiating into NEPC cells after 

prolonged androgen depletion, if other growth factors are supplemented (Beltran et al., 

2014; X. Xu et al., 2017). According to this hypothesis, a study shows that adeno- 

prostate cancer patient-derived xenograft (PDX) develops NEPC relapse upon chemical 

castration therapy (Crea, Venalainen, et al., 2016).  

NE transdifferentiation, emerging from increasing treatment of advanced prostate 

cancer, is more common than transformation of non-neoplastic NECs (“de novo NEPC”) 

(Crea, Venalainen, et al., 2016; Tsaur et al., 2019). NEPCs are usually diagnosed in 

individuals already affected by adeno-prostate cancers (Lin et al., 2014). It is therefore 

conceivable that first and second-line hormonal therapies increase the chances of 

developing NEPC. After repeated cycles of hormonal therapy, NEPC cells can become 

the dominant population (Clermont et al., 2015) since these cells can easily adapt to AR 

signalling suppression therapy and are highly proliferative (Crea, Venalainen, et al., 

2016). NEPC is often diagnosed at a metastatic stage and does not respond to any 

hormonal therapy and is therefore associated with very short average survival time (6-

8 months) (Clermont et al., 2015; J. Kim et al., 2017; Lee et al., 2017; Yadav et al., 2017; 

Zaffuto et al., 2017). Since according to the most accredited theories NEPC could 

originate from CRPC-Adeno, there is an urgent need to find new therapies (Clermont et 

al., 2015) to both treat this neoplasm and to prevent the transdifferentiation of CRPC-

Adeno into NEPC.     
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                                   A 

 
                             
                        B                

                                                                                        
Figure1.5 | NEPC can originate from the transdifferentiation of adeno-prostate cancer.  
A. Immunohistochemistry of adeno-prostate cancer vs NEPC. Adeno-prostate cancers 

express AR and PSA and are negative for NE markers such as CHGA. NEPCs lack the 

expression of AR and PSA but are positive for NE markers staining (CHGA); Modified by 

Lipianskaya et al., 2014 (Lipianskaya et al., 2014). B. Schematic representation of the 

transdifferentiation from adeno-prostate cancer into NEPC. Under particular conditions, 

(e.g. prolonged androgen depletion), adeno-prostate cancer cells could lose AR 

expression and acquire NE markers, via a mechanism that is still not completely 

elucidated. 
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1.2. Drugs for the treatment of CRPC 

After 18-24 months of ADT, 25% of patients can develop CRPC, which is currently 

incurable (Nouri et al., 2017; X. Xu et al., 2017). Hence, there is an urgent need to 

discover new compounds to target this disease. Despite the emergence of hormone-

resistance, the expression and activity of AR is retained in most CRPC cases and most of 

the new therapeutic strategies aim to target this signalling pathway with higher efficacy 

(Fan Liancheng, Wang Yanqing, Chi Chenfei, Pan Jiahua, Shangguan Xun, Xin Zhixiang, 

Hu Jianian, Zhou Lixin, Dong Baijun, 2017). 

Effective therapeutic options for CRPC include: 

1) The use of immunotherapy with the antigen-presenting cell-based vaccine sipuleucel-

T. 

2) Internal radiotherapy with radium-223 chloride. 

3) New generation hormone therapies: AA, enzalutamide. 

4) Chemotherapy (taxanes and platinum agents). 

 

In addition to these therapies, other options are available, such as the checkpoint 

inhibitor pembrolizumab, which showed antitumor activity in docetaxel-refractory 

metastatic CRPC (mCRPC) patients (Antonarakis et al., 2020). Moreover, these 

treatments are not all effective and each of these drugs has a variable response 

depending on the patient which underlines the heterogenicity of prostate cancer. 

 

The next sections will examine in further detail new generation hormone therapies and 

chemotherapeutic agents, which are the focus of this research project.  

These treatments, and their therapeutic indication, are summarized in table 1.1. 
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Table 1.1 | Drugs used for the treatment of CRPC examined in this research project. 

Drug Mechanism of action Clinical indication 

Enzalutamide Irreversible AR antagonist CRPC 

Cabazitaxel Microtubule disruption CRPC, anaplastic prostate 

cancer 

Carboplatin DNA damage Anaplastic prostate cancer 

 

1.2.1. New generation hormonal treatments 

The new generation hormonal treatments for CRPC include compounds that can block 

androgens biosynthesis or AR activity, thereby arresting AR+ CRPC proliferation. In 

particular, several clinical trials have shown that AA and enzalutamide are highly 

effective in mCRPC, and that these drugs successfully prolong the survival of CRPC 

patients (National Cancer Institute, 2014; Sissung et al., 2014; X. Xu et al., 2017). 

 

Abiraterone acetate (AA) 

As discussed before, first line ADT blocks the production of testosterone by the testis. 

However, the adrenal gland and prostate cancer cells themselves can still produce 

androgens, which can drive the proliferation of CRPCs. AA is an inhibitor of adrenal gland 

and intra-tumour androgen synthesis (National Cancer Institute, 2014; Stice et al., 2017; 

X. Xu et al., 2017). AA can effectively promote androgen-deprivation, thereby resulting 

in survival benefits for CRPC patients (Sissung et al., 2014). Phase III clinical trials have 

shown that AA in combination with prednisone can improve the overall survival of 

mCRPC patients pre-treated or not with chemotherapeutics (Ryan et al., 2013, 2015). 

AA exerts its action by blocking CYP-17 lyase and hydroxylase, an enzyme which is 
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essential for the biosynthesis of androgens and adrenal hormones, resulting in 

undetectable levels of testosterone (Fan Liancheng, Wang Yanqing, Chi Chenfei, Pan 

Jiahua, Shangguan Xun, Xin Zhixiang, Hu Jianian, Zhou Lixin, Dong Baijun, 2017) 

(fig.1.6A).  

Despite the effective inhibition of testosterone production, AA’s effects on patients are 

very heterogeneous and around the 30% of patients are inherently resistant to this drug. 

Moreover, since CYP-17 affects also the androgen biosynthesis in healthy cells and is 

involved in the production and accumulation of other hormones (e.g. 

mineralocorticoids), there are doubts on the overall benefits of AA on CRPC patients 

(Sissung et al., 2014; Fan Liancheng, Wang Yanqing, Chi Chenfei, Pan Jiahua, Shangguan 

Xun, Xin Zhixiang, Hu Jianian, Zhou Lixin, Dong Baijun, 2017). Indeed, common side 

effects include fluid retention, oedema, hypertension, and hypokalaemia, which are 

usually due to mineralocorticoid excess (Bedoya and Mitsiades, 2012). 

 

Enzalutamide 

Enzalutamide is a non-steroidal anti-androgen that interferes with the binding between 

androgens and AR (National Cancer Institute, 2014; Guo et al., 2017). It has a high 

efficacy thanks to its strong binding affinity with AR and it can also block the 

translocation of AR to the nucleus and reduce the efficacy of the binding with AREs, 

thereby blocking proliferation and activating apoptosis in prostate cancer cells (Tran, 

2009) (fig.1.6B). Despite enzalutamide showing efficacy in prostate cancer growth 

suppression, its effect is reduced in some prostate cancer cells and patients. Moreover, 

several cycles of treatment with this drug can result in the failure of AR inhibition in 
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CRPC, due the acquisition of AR mutations and alternative splice variants, which lack the 

androgen-binding domain (Lin et al., 2013).  

Mutations and alternative splicing can confer constitutive activity to the receptor, 

thereby rendering CRPC cells insensitive to enzalutamide. AR variant AR-V7 detection in 

circulating tumour cells from CRPC patients correlates with resistance to new-

generation hormonal treatments, including enzalutamide (Antonarakis et al., 2014). In 

particular, patients with expression of the variant AR-V7 have lower PSA response rates 

and shorter progression-free survival and overall survival (Antonarakis et al., 2014). 

Additionally, in vitro, in vivo and clinical studies have shown that prostate cancer 

prolonged enzalutamide treatment can promote NEPC differentiation and decrease 

overall survival in NEPC patients (Aggarwal et al., 2018; Y. Zhang et al., 2018).  
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           A 

 
 

             B 

 

Figure1.6 | Mechanisms of action of AA and enzalutamide. 
A. AA exerts its action by blocking CYP-17 lyase and hydroxylase, an enzyme which is 

essential for the biosynthesis of androgens and adrenal hormones, resulting in 

undetectable levels of testosterone. B. Enzalutamide blocks prostate cancer cells 

proliferation and induces cell death by interfering with AR function. Enzalutamide can 

interfere with the androgens-AR binding, block AR nuclear translocation or inhibit the 

interaction of AR with ARE. HSP: heat shock protein. T: testosterone. Modified from 

Ammannagari and George, 2015 (Ammannagari and George, 2014). 
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As reported above, the use of both AA and enzalutamide can lead to resistance 

mechanisms such as mutations and the appearance of AR splice variants, which are 

constitutively active. The obstacles in targeting AR receptor underline the need of novel 

compounds to target CRPC, downstream the AR (Stice et al., 2017). Considering that the 

response rate to these treatments is relatively short, that new mechanisms of resistance 

can rapidly occur and that some CRPC are AR-,  other therapeutic options, such as 

chemotherapy, are used to treat CRPC patients (Stice et al., 2017). 

 

1.2.2. Taxanes 

Taxanes are a family of chemotherapeutic agents employed for the treatment of a 

variety of tumours. They all derive from paclitaxel, a plant diterpenoid, which was 

extracted in 1967 from the Pacific yew tree (Taxus brevifolia) (Wani et al., 1971). 

Paclitaxel was the first natural compound showing an action on microtubule stabilization 

(Wani et al., 1971).  Taxanes were introduced in the clinical use more than 30 years ago 

and, since then, the use of taxanes has increased, with improvements in their effects. In 

fact, since the discovery of the original compound, novel taxanes have been synthetized 

by chemical modification (Ojima et al., 1999) such as docetaxel and cabazitaxel, which 

are characterized by improved mechanisms of actions, as described in more detail in the 

next paragraphs. Moreover, the development of novel taxane-based formulations can 

improve the clinical profile of these drugs. An example is the case of albumin-bound 

paclitaxel, also called Abraxane or nab-paclitaxel, which permits the transport and 

accumulation of paclitaxel in tumour areas, via the reversible binding of albumin 
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(Gradishar, 2006). This method increases paclitaxel efficacy and reduces its side effects, 

with consequent increase in patient response rate and survival (Gradishar, 2006; 

Stinchcombe, 2007; Takashima et al., 2018). Except for albumin-bound paclitaxel, 

several clinical trials have demonstrated that taxanes, either alone or in combination 

with other agents, can improve cancer patient outcome of different cancers, including 

prostate (de Bono et al., 2010; Quoix et al., 2011; Pignata et al., 2014; Muro et al., 2016). 

Taxanes mainly interact with beta (β)-tubulin that, together with alpha (α)-tubulin 

constitutes microtubules (fig.1.7). The molecules of α- and β-tubulin form heterodimers 

that constitute the parallel protofilaments of microtubules, which are dynamic 

components. Microtubules dynamics is due to their continuous polymerization and 

depolymerisation via the use of energy from GTP-hydrolysis and interaction with several 

motor proteins and microtubule-associated proteins (Needleman et al., 2005). 

Microtubule  dynamics is essential for fundamental cellular processes such as mitosis 

and meiosis, to support and preserve cell shape and for correct molecular trafficking 

(Wang et al., 1999; Needleman et al., 2005; Churchill, Klobukowski and Tuszynski, 2015). 

As mentioned at the beginning of this section, taxanes are microtubules stabilizing 

agents, therefore via their binding with β-tubulin they inhibit microtubule 

depolymerisation, thereby disrupting microtubule dynamics and functions (Churchill, 

Klobukowski and Tuszynski, 2015). In particular taxane action on mitotic cells affects 

chromosome separation and blocks cell division, thereby hindering cell cycle 

progression and triggering apoptosis (Abal, Andreu and Barasoain, 2003; Weaver, 2014). 

Taxane involvement in microtubule instability damages many other cancer-specific 

functions in CRPC cells, such as secretion, intracellular signalling and migration (Smiyun, 

Azarenko, Miller, Rifkind, Lapointe, et al., 2017). In addition to the evidence on taxanes 
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microtubule-binding functions, they have been suggested to have roles in processes that 

do not directly affect mitotic disruption. So far, taxanes mechanism of action has not 

been fully elucidated. 

Previous work has shown that taxanes are involved in molecular trafficking, cell 

signalling and transport, and in interphase cancer cells death (Ganansia-Leymarie et al., 

2003; Herbst and Khuri, 2003; Weaver, 2014). Boundny and Nakano have shown that 

taxane-mediated apoptosis can be triggered via B-cell lymphoma 2 protein (bcl2) 

phosphorylation that inhibits this anti-apoptotic factor, thereby activating cell death 

signalling (Boudny and Nakano, 2002). Vice versa, antiapoptotic members of the bcl2 

family , have been found involved in decreased response to taxanes in cancer cells (Xia 

et al., 2006). 

Different studies have proposed taxanes as regulators of other cellular functions such as 

mitochondrial activity, via alteration in their membrane features (Gabor Varbiro et al., 

2001) or ROS production, via taxane-mediated  inhibition of antioxidant enzymes 

(Kosaka et al., 2017). According to this evidence, taxanes seem to interact with several 

pathways, thereby affecting different cellular processes. This results in a broad 

anticancer effect (de Bono et al., 2010; Lorch et al., 2011; Quoix et al., 2011; Pignata et 

al., 2014; Muro et al., 2016; Vogel et al., 2016; Zielinski et al., 2016).  

In prostate cancer, taxanes seem to be active in both the nucleus and the cytoplasm of 

cancer cells, due to their action in both androgen-dependent (interfering with the 

correct production of regulators of the expression of androgen-dependent genes) and -

independent mechanisms (Acharya et al., 2017). Docetaxel and cabazitaxel are the most 

studied taxanes in CRPC and they have shown strong effects on prostate tumour growth 

(Smiyun, Azarenko, Miller, Rifkind, Lapointe, et al., 2017).  
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Figure1.7 | Mechanism of action of taxanes on microtubule function. 
Taxanes are anticancer agents that target tubulin to disrupt microtubule function during 

cell division. Taxanes interact and stabilize β subunit of tubulin thereby preventing 

tubulin heterodimer depolymerisation. This event leads to the inhibition of cell division, 

thereby inducing cell-cycle arrest and apoptosis; from Montero et. Al., 2005 (Montero 

et al., 2005). 

 

Docetaxel 

Docetaxel, also called Taxotere (Smiyun, Azarenko, Miller, Rifkind, Lapointe, et al., 

2017), is one of the most well characterized and used taxanes in cancer chemotherapy. 

It is a semisynthetic analogue of paclitaxel. It has been well studied for the treatment of 

many malignant neoplasms such as breast, stomach, lung and prostate cancers. A phase 
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III clinical trial has shown that docetaxel increases overall survival in hormone sensitive 

prostate cancer patients treated with hormone therapy (James et al., 2016).  

Docetaxel has also been shown to increase CRPC patients mean global quality of life and 

median survival in a phase II clinical trial (Petrioli et al., 2003). Moreover, in this study, 

weekly administration of docetaxel has shown very low side effects (neutropenia and 

anemia) (Petrioli et al., 2003). .  

Despite its efficacy in aggressive forms of CRPC, patients can develop resistance to 

docetaxel and treatment failure (Rosenberg et al., 2007; Harland et al., 2013). This could 

be due to the action of ABCB1 (ATP binding cassette subfamily B member 1) (Sissung et 

al., 2014; Mizokami et al., 2017), which is a membrane glycoprotein acting as efflux 

pump and excluding the drug from the cancer cells. Docetaxel has a high affinity for 

ABCB1 and this results in easy release of the drug from the cells. In cases of prostate 

cancer resistance to docetaxel, the second generation taxane cabazitaxel can be used 

(Mizokami et al., 2017). 

 

Cabazitaxel 

Cabazitaxel (i.e. Jevtana, commercial name) is a semisynthetic taxane, analogue of 

paclitaxel, approved by the Food and Drugs Administration (FDA) in 2010 and by the 

European Medicines Agency (EMA) in 2011. Cabazitaxel has been recently introduced 

for the treatment of CRPC patients resistant to docetaxel (National Cancer Institute, 

2014; Sissung et al., 2014; Smiyun, Azarenko, Miller, Rifkind, Lapointe, et al., 2017).  

Cabazitaxel has a low affinity for ABCB1, therefore it cannot be captured and released 

outside the cell (Mizokami et al., 2017) as easily as docetaxel, resulting in higher 

intracellular activity, especially in docetaxel-resistant CRPCs (Sissung et al., 2014).  
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Phase III and phase IV clinical trials have demonstrated cabazitaxel efficacy in improving 

the clinical outcome of prostate cancer patients, either alone or in combination with 

other treatments (de Bono et al., 2010; de Wit et al., 2019).  One of the most recent 

study on cabazitaxel role on prostate cancer patients clinical outcome has shown that 

mCRPC patients previously treated with docetaxel or new generation hormonal 

treatments (i.e. AA or enzalutamide) show improved progression-free survival (PFS) 

when treated with cabazitaxel compared to new generation hormonal treatments (de 

Wit et al., 2019).  

 

1.2.3. Platinum agents  

Platinum agents are compounds derived from platinum and used in cancer 

chemotherapy. They act via formation of crosslinks between complementary strands of 

DNA. The result of this interaction causes multiple errors in the DNA replication. This 

results in several DNA double-strand breaks that rapidly accumulate inside the cancer 

cells, resulting in activation of apoptosis. Some studies have shown efficacy of cisplatin 

and carboplatin in CRPC, and particularly in anaplastic CRPC as described in the following 

paragraphs. 

 

Cisplatin 

Cisplatin is a platinum agent approved by the FDA in 1978 and used as an anti-neoplastic 

chemotherapeutic for the treatment of several cancers since it inhibits cell proliferation 

and induces cancer cell death (Guo et al., 2017). Its effective action has been shown in 

several studies both alone and in combination with other treatments. In vitro studies 

indicate that Cisplatin could suppress the growth of cells resistant to enzalutamide, 
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becoming useful in the treatment of CRPC resistant to second-line hormone therapy 

(Guo et al., 2017).  

 

Carboplatin 

Carboplatin is a chemotherapeutic drug that interferes with the cell cycle and binds DNA 

strands, thereby creating cross-links between complementary strands. It is a second-

generation platinum agent. Carboplatin has been shown to be effective against a large 

variety of solid cancers (e.g. lung, bladder, stomach) and both pre-clinical and clinical 

evidence has shown its role in anaplastic prostate cancer (McPherson, Galettis and de 

Souza, 2009; Aparicio et al., 2013). In particular, a phase II clinical trial has shown that 

carboplatin, in combination with docetaxel, increases PFS of anaplastic prostate cancer 

patients, compared to etoposide-cisplatin combination treatment (Aparicio et al., 2013). 

As mentioned before, carboplatin is used in combination with taxanes (Aparicio et al., 

2013; Gillessen S., 2016). Moreover it has been used in a triple combination study with 

the taxane paclitaxel and estramustine phosphate in 310 CRPC patients and it has 

induced ≥50% PSA reduction  in 69% of cases and significantly prolonged the survival of 

treated patients (Regan et al., 2010). Another study has shown that the treatment of 

CRPC patients with or without a NE differentiation using carboplatin in combination with 

etoposide (a topoisomerase II inhibitor used in the treatment of several cancers) results 

in a significant reduction in PSA and NE markers, but in a minority of patients (Gillessen 

S., 2016). 

Despite the activity of these drugs, 50% of patients initially responding to these 

therapies develop resistance within 2 years (Yadav et al., 2017). Therefore, the 
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characterization of the mechanisms that drive cancer drug resistance is fundamental to 

hinder it and increase patient survival.  

 

1.3. Cancer drug resistance  
 

Unsuccessful cancer treatments are caused by the onset of therapy resistance that 

determines tumour progression and relapse, with dramatic consequences for patient 

survival. This section is focussed on cancer drug resistance, particularly chemotherapy 

(platinum agents and taxanes) and targeted therapies (hormonal treatment) since they 

are currently employed to treat CRPC. Malignant cells can be intrinsically resistant to 

specific therapies, determining absence of response since the initial treatment or can 

become resistant after initial sensitivity, in consequence of adaptive mechanisms.  

Cancer drug resistance is commonly a multifactorial phenomenon, ascribed to 

alterations in various molecular pathways in the singular cell and in the surrounding 

microenvironment (Das et al., 2015; Němcová-Fürstová et al., 2016; Galletti et al., 2017). 

Moreover, single factors or a variety of molecular events can determine resistance to 

one or more drugs and drug types. The latter phenomenon is called multidrug 

resistance. An example of well-known factors associated with multidrug resistance are 

the multidrug resistance transmembrane cellular transporters (MDR proteins). In this 

case, the multidrug resistance effect is due to the action of these transporters in 

preventing drugs from accumulation in the cytosol (Nikolaou et al., 2018).  The next 

paragraphs focus on the well-characterized factors and pathways that promote drug 

resistance, from ABC transporters to apoptosis. 
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ABC transporters 

ABC proteins are the best characterized MDR proteins in cancer drug resistance, as they 

determine the efflux of hydrophobic compounds which can be cytotoxic for the cells, 

such as anticancer drugs (Sarkadi et al., 2006; Higgins, 2007; Matsunaga et al., 2016). 

Therefore, ABC transporter upregulation often increases cancer drug resistance. An 

example is ABCB1, a well characterized member of this family, which is involved in 

prostate cancer resistance to different agents, including taxanes and platinum agents 

(Narita et al., 2012; Lombard et al., 2017, 2019). In particular, a study has shown that 

ABCB1 is up-regulated in docetaxel-resistant prostate cancer and that  pre-treatment of 

these cells with  ABCB1 inhibitors restores taxane sensitivity (Matsunaga et al., 2016). 

 

DNA damage repair 

Other factors that have been linked to drug resistance are members of the DNA damage 

repair system (Nikolaou et al., 2018). Cancer cells can hyper-activate DNA damage repair 

systems, becoming insensitive to the action of DNA-damaging drugs. In fact, some drugs 

act by damaging DNA, which is hardly repaired by cancer cells, which lack of many 

control mechanisms, due to their uncontrolled and fast proliferation. For example, 

taxanes cytotoxic action induces DNA damage that causes cell apoptosis if not repaired 

(Iida, Shimada and Sakagami, 2013; Poruchynsky et al., 2015). Nevertheless, cancer cells 

can induce specific molecular mechanisms via which they stimulate DNA repair factors 

expression and function, thereby repairing DNA damage and evading cell death 

(Swanton et al., 2009). DNA damage repair proteins have been linked to drug response. 

BRCA1 and BRCA2 are two genes involved in double strand homologous recombination 

repair (HRR). These genes are frequently mutated in breast and ovarian cancers and the 
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expression of BRCA1 and BRCA2 has been shown to predict breast cancer patients 

response to neoadjuvant anthracycline and taxane-based chemotherapy (Xu et al., 

2018). Moreover BRCA2 germline variants have been associated with metastatic 

advanced prostate cancer response to platinum agents, taxanes and new generation 

hormonal treatments (Pomerantz MM, Spisák S, Jia L, Cronin AM, Csabai I, Ledet E, 

Sartor AO, Rainville I, O’Connor EP et al., 2017; Castro et al., 2019). 

Pim-1, a serine/threonine kinase constitutively expressed in human cells and involved in 

cell cycle progression, inhibits apoptosis and triggers non-homologous end joining 

(NHEJ) DNA repair (Hsu et al., 2012). In human CRPC cells, Pim-1 silencing increases 

taxane-induced apoptosis, by impairing the DNA repair system (Hsu et al., 2012). 

 

Antioxidant response 

Oxidative stress, often induced by some drugs via release of reactive oxygen (ROS) and 

nitrogen (NOS) species, can induce cell death by damaging DNA proteins and other 

macromolecules (Jaiyesimi et al., 1995). Cancer cells can evade this death-inducing 

mechanism, by activating the antioxidant response, reducing oxidative stress and 

enhancing cancer cell survival (Crea, Serrat and Hurt, 2011; Datta et al., 2017). This 

results in increased drug resistance, as reported for docetaxel in prostate cancer (Crea, 

Serrat and Hurt, 2011). 

 

Autophagy 

Cancer cells can also react to drug treatment using autophagy as defence. Autophagy is 

a cellular mechanism leading to degradation of cellular components, which is 

physiologically important in cellular recycling, homeostasis and stem cell differentiation 
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and self-renewal (Lyakhovich and Lleonart, 2016). This process normally stimulates cells 

to be healthy and to avoid cell death, thereby promoting cell survival (Peng et al., 2014).  

In cancer cells, especially under stress conditions such as drug treatment, autophagy 

promotes tumourigenesis and plays important roles in the plastic response of cancer 

cells to therapy (Lyakhovich and Lleonart, 2016).  Cancer cells can use autophagy to 

evade chemotherapy-induced cell death (Pan et al., 2014). Autophagy-associated 

pathways and markers are increased in taxane resistant cancer cell lines and in 

neoplastic tissues resistant to taxanes (Peng et al., 2014). 

In prostate cancer cells, autophagy is associated with increased survival upon treatment 

with anti-androgens and taxanes (Bennett et al., 2013). The use of 3-methylalanine to 

pharmacologically inhibit autophagy enhances  cell sensitivity to this combination 

treatment (Bennett et al., 2013). Other studies have associated increased autophagy 

with decreased sensitivity to taxanes and platinum agents (J. Liu et al., 2019; Jia et al., 

2019).  

 

Apoptosis 

The mechanisms described so far, as other mechanisms that promote cancer drug 

resistance, are strictly connected to apoptosis. This can be easily explained considering 

that the last event of cancer cell sensitivity to treatments is commonly cell death. For 

this reason, apoptosis is a fundamental process for cancer response to therapy and is 

often decreased as a mechanism of cancer defence from drug-induced stress. 

For this reason, several apoptotic factors and pathways have been associated to 

increased drug response and their inhibition has been shown to increase drug 

resistance.  
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In prostate cancer cells programmed cell death protein 5 (Pdcd5) stimulates caspase-

induced apoptosis and decreases the expression of anti-apoptotic factors such as Bcl2 

and (bcl-2-associated X protein) increases the pro-apoptotic Bax, thereby promoting 

platinum-agents sensitivity (Zhu, Li and Gao, 2015). Hence, increased apoptosis 

stimulated by Pdcd5 has been proposed in combination with platinum-agents to treat 

prostate cancer with reduced initial response to the drug (Zhu, Li and Gao, 2015). 

Increase of apoptosis via inhibition of anti-apoptotic factors such as Bcl-xl and Mcl-1 has 

also been associated with increased taxane response in CRPC (Hwang et al., 2012). 

Another study has shown that alteration of Bcl2 members signalling affects CRPC cells 

apoptosis (Pilling and Hwang, 2019). In particular, Pilling and Hwang have shown that 

Bcl-xL and Mcl-1 inhibit apoptosis via repression of pro-apoptotic factors such as Bim 

and Bax, in CRPC cells treated with enzalutamide (Pilling and Hwang, 2019). This 

mechanism results in increased cancer cell survival in response to enzalutamide, thereby 

promoting resistance to this therapeutic agent (Pilling and Hwang, 2019). Moreover, it 

has been shown that Bcl-xL and Mcl-1 inhibitors affect this mechanism and promote 

enzalutamide sensitivity (Pilling and Hwang, 2019). These findings underline the 

importance of apoptosis escape for cancer cells as defence from drug treatments in 

advanced prostate cancer and pave the way for the inhibition of anti-apoptotic 

pathways to sensitize prostate cancer cells to treatment. Moreover, the inhibition of 

these pathways can cross react with other drug-resistance drivers to increase drug 

sensitivity since, as already mentioned, apoptosis is often altered in cancer and drug 

resistance cancers. 

Overall, these studies highlight that several mechanisms can contribute to prostate 

cancer drug resistance, especially in CRPC cells that normally develop resistance to 
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several treatments. Since CRPC is molecularly and clinically a heterogeneous disease 

(Acharya et al., 2017) it is very hard to find a therapeutic option that is durably effective. 

Hence, there is an urgent need to find compounds to treat CRPC and to prevent the 

development of further resistance (Acharya et al., 2017). 

Moreover, lack of knowledge on the molecular features of hormone-independent 

prostate cancer such as CRPC and NEPC, prevents the early diagnosis and effective 

treatment of these aggressive diseases (Beltran et al., 2016). For this reason, the study 

of long non-coding RNAs (lncRNAs) could pave the way for innovative and effective 

cancer therapies.  
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1.4. Long non-coding RNAs 

This section describes lncRNAs and their roles in health and disease, with a particular 

focus on cancer and treatment resistance. 

1.4.1. Definition and mechanisms of action 

The “central dogma” of molecular biology states that genetic information flows from 

nucleic acids to proteins and that it cannot be transferred back (fig.1.8 left panel). In 

particular, according to this theory, the information goes from DNA to RNA via 

transcription and eventually to protein via translation (Crick, 1970). Proteins were 

considered the only molecules able to directly affect cellular phenotypes.   

The human genome is constituted by thousands of protein-coding genes but in the era 

of next generation sequencing, it has been shown that they represent a minor portion 

of the human transcriptome. Indeed, almost 99% of the human genome lacks the 

potential to encode proteins while it is transcriptionally active and estimated to play a 

wide range of biological functions (Poller et al., 2017). These non-coding regions were 

initially called “junk DNA” and their derived transcripts were considered non-functional 

“transcriptional noise” (Ponjavic, Ponting and Lunter, 2007; Pennisi, 2012). 

Nevertheless, it is currently known that the “non-coding” transcriptome includes 

different RNA types (fig.1.8 right panel). So far, the best characterized include lncRNAs, 

microRNAs (miRNAs) and small nucleolar RNAs (snoRNAs).  
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Figure1.8 | “Central dogma” of molecular biology and noncoding RNAs (ncRNAs). 
Left panel shows the “central dogma” of molecular biology: the genetic information 

flows from DNA to RNA via transcription and eventually to protein via translation. Right 

panel includes in the model ncRNAs that are functional transcripts despite lacking 

protein-coding potential. There are two main groups of ncRNAs: long and small ncRNAs. 

 

LncRNAs are the most abundant class of ncRNAs. They are defined as transcripts longer 

than 200 nucleotides, without protein-coding potential (Sun and Wong, 2016). Similarly 

to the protein coding genes, lncRNAs have exons and introns, which are spliced to 

produce one or more variants (Cathcart et al., 2015; Sun and Wong, 2016).  

A minority of lncRNAs are transcribed by RNA polymerase III while most of them are 

transcribed by RNA polymerase II from more than 50,000 unique loci (Mohanty, Badve 

and Janga, 2014; Crea, Venalainen, et al., 2016). They have a cap at the 5` end and some 

of them are polyadenylated. Upon transcription and post-transcriptional modifications, 

lncRNAs can fold in tri-dimensional structures, which enable their cellular functions, via 

interaction with TFs, epigenetic effectors, splicing factors, other ncRNAs and many other 

macro-molecules (Crea, Clermont, et al., 2014) (fig.1.9). These functions make lncRNAs 
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important in several cellular key processes such as gene expression regulation, 

homeostasis, cell proliferation and tumourigenesis. 

LncRNAs have been classified based on their location in the human genome in:  

1) Intergenic lncRNAs (lincRNAs), which are transcribed by RNA polymerase II from loci 

that are between protein-coding genes but quite far from them, i.e. >5000 base pairs 

(bp); 

2) Intronic lncRNAs, located inside the intronic regions of other genes. They can be 

transcribed either in sense or anti-sense directions; 

3) Antisense lncRNAs, derived from protein-coding genes transcribed in the opposite 

direction. Notably, it has been estimated that around 70% of protein-coding loci 

produces antisense lncRNAs (Sun and Wong, 2016). 

These categories of lncRNAs are estimated to act in a wide range and variety of biological 

processes (Bayoumi et al., 2016). According to their subcellular localization, lncRNAs can 

be classified as predominantly nuclear, cytoplasmic or present in both compartments 

(Sun and Wong, 2016). In the nucleus, they act mainly in the transcriptional regulation 

of gene expression by binding epigenetic complexes and TFs, in order to regulate 

chromatin modifications and transcriptional gene expression, respectively (fig.1.9). 

Some of the most characterized nuclear lncRNAs are HOX Transcript Antisense RNA 

(HOTAIR) and Antisense Noncoding RNA In The INK4 Locus (ANRIL), which interact with 

polycomb repressive complexes (PRCs) (Crea, Clermont, et al., 2014), thereby 

controlling histone methylation and tissue-specific gene silencing (Sun and Wong, 2016). 

Nuclear lncRNAs can also act as decoys for proteins and protein complexes such as TFs 

or splicing complexes (Crea, Clermont, et al., 2014), thereby controlling transcriptional 

and post-transcriptional modulation of gene expression respectively (Bayoumi et al., 
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2016). Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), for 

example, is a well-studied lncRNA that acts in the cell nucleus regulating transcriptional 

gene expression by binding of many complexes (e.g. polycomb proteins) (Crea, 

Clermont, et al., 2014) (fig.1.9). As mentioned above, lncRNAs play roles also in 

alternative splicing: Gonzalez and collaborators have identified an antisense lncRNA 

transcribed from the FGFR2 locus. They have shown that this lncRNA can recruit 

polycomb-group proteins and histone demethylases to impair binding of a repressive 

chromatin splicing adaptor complex, via modulation of chromatin signatures, in human 

normal prostate cells and mesenchymal stem cells (Gonzalez et al., 2015). 

LncRNAs located in the cell cytoplasm have been mainly studied as competing 

endogenous RNAs (ceRNAs). In fact they can interfere with miRNA functions (Sun and 

Wong, 2016), simply binding and sequestering them (fig.1.9). They are also called miRNA 

sponges and one of the first discovered has been PTENP1, a pseudogene acting as an 

oncosuppressor in many malignancies (Poliseno et al., 2010). In particular, PTENP1 

retains many miRNA binding sites of the original PTEN transcript and competes for the 

binding with expressed miRNAs. In this way it can  increase PTEN levels by sequestering 

PTEN-targeting miRNAs such as miR-19b and miR-20a; both PTEN and PTENP1 are 

downregulated in human cancers and when they are upregulated they promote tumour-

suppression (Poliseno et al., 2010). Many other lncRNAs act as miRNA sponges in health 

and disease and in the next sections, they will be described in more detail, in relation to 

cancer and drug resistance (1.4.3 and 1.4.4). 

 Cytoplasmic lncRNAs can also be precursors of mature miRNAs (fig.1.9). It has been 

estimated that lncRNAs can be involved in many other functions inside the cells by 

binding other molecules and subcellular structures like the cytoskeleton, the 
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endoplasmic reticulum or proteasome complexes, thereby participating in fundamental 

cellular events, such as protein secretion, cytoskeleton remodelling and protein 

degradation, respectively (Crea, Clermont, et al., 2014). 

 

Figure1.9 | Main mechanisms of action of lncRNAs. 
Processes involving lncRNAs in the regulation of many phenomena in both nucleus and 

cytoplasm. The main functions of lncRNAs in the nucleus are associated with epigenetic 

regulation by interaction with epigenetic effectors such as proteins of the PRCs (e.g. H19 

in figure) and with the recruitment of splicing complexes in order to promote alternative 

splicing (e.g. ZEB2-AS1 in figure). In the cytoplasm, lncRNAs exert their main functions 

by sequestering miRNAs, acting as ceRNAs (e.g. PTENP1) and by being processed to 

produce mature miRNAs. Nucleus is represented as the space in darker blue; cytosol is 

in lighter blue. LncRNAs are in green. 
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Despite lncRNAs being expressed at a relatively low level compared to protein coding 

genes, they are often expressed in a tissue- and cell-specific manner, and several 

lncRNAs have shown a disease-specific expression pattern (Sun and Wong, 2016).  

 

1.4.2. LncRNAs in health and disease 

LncRNAs have been studied in many processes, from organogenesis to the malignant 

transformation of the cell, and they act in both physiological and pathological 

conditions. For example, heart development involves some lncRNAs such as Bvht and 

Fendrr which modulate the expression of TFs to promote heart development in humans, 

rats and mice (Bayoumi et al., 2016). 

LncRNAs seem to be important also for brain development, where they play roles in 

homeostasis and plasticity thanks to their elevated expression in the central nervous 

system (Qureshi and Mehler, 2010; Clark and Blackshaw, 2014). Recent evidence 

suggests that the lncRNA myocardial infarction associated transcript (MIAT) is a key 

player in mice retinal cell specification, since it promotes the survival of retinal cells. In 

keeping with this evidence, MIAT inactivation leads to progressive neurodegeneration 

(Rapicavoli, Poth and Blackshaw, 2010; Jiang et al., 2016). Therefore, some lncRNAs 

could play roles in neurological disorders such as Parkinson disease. MALAT1 induces 

apoptosis in dopaminergic neurons by the interaction with  miR-124, both in vitro and 

in vivo (W. Liu et al., 2017); many other lncRNAs have been correlated with 

neurodegeneration, suggesting that lncRNA-based drugs may represent a novel 

therapeutic strategy for the treatment of neurodegenerative pathologies (Carrieri et al., 

2015; Majidinia et al., 2016). LncRNAs have been also studied in cardiovascular diseases 

(Poller et al., 2017) and in diabetes (Sun and Wong, 2016). Additionally, the majority of 
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disease-and trait-associated single nucleotide polymorphisms have been found in non-

coding regions of the genome (Maurano et al., 2012). This evidence suggests that 

lncRNAs play key roles in many pathologies, including cancer. 

 

1.4.3. LncRNAs in cancer 

The role of lncRNAs in cancer has been well studied during the last years, showing the 

importance of these molecules in several human malignancies (Parolia et al., 2015).  

LncRNAs can act in cancer both as oncogenes and oncosuppressors.  

For example, the knockdown (KD) of the lncRNA GAS5 promotes the proliferation of 

leukaemia and breast cancer cells, suggesting that this lncRNA plays a role in anti-

tumoural pathways (Mohanty, Badve and Janga, 2014). Another oncosuppressor lncRNA 

is Bm743401 whose down regulation increases aggressiveness of gastric cancer (Crea, 

Clermont, et al., 2014).  

Despite this evidence, most of the characterized lncRNAs have shown ability to act as 

oncogenes. Many metastatic neoplasms have higher expression of specific lncRNAs 

when compared to primary tumour sites. MALAT1 and HOTAIR are two lncRNAs 

promoting cell motility and invasion in several cancers (Mohanty, Badve and Janga, 

2014), thereby inducing the activation of metastatic pathways in cancer cells.  

In particular, MALAT1 was originally found over-expressed in non-small cell lung cancer 

metastases and it has been associated with poor survival and high tissue-invasion 

potential in clinical samples (Ji et al., 2003). In breast cancer, MALAT1 has been shown 

to inhibit metastasis both via miRNA suppression and via interaction and direct 
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inhibition of the prometastatic TF Transcriptional Enhancer Factor 1 (TEAD1) (Kim et al., 

2018). 

HOTAIR is highly associated with lymph-node metastases, lymph-vascular invasion and 

shorter recurrence-free survival in different types of cancer (Crea, Clermont, et al., 

2014).  

This lncRNA can recruit PRC2 factors in order to induce epigenetic repression of 

oncosuppressor genes via trimethylation of the amino acid lysine 27 on histone 3 

(H3K27), in different tumours, such as breast cancer, lung cancer and gastric cancer 

(Tang and Hann, 2018). 

Another interesting lncRNA expressed in cancer cells is H19 that can have different 

functions, depending on the splicing isoform expressed in the specific malignancy. H19 

can have oncosuppressive or oncogenic roles, and can act both at transcriptional and 

post-transcriptional level, by binding epigenetic effectors and miRNAs respectively, in 

several tumours such as bladder, colon and breast cancer (Yoshimizu et al., 2008; Crea, 

Clermont, et al., 2014; Z. Li et al., 2017). Hao and collaborators have showed the tumour-

suppressor activity of H19 in embryonic tumour cell lines; Indeed after transfection with 

a H19-expression construct these cells show slower growth, impaired clonogenicity in 

soft agar and reduced tumorigenicity in nude mice (Elizabeth Newcomb, 1993). 

Moreover, H19 seems to reduce the size of experimental teratocarcinomas and the 

number of colorectal adenomas in murine models (Yoshimizu et al., 2008). In contrast, 

Zhen Li and collaborators have observed that H19 stimulates breast cancer cell 

proliferation and invasion via sponging miR-152 (Z. Li et al., 2017). This suggests that 

lncRNAs can play multiple roles in cancer and the same lncRNA can act in different ways 

according to the organ and the tissue where it is expressed. For example, MIAT is a non-
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coding transcript associated with myocardial infarction but it has been also found to 

promote neural cell activation and possibly NEPC cell survival (Crea, Venalainen, et al., 

2016).  

Some lncRNAs have been studied also in the clinical setting to assess their possible use 

as biomarkers. SChLAP1 is a lncRNA well validated in the clinics as prognostic biomarker 

of advanced prostate cancer (Parolia et al., 2015) and PCA3 is used in FDA-approved 

diagnostic tests for early prostate cancer. Zhu and collaborators have recently studied 

the relation between TUBA4B, a lncRNA previously identified as a key player in non-

small cell lung cancer, and ovarian cancer progression, suggesting a possible role as 

novel biomarker for diagnosis of this tumour (Zhu et al., 2017). 

Several lncRNAs (e.g. PCAT1, PCAT18, PCGEM1) promote metastasis and other traits of 

aggressiveness such as drug resistance in prostate cancer cells.  As mentioned before, 

ANRIL is involved in epigenetic regulation of chromatin and can recruit PRCs to 

downregulate oncosuppressors like p16INK4a or p14ARF in prostate cancer (Yap et al., 

2010; Crea, Clermont, et al., 2014). PCGEM1 has been one of the first cancer-associated 

transcripts described in prostate and it is highly tissue specific; PCAT18 has been 

described as a driver of prostate cancer AR-dependent metastatic progression (Crea, 

Watahiki, et al., 2014; Parolia et al., 2015). After this general introduction on the 

multifaceted roles of lncRNAs in cancer, the main pathways where lncRNAs play 

important roles in carcinogenesis and progression will be described: proliferation, 

apoptosis evasion, and metastasis. 
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Proliferation 

Several lncRNAs have been found to be involved in cancer cell proliferation such as Colon 

Cancer Associated Transcript 1 (CCAT1), which is highly expressed in colorectal cancers, 

where it recruits enhancers to the oncogene MYC promoter, thereby facilitating and 

increasing MYC expression (Schmitt and Chang, 2016). Moreover, the fact that Myc can 

determine CCAT1 upregulation suggests the existence of a positive feedback mechanism 

resulting in strong activation of proliferative pathways in the cancer cells (N. Wang et 

al., 2019). In prostate cancer, different studies have shown that many lncRNAs promote 

cell proliferation via acting as ceRNAs, thereby influencing important signalling 

pathways. Some examples are: SChLAP1, which sequesters miR-198 thereby promoting 

the MAPK1 signaling pathway, which promotes proliferation (Y. Li et al., 2018); SNHG7, 

which sponges miR-503, thereby enhancing prostate cancer cell proliferation via 

stimulation of cyclin D1 that controls cell cycle progression (Qi et al., 2018); Small 

Nucleolar RNA Host Gene 12 (SNHG12), which promotes activation of the Wnt/β-catenin 

signaling in prostate cancer via sponging miR-195 (Song et al., 2019). 

Other lncRNAs regulate prostate cancer cell proliferation via other mechanisms. 

Examples are: Zinc Finger E-Box Binding Homeobox 1- Antisense RNA 1 (ZEB1-AS1), 

which is involved in the epigenetic regulation of ZEB1; HORAS5, which stabilizes AR 

mRNA, thereby enhancing the AR-dependent signalling pathway that promotes cancer 

cells proliferation and survival (Su et al., 2017; Parolia et al., 2019). 

PlncRNA-1 is another lncRNA upregulated in prostate cancer cells and its silencing 

determines significant decrease in cell proliferation and increase in apoptosis via 

regulation of the AR signalling (Cui et al., 2013).  
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Notably, some of these lncRNAs can also regulate other cancer-associated pathways 

such as metastasis (Y. Li et al., 2018) and cell death (Parolia et al., 2019), underlining 

again the multifaceted roles and mechanisms of action of this complex class of 

molecules. 

 

Apoptosis 

Several studies in prostate and many other tumours have shown that lncRNAs act in cell 

death control, mostly via inhibition of the death signalling, such as the already 

mentioned HORAS5 and PlncRNA-1 and many others (Cui et al., 2013; Parolia et al., 

2019). TUG1 is a diagnostic factor in lung adenocarcinoma and suppresses apoptosis via 

epigenetic silencing of BAX expression (H. Liu et al., 2017). PVT1 inhibits renal cancer cell 

apoptosis by up-regulating Mcl-1(Q. Wu et al., 2017). 

Although other lncRNAs can also stimulate apoptosis (Ling Li et al., 2017; Q. Wang et al., 

2019), the majority of them enhance pro-survival pathways in cancer cells, thereby 

contributing to increased proliferation and other aggressive phenotypes (e.g. 

metastasis, drug resistance).  

Moreover, as already mentioned, the same lncRNAs can have different roles depending 

on the cancer site where they are expressed and according to the molecular pathways 

where they interact. In this context, some lncRNAs can function as inhibitor of apoptosis 

in some cases while stimulating it in others. An example is P21-associated noncoding 

RNA DNA damage-activated (PANDA), which reduces apoptosis by inactivating the TF 

NF-YA in osteosarcoma (Kotake et al., 2017), while it inhibits apoptosis by inactivating 

the MAP/ERK signalling pathway, in diffuse large B-cell lymphoma (Wang et al., 2017).  
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Metastasis 

Metastasis is a key step of tumour progression characterized by the ability of cancer cells 

of crossing the barrier of basement membrane and spread to other sites distant from 

where the primary tumor originated. Epithelial to mesenchymal transition (EMT) is 

fundamental for cancer cells metastasis since it enables epithelial cells to acquire 

mesenchymal stem cell characteristics, thereby gaining ability to invade the basement 

membrane and migrate to secondary sites. Metastasis happens when cancer cells 

acquire the two properties of invasion and migration and several lncRNAs are involved 

in these processes, thereby regulating cancer metastasis, mostly as oncogenes.  The 

oncogenic role of HORAS5 in prostate cancer progression has been mentioned before; 

HORAS5 is also upregulated in hepatocellular carcinoma (HCC) where it promotes cell 

migration and invasion (Sun et al., 2018). Several other lncRNAs are involved in 

metastasis, such as MALAT1 and HOTAIR. MALAT1 promotes EMT in esophageal cancer 

via stimulation of Notch1 pathway (Ying et al., 2012). Notably, this lncRNA is also 

involved in the same process in bladder cancer where it stimulates EMT, via the 

regulation of another well-known pathway, the Wnt signalling (M. Chen et al., 2018). 

According to another study, MALAT1 can also repress metastasis in breast cancer cells 

and animal models (Kim et al., 2018).  

Ren and collaborators have found a multifunctional role of MALAT1 in prostate cancer 

where this lncRNA stimulates growth, cell cycle progression, invasion and migration of 

CRPC cells  (Ren et al., 2013). Indeed  MALAT-1 silencing inhibits these pathways in the 

cancer cells and reduces tumour growth and metastasis in vivo in CRPC models (Ren et 

al., 2013). 
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HOTAIR is another important lncRNA in metastasis. The upregulation of HOTAIR in 

breast cancer cells, induced via ectopic overexpression, stimulates the activity of PRC2 

leading to epigenetic chromatin remodeling that confers to the malignant cells 

metastasis properties such as cell motility and invasiveness, while its silencing inhibits 

the cancer cells invasive potential (Gupta et al., 2010). 

According to different studies, HOTAIR seems to promote prostate cancer 

aggressiveness, fundamentally contributing to the castration resistant phenotype (Ling 

et al., 2017; SunnyHanna, 2018). Notably, as described for breast cancer, HOTAIR is also 

involved in epigenetic regulation of prostate cancer cells, where this lncRNA recruits 

PRC2 complex to the AR promoter, thereby inhibiting AR expression and promoting 

metastasis (Li et al., 2015). 

LncRNAs have therefore been implicated in several hallmarks of cancer, mostly playing 

oncogenic roles, though some lncRNAs have also been shown to inhibit cancer 

progression and metastasis, and to activate apoptosis.  

LncRNAs can influence one or more of the pathways described above and many others. 

By doing so, some of them have been found to affect cancer cell drug response. 

 

1.4.4. LncRNAs and cancer cell drug resistance 

Drug resistance is one of the main processes driving aggressive phenotypes in cancer. 

As mentioned before, there are well-characterized mechanisms by which cancer cells 

are intrinsically resistant or acquire this phenotype in consequence of stress-induced 

adaptive responses. Examples of classical mechanisms of cancer drug resistance are 

over-activation of efflux pumps or loss and inactivation of apoptotic pathways. However, 
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most times cancer drug resistance arises in consequence of several factors and 

molecular changes. Based on the fact that lncRNAs play multifaceted roles in health and 

disease and especially in cancer-associated pathways, it is comprehensible that these 

molecules participate in regulation of cancer response to several treatments, including 

radiotherapy, chemotherapy and hormonal treatments. The next sections will describe 

lncRNA roles in resistance to taxanes, platinum agents and hormonal therapies, with a 

particular focus on lncRNAs regulation of miRNAs, pro-survival mechanisms and 

prostate cancer drug response.    

 

LncRNAs regulate drug resistance via miRNAs inhibition  

LncRNAs have been recently shown to play roles in drug resistance by interacting with 

miRNAs. In lung adenocarcinoma, linc-ROR KD has been shown to increase sensitivity to 

docetaxel and to reduce proliferation and invasion in docetaxel-resistant cells (Pan et 

al., 2017). Lin-ROR acts by sponging miR-145 and indirectly activating fascin actin-

bundling protein 1 (FSCN1); FSCN1 organizes F-actin into parallel bundles and 

contributes to the formation of actin-based cellular protrusions, thereby playing 

important roles in cell migration, motility and adhesion of multiple types of cancer (Pan 

et al., 2017). Similarly, in the same tumour type, CCAT1 has been shown to sequester 

miRNA let-7c thereby promoting resistance to docetaxel via  increase of Bcl-xl 

expression, which reduces docetaxel-induced apoptosis (Chen et al., 2016) (fig.1.10). 

LncRNAs also participate in cancer drug response to platinum agents and hormonal 

treatments via miRNA regulation (fig1.10 and 1.11). In osteosarcoma, a lncRNA 

(linc00161, i.e. HORAS5) has been discovered as a critical component of the pro-

apoptotic signals induced by cisplatin; according to this study, HORAS5 silencing has 
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been shown to induce cisplatin resistance in osteosarcoma cells by interacting with mir-

645 (Wang et al., 2016). Wang and collaborators have shown that upon cisplatin 

treatment, HORAS5 is up-regulated and sequesters mir645, which normally inhibits the 

translation of IFIT2 (Interferon Induced Protein with Tetratricopeptide Repeats 2) mRNA 

(Wang et al., 2016). Once IFIT2 is translated, it activates osteosarcoma cells apoptosis 

(Wang et al., 2016) (fig.1.10). The same lncRNA has been recently found associated to 

cisplatin resistance also in ovarian cancer, showing a clear role of HORAS5 in drug 

response, particularly upon cisplatin (Xu et al., 2019). According to this study, HORAS5 

sequesters miR-128 thereby releasing MAPK1 mRNA, with consequent MAPK1 protein 

increase which promotes cisplatin resistance in ovarian cancer cells (Xu et al., 2019) 

(fig.1.10) . 

H19 has also been associated with increased cisplatin resistance via miRNA inhibition. In 

fact H19 can sponge miR-106b-5p in seminoma cells and reactivate TDRG1 (testis 

developmental related gene 1) expression (Wei et al., 2018). The TDRG1 oncogene 

encodes for a  nc-RNA that determines upregulation of the PI3K/Akt/mammalian target 

of rapamycin (mTOR) signalling, thereby promoting cancer progression that confers to 

the cancer cells the resistant phenotype (Wei et al., 2018) (fig.1.10).  

The hormonal treatment tamoxifen has been correlated to lncRNA urothelial cancer 

associated 1 (UCA1) upregulation in oestrogen receptor (ER)-positive breast cancer cells 

that increases tamoxifen resistance by sequestering miR-18a, with consequent increase 

of HIF1α (Li et al., 2016) (fig.1.11).  According to the same study miR-18a in turn  

increases sensitivity to tamoxifen via regulation of cell cycle proteins (Li et al., 2016). 

Moreover the inhibition of miR-18a increases breast cancer cells resistance to 

tamoxifen, while the miRNA induction mimics re-sensitizes them to the treatment (Li et 
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al., 2016). UCA1 has also been found upregulated in tamoxifen resistant breast cancer 

cells according to another study where it has been also found in the cancer-associated 

exosomes released by these cells (Xu et al., 2016). This evidence suggests that UCA1 

might also be involved in a signalling mechanism to propagate drug resistance between 

cells using exosomes. 

 

LncRNAs regulate drug resistance via other survival mechanisms 

LncRNAs are involved in cancer drug resistance via different mechanisms and molecular 

interactions, other than directly interacting with miRNAs. MALAT1 has been shown to 

inhibit autophagy-related pathways, thereby decreasing chemotherapeutics sensitivity 

in diffuse large B-cell lymphoma (Li-juan Li et al., 2017). 

Other lncRNAs affect survival pathways in response to drug treatment, acting in the 

regulation of expression and activity of apoptotic factors. For example, H19 is involved 

in BIK and NOXA epigenetic regulation, two proteins that promotes apoptosis (Si et al., 

2016). This role of H19 is explicated in breast cancer cells resistant to paclitaxel where 

the lncRNA recruits enhancer of zeste homolog 2 (EZH2) in the nucleus of the cancer 

cells to epigenetically repress the expression of BIK and NOXA (Si et al., 2016). This 

mechanism results in inhibition of paclitaxel-mediated apoptosis and therefore in 

reduced drug response (Si et al., 2016) (fig. 1.10). Another lncRNA directly involved in 

response to paclitaxel-induced apoptosis is lncRNA MA-linc1 (Bida et al., 2015). MA-linc1 

has been shown to repress in cis Purα a gene located not distant from the lncRNA locus 

(Bida et al., 2015). Purα encodes for a protein that is involved in DNA replication and 

transcription with inhibitory effects on cell cycle progression (Bida et al., 2015). 
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Therefore MA-linc1 seems to induce paclitaxel resistance via apoptotic evasion induced 

by hyper-activation of cell cycle (Bida et al., 2015) (fig.1.10). 

UCA1 is described in several publications in the context of cancer drug resistance. Wu 

and Luo have  shown that UCA1 activates mTor signalling in response to tamoxifen 

treatment, thereby promoting anti-apoptotic functions in breast cancer cells (Wu and 

Luo, 2016) (fig.1.11). Other studies have also confirmed the connection between the 

AKT/mTOR signalling pathway and tamoxifen resistance, in breast cancer cells (Block et 

al., 2012) and also between this pathway and UCA1 in other tumours (Li et al., 2014; 

Cheng et al., 2015). 

 

LncRNAs regulate drug resistance in prostate cancer  

Several lncRNAs have been shown to modulate drug response in prostate cancer.  

UCA1 promotes docetaxel resistance via inhibition of miR-204 in prostate cancer cells 

(Wang, Yang and Ma, 2016). This mechanism of action causes apoptosis evasion, 

thereby promoting cancer cell survival against docetaxel-induced cell death (Wang, Yang 

and Ma, 2016). 

LncRNAs can regulate AR signalling and this has consequences in the context of prostate 

cancer response to hormonal treatments (Aird et al., 2018). PCGEM1 has been described 

in prostate cancer as a key regulator of ADT resistance by promoting the expression of 

AR splice variants which are clinically relevant, thereby inducing therapy resistance and 

metastasis (Smolle et al., 2017) (fig.1.11). Hence, the inhibition of PCGEM1 in 

combination with ADT may increase the efficacy of the drug treatment. The function of 

another lncRNA, HOTAIR, has been analysed in prostate cancer since it has shown 

oncogenic functions via induction of drug resistance.  According to this,  HOTAIR is 
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upregulated in CRPC compared to hormone sensitive prostate cancer, and HOTAIR levels 

increase in LNCaP cells upon treatment with enzalutamide (Ali Zhang, Jonathan C. Zhao, 

Jung Kim, Ka-wing Fong and Debabrata Chakravarti, Yin-Yuan Mo, 2015). Interestingly 

another lncRNA has been studied in the context of prostate cancer response to 

enzalutamide, in particular in the involvement of promotion of cancer aggressiveness to 

aggressive prostate cancer phenotypes such as CRPC and NEPC (Luo et al., 2019). In this 

study, the authors have shown that Enzalutamide treatment affects AR binding with 

AREs thereby indirectly promoting lncRNA-P21 expression. This mechanism seems to be 

involved in changes in EZH2 functions (from histone-methyltransferase to non-histone 

methyltransferase) that determines signal transducer and activator of transcription 3 

(STAT3) promoter methylation, thereby inducing a signalling to activate NE 

differentiation (NED) (fig.1.11). In vivo evidence has also confirmed the importance of 

lncRNA-P21 in this context (Luo et al., 2019). 

 

According to the evidence described, several lncRNAs have been shown to regulate drug 

response, particularly to chemotherapeutics (fig.1.10) and hormonal treatments 

(fig.1.11). Since some lncRNAs can be involved in resistance to different treatments, 

even in different cancer types, the targeting of these transcripts could increase drug 

response in different cancers and overcome drug resistance. 

The described lncRNAs, and many others, are promising targets for novel cancer 

treatments, alone or in combination with other compounds. This could reduce drug 

resistance in many aggressive cancers in the not too distant future (Ayers and 

Vandesompele, 2017).  
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Figure1.10 | LncRNAs play key roles in chemoresistance. 
This figure represents some of the lncRNAs reported to promote chemoresistance in this 

Chapter, focussing on platinum-agents and taxanes resistance. LncRNAs can sponge 

miRNAs, thereby inhibiting their suppressive functions on survival associated proteins 

or they can recruit epigenetic effectors or act via other possible functions, participating 

in the regulation of critical pathways that drive drug resistance. On the left side are 

represented some lncRNAs that have been reported to promote resistance to platinum-

agents: H19 sequesters miR-106b-5p, thereby releasing the block on TDRG1 expression 

that promotes cisplatin resistance via stimulation of the PI3K/Akt/mTOR pathway; 

HORAS5 can inhibit different miRNAs according to the cancer type where it is expressed, 

thereby increasing the expression of proliferation and pro-survival proteins (i.e. IFIT2 

and MAPK1). On the right side of this figure are represented some lncRNAs that promote 

taxane resistance: CCAT1 acts in the cytosol via sponging Let-7c and releasing the block 

on the expression of the anti-apoptotic BCL2-XL while H19 and Ma-linc1 act in the 

nucleus, suppressing the transcription of genes involved in apoptosis (NOXA, BIK) and 

cell cycle inhibition (PURα), respectively. Modified from (Perla Pucci, Wallace Yuen, Erik 

Venalainen, David Roig Carles, Yuzhuo Wang, 2019). 
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Figure1.11 | LncRNAs play key roles in hormone therapy resistance. 
This figure represents some of the lncRNAs reported to promote resistance to hormonal 

treatments in this Chapter. LncRNAs can sponge miRNAs, thereby inhibiting their 

suppressive functions on survival associated proteins such as HIF1α involved in hypoxic 

response, or they can recruit epigenetic effectors or act via other mechanisms, thereby 

regulating pathways involved in drug resistance. On the left side of this figure are 

represented some lncRNAs that have been reported to promote resistance to tamoxifen 

and enzalutamide: UCA1 is proposed to increase mTOR expression thereby enhancing 

this pro survival pathway and to sequester miR-18a thereby promoting the expression 

of HIF1α that drives hypoxia; lncRNA-P21 influences EZH2 functions, thereby promoting 

NE differentiation (and therefore enzalutamide resistance) of prostate cancer via STAT3 

inhibition; PCGEM1 is involved in expression of AR splice variants expression thereby 

increasing prostate cancer resistance to hormone treatment Modified from (Perla Pucci, 

Wallace Yuen, Erik Venalainen, David Roig Carles, Yuzhuo Wang, 2019). 
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1.4.5. LncRNAs-targeting approaches to overcome drug resistance 

LncRNAs have key roles in health and disease, particularly in pathways that regulate 

cancer progression and drug resistance. Most lncRNAs promote resistance to different 

antitumour agents, by coordinating numerous molecular mechanisms. 

According to recent findings, preclinical studies have recently aimed to inhibit lncRNAs 

as combination therapeutic approach to increase drug sensitivity and overcome drug 

resistance. Since lncRNAs do no encode for proteins, it is conceivable that small 

inhibitors or antibodies cannot affect lncRNAs. This leads to the need for DNA or RNA 

molecules to bind the complementary lncRNA sequence and induce its degradation.  

Nowadays it is known that lncRNAs can be targeted using different systems but the use 

of antisense oligonucleotides (ASOs) is the most-developed method so far, closer to a 

clinical use. 

These approaches target oncogenic lncRNAs but can also be used to target inhibitors of 

oncosuppressor lncRNAs, in order to re-activate these lncRNAs and orchestrate 

anticancer responses.   

ASOs are used to transiently modulate lncRNAs but other methods exist for both stable 

and transient lncRNAs targeting. 

Stable upregulation or depletion of lncRNAs can be achieved using lentiviral 

transduction (B. Zhang et al., 2018; Panda et al., 2018) and CRISPR-Cas9-dependent 

genome editing (Lavalou et al., 2019). Notably, there are not in vivo findings supporting 

the use of these approaches and no clinical data are currently reliable, suggesting 

unpredictability on the future employment of these stable lncRNAs-targeting methods 

in cancer.  
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Transient modulation of lncRNA expression has been optimized in the last years, 

showing successful results in vitro and in vivo. LncRNA silencing using small interfering 

RNAs (siRNAs) represents one of these techniques (Chery, 2016). This method works via 

transfection of short sequences (around 20bp) of synthetic double strand RNAs. These 

duplexes are processed to single strand, able to target complementary RNA sequences, 

via the interaction with a protein complex called RISC (RNA-induced silencing complex)  

(Pratt and MacRae, 2009), thereby forming a complex recognised and degraded from 

cellular endonucleases. While cytoplasmic RNAs can efficiently be silenced using this 

method (Mahmoodi Chalbatani et al., 2019), nuclear targets are hard to silence, due to 

the RISC cytoplasmic location (Pratt and MacRae, 2009). Moreover, siRNA transfection 

needs lipid reagents that increase in vivo toxicity, making them difficult to be used in the 

clinical setting. Additionally, siRNAs tent to be rapidly degraded upon injection and have 

not shown high target and tissue specificity, although there are studies addressing this 

limitations in order to improve siRNAs stability and reduce their off-target effects 

(Mahmoodi Chalbatani et al., 2019).  

The most promising lncRNA-targeting molecules seem to be ASOs. 

ASOs are DNA or RNA molecules whose length is more varied than siRNAs, since they 

can measure 13-200nts. They are synthetized as single strand DNAs or RNAs which bind 

complementary target RNAs, without the interaction with any complex. ASOs recruit 

RNase-H enzyme, which degrades the ASO-RNA duplex formed (Chery, 2016). Notably, 

RNase-H is an enzyme expressed in both the cell nucleus and cytoplasm (Liang et al., 

2017), thereby allowing ASO mediated silencing to work in both cell compartments. 

Several studies have shown that ASOs successfully silence genes involved in cancer cell 

proliferation and metastasis (Crea, Quagliata, et al., 2016; Gordon et al., 2019). The use 
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of ASOs in clinical cancer trials has been successful, with some of them reaching phase 

III (Beer et al., 2017; Bellmunt et al., 2017; Yu et al., 2018), although there are still no 

clinical trials on lncRNA-targeting ASOs.  

Nevertheless, several studies have shown that it is possible to increase ASOs cellular 

uptake and stability via a series of chemical modifications, such as locked nucleic acids 

(LNAs) and  Phosphorothioate (PS) ASOs (Shen and Corey, 2018). LNAs are ASOs with 

increased stability and strength of hybridization due to a 2′,4′-methylene linkage in the 

ribose ring between the 2’-O and 4’-C atoms, which in this way "locks" the ribose in the 

ideal conformation for Watson-Crick binding (Shen and Corey, 2018). PS ASOs have 

increased molecular stability due to the substitution of one oxygen of the 

phosphodiester bond between two ribose molecules with a sulphur that creates a 

phosphorothioate bond (Shen and Corey, 2018). This gives protection from digestion by 

nucleases and stronger serum protein binding, thereby increasing PS ASOs stability in 

the circulation as well as their tissue and cellular uptake (Shen and Corey, 2018). Other 

modifications can be done to increase ASOs stability and uptake using nanoparticles or 

targeting ligands (e.g. N-acetylgalactosamine (GalNAc)) instead of chemically modifying 

ASO structure (Shen and Corey, 2018); this evidence suggests that important 

improvements can reasonably be expected in the use of these molecules in preclinical 

studies and in their clinical use, in the near future.  

Overall, antisense therapies using ASOs and their modified variants seem to be the most 

promising lncRNA-targeting approach to treat cancer and drug resistant malignancies. 

Nevertheless, further research needs to be done in order to improve their potential for 

clinical trials and clinical approval. 
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1.5 Hypothesis and Aims  

Treatment resistance is a major cancer hallmark for CRPC. LncRNAs can play key roles in 

cancer and drug resistance and lncRNA-targeting approaches could increase drug 

response in aggressive cancers, such as CRPC. This study is focussed on one specific 

lncRNA that seems particularly promising in the landscape of cancer drug response: 

HORAS5. 

Therefore, the hypothesis of this project is that HORAS5 affects CRPC response to 

therapy acting via specific mechanisms of action.   

In order to test this hypothesis, the following aims have been addressed:  

1 To establish a CRPC model of HORAS5 overexpression in DU145 cells, which 

endogenously express undetectable levels of HORAS5; to characterize the effect of 

HORAS5 overexpression on the lncRNA subcellular localization and on cell 

proliferation. 

2 To determine the levels of HORAS5 in prostate cancer cell lines after treatment with 

different drugs (AR antagonist/chemotherapeutics), with the aim of selecting one 

specific drug to be tested for the further aims. 

3 To test the effect of HORAS5 modulation, via lentiviral-mediated overexpression and 

RNAi, on prostate cancer cell response to treatment. 

4 To study one mechanism of action by which HORAS5 mediates prostate cancer cell 

response to therapy. 

5 To analyse the expression and prognostic value of HORAS5 in clinical samples and 

investigate its possible future use as in vivo therapeutic target with preclinical tests 

on HORAS5 inhibition with ASOs in combination with drug treatment. 
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2. CHAPTER 2: MATERIALS AND METHODS  
 

2.1. Cell lines and cell culture reagents 
 

DU145 cells were used in this study as a model of AR- hormone-independent epithelial 

prostate cancer cells and they derive from brain metastases. LNCaP cells were used in 

this study as a model of AR+ hormone-independent prostate cancer cells and they derive 

from left supraclavicular lymph node metastases. LNCaP express a mutated AR gene and 

can grow in androgen deprivation conditions (i.e. castrate conditions) (Sedelaar and 

Isaacs, 2009). Both DU145 and LNCaP have been purchased from the American Type 

Culture Collection (ATCC, Burlington, ON, Canada). Additionally, DU145 have been stably 

transduced with HORAS5-lentiviral particle (fig.2.1) and sent to the Open University 

from Experimental Therapeutics, British Columbia (BC) Cancer Agency (Vancouver, 

Canada). DU145 transduced cells will be named DU145-NC when the lentiviral particle 

does not carry the HORAS5 gene and DU145-OE when HORAS5 is overexpressed. The 

cells have been kept at 20 passages or lower and HORAS5 overexpression has always 

been confirmed via quantitative reverse transcription-polymerase chain reaction (RT-

qPCR). 

DU145 cells (both DU145-NC and DU145-OE) have been cultured in RPMI-1640 (Gibco, 

Loughborough, UK) and LNCaP cells have been cultured in RPMI-1640 ATCC modification 

(Gibco, Loughborough, UK), both supplemented with 10% of heat-inactivated FBS 

(Thermo Fisher, Loughborough, UK) and 1% antibiotics (penicillin and streptomycin) 

(Thermo Fisher, Loughborough, UK) (tab.2.1). ATCC protocols have been followed for 

culture passage and cells storage. Cells have been cultured at 37°C in a 5% CO2 

humidified incubator. 
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Table 2.1 | Reagents used for cell culture maintenance in this project. 

Reagents Supplier Cat.No 

RPMI 1640 Medium-phenol red GIBCO® 21875034 

RPMI 1640 Medium (ATCC 

modification) 

GIBCO® A1049101 

Fetal Bovine Serum (FBS) Thermo Fisher 10099141 

Hank`s balanced salt solution 

(HBSS) 

Sigma-Aldrich H6648 

Trypsin-EDTA (0.25%)Phenol Red Thermo Fisher 11570626 

Penicillin-Streptomycin 

(pen/strep) (10,000 U/mL) 

Thermo Fisher 15140122 

  

All the cell lines have been conserved in liquid nitrogen in cryo-tubes. 

Mycoplasma screening has been tested routinely using the MycoAlert Detection Kit 

(Lonza, UK) with the MycoAlert assay control set (Lonza, UK). 

 

2.2. HORAS5 overexpression 
 

A lentivirus-derived particle that carries the HORAS5 gene was transduced into DU145 

in order to induce the exogenous expression of HORAS5. The plasmid was purchased 

from Genecopoeia (Cat.No LPP-GS266B-Lv105-050) by collaborators at the BC Cancer 

Agency in Vancouver; they transduced and sent us the cells. This plasmid is a 3rd 

generation HIV lentiviral particle, replication-defective and able to transduce and 

integrate the genomic host sequence flanked by the long terminal repeat (LTR) 

sequences, identical sequences of DNA found in most eukaryotic cells at the end of 

retrotransposons and used by viruses to integrate their genetic material into the host 
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genome. HORAS5-lentiviral particle contains the Puromycin and Ampicillin resistance 

cassettes that permit antibiotic selective pressures, the cytomegalovirus (CMV) 

promoter to drive strong transgene expression, upstream HORAS5, a bacteria 

replication start (pUC Ori) and a 3` and 5` long terminal repeats (LTRs) and packaging 

elements (fig. 2.1).  

                        

Figure2.1| HORAS5-lentiviral plasmid. 
Schematic representation of the vector LPP-GS266B-Lv105-050 used to induce the expression of 

HORAS5 in the transduced cells. The plasmid contains the LTR packaging elements the CMV 

strong promoter, the pUC Ori bacteria-start replication site and the antibiotic resistance 

cassettes to select the cells transduced and containing HORAS5.  

 

For the overexpression procedure, 7×104 DU145 cells were seeded in 24-well plates and 

incubated overnight at 37°C in 5% CO2 incubator. Thereafter, old media was removed 

and replaced by media with addition of polybrene (i.e. Hexadimethrine Bromide, Sigma 

Aldrich, Gillingham, UK) at a final concentration of 8 μg/mL. Polybrene was used to 

increase the transduction efficiency (Denning et al., 2013). After media replacement, the 

purified human HORAS5 lentiviral particles (Titer: 1.37×108 TU/mL where 1TU=100 

copies of viral genomic RNA) were added to the cells which were incubated overnight. 

After the incubation time, cells were washed three times with RPMI-1640 containing 

10% FBS three times and let grow for two days. After 48h-72h, the cells were passaged 

into 6-well plates (1:2 concentration) and let grow for 5-6 hours in order to reach cell 
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adhesion to the plate thereby allowing antibiotic selection using puromycin (Gibco, Cat# 

A1113803). The cells were treated with puromycin for two weeks, changing media every 

three-four days. To achieve high copy number, 3 μg/mL puromycin was selected. All 

overexpression experiments were normalized to DU145 transduced with the empty 

vector (DU145-NC control cells). 

 

2.3. MTS cell viability assay 
 

Cell viability was examined at various time-points (Days 1, 3, 5, and 7) in Du145 cells 

stably overexpressing HORAS5. Cells were harvested at a confluency between 80-90%, 

counted and seeded in 96-well plates at a final volume of 100μL. Seeding densities 

corresponding to days 1, 3, 5, and 7 are 1.0×103, 6.0×103, 4.0×103, 2.0×103 and 5.0×103, 

2.0×103, 1.0×103, 5.0×102 respectively. Six replicates for both control (WT) and DU145-

OE were performed. After the selected time-points, cell viability was assessed using the 

colorimetric CellTiter 96® Aqueous One Solution Cell Proliferation Assay (MTS) 

(Promega, Southampton, UK). Following the manufacturer’s protocol, the 96® AQueous 

One Solution Reagent was thawed and 20µl of it was added to each well of the 96-well 

assay plate containing the samples in 100µl of culture medium. The cells were incubated 

at 37℃ in a 5% CO2 incubator for 1 hour and 30 minutes prior to absorbance 

measurements using a spectrophotometer set to 490nm. A media blank was used to 

remove background absorbance before plotting data values normalized to the WT Day 

1 reading for each respective line. To account for variations in seeding densities, a 

correction factor was applied as below:  
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2.4. Drugs and treatment 
 

In order to analyse a possible influence of drug treatment on the expression of HORAS5 

in prostate cancer cell, three drugs were used (tab.2.2):  

• Enzalutamide (MDV3100, Selleckchem) was purchased from Selleckchem as powder 

and solubilized in sterile DMSO to obtain a stock solution of 50 mM which was stored 

at -80°C. The stock was serially diluted to obtain the final concentrations: 1 µM, 10 

µM in gene expression experiments. 

• Cabazitaxel (Jevtana, Selleckchem) was purchased from Selleckchem as powder. It 

was solubilized in sterile dimethyl sulfoxide (DMSO) to obtain a stock solution of 5 

mM, which was stored at -80°C. The stock was serially diluted in complete media to 

obtain the final concentrations: 5 nM, 50 nM in gene expression experiments, 

caspase assays and RNA sequencing and [0.00005, 0.0005, 0.05, 0.5, 5, 50, 100] nM 

in the Trypan blue-based cell counting and IC50 calculation experiments.  

• Carboplatin was purchased from Sigma-Aldrich (Gillingham, UK) as powder and 

solubilized in distilled water to obtain a stock solution of 10mg/ml. The solution was 

sterilized using a 0.22 µm filter and stored at -20°C. The stock solution was serially 

diluted to obtain the final concentrations: 1 µM, 10 µM and 100 µM in gene 

expression experiments. 

Table 2.2 | Drugs used in this project and specifications. 

Drugs Name Supplier Cat.No Solubility 

Enzalutamide (MDV3100) Selleckchem S1250 DMSO 

Cabazitaxel Selleckchem S3022 DMSO 

Carboplatin Sigma-Aldrich C2538 H2O 
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The concentrations tested in these experiments were selected based on the range of 

concentrations used in the literature for prostate cancer cells (McPherson, Galettis and 

de Souza, 2009; Mukhtar et al., 2016; Yadav et al., 2016; Ríos-Colón et al., 2017) 

(tab.2.3). Inside this range, concentrations distant log10 from each other were chosen, 

in order to select a range of concentration wide enough to be able to see changes in 

expression and phenotypes.  

The initial timepoint of 72h was selected based on literature evidence  (McPherson, 

Galettis and de Souza, 2009; Yadav et al., 2016; Ríos-Colón et al., 2017). 

All drugs were thawed at room temperature and diluted in cell culture media to treat 

the cells at different concentrations and timepoints, according to the experiments (see 

next methods of this chapter). 

Table 2.3 | Reported drug concentration range based on the literature for prostate 
cancer cells and concentrations selected for this project. 

Treatments Reported 

concentrations 

in AR- cells 

Reported 

concentrations 

in AR+ cells 

Concentrations 

employed for 

initial experiments 

References 

Enzalutamide  - 1-10 µM • 1 µM 

• 10 µM 

(Yadav et al., 

2016) 

(Zhang et al., 

2019) 

Cabazitaxel  0.1-100 nM  0.1-50 nM  • 5 nM 

• 50 nM 

(Machioka et 

al., 

2018)(Sekino 

et al., 

2019)(Mukhta

r et al., 

2016)(Ríos-

Colón et al., 

2017)  

Carboplatin 1-100 µM  

- 

• 1 µM 

• 10 µM 

• 100 µM 

(McPherson, 

Galettis and de 

Souza, 2009) 
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2.5. HORAS5 confirmation of expression and subcellular localization 
 

To determine RNA expression, total RNA extraction was performed. To determine the 

cellular localization of HORAS5, the Nuclear/Cytoplasmic Fractionated RNA extraction 

was performed. In both the total and fractionated RNA extractions the cells were 

harvested after medium removal and one wash in HBSS. 

2.5.1. Total RNA extraction 

Total RNA was isolated from cultured cells using the RNeasy plus mini Kit (Qiagen, 

Manchester, UK).  

For RNA extraction, cells were seeded in 6-well plates, incubated and treated according 

to the specific experiment.  

After medium removal and wash with HBSS, 350 µL of lysis buffer RLT (supplemented 

with β-mercaptoethanol) was added directly into each well of the 6-well plate. In order 

to remove genomic DNA (gDNA) which could alter the results of downstream analysis, 

the cells were collected into a gDNA RNeasy mini column (supplied in the kit) using a 

cell-scraper and centrifuged for 30 seconds at 8000 x g. 

After centrifuge, 350 µl of 70% ethanol was added to the flow-through, mixed well and 

the solution was transferred into a RNeasy Mini spin column (supplied), placed in a 2 ml 

collection tube. 

Samples were then centrifuged for 15 seconds at 8000 x g and then the flow-through 

was discarded. Thereafter, 700 µl of buffer RW1 was added to the column which was 

centrifuged for 15 seconds at 8000 x g. The flow-through was discarded again and 500 

µl of buffer RPE was added to the column. 
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Samples were centrifuged for 15 seconds at 8000 x g and then the flow-through was 

discarded. This last step was repeated by adding again 500 µl of buffer RPE to the column 

and centrifuging 2 minutes at 8000 x g, instead of 15 seconds. 

After discarding again the flow-through, the column was placed into a new 2 ml tube 

and centrifuged 1 minute at 13000 x g, in order to dry the membrane. 

The column was then placed into a new 1.5 ml Eppendorf tube and 30-50 µl of 

DNase/RNase-free water was added. The samples were centrifuged 1 minute at 8000 x 

g in order to elute the RNA.  

 

2.5.2. Nuclear/Cytoplasmic Fractionated RNA extraction 
 

In order to investigate the subcellular localization of HORAS5, the cells were detached 

with 1 ml trypsin and counted with the haemocytometer, in order to obtain 106-107 cells; 

within this range the protocol should work with a high efficiency. The cells were then 

centrifuged for 5 minutes at 1500 rpm. The pellet was washed in HBSS. From this step, 

the cells were kept on ice and used for nuclear- and cytoplasmic-fractionated RNA 

extraction, performed on cultured cells using the PARIS™ kit (Ambion, Loughborough, 

UK). This protocol does not include a DNAse digestion step. Hence, after the fractionated 

RNA isolation, the TURBO DNA-free™ Kit was used for DNA removal (Ambion, 

Loughborough, UK, Cat# AM1907) (section 2.8).  

According to the protocol, initial reagents were prepared by adding 415 µl of 2-

mercaptoethanol to the 2X Lysis/Binding Solution and mixing well. 

Wash Solution 2/3 was supplemented with 64 mL of absolute ethanol up to a final 

volume of 144 mL and they were mixed thoroughly. 
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Cell Disruption Buffer and Cell Fractionation Buffer were placed on ice while 2X 

Lysis/Binding Solution and Wash Solution 1 were placed at room temperature, before 

starting the procedure. 

After completing these preparations, 500 µl of Cell Fractionation Buffer was added to 

the pelleted cells and used to resuspend it. 

The cell suspension was incubated on ice for 10 minutes and then centrifuged for 4 

minutes at 500 x g at 4° C, using a pre-cooled centrifuge. 

The supernatant containing the cytoplasmic lysate was transferred into a new 

Eppendorf tube. 

In the meantime, the nuclear fraction can be obtained after some additional steps. In 

fact, 500 µl of ice-cold Cell Fractionation buffer was added to the pellet.  

The tube was flicked and centrifuged for 1 minute at 500 x g at 4° C. Supernatant was 

removed and 500 µl of ice-cold Cell Disruption Buffer was added to the pellet, which was 

vortexed vigorously to homogenize the nuclear lysate. 

After these steps to obtain the nuclear fraction, 500 µl of 2X Lysis/Binding Solution was 

added to both the cytoplasmic and nuclear lysates and the samples were gently mixed 

by pipetting 4 times. 

The nuclear lysate might appear viscous and can be passed through a syringe needle 

(needle gauge 20) 2 times in order to address this problem. Thereafter, 500 µl of 100% 

ethanol was added to both nuclear and cytoplasmic fraction and samples were mixed 

gently by pipetting. Samples were then transferred into a Filter Cartridge (maximum 

volume 700 µl) placed in a collection tube and centrifuged for 1 minute at 13000 x g at 

room temperature. 
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The flow-through was discarded and the last steps were repeated with the rest of the 

sample if some exceeded the filter cartridge volume of 700 µl. 

When all the sample volume had been passed through the filter cartridge and flow-

through discarded, 700 µl of Wash Solution 1 was added to the Filter Cartridge and 

centrifuged for 1 minute at 13000 x g at room temperature. 

The flow-through was discarded and 500 µl of Wash Solution 2/3 was added and 

centrifuged for 1 minute at 13000 x g at room temperature. 

This last step was repeated, flow-through was discarded and samples were centrifuged 

again for 30 seconds at 13000 x g at room temperature, in order to remove the last 

traces of wash solution. 

The Filter Cartridge was placed into a new collection tube and 98°C preheated Elution 

Solution was added, in two separate aliquots: elution of the RNA in 40 µl of solution and 

centrifuge for 30 seconds; elution in 10 µl of solution into the same tube and centrifuge 

for 30 seconds. 

After the fractionated RNA extraction, the samples were kept on ice, quantified and 

purified, according to the TURBO DNA-free TM procedure, described in section 2.7. 

 

2.6. RNA quantification with Nano Drop 
 

The RNA extracted was quantified using Thermo Scientific™ NanoDrop™ OneC 

Microvolume UV-Vis Spectrophotometer. Before the quantification, both the arms of 

the Nano Drop were cleaned with H2O. Once cleaned, 2µl of DNase/RNase-free water 

was loaded as blank. Then the nanodrop’s arms were cleaned and the samples were 

loaded; the arms were cleaned after each loading. The instrument measures the 
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concentration of the RNA samples in ng/µl, recorded for the further steps of the 

experiments. 

2.7. RNA purification with gDNA removal 
 

After quantification, the RNA extracted with the PARIS procedure was treated to remove 

DNA residue, following the TURBO DNA-free (Invitrogen, Loughborough, UK) procedure. 

Samples were diluted to 100 ng/µl in order to obtain the same concentration for each 

sample. At this concentration efficient removal of contaminating DNA is possible, as the 

protocol suggests to use a concentration ≤ 500 ng/µl. 

After dilution, 4.5 µl of 10X TURBO DNase Buffer (typically ~0.1 volume of total sample) 

and 1 µl of TURBO DNase were added to 45 µl of sample. 

The solution was mixed gently and incubated at 37° C for 30 minutes.   

After the incubation time, 5µl of DNase Inactivation Reagent was added and sample was 

incubated at room temperature for 5 minutes. Samples were transferred into a 

centrifuge tube and centrifuged at 10000 x g for 1.5 minutes. 

The supernatant contains the purified RNA and was transferred into a new tube for 

further analysis. 
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2.8. RT-qPCR 
 

Upon extraction and quantification, the purified RNA was converted into cDNA using the 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Loughborough, UK). 

All the components of the kit were thawed on ice. For each sample, 10 μL of RT mix was 

prepared on ice using the following reagents and volumes: 

• 10X RT Buffer, 2   μL 

• 25X d NTP Mix (100mM), 0.8 μL 

• 10X RT Random Primers, 2    μL 

• Multiscribe Reverse Transcriptase, 1    μL 

• Nuclease Free H2O, 4.2 μL 

After the preparation, the reagents were mixed gently and 10 µl of mix in each 0.2 ml 

tube was added. 

In each tube with prepared RT mix, 10 µl of RNA sample (100 ng/µl) was added, in order 

to obtain a final quantity of 1 µg of RNA. The reagents in the tubes were mixed and the 

tubes were placed into a thermal cycler, selecting the following steps, without cycles: 

• 10 minutes at 25°C 

• 120 minutes at 37°C 

• 5 minutes at 85°C 

• Hold at 4°C 

After the RT the cDNA samples were diluted 10 times before the real time q-PCR. For 

each sample the reaction was prepared with the following components: 

• TaqMan® Universal PCR Master Mix (2X), 10 µl 
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• TaqMan® gene expression assay (GEA) (20X), 1 µl 

• cDNA (1:10), 5 µl 

• H2O, 4 µl 

The gene expression assays (GEAs) (Applied Biosystems, Loughborough, UK) used in the 

experiments contain sequence-specific unlabelled primers and the TaqMan® MGB 

(minor groove binder) probe. The probes used have a 5` FAM reporter dye and a 3` non-

fluorescent quencher used to reduce the background signal and increase precision. The 

TaqMan GEAs used are LINC00161 (Hs00863167_g1) and BCL2A1 (Hs00187845_m1). 

HPRT1 (Hs02800695_m1) was used as housekeeping control in all the RT-qPCR 

experiments. For subcellular localisation RT-qPCR experiments, the probes MALAT1 

(Hs00273907_s1) and GAPDH (Hs02786624_g1) were also used as nuclear and 

cytoplasmic control respectively. 

20 µl of reaction was loaded into each well of a PCR 96-well plate. The RT-qPCR was 

performed using the MJ Opticon real time qPCR system, using the following parameters: 

• 10 minutes at 95°C for DNA polymerase activation 

• 15 seconds at 95°C for denaturation 

• 1 minute at 60°C for annealing-extension 

Each sample was run in triplicate and the data analysis was performed by calculating the 

relative expression (2-ΔΔCt) of the target gene (i.e. HORAS5 and BCL2A1) normalized to 

the house-keeping genes. The Cts describe the number of cycles necessary to detect a 

specific expression of a gene, measured as signal produced by the GEAs. 

 

 

 

X 39 times (40 cycles) 
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2.9. RNA interference with siRNAs 
 

Gene KD was carried out using the reverse transfection method (Hattori et al., 2017). 

The cells were seeded in 6‐well or 96‐well plates, according to the experiments 

performed, and lipid-siRNA mixture was added. The mixture was prepared using the 

RNAiMAX reagent (Invitrogen, Loughborough, UK) according to the manufacturer's 

protocol. Two preliminary experiments were performed using Lipofectamine 3000 as 

transfection reagent (Invitrogen, Loughborough, UK) according to the manufacturer's 

protocol. The siRNA treatment was performed using 2nM siRNA as final concentration. 

All duplexes were purchased from Integrated DNA Technologies (IDT) (Leuven, Belgium): 

anti‐HORAS5 (Linc00161) Dicer-Substrate siRNA (DsiRNA) hs.Ri.LINC00161.13.2, anti-

BCL2A1 DsiRNAs hs.Ri.BCL2A1.13.1 and hs.Ri.BCL2A1.13.2 and non-targeting negative 

control (scramble) DS NC1. DsiRNAs are 27mer RNA duplexes processed by the enzyme 

Dicer into the conventional, 21mer siRNA product; this gives to them increased potency 

in RNA target cleavage. In this thesis they will be simply called siRNAs, in order to avoid 

confusion. After 48- or 72-hours post‐transfection, treated cells were harvested for total 

RNA and/or total protein extraction or used for drug treatment experiments.  
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2.10. Trypan blue exclusion cell count and IC50 calculation 
 

As a measure of cell response to cabazitaxel, cell count was assessed via Trypan blue-

based method.  

Cell metabolic assays (e.g. MTS assay) are not recommended in these experiments since 

they can give altered results because taxanes interfere with mitochondria metabolism 

(G Varbiro et al., 2001). 

For this procedure, 2 x 105 DU145-NC and DU145-OE cells were seeded in 6-well plates 

and treated with DMSO as control or cabazitaxel in the concentrations specified above 

(see “Drugs and treatments”, par. 2.5).  

For analysis of drug treatment in combination with siRNAs, 2.5 x 105 LNCaP cells and 5 x 

105 DU145-OE cells were seeded in a 6-well plate and reverse transfected using 2nM of 

either the control siRNA or anti-HORAS5 siRNA or anti-BCL2A1 siRNAs. 48h post 

transfection, the cells were treated with DMSO/cabazitaxel in the concentrations 

specified above (see drug treatments) for 72h (LNCaP) and 48h (DU145-OE) (fig.2.2).  

HORAS5 is indeed significantly induced by cabazitaxel in LNCaP cells after 72h and in 

DU145-OE after 48h. Since efficient KD at 48h post-transfection was observed, 

cabazitaxel treatment was started at this timepoint. The result is a 5 days experiment 

for LNCaP and 4 days experiment for DU145-OE (fig.2.2). 
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Figure2.2 | Diagram explaining drug treatment procedure in combination with siRNA-
mediated KD in LNCaP and DU145-OE cells. 
 

 

For all the cells, after the drug treatment, cell count has been performed using the 

trypan blue-based method in order to obtain the fraction of viable cells. The cells were 

detached using trypsin and collected in a 2 mL Eppendorf tube. 200 μL of cell suspension 

was mixed with 200 μL of trypan blue and incubated five minutes at room temperature. 

10 μL of cell suspension mixed with trypan blue was counted using a haemocytometer. 

IC50 has been calculated using non-linear regression analysis (variable-slope inhibitor 

fitting), after normalization to untreated (DMSO) cells. 

 

2.11. Caspase 3/7 assay 
 

Caspase-mediated cell apoptosis was measured by Caspase-Glo 3/7 Assay (Promega, 

Southampton, UK).  104 DU145-NC and DU145-OE cells were seeded in a white, flat-

bottom 96-well plate and treated with either DMSO or 5nM of cabazitaxel.  

1.25 x 104 LNCaP cells and 2.5 x 104 DU145-OE cells were seeded in a white, flat-bottom 

96-well plate and reverse transfected with 2nM of either the control siRNA or anti-
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HORAS5 siRNA or anti-BCL2A1 siRNAs. 48h after the transfection the cells were treated 

with DMSO, 5nM or 50nM of cabazitaxel for 72h (LNCaP) and 48h (DU145-OE).  

For all the cells, after the drug treatment, 100µl of Caspase-Glo 3/7 Reagent (Promega, 

Southampton, UK) was prepared and added to each well of a white-walled 96-well plate 

containing 100µl of cells or blank. The plate was then covered, gently mixed using a plate 

shaker at 300–500 rpm for 30 seconds and incubated at room temperature for 1 hour 

and 30 minutes. After incubation, total luminescence was quantified using a BMG 

Optima polarSTAR plate reader (BMG Labtech, Aylesbury, UK) and normalized to time-

matched and treatment-matched cell counts. 

 

2.12. RNA sequencing and analysis 

RNA samples were isolated from DU145-NC and DU145-OE cells untreated (DMSO) vs 

treated with 5nM of cabazitaxel for 48h. RNA Sequencing Ion Torrent Semiconductor 

technology (Thermo Fisher Scientific, Loughborough, UK) was carried out at the Institute 

of Pathology of the University Hospital Basel, Switzerland together with bioinformatics 

analysis. RNA sequencing data were normalized as reads per million mapped reads 

(RPM) calculated as: (number of reads mapped to a gene x 106)/(total number of 

mapped reads from given library).  The resulting dataset was analysed in order to 

determine the protein-coding differentially expressed genes (DEGs) upregulated when 

HORAS5 is overexpressed (DU145-OE) compared to the negative control (DU145-NC), 

upon treatment with cabazitaxel (cabazitaxel-driven genes in figure 5.1). The expression 

threshold was set as RPM fold-change higher than 2 and P value lower than 0.01 for the 

cells overexpressing HORAS5 (DU145-OE). 87 genes satisfied these criteria in the cells 

overexpressing HORAS5 (DU145-OE) but not in the control cells (DU145-NC). For this 
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reason, they were shortlisted and filtered based on DU145-NC P value, by sorting in P 

value descending order (top 25 genes in figure 5.1). The 25 genes shortlisted were 

selected for pathway analysis, using the Reactome software. The final shortlist of 3 

genes was obtained as explained in the results (Chapter 5.1). 

 

2.13. Cell lysis for protein analysis 
 

Cells were cultured and treated according to the specific experimental protocol. For 

total protein isolation, cells were lysed using RIPA buffer, prepared using the following 

components for 100 mL: 0.2422g of Tris pH 8.0 (Sigma Aldrich, Gillingham, UK); 0.877g 

of NaCl (Sigma Aldrich, Gillingham, UK); 0.0372g of EDTA (Sigma Aldrich, Gillingham, UK); 

1 mL of Igepal (Sigma Aldrich, Gillingham, UK); 1 mL of 10% SDS (Sigma Aldrich, 

Gillingham, UK), 0.21g of NaF (Sigma Aldrich, Gillingham, UK); 0.018g of NaVO3 (Sigma 

Aldrich, Gillingham, UK); distilled water up to 100 mL. 

The cells were placed on ice and washed twice with ice-cold HBSS. After washes,   

15-50-100 μL of ice-cold RIPA buffer (volume depending on the number of cells used) 

were supplemented immediately before use with 1:100 protease and phosphatase 

inhibitors (Merk Millipore, UK) and added to the cells in order to induce cell lysis. The 

protease and phosphatase inhibitor cocktail is specially formulated with different 

concentrations of six protease inhibitors:  

100mM of AEBSF, hydrochloride  

80µM of aprotinin, bovine lung, crystalline 

5mM of Bestatin 

1.5 mM of E-64, Protease inhibitor 

2mM of Leupetin, Hemisulfate 

1mM of Pepstatin A 
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The cells were incubated in RIPA buffer + protease and phosphatase inhibitor cocktail  

on ice for 5 minutes with occasional swirling.  

Cells were harvested using cell scrapers and transferred into pre-cooled Eppendorf 

tubes. The next stages are carried out keeping the cell lysates in ice.  

The samples were sonicated for 10 seconds at 20% amplitude, using ultrasound 

sonication (Fisherbrand™ Model 120 Sonic Dismembrator, Fisher Scientific, 

Loughborough, UK) and then centrifuged at 14,000 g for 15 minutes at 4°C. 

The pellet contains cell debris while the supernatant contains cell lysate with proteins. 

Hence, the supernatant was collected for protein quantification and further analyses. 

The remaining supernatant was aliquoted in order to avoid freeze-thaw cycles in 

subsequent experiments and stored at -20oC. 

 

2.14. Protein quantification  

Protein content was quantified using the Thermo Scientific PierceTM BCA Protein assay 

kit (Thermo Fisher Scientific, Loughborough, UK).  

The BCA assay is a colourimetric test to detect and quantify total proteins. This assay 

couples two reactions: the biuret reaction constituted by protein reduction of Cu2+ to 

Cu1+ in alkaline medium that results in a complex with a light-blue colour; and the 

colourimetic detection of Cu1+ using a reagent constituted by bicinchoninic acid (BCA), 

giving a purple colour. The resulting complex is soluble in water and has and absorbance 

at 562 nm that increases with a linear trend with increased protein concentrations. 

In the laboratory practice, the three steps of this assay are: Preparation of dilutions of 

the standard, preparation of the BCA working reagent and microplate procedure. 

The preparation of dilutions of the standard is necessary since some protein features 

such as the number of peptide bonds determines color formation with BCA. 
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For this reason, protein concentrations are normally determined with reference to 

standards of a common protein such as bovine serum albumin (BSA) in a series of 

dilutions of known concentrations to build a standard curve in order to be able to 

estimate the unknown concentrations of the samples. 

The standard dilutions were obtained with a BSA stock vial, concentrated 2000μg/mL, 

included in the kit and the same lysis buffer (RIPA) used to isolate protein, where the 

protein is suspended in the volumes reported in table 2.4. 

The measures of the standards were used to generate the protein standard curve. 

The BCA working reagent was prepared using reagent A (bicinchoninic acid) and reagent 

B (copper (II) sulphate) of the kit in a 50:1 ratio: 50 parts of reagent A for 1 part of 

reagent B.  

The microplate procedure consists of adding 10μL of the standards and the samples in 

triplicates into the wells of a 96-well plate with clear flat bottom and adding to all the 

wells 200μL of working reagent, mixing the plate on a plate shaker for 30 seconds, 

covering and incubating the plate in the dark at 37°C for 30 minutes. 

After 30 minutes, the plate was cooled down to room temperature and absorbance was 

measured at 562nm on a BMG Optima polarSTAR plate reader (BMG Labtech, Aylesbury, 

UK). 
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Table 2.4 | Dilutions of BSA protein standards used in the BCA assay to create the 
standard curve used to determine the total concentration of proteins in this project. 

Protein 

standard 

Volume of diluent 

(RIPA lysis buffer) (μL) 

Volume and source 

of BSA (μL) 

Final concentration 

of BSA (μL/mL) 

A 0 300 of stock (2 

mg/mL BSA) 

2000 

B 125 375 of stock 1500 

C 325 325 of stock 1000 

D 175 175 of vial B 

dilution 

750 

E 325 325 of vial C 

dilution 

500 

F 325 325 of vial E dilution 250 

G 325 325 of vial F dilution 125 

H 400 100 of vial G 

dilution 

25 

I 400 0 0 

 

2.15. Western Blot 
 

Gene expression at the protein level was analysed by western blot. 

Cells were seeded in cell culture flasks, incubated and treated according to the specific 

experiment.  

After the required incubation period, the cells were lysed, and protein concentration 

was determined as described above (2.13 and 2.14). 

For this analysis, 15 μg of proteins were resolved via gel electrophoresis on reducing 

SDS-polyacrylamide gels (Tricine 10-20%, Thermo Fisher, Loughborough, UK).  

Proteins were prepared as 10μl of 20μg protein diluted in water in order to obtain the 

same quantity in each well. Novex Tricine SDS Sample Buffer (2X) (Thermo Fisher, 
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Loughborough, UK) was mixed with 1:250 of β-mercaptothanol. β-mercaptothanol 

breaks down disulphide bonds which can cause dimers formation. 10μL of β-

mercaptothanol + sample buffer was mixed with the 10 μl of protein. In order to allow 

proteins to run linearly in the polyacrylamide gel, the samples were heated for 2 minutes 

at 85°C. 

While heating proteins, 500ml of 1X Novex Tricine SDS Running Buffer (1:10 dilution 

from 10X buffer) (Thermo Fisher, Loughborough, UK) containing 500μl of antioxidant 

(Invitrogen, Loughborough, UK) was prepared and poured into the tank where the gel 

had been previously inserted. Wells were washed with running buffer in order to 

remove any possible gel obstruction or bubbles. After proteins were heated, 15µL, 

containing 15µg of total protein, were loaded into the gel wells. Additionally, 5µL Novex 

Sharp Pre-stained Protein Standard (Invitrogen, Loughborough, UK) were loaded next to 

the protein samples. The gel was run for around 2 hours at 110 constant Volts. 

During the run, 300 ml of 1X transfer buffer (from 10X tricine running buffer) with 20% 

methanol was prepared and used to soak sponges, blotting paper and membrane that 

will be used for the transfer: 

5 x sponges per gel  

2 x blotting paper per gel 

1 x membrane per gel (0.2um nitrocellulose) 

After the run, the gel was removed from the rig and placed to equilibrate into transfer 

buffer. 

Proteins were transferred from the gel onto the membrane using the sandwich method 

with 2 sponges, blotting paper, membrane, gel, blotting paper and 3 sponges. The 
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sandwich was rolled out to remove bubbles between the different components. The 

rack was inserted into the transfer chamber and topped up with transfer buffer. 

The area outside of the rack was topped up with cold water in order to keep the protein 

transfer at cold temperatures. Proteins were transferred at constant 300mA for 2 hours 

and 30 minutes. 

After the transfer, the membrane was blocked in 8% skimmed milk dissolved in tris 

buffered saline (TBS; 0.2 mM Trizma base; 1.4 mM sodium chloride; pH 7.6) 

supplemented with 0.1% tween-20 (TBST), at room temperature for 1h, with gentle 

rocking. This step is necessary to reduce the amount of background and non-specific 

antibody binding. 

The membrane was incubated overnight at 4°C on a platform shaker with protein-

specific primary antibodies dissolved in 5% BSA diluted in TBS-T for anti-BCL2A1  

(310µg/ml stock concentration) (1:100 dilution) (Cell Signalling Technology, A1/Bfl-1 

(D1A1C) Rabbit mAb, Cat# 14093) and in 5% milk diluted in TBST for anti-GAPDH 

(1mg/ml stock concentration)  (1:50000 dilution) (Sigma Aldrich, Gillingham, UK). The 

membrane was washed 3 times with TBST for ten minutes each. The blots were 

Incubated with HRP-conjugated anti-rabbit secondary antibody (1µg/ml stock 

concentration) (Fisher, cat#31460) dissolved in 8% milk diluted in TBST, at room 

temperature for 1h (1:2000 dilution). After the incubation, blots were washed 4 times 

in TBST for 10 minutes each. After washing, ECL western blotting substrate kit was used 

(Millipore, Watford, UK) to visualise blot chemiluminescence, using Syngene Gbox with 

GeneTools software (Syngene, Bangalore, India). 
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2.16. CbioPortal analysis of clinical evidence 
 

This analysis tested whether HORAS5 and BCL2A1 gene expression correlates with 

prostate cancer survival in order to understand the clinical relevance of the genes. This 

analysis was conducted using CBioPortal (http://www.cbioportal.org), a genomic 

platform with publicly available cancer studies. A dataset from The Cancer Genome Atlas 

(TCGA), with available PFS analyses from patients with high and low expression of 

HORAS5 and BCL2A1, was queried. Significant association (p<0.05) between gene 

expression and PFS is expressed in terms of percentage of cases that show relapse on 

total cases, after initial treatment (radical prostatectomy). HORAS5 expression was also 

analysed in an Agilent microarray dataset (Kumar et al., 2016) consisting of a single study 

with 63 patients, of whom 15 patients were not exposed to chemotherapy treatment 

and 10 were treated with taxanes. The remaining 38 patients were treated with other 

drugs and were not considered for this comparison. The samples from metastatic sites, 

of these 25 total patients, were analysed by comparing no chemotherapy versus taxane-

only treatment. 
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2.17. ASO-mediated knockdown 
 

In ASO-mediated KD experiments, 1.5 x 105 LNCaP cells were seeded in 6-well plates and 

after 24h the cells were transfected with 75nM of the negative control ASO (Eurofins 

genomics, ASO-NC: 5'- CCT TCCCTGAAGGTTCCTCC -3'  and HORAS5-ASOs (Eurofins 

Genomics): 

ASO1: 5'- GGAGACACCATTCAGCCCAC -3' 

ASO2: 5'- GACAGGATCCCGGCATATGA -3' 

ASO 3: 5'- GGCTGCTGCATGTCTACAGT -3' 

ASO4: 5'- GGCTCTTCCCTCATATCCAC -3' 

ASO5: 5'- GGTTCATTCAGTAGCTCCAC -3' 

ASO6: 5'- CCATCTGAATGCCCACACAC -3' 

ASO7: 5'- CTGGCAATTTCCCCACACTC -3' 

ASO8: 5'- CAATTCACACCTCCATCAGC -3' 

RNAiMAX (Invitrogen, Loughborough, UK) was used as transfection reagent, according 

to the manufacturer`s protocol. 48h after ASO treatment, the RNA was extracted in gene 

expression experiments while for cell count, the cells were treated with DMSO or 

cabazitaxel at the concentrations specified above (see Drugs and treatment, 2.5). 72h 

after drug treatment, the cells were counted using the trypan blue-based method and 

IC50 was calculated (fig.2.3).  
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Figure2.3 | Diagram explaining drug treatment procedure in combination with ASO-mediated 

KD in LNCaP cells. 

 

2.18. Statistical analysis 
 

Data were analysed using GraphPad-Prism 7 and subsequent update software. Results 

are presented as mean ± standard deviation (SD) from two or three independent 

experiments, according to the type of analysis (see figure legends in the next Chapters). 

An Unpaired Student`s t-test was performed to investigate statistically significant 

differences between the means of two groups tested.  

One-way analysis of variance (ANOVA) was performed to investigate statistically 

significant differences among the means of three or more groups tested; the difference 

between groups was investigated using Tukey`s and Dunnett`s multiple comparison test. 

A post-test for linear trend was used to investigate if the effect of cabazitaxel on HORAS5 

expression is linearly dose dependent. 

A two-way ANOVA with Sidak`s multiple comparison post-test was used for statistical 

analysis when 2 variables were considered and Two-way ANOVA with non-linear fit (log 

inhibitor vs. normalized response-Variable slope) for IC50 analysis. An outlier test was 

carried out to identify extreme experimental replicates for the IC50 calculation.  

Unless otherwise stated, P value<0.05 was set as threshold for statistical significance. 
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3. CHAPTER 3: THE ROLE OF DRUGS ON HORAS5 EXPRESSION 
 

Current clinical therapies for CRPC can extend patient survival, but are still characterized 

by short remission times (Nabavi et al., 2017). Wang and collaborators have shown the 

involvement of the lncRNA linc00161 (alias HORAS5) in  osteosarcoma cell response to 

cisplatin (Wang et al., 2016). They have observed that cisplatin can induce the 

expression of HORAS5 and that this lncRNA activates pro-apoptotic pathways. Based on 

recent findings (Parolia et al., 2019), HORAS5 promotes CRPC cell growth via inhibition 

of apoptosis.  

It is well known that lncRNAs are characterized by tissue-specific expression and 

functions. For example H19 is up-regulated in specific tumours and down-regulated in 

others (Crea, Clermont, et al., 2014) (Z. Li et al., 2017)(Yoshimizu et al., 2008). In fact, 

H19 is downregulated in colorectal adenomas where it acts as an oncosuppressor 

(Yoshimizu et al., 2008). On the other hand, this lncRNA is highly expressed in breast 

cancer, where it acts via other mechanisms to promote the proliferation and invasion of 

cancer cells (Z. Li et al., 2017).  

It is therefore conceivable that HORAS5 plays opposite roles in different cancers.  

Moreover, other findings have confirmed the role of HORAS5 in tumour-related 

pathways (L.-C. Xu et al., 2017), showing key functions in the context of drug response, 

in ovarian cancer where HORAS5 promotes cisplatin resistance (Xu et al., 2019). 

Based on this evidence, HORAS5 has emerged as a driver of drug resistance in different 

malignancies. This paves the way for the discovery of an emerging role of this lncRNA, 

which could be of paramount importance to overcome drug resistance in CRPC and in 

other aggressive cancers, where HORAS5 is dysregulated.   
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Based on all these findings, HORAS5 could affect drug response in CRPC. This hypothesis 

will be further tested and functional and mechanistic studies will be performed on the 

role of HORAS5 in CRPC cell response to therapy. The aim of this chapter is to measure 

the expression levels of HORAS5 in CRPC cells exposed to clinically relevant drugs in 

order to investigate if this lncRNA could be involved in CRPC drug resistance phenotypes. 

With this purpose, a panel of drugs clinically relevant for the treatment of CRPC have 

been selected and tested in prostate cancer cells. These drugs are: the AR inhibitor 

enzalutamide, used in AR+ CRPC (Scher et al., 2012; Beer et al., 2014; Hussain et al., 

2018); the microtubule inhibitor cabazitaxel, effective against both AR+ and AR- CRPCs 

(Sissung et al., 2014; Smiyun, Azarenko, Miller, Rifkind, LaPointe, et al., 2017); the 

platinum agent carboplatin, active in anaplastic CRPCs, which are generally AR- or AR-

indifferent (Fléchon et al., 2011; Aparicio et al., 2013) (tab. 3.1). Based on these clinical 

indications, enzalutamide has been used in LNCaP cells, carboplatin in DU145-OE cells 

and cabazitaxel in both cell lines (tab. 3.1). 
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Table 3.1 |Treatment selection based on clinical and in vitro evidence. 

Cancer 
Type 

Clinical 
treatment used 

In vitro 
evidence 

Cell line 
selected for 
experiments 

Treatment 
selected 

References 

AR+ 
CRPC 

Hormonal 
(Abiraterone, 
Enzalutamide)  

Active in 
AR+ CRPC 
cells 

LNCAP 
(AR+)  

Enzalutamide (Scher et 
al., 2012; 
Beer et al., 
2014; 
Hussain et 
al., 2018) 

Chemotherapy 
(Docetaxel, 
cabazitaxel) 

Active in 
both AR+ 
and AR- 
CRPC cells 

Cabazitaxel (Sissung et 
al., 2014; 
Smiyun, 
Azarenko, 
Miller, 
Rifkind, 
LaPointe, 
et al., 
2017) 

AR- 
CRPC 

Chemotherapy 
(Docetaxel, 
cabazitaxel, 
platinum 
agents) 

Active in 
both AR+ 
and AR- 
CRPC cells 

DU145-OE 
and  
DU145-NC 
(AR-) 
 

Cabazitaxel (Sissung et 
al., 2014; 
Smiyun, 
Azarenko, 
Miller, 
Rifkind, 
LaPointe, 
et al., 
2017) 

Platinum 
agents 
active in 
AR- CRPC 
cells 

Carboplatin (Fléchon et 
al., 2011; 
Aparicio et 
al., 2013) 
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Experiments and results reported in this chapter are discussed in the next sections and 

summarized in table 3.2. 

Table 3.2 | Summary of specific experiments, methods and results reported in this 
Chapter. 

Experiments Methods Results 

Overexpression of 

HORAS5 

Lentiviral 

transduction + 

RNA extraction 

and RT-qPCR 

The lentivector LPP-GS266B-Lv105-050 

induces efficient HORAS5 expression in 

DU145-OE cells 

Subcellular 

localization 

RNA 

fractionation 

(PARIS kit) + RT-

qPCR 

HORAS5 overexpression retains the 

endogenous subcellular localization. 

HORAS5 is mostly located in DU145-OE cells’ 

cytoplasm. This observation suggests that it 

can be targetable with siRNAs without 

increasing efficiency for nuclear 

transfection. This cytoplasmic location also 

suggests a main role of HORAS5 in this 

compartment with possible interactions with 

cytoplasmic molecules, complexes and 

subcellular components 

Effect of HORAS5 

overexpression on 

cells properties 

Observation of 

cells via optic 

microscope + 

MTS assay 

HORAS5 overexpression does not induce 

alterations in cellular morphology and 

proliferation. 

Effects of drug 

treatment on 

HORAS5 

expression 

Drug treatment 

at different 

concentrations 

+ RNA 

extraction and 

RT-qPCR 

Cabazitaxel induces a concentration-

dependent increase in HORAS5 expression in 

both AR- and AR+ CRPC cells. Enzalutamide 

and carboplatin do not result in such an 

effect. Cabazitaxel was selected for further 

investigations.  

Cabazitaxel 

selection and 

investigation of its 

role in HORAS5 

induction 

Cabazitaxel 

treatment at 

different 

concentrations 

and timepoints 

+ RNA 

extraction and 

RT-qPCR 

Cabazitaxel induces a time-dependent 

increase in HORAS5 expression in AR- (48h 

and 72h post-treatment) and AR+ (72h post-

treatment) CRPC cells.  

This has allowed us to select the optimal 

timepoints for HORAS5 increase upon 

cabazitaxel treatment in each cell line (48h 

for DU145-OE, 72h for LNCaP) fur further 

analyses  
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3.1. HORAS5 overexpression and subcellular localization 
 

For this work, it has been necessary to select a model of CRPC cells with undetectable 

HORAS5 expression in which to induce its overexpression and a model of CRPC cells with 

constitutive HORAS5 expression, in which to analyse the effect of silencing this lncRNA. 

Based on a previous publication (Parolia et al., 2019), LNCaP cells express HORAS5 and 

have been used as a model for HORAS5 KD. On the contrary, DU145 do not express 

HORAS5. Therefore, at the BC Cancer Agency (Vancouver, Canada), a model of HORAS5 

stable overexpression in DU145 (i.e. DU145-OE) has been produced and a model with 

no HORAS5 detectable expression is used as control (DU145-NC).  

DU145-NC and DU145-OE were sent from the BC Cancer Agency to the Open University 

and were used in further experiments, in order to investigate the role of HORAS5 in CRPC 

cells` response to therapy. For this reason, the expression of HORAS5 has been 

quantified in these cells via RT-qPCR. The results obtained show that the lentiviral 

transduction system works efficiently and DU145-OE cells show significantly higher 

expression of HORAS5 than the wild type cell lines (fig. 3.1).  
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Figure 3.1 | HORAS5 overexpression in DU145-OE. 
Expression of HORAS5 in LNCaP, DU145-WT and DU145-OE. Expression measured via 

RT-qPCR and represented as mean expression normalized for HPRT1 control gene and 

relative to expression in LNCaP cells ± S.D. Results shown are representative of 3 

independent experimental replicates. All RT-qPCR samples reported in this thesis were 

run in technical triplicate. 

 

Since the HORAS5 lentiviral transduction induces an artificial expression of the lncRNA, 

the subcellular localization of the transcript was analysed in DU145-OE cells, in order to 

identify possible discrepancies with cell lines that constitutively express HORAS5 (e.g. 

LNCaP cells). A different localization of the lncRNA could alter its molecular function, 

thereby impairing the use of the Du145-OE cells to study the functions and mechanisms 

of action of HORAS5. These experiments have shown that HORAS5 is mainly localized in 

the cytoplasm of DU145-OE (fig. 3.2). This is in keeping with the results from the cell 

lines that constitutively express HORAS5 (Parolia et al., 2019). Hence, the lentiviral 

system maintains a “normal” sub-cellular distribution of the HORAS5 transcript in 

DU145-OE.     
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FIGURE 3.2 | HORAS5 overexpression preserves endogenous HORAS5 subcellular 
localization. 
Quantitative expression of HORAS5 in the nuclear and cytoplasmic fraction of DU145-

OE cells, measured via RT-qPCR. HPRT1 expression has been used for the normalization 

of the data and GAPDH has been used as cytoplasmic control; MALAT1 has been used 

as nuclear control. The results are shown as the means ± S.D. and are representative of 

two experimental replicates. 

 

 

3.2  HORAS5 overexpression does not affect AR- CRPC cells morphology 

and proliferation  
 

After the confirmation of HORAS5 overexpression, it was analysed whether this genetic 

manipulation has phenotypic effects on DU145-OE cells. HORAS5 overexpression does 

not determine changes in cell morphology (fig.3.3A). Moreover, the MTS assay has 

shown that HORAS5 overexpression does not affect cell proliferation (fig.3.3B). 
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Figure 3.3 | HORAS5 overexpression does not affect CRPC cell proliferation and 
morphology. 
Pictures of DU145-WT, DU145-NC and DU145-OE cells` morphology (A) and MTS 

proliferation curves of DU145-OE vs DU145-WT (B). The size bars in figure A represent 

100µm. Results expressed as means ± S.D. from two independent replicates. Two-way 

ANOVA with Sidak`s post-test was performed for statistical comparison in B. 

 

 

3.3 HORAS5 is induced by cabazitaxel in a concentration-dependent 

manner in both AR- and AR+ CRPC cells 
 

In order to assess whether there is a correlation between drug treatment and HORAS5 

expression in CRPC cells, LNCaP and DU145-OE cells have been exposed to specific 

concentrations of each of the different drugs tested. These concentrations have been 

selected according to the range of concentrations tested in prostate cancer cells, in 
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published studies (McPherson, Galettis and de Souza, 2009; Mukhtar et al., 2016; Yadav 

et al., 2016; Ríos-Colón et al., 2017) (Chapter 2.4, tab.2.3). 

 The drug treatment has been done according to the clinicopathological features of each 

cell line (tab. 3.1). After 72h of drug treatment, the total RNA was extracted and analysed 

via RT-qPCR.  As observed in figure 3.4, enzalutamide treatment does not result in 

consistent changes in HORAS5 expression. In fact, despite the statistical analysis 

showing a significant increase in HORAS5 expression at the lower concentration 

compared to the control, this increase is less than 1.5 fold and cells treated with 

enzalutamide at the higher concentration (10μM) did not show the same response 

(fig.3.4). The Cmax represented is the the maximum serum concentration that a drug 

achieves after drug first administration and is a standard pharmacokinetic 

measurement. Drug concentrations below Cmax can considered clinically achievable. 
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Figure 3.4 | Effect of enzalutamide treatment on HORAS5 expression in LNCaP cells. 
The graph shows HORAS5 expression in LNCaP cells after treatment with different 

concentrations of enzalutamide. Below the graph is shown enzalutamide Cmax from a 

clinical study (Gibbons et al., 2015) and the highest drug concentration used in these 

experiments. The cells were treated with 1 µM and 10 µM of enzalutamide and DMSO 

as negative control (NC). Both the concentrations used are clinically achievable as 

underlined in the square under the graph. The RNA was extracted 72 h after treatment 

and was analysed via RT-qPCR. The data show the mean fold changes relative to the 

negative control (DMSO) ± the S.D. from two independent experimental replicates. 

Statistical analysis: one-way ANOVA with Dunnett's multiple comparisons test, 

***p=0.0008. 

 

 

 

 

 

 

 

 

 

 

  

Clinically achievable Cmax in literature study → 0.3-27.9 μg/mL  

Highest concentration used in our experiments → 4.64 μg/mL (10μM) 
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Moreover, carboplatin treatment did not result in a statistically significant increase in 

HORAS5 expression in DU145-OE cells, except that at the highest concentration tested 

(fig.3.5). In this case, the highest drug concentration employed resulted in a significant 

increase in HORAS5 expression. Notably this concentration (100μM) is not clinically 

achievable. The additional 100μM concentration was included in these experiments, 

since it was tested in different studies and represents the closest log10 value to the 

highest IC50 found for AR- prostate cancer cells in the literature (Yang, Hsu and Yang, 

2000; Budman, Calabro and Kreis, 2002; McPherson, Galettis and de Souza, 2009). 
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Figure 3.5 | Effect of carboplatin on HORAS5 expression in DU145-OE. 
Expression of HORAS5 in DU145-OE upon carboplatin treatment, measured via RT-qPCR. 

Below the graph is shown carboplatin Cmax according to clinical studies (Fukuda et al., 

1999)(Kern et al., 2001) and the highest drug concentration used in these experiments.  

The cells were treated with 1 µM, 10 µM and 100 µM of carboplatin and H2O as negative 

control, since carboplatin was dissolved in water. Total RNA was extracted 72 h after 

treatment. Data show the mean fold change relative to the negative control (H2O) ± the 

S.D. from two independent experiments. Statistical analysis: one-way ANOVA with 

Dunnett's multiple comparisons test, ****P<0.0001. 

 

Clinically achievable Cmax in literature studies → 14.30-26.70 μg/mL    

Highest concentration used in this thesis experiments → 37.13 μg/mL (100 μM) 
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When treated with cabazitaxel, both DU145-OE and LNCaP showed statistically 

significant increase in HORAS5 expression. The increase is significant in both cell lines at 

the highest concentration of cabazitaxel used (P<0.0001 in DU145-OE, P=0.0001 in 

LNCaP) and is significant for LNCaP at the lower concentration used (P=0.0079) but not 

in DU145-OE. Although the statistical analysis does not show significance in DU145-OE 

cells treated with 5nM of cabazitaxel, the expression of HORAS5 in cabazitaxel treated 

cells increased of 18.33 fold change compared to the DMSO treatment. Additionally, the 

effect shown in DU145-OE is particularly strong, possibly due to the up-regulation of the 

CMV promoter that controls HORAS5 expression in this cell line. Nevertheless, since the 

same trend is observed in LNCaP cells, cabazitaxel simulates HORAS5 expression by 

acting also on regulation of the endogenous gene.  

Moreover, the average FC observed in both cell lines upon cabazitaxel treatment, of 

18.33 and 125.38 in DU145-OE and 2.33 and 3.13 in LNCaP, are higher than the ones 

observed for the other drugs used. For this reason, in order to confirm the relevance of 

HORAS5 upregulation upon cabazitaxel treatment and that this increase is dose 

dependent, data was additionally analysed using the one-way ANOVA linear trend test 

(fig.3.6). This analysis showed that HORAS5 expression increases linearly using the 

concentrations of 5 nM and 50 nM in both DU145-OE (R square=0.72, P<0.0001) and 

LNCaP cells (R square=0.65, P<0.0001) (fig.3.6). 
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Figure 3.6 | Effects of cabazitaxel treatment on HORAS5 in both DU145-OE and LNCaP 
in a concentration-dependent manner. 
Expression of HORAS5 in DU145-OE (A) and LNCaP (B) cells, upon cabazitaxel treatment, 
measured via RT-qPCR. Below the graph are shown cabazitaxel Cmax (Diéras et al., 2013) 
and the highest drug concentration used in these experiments. Cabazitaxel induces a 
significant increase of HORAS5 expression in both DU145-OE (A) and LNCaP (B) cells. 
Cells were treated with 5 nM and 50 nM of drug and DMSO as a negative control, since 
cabazitaxel was dissolved in DMSO; all cabazitaxel concentrations are clinically 
achievable as underlined in the boxes under the graphs. The RNA was extracted 72 h 
after treatment. Data are shown as mean fold increase relative to the negative control 
± the S.D. from two independent experiments. One-way ANOVA with Dunnett's multiple 
comparisons test was used for statistical comparison, **P=0.0079, ***P=0.0001, 
****P<0.0001. One-way ANOVA.  

Clinically achievable Cmax in literature study → 0.441 μg/mL  
Highest concentration used in this thesis experiments → 0.043 μg/mL (50 nM) 

Clinically achievable Cmax in literature study → 0.441 μg/mL  
Highest concentration used in this thesis experiments → 0.043 μg/mL (50 nM) 
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Taken together, these results indicate that the relation between cabazitaxel treatment 

and HORAS5 expression is significant in both the cell lines tested, showing that 

cabazitaxel induces a concentration-dependent increase in HORAS5 expression, in both 

LNCaP and DU145-OE.  

 

3.4 HORAS5 expression is induced by cabazitaxel treatment in a time-

dependent manner in AR- and AR+ CRPC cells 

 

So far, based on the described results, cabazitaxel has been selected to investigate the 

role of HORAS5 in drug response in CRPC. After determining the correlation between 

HORAS5 expression and cabazitaxel concentration, it was also assessed whether this 

correlation is time-dependent. For this reason, HORAS5 expression was measured via 

RT-qPCR after cabazitaxel treatment with 5nM and 50nM at 3 different time points: 24h, 

48h, 72h. 

The results show that HORAS5 is up regulated upon cabazitaxel treatment and this up 

regulation increases with time (fig.3.7 A-B). Moreover, this analysis suggests that 

HORAS5 induction is particularly significant 48h post treatment in DU145-OE (fug.3.7A) 

and 72h post treatment in LNCaP (fig.3.7B). Therefore, these two time points have been 

respectively selected for further experiments in this context. 
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Figure 3.7 | Cabazitaxel induces HORAS5 time-dependent expression in DU145-OE and 
LNCaP cells. 
Expression of HORAS5 in DU145-OE (A) and LNCaP (B), measured via RT-qPCR, at 

different concentrations and different time-points of cabazitaxel treatment. Results 

represented as mean fold increase relative to the negative control (DMSO) ± S.D. from 

two independent replicates. Two-way ANOVA with Sidak`s post-test was performed for 

statistical comparison ****P<0.0001.  
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3.5 Discussion of Chapter 3 

 

Several studies have investigated the modulation of lncRNAs in cancer in order to assess 

if they could be involved in tumour-related pathways and therefore used as targets for 

novel therapies (Crea, Clermont, et al., 2014; Mohanty, Badve and Janga, 2014; Parolia 

et al., 2015). In order to select the most suitable lncRNA for further studies in CRPC cells, 

in a previous publication the expression of several transcripts was analysed via RNA 

sequencing in CRPC vs. hormone sensitive PDX models. From the 136 lncRNAs up 

regulated in the CRPC PDX, HORAS5 was selected based on RT-qPCR analyses, showing 

that this lncRNA is the most consistently up regulated in all CRPC PDX models used and 

that HORAS5 favours cell proliferation and inhibits apoptosis in LNCaP and C4-2 cells 

(Parolia et al., 2019). As already mentioned in this chapter, HORAS5 has been also 

characterized in HCC (L.-C. Xu et al., 2017), osteosarcoma (Wang et al., 2016) and ovarian 

cancer (Xu et al., 2019) and the last two studies have also shown that HORAS5 is involved 

in drug response.  

According to this evidence, further studies on HORAS5 role in CRPC drug resistance 

phenotypes, could lead to the discovery of a possible novel target for the therapy of 

CRPC. Based on this hypothesis, the goal of this project is to study the correlation 

between HORAS5 expression and drug treatment and the mechanistic role of HORAS5 

in CRPC cell response to drug treatment. To this aim, a panel of CRPC cells has been 

studied. This panel includes: 

• LNCaP cells that are AR+ and constitutively express HORAS5; 

• AR- DU145-NC that lack detectable expression of HORAS5; these cells have been 

transduced with lentiviral particles without HORAS5 gene under control of a 

strong promoter (empty vector). Hence these cells do not express HORAS5. 
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• AR- DU145-OE that are transduced with lentiviral particles containing HORAS5 

under control of a strong promoter, able to induce high expression of the gene.  

The quantification of the gene expression has revealed a high expression of HORAS5 in 

DU145-OE compared to the DU145-NC control. The use of the lentiviral particles has 

been possible thanks to the size of HORAS5 transcript. The HORAS5 locus can generate 

two different transcripts: a short transcript and a long one. From previous studies, it has 

been found that, in prostate cancer cells, the long variant is the most abundant one 

(Parolia et al., 2019). Despite this, the size of the longer HORAS5 transcript remains short 

enough to be effectively cloned inside the vector: 880 nt, which corresponds to the 

transcript variant 1 on NCBI-Nucleotide. A similar system to overexpress HORAS5 has 

been already effectively used by Wang and collaborators, using the expression lenti-

vector pCDH (Wang et al., 2016).  

Once it was confirmed that the lentiviral system could induce the expression of HORAS5, 

the subcellular localization of the transcript was analysed in DU145-OE compared to 

LNCaP cells, the latter reported in previous study (Parolia et al., 2019). From these 

experiments, it has emerged that HORAS5 is mostly a cytoplasmic transcript in AR- 

prostate cancer cells as it has been shown in LNCaP cells when it is endogenously 

expressed (Parolia et al., 2019). This suggests that both AR+ and AR- prostate cancer cells 

can be studied to predict functions and mechanisms of action of HORAS5 in similar 

subcellular compartments (nucleus/cytoplasm). The cytoplasmic localization of HORAS5 

suggests that it can be targeted via RNAi without the use of specific carriers for nuclear 

transfection, since cytoplasmic RNAs are much easier to silence using siRNAs or ASOs 

than nuclear ones (Ozcan et al., 2015). Furthermore, the study of lncRNAs subcellular 

localization can predict the compartment where the transcript exerts most of its 
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functions. LncRNAs have been shown to act in the nucleus of cells mostly via interactions 

with epigenetic and splicing factors (Chen et al., 2019; Miao et al., 2019; Zong et al., 

2019), but also in the cytoplasm via translational control, modulation of RNA stability 

and signal transduction (Mercer and Mattick, 2013; Parolia et al., 2019). In particular, 

increasing evidence is showing that cytoplasmic lncRNAs interact with miRNAs, often 

inhibiting their functions (Shan et al., 2018; Xu et al., 2019) (Chapter 1.4.1 and 1.4.4).  

Therefore, the prevalent cytoplasmic subcellular localization of HORAS5 may also 

suggest that this lncRNA can interact with cytoplasmic molecules and complexes and 

may help us predict a possible mechanism of action in this context, which will be 

discussed in Chapter 5.  

From the findings reported in this thesis, HORAS5 overexpression does not affect AR-

CRPC cell morphology and proliferation.  

Given these findings, HORAS5 modulation could be relevant in response to treatment. 

Therefore, the focus of this chapter has been to assess whether HORAS5 expression is 

altered by drug treatment.  

First, HORAS5 expression stimulation was assessed upon enzalutamide treatment in 

CRPC cells. The results show that enzalutamide treatment does not result in a significant 

increase of HORAS5 expression in the AR+ LNCaP cells. 

Carboplatin is widely studied in several cancers and has demonstrated activity in AR- 

CRPC cells and patients (Yang, Hsu and Yang, 2000; Budman, Calabro and Kreis, 2002; 

Fléchon et al., 2011; Aparicio et al., 2013; Corn et al., 2019). For this reason, AR- DU145-

OE cells were treated with different concentrations of carboplatin and HORAS5 
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expression was assessed. Carboplatin does not induce significant changes of HORAS5 

expression when tested at clinically achievable concentrations. 

Both DU145-OE and LNCaP showed a statistically significant increase in HORAS5 

expression upon treatment with clinically achievable concentrations of cabazitaxel 

treatment. Moreover, statistical analysis has shown that HORAS5 expression increases 

in a concentration-dependent manner in both AR- and AR+ cells treated with cabazitaxel. 

Notably, despite some studies having shown that lncRNAs are involved in docetaxel 

resistance (Chen et al., 2016; Pan et al., 2017; Xue et al., 2018), the role of lncRNAs in 

cabazitaxel response is still unknown.  

Amstrong and collaborators have reported the effect of miRNAs on cabazitaxel 

resistance (G. Wu et al., 2017). They obtained C4-2 cells resistant to docetaxel and have 

observed that miR-181a was significantly upregulated in these cells compared to the 

parental ones. miR-181a overexpression could also induce cabazitaxel resistance and its 

KD could restore sensitivity to both docetaxel and cabazitaxel (G. Wu et al., 2017). As 

mentioned, there is no similar evidence for lncRNAs. 

All the concentrations used in these experiments are clinically achievable, except for the 

highest carboplatin concentration. According to studies in CRPC and other advanced 

solid tumours in patients, the maximum plasma concentration (Cmax) for enzalutamide 

ranges between 0.4±0.1 µg/ml and 27.9 µg/ml and the highest concentration used in 

the experiments (10 µM) corresponds to   4.64 µg/ml (Gibbons et al., 2015). Carboplatin 

Cmax  is between 14.30 μg/mL and 26.70 μg/mL (Fukuda et al., 1999; Kern et al., 2001) 

and the highest concentration used in the current study is 100 µM ( 37.13 μg/mL). As 

already mentioned this additional concentration has been tested for carboplatin since it 
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has been tested in several studies and includes the highest literature reported IC50 for 

AR- prostate cancer cells (Yang, Hsu and Yang, 2000; Budman, Calabro and Kreis, 2002; 

McPherson, Galettis and de Souza, 2009). Finally, for cabazitaxel the Cmax is 0.441 µg/ml, 

which is much higher than the max concentration used in the experiments (since 50 nM 

corresponds to 0.043 µg/ml) (Diéras et al., 2013). Hence, these results could be 

translated into the clinical setting.  

The same cabazitaxel clinically achievable concentrations used in the previous 

experiment have been tested at different time points. These experiments aim to assess 

if HORAS5 is induced upon cabazitaxel in a time-dependent manner. The drug 

experiments were initially performed at 72h, as suggested by previous studies 

(McPherson, Galettis and de Souza, 2009; Yadav et al., 2016).  Thereafter, the most 

reliable time point was selected for further analysis. The results indicate that cabazitaxel 

induces a time-dependent increase in HORAS5 in both LNCaP and DU145-OE cells with 

highest induction tested after 72h in LNCaP and particularly increasing for both the 

concentrations tested after 48h in DU145-OE. Hence, the experiments reported in the 

following chapters of this thesis will be set at these time points.  
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4. CHAPTER 4: EFFECTS OF HORAS5 MODULATION ON PROSTATE 

CANCER RESPONSE TO CABAZITAXEL 

 

Cabazitaxel treatment was shown to enhance HORAS5 expression in both AR- (DU145-

OE) and AR+ (LNCaP) prostate cancer cells. This evidence suggests that the stimulation 

of HORAS5 could determine a specific cellular response to the drug treatment. For this 

reason, this Chapter focuses on how experimental modulation of HORAS5 via KD and 

overexpression, affects the cellular response to cabazitaxel.  

From the experiments on HORAS5 subcellular localization, it emerged that it is mostly a 

cytoplasmic transcript in AR- prostate cancer cells,  as had been shown previously in AR+ 

cells (Parolia et al., 2019). Therefore, as already discussed in the previous section, it can 

be efficiently downregulated using RNAi. 

Based on these findings, the KD procedure was optimized (in AR+ prostate cancer cells) 

and then used with HORAS5 stable overexpression (in AR- prostate cancer cells) to 

investigate the role of this transcript in cabazitaxel cellular response. 

Therefore, a range of concentrations of cabazitaxel was selected based on the IC50 

reported in published studies and the cellular response was analysed as cell count and 

survival. Moreover, the specific cabazitaxel IC50 was determined in CRPC cells with 

HORAS5 modulation.  

Experiments and results reported in this chapter are discussed below and summarized 

in table 4.1. 
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Table 4.1 | Summary of specific experiments, methods and results reported in this 
Chapter. 

Experiments and 
analyses 

Methods Results 

HORAS5 KD in AR+ CRPC 

cells (LNCaP) 

IDT siRNA transfection 

with RNAiMax + RNA 

extraction and RT-qPCR 

+ phase contrast 

micrographs (LNCaP) 

HORAS5 KD determined a 

highly effective reduction in 

expression and reduction in 

AR+ cells growth as observed in 

a previous study (Parolia et al., 

2019). 

Analysis of the effect of 

HORAS5 overexpression 

on AR- CRPC cell 

response to cabazitaxel 

Cabazitaxel treatment + 

trypan blue exclusion 

cell count + phase 

contrast micrographs 

(DU145-NC and DU145-

OE) 

Cell pictures and count show 

that HORAS5 overexpression 

reduces the growth inhibitory 

effect of cabazitaxel. 

IC50 measurment  Non-linear fit from cell 

count, outlier test and 

comparison between 

HORAS5 

overexpression and 

control (DU145-NC and 

DU145-OE) 

This calculation shows that 

there is a significant increase 

in cabazitaxel IC50 when 

HORAS5 is overexpressed in 

AR- CRPC cells, compared to 

the control. HORAS5 seems to 

be protective for the cancer 

cells against the drug 

treatment. 

Analysis of the effect of 

HORAS5 KD on AR+ CRPC 

cell response to 

cabazitaxel 

IDT siRNA transfection 

+ cabazitaxel treatment 

+ trypan blue exclusion 

cell count + phase 

contrast micrographs 

(LNCaP) 

Cell pictures and count show 

significant reduction in cell 

count upon cabazitaxel 

treatment, when HORAS5 is 

knocked down, compared to 

the control. 

IC50 calculation Non-linear fit from cell 

count, outlier test and 

comparison between 

HORAS5 KD and control 

(LNCaP) 

This analysis shows that there 

is a significant decrease in 

cabazitaxel IC50 when HORAS5 

is downregulated in AR+ CRPC 

cells, compared to the control. 

This suggests that HORAS5 KD 

increases cells’ sensitivity to 

cabazitaxel and confirms the 

drug-resistance role of 

HORAS5. 
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Study of the effect of 

HORAS5 overexpression 

on cell death in response 

to cabazitaxel 

Cabazitaxel treatment + 

caspase 3/7 activity 

assay (DU145-NC and 

DU145-OE) 

Caspases 3/7 activity, which 

drives apoptotic stages, 

increases in response to 

cabazitaxel but is significantly 

reduced when HORAS5 is 

overexpressed, compared to 

the control. This suggests that 

HORAS5 promotes cabazitaxel 

resistance by inhibiting CRPC 

cells’ apoptosis. 

Study of the effect of 

HORAS5 KD on cell death 

in response to 

cabazitaxel 

IDT siRNA transfection 
+ cabazitaxel treatment 
+Caspase 3/7  
 Assay (LNCaP) 

Caspases 3/7 activation 

significantly increased in 

response to cabazitaxel when 

HORAS5 was knocked down, 

compared to the control. 

HORAS5 is therefore 

confirmed to act in a 

cytoprotective way in 

response to cabazitaxel in 

CRPC cells via inhibition of 

caspase-mediated apoptosis. 

 

 

4.1. Optimization of HORAS5 knockdown 
 

RNAi efficiently silences cytoplasmic transcripts and has been successfully used to 

silence HORAS5 in LNCaP cells (Parolia et al., 2019).  

In this project, new siRNAs were ordered, compared to the ones employed in the 

previously published study (Parolia et al., 2019), since the siRNA company had recently 

changed the available sequences. Hence, it was necessary to optimize the lncRNA 

silencing procedure in LNCaP cells with the new siRNAs. Moreover, HORAS5 silencing 

was validated 5 days after siRNA transfection (Chapter2, fig. 2.2). This was necessary 

because HORAS5 is significantly induced by cabazitaxel in LNCaP cells after 72h. Since 

the KD is 84% 48h post-transfection (fig. 4.2A), cabazitaxel treatment was started at this 
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timepoint, for 72h. The result is a 5 day experiment (fig.2.2, Chapter2). Hence, it was 

necessary to confirm HORAS5 silencing up to 5 days after transfection. 

With this aim, two different HORAS5-targeting siRNAs were first tested, using two 

different transfection reagents: lipofectamine 3000 and RNAiMax. As shown in figure 

4.1 and 4.2A, lipofectamine 3000 resulted in less efficient KD than RNAiMax, 

respectively. For this reason, RNAiMax was selected for further KD experiments 

performed in this thesis.  

Then, the two different HORAS5-targeting siRNAs were compared in order to select the 

most efficient for HORAS5 KD. As shown in figure 4.2A efficient HORAS5 KD (84%) was 

confirmed at 48h post transfection using siRNA2 (called from now on simply HORAS5-

siRNA) which also maintained the phenotypic alteration on the cells observed in the 

previous study (Parolia et al., 2019). Indeed, HORAS5 KD, with HORAS5-siRNA, decreases 

cell number 48h post-transfection, as shown in figure 4.2 B and D. Since KD with siRNA1 

was much lower than with HORAS5-siRNA (fig.4.2A) and did not result in an evident 

decrease in the cell number (figure 4.2C), this siRNA has not been tested in further 

experiments, and HORAS5-siRNA has been selected.  
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Figure 4.1 | HORAS5 KD after 48h using lipofectamine 3000. 
Expression of HORAS5 measured via RT-qPCR and normalized for the control HPRT1 

expression in LNCaP cells 48h post-treatment with lipofectamine-transfected siRNAs, 

either HORAS5-siRNAs or negative control (NC-siRNA). Results represented as mean 

expression relative to negative control (NC-siRNA) ± S.D. from two independent 

experimental replicates.  
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Figure 4.2 | HORAS5 KD after 48h and selection of HORAS5-siRNA. 
A. Expression of HORAS5 normalized for the control HPRT1 expression in LNCaP cells 

48h post-treatment with RNAiMax-transfected HORAS5-siRNAs and negative control 

(NC-siRNA) measured via RT-qPCR. B-D. Images showing LNCaP cells 48h after treatment 

with NC-siRNA (B), siRNA1 (C) and HORAS5-siRNAs (siRNA2) (D). Results represented as 

mean expression relative to the negative control ± S.D. from two independent 

experimental replicates. 
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As already mentioned, it is also necessary in this context to validate the KD stability 5 

days post transfection (fig.4.3A). Five days after HORAS5-siRNA transfection there is still 

77% of KD that maintains the cell growth inhibition (fig. 4.3B-C). 
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Figure 4.3 | KD of HORAS5 in LNCaP cells and effect on cells. 
A. Expression of HORAS5 normalized for the expression of the control gene HPRT1 in 

LNCaP (A), measured via RT-qPCR, five days after KD. B-C. Images show LNCaP cells 5 

days after treatment with NC-siRNA (B) or HORAS5-siRNA (C). The results are 

represented as mean expression relative to the negative control (NC-siRNA) ± S.D. from 

two independent experimental replicates. 
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4.2. Effect of HORAS5 overexpression and knockdown on cell count and 

cabazitaxel IC50 

 
After optimization of the procedures to modulate HORAS5 via overexpression (section 

3.1) and KD (section 4.1), HORAS5 influence on cell response to cabazitaxel has been 

assessed. With this aim, DU145 cells (-NC and -OE) were treated with DMSO control or 

cabazitaxel at one of 6 different concentrations. Cabazitaxel concentrations were 

selected to span the IC50 for DU145 cells predicted from the literature. 

 Cells were counted 48h after treatment, using the trypan blue exclusion method. A 

reduction in cell count has been observed upon cabazitaxel treatment in both cell lines 

but HORAS5 overexpression rescues DU145-OE cells from this trend, resulting in 

protection for DU145-OE exposed to cabazitaxel treatment (fig.4.4A). This significant 

reduction in the growth inhibitory effect of cabazitaxel is also illustrated in the pictures 

in figure 4.4 B-C. 
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Figure 4.4 | Effect of HORAS5 overexpression on cell count under cabazitaxel 
exposure. 
A. DU145 cell count upon cabazitaxel treatment for 48h, with HORAS5 overexpression 

(DU145-OE) compared to the negative control (DU145-NC). Cell count is expressed as 

nonlinear fit curves of the cell number as a percentage of that in the untreated (DMSO) 

control. Two-way ANOVA with Sidak`s post-test was performed for statistical 

comparison *P= 0.0230, ***P< 0.0005, ****P<0.0001. B-C. Images showing the cells 

under cabazitaxel exposure in DU145-NC compared to DU145-OE.  
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Similarly, for LNCaP, cell count is significantly altered upon HORAS5 modulation 

(fig.4.5A). LNCaP cells were also treated with DMSO control or cabazitaxel at one of 6 

different concentrations, 48h post transfection for HORAS5 KD. Cabazitaxel 

concentrations were selected to span the IC50 for LNCaP cells predicted from the 

literature. LNCaP cells were counted 72h after cabazitaxel treatment.  Reduction in cell 

count upon cabazitaxel treatment is still observed and this effect is significantly 

enhanced by HORAS5 KD in LNCaP cells (fig.4.5A-C). These results confirm that HORAS5 

promotes cabazitaxel resistance in CRPC cells. 
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Figure 4.5 | Effect of HORAS5 KD on cell count under cabazitaxel exposure. 
A. LNCaP cell count 2 days post-transfection of HORAS5-siRNA + 3 days after cabazitaxel 

treatment compared to the negative control (NC-siRNA). Cell count is expressed as 

nonlinear fit curves of the cell number as a percentage of that in the untreated (DMSO) 

control. Two-way ANOVA with Sidak`s post-test is performed for statistical comparison 

***P< 0.0003, ****P<0.0001. B,C Images showing effect of cabazitaxel exposure in 

LNCaP cells treated with NC-siRNA compared to LNCaP treated with HORAS5-siRNA.  

 
The findings reported in this section show that cabazitazel IC50 is significantly altered by 

HORAS5 modulation (fig.4.4 and 4.5). Indeed, HORAS5 overexpression causes a 

significant increase in cabazitaxel IC50 from 3.11±1.48 nM to 30.55±3.9 (fig.4.6) and vice 

versa, HORAS5 KD significantly decreases cabazitaxel IC50 from 20.80±0.74 nM to 

2.59±0.77 (fig.4.7). 
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Overall, these findings show that HORAS5 increases cabazitaxel resistance in both AR- 

(DU145-OE) and AR+ (LNCaP) prostate cancer cells. 
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Figure 4.6 | Cabazitaxel IC50 in DU145 cells with/without HORAS5 overexpression. 
In figure are cabazitaxel IC50s of DU145-NC and DU145-OE, calculated from the cell count 
nonlinear fit graph (fig.4.3A). Outlier values were removed using GraphPad outlier 
calculator. The results are expressed as means ± S.D. from independent replicates as 
also shown in the table on the right. Student t-test was used for statistical comparison 
*P=0.0114.  
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Figure 4.7 | Cabazitaxel IC50 in LNCaP cells with/without HORAS5 KD. 
Cabazitaxel IC50s of LNCaP cells transfected with HORAS5-siRNA compared to the 

negative control (NC-siRNA), calculated from the cell count nonlinear fit graph (fig.4.3A). 

Outlier values were removed using GraphPad outlier calculator. Results expressed as 

means ± S.D from independent replicates as also shown in the table on the right. Student 

t-test was used for statistical comparison *P=0.0114.  
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4.3. Effect of HORAS5 overexpression and knockdown on cabazitaxel-induced 

apoptosis 

 

The observed function of HORAS5 in promoting cabazitaxel resistance might be a 

consequence of several biological processes and molecular pathways. A crucial point in 

this context is to evaluate if the HORAS5-driven increase in drug resistance observed via 

cell count and IC50 calculation is a result of cell death inhibition. For this reason, changes 

in the apoptotic response were analysed in the cells treated with cabazitaxel, 

with/without HORAS5 modulation. Caspase 3/7 assay was performed as a measure of 

early apoptotic response. These experiments showed that HORAS5 overexpression 

results in a decrease in the apoptotic response induced by cabazitaxel (fig.4.8). Indeed, 

while caspases 3/7 activity increases in response to cabazitaxel, DU145-OE cells have a 

significant reduction in this activity compared to DU145-NC. A similar phenomenon is 

observed in LNCaP cells treated with cabazitaxel, where HORAS5 silencing increases the 

cabazitaxel-induced activation of caspase 3/7 (fig.4.9). Overall, these data show that 

HORAS5 promotes cabazitaxel resistance by hampering caspase-mediated apoptosis. 
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Figure 4.8 | HORAS5 overexpression affects prostate cancer cells apoptosis under 
cabazitaxel exposure. 
The graph shows DU145 caspase 3/7 activity per cell 48h after cabazitaxel treatment, as 

a measure of early apoptosis. Data were normalized for DMSO control. One-way ANOVA 

with Tukey`s post-test is used for statistical comparison ****P<0.0001. The results are 

expressed as means ± S.D. from three independent replicates. 
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Figure 4.9 | Effect of HORAS5 KD on prostate cancer cell apoptosis under cabazitaxel 
exposure. 
The graph shows LNCaP caspase 3/7 activity per cell 48h after HORAS5 KD (or NC-siRNA 

treatment) + 72h of cabazitaxel treatment. Caspase 3/7 assay is used as measure of early 

apoptosis. Data were normalized for DMSO control. One-way ANOVA with Tukey`s post-

test is used for statistical comparison ****P<0.0001. The results are expressed as means 

± S.D. from three independent replicates. 
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4.4. Discussion of Chapter 4 
 

This Chapter presented the effects of the modulation of HORAS5 expression on 

cabazitaxel response in AR- and AR+ prostate cancer cells.  

HORAS5 can be silenced using siRNAs in prostate cancer cells (Parolia et al., 2019). 

Therefore, the KD has been confirmed and shown stable for 5 days, which is the length 

of further experiments in LNCaP cells (see section 4.1). 

HORAS5 KD experiments have been performed in only LNCaP as the lentiviral particle 

causes an upregulation in DU145-OE cells that it is not efficiently silenced by the siRNAs 

used (data shown in Appendix, fig.8.1). Moreover, HORAS5 modulation in different cell 

lines can comprehensively show the effects of HORAS5 in the context of prostate cancer 

resistance to cabazitaxel.  

However, 7 different concentrations (including the DMSO control) have been chosen, 

encompassing the IC50s found in the literature for both DU145 and LNCaP cells 

(McPherson, Galettis and de Souza, 2009; Yadav et al., 2016). After the DMSO control 

(0nM cabazitaxel) and the lower cabazitaxel concentration used, each concentration 

increases by a log10 unit from the previous one as a wide range of concentrations needs 

to be included in order to be sure to observe a complete cellular response, from no cell 

count inhibition (0.0005nM in DU145 and 0.00005 nM in LNCaP) to ~100% inhibition 

(100nM in both cell lines). 

The trypan blue exclusion assay used for cell count, has shown the effects of HORAS5 

modulation on cell response to cabazitaxel showing that HORAS5 overexpression 

increases cell resistance to cabazitaxel. 
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Other lncRNAs have been studied to affect drugs IC50 in cancer (An, Zhou and Xu, 2018; 

Wu et al., 2018; Yang, Pan and Deng, 2019; Zheng et al., 2019). In particular, a study on 

breast cancer has characterized a specific lncRNA that increases taxane IC50 (Zheng et 

al., 2019). According to this study, CASC2 KD decreases resistance of paclitaxel-resistant 

breast cancer cells (MCF-7/PTX and MDA-MB-231/PTX) with significant IC50 reduction, 

while the overexpression has the opposite effect (Zheng et al., 2019). Interestingly, 

although the cited studies are relevant in this context, there is no similar evidence 

specifically for cabazitaxel response. 

Furthermore, cell metabolic assays such as MTT and MTS have not been used to 

determine the effect of HORAS5 modulation on cabazitaxel cellular response, since 

taxanes have been reported to affect mitochondrial function (Gabor Varbiro et al., 2001; 

Pucci et al., 2018; Jiang et al., 2019) and this could have altered the results. 

Therefore cell count was used and suggests that HORAS5 drives cabazitaxel resistance 

in CRPC cells by increasing the drug IC50. In order to further investigate whether this role 

of HORAS5 is just associated with promotion of proliferation or also with inhibition of 

cell death pathways, a caspase assay was performed. These results suggest that HORAS5 

regulates caspase activity in response to cabazitaxel treatment, thereby inhibiting 

apoptosis. 

Several studies have characterized lncRNAs as regulators of cell apoptosis (Misawa et 

al., 2017; Huang et al., 2019) and in some cases this role has shown effects on drug 

response (Deng et al., 2019; Han et al., 2019; Li et al., 2019).  

Additionally, HORAS5 pro-survival phenotype has been observed in both AR+ cells with 

HORAS5 endogenous expression and AR- cells with lentivirus-induced HORAS5 
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expression. In this regard, the HORAS5 mechanism of action has been already studied in 

AR+ cells; in fact, HORAS5 can increase AR mRNA stability, thereby stimulating the AR 

transcriptional program and targeted genes, such as the oncogenic KIAA0101 and 

increase cancer cell survival (Parolia et al., 2019). Since HORAS5 can drive cabazitaxel 

resistance via this mechanism of action in LNCaP but not in DU145, because they do not 

express the AR, the next Chapter will focus on the study of HORAS5 mechanism of action 

in the context of cabazitaxel response in AR- DU145 cells. 
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5. CHAPTER 5: MECHANISM OF HORAS5-DEPENDENT CABAZITAXEL 

RESISTANCE 
 

HORAS5 stimulates cabazitaxel resistance in AR+ and AR- prostate cancer cells via 

modulation of cell survival, but the mechanisms determining these effects still need to 

be investigated.  

While I was working on this project, two studies have been published on HORAS5 

mechanism of action in cancer drug response (Wang et al., 2016; Xu et al., 2019). 

Although these studies consider different cancers and drug response effects, both of 

them suggest that HORAS5 acts in the cytoplasm of cancer cells as ceRNA and sequesters 

specific miRNAs, thereby restoring the downstream pathways. In osteosarcoma, 

HORAS5 sponges miR-645 and activates the interferon-induced gene IFIT2 expression, 

thereby sensitising osteosarcoma cells to cisplatin (Wang et al., 2016). In ovarian cancer 

it sequesters miR-128 and stimulates MAPK1 expression, thereby promoting cisplatin 

resistance (Xu et al., 2019). As discussed before, lncRNAs have different functions based 

on the tissues and cells where they are expressed and the pathways where they interact.  

Despite this evidence, the mechanism of action of HORAS5 in prostate cancer drug 

resistance has never been characterized. Moreover, there are no studies suggesting 

mechanisms of action of lncRNAs in cabazitaxel resistance. 

In a previous study, HORAS5 has been shown to promote prostate cancer cell growth 

and survival via stabilization of AR mRNA, thereby stimulating AR-mediated downstream 

pathways (Parolia et al., 2019). Additionally, in the same study HORAS5 has been 

selected from PDXs and found upregulated in CRPC vs hormone sensitive models. This 

result suggests that HORAS5 is involved in treatment resistance phenotypes (Parolia et 

al., 2019). Notably, the AR signalling pathway directly contributes to taxane resistance 
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in CRPC cells (Shiota et al., 2013; Martin et al., 2015). For this reason, this mechanism of 

action could account for HORAS5 effect on cabazitaxel response in AR+ cells but not in 

AR- cells, since they lack the AR expression. This suggests that HORAS5 acts via a different 

mechanism to stimulate cabazitaxel resistance in AR- DU145-OE cells.  

Having said that, this chapter aims to unravel one possible mechanism of action via 

which HORAS5 promotes cabazitaxel resistance in AR- CRPC cells. 

For this reason, RNA sequencing was performed on cells treated with cabazitaxel vs 

control, in order to investigate if HORAS5 stimulates a specific protein-coding gene or 

pathway. The reason why protein-coding genes only have been analysed is that most of 

these molecules have been functionally characterised and the goal of this project is to 

investigate HORAS5 involvement in established pathways. The RNA sequencing has been 

conducted at the University Hospital Basel, Switzerland, using the Ion AmpliSeq™ from 

ThermoFisher, with a Human Gene Expression Core Panel that provides gene-level 

expression information from a single multiplexed panel targeting over 20,000 protein-

coding genes. 

This specific RNA sequencing method has been used in several other recent publications 

to successfully determine interactions and mechanisms of action of different molecules 

(H. Chen et al., 2018; Beinse et al., 2019). 

Experiments and results reported in this chapter are discussed in the next sections and 

summarized in table 5.1. 
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Table 5.1 | Summary of experiments, methods and results reported in this Chapter. 

Experiments Methods Results 

RNA Sequencing and 

bioinformatic analysis 

Ion AmpliSeq™ 

ThermoFisher 

87 genes are significantly 

upregulated upon cabazitaxel in 

DU145-OE that overexpress 

HORAS5, but not in DU145-NC. 25 of 

these genes are selected based on 

statistical significance and among 

them, SOX9, CCL20 and BCL2A1 are 

the top 3 genes upregulated upon 

cabazitaxel treatment and HORAS5 

overexpression (DU145-OE), but not 

when HORAS5 is not overexpressed 

(DU145-NC).  

Analysis of pathways 

regulated by HORAS5 

overexpression upon 

cabazitaxel treatment 

Reactome software The top 25 genes upregulated upon 

HORAS5 overexpression and 

cabazitaxel treatment are mostly 

involved in Immune response and 

apoptosis. 

Validation of expression 

of top 3 genes from RNA 

Sequencing 

Drug treatment + 

total RNA 

extraction and RT-

qPCR 

SOX9 is not validated via qPCR, 

CCL20 and BCL2A1 are validated via 

qPCR. BCL2A1 is the most 

significantly upregulated gene tested 

via qPCR and has been therefore 

selected for further experiments. 

Validation of expression 

of BCL2A1 protein  

Drug treatment + 

total protein 

extraction and WB 

BCL2A1 protein is upregulated upon 

cabazitaxel treatment in cells that 

overexpress HORAS5 (DU145-OE) 

BCL2A1 KD at mRNA and 

protein level 

siRNA mediated KD 

+ total RNA 

extraction and RT-

qPCR or protein 

extraction and WB 

BCL2A1 is efficiently silenced at both 

mRNA and protein levels 

Effects of BCL2A1 KD on 

cell count in response to 

cabazitaxel when HORAS5 

is overexpressed 

siRNA mediated KD 

+ drug treatment+ 

Trypan blue 

exclusion method 

for cell count 

 BCL2A1 KD decreases cell count in 

response to cabazitaxel in cells that 

overexpress HORAS5 (DU145-OE) 

Effects of BCL2A1 KD on 

cell caspase-induced 

apoptosis in response to 

cabazitaxel when HORAS5 

is overexpressed 

siRNA mediated KD 

+ drug treatment + 

3/7 caspase assay 

BCL2A1 KD decreases caspase-

mediated apoptosis in response to 

cabazitaxel in cells that overexpress 

HORAS5 (DU145-OE) 
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5.1. RNA sequencing and selection of BCL2A1  
 

The RNA Sequencing has been conducted on DU145 cells in order to investigate HORAS5 

mechanism of action in the AR- CRPC cell response to cabazitaxel. For this reason, the 

transcriptomic profile of CRPC cells exposed to cabazitaxel has been analysed on the 

following samples: DU145-NC, untreated; DU145-NC, exposed to cabazitaxel; DU145-

OE, untreated; DU145-OE exposed for 48h to 5nM of cabazitaxel. 

The approach used for the RNA Sequencing analysis is summarized in figure 5.1. First, 

87 genes have been found significantly upregulated (FC>2, P value<0.01) in DU145-OE 

treated with cabazitaxel vs untreated cells but not in DU145-NC exposed to the same 

drug (fig.5.1) (tab.8.1). This evidence suggests that these 87 genes are specifically 

upregulated in response to cabazitaxel in HORAS5 overexpressing cells. From these 87 

genes, the first 25 genes with the highest P value in DU145-NC have been shortlisted. 

This criteria was chosen in order to focus on the genes that are most probably not 

regulated by cabazitaxel in DU145-NC cells but which, based on the analysis of response 

of DU145-OE cells, we know to be up- or down- regulated by cabazitaxel in HORAS5 

overexpressing cells (fig. 5.1 and 5.2 and tab.5.2).  

The characterized functions of these 25 genes have been investigated via both in silico 

cell pathway analysis, using the Reactome publicly available database and literature 

research (fig.5.1).  

Following in-silico analysis, figure 5.3 shows the most relevant pathways sorted by P 

value. Two phenomena seem to be particularly represented: immunity regulation and 

apoptosis (fig.5.3), where two of the 25 genes, CCL20 and BCL2A1, are respectively 

involved.  
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Based on the literature, CCL20 and BCL2A1 have been reported to be involved in cancer 

and drug resistance in different studies (Haq et al., 2013; Champa et al., 2014; Zhang et 

al., 2015; Song et al., 2016; W. Chen et al., 2018) (fig.5.1). Notably, another gene 

particularly emerged from literature research since it has been reported to promote 

taxane resistance in mCRPC: SOX9. 

Based on this evidence, the interaction between the HORAS5 and these three genes, 

SOX9, CCL20 and BCL2A1, was validated via RT-qPCR. 

 

Figure 5.1 | Selection of top 3 genes from RNA sequencing analysis. 
The Flow chart shows the method used to shortlist cabazitaxel-driven genes in prostate 
cancer cells that overexpress HORAS5 (DU145-OE vs DU145-NC) from RNA sequencing. 
87 genes were found up-regulated upon cabazitaxel treatment in DU145-OE cells (P 
value<0.01) but not in DU145-NC cells (P value>0.01). 25 of these 87 genes were 
shortlisted as the genes with the highest P value in DU145-NC treated vs untreated, to 
focus on the genes that are more probably not regulated by cabazitaxel in DU145-NC, 
among the ones regulated by the drug in DU145-OE (the 87 genes). The final shortlist 
was obtained by choosing the 3 genes with the highest number of HORAS5 and 
cabazitaxel-related pathways they regulate and/or literature evidence on cancer and 
drug resistance.  
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Figure 5.2 |Summary of RNA sequencing analysis. 
A,B,C. DEGs upon HORAS5 overexpression without cabazitaxel treatment (A) and DEGs 

upon cabazitaxel treatment with (B)/without (C) HORAS5 overexpression. The criteria 

used in this figure are FC >2 or <-2 and P value<0.05. D,E. RNA sequencing Confirmation 

of HORAS5 up-regulation in DU145-OE vs DU145-NC (D) and in cabazitaxel treated cells 

vs untreated (E). RNA sequencing data are represented as normalized reads (RPM) in 

figure D and E. FC values are the ratio between reads.  
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Table 5.2 | Top 25 cabazitaxel-driven genes upregulated in DU145-OE compared to 
DU145-NC. 

Gene-ID Log2 

DU145-OE 

treated 

Log2 

DU145-OE 

untreated 

Fold Change 

(treated vs 

untreated) 

P value 

(DU145-OE 

treated vs 

untreated) 

P value 

(DU145-NC 

treated vs 

untreated) 

SUMO4 1.6 0.4 2.31 0.0056 0.6321 

LTB4R2 1.26 0.15 2.16 0.0094 0.4364 

PCDH1 1.03 0 2.05 0.0018 0.4226 

FBXO34 1.7 0.15 2.94 0.0029 0.3152 

BCL2A1 3.15 1.86 2.45 0.0068 0.2818 

BRD8 1.36 0.33 2.04 0.0032 0.2662 

TMEM128 2.45 0.98 2.77 0.0099 0.2581 

PCDHB19P 1.89 0.33 2.95 0.0086 0.2075 

OR2B6 1.17 0 2.25 0.0016 0.1124 

IL23A 2.12 0.34 3.42 0.0028 0.112 

OAS3 5.71 4.57 2.21 3.67E-05 0.1044 

ADCY10P1 1.29 0.08 2.32 0.0079 0.1026 

CCNL1 5.65 4.2 2.73 0.0095 0.1025 

SF3B4 4.3 3.24 2.09 0.0056 0.0965 

HIST1H3J 3.11 1.72 2.63 0.0011 0.0937 

CPEB4 4.58 3.52 2.08 0.0065 0.09 

LOC100289187 2.02 0.86 2.23 0.0095 0.089 

PFN1P2 4.61 3.49 2.17 0.0051 0.0846 

SOX9 4.27 2.86 2.67 0.0099 0.0827 

USP53 5.74 4.73 2.01 0.0027 0.081 

IRF9 4.08 2.69 2.63 0.0018 0.079 

TTC18 1.62 0.34 2.43 0.0063 0.0775 

DYRK1B 1.95 0.83 2.18 0.0026 0.0767 

CCL20 2.61 1.2 2.67 0.0065 0.0738 

ALDOC 2.17 0.83 2.54 0.0056 0.0714 

 



146 
 

 

 

Figure 5.3 | Most significant pathways regulated by the top-25 genes mostly 
upregulated upon HORAS5 overexpression and cabazitaxel treatment. 
Most of the pathways shown are associated with immune response. 5 out of the 23 

pathways shown in this figure (highlighted in red) are directly linked with programmed 

cell death (red squares). FDR (false discovery rate): corrected over-representation 

probability. 
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Therefore, SOX9, CCL20 and BCL2A1 expression was validated in DU145 cells exposed to 

different doses of cabazitaxel or control. As shown in figure 5.4A, SOX9 upregulation is 

not confirmed upon cabazitaxel treatment neither significant differences are found 

between DU145-NC and DU145-OE. Moreover, in the RT-qPCR experiment a higher drug 

concentration (10nM) was introduced compared to the RNA sequencing, in order to 

maximise the observed effects. Even with this additional concentration, a relatively 

modest and non-significant increase in SOX9 expression was observed upon treatment 

(fig.5.4A).  

Interestingly, CCL20 and BCL2A1 are both significantly upregulated in DU145-OE 

compared to DU145-NC in response to cabazitaxel treatment, at both concentrations 

used (fig.5.4 B and C).  

BCL2A1 upregulation is particularly significant (fig.5.4C). BCL2A1 function and role in 

cancer are particularly promising in this context since it is a well-described anti-

apoptotic gene (Jenal et al., 2010; Haq et al., 2013; Lionnard et al., 2019). BCL2A1 is 

upregulated at the protein level upon cabazitaxel treatment when HORAS5 is 

overexpressed (i.e. in DU145-OE) (fig.5.4D).  
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Figure 5.4 | BCL2A1 is the most statistically significantly upregulated gene in prostate 
cancer cells exposed to cabazitaxel and is induced by HORAS5 overexpression. 
A-C. RT-qPCR validation of the 3 genes, shortlisted from RNA sequencing analysis: SOX9, 

CCL20 and BCL2A1. The results are expressed as mean expression relative to negative 

control (DMSO treated DU145-NC) ± S.D. from three independent replicates. One-way 

ANOVA with Tukey`s post-test was used in for statistical comparison *P=0.0487, 

**P<0.002, ****P<0.0001. D. BCL2A1 expression is significantly increased at the protein 

level upon cabazitaxel treatment in the cells that overexpress HORAS5 (DU145-OE). 

GAPDH is used as Western blot loading control. Western blots are visualised using 

Syngene Genesys software and quantified using ImageJ software. 

 

 

5.2. BCL2A1 Knock-down 
 

The results obtained so far suggest that the anti-apoptotic protein BCL2A1 could 

mediate the drug resistance phenotype induced by HORAS5 in CRPC cells. To test this 

hypothesis, it was tested whether BCL2A1 KD rescues HORAS5 induced drug-resistance 

in CRPC cells exposed to cabazitaxel. Therefore, DU145-OE cells were transfected with 

either BCL2A1-targeting siRNA (two types tested) or a siRNA control (scramble). As 

shown in figure 5.5 A, siRNA2 results in higher KD (95%) than siRNA1 (84%) but further 

experiments were performed using both siRNAs to increase the reliability of these 

analyses. Moreover, both siRNA1 and siRNA2 decrease BCL2A1 protein expression 

(fig.5.5B).               
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Figure 5.5 |BCL2A1 KD at mRNA and protein level. 
A,B. BCL2A1 expression is significantly reduced at the mRNA (A) and protein (B) level 

upon KD (GAPDH is used as Western blot loading control). Western blots are visualised 

using Syngene Genesys software and quantified using ImageJ software. 

 

5.3. Effects of BCL2A1 KD on cell count in response to cabazitaxel when HORAS5 

is overexpressed 
 

With the use of validated BCL2A1 targeting siRNA1 and siRNA2, it was sought to assess 

whether BCL2A1 has any function in the cellular response to cabazitaxel, promoted by 

HORAS5 (i.e. in DU145-OE). In particular, according to the data shown, BCL2A1 KD could 

partially reverse HORAS5-induced cabazitaxel resistance. BCL2A1 KD significantly 

reduced DU145-OE cell count upon cabazitaxel treatment (fig.5.6). These findings show 
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that BCL2A1, which is upregulated upon HORAS5 overexpression, enhances cabazitaxel 

resistance in DU145-OE cells. 
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Figure 5.6 |BCL2A1 KD decreases cell count in CRPC cells treated with cabazitaxel. 
DU145-OE cell count upon cabazitaxel exposure, with BCL2A1 KD. The cell count is 

expressed as percentage normalized to the untreated (DMSO) control. The results are 

reported as means ± S.D. from three independent replicates. One-way ANOVA with 

Tukey`s post-test was used in for statistical comparison *P<0.05, **P<0.01, ***P<0.001.  

 

 

5.4. Effects of BCL2A1 KD on cell caspase-induced apoptosis in response to 

cabazitaxel when HORAS5 is overexpressed 
 

Since BCL2A1 KD decreases cell count in cabazitaxel-treated cells that overexpress 

HORAS5, it was also tested whether the effect of BCL2A1 on cabazitaxel response is a 

consequence of its anti-apoptotic activity. As shown in figure 5.7, BCL2A1 KD results in 

a small increase in apoptosis in untreated cells (fig.5.7). But when the cells are treated 

with cabazitaxel, BCL2A1 KD highly increases caspase-induced apoptosis, at both 5 nM 

(1.98≤FC≤2.21, p<0.0001) and 50 nM (3.06≤FC≤4.36, p<0.0001) of cabazitaxel (fig.5.7). 

These results suggest that BCL2A1 stimulates cabazitaxel resistance by inhibiting 

caspase-mediated apoptosis. 
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Figure 5.7 | BCL2A1 KD increases caspase-mediated apoptosis in CRPC cells exposed 
to cabazitaxel. 
The graph represents caspase 3/7 activity normalized to relative cell count number in 

DU145-OE cells upon BCL2A1 KD and cabazitaxel treatment. The results are expressed 

as means ± S.D. from three independent replicates. One-way ANOVA with Tukey`s post-

test has been used for statistical comparison *P<0.05, ****P<0.0001.  

 

5.5. Discussion of Chapter 5 
 

In this chapter, the results on HORAS5 mechanism of action in cabazitaxel resistance in 

AR- CRPC cells are reported. LncRNAs are able to interact with several cellular pathways 

via different mechanisms, even in similar cells and conditions.  

One possible mechanism of action could be investigated to further study how HORAS5 

promotes cabazitaxel resistance in AR- CRPC cells; evidence on lncRNA pleiotropy 

suggests that other concurrent mechanisms of action could contribute to the same 

phenotype. 

RNA sequencing analysis was performed on AR- cells with/without HORAS5 expression, 

comparing cells treated with cabazitaxel with untreated control cells. This comparative 

analysis, together with in silico pathway analysis and literature research, led us to 

further focus this work on three genes, among those genes that were most upregulated 

0

50

100

150

C
e
ll
 c

o
u

n
t

(%
n

o
rm

a
li

z
e

d
 t

o
 D

M
S

O
-N

C
)

siRNA-NC siRNA-1 siRNA-2

***

***

** **

0 (DMSO)
Cabazitaxel 5 nM
Cabazitaxel 50 nM

*



153 
 

on cabazitaxel treatment, in cells that overexpress HORAS5, but which were not 

significantly upregulated in cells lacking detectable HORAS5 expression. Notably, these 

three genes were selected according to their described roles in cancer and drug 

resistance as well as their involvement in the pathways regulated by the 25 genes 

identified by RNA sequencing.  These three genes are SOX9, CCL20 and BCL2A1. 

SOX9 encodes for a TF that is important during chondrogenesis, embryonic development 

and adult life and mutations or dysregulation in its expression and activity have been 

studied in several deseases, including cancer (Jo et al., 2014). Interestingly SOX9 

expression correlates with lower PFS and overall survival in mCRPC patients treated with 

docetaxel (Song et al., 2016) and with prostate cancer aggressiveness (Khurana and 

Sikka, 2019). 

CCL20 is member of the small cytokine CC genes family, characterized by proteins 

containing two adjacent cysteines in their aminoacidic chain. Proteins belonging to this 

family are involved in immune and inflammation processes. CCL20 is associated with 

cancer aggressiveness but conflicting literature exists on CCL20 induction upon taxane 

treatment. In fact, CCL20 increases upon taxane treatment in breast cancer cells, 

triggering resistance via upregulation of ABCB1 (W. Chen et al., 2018) while CCL20 

expression decreases after taxane treatment in NSCLC cells (Zhang et al., 2015).  

BCL2A1 encodes an anti-apoptotic factor (Jenal et al., 2010; Haq et al., 2013; Lionnard 

et al., 2019) with oncogenic roles in many cancers, including prostate cancer, where it 

promotes cancer aggressiveness (Fukuhara et al., 2015). BCL2A1 has been already 

described to participate in drug resistance phenotypes in different cancers (Vogler, 

2012; Haq et al., 2013; Champa et al., 2014). Interestingly no studies have shown its role 

in taxane resistance before.  
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From the pathway analysis conducted using Reactome, it has emerged that HORAS5 

seems to be upregulated upon cabazitaxel treatment to act mostly in immune and 

inflammation response and apoptotic pathways. According to the pathway analysis and 

to the qPCR validation performed on the expression of the top three genes, CCL20 and 

BCL2A1 were selected as the only genes significantly upregulated upon cabazitaxel 

treatment and increasing in cells that overexpress HORAS5. Although the qPCR on CCL20 

has confirmed its upregulation, the significance is lower than in BCL2A1, due to 

increased variability between independent experiments. Moreover, as mentioned, 

there is conflicting literature on CCL20 expression upon taxane treatment in cancer. 

According to this evidence, further analyses were focussed on BCL2A1. These analyses 

showed that the increased transcription of BCL2A1 results in an increase in the protein, 

in response to cabazitaxel stress, in the AR- CRPC cells that overexpress HORAS5. 

Differences in the WB bands comparing DU145-NC and DU145-OE were not clearly 

found, so the WB data are shown for DU145-OE only. Moreover, BCL2A1 was expressed 

at low levels in untreated cells, especially at the protein level. This evidence suggests 

that cabazitaxel stimulates mRNA translation into protein.  Moreover, literature 

evidence suggests that BCL2A1 can promote drug resistance (Vogler et al., 2009; Vogler, 

2012; Haq et al., 2013; Champa et al., 2014). Notably, this is the first study linking 

BCL2A1 to cabazitaxel response. For this reason, further investigation has assessed 

whether BCL2A1 KD affects cabazitaxel resistance. Cabazitaxel untreated cells, exposed 

to BCL2A1-siRNAs, showed reduced proliferation and survival and this effect was 

enhanced by increasing cabazitaxel concentration. These results suggest that BCL2A1 

decreases cellular sensitivity to cabazitaxel treatment. Overall, HORAS5 induces BCL2A1 
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upregulation at both mRNA and protein level and this stimulation promotes cabazitaxel 

resistance via apoptosis inhibition, in CRPC AR- cells.  
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CHAPTER 6: TRANSLATIONAL POTENTIAL OF HORAS5 AS FUTURE 

BIOMARKER AND THERAPEUTIC TARGET FOR CRPC  
 

The in vitro work conducted in this project shows that HORAS5 promotes cabazitaxel 

resistance in AR+ and AR- cells. Moreover, when HORAS5 does not act on the AR pathway 

(Parolia et al., 2019), it inhibits prostate cancer cell apoptosis by stimulating BCL2A1 

mRNA and protein expression, in order to protect the cancer cells from cabazitaxel-

induced cell death. This evidence suggests to investigate the role of HORAS5 as driver of 

prostate cancer aggressiveness and taxane resistance in clinical samples. This study 

would support the in vitro evidence shown. Moreover, it would clarify HORAS5 potential 

in future applications as diagnostic and prognostic biomarker and therapeutic target. 

HORAS5 has been already found upregulated in cancer versus normal tissues (L.-C. Xu et 

al., 2017; Sun et al., 2018). It has been also found upregulated in the exosomes in HCC 

patients serum.  Interestingly, the study of Sun and collaborators (Sun et al., 2018), 

reveals HORAS5 potential as non-invasive diagnostic biomarker for HCC patients with 

high sensitivity and specificity, as indicated from the ROC curve (AUC=0.794) shown in 

their publication. This evidence suggests that HORAS5 can have an important role in 

cancer patients. Particularly, in the context of drug resistance, there are findings 

showing that HORAS5 is upregulated in tissues from cisplatin resistant patients 

compared to sensitive ones (Xu et al., 2019). These promising findings confirm that 

additional studies are needed in order to characterize the potential of HORAS5 in cancer, 

specifically in CRPC, also considering the in vitro findings reported in this thesis. HORAS5 

has also been detected in prostate cancer clinical samples (Parolia et al., 2019). Other 

lncRNAs are upregulated with increased aggressive phenotypes in samples from 

prostate cancer patients (Lai et al., 2017; W. Li et al., 2018; X. Chen et al., 2018). Some 
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evidence has correlated lncRNAs with taxane resistance in clinical samples, such as 

linc00518 which is upregulated in tissues from paclitaxel resistant patients vs sensitive 

ones (He et al., 2019).  This data suggests that further studies on HORAS5 role in patients 

could shed light on the correlation of this lncRNA with taxane response and patients’ 

outcome. 

In this context, it would be also important to investigate whether HORAS5 can be 

targeted with ASOs, to alter CRPC drug response. ASOs should be first studied in vitro in 

order to find novel insights for future in vivo studies that could bring HORAS5 inhibition 

to a clinical phase. Indeed, the possibility to target and effectively inhibit HORAS5 with 

methods that can be translated in vivo, paves the way for the development of novel 

molecular treatments to be used in combination with cabazitaxel in patients who are, 

or become, resistant to this drug. Furthermore, this study can shed light on molecular 

mechanisms of lncRNA-mediated cancer drug resistance and identify treatments for 

other cancers, where HORAS5 is dysregulated. 

All the analyses and experiments described in this chapter are reported and discussed 

in the next sections and summarized in table 6.1. 
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Table 6.1 | Summary of experiments, methods and results reported in this Chapter. 

Experiments Methods Results 

Survival analysis cBio portal analyses Higher levels of HORAS5 and 

BCL2A1 correlate, with similar trend 

and significance, with decreased PFS 

of prostate cancer patients. 

HORAS5 expression in 

clinical samples 

cBio portal analyses 

and data filtering 

HORAS5 is upregulated in 

metastatic samples from patients 

treated with taxanes vs samples 

from untreated patients 

HORAS5 KD via ASOs Eurofins genomics 

custom designed 

ASOs transfection 

with RNAiMax + 

RNA extraction and 

RT-qPCR  

ASO3 results in the highest 

inhibition of HORAS5 expression. It 

determines a high KD (77%) at 

75nM with relative low toxicity 

(≤50%). 

Study of the effect of 

antisense treatments 

to target HORAS5 in 

vitro that suggests 

HORAS5 in vivo 

potential  

ASO3 transfection + 

cabazitaxel 

treatment + trypan 

blue exclusion cell 

count  

Cell count show reduction in cell 

number upon cabazitaxel 

treatment, when HORAS5 is 

knocked down by ASO3, compared 

to the control. 

HORAS5 KD decreases 

cabazitaxel IC50 

Non-linear fit from 

cell count and 

comparison 

between HORAS5 

KD and control 

This calculation shows that 

cabazitaxel IC50 significantly 

decreases when HORAS5 is 

downregulated in CRPC cells, using 

ASO3 compared to the control. This 

suggests that HORAS5-targeting 

ASO increases cell sensitivity to 

cabazitaxel and confirms that 

HORAS5 is a good candidate for 

future in vivo and clinical studies. 
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6.1. Prognostic value of HORAS5 and BCL2A1 in prostate cancer patients 
 

HORAS5 has been shown to promote cabazitaxel resistance via stimulation of BCL2A1 

expression in vitro. These molecules could have a prognostic role in prostate cancer 

patients. In this way, it would be possible to translate the shown in vitro findings into 

clinical applications such as using HORAS5 as a prognostic and diagnostic biomarker for 

prostate cancer aggressiveness and treatment response and as a therapeutic target to 

increase patient survival. Therefore, a TCGA study has been accessed via cBioPortal and 

analysed.  

This study has been already queried in a previous publication in order to determine 

HORAS5 prognostic value (fig.6.1A)(Parolia et al., 2019). The same expression criteria 

were adopted for both HORAS5 and BCL2A1: upregulation in 7% of patients (tables in 

fig.6.1). HORAS5 PFS analysis is reported in figure 6.1A, in order to show the similar 

correlation of the two genes with PFS. As shown in figure 6.1B, BCL2A1 upregulation 

correlates with reduced PFS with a similar trend and significance as HORAS5. 17.65% of 

the cases with low BCL2A1 expression relapsed after prostatectomy compared to the 

31.25% of the cases with high BCL2A1 expression (fig.6.1B), similarly to what has been 

previously reported for HORAS5 in the same patients: 17.36% of cases with low HORAS5 

expression relapsed compared to 33.33% of the cases with HORAS5 upregulation 

(Parolia et al., 2019) (fig.6.1A).  
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Figure 6.1 |HORAS5 and BCL2A1 have a similar prognostic value in prostate cancer 
patients. 
The graphs show disease free survival data of samples from patients from a TCGA 

dataset (TCGA Firehose Legacy), who underwent radical prostatectomy, with high or low 

expression of HORAS5 (A) and BCL2A1 (B).  A. The graph and table in A show the findings 

from Parolia et al. (Parolia et al., 2019) and are reported here for comparison with 

BCL2A1 correlation with disease free survival in the same cohort of patients, in B. B. In 

the cases with BCL2A1 high expression, 31.25% relapsed after radical prostatectomy vs 

17.65% relapsed cases with low BCL2A1 expression as reported in the table below the 

graph (cBioportal, TCGA Firehose Legacy).  

 



162 
 

6.2. HORAS5 expression in clinical samples from metastatic sites of prostate 

cancer patients 

HORAS5 role in cabazitaxel resistance has been investigated in vitro and in patient 

survival but prostate cancer clinical evidence has not been found yet, on HORAS5 

expression correlation with drug treatment, particularly with taxanes. Hence, the 

expression of HORAS5 was analysed in clinical prostate cancer samples from a published 

study (Kumar et al., 2016), accessed via cBioPortal. As shown in figure 6.2, HORAS5 

expression is significantly higher (P value= 0.0086) in metastatic samples from patients 

treated with taxanes than in samples from untreated patients. No similar evidence has 

been found for BCL2A1 expression. 
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Figure 6.2 | HORAS5 expression in Prostate cancer clinical samples. 

HORAS5 expression from patient metastatic samples treated with taxanes-only (14 

samples from 10 patients) compared to samples from untreated patients (46 samples 

from 15 patients). Student t-test was used for statistical comparison **P=0.0081. 
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6.3. HORAS5-targeting ASOs and effects on cabazitaxel response in prostate 

cancer cells 

Based on the findings on HORAS5 upregulation in taxane-treated clinical samples, it was 

analysed if HORAS5 can effectively be silenced using ASOs. In fact, these compounds can 

be successfully used in vivo and some of them have been tested in clinical trials (Beer et 

al., 2017; Bellmunt et al., 2017; Yu et al., 2018). These results could highlight the 

therapeutic potential of targeting lncRNAs like HORAS5 in the clinical setting. Hence, 

eight different ASOs were tested in LNCaP cells, which express endogenous detectable 

levels of HORAS5. The results show that ASO3 is the most effective inhibitor of HORAS5 

expression (78.2% KD, as judged by RT-qPCR) (fig.6.3A,B) and reduces by 50 % the cell 

count when used as the only treatment (fig.6.3C).  
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Figure 6.3 | ASO-mediated KD of HORAS5 and selection of ASO3. 
A. RT-qPCR expression of HORAS5, upon KD mediated by the 8 tested ASOs, is 
significantly decreased in LNCaP cells treated with ASO1, ASO2 and ASO3. ASO3 is the 
most effective inhibitor of HORAS5 expression. B. HORAS5 KD upon transfection with 75 
nM ASO3 is confirmed in LNCaP cells and gives 78% inhibition of HORAS5 expression 
measured via RT-qPCR. The results in A and B are expressed as mean expression relative 
to negative control (NC-ASO) ± S.D. from three independent experimental replicates. All 
RT-qPCR expression data are normalized for HPRT1. One-way ANOVA with Sidak`s post-
test was performed for statistical comparison in A ****P<0.0001. C. ASO3 treatment 
(75nM) results in LNCaP cell count reduction of around 50% compared to LNCaP cells 
treated with ASO-NC. The results in C are expressed as mean cell count relative to 
negative control (NC-ASO) ± S.D. from three independent experimental replicates. 
Student t-test was used for statistical comparison in C. 
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Therefore, ASO3 has been tested in combination with cabazitaxel. Cell count decreases 

when LNCaP cells are treated with HORAS5-targeting ASO3 in combination with 

different concentrations of cabazitaxel (fig.6.4A) (see Chapter 2, Material and Methods 

for concentrations selection). Moreover, a significant decrease in cabazitaxel IC50 

(FC=6.55, P=0.0034) was observed in the cells exposed to the cabazitaxel-ASO3 

combination treatment compared to cabazitaxel-NC-ASO treatment (fig.6.4B). Hence, 

ASO-directed HORAS5 KD increases the sensitivity of LNCaP cells to cabazitaxel.                   
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Figure 6.4 | ASO-mediated KD of HORAS5 decreases cabazitaxel resistance. 
A, B. HORAS5 KD mediated by ASO3 induces a decrease in the cell count upon 

cabazitaxel treatment (A) and a reduction in the IC50 (B). Cell count is expressed as 

nonlinear fit curves of the cell number in percentage, normalized to the untreated 

(DMSO) control. Results expressed as mean cell count (A) and IC50 (B) relative to the 

negative control ± S.D. from three independent experimental replicates. Two-way 

ANOVA with Sidak`s post-test was performed for statistical comparison **P= 0.0056. 

Student t-test was used for statistical comparison in B **P=0.0034. 
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6.4. Discussion of Chapter 6 
 

The findings presented in this Chapter suggest that HORAS5 and BCL2A1 have a value as 

prognostic biomarkers for prostate cancer patients and that HORAS5 expression is 

affected by taxane treatment in mCRPC clinical samples. Additional experiments 

reported in this chapter suggest that HORAS5-targeting ASO modulation is a successful 

approach to inhibit this lncRNA and increase cabazitaxel response in prostate cancer 

cells. Therefore, this study paves the way for the translation of the in vitro findings 

described in the previous chapters, into novel knowledge to treat cabazitaxel resistant 

CRPCs, when HORAS5 is upregulated. The prognostic value of BCL2A1 was analysed and 

compared to some HORAS5 clinical evidence reported in a published study (Parolia et 

al., 2019). In this study was shown that high levels of HORAS5 expression correlates with 

reduced patient PFS. In the same dataset, BCL2A1 expression shows the same trend in 

relation to PFS. Particularly, both HORAS5 and BCL2A1 upregulation significantly 

correlate with increased percentage of cases that relapse after prostatectomy. Although 

co-expression data, directly linking HORAS5 and BCL2A1 expression, have not been 

found in patient samples, these two molecules have been shown to promote similar 

effects on patient survival. These findings are fundamental to evaluate the translational 

potential of HORAS5 but do not correlate this lncRNA with drug treatment. In order to 

link HORAS5 expression with drug treatment in prostate cancer clinical samples,  

HORAS5 expression has been analysed in metastatic samples from a cohort of patients 

treated with taxanes vs untreated, from a published study, accessed via cBioportal 

(Kumar et al., 2016). HORAS5 is significantly upregulated in prostate cancer metastatic 

samples from patients treated with taxanes, compared to untreated patients. This 

finding is the first clinical confirmation of the in vitro evidence shown on HORAS5 
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involvement in taxane-treatment response. The samples considered in this study are 

tissues from prostate cancer metastases but based on recent evidence (Sun et al., 2018), 

HORAS5 could also be detectable in biological fluids (i.e. urine and blood), paving the 

way for the use of HORAS5 as a non-invasive biomarker for CRPC. While miRNAs are 

more stable and can be easily detected in biological fluids (Yun et al., 2015; Berti et al., 

2019; Herreros-Villanueva et al., 2019; Ingenito et al., 2019), lncRNAs are less studied in 

this context and are harder to detect in biological fluids. This can be ascribed to their 

long sequence which may be harder to pack in extracellular vesicles and more unstable 

as free sequence in biological fluids, than miRNAs. HORAS5 increases in the presence of 

taxane treatment in cells and in patients with metastatic prostate cancer, thereby 

suggesting that it could be easier to detect this lncRNA in samples from patients treated 

with these drugs. Moreover, HORAS5 sequence is shorter than many lncRNAs (long 

variant is 870bp), suggesting that it could be reasonably stable in blood circulation or 

other fluids. Future studies could detect HORAS5 in plasma and urine samples from 

patients before vs after taxane treatment and could confirm HORAS5 role in this context. 

Due to HORAS5 function in CRPC cells, further in vivo investigation on this lncRNA could 

also reveal its potential as therapeutic target. Indeed, the inhibition of HORAS5 in 

combination with cabazitaxel could decrease cancer resistance to the drug and increase 

patient response to the treatment. Even though cabazitaxel is effective in CRPC patients 

and is used when they develop resistance to docetaxel, in some cases the response to 

this treatment decreases, giving rise to cabazitaxel resistance. In these cases, the 

introduction of additional treatments, able to restore drug sensitivity, could dramatically 

increase patient quality of life and survival rate. 
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With this in mind, HORAS5-targeting ASOs have been designed to be capable of 

effectively reducing HORAS5 expression. One of the ASOs tested decreases cabazitaxel 

IC50, when used in combination with this drug to treat CRPC cells. As mentioned, ASOs 

have been successfully used in clinical trials (Beer et al., 2017; Bellmunt et al., 2017; Yu 

et al., 2018) and, since lncRNAs are expressed in a tissue and disease-specific manner 

(Kong et al., 2019), the development of  lncRNA-targeting drugs could lead to the 

production of cancer-specific therapeutic approaches that gives minimal side effects.  

LncRNAs can be modulated in vivo using several approaches. Lentiviral transduction (B. 

Zhang et al., 2018; Panda et al., 2018; Somaiah et al., 2019) and CRISPR-Cas9-dependent 

genome editing (Lavalou et al., 2019) are promising methods to stably modulate 

lncRNAs expression but their use is at very preliminary stage and needs extensive in vivo 

validation (Lavalou et al., 2019). 

Via ASOs it is possible to transiently silence lncRNAs and this method is closer to a clinical 

application. 

HORAS5 has been already inhibited in vivo using siRNAs conjugated with a lipidic 

transfection reagent and has shown significant reduction of CRPC growth (Parolia et al., 

2019). Whereas this method is hardly translatable to the clinical setting, in vivo studies 

using HORAS5-targeting ASOs, in combination with other treatments, could help identify 

clinically useful methods to overcome drug resistance.  

Notably, ASO structure can be edited to increase their stability in biological fluids and 

improve their intracellular uptake. Based on this consideration the results obtained in 

this project are particularly promising since first generation ASOs have been used with 

efficient results. As underlined in Chapter 1 (1.4.5), chemically modified ASOs such as 

LNAs and PS-ASOs have shown improved properties, like increased stability and cellular 
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uptake. In future studies, it would be promising to test ASO3 with specific modifications 

in order to further increase its potential for in vivo studies. 

Even if ASOs have been successfully tested in cancer cells and clinical trials (Crea, 

Quagliata, et al., 2016; Duffy et al., 2016; Chi et al., 2017; Gordon et al., 2019), currently, 

there is no clinical trial on lncRNA-targeting ASOs. 

Therefore, HORAS5 function in cabazitaxel resistance should be further evaluated in vivo 

using ASOs.  

 Overall, the findings reported in this Chapter suggest that HORAS5 is a potential useful 

biomarker in CRPC and that HORAS5 inhibition, in combination with taxanes, can 

increase drug response in CRPC patients, leading to new developments in the fields of 

personalized medicine and innovative diagnostic strategies. 
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6. CHAPTER 7: GENERAL DISCUSSION, FUTURE DEVELOPMENTS AND 

CONCLUSIONS 
 

7.1. General discussion  
 

This thesis presents the findings on the role of the lncRNA HORAS5 in advanced prostate 

cancer response to therapy, highlighting a tight connection between cabazitaxel 

treatment and a stress response activated by HORAS5 upregulation, which stimulates 

BCL2A1 expression. 

This research aims to understand the mechanisms of cancer drug resistance and the role 

of lncRNAs in this context; the main outcome is to combine commonly used drugs and 

lncRNA modulation to effectively treat aggressive cancers such as advanced prostate 

cancer (i.e. CRPC). Current clinical therapies for CRPC can extend patient survival, but 

are still characterized by short remission times (Nabavi et al., 2017).  

Several studies have investigated the modulation of lncRNAs in cancer, in order to assess 

whether they could be involved in tumour-related pathways and be used as targets for 

novel therapies (Crea, Watahiki, et al., 2014; Mohanty, Badve and Janga, 2014; Parolia 

et al., 2015). Previous studies have shown that HORAS5 is upregulated in CRPC vs. 

hormone sensitive PDX models and favours cell proliferation and inhibits apoptosis by 

stabilizing AR mRNA in CRPC cells (Parolia et al., 2019).  

Wang et al. have shown the involvement of HORAS5 in osteosarcoma cell response to 

cisplatin (Wang et al., 2016). They have observed that cisplatin can induce the 

expression of HORAS5 and that this lncRNA activates pro-apoptotic pathways. Based on 

studies recently published (Parolia et al., 2019), the same lncRNA has been hypothesized 

to trigger an opposite response (i.e. activation of anti-apoptotic pathways) in CRPC cells. 
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As already mentioned in this thesis, it is well known that lncRNAs are characterized by 

tissue-specific expression and functions. It is therefore conceivable that HORAS5 plays 

opposite roles in CRPC and osteosarcoma. Other important findings have also 

characterized HORAS5 in other malignancies suggesting that this lncRNA can play key 

roles in cancer-associated pathways such as survival, metastasis and drug response, via 

regulation of different mechanisms and processes (L.-C. Xu et al., 2017; Sun et al., 2018; 

Xu et al., 2019).  

Based on these findings, additional studies could further determine whether HORAS5 is 

a novel treatment target for CRPC and for other tumours where it promotes tumour 

growth and drug resistance.  

Sun and collaborators have also shown that HORAS5 is detectable in serum of HCC 

patients (Sun et al., 2018). This discovery paves the way for the use of HORAS5 as a non-

invasive biomarker. 

For this reason, the specific aims of this project have been to study the correlation 

between HORAS5 expression and CRPC drug treatment, to investigate the mechanistic 

role of HORAS5 in response to this treatment in prostate cancer cells, and to generate 

proof of principle on the translational potential of HORAS5 for future in vivo and clinical 

studies.  

To summarize, lentiviral-mediated overexpression and siRNA-mediated KD of HORAS5 

were optimized, in order to obtain efficient stable overexpression and transient 

silencing of the lncRNA, respectively. HORAS5 subcellular localization was then assessed 

in the overexpression model and compared to previously published evidence (Parolia et 

al., 2019). Afterwards HORAS5 expression was assessed upon treatment with some 



173 
 

drugs clinically employed for CRPC patient treatment (Fléchon et al., 2011; Scher et al., 

2012; Aparicio et al., 2013; Beer et al., 2014; Sissung et al., 2014; Smiyun, Azarenko, 

Miller, Rifkind, LaPointe, et al., 2017; Hussain et al., 2018). Among the drugs tested, only 

cabazitaxel induced a consistent and statistically significant increase in HORAS5 

expression, dependent on drug concentration and time of treatment. These findings 

suggest that there could be a connection between cabazitaxel and HORAS5. This 

connection was further evaluated by modulating HORAS5 and analysing cell response to 

cabazitaxel. HORAS5 expression increases cell count and decreases caspase-induced 

apoptosis in both AR+ and AR- prostate cancer cells, thereby increasing cabazitaxel IC50 

with decreased cell response to the drug. 

Notably, the connection between cabazitaxel treatment and HORAS5 expression could 

be explained by (fig.7.1): 

• Clonal selection of intrinsically resistant cancer cells, which promotes the expression 

of HORAS5 in the overall cancer cell population, without affecting the intracellular 

modulation of the lncRNA. 

• Pro-survival stimuli activated in the cells as a downstream response to cabazitaxel 

stress that promotes HORAS5 expression, either stimulating its expression or 

reducing its inhibition. 

• Cabazitaxel mechanism of action that promotes HORAS5 expression, again either 

stimulating its expression or reducing its inhibition. 

Since HORAS5 is upregulated in prostate cancer cells with both constitutive and 

exogenous expression of this lncRNA, clonal selection is suggested as the most reliable 

hypothesis. Moreover, cabazitaxel could also activate a prosurvival stress-response in 
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the cancer cells, thereby stimulating a post-transcriptional upregulation of HORAS5 (i.e. 

decrease of HORAS5 inhibition mechanisms).  

Nevertheless, a connection based on cabazitaxel mechanism of action cannot be 

excluded. Since taxanes can have several mechanisms of action, from microtubule 

binding, to ROS and mitochondria metabolism, it could be hard to study this connection. 

Taxanes main mechanism of action is direct β-tubulin binding with effects on cell 

division. According to the analysis of the RNA sequencing data performed in this project, 

a minor involvement of HORAS5-upregulated genes has been found in cell cycle. Based 

on Reactome analysis, CCNL1 appears of interest since it is involved in DNA unwinding 

pathways, important for DNA replication. Therefore, it could be interesting to further 

analyse this interaction even though HORAS5 is mainly a cytoplasmic lncRNA.  

For the reasons discussed so far, HORAS5 seems to be induced by cabazitaxel-induced 

clonal selection as well as by cancer cell response to cabazitaxel-triggered downstream 

stimuli. This induction of HORAS5 is suggested as a defence of the cancer cells from the 

drug-induced stress, rather than from its mechanism of action. In this way the cancer 

cells might use HORAS5 to orchestrate a complex response that inhibits apoptosis and 

induces cancer cell survival.  

As mentioned before, several lncRNAs are upregulated in response to general stress 

conditions (such as the ones deriving from drug treatment) and the RNA sequencing 

analyses shown in this thesis reveal that, in response to cabazitaxel, HORAS5 

upregulates prevalently genes involved in inflammation and apoptosis, rather than cell 

cycle or processes linked to cabazitaxel mechanism of action.  
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This hypothesis seems also supported by a recent publication on HORAS5 role in drug 

response, where HORAS5 is upregulated upon treatment with another drug (i.e. 

cisplatin) (Xu et al., 2019); cisplatin has a different mechanism of action from taxanes 

but still induces a massive stress for the cancer cells.  

 

 

Figure 7.1 | Possible hypotheses of cabazitaxel action in stimulation of HORAS5 
expression. 
This figure shows three possible mechanisms of HORAS5 upregulation induced upon 

cabazitaxel treatment. From the left, clonal selection of cabazitaxel intrinsically resistant 

cells which express HORAS5 (dark brown) before drug treatment; cabazitaxel induces a 

survival stress in cancer cells which, in response, upregulates prosurvival pathways that 

promote HORAS5 upregulation in cancer cells; cabazitaxel induces specific effects via its 

mechanism of action that interfere with HORAS5 upstream regulation. Orange flash 

represents cabazitaxel treatment.  

 

Cabazitaxel-induced HORAS5 stimulation decreases prostate cancer cell response to the 

drug. High throughput transcriptomic analyses have shown that HORAS5 stimulates the 



176 
 

expression of the antiapoptotic factor BCL2A1, in response to cabazitaxel treatment. 

BCL2A1 KD increases cabazitaxel sensitivity via decrease of cell count and induction of 

apoptosis.  

LncRNAs can have several roles in cancer cells and act in these functions via multifaceted 

mechanisms of action, such as for HORAS5, which can regulate different pathways in the 

same cancer, according to the expression of AR. In fact, in AR+ cells HORAS5 promotes a 

survival signalling via stabilization of AR mRNA (Parolia et al., 2019). In AR- cells, HORAS5 

promotes a similar response by inducing other pro-survival signals (i.e. BCL2A1). 

Moreover, lncRNAs can also act in the same cell type and stimulate similar responses 

and phenotypes via interacting with different molecules. Hence, the findings reported 

in this thesis describe one mechanism of action via which HORAS5 promotes AR- CRPC 

cell survival in response to cabazitaxel treatment. This mechanism does not exclude that 

HORAS5 could act via interaction with other molecules and subcellular components. This 

is very interesting since it paves the way for further investigation on other mechanisms 

of action of HORAS5 in drug response. Additionally, since the findings reported in this 

thesis indicate that HORAS5 is prevalently cytoplasmic, but a portion is also retained or 

returned into the nucleus, it is conceivable that this lncRNA could also have nuclear 

functions. Examples of characterized nuclear functions for lncRNAs are stabilization and 

recruitment of epigenetic effectors and TFs to specific sites and interaction with splicing 

complexes (Kong et al., 2016; Qinyu Sun, Qinyu Hao, 2018; Miao et al., 2019). 

Based on these in vitro findings, it has been investigated whether this model could have 

a relevance in the clinical setting, where prostate cancer is a heterogeneous disease, 

characterized by complex interactions of cancer cells with the pathological and 

physiological environment. HORAS5 and BCL2A1 have similar prognostic value in 
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prostate cancer patients. Moreover, HORAS5 is upregulated in metastatic prostate 

cancer samples from taxane-treated patients vs. untreated. This evidence has suggested 

that HORAS5 and the reported in vitro findings could have a clinical relevance. 

Therefore, in vitro studies have been performed on HORAS5-targeting therapies to 

select a specific 1st generation ASO able to efficiently inhibit HORAS5 expression and 

significantly reduce prostate cancer cell count when used both alone and in combination 

with cabazitaxel (fig.7.2). Moreover, cabazitaxel IC50 is decreased when this ASO is 

employed in combination with this drug. These findings pave the way for the in vivo use 

of HORAS5-targeting approaches and for the use of HORAS5 as therapeutic target and 

biomarker of tumour progression, recurrence and drug response, as discussed in 

sections 7.2.4 and 7.2.5.  Figure 7.2 schematically summarizes the main in vitro findings 

reported in this thesis.  
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Figure 7.2 | Diagram summarising the in vitro findings reported in this thesis. 
This figure shows a CRPC cell in the first part that upon treatment with cabazitaxel up-

regulates HORAS5 via either activating HORAS5 gene transcription or hindering its 

degradation. HORAS5 up-regulation stimulates BCL2A1 expression and this decreases 

apoptosis and increases cell proliferation. This pathway describes the mechanism of 

cabazitaxel resistance mediated by HORAS5. In the bottom picture, is shown the effect 

of HORAS5-targeting ASO that inhibits HORAS5 expression, thereby reducing cabazitaxel 

resistance. 

CRPC cell: HORAS5 inhibition 

CRPC cell 
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7.2. Future developments 
 

This project lays the foundation for further research on HORAS5 mechanism of action 

and its potential as biomarker and therapeutic target in the clinical settings. These 

aspects could be unravelled by future studies that can bring novel developments to the 

knowledge of lncRNA biology and personalized cancer treatments. 

 

7.2.1. HORAS5 interaction with miRNAs 
 

HORAS5 has already been involved in drug response in different cancers where it has 

been shown to act as a miRNA sponge (Xu et al., 2019; Wang et al., 2016). According to 

the data reported in this thesis, HORAS5 is prevalently located in prostate cancer cell 

cytoplasm, thereby suggesting that it can interact with mature miRNAs. In silico evidence 

has shown that miR-128 is predicted to bind both HORAS5 and BCL2A1 RNA sequences 

(fig.7.3A). Additionally, previous literature has shown that miR-128 acts as an 

oncosuppressor, can induce apoptosis via downregulation of anti-apoptotic factors and 

increases chemosensitivity to drugs, such as the taxane paclitaxel in lung cancer (Koh et 

al., 2017; T. Liu et al., 2019; Adlakha and Saini, 2011). Since there are two variants of 

pre-miR-128 (pre-miR-128-1 and pre-miR-128-2) and each of them originates two 

mature forms (-3p and -5p), preliminary experiments have been performed to 

investigate whether one of these variants is predominantly expressed in the control 

prostate cancer cell line (DU145-NC) (fig.7.3B).  Pre-miR-128-1 is expressed in prostate 

cancer cells while pre-mir-128-2 is not detectable, meaning that future work on HORAS5 

mechanism of action could focus on the mature forms of the former (fig.7.3B). Notably 

miR-128 has been also shown to interact with HORAS5 in ovarian cancer cells (Xu et al., 

2019). This enforces the suggestion that HORAS5 could bind miR-128 in prostate cancer 
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cells, establishing a HORAS5-miR128-BCL2A1 axis that inhibits cabazitaxel-induced 

apoptosis. Since there is no published evidence of HORAS5-miRNAs interaction in 

prostate cancer, future developments in this context could specifically clarify the type 

of interaction that connects HORAS5 and BCL2A1, thereby establishing a new regulatory 

axis in cancer survival and drug response.  
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Figure 7.3 | HORAS5 and mir-128. 
A. Flowchart showing in silico data on miR-128 interaction with HORAS5 and BCL2A1 

according to prediction database (i.e. MIRCODE) and nucleotide blast and literature 

evidence on miR-128 role in cancer. B. Preliminary data on pre-miR-128 isoforms 

expression in DU145-NC cells: pre-miR-128-1 is detectable in the cells and expressed at 

higher levels than pre-miR-128-2.  

 

7.2.2. BCL2A1 in calcium signalling 
 

Future approaches to inhibit HORAS5 expression seem to be particularly reliable due to 

expected higher specificity and less side effects, compared to BCL2A1 inhibition. This is 

due to a broader known effect of this anti-apoptotic factor than HORAS5, on survival 

pathways. Nevertheless, it would be interesting to test BCL2A1 small-molecule 
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inhibitors in order to further investigate the downstream mechanism of action activated 

by HORAS5. In this context, it is interesting to consider that BCL2A1 is an antiapoptotic 

factor of the BCL2 family and retains all 4 BH domains of the BCL2 mature protein. BCL2 

was recently shown to suppress apoptosis via regulation of calcium signalling pathways 

(Distelhorst and Bootman, 2019; Rong et al., 2009). Notably, according to the RNA 

sequencing data, BCL2 is not upregulated upon HORAS5 overexpression neither upon 

cabazitaxel treatment, suggesting that this key anti-apoptotic factor is not required in 

this cell type, in these conditions. Therefore, BCL2A1 could resemble BCL2 functions in 

the cell lines where the latter is not expressed. Further work in this context could clarify 

some downstream effects triggered by HORAS5 overexpression (e.g. calcium signalling) 

that in turn could participate in cabazitaxel response.  

 

7.2.3. Upstream mechanisms of HORAS5 upregulation by cabazitaxel:  
 

Since HORAS5 overexpression in AR- prostate cancer cells is driven by the CMV 

promoter, it is not possible to study the up-stream regulation of HORAS5. Nevertheless, 

HORAS5 expression is also induced by cabazitaxel in LNCaP (AR+ cells) under HORAS5 

promoter. Therefore, it would be interesting to study the upstream regulation of 

HORAS5 expression upon cabazitaxel treatment in this cell line. First, since cabazitaxel 

treatment determines HORAS5 upregulation rather than other drugs tested, this drug 

could specifically influence HORAS5 expression, as mentioned in 7.1. Future studies 

could test this hypothesis. Moreover, preliminary in silico data on HORAS5 putative 

promoter region have been obtained by using ALGGEN-PROMO a program to predict TF 

binding sites (TFBSs) in a DNA sequence. LncRNA promoters have been scarcely studied 

and the concept of “lncRNA promoter” still needs to be defined.  For this reason, 200 bp 
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upstream of the HORAS5 gene have been selected as the putative promoter. Some 

studies have suggested this as the region with the highest number of active TFBSs (Guo 

and Jamison, 2005; Tabach et al., 2007; Fitzgeralda et al., 2008). A region of 10bp has 

the highest number of predicted TFBSs (fig. 8.2). Among these TFs, CBEP-β is predicted 

to bind the selected region in two different TFBSs (fig. 8.2). According to a published 

study, CBEP-β is involved in the activation of senescence upon androgen blockade, 

thereby promoting CRPC progression (Barakat et al., 2015). Future predictions and 

experimental validations could elucidate if this TF can have a role in the stimulation of 

HORAS5 expression in prostate cancer, upon drug treatment and could establish if there 

is a link between cabazitaxel mechanism of action and specific TFs predicted to bind 

HORAS5 regulatory regions. 

 

7.2.4. HORAS5 targeting ASOs  
 

As described in Chapter 6, one of the ASOs tested results in efficient HORAS5 inhibition 

in prostate cancer cells at clinically achievable concentrations. This ASO increases 

cabazitaxel-induced cell death, thereby decreasing the drug IC50, with synergistic effect 

with the drug. As mentioned before, ASOs have an important clinical impact in cancer 

treatment and no lncRNAs-targeting antisense therapy has yet been approved for 

cancer patient treatment. Future work could optimize the HORAS5-targeting ASO for in 

vivo studies and test it in prostate cancer patients and in other malignancies where 

HORAS5 promotes cancer aggressive phenotypes, such as metastasis and drug 

resistance. This future work could clarify HORAS5 role as a potential target to increase 

patient survival when used alone or in combination with other treatments. 
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7.2.5. HORAS5 as biomarker in liquid biopsies and CTCs  
 

The in vitro and clinical evidence reported in this thesis, together with previous studies, 

suggest that HORAS5 is upregulated in prostate cancer, that it increases with taxane 

treatment and has a prognostic value in PFS of prostate cancer patients. Overall, these 

findings indicate that further studies are needed to confirm HORAS5 expression in 

clinical samples with focus on biological fluids. This would pave the way for the use of 

HORAS5 as a diagnostic and prognostic non-invasive biomarker that could be detected 

in biological fluids such as blood and urine of cancer patients either free, packed in 

exosomes or in circulating tumour cells (CTCs). 

 

7.3. Conclusions 
 

The novel findings that this PhD project has generated are: 

1) Lentiviral-mediated HORAS5 overexpression does not affect prostate cancer cell 

morphology and proliferation and maintains HORAS5 subcellular localization. 

2) Cabazitaxel stimulates the expression of HORAS5 in AR+ and AR- prostate cancer 

cells. 

3) HORAS5 overexpression in AR- prostate cancer cells decreases cell sensitivity to 

cabazitaxel and HORAS5 silencing in AR+ cells has the opposite effect. 

4) HORAS5 mediates cabazitaxel response in prostate cancer cells via inhibition of 

apoptosis. 

5) The antiapoptotic factor BCL2A1 is upregulated upon cabazitaxel treatment and 

increases as a consequence of HORAS5 overexpression. BCL2A1 KD increases cell 

sensitivity to cabazitaxel. 
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6) HORAS5 and BCL2A1 have a similar prognostic value in prostate cancer patients.  

7) HORAS5 is upregulated in prostate cancer metastatic samples from patients treated 

with taxanes compared to untreated. 

8) HORAS5-targeting ASOs can efficiently silence HORAS5 in prostate cancer cells and 

increase cell sensitivity to cabazitaxel. 

 

Overall, this project provides evidence on HORAS5 role and mechanism of action in 

prostate cancer response to cabazitaxel and contributes to the research to develop 

lncRNAs-based personalized treatments and diagnostic screening for incurable diseases, 

such as CRPC. This and further studies could deepen the knowledge on lncRNA biology, 

functions and translational potential in prostate cancer and in other malignancies where 

lncRNAs regulate tumour survival and drug response. 
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7. APPENDIX 
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Figure 8.1 | HORAS5 KD in DU145-OE cells. 
Expression of HORAS5 in DU145-OE cells 48h post-treatment with HORAS5-siRNAs and 

negative control (NC-siRNA), measured via RT-qPCR. Results represented as means ± S.D. from 

two independent replicates. Referred to on p. 134. 
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Table 8.1 | List of 87 genes upregulated (FC>2) in cabazitaxel-treated prostate cancer 

cells overexpressing HORAS5 (DU145-OE) (P<0.01) but not in cells which do not 

express HORAS5 (DU145-NC) (P>0.01). Genes ranked based on P value DU145-NC 

treated vs untreated, consistently with Table 5.2. 

Gene-ID Log2 

DU145-OE 

treated 

Log2 

DU145-OE 

untreated 

Fold Change 

(treated vs 

untreated) 

P value 

(DU145-OE 

treated vs 

untreated) 

P value 

(DU145-NC 

treated vs 

untreated) 

SUMO4 1.6 0.4 2.31 0.0056 0.6321 

LTB4R2 1.26 0.15 2.16 0.0094 0.4364 

PCDH1 1.03 0 2.05 0.0018 0.4226 

FBXO34 1.7 0.15 2.94 0.0029 0.3152 

BCL2A1 3.15 1.86 2.45 0.0068 0.2818 

BRD8 1.36 0.33 2.04 0.0032 0.2662 

TMEM128 2.45 0.98 2.77 0.0099 0.2581 

PCDHB19P 1.89 0.33 2.95 0.0086 0.2075 

OR2B6 1.17 0 2.25 0.0016 0.1124 

IL23A 2.12 0.34 3.42 0.0028 0.112 

OAS3 5.71 4.57 2.21 3.67E-05 0.1044 

ADCY10P1 1.29 0.08 2.32 0.0079 0.1026 

CCNL1 5.65 4.2 2.73 0.0095 0.1025 

SF3B4 4.3 3.24 2.09 0.0056 0.0965 

HIST1H3J 3.11 1.72 2.63 0.0011 0.0937 

CPEB4 4.58 3.52 2.08 0.0065 0.09 

LOC100289187 2.02 0.86 2.23 0.0095 0.089 

PFN1P2 4.61 3.49 2.17 0.0051 0.0846 

SOX9 4.27 2.86 2.67 0.0099 0.0827 

USP53 5.74 4.73 2.01 0.0027 0.081 

IRF9 4.08 2.69 2.63 0.0018 0.079 

TTC18 1.62 0.34 2.43 0.0063 0.0775 

DYRK1B 1.95 0.83 2.18 0.0026 0.0767 

CCL20 2.61 1.2 2.67 0.0065 0.0738 

ALDOC 2.17 0.83 2.54 0.0056 0.0714 
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ALPPL2 1,85 0,15 3,26 0,0002 0,0666 

N4BP2L2 2,21 0,66 2,94 0,0004 0,0575 

IRF7 4,33 2,95 2,6 0,0039 0,051 

PPP1R15A 6,1 4,25 3,6 0,0063 0,0488 

POU5F1P4 1,87 0,75 2,18 0,0003 0,0486 

FAM100B 6,89 5,7 2,27 0,0027 0,046 

C19orf77 1,52 0,08 2,71 0,0043 0,046 

ROBO4 1,51 0,4 2,17 0,0095 0,0457 

CYP26A1 1,72 0,6 2,18 0,0044 0,0453 

ZC3H8 4,49 3,35 2,21 0,0068 0,0449 

ETV5 6,89 5,79 2,13 0,0039 0,0442 

EGR3 1,36 0 2,56 2,47E-05 0,0431 

UPF3B 5,03 3,98 2,06 0,0083 0,0411 

NPTX2 3,31 1,4 3,77 0,008 0,0398 

ENO3 2,67 1,32 2,55 0,0036 0,0397 

ZNF107 5,9 4,88 2,02 0,0068 0,0358 

PILRB 4,36 3,07 2,44 0,0042 0,035 

TMEM158 4,5 3,15 2,54 0,0066 0,0346 

GOLGA6L9 2,1 0,99 2,16 0,0065 0,0345 

SAMD9 1,97 0,76 2,32 0,0083 0,0337 

SNHG1 7,17 5,8 2,58 0,0018 0,033 

MMP1 3,35 0,66 6,42 0,0069 0,0325 

MCAM 5,87 4,57 2,46 0,0097 0,0322 

FOS 3,68 1,39 4,91 0,0067 0,0317 

LOC399753 3,97 2,68 2,44 0,0058 0,0314 

GADD45A 6,52 4,33 4,58 3,93E-05 0,0311 

LOC440354 3,8 2,67 2,19 0,004 0,03 

ZFAND2A 6,49 5,18 2,47 0,0064 0,0299 

AOC3 1,77 0,06 3,25 0,0052 0,0291 

SNAPC1 8,32 7,3 2,04 0,0004 0,0289 

NBPF14 4,96 3,61 2,56 4,73E-05 0,0284 
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SDCBP2 1,3 0,28 2,03 0,0009 0,028 

SEMA4A 1,88 0,15 3,33 0,0034 0,028 

C2orf78 2,2 0 4,59 0,0054 0,0269 

H2AFJ 2,04 0,83 2,32 0,0036 0,0261 

LOC646329 3,6 1,98 3,07 0,0026 0,0257 

TXNIP 4,97 2,34 6,18 0,0064 0,0252 

ECM1 3,95 2,85 2,14 0,0074 0,0245 

LOC731275 5,19 3,7 2,82 0,004 0,0242 

COL27A1 1,68 0,56 2,17 0,0027 0,0224 

CCT6P1 2,54 1,36 2,26 0,0038 0,0222 

IFI27 1,83 0,33 2,82 0,0012 0,0215 

ARHGAP11B 6,37 5,11 2,4 0,0008 0,0211 

ZNF844 4,01 2,11 3,73 0,0085 0,0209 

RBM15 2,45 0,9 2,94 0,0073 0,0193 

UPP1 3,34 1,48 3,64 0,0099 0,019 

JAG1 3,78 2,35 2,69 0,0087 0,0188 

LOC100288069 3,75 2,48 2,41 0,0006 0,0185 

SESN2 5,48 4,33 2,22 0,0083 0,0185 

RRAD 3,12 1,29 3,57 0,0057 0,0175 

PI3 1,3 0,22 2,12 0,0086 0,017 

NR4A3 5,15 4,04 2,15 0,0043 0,0164 

DDR2 1,92 0,08 3,57 0,0073 0,015 

AEN 6,17 4,89 2,43 0,0096 0,0146 

AKAP17A 6,99 5,87 2,16 0,0048 0,0142 

C21orf7 2,74 1,47 2,41 0,0009 0,0139 

ZNF790-AS1 1,93 0,56 2,59 0,0001 0,0136 

SLC3A2 8,71 7,66 2,07 0,0006 0,0132 

NT5E 8,03 6,91 2,18 0,0019 0,0115 

NGFR 2,57 0,6 3,91 0,0068 0,0115 

PMAIP1 5,52 4 2,88 0,0002 0,0113 

DHRS2 3,33 0,18 8,9 0,0047 0,0107 

  



189 
 

A 

 

 

B 

 

 

C 

 

 

 

 

 

 

 

 

 

 

 

 



190 
 

D 

 

 

Figure 8.2 | Putative promoter region of HORAS5 and TBSs. 
A. Sequence of 200bp upstream HORAS5 gene selected for in silico analysis of TBSs. B. 

List of TFs predicted to bind the 200bp upstream HORAS5 gene. C. View of the TFs 

binding specific 10bp sequences within the 200bp selected. The region 170-180bp 

contains the highest number of TFBs. D. Zoom of the region with the highest number of 

predicted TBSs.  
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