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Abstract

The aim o f  th is  d is s e r ta t io n  Is to study two aspects o f  the s t a b i l i t y  

propert ies of  a b io log ica l  community. These are f i r s t l y  t h e i r  re la t ionsh ip  

with  the s t ruc tura l  complexity o f  the community and secondly the e f f e c t  

of  spat ia l  heterogeneity o f  the environment in which the community l i v e s .

Chapter 1 introduces the subject o f  population dynamics and discusses 

the reasons fo r  using mathematical models to study i t .

The f i r s t  par t  o f  Chapter 2 defines the terminology, e spe c ia l ly  the 

meaning of s t a b i l i t y .  The second part  considers the b io log ica l  evidence 

fo r  a re la t ionsh ip  between s t a b i l i t y  and complexity while  the th i rd  part  

investigates the s t a b i l i t y  propert ies o f  mathematical models o f  communities 

of  varying complex it ies .  I t  is concluded that  there is no general  

re la t io n s h ip ,  but that the more complex a community the more u n l ik e ly  

i t  is to be s tab le .

The f i r s t  part  of  Chapter 3 discusses the b io l ig ic a l  evidence fo r  the 

importance of  the e f f e c t  of  spat ia l  heterogeneity on s t a b i l i t y  and 

proposes a d e f in i t io n  of  th is  term. The second part  describes d i f f e r e n t  

ways o f  modelling commwnitypopulation dynamics in s p a t i a l l y  heterogeneous 

environments. I t  is concluded th a t  spat ia l  heterogeneity is not l i k e l y  

to make a community less s tab le .
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Chapter 1 Introduction

1.1 .  Aim of the d is se r ta t ion

The aim of  th is  d is s e r ta t io n  is to study two aspects of  

bio logica l  population dynamics.

These are i )  the re la t ions h ip  between the s t a b i l i t y  o f  a

b io log ica l  community and the s t ruc tura l  complexity

of that community 

and i i )  the re la t ions h ip  between the s t a b i l i t y  of  a

b io log ica l  community and spat ia l  heterogeneity of

the hab i ta t  in which that  community e x is ts .
r

1 .2 .  Reasons fo r  studying Population Dynamics

A bio log ica l  population might be defined as a number of  

ind iv idua ls  of  a s ingle  species in one place.  The study of  

population dynamics involves investiga ting  how a populat ion changes 

through time and why. The value of  such studies is manifold and 

depends on the type of  population under considerat ion.

When the populations of  p a r t i c u la r  plants and animals grow 

above a cer ta in  s ize ,  they become what are known as pest species.

Examples of  pest species include the cottony cushion scale  

( Icerya purchasi) which attacks Citrus trees by sucking the sap 

from leaves and twigs, the froghopper (Aeneolamia v ar ia  saccharia) 

which attacks sugar cane in Tr in idad and the larch saw-f ly  

( P r is t iphera  e r ic h s o n i i ) which has been a serious pest of  larch  

trees in Canada since the las t  century.

Control of  pest populations is important both economically,  

espec ia l ly  to farmers,  and in the prevention o f  the spread of  

diseases such as malaria fo r  which the mosquito (Anopheles spp) 

is a vector and rabies for  which the red fox and l a t e l y  domestic 

dogs are vec tors .
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A control  s tra tegy may involve the use of  an expensive 

pest ic ide  or the introduction o f  a natural  enemy o f  the p a r t ic u la r  

pest species.  Whatever method is chosen, a good understanding of  

the underlying population dynamics of  the community involved is 

essent ia l  i f  an expensive waste o f  resources or undesirable side 

e f f e c t s ,  such as outbreaks o f  other pest species which h i th e r to  

had been under co n tro l ,  are to be avoided.

A good review a r t i c l e  discussing the importance of  studying 

population dynamics to pest control  s t ra teg ies  is given by May

(1976).

The study of  human populations is cal led  demography. I t  is 

important economically and s o c io lo g ic a l ly  fo r  those such as 

governments, socio logists  and town planners to be able to est imate  

confidently  how the human population is l i k e l y  to change over a 

period of  years. For instance, i f  the b i r t h  ra te  in a p a r t i c u la r  

country begins to f a l l ,  i t  is l i k e l y  that the number o f  teachers  

and even schools required in a number of  years time w i l l  be 

reduced.

The study of  human populations on a world scale is also  

important,  espec ia l ly  studies concerning the under-developed 

countr ies.  A good discussion of  world demography is given in Krebs 

( 1972) while  an introduction to demography is given by Bogue (1969)

Another aspect of  population dynamics is epidemiology,  the 

study o f  epidemic diseases and in p a r t i c u la r  how to control  them.

A good review of  the population biology o f  in fect ious diseases is 

given by Anderson and May (1979).

1 . 3 . The use of  Mathematics

In order to study population dynamics i t  is of ten necessary 

to count or est imate the number o f  individuals  in a populat ion  

at  a p a r t i c u la r  time. The use of  mathematics n a tu r a l l y  fol lows
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in at tempting to determine how the numbers change through t ime.

The appropr ia te  mathematics involve construct ing mathematical  

models.

In general mathematical models t e l l  us what may be not what is .  

This is t rue  even in physics. For instance,  Newton's Laws of  

Motion do not hold e x a c t ly ,  e s p e c ia l ly  fo r  small values of  mass 

and d is tance.  However measurements from physical experiments tend 

to be r e l a t i v e l y  constant from r e p l i c a t e  to r e p l i c a t e .  This is 

c e r t a i n l y  not so in b io log ica l  experiments.

Bio logica l  data is renouned fo r  i ts  v a r i a b i l i t y .  This is 

e s p e c ia l ly  apparant in many sets o f  data concerning populat ion  

bio logy,  whether i t  be, fo r  example, est imates o f  the number in 

a populat ion,  est imates o f  the number of  species in a p a r t i c u l a r  

h a b i t a t ,  or the number of  eggs la id  by a female housefly per day.

The f i t t i n g  o f  any model to b io lo g ic a l  data is th e re fo re  l i k e l y  

to be a formidable task.  Confidence in the mathematical models 

is o ften  low and conclusions drawn are open to extensive c r i t i c i s m .  

However there have been some notable successes in the f i e l d  o f  

populat ion dynamics which encourage mathematicians to persevere .

For instance,  the use o f  mathematical models in the f is h in g  

industry has proved very usefu l .  In p a r t i c u l a r ,  one e a r ly  model 

developed fo r  i ts  economic importance fo r  the dynamics o f  e x p lo i te d  

f i s h  populat ions by t raw l ing  in the North Sea is th a t  o f  Beverton 

and Hoit  (1957).

1 .4 .  Types of  Mathematical Models

Many d i f f e r e n t  types o f  mathematical models have been employed 

in populat ion dynamics. These include d i f f e r e n t i a l  equat ions,  

d i f fe re n c e  equations,  p ro b a b a l is t ic  models and s imulat ion models.
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D i f f e r e n t i a l  equations are of ten used to model populations  

(and communities) which e x h ib i t  co n t in u a l ly  overlapping generations ,  

tha t  is populations in which b i r t h  is e f f e c t i v e l y  a continuous 

process through t ime, as in humans. Such models tend to  break

down a t  low populat ions le v e ls ,  but have proved useful  in numerous

cases. The Lotka -V o l te rra  coupled d i f f e r e n t i a l  equations

dh = h(r -ocp) 1.1
dt

dp = p(-s+  ^  h) 1.2
dt

is a c la ss ic a l  example o f  such a model fo r  a predator  (p) -  prey 

(h) r e la t io n s h ip .

D i f ference  equations can be used to describe populations of  

species which have non-overlapping generations .  Insect pa ras i to ids  

(hymenoptera and d ip te ra )  tha t  a t ta c k  the insect herbivores (mostly  

lep idoptera )  have a generation time the same length as tha t  of  

t h e i r  hosts,  so that  fo r  instance,  i f  a hymenopterous a du l t  female 

attacks  the second ins ta r  larva o f  a species of  lep idepte ran ,  the 

development of  tha t  hymenopteran is timed so th a t  the next  

generation o f  females is f l y i n g  a t  the time the next second in s ta r  

of  the lepidopteran is a v a i l a b l e .  D i f ference  equations have been 

used extens ive ly  to model h o s t -p a ra s i t o i d r e la t io n s h ip s .  An 

inves t ig a t io n  of  the s t a b i l i t y  o f  such models is given by Hassel l  

and May (1973).

The r e s t r i c t i o n  to large numbers is s t i l l  important.

I f  the parameters in such equations are constant ,  the models

are de te rm in is t ic .  A random element may be introduced by a l lowing  

the parameters to vary, at  random through t ime.

I f  small populat ion numbers are to be considered,  growth in 

in tegra l  un its  can be described by p ro b a b a l is t ic  methods.



Continuous growth is modelled by considering the p r o b a b i l i t y  of  

a b i r t h  or death in an in f in i te s im a l  time in te rva l  whi le  in d iscre te  

growth a f ixed  time in te rva l  is chosen.

Markov chain type models have been used by fo r  example Z e ig le r

( 1977) to model s p a t ia l  heterogenei ty  o f  the environment and i ts  

e f f e c t  on the community dynamics. The h a b i ta t  is div ided into  

a d e f i n i t e  number o f  patches each of which can take on a number 

of s ta te s .  The t r a n s i t io n  between states  of  a p a r t i c u l a r  patch 

is then made to depend on the number of  patches in each s ta te  at  

a p a r t i c u l a r  t ime. T rans i t ion  may be continuous or d is c r e te .

Another popular way of describing population dynamics is by 

simulat ion models. These models can be very d e ta i l e d  and are  

usual ly  applied to s p e c i f ic  populations or communities. They are 

run on a computer ( d i g i t a l  or analogue) and are very f l e x i b l e ,  

e s p e c ia l ly  when inves t iga t ing  the e f fe c ts  of  d is c re te  events such 

as natural  catastrophies (e .g .  a sudden change in the environment)  

or control  s t ra teg ie s  (a p p l ica t ion  o f  an i n s e c t i c id e ) .  One 

example of  the use of  simulat ion models in populat ion dynamics is 

presented by Meek (1981) who modelled the l i v e r  f lu k e  in sheep 

in te ra c t io n  and in p a r t i c u l a r  investigated control  s t r a t e g ie s .

One f u r t h e r  way of  c la s s i f y in g  mathematical models is into  

general or s p e c i f ic  models. Both types of  model may be empir ical  

or complicated,  however the l a t t e r  type describes p a r t i c u l a r  

species or communities, as in the example by Meek re fe rre d  to above,  

whi le  the former type is used in an attempt to e s ta b l is h  general  

ecological  the or ies ,  i t  is the general approach and the d i f f i c u l t 

ies associated wi th i t  which are considered mostly in th is  

d is s e r ta t io n  and mainly d e te rm in is t ic  models are used.
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1 .5 .  Why Study S t a b i l i t y ?

The two aspects o f  population biology considered in th is  

disser ta t ion  both involve community s t a b i l i t y .  For the purpose 

of  th is  section s t a b i l i t y  w i l l  be defined to be a property a 

population has i f  i ts  numbers tend to remain a t  a more or less 

steady value fo r  a period of  t ime. S t a b i l i t y  w i l l  be defined more 

c a r e f u l l y ,  as indeed i t  has to be, in the next chapter,  however 

i t  is useful a t  th is  point  to consider why i t  is necessary to  

study s t a b i l i t y  in mathematical models of  b io log ica l  populat ions.

There are a number o f  important questions to be answered 

concerning population biology.  For instance, why do some species 

persis t?  Why do some species become ext inct?  Why do some species 

remain a t  low population numbers, then suddenly reach epidemic 

values? The spruce budworm ( E. choristoneura fumiferana) is an 

example of  one such species.  Why does the addi t ion of  a natural  

enemy to a pest population sometimes control  the number of  pests 

to a to le ra b le  but pers is tent  level? Why does th is  control  

strategy often f a i l ?

In order to answer these general questions by means o f  

mathematical models and in p a r t i c u la r  to determine c e r ta in  key 

factors  such as number and type of  l inks  in the food chain or  

heterogeneity of  the environment, i t  is useful to have a reference  

point from which to work. While populations in nature w i l l  always 

be subject to f luc tua t ions  due to a possibly uncountable number 

of  fa c to rs ,  a convenient and I fee l  appropr iate reference point  

to investigate  is the equi l ibr ium point (or points)  of  the 

mathematical model. A model can be considered to be a t  equ i l ib r ium  

i f  the populations numbers do not change through time unless they 

are perturbed. The s t a b i l i t y  of  the model can then be investigated
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by perturb ing the numbers from t h e i r  e q u i l ib r ium  values and 

monitoring whether they return to eq u i l ib r iu m .  In th is  way the 

importance of  the various parameters in the model concerning the 

above questions might be determined.

1 .6 .  The Importance of  D e f in i t io n s

One important considerat ion when applying mathematical models 

to describe the real  world is the consistency o f  terminology.  For 

instance,  what do we mean by s t a b i l i t y  o f  a b io lo g ica l  populat ion  

and how does th is  compare to the s t a b i l i t y  of  a mathematical  

model"? One essent ia l  way o f  avoiding confusion over terminology  

is to define  a l l  terms c le a r l y  and to demonstrate how the  

propert ies  o f  a model may be re la ted  to the real  world .

I hope that  th is  w i l l  be evicfent throughout th is  d is s e r t a t io n .
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Chapter 2 The re la t ions h ip  between the s t a b i l i t y  of  a natural  

community and i ts  s t ructura l  complexity

2 .1 .  Introduction

The object  of  th is  chapter is to demonstrate whether or not 

there is a general re la t ionsh ip  between the s t a b i l i t y  of  a natural  

community and the s t ruc tura l  complexity of  that community. We w i l l  

do th is  both by studying evidence from f i e l d  observations and by 

studying general mathematical models o f  community population  

dynamics.

We w i l l  need to define a number o f  terms and answer a few 

pre l iminary  questions,  namely:

i ) what is a population?

i i )  what is a community?

i i i )  how can a population change in size?

iv) how can we model this?

v) what do we mean by s t a b i l i t y  of  mathematical models?

v i )  how can we re la te  th is  d e f in i t io n  to natural  populations?

v i i )  what do we mean by complexity o f  a community?

We w i l l  then consider what types of  re la t ionsh ip  there may be

between s t a b i l i t y  and complexity and w i l l  re fe r  to evidence from 

f i e l d  experiments and the l i t e r a t u r e  fo r  and against these 

re la t ionsh ips .

F in a l ly  we w i l l  compare the conclusions from f i e l d  observations  

with  resu lts  obtained by considering the re la t ions h ip  between the 

s t a b i l i t y  of  solut ions of  simple mathematical models of  communities 

and the complexity of  these communities.

2 .2 .  D e f in i t io n  of  a population

I propose the fol lowing d e f in i t i o n  of  a population :

a population is a group o f  individuals  of  the same species
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in the same place at  the same time.

A number o f  other d e f in i t io n s  have been used in the l i t e r a t u r e .  

For instance, Williamson (1972) defines a population as a 'group 

of individuals  of  the same species in one place'  and Krebs (1972) 

uses the d e f in i t io n  'a group of  individuals  o f  the same species 

in a p a r t ic u la r  place at  a p a r t i c u la r  t im e ' .  Both these d e f in i t io n s  

can be c r i t i c i s e d  because they exclude groups of  indiv idua ls  which 

move locat ion ,  e .g .  during migrat ion.  Krebs d e f i n i t i o n  also implies 

that  the same group of  ind iv idua ls  forms a d i f f e r e n t  population  

at  d i f f e r e n t  times whereas i t  is a c t u a l ly  the same populat ion with  

d i f f e r e n t  population ch ara c te r is t ic s  (e .g .  s i z e ) .

Solomon (1962) defines a population as a group of ind iv iduals  

of  the same species.  This d e f i n i t i o n  is e s s e n t ia l l y  ident ica l  to  

the one I have used, the 'same place a t  the same t ime'  being implied 

My d e f i n i t i o n  automatica l ly  includes herds and f locks  which are 

groups of  ind iv idua ls  of  the same species which move around 

together.  The exact meaning of  the 'same place'  has to remain 

somewhat hazy, but fo r t u n a t ly  th is  does not r e a l l y  matter .  Den 

Boer ( 1968) attempts to include th is  in his d e f i n i t i o n :  a 

population is a group of  indivuduals of  one species l i v in g  in a 

specif ied l o c a l i t y  whose l im i t s  are s p a t ia l l y  determined by natural  

ba rr ie rs  or are a r b i t r a r i l y  set by the e co log is t .  For instance,  

we may consider the populations of  f i e l d  mice in a p a r t i c u la r  

f i e l d ,  in H er t fordsh ire ,  in England or in the world.  What one 

must do is to specify the locat ion .  Individuals  may migrate out 

of or into the location and hence may leave or jo i n  the populat ion  

at any time.
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2 .3 .  D e f in i t io n  o f  a community

I propose the fo l lowing d e f i n i t i o n  of  a community:

A community is a group of  populations in the same place at  

the same t ime.

As fo r  the d e f i n i t i o n  o f  a populat ion there  are a number of  

d i f f e r e n t  d e f i n i t i o n s  of  a community used in the l i t e r a t u r e .  For 

instance,  Krebs (1972) defines a community as an 'assemblage of  

populat ions l i v in g  in a prescribed area '  whi le  Fager ( 1963) uses 

the somewhat looser d e f i n i t i o n  ' a group o f  species which are of ten  

found l i v i n g  to g e th e r . '

Fager's d e f i n i t i o n  hints  tha t  there  may be something more 

fundamental about the concept o f  a community and indeed in nature  

community patterns do occur. That i s ,  c e r ta in  groups of  species  

do tend to be found l i v in g  together  more often  than o thers .  This  

has led to two schools of  thought as to the b io lo g ica l  s ig n i f ic a n c e  

of  the community. On the one hand ecologis ts  such as F.E.Clements  

and A.G.Tawley consider the community to be e s s e n t ia l l y  a b io lo g ica l  

organism or superorganism. On the other  hand the community may 

merely be a haphazard c o l le c t io n  of  species wi th  the same physical  

resource requirements.

These arguments do not concern our theme however. What is 

important is tha t  when a group o f  species l i v e  together in the 

same place ,  however tha t  place is defined,  they in te ra c t  and because 

they in te ra c t  the populat ion sizes of  the ind iv idual  species depend 

on the s t ruc ture  o f  the community.

2 .4 .  Why does the s ize  o f  a populat ion change through t ime?

The s ize  o f  a populat ion may change over a period o f  time 

due to at  least one o f  the fo l lowing reasons. Some ind iv idua ls  

may be born, some may d ie ,  some may emigrate to another populat ion  

of  the same species, and some may immigrate into the populat ion
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from another population of  the same species.

The effect  of  these events on the s ize  of  the population can 

be represented by what Williamson (1972) describes as the funda

mental equation of  population dynamics.

\ + û t  = + B -  D + I -  E 2 .1 .

where = number o f  individuals  in populat ion a t  time t

~  number of  individuals  i.n population at  time t+ût 

B = number of  b i r th s  during time in terva l  A t

D = number of  deaths during time in terva l  A t

I = number of  immigrants during time in terva l  A t

E = number of  emmigrants during time in terva l  A t

The numbers of  events,  B, D, I and E, tend to be functions  

of t ime, physical parameters and what might be termed ' l i v i n g  

parameters' .  Physical parameters include such factors  as weather 

and amount of  physical ( inorganic)  resource a v a i la b le  (e .g .  w a te r ) .  

'L iv ing parameters' may include the numbers of  indiv iduals  of  

cohabiting species present and behavioural aspects o f  these species 

(e .g .  predator-prey r e la t io n s h ip s ) .

Many physical factors  tend to be cont inua l ly  changing through 

time and indeed space. Consequently the rates of  change o f  indiv idual  

populations are l i k e l y  to be cont inua l ly  changing, and, because 

population change depends also on the so ca l led  ' l i v i n g  

parameters' ,  communities are cont inua l ly  changing in s ize .
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2 .5  How can we model population dynamics?

In Section 1,3 i t  was stated that i t  is natural  to use mathematics 

to attempt to expla in  how the s ize  of  a population changes through 

time (and indeed space),  and a number of  d i f f e r e n t  types of  

mathematical model that might be su i tab le  were b r i e f l y  mentioned.

Most of  these models are based on the fundamental equation of  

population dynamics:

’' t+At “ Xj. + B -  D + 1 - E

which is described in the previous section (equation 2 . 1 ) .

Here i t  is presented in the form of  a d i f fe rence  equation.

The equation has a p a ra l le l  formulat ion as a d i f f e r e n t i a l  equation,

i . e .  ^  = b -  d + i -  e 2 .2
dt

where x = x ( t )  is the s ize  of  the population at  t ime t  and b, d, i 

and e respective ly  are the instantaneous rates of  b i r t h s ,  deaths,  

immigration and emigration a t  time t .  As before these rates may 

be functions of  t ime, 'phys ica l '  and ' l i v i n g '  parameters.

i . e .  = b ( t , x , 2 )  -  d ( t , x , £ )  + i ( t , x , £ , )  -  e ( t , x , £ )
dt 2.3

where x . is the size of  the i^^ populat ion,

Ü “ (^1 > . . . . ,  x^)

where there are n species in the community, 

and £ ,  £ ,  £  and £  are sets of  parameters.

Equation 2 .3  may be w r i t te n  in the more general form

A i ;  = h ) 2 .4
dt

The simplest d i f f e r e n t i a l  equation which has been used to model 

population dynamics is the exponential  growth (decay) equation.

dx = <<x 2 .5
dt

where «<= b -  d + i -  e and is a constant.
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The rate  of  growth (decay) o f  the population a t  time t  is d i r e c t l y  

proportional  to the s ize  (x) of  the population a t  time t .  The 

constant of  p ro p o r t io n a l i ty  is in e f f e c t  a lumped parameter 

describing the net e f f e c t  o f  the four fundemental factors  of  

population change. This equation has proved to be a good model to 

describe the dynamics of  a population growing in an extremely 

favourable environment (Figure 2 . 1 ) .

oc

2  I • oj. ekefPAftAVtgwV .

A s l i g h t l y  more sophist icated d i f f e r e n t i a l  equation model of  

population growth is the l o g is t ic  equation.  This was f i r s t  

proposed by Verhulst  as f a r  back as I 838 as a model to describe  

human population growth, and was derived independently in 1920 by 

Pearl & Reed, again to model human population dynamics.

The equation is

= rx ( k -x ) 
dt k 2.6

Here r is the in t r i n s ic  rate  o f  natural  increase, tha t  is ,  the 

maximum rate of  increase the population can obtain under given 

condit ions.  I t  is assumed that there is no migrat ion

k is often ca l led  the carry ing capacity of  the environment.  

Essent ia l ly  the model assumes that there is a l im ited  resource 

ava i lab le  in the environment, so that i t  can only support a 

maximum number (k) of  indiv iduals  (Figure 2 .2 )
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The l o g i s t i c  equation has f requent ly  been used to model 'sigmoid'  

growth curves. For instance, G. F. Cause carr ied  out a number of  

experiments with  laboratory populations of  microorganisms during 

the 1930 ' s ,  and he f i t t e d  the lo g is t ic  curve to describe the 

population growth of  some individual  species (Cause (1937 ) ) .

The s u i t a b i l i t y  of  the lo g is t ic  curve to f i t t i n g  such responses 

has been questioned by various authors (Williamson (1972),  Sang 

( 1950) ,  and F e l le r  ('19^0) ) , however i t  has c e r t a in ly  proved a 

very useful f i r s t  approximation in the past.

Community population dynamics can be modelled by systems of  

d i f f e r e n t i a l  equations.

One of the simplest and most famous examples is the predator-prey  

model which was derived independently by Lotka (1925) & V o l te r ra  

(1926):

dh = (r-tx-p) h 
dt

dp = (-S + p h ) p
dt

2.6a

2.6b

The prey species h is assumed to grow exponent ia l ly  in the absence of  

predators p, while  the predator population s ize  is assumed to decay 

exponent ia l ly  in the absence o f  prey.  When both species are present,  

Qwcph is e s s e n t ia l l y  the rate at  which predators meet and successful ly  

k i l l  prey andfSph is the consequent increase in the instantaneous 

growth rate  of  the predator population.
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The pre d ic t ion  of  the equations is tha t  the populat ion s ize  of  

both the predator and the prey o s c i l l a t e s ,  the amplitude of  the 

o s c i l l a t io n s  being dependent e n t i r e l y  on the i n i t i a l  population sizes  

This model is c le a r l y  not very r e a l i s t i c  and has perhaps 

s u rp r is in g ly  been used a great deal as the basis fo r  more elabourate  

mathematical models (e .g .  Z e ig le r  (1 9 7 7 ) ) .  However again i t  has 

proved to be a very useful  approximation (Figure 2 . 3 ) .

t .S oicîUa.V%'o«LS by Wne

In general a community conta ining n species might be modelled by 

a system of  n d i f f e r e n t i a l  equation.

e .g .  ^  
dt

2 .7

J = i

The examples of  d i f f e r e n t i a l  equation models quoted above are  

r e l a t i v e l y  simple and correspondingly may be very u n r e a l i s t i c  

when i t  comes to applying them to p a r t i c u l a r  examples. However 

they may be made more sophist icated in a number o f  ways.

i ) Age s t ruc ture

Often w i th in  a populat ion ind iv idua ls  of  d i f f e r e n t  ages w i l l  have 

d i f f e r e n t  populat ion dynamics,.  Even so, i t  may s t i l l  be reasonable 

to use d i f f e r e n t i a l  equation models. For example, i f  the young of  

a p a r t i c u l a r  species are attacked by a p a r t i c u l a r  predator  but the  

adul ts  are not ,  the fo l lowing system of  equations may apply:

dy = ra -  (d s) y -  yp 
dt 2.1

da
dt

= sy -  ea
2 .9

dt
= -  tp + (3yp

2 . 1 0
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where y ,  a and p are the number o f  young prey,  adu l t  prey and 

predators respect ive ly  at  time t ,  ra is the b i r t h  ra te  o f  the 

prey,  dy is the death ra te  o f  young prey,  sy is the ra te  at  

which young prey become ad u l ts ,  ea is the adul t  prey death 

r a te ,  tp is the ra te  of  decrease o f  the predator populat ion in 

the absence o f  prey,  andocyp and j^yp are the instantaneous e f fe c ts  

o f  the predators successful ly  meeting and eat ing  prey on the young 

prey and the predator populat ions resp ec t ive ly .

i i ) Time delays

One immediate c r i t i c i s m  of  the Lotk a -V o l te rra  predatoi—prey model 

is that the e f f e c t  o f  the predators eat ing  prey a t  the ra te  hp 

at  time t  on the predator populat ion s ize  w i l l  not be instantaneous.  

One way o f  overcoming th is  is to introduce time delays in to  the  

d i f f e r e n t i a l  equations (equation 6a and 6b).

For example, the Lotk a -V o l te rra  equations may become

dh = ( r -ocp)h 2.11
dt

d2 = sp + /S h ( t -T )  p ( t - T )  2 .12
dt

where T is the time delay between when the predators ate  the prey 

and when there is a consequent e f f e c t  on the predator populat ion  

growth ra te .

This soph is t ica t ion  to the model is not in fa c t  p a r t i c u l a r l y  

r e a l i s t i c  ( f o r  instance the time delay T is not l i k e l y  to be 

c onstant ) ,  but serves to demonstrate one way in which time delays 

may be introduced into d i f f e r e n t i a l  equation models. May ( I972a)  

is one author who has discussed the e f f e c t  o f  introducing time delays  

on the ensuing population dynamics.
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i i i )  Spatial  héterôgehéity of  thé éhvirôhméht

The environment in which a population or community l ives  may

9 d i f f e r e n t  set o f  conditions to each individual  depending 

on i ts  exact location w i th in  the environment, and th is  may a f f e c t  

the overa l l  population dynamics. This is e sp ec ia l ly  true  fo r  plants  

and fo r  animals which do not move f a r  r e la t i v e  to the environment 

under considerat ion.  For instance, the environment may be a 

p a r t i c u la r  f i e l d  which is on a h i l l ,  and a d iv e r s i t y  in conditions  

with in  the f i e l d  may be decreasing water content in the soi l  
depending on distance up the h i l l .

Spatial  heterogeneity is discussed in more d e ta i l  in chapter 3.

As was pointed out in Section 1.3 d i f f e r e n t i a l  equations are not 

the only type of  mathematical model that might be used to describe  

population dynamics, and indeed i t  is of ten not appl icable  to 

use them. In p a r t i c u la r  i t  is not r e a l i s t i c  to use d i f f e r e n t i a l  

equations to model populations which have non-overlapping generations.  

Also, because population change occurs in d iscre te  steps,  they do 

not apply when the s ize  of  the population is small .  However such 

models can often be useful both in modelling s p e c i f i c  populations  

and, more important from the point of  view of th is  d is s e r ta t io n ,  

they might be used to explore general ecological  theor ies .

2 .6  D e f in i t io n  of  s t a b i l i t y

The s ize  of  a natural  population tends to be c o n t in u a l ly  changing 

through time. Often,  a t  least over short periods of  t ime, these 

changes demonstrate some d e f i n i t e  trend. For instance, the population  

size may be growing; i t  may be decreasing; or i t  may demonstrate 

regular or i r re g u la r  cycles.  These trends may occur fo r  a number 

of reasons. A species may have invaded a hab i ta t  which is p a r t i c u l a r l y  

favourable.  I t  is c le a r ly  inconceivable that a populat ion should 

continue to grow in s ize  ad in f in i tum as there can only be a f i n i t e  

amount o f  resource (e .g .  space) a v a i la b le .  Therefore,  e i t h e r  some 

regulat ion of  the population growth w i l l  occur,  or the resources w i l l
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be used up, the individual  members o f  the populat ion w i l l  s ta rve ,  

and the population size w i l l  be d r a s t i c a l l y  reduced. In the l a t t e r  

case the population might be said to be 'u n s ta b le ' .  In the former

case the population 'may' be ' s t a b l e ' .

Many ecologists do not attempt to define s t a b i l i t y  in the l i t e r a t u r e .  

This may be because a s a t is fa c to ry  d e f i n i t i o n  does not e x i s t .  However,

much of the research into population dynamics using mathematics has

concerned s t a b i l i t y  and therefore  i t  must be necessary to be able to  

re la te  th is  s t a b i l i t y  to that o f  the b io log ica l 'popu la t ions  being

modelled.

Orians (1974) recognised th is  and complained 'concepts are normally 

discussed with poorly defined terms, re f l e c t in g  an uncer tainty  

about what concepts o f  s t a b i l i t y  are useful in ecology and, even 

more important,  what we wish to understand about natural  ecosystems'.

He is supported by Margalef (1968) who went as f a r  as saying ' i t  is 

perhaps questionable whether the term s t a b i l i t y  should be re ta ined ,  

as i t  has been used too much in d i f f e r e n t  and divergent s p e c u la t io n ' .

Krebs (1972) suggested that a population is stable  i f  i t  pers is ts  

in the face of  f luc tua t ions  or i f  i t  demonstrates a lack of  or only 

small f lu c tu a t io n s .  Elton (1958) defined a populat ion to be 

unstable i f  i t  is 'more subject to dest ruct ive  o s c i l l a t i o n s ' ,  

while Will iamson (1972) implied a s im i la r  d e f i n i t i o n  and suggested 

fu r th e r  that some measure of  population size  v a r i a b i l i t y  might also  

measure s t a b i l i t y .

The u n s u i t a b i l i t y  of  Kreb's d e f in i t i o n  is c le a r l y  shown by the 

example he used to demonstrate what he considers to be a stable  

populat ion.  This is the tawny owl population near Oxford, England 

between 1947 and 1959, the graph of which is shown in Figure 2 .4 .

The population c e r t a in ly  demonstrates only minor f lu c tu a t io n s  and 

persis ts  over the period of  time studied,  and i f  th is  is to be a 

reasonable d e f in i t io n  of  s t a b i l i t y ,  then the populat ion is s ta b le .  

However the population s ize  is c le a r ly  increasing wi th time and in the  

s p i r i t  of  the opening paragraph of th is  section,  i t  is not i n t u i t i v e l y  

stab le .
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I n t u i t i v e l y  a population is s table  i f  i ts  size remains constant 

over a period o f  t ime, and th is  constant level  is maintained even 

when factors  on which the population depends are subjected to 
perturbations.

At th is  point  i t  is sensible to define mathematical s t a b i l i t y .

2 .6 .1  Mathematical s t a b i l i t y

Let P be a mathematical model of  a b io log ica l  populat ion.

Let x ( t )  measure the predicted size o f  th is  population at  time t .

Then x ( t )  is generated by the model P and therefore  depends on 

the parameters of  the model. These parameters w i l l  measure some 

of the factors discussed in Section 2 .4  and the model w i l l  be 

some formulat ion of  the fundamental equation of  population  

dynamics (Equation 2 . 1 ) .

For example, the model may be the l o g i s t i c  equation (Equation 2 .6 )  

in which r ( )o)  is a measure of  the maximum (or i n t r i n s ic )  ra te  

of  increase o f  the population and k ( x)) is a measure of  the 

carrying capacity of  the environment, tha t  is the maximum number 

of ind iv idua ls  that the hab i ta t  can support.

There are two types of  s t a b i l i t y  to be discussed: local  and g lo b a l .  

A population which is g loba l ly  s table  is automatica l ly  l o c a l l y  

stab le ,  but a population which is lo c a l ly  stable  is not necessar i ly  

g loba l ly  s tab le .
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A population model is lo c a l ly  stable  i f

. \ *
i )  there is a population s ize  x (>o) such that i f  the

population a t ta in s  that s iz e ,  i t  w i l l  remain a t  that

s ize  unless d is turbed.

and i i )  i f  the population s ize  is disturbed s l i g h t l y

from th is  equi l ibr ium s ize ,  the model w i l l  dr ive  

the s ize  back to th is  value ,  though i t  may take 

i n f i n i t e  time.

For example, in the lo g i s t i c  model (Equation 2 .6 )  the values 

X =o and x =k are both equi l ibr ium points.

îV
F i r s t  consider the point  x =o.

Let x ( t )  = X + ^ ( t )  denote a small disturbance from th is  equ i l ib r ium .

Then d x ( t )  = d £ ( t ) = r l ( t )  (k -  l ( t )  2.13
dt dt

I f  we neglect a l l  terms of  order two and higher i n ^ ( t ) ,  th is  equation 
reduces to

d ^  ( t )  = r £ ( t )  2.14
dt

and the solut ion of  th is  gives

E  ( t )  = £ (o )  e*"*

Clear ly  i f  the population s ize  is disturbed from a value of  zero 

by a small amount, then the s ize  w i l l  tend to grow. The e qu i l ib r ium  

size  X = o is therefore lo c a l ly  and hence g lo b a l ly  unstable.

Now l e t  us consider the point  x = k

•  ^
Following the above procedure, l e t  x ( t )  = x + £ ( t )  = k + E ( t ) .
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Then d x ( t ) = dSj(t) = r ( k + £ ( t ) )  ( l -  K-t- £ ( t )  )
dt  dt  k

= -  r (k + £ ( t ) )  Z ( t )  2.15
k

Neglecting terms of order two or above In S ( t ) , th is  equation 

reduces to

d £  ( t )  = - r £ ( t )  2.16
dt

and the solut ion of  th is  gives

£ ( t ) = £ ( o )  e’ ''‘  2 .17

This demonstrates th a t ,  i f  the population s ize  is disturbed s l i g h t l y  

from the value k,  i t  w i l l  tend to return to k. This equ i l ib r ium  

point is therefore  lo c a l ly  s tab le ,  though not necessar i ly  g lo b a l ly  

stab le .

A population is g loba l ly  stable  i f

i ) there is a population s ize  x (>o) such t h a t ,  so long 

as the population s ize  is greater  than 0 a t  some time

t ,  the population is bound to a t t a i n  tha t  s ize  and

w i l l  stay there unless dis turbed.

and i i )  i f  the population is disturbed from x , so

long as x ( t )  does not become o,  the model w i l l  d r ive

the population s ize  back to x .

In p a r t i c u l a r ,  fo r  d i f f e r e n t i a l  equations of  the general form

dx = f ( x ,  p) 2.18
dt

where £  is the parameter set ,  Lyapunov has shown that  an 

equi l ibr ium point is g loba l ly  s table  i f  there ex is ts  a function  

v(x)  such that
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i ) v (x )  X 0 fo r  a l i  x

3nd î î )  dv(x) evaluated at  x=x Is greater  than 0
dt

For the l o g i s t i c  model l e t  v (x )  = - ( k - x ) 2  

Clear ly  v(x)   ̂ o fo r  a l l  x

and = 2 (k -x )  dx
dt dt

= 2rx (k-x)  (k-x)
K

= 2rk (k -x )2  > 0 fo r  a l l  x > o 2.19

Therefore the equi l ibr ium point x = k is g loba l ly  s tab le .

2 .6 .2  How can we re la te  th is  mathematical d e f in i t io n  of  s t a b i l i t y  to  

a natural  p o p u l a t i o n ? _______________________________________

To answer th is  question i t  is necessary to consider what information  

is a v a i la b le  concerning the s ize  of  the natural  populat ion.  What 

the ecologis t  usual ly  has or can obtain is a series  of  est imates  

of the population size over a period of  t ime. These estimates may 

in fa c t  be actual  counts, in which case there is an accurate  

history  of  the results  of  the population dynamics over tha t  period.  

More o f ten ,  however, these estimates are r e la t i v e  counts. For 

example, the number of  individuals  in a small port ion of  the h a b i ta t  

is counted and an estimate of  the to ta l  population s ize  is ca lcu la ted  

by mul t ip ly ing  th is  number by the number of  such port ions in the 

h a b i ta t .  Southwood (1966) has described a number o f  methods of  

estimating the size of  natural  insect populat ions.  Such estimates  

are subject to sampling errors  and, such is the nature o f  b io log ica l

data ,  these errors  are l i k e l y  to be large .
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The eco logis t  can use the sort  of  data discussed above to decide 

whether or not the population s ize  is s tab le ,  a t  least over a 

period o f  t ime, in the mathematical sense that I have defined.

That is ,  he must decide whether the population s ize  can be 

considered to be constant over the period of  t ime, and, i f  so 

whether any f luc tua t ions  in the population s ize  are of  a reasonably 

small amplitude.  The questions now are what do I mean by 'can be 

considered to be constant '  and ' f lu c tu a t io n s  are of  a reasonable s ize '

These questions are perhaps eas ier  to answer i f  absolute counts are  

a v a i l a b le ,  however, i f  we assume that sampling errors  are e i t h e r  

completely random or highly  p o s i t iv e ly  corre la ted  with  the absolute  

counts, then i t  is r e l a t i v e l y  simple in many cases to decide whether 

the s ize  of  a population is not constant over a period of  t ime.

The population size cannot be considered to be constant i f

i )  the s ize  demonstrates a s ig n i f ic a n t  increase (e.g  

Figure 2 .4 )

i i )  the size demonstrates a s ig n i f ic a n t  decrease (e.g  

Figure 2 .5)

i
If
9

»9VS \9So »9€o

SnfAUtS, CocuV W.A/wcr;cê
(  K f tV i  C \ p m ) )  .

i i i )  the s ize  demonstrates d e f i n i t e  cycles of  regular  or  

i r re g u la r  period and varying or constant amplitude  

(e .g .  Figure 2. 6)
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In many other cases the population s ize  w i l l  demonstrate no d e f i n i t e  

pattern or trend.  Are such populations varying,  due to a continual  

perturbation of  the c o n t ro l l in g  parameters, about a constant  

equi l ibr ium level  or are such populations in a completely uncontrol led  
state?

From a pract ic a l  point  of  view I suggest that the answer to th is  

question depends to some extent  on the value of  the running mean of  

the population s ize  and espec ia l ly  on the size  of  the observed 

f lu c tu a t io n s .

I f  the population is f lu c tu a t in g ,  due to perturbat ions in the 

c o n t ro l l in g  fa c to rs ,  about a constant equ i l ib r ium  le v e l ,  then the 

running mean m(t) ( that  is ,  m(t)  is the mean populat ion count 

between the beginning of  the time period and time t )  is l i k e l y  to be 

reasonably constant.  Some sensible l im i t s  should be set such t h a t ,  

i f  the running mean goes outside these l im i ts  (and stays outs ide  

fo r  some t im e ) ,  the population s ize  can no longer be considered 

to be constant.  These l im i ts  may be defined s t a t i s t i c a l l y ,  perhaps 

taking into account known sampling e r ro rs ,  or they may be set  

by the eco logis t  using his working knowledge (or indeed a Baysian 

approach).
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The value of  the running mean determines the eq u i l ib r iu m  level  of  

the populat ion s iz e .  The s ize  of  the f lu c tu a t io n s  are the key to  

determining s t a b i l i t y .  C lear ly  d i f f e r e n t  species and d i f f e r e n t  

condit ions lead to d i f f e r i n g  p o te n t ia ls  fo r  increase,  and i t  may 

be that  species with  high i n t r i n s i c  rates of  increase (sometimes 

l ab e l led  r -species) may be inherent ly  more unstable.

However the s ize  o f  f lu c tu a t io n s  must be compared to the s ize  of  

the mean level  in order to give an ind ica t ion  of  s t a b i l i t y ,  tha t  is 

4t is the r e l a t i v e  s ize  of  the f lu c tu a t io n s  th a t  is important.

I suggest tha t  the c o e f f i c i e n t  of  v a r ia t io n  is a s u i ta b le  in d ica to r  

of  s t a b i 1 i t y .

The c o e f f i c i e n t  of  v a r i a t io n  o f  the populat ion s ize  over a period  

of  time is defined as one hundred times the standard de v ia t ion  of  

the s ize  divided by the mean s iz e .  The smaller th is  va lue ,  the more 

l i k e l y  the populat ion s ize  is to be a t  a ( l o c a l l y )  s tab le  e q u i l ib r iu m .

For example, consider Figure 2 .7 .  I t  is c le a r  th a t  the hypothetical

populat ion 2 is f a r  more l i k e l y  to be s ta b le ,  than hypothetical

population 1 and th is  is r e f le c te d  by the d i f fe re n c e  in the

c o e f f i c i e n t s  o f  v a r ia t io n  which is 52% fo r  populat ion 1 a n d .13%
fo r  p’opulatio.n 2.

The c o e f f i c i e n t  o f  v a r ia t io n  as a measure o f  v a r ia t io n  can only be 

considered a crude p r a c t ic a l  guide to s t a b i l i t y  and may indeed be h igh ly  

misleading in some cases. A more sophist icated way o f  measuring the  

s t a b i l i t y  o f  natura l  populat ions by assessing the v a r i a t i o n  o f  populat ion  

numbers about mean leve ls  can be provided by s tochastic  populat ion models 

an introduction to the theory o f  which is presented by B a r t l e t t  ( i 9 6 0 ) .
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2 .6 .3  Conclusions

The type of  populat ion (and hence community) s t a b i l i t y  relevant  

to th is  d is ser ta t io n  is tha t  which perta ins to the s ize  of  the 

population (and to the s ize  o f  the member populations of  the community)

The mathematical d e f in i t i o n  of  th is  s t a b i l i t y  is precise.  In nature 

i t  is d i f f i c u l t  to apply a p a ra l le l  d e f i n i t i o n ,  but I suggest the 

fo l lowing ‘ pract ica l  r u l e ' .

The size of  a natural  population might be considered to be a t  a 

l o c a l ly  s table  equ i l ibr ium level  between times t1 and t2 i f

i )  the running mean s ize  l i e s  between cer ta in  l im i ts

and i i )  the c o e f f i c ie n t  of  v a r ia t io n  of  the s ize  between

these times is less than a c er ta in  percentage.

The exact values of  the c r i t i c a l  l im i t s  in th is  ru le  need fu r t h e r  

thought and I do not feel  q u a l i f ie d  to make any suggestions 

without having examined a large amount of  re levant data.  However 

th is  is not relevant to th is  d is s e r ta t io n .  What I have t r i e d  to do 

in discussing s t a b i l i t y  is to demonstrate how a p a r t i c u la r  

mathematical d e f in i t io n  of  s t a b i l i t y  might be applied to natural  

populat ions,  and I fee l  tha t  i t  is th is  re la t ionsh ip  which should 

be c a r e fu l l y  assessed when in te rp re t in g  the resul ts  from mathematical  
models.

2 .7  Community Structure

In order to define the complexity o f  a community, i t  is f i r s t  

necessary to b r i e f l y  discuss community s t ruc ture .  By community 

structure  I mean the funct ional  re la t ionships  w i th in  and between 

species in the community. Functional re la t ionships  involve how 

members of  a species re la te  to t h e i r  environment and, in p a r t i c u l a r ,  

th is  means what food they eat and what physical resources they share 

with other species.  These re la t ionships  determine the dynamics of  

the community population s izes .
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I f  the populat ion s ize  o f  one species in the community is d i f f e r e n t

in the absence than in the presence o f  a second species ( a l l  o ther

population sizes being held constant ) ,  then we say the two species

in t e r a c t .  Some in te rac t ions  are obvious.  For instance,  individual

A may eat indiv idual  B. I f  A and B are from d i f f e r e n t  species,

th is  is a predator-prey  r e la t io n s h ip .  I f  they are  from the same 
species,  th is  is cannibal ism.

Some in te rac t ions  are not so obvious.  For example, Birch (1957) 
defines competit ion as fol lows:

Competition occurs when a number o f  organisms (o f  the same or of  

d i f f e r e n t  species) u t i l i z e  common resources that  are in short  

supply; o r ,  i f  the resources are not in short supply,  competit ion  

occurs when the organisms seeking that  resource nevertheless  
harm one or other  in the process.

Will iamson (1972) argues tha t  i t  is not the type o f  in te rac t ions  

th a t  is important when studying population dynamics but the e f f e c t .  

Following Odum (1953) he l i s t s  the fo l lowing e f f e c t s :

+ + (e .g .  symbiosis)

+ o (e .g .  commensal ism)

+ -  (e .g .  predator-prey)  

o -  (e .g .  amensalism)

-  -  (e .g .  competit ion)

A p o s i t ive  sign (+) indicates that  the populat ion s ize  o f  tha t  

species increases in the presence of  the other  species,  a negative  

sign ( - )  indicates a decrease and a zero indicates no e f f e c t .

Probably the most important e f f e c t  is the + -  e f f e c t  which is caused 

by one species eat ing or l i v i n g  o f f  another .  Because species do 

not eat  every other species,  i t  is possible to d iv id e  the community 

into t rophic  l e v e ls .  Species a t  the same trophic  level  have 

s im i la r  eat ing  hab i ts .  For example the community may consist  of  

p la n ts ,  herbrvors and carn ivors ,  each type of  organism c o n s t i tu t in g  

a t rophic  l e v e l .  In pra c t ic e  th is  's t ru c tu r in g *  o f  the community is
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not s t ra ight forw ard  ’ however (and the d e f i n i t i o n  o f  a trophic

level is not c le a r )  and there  may be several  leve ls  fo r  a p a r t i c u l a r
community.

Another important e f f e c t  is tha t  caused by competit ion.  Because 

species in d i f f e r e n t  trophic  leve ls  tend to d i f f e r  b i o l o g i c a l l y ,  

they a lso tend not to compete. Competition occurs mainly w i th in  

trophic  leve ls  e i t h e r  fo r  food or space. However, many ecologists  

have argued that  competit ion does not occur in nature ,  a t  least  

where some sor t  of  e qu i l ib r ium  s ta te  has been achieved. Causes (1934) 

famous experiments involving paramecium led him to suggest tha t  

two species wi th  a s im i la r  ecology cannot l i v e  in the same community. 

This idea was developed f u r t h e r  by Hardin ( i960) who s ta tes  that  

species in nature are not in competit ion.  .Unfortunately experimental  

and natura l  evidence fo r  and against  th is  argument are d i f f i c u l t  

to i n t e r p r e t .  ~

2 .8  Community complexity

Krebs (1972) l i s t s  f i v e  c h a r a c te r is t ic s  of  a community:

i )  species d iv e r s i t y

i i )  growth form

i i i )  dominance

iv)  r e l a t i v e  abundance

v) trophic  s t ruc ture

Will iamson (1972) l i s t s  many more propert ies  of  a community 

tha t  may be measured and d iv ides them into four classes:

Class A Class B Class C Class D

richness s t r a t i f i c a t i o n  metabolism v u l n e r a b i l i t y

d i v e r s i t y  periodism energetics s t a b i l i t y

complexity succession success

climax d is t r i b u t i o n

development

l a t i t u d i n a l  v a r ia t io n
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Class A are propert ies re la ted to the number of  species.  Class B 

are ecological  propert ies of  communities which change through 

e i t h e r  space or time. Class C re la tes  to the f low of  energy 

through a community. Class D are propert ies measured on the 

observed changes of  numbers in time.

Notice that Williamson includes complexity as a property of  a 

community that might be measured. At f i r s t  s ight  i t  may appear 

that  the complexity of  a community depends on most o f  these 

propert ies .  For example, i t  may be that the greater  the s t r a t i f i c a t i o n ,  

the more complex the community might be considered to be. However, 

in th is  chapter we are concerned with invest iga t ing  the r e la t io n s h ip ,  

i f  any, between community s t a b i l i t y  and complexity.  We have 

already discussed that the way to investigate  th is  mathematical ly  

is to consider the community to be in equi l ibr ium and we have 

noted th a t ,  given the community s t ruc ture ,  i t  is the population  

dynamics that determines the s t a b i l i t y .  We then discussed that  

community s tructure  depends on the species present and how they 

react with  themselves, with each o ther ,  and wi th t h e i r  environment.

We should therefore  include in any l i s t  o f  community propert ies

i )  physical environment (hab i ta t  including c l imate )

and i i )  species in te ractions  ( includes t rophic  s t ru c tu re ,
competit ion)

The physical environment determines the type and strength o f  the 

in te rac t ions ,  (e .g .  whether competit ion occurs).

I f  a community is assumed to have reached some sort  of  e qu i l ib r ium  

in terms of  d iv e r s i ty  and population s izes ,  then such propert ies  

as isuccess io.n, climax and development can be considered to have 

reached a conclusion.  Propert ies such as energetics and metabolism 

are contained in the strength of  the community food l in k s .  Propert ies  

such as growth form, dominance, r e la t i v e  abundance, s t r a t i f i c a t i o n  

and periodism are the results  of  the population or community 
dynamics.
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The complex i ty  o f  the community is t h e r e f o r e  determined by

i )  the number of  species in the community 

and i i )  the number and the strength of  species in te rac t ions .

Although in nature the number and strength of  species in te ractions  

may be subject to great v a r i a b i l i t y ,  th is  need not concern us when 

considering equ i l ibr ium condit ions.

2 .9  Evidence that s t a b i l i t y  increases as the community becomes more complex.

2 .9 .1  Introduction

The proposit ion that community s t a b i l i t y  increases as the community 

becomes more complex was widely (w i ld ly?) supported by ecologis ts  

in the 1950's and e ar ly  19&0's. In p a r t i c u la r  i t  is a view which 

was shared by Hutchinson (1959),  Elton (1958),  A l l e e ,  Emerson,

Park and Schmidt (1949) ,  and Odum (1953),  and i t  is a theory 

which was 'proved' to be mathematical ly v a l id  by MacArthur (1955).

I w i l l  consider the arguments of  three of  these authors in more 

d e ta i l  and then discuss a f i e l d  experiment by Pimentel ( 196I )  

which was designed to tes t  th is  propos it ion .

2 . 9.2  R.H. MacArthur (1955).

MacArthur (1955) is one of  the few authors who has attempted to 

define community s t a b i l i t y .  He observed that in some communities 

the abundances of  populations tend to remain qu i te  constant  

while  in other communities they tend to vary considerably.  The 

f i r s t  type of  community we tend to c a l l  s tab le ,  the second unstable.

This observation led him to o f f e r  the fol lowing q u a l i t a t i v e  

d e f in i t io n  of  community s t a b i l i t y .

D e f i n i t i o n : i f  one species in the community has abnormal abundance 

at  a p a r t ic u la r  t ime, the community is unstable i f  the populat ion  

numbers of  the other species in the community change markedly in 

abundance as a resu l t  of  the f i r s t .
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This d e f in i t io n  might be considered identica l  to saying that  

i f  a community is disturbed from an equi l ibr ium in some way, 

the community is unstable i f  i t  f a i l s  to return to equ i l ib r ium ,  

i f  a l l  f lu c tu a t io n s  tend to die  o u t , ' t h e  community'is s tab le .

MacArthur fol lowing Odum (1953) went on to put forward a 

q u a l i t a t i v e  condit ion fo r  s t a b i l i t y .  The more choice of  

food species each species has, the more s table  the community.

That is ,  the more complex the community food web, the more s table  

the community. He ra t iona l ised  th is  viewpoint by considering  

that  i f  one species in the community is p a r t i c u l a r l y  abundant,  

then i t  w i l l  need many predators to d iss ipate  the energy 

and hence dampen any adverse e f fe c ts  on community s t a b i l i t y ,  and 

i t  w i l l  need a large number of  prey,  so that no one prey species 

is l i k e l y  to be reduced to a dangerously low l e v e l .

MacArthur then attempted to prove mathematical ly that g reater  

community complexity leads to greater  community s t a b i l i t y .

He made the fol lowing assumptions.

i )  The more choice of  food a species has, the more stable  

the community.

i i )  I f  each species in the community has a t  most only one 

predator and one prey,  s t a b i l i t y  is minimised.

i i i )  Community food webs which give ident ica l  choice in 

terms of  p r o b a b i l i t i e s  have equal s t a b i l i t y .

Consider fo r  example the two food webs i l l u s t r a t e d  below

(Figure 2 .8 )  which, by the above assumptions, are required to demonstrate

equal s t a b i l i t y .
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The p . ‘ s în the diagrams represent the proport ions o f  the to t a l  

number of  the prey species of  a p a r t i c u l a r  predator  formed by the 

prey species i .  For instance,  in Figure 2 .8  ^  p  ̂ is the f r a c t io n  

of  the prey species b and e eaten by the predator a ,  tha t  is p^=?.

Based on these assumptions MacArthur determined to f in d  a function  

which would measure s t a b i l i t y .  He rea l ised  th a t  these are the assumptions 

tha t  Shannon and Weaver (1949) used to de fine  the entropy function in 

communication theory.  This function is uniquely determined (apart  

from a constant)  by the assumptions and can be w r i t t e n  as 

n

S = -  f j log ( f  j)
j  = i

2 . 20

Where S is s t a b i l i t y  and the f j  are the products o f  the p. along 

each of  the n paths through the food web.

For example, fo r  the food web in Figure 2 .8  a )

S=- (P jP j  log (? ,P , )  + P,Pi, log (p ,P i )  + P2P5 log (p^Pg) + p^P^ log 

log (4 ) .

I f  th is  measure of  s t a b i l i t y  is reasonable,  a number of  in te re s t in g  

observations can be made.

-  32 -



i )  S t a b i l i t y  increases as the number of  l inks  increases.

i i )  I f  the number o f  prey species f o r  each species remains

constant ,  an increase in the number o f  species in the  

community w i l l  increase the s t a b i l i t y .

i i i )  A given s t a b i l i t y  can be achieved e i t h e r  by a large  number

of  species wi th  a f a i r l y  r e s t r i c t e d  d i e t ,  or  by a smaller  

number o f  species each eat ing  a wide v a r i e t y  o f  the other  

species.

iv)  The maximum s t a b i l i t y  possible fo r  n species a r ises  when

there are n t roph ic  leve ls  wi th  one species on each, eat ing  

a l l  species below. The minimum s t a b i l i t y  would a r is e  with  

one species eat ing  a l l  the o thers ,  these a l l  being on the  

same trophic  l e v e l .

One cannot c r i t i c i s e  the mathematics associated wi th  MacArthur's  

argument, but one can argue wi th  both his assumptions and his approach 

in genera l .  MacArthur's f i r s t  assumption is th a t  g re a te r  choice of  

prey leads to g rea te r  s t a b i l i t y .  Surely th is  is j u s t  a statement of  

the 'theorem' he proceeds to prove and th is  is th e re fo re  not 

s u rpr is ing .

Of g re a te r  s ig n i f ica n ce  I fee l  is tha t  MacArthur based his arguments 

on s t a t i c s  ra ther  than dynamics. I t  may be i n t u i t i v e l y  sensib le  to  

assoc iate  g re a te r  s t a b i l i t y  w i th  g reater  choice,  however what is 

also important is the actual  numbers of  each species present a t  a 

p a r t i c u l a r  t ime. We have seen th a t  these numbers tend to change 

through time due to unpredictable  densi ty  independent fa c to rs  and 

to density  dependent fa c to r s .  I t  is the s t a b i l i t y  o f  the dynamics 

of  the community tha t  is o f  i n te re s t  and i t  may be th a t  a simple system 

is f a r  more s tab le  than a complex one.
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2 .9 . 3  C. S. Elton

2 .9 . 3 .1  C. S. Elton (1958)

Elton ( 1958) c o l la te d  s ix  pieces o f  evidence which he claimed 

suggested tha t  the 'balance of  r e l a t i v e l y  simple communities of  

plants  and animals is more e a s i l y  upset than th a t  o f  r ic h e r  ones; 

th a t  i s ,  more subject  to d es t ru c t iv e  o s c i l l a t io n s  in populat ions and 

more vulnerable  to invas ions ' .

This evidence may be l i s t e d  as fo l lows:

i )  mathematical models of  simple two species communities tend 

to be unstable.

i i )  laboratory  experiments involving  simple communities ( f o r  

instance.  Cause (1934))  o f ten  show them to  be very unstable .

i i i )  na tura l  hab i ta ts  on small islands seem to be much more 

vulnerable  to invading species than those of  the c o nt inen ts .

iv)  invasions and outbreaks most o ften  happen on c u l t i v a t e d  or

planted land.

v) t ro p ic a l  ra in  fo r e s t s ,  which may be described as having complex

communities, do not tend to s u f fe r  outbreaks of  pests.

v i )  pest ic ides  have caused outbreaks by the e l im in a t io n  of  

predators or paras i tes  from the insect community o f  crop plants  

in p a r t i c u l a r  orchards.

Elton concluded that  complexity o f  populations is a property  o f  the 

community to be studied and used in conservation and he stressed the  

importance o f  learn ing how to manage the environment,  using general  

laws l i k e  t h i s ,  fo r  three ends:
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i )  to c reate  refuges fo r  w i ld  animals.

i i )  to make our surroundings in te re s t in g  and s a t is f y in g .

and i i i )  to promote the s t a b i l i t y  o f  populations and a var ied

community in which a l l  kinds o f  compensatory pressures 

w i l l  be exercised on populat ions.

2 . 9 . 3 . 2  Discussion o f  E l to n 's  ideas

Each piece o f  evidence on which Elton based his conclusions is 

e i t h e r  d i r e c t l y  misleading or can equa l ly  wel l  be in te rp re ted  in 

other  ways. I shal l  consider each piece o f  evidence in tu rn .

i )  Mathematical models o f  simple two species communities

can indeed be unstable,  but th is  is not necessar i ly  so

and, as we shal l  discover ,  mathematical models o f  more complex 

communities can be less s ta b le .

i i )  At the time Elton was w r i t in g  many laborato ry  experiments  

including simple communities, e s p e c ia l ly  those conducted

by Cause using parameciae, had o f ten  shown such communities 

to be unstable.  At the same t ime,  there was l i t t l e  evidence  

from laboratory  experiments tha t  more complex communities 

were more l i k e l y  to be s ta b le .  Fur ther ,  laborato ry  

communities are by t h e i r  nature a r t i f i c i a l  and t h i s ,  as we 

shall  discuss l a t e r ,  may be important.

i i i )  E l to n 's  t h i r d  piece o f  evidence,  tha t  natura l  h a b i ta ts  on

small islands tend to be more vulnerable  to  invasions than those 

of  the c on t in e n ts *h ig h l ig h ts  another important p o in t .

E l ton 's  ' d e f i n i t i o n '  o f  s t a b i l i t y  includes res is tance  to  

invasion,  whereas the d e f i n i t i o n  I have decided upon 

e s s e n t ia l l y  does not .  The a dd i t ion  o f  a species to  the  

community in e f f e c t  i n i t i a l l y  makes th a t  community more 

complex by crea t ing  new in te rac t ions  and changing the 

strength of  e x is t in g  ones. What then happens to  the  

community in terms o f  s t a b i l i t y  must sure ly  depend on what

-  35 -



e f f e c t  these changes have on the community populat ion  

dynamics, i t  could thus be argued tha t  invasion causes 

increased complexity which causes i n s t a b i l i t y !  i t  might 

also be argued that  s im i l a r  e f f e c t s  in continenta l  hab i ta ts  

are d i f f i c u l t  to measure because i t  is not easy to a c t u a l l y  

i s o la te  communities in the same way.

iv )  As indicated in i i )  above, unnatural  communities may 

tend to be unstable not because they are o f ten  simple  

but because they are a r t i f i c i a l .

v) That t ro p ic a l  ra in  fo res ts  contain complex communities which 

do not tend to be subject to outbreaks has u n t i l  l a t e l y  

appeared to have been t ru e .  The composition of  such 

communities has evolved over a very long period o f  t ime

in what is e s s e n t ia l l y  a very s tab le  environment ( i . e .  

the environmental parameters remain r e l a t i v e l y  c onstant ) .  

Recently the s t a b i l i t y  o f  such hab i ta ts  has been attacked  

( f o r  instance,  large areas o f  fo re s t  are being c leared)  

and consequently outbreaks and ex t in c t io n s  have occurred.

So is i t  e vo lu t io n ,  s t a b i l i t y  o f  environment,  or complex ity ,  

or a l l  o f  these which determine the s t a b i l i t y  o f  the community?

v i )  The fa c t  tha t  the e l im in a t io n  o f  predators or paras i tes  

from insect communities o f  crop plants can lead to  outbreaks  

can again equal ly  wel l  be a t t r ib u t e d  to the unnatural  ness
of  crop commun!t i e s ; o r , in d e e d  to the d e l ic a t e  balance o f  any 

community, regardless o f  i t s  complexity .  Removal o f  a 

species from a community w i l l  lead to the e l im in a t io n  o f  

a number o f  in te rac t ions  and the modi f icat ion  o f  o thers ,  

and th is  may change the community populat ion dynamics 

s i g n i f i c a n t l y .  The community w i l l  need to f in d  a new 

stab le  balance which,  assuming l i t t l e  or  no immigration  

of  new species,  w i l l  be a community conta in ing less species!
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2 . 9 . 4  G. E. Hutchinson

2 .9 .4 .1  G. E. Hutchinson (1959)

In his p re s id e n t ia l  address to the American Society o f  N a tu ra l is ts  

in December 1958 G. E. Hutchinson (1959) posed the question 'why 

are there  so many species?'  This question is ,  o f  course,  fundamental 

to the theme of  th is  chapter.  Central  to his discussion is the 

importance of  food chains and, in p a r t i c u l a r ,  the importance of  

the i n t e r r e l a t i o n  o f  food chains.

A food chain consists o f  several  species arranged in a hierachy  

such tha t  each species eats the next species in the chain.

e .g .  pine t ree  -  aphids -  spiders -  warblers  -  hawks

Elton ( 1927) was one e a r ly  eco log is t  who recognised that  food chains 

tend to be in t e r r e la t e d  wi th  other  food chains to form food webs.

I f  a predator has more than one prey to choose from, the predator  

is less l i k e l y  to become e x t in c t  i f  i t s  favoured prey becomes scarce.  

Hutchinson f e l t  t h a f ,  a t  the time of  w r i t i n g ,  ecological  theory said 

tha t  there is great d iv e r s i t y  o f  organisms because communities of  

many d i v e r s i f i e d  species are b e t te r  able to pe rs is t  than are  

communities o f  less d i v e r s i f i e d  species.  He also suggested th a t  

the addi t ion  of  a new species to a community, although l i k e l y  to  

reduce the average populat ion o f  the species o r i g i n a l l y  present in 

niches the new species may share,  may reduce f lu c tu a t io n s  and hence 

lead to g reater  community s t a b i l i t y .  Hutchinson went on to suggest t h a t ,  

because there  are not more species than there  a re ,  there  must be 

some l i m i t  to the complexity o f  food webs. This l i m i t  may be set by 

such fac tors  as niche s ize  and s p a t ia l  he terogenei ty .

2 . 9 . 4 .2  Discussion

Hutchinson's paper c le a r l y  r e f l e c t s  the general view o f  the times 

tha t  the more complex a community the more s tab le  i t  is l i k e l y  to  

be. I t  is s trongly  influenced by MacArthurs' apparent theorm, and 

can again be c r i t i c i s e d  fo r  using aguments concerned w i th  s t a t i c
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re la t io n s h ip s  ra ther  than dynamic. Fur ther ,  al though there  is some 

discussion concerning food webs, there  is no c le a r  d e f i n i t i o n  of  

e i t h e r  complexity or s t a b i l i t y .

2 . 9 .5  Pimentel

2 . 9 . 5 .1 D. Pimentel ( 19&I)

Pimentel ( 196I )  proposed three hypotheses regarding the r e la t io n s h ip  

between community s t a b i l i t y  and complexity which are based on the  

views and observations o f  such authors as E l ton ,  Hutchinson and

A. J.  Nicholson (1933).  They are as fo l lows:

i )  d i v e r s i t y  o f  host or prey species provides a l t e r n a t i v e  

food fo r  the paras i tes  and predators,  and th is  leads to  

greater  s t a b i l i t y .

i i )  d i v e r s i t y  in types o f  p a r a s i t i c  and predaceous species 

feeding on one species o f  herbivore leads to g reater  

stab i l i t y .

i i i )  increased d i v e r s i t y  o f  feeding habi ts  o f  the species  

members o f  the community leads to g re a te r  s t a b i l i t y  

of  the organ isa t ion .

Pimentel tested these hypotheses in the f i e l d  by car ry ing  out an 

experiment involving the animal community associated wi th  the  

fami ly  o f  species Brassica oleracea L. (C ruc i fe rae )  which includes  

cabbage, col la rds ,  Brussels Sprouts and ka le .

B. oleracea plants were planted in a 15-year fa l lo w  f i e l d  in which 

approximately three hundred species o f  other plants  and an estimated  

three thousand species o f  heterotrophs a lready e x is te d .  This p lo t  

const i tu ted  a 'mixed-species'  p lan t ing  or complex community. At the  

same time another f i e l d ,  which was separated s u f f i c i e n t l y  from the  

fa l lo w  f i e l d  to minimise migrat ion and which contained no other  

species, was planted with  the same v a r i e t i e s  o f  B. o le racea .
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This p lo t  const i tu ted  a 's in g le -s p e c ie s '  p lan t ing  or simple 

community.

One hundred p lant  samples from each f i e l d  were c o l le c te d  weekly 

during the summer months f o r  two consecutive years ,  and the animal 

populat ions were id e n t i f i e d  and counted. These animals were mainly 

insects and included Lepidôptéra , Hômoptéra, Hemiptera , Coleoptera , 

D ip t e r a , Hymehoptera, Neuroptera and Arachnida.

The resu l ts  can be summarised as fo l lows:

i) In 1957, 27 taxa were associated w i th  B. oleracea  

grown in the mixed-species p lanting  and 50 taxa were 

associated w i th  i t  in the s ing le -species  p la n t in g .

In 1958 , the f igures  were 39 and 50 re s p e c t ive ly .

i i )  There were three to four times as many p a r a s i t i c  

and predaceous taxa present in the s ing le -spec ies  

plant ing  than is the mixed-species p la n t in g .

i i i )  Aphids, f l e a  b e e t le ,  and lepidopteran populat ions a t  

times reached outbreak leve ls  in the s ing le -spec ies  

p la n t in g ,  but never in the mixed-species p la n t in g .

iv) There were more host and prey type species present  

in the mixed-species p la n t in g .

V) There was a g reater  d i v e r s i t y  o f  paras i tes  and predators  

in the mixed-species p lan t in g .

vi)  Predominant in the s ing le -species  p lan t ing  were

c o c c in e l l id s  and syrphids which are s p e c i f i c  eaters  

which a t ta ck  mainly aphids.  In the mixed-species  

plant ing  spiders ex is ted .  These are r e l a t i v e l y  

non-spec i f ic  feeders and tend to a t ta c k  whatever  

is abundant. a t  the t ime.
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Pimente] concluded from resu l ts  i ) t o  i i i ) t h a t  the s ing le -species  

plant ing  was f a r  less s tab le  than the mixed species p la n t in g ,  and 

tha t  resu l ts  i v ) t o  v i ) l e n d  support to his hypotheses i ) t o  i i i )  

re s p e c t ive ly .  Since these hypotheses are concerned wi th  propert ies  

of  complex communities and the mixed-species p lan t ing  was e s s e n t ia l l y  

more complex than the s ing le -species  p la n t in g ,  Pimentel is suggesting 

tha t  his resu l ts  support the theory t h a t ,  in genera l ,  increased 

community complexity gives increased s t a b i l i t y .

2 . 9 . 5 . 2  Discussion o f  Pimente l 's  paper

At f i r s t  s ight P imente l 's  conclusions may seem reasonable.

However, I fee l  tha t  the fo l lowing c r i t ic i s m s  are  r e le v an t .

The resu l ts  do suggest tha t  the 's imple '  community is not a t  a

s tab le  e q u i l ib r iu m ,  but there  is no c le a r  evidence to suggest

that  the 'complex' community is anywhere near a s tab le  e q u i l ib r iu m ,  

and indeed i t  may be tha t  th is  community is equa l ly  or even less 

s ta b le .  Fur ther ,  both the 's imple '  and 'complex' communities 

studied are in fa c t  subcommunities. They are the communities of  

animals associated wi th  the fami ly  o f  species Brassica oleracea L. 

in each f i e l d .  I t  is not c le a r  how complex the complete communities 

were or how strong the l inks  were between the subcommunity and '

the rest o f  the community in each case.

Also both communities were subject to invasion by other  species.  

E ss e n t ia l ly  th is  means tha t  the complexity o f  each community was 

c o n t in u a l ly  changing and hence tha t  the nature o f  the populat ion  

dynamics involved were co n t in u a l ly  changing a l s o .  I t " w i l l  be seen l a t e r  

(Section 2 .11)  by using mathematical models what e f f e c t  t h is  might 

have on s t a b i l i t y .

I t  is also important to note tha t  Pimentel only studied two leve ls  

o f  complexity and hence his experimentwas inadequate to 'prove '  any 

general re la t io n s h ip  between s t a b i l i t y  and complexi ty .
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Two less important points which perhaps did not have a s ig n i f ic a n t  

e f f e c t  on the resu l ts  are f i r s t l y  tha t  the communities were both 

somewhat a r t i f i c i a l  and secondly th a t  each community l ived  under 

d i f f e r e n t  environmental  condi t ions.

These c r i t ic i s m s  e s s e n t i a l l y  say two things about experiments l i k e  

Pimente l 's .  F i r s t l y  i t  is important to define  terms such as 

complexity and s t a b i l i t y  c l e a r l y ,  and secondly i t  is very d i f f i c u l t ,  

perhaps impossible,  to 'des ign'  useful  f i e l d  t r i a l s  to in ves t iga te  

any re la t io n s h ip  between complexity and s t a b i l i t y .

2.10 Evidence th a t  the re la t io n s h ip  between s t a b i l i t y  and complexity is

not s t ra ig h t fo rw ard .  _________________ ___________

2 .10 .1  Int roduction

By the mid-19&0's the popular view discussed in Section 2 .9  was 

being chal lenged f a r  more s t rong ly .  Watt (1985) and Paine (1986) 

were two ecologists  who put forward evidence and ideas which 

pointed to a less c e r ta in  re la t io n s h ip  between complexity and 

s t a b i l i t y .

2 .1 0 .2  K. E. F. Watt

2 .1 0 .2 .1  Watt (1985)

Watt ( 1985) discussed community s t a b i l i t y  and the s t ra tegy  of  

b io log ica l  c o n t r o l .  He recognised two contrast ing  theor ies  

concerning the re la t io n s h ip  between community s t ru c tu re  and 

s t a b i l i t y  and the importance of  the theor ies  in determining an 

e f f e c t i v e  s t ra tegy  fo r  the b io lo g ica l  control  o f  pest species.

On the one hand he pointed to the observations ahd''theo'ries o f  

those such as Elton and MacArthur who advocate tha t  s t a b i l i t y  

increases as the number o f  l inks  in the community increases.  On 

the other hand in p a r t i c u l a r  he quote d "Zw&lfer ( 1983) .

Zw o l fe r  analysed the s t ruc ture  of  pa ra s i te  complexes o f  s ix  species  

of Lepidoptera.  In each case tha t  he considered the host species 

was attacked by a t  least one b i o l o g i c a l l y  spec ia l ised  and synchronised 

paras i te  species, but in two of  the s ix  cases the paras i tes  were
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subjected to heavy competit ion by o ther  p a ras i te s .  In these two 

cases the mixture o f  paras i tes  f a i l e d  to control  the host abundance 

to low le v e ls ,  whereas in the o ther  more simple cases the paras i tes  

reached a high e f f i c ie n c y  against t h e i r  hosts ( i . e .  the r a t i o  o f  

pa ras i t is e d  hosts to a l l  hosts was h igh ) .

These observations caused Watt to note tha t  there  was a need to  

develop a more sophist icated theory o f  community s t a b i l i t y .  In 

an attempt to do th is  Watt looked to two sources of  in formation.

F i r s t  he looked in the l i t e r a t u r e  o f  pest populat ion dynamics and 

found tha t  in general most unstable pests,  tha t  is pests whose 

populations f lu c tu a te  w ide ly ,  have a wide range o f  natural  enemies,  

fo r  example grasshoppers (Edwards ( 1 9 6 4 ) ) .  Secondly he analysed some 

data from the Canadian Insect Forest Survey (McGugan (1958),
Prent ice  (1962,  1963) ) .

In p a r t i c u l a r  Watt considered data concerning one p a r t i c u l a r  type

o f  insect,  Macrolepldoptera (moths and b u t t e r f l i e s ) ,  and attempted to  
determine

i)  the e f f e c t  o f  the number o f  t ree  host species on the 

s t a b i l i t y  and abundance o f  fo re s t  Macrolepidoptera .

' ' )  the e f f e c t  o f  the number o f  insect species e a t ing  the  

same host plants  on the s t a b i l i t y  and abundance o f  a 

p a r t i c u l a r  species o f  fo re s t  Macrolepidoptera .

Watt measured abundance by the mean a r i t h m e t r ic  mean count ( t h a t  is ,  

the mean over a l l  species o f  the mean counts f o r  each ind iv idua l  

species over t im e ) ,  and he measured s t a b i l i t y  by the mean standard  

e r r o r  o f  logarithms o f  counts.

The s t a t i s t i c s  r e la t in g  to i )  above are p lo t ted  in Figures 2 .9  and 

2 .1 0 .  S o l i t a r y  and gregarious species are t rea ted  separa te ly  

because both abundance and i n s t a b i l i t y  were gen era l ly  g re a te r  fo r  

gregarious la rva l  feeders than fo r  s o l i t a r y  la rv a l  feeders .  I t  i t  

c le a r  from these graphs t h a t ,  fo r  both s o l i t a r y  and gregarious  

species,  mean abundance tended to be higher and s t a b i l i t y  to  be lower 

in euryphagous species ( th a t  i s ,  species which eat w ide ly )  than in
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stenophagous species ( th a t  i s ,  species which feed on a narrow range 

of fo o d ) .

This suggests tha t  the s t a b i l i t y  o f  a herbivore decreases as the 

number o f  l inks  between i t  and i t s  food increases.  This is represented  

p i c t o r i a l l y  below.

Herbivore

plant 1

Herbivore

more s tab le  than

plant  1 p lant  2 p lant  3

This conclusion presented Watt w i th  a dilemma because he was aware 

of  a number o f  contrast ing  examples. For instance,  the spruce 

budworm, which is a very unstable species,  feeds p r i n c i p a l l y  on 

only two hosts,  the balsam f i r  and the white spruce. However, these 

two species do f i l l  a large proport ion o f  the environment of  the  

spruce budworm and hence Watt concluded tha t  s t a b i l i t y  decreases 

with  the proport ion o f  the environment which is f i l l e d  w i th  food.

I .e . Herbivore

is more s tab le  than

Herbivore

p lant  occupying 

50% of  h a b i ta t

p lan t  occupying 

75% of  h a b i ta t

The s t a t i s t i c s  r e la t in g  to i i )  above are p lo t te d  in Figures 2.11 

and 2 .1 2 .  Watt considered the mean number of  insect species eat ing  

the same host p lant to be a measure o f  the number o f  d i f f e r e n t  

species tha t  u t i l i s e ,  the same food resources.  He then assumed 

tha t  whenever two or more species were known to  eat the same host 

plant there  was competit ion and th a t  th is  competit ion was more intense  

the g reater  the number o f  species eat ing  the same ar ray  o f  p la n ts .

I t  thus fol lows from the graphs t h a t ,  fo r  both gregarious and 

s o l i t a r y  species,  abundance was leas t  where compet it ion was most
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intense but tha t  s t a b i l i t y  o f  a species was g reater  the greater  

number o f  competing species i t  had.

Watt then put forward a hypothesis which aimed to expla in  both these 

resu l ts  and observations and those of  Zwolfer mentioned above.

E s s e n t ia l ly  Zwolfer found th a t  increased competit ion a t  the p aras i te  

t rophic  level  caused i n s t a b i l i t y  o f  the host ( the host escaped 

c o n t r o l ) .  However Watt in te rpre ted  th is  resu l t  as being due to 

excessive competit ion w i th in  the pa ras i te  trophic  level  forc ing  

excessive s t a b i l i t y  on that  trophic  l e v e l .  Watt 's  hypothesis thus 

became three proposi t ions.

i )  S t a b i l i t y  of  a trophic  level  increases wi th  the number

of  competing species a t  tha t  l e v e l .

i i )  S t a b i l i t y  of  a troph ic  level  decreases wi th  the number

of  competing species that  feed on i t .

i i i )  S t a b i l i t y  o f  a troph ic  level  decreases wi th  the pfoport ion o

the environment conta in ing  useful  food.

2 .1 0 . 2 . 2  Discussion o f  Watt 's  ideas

I t  is essent ia l  to note f i r s t l y  tha t  Watt has investigated  the e f f e c t

o f  increased complexity w i th in  a p a r t i c u l a r  trophic  level on the

s t a b i l i t y  o f  tha t  t rophic  leve l  or of  a higher or lower troph ic

l e v e l .  He did not look a t  a complete community and compare i t s

complexity wi th  i t s  s t a b i l i t y .  Further we might c r i t i c i s e  Watt 's

measurement of  both s t a b i l i t y  and complexity.  His measurement of

s t a b i l i t y  f i r s t l y  does not take into account the r e l a t i v e  s ize

o f  f lu c tu a t io n s  when compared to the mean abundance and secondly

does not contain an ind ica t ion  o f  how large the sampling e r ro rs  were.

His measurement of  complexity does not take into account the r e l a t i v e  
strengths of  in te rac t ions  and his evidence that  there  is real  competit ion

fo r  resources is  sonjewhat vague.

In fa c t  his proposi t ion i i i )  is a good example o f  the importance of  
the strength o f  in te rac t ions  because e s s e n t i a l l y  i t  says th a t  a

few strong in te rac t ions  (e .g .  two p lant species comprising 90%  of

a he rb ivore 's  food) may have the same e f f e c t  on s t a b i l i t y  as many

in te rac t ions  of  low strength (e .g .  ten p lant species comprising



90% o f  a h e r b i v o r e ' s  f o o d ) .

However Watt 's  argument is useful  to my main theme i f  we accept 

these above c r i t i c i s m s .  Whenever a complexity e f f e c t  has led to  

i n s t a b i l i t y  o f  a trophic  leve l  we know tha t  the whole community was 

unstable .  Whenever a complexity e f f e c t  led to increased s t a b i l i t y  we 

are not q u i te  so sure o f  the e f f e c t  on the s t a b i l i t y  o f  the whole 

community. We the re fo re  have evidence th a t  the re la t io n s h ip  

between complexity and s t a b i l i t y  is not in general s t ra igh t fo rw ard  

but depends very much on the s t rength ,  nature and number o f  

in te rac t io n s  between troph ic  le v e ls .

2 .1 0 .3  R. T.  Paine

2 .1 0 .3 .1  Paine (1966)

Paine (1966) o f fe re d  some in te re s t in g  observations and experimental  

evidence concerning the hypothesis tha t  local  species d i v e r s i t y  is

d i r e c t l y  re la ted  to the e f f i c i e n c y  wi th  which predators prevent the

monopolizat ion o f  the major environmental  re q u is i te s  by one species.  

This hypothesis is a m odi f ica t ion  o f  the complexity begets s t a b i l i t y  

theme because i t  suggests tha t  the actual  composition o f  the  

community is important,  th a t  is the e f f i c i e n c y  o f  the predators .

Paine defined a subweb as a group o f  organisms capped by a terminal  

carnivore  and trophica 11 y in t e r r e la t e d  in such a way t-hat a t  higher  

leve ls  there is l i t t l e  t r a n s f e r  o f  energy to co-occurr ing subwebs.

He observed three such subwebs involv ing marine i n t e r t i d a l  zones,  

one in a north temperate c l im a te ,  one in a subtropical  c l im a te  and 

one in a t ro p ic a l  c l im a te .

The north temperate subweb, which was located a t  Mukkaw Bay, 

Washington is represented schematical ly  below (F igure  2 . 1 3 ) .
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There were two carnivorous species,  P isaster  and Thais .  Both these 

predators ate  barnacles as t h e i r  main prey,  al though the barnacles  

c a l o r i f i c  v a lu e ' t o  P isaster  was only a t h i r d  o f  b iva lv e  o r ' c h i t o n .

Since 1963 a ty p ica l  piece o f  the shorel ine  a t  Mukkaw Bay has 

been kept f re e  o f  Pisasterand has been compared against a control

area which was l e f t  una l te red .  At f i r s t  i t  was observed th a t  the

barnacle Balanus glan.duW spread to occupy between 60 and 80 per 

cent o f  the a v a i l a b le  space. There has since continued a successive 

replacement o f  species by more e f f i c i e n t  u t i l i s e r s  o f  space. The 

control  ’ area did not change.

Paine observed the fo l low ing  from th is  f i e l d  experiment.

i )  The removal o f  P isas ter  reduced the community from a f i f t e e n  

species to an e ig h t  species system.

i i )  The standing crop was increased.

i i i )  The area became t r o p h i c a l l y  s impler .

iv)  A food chain not conta in ing P isas ter  was removed. This

ind icates tha t  a number o f  food chains may have been 

strongly  influenced by P is a s te r ,  but by an in d i r e c t  

method.
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These observations tend to disagree with  the complexity begets 

s t a b i l i t y  theory.  In the absence o f  predation the community 

tends towards s im p l i c i t y .

Paine then b u i l t  on his theme th a t  local  d i v e r s i t y  is re la ted  

to the e f f i c i e n c y  wi th  which predators prevent monopolizat ion  

of  major environmental  re q u is i te s  by one species by comparing 

the three subwebs. A l l  th ree subwebs contained one or two species 

capable o f  monopolising much o f  the space, but th is  only happened 

in the t ro p ic a l  subweb. In the other  two areas there  were top 

predators which a te  masses o f  space-consuming species and th e re fo re  

prevented monopolies. When a top predator  was a r t i f i c i a l l y  removed, 

the systems converged towards s im p l i c i t y .

This evidence again leads to a conclusion tha t  s t a b i l i t y  increases/  

decreases wi th  complexity is f a r  to naive an argument and tha t  

the actual  composition o f  the food web is important.

2 . 10 . 3 .2  Discussion o f  Paine's  paper

Although Paine only considered subcommunities, his observations and 

f i e l d  experiments give p a r t i c u l a r l y  strong evidence th a t  the actual  

composition o f  the food web is extremely important in determining  

s t a b i l i t y .  The removal o f  j u s t  one species (which is e qu iva len t  

to removing a number o f  in te rac t ions  and modifying the s t rength  of  

others)  from what appears to be a s tab le  'subcommuni t y  led to  the 

e x t in c t io n  o f  s ix  other species before the subcommunity began to 

approach a f u r t h e r  s tab le  eq u i l ib r iu m .

In p a r t i c u l a r  Paine observed the e f f e c t  o f  predators,  showing th a t  

species d iv e r s i t y  w i th in  a subcommunity appears to depend on the 

number o f  predators and t h e i r  e f f i c i e n c y  in preventing o ther  species  

from monopolizing some important,  l i m i t i n g ,  r e q u i s i t e .  This  

e f f i c i e n c y  is d i r e c t l y  re la te d  to  the strength and nature o f  the  

in te rac t ions  between the predators and t h e i r  prey (and each o ther )  

and hence his conclusions are l i k e l y  to apply a t  a l l  t roph ic  l e v e ls .  

Again th is  is evidence tha t  i t  is the actual  s t ru c tu re  o f  the  

community th a t  is important in determining s t a b i l i t y .
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2.11 The use of  mathematical models to in v es t ig a te  re la t ionsh ips

between communi t y  s t a b i 1i tÿ  and complexity.

2 .11 .1  Int roduction
As discussed in Section 2 .5  one way of  modell ing populat ion dynamics 

is to use d i f f e r e n t i a l  equations.  In th is  Section we w i l l  inv es t iga te  

the re la t io n s h ip  between the s t a b i l i t y  o f  d i f f e r e n t i a l  equation models 

of  community dynamics and the complexity o f  the community. We 

consider f i r s t  an argument put forward by May (1971) tha t  s t a b i l i t y  

tends to be less the more species there are in the community model. 

This is c l e a r l y  in d i r e c t  c o n f l i c t  w ith  the thoughts o f  MacArthur,  

e t .  al'. We then consider some simple models in more d e t a i l  and 

show tha t  conclusions are not so s t ra ig h t fo rw a rd .

F in a l l y  we w i l l  discuss the work o f  Gardner and Ashby (1970) and 

some f u r t h e r  work by May (1972b) in an attempt to seek a general  

conclusion.

2 .1 1 .2  May's argument

May ( 1971) considered E l ton 's  (1958) asser t ion  th a t  mathematical  

models of  simple communities tend to be unstable whereas models 

o f  more complex communities are l i k e l y  to be s ta b le .  May assumed 

tha t  the type of  model Elton was r e f e r r in g  to was the L o tk a -V o l te r ra  

model o f  a predator-prey  community (equations 2 .6a and b ) , the 

equations o f  which are repeated here fo r  convenience.

dh = h ( r  -<s^p) 2.21
dt

dp = p (-S + p h )  2 .22
dt

where h represents the prey populat ion density  and p the predator  

population densi ty .

In order to determine whether these equations have any ( n o n - t r i v i a l )

e q u i l i b r i a  we attempt to f ind  h* and p* such th a t  dh and dp are  both
dt dt

equal to zero when evaluated a t  (h * ,  p*)
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That  i s ,

dh
dt (h * ,p * ) ( h * ,p * )

=  0 2.23

Let A = ( 0 -®<̂ )I, .s 2.24

2.25

and r =

For =  0

2.26

We requ i re

r + A X = 0

That is
- 1

X = -A r

-1 .Where A is the matr ix  inverse o f  A

2 .27

2 .28

Thus

I?

r

-s

2.29

and hence the (u n ique)pos i t ive  equ i l ib r iu m  populat ion sizes are  

given by

h* = s and p* = v /c U 2.30

We now need to determine whether the equi l ibrium values are s ta b le .

V/e d is turb  the community from equ i l ib r iu m  by adding small per turbat ions  

^  and 4^to h* and p* re spec t ive ly  and inves t iga te  the ensuing populat ion  

dynamics.
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dh = d ( h* + 6  )
dt  dt

= d &
dt

= ( h* + 1 ) ( r -o c (  p* + y ) )

= (h* + £  ) ( -odjp) 2.31

since r -ocp*  = 0

Ignoring terms o f  o r d e r w e  obtain

^  = - o c h * ^  2 .32
dt

S im i la r ly

d y  = ^ p * £ .  2 .33
dt

We can combine equations 2.32  and 2.33 in a matr ix  equation

d I  = A* £ 2 .34
dt

where

:  = 2 .35

and A* = I ^

0 j  2.36

where *  =®<h* 2 .37

and 2 .38

May c a l l s  A* the community m a t r i x .
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The so lu t ion  o f  equation 2 .34 may be w r i t t e n  as

£  = c e\ t
2 .39

where c = ( C 2.40

are constants which depend on the i n i t i a l  s ize  o f  the perturbations  

and \  is an eigenvalue of  the matr ix  A*.

For the e q u i l ib r iu m  to be s tab le  we require  th a t  the real  part  of  the  

e i g e n v a l u e i s  negat ive  (because in th is  case e^^ w i l l  approach zero  

at  t  becomes l a r g e ) .

A is an eigenvalue o f  A* i f  the c h a r a c t e r i s t i c  equation

I A* -  X l \  = 0

where I = 1 0

2.41

2 .42

0 1

and A denotes the determinant o f  A.

I A* -  X l \  = “ X — 2.43

The c h a r a c t e r i s t i c  equation is thus

=  0 2 .44

The solut ions o f  th is  equation are

X  = + i (oC*p*) ^ = + w  1 2 .45

and hence

C 1 Sin (uit + C 2), 

0̂ 21 Sin (t*)t + C22)

2 .4 6
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This means tha t  the s ize  o f  the predator and prey populat ions w i l l  

o s c i l l a t e  about t h e i r  e q u i l ib r ium  leve ls  (equation 2 . 30) w i th  constant  

amplitudes and period u n t i l  fu r t h e r  d is turbed ,  the s ize  of  the  

amplitudes depending on the s ize  o f  the i n i t i a l  per turba t ions .

This model is th e re fo re  not s tab le  in the sense th a t  the populat ion  

sizes do not return  to the equ i l ib r iu m  values a f t e r  per tu rb a t io n .

May then went on to consider a model o f  a community which contains  

h predators and n prey.  The equations are as fo l lows:

n
dh. = h I ( r . -  T e c ;  : P :) i=1-------- ,n 2.4?
d t ^  ' J JJ=*

n
dp, = P i ( -s .  + ’O p : . ,  h.p i = i , ------ ,n 2 .48

' k

where h ; and p| denote the populat ion sizes o f  the } prey and 

predator  species re sp e c t ive ly .

The equ i l ib r iu m  leve ls  are given by

Jh* = S  ̂ £  and 2  = A  ̂ £  2 .49

where h *  = (h ^ ..........., h * ) '  , £ ' •  = (p  ,p . * ) '
I n 1 n

£  = ( S f  S;,)' . r = ( r  . r , * ) '
' n i n

A = ( x ; j )  and B= ( P ; j )  2 .50

(The dash' denotes vector  transpose)

May assumed that  the .values of  the parameters are  such th a t  the  

equ i l ib r iu m  leve ls  are a l l  f i n i t e  and p o s i t i v e .  I fee l  th a t  i t  

is important to note that there  are condi t ions on the values of  

the parameters which d ic t a t e  whether such v a l id  equ i l ib r ium s  

e x i s t .  The more complex community may not be so l i k e l y  to  have 

a v a l id  e q u i1 ibr ium.
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The c h a r a c t e r is t i c  equation o f  th is  system is given by 

f  - > 1  -A*
■ = 0 2.51

< +6* -AI

where A* = (oç h . * )  , B* = ( ^ . y p r )  and 1 =  the nxn id e n t i t y

m atr ix .

I t  can be shown tha t  th is  equation is a polynominal o f  degree n 
2

in X and consequently i t  has n pa irs  o f  roots o f  the form

'X = + (x + iy)

I t  is c le a r  the re fo re  tha t  e i t h e r  each p a i r  o f  roots is pure 

imaginary ( i . e .  x=0 ) or  there  ex is ts  a t  least  one root such 

th a t  x ^ O .  In th is  case c l e a r l y  one root o f  the p a i r  w i l l  have 

a p o s i t iv e  real  par t  ( i . e .  e i t h e r  x>0 or  -x> 0)

This means that  the more complex community described by equations  

2.47  and 2.48 e i t h e r  has the same s t a b i l i t y  p roper t ies  as the two 

species predator-prey  community, tha t  is the populat ion sizes of  

each predator  and each prey o s c i l l a t e  wi th  constant amplitude  

through t ime, or there  e x is ts  an eigenvalue w i th  a p o s i t iv e  real  

part  and the community is unstable.

May then attempted to genera l ise  th is  re su l t  by consider ing a n 

species community modelled by the fo l lowing equations

dx ; = k J (x) , i = l   ,n
dt ~  2 .52

where k ; (x ) = f  j (x  :;) g;  ,x :; _i, x-;+:^,........... ,x.p)

and the equation f  .;(x ;) = 0 has the unique so lu t ion  x.j = 0 .

Otherwise the functions f a n d  g j  are completely a r b i t r a r y .
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For there  to e x is t  an e q u i l ib r iu m  set o f  f i n i t e  and p o s i t iv e  

populat ion sizes  x *  = x̂ *̂* ) we require  tha t

g ‘j (x* )  = 0 fo r  a l l  i fe ^ 1 ............ ,n ^  2.53

Assuming th a t  th is  is the case we can examine the s t a b i l i t y  

of  th is  e q u i l ib r iu m  as fo l lows:

Let X .  =  X . *  + £ .  ( i = 1 , ............ ,n) 2 .54

Then dx. = d£. = k. (x *  + £ )  2 .55
4 t  At' '

where £  =

2.56
n

Thus ^  k ; (x* )  + S  £ î  ^k' i(x-0
dt j=1 J 3xj

(by expanding k j  (x *  +E) as a Taylor  Series and neglecting terms 

in H o f  order 2 and above)

^  E j  ^ k ^ ( x * ) 2 .57

j = i

S  (Xj--) g; (x * )  + f .  (x * )  ^ g ; ( x * )  \  2.58
j = l

S  £ j  f .  ( x . * )  ^ g .  (x* )
j = l  • ' ' — L— —  2 .59

• à x j

The c h a r a c t e r is t i c  equation fo r  th is  model can th e re fo re  be w r i t t e n  

as

IA  -  = 0 2 .60

where A = (a .^ )  ( i , j = 1 , . . . . ,n) 2 . 6 l
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such t h a t  a . .  = 0  and 2 .6 2

a . .  = f . ( x . * )  ^ g . ( x ^ ) 2.63
” 3 x 7 “

•J

Because the diagonal elements o f  the community m atr ix  A are a l l

zero i t  can be shown tha t  the c o e f f i c i e n t  o f ^  in the c h a r a c t e r is t i c

equation (equation 2 .60 )  vanishes.  Hence the sum o f  the n roots X
k

of  the equation must vanish.

n n
That is ^  ^  ^k '^k *  ° 2.64

k=1 k=1

Therefore  e i t h e r

i )  a l l  the Xj  ̂ are zero and the roots are  pure imaginary

or i i )  a t  least one root has a p o s i t iv e  real  par t

(x.  = -  ^  X|  ̂ >0 )
k t \  ^

So th is  more general  model displays s im i la r  s t a b i l i t y  p roper t ies  

to the n predatoi n prey Lotk a -V o l te rra  model. May commented 

t h a t ,  apar t  from the mild r e s t r i c t i o n s  a lready mentioned, the  

general model may be a r b i t r a r i l y  complex. He commented f u r t h e r  

tha t  the inclusion o f  such fa c tors  as time de lay ,  predator s a t u r a t io n ,  

predator  switching and density-dependent fecundi ty  are not l i k e l y  

to s i g n i f i c a n t l y  a l t e r  the p ic tu r e .  He concluded th a t  ' i f  we contrast  

simple few-species mathematical models with  the analagously simple

mult ispec ies models, the l a t t e r  are in general less s ta b le  th a t  the

f o r m e r . '

I fee l  tha t  th is  is a somewhat premature and u n f a i r  conclusion  

from th is  p a r t i c u l a r  argument. C e r ta in ly  May has achieved his  

main o b je c t iv e  which was to demonstrate tha t  E l to n 's  a sser t ion  

tha t  mathematical models o f  complex communities tend to  be more 

stab le  than models o f  simple communities is f a l s e .  However his 

argument does not demonstrate tha t  the converse is t ru e .
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What he does show is t h a t ,  in genera l ,  d i f f e r e n t i a l  equation models 

of  n species communities wi th  no species s e l f - i n t e r a c t i o n  are unstable  

(or a t  best purely  o s c i l l a t o r y ) .  He does not demonstrate t h a t ,  

fo r  such models, as n increases the models become less s tab le  in 

some way (e .g .  the p o s i t iv e  real  par t  o f  the dominant eigenvalue

increases as n increases).  Also th is  re s u l t  holds fo r  n=1 and i n f a c t ,

when n=1, i t  is only when the in te ra c t io n  is predator-prey  that  the 

model is necessar i ly  pure ly o s c i l l a t o r y .  Therefore  e s s e n t ia l l y  May 

is demonstrat ing tha t  d i f f e r e n t i a l  equation models o f  predator-prey  

communities wi th  no species s e l f - i n t e r a c t i o n  are  unstable.

I fee l  tha t  the most important inference from these resu l ts  is tha t  

species s e l f - i n t e r a c t i o n  is essent ia l  fo r  s t a b i l i t y  to be f e a s i b l e .  

Therefore is order  to in ves t iga te  the r e la t io n s h ip  between s t a b i l i t y  

and complexity i t  is sensib le  to include such in te ra c t io n s  in the  

models.

This I attempt to do in the next section .

2 .1 1 .3  Models of  communities consis t ing o f  only 1 species

2 . 11 . 3.1 Simple exponential  growth

The model is

^  = rx 2.65
a t

where x is the s ize  o f  the populat ion a t  t ime t

and r  is the i n t r i n s i c  ra te  o f  increase (see Section 2 .5 )

The solut ion o f  th is  model is

r t  ^X = x^e 2 .66

where x^ is the s ize  o f  the populat ion a t  t=o

I f  r >0 , the populat ion grows uncontro l led .

I f  r =0 , the populat ion remains a t  x^ ( i . e .  is a t  e q u i l ib r iu m )  

but is unstable.

I f  r >0 , the populat ion becomes e x t i n c t .
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These resu l ts  are summarised in the fo l low ing  t a b le .  

r_ éqùi 1 ib r  ium stab le

>o no -

=o yes no

<o no

Table 2.1 Equi l ibr ium and s t a b i l i t y  proper t ies  o f  simple 

exponential  growth.

*  We ignore equ i l ib r iu m  values £o throughout th is  discussion.

So the simplest d i f f e r e n t i a l  equation model o f  the simplest community, 

th a t  is one conta in ing only one species and th a t  species does not 

in te ra c t  w ith  i t s e l f ,  does not have a s tab le  e q u i l ib r iu m .  In fac t  

i t  only e x h ib i ts  an e q u i l ib r iu m  value in the t r i v i a l  case when 

r=o,  and th is  is c l e a r l y  unstable because every value o f  x is 

p o t e n t i a l l y  an e q u i l ib r iu m  p o in t ,  but i f  the populat ion s ize  is 

disturbed from x i t  w i l l  remain a t  the new value u n t i l  d is turbed  

again.

2 .1 1 . 3 . 2  S e l f - i n t e r a c t i o n

Now l e t  us suppose tha t  the one species in our community in te rac ts  

with  i t s e l f .  We might model the populat ion dynamics o f  th is  

community wi th  the fo l low ing  d i f f e r e n t i a l  equation:

2
dx = rx + ^  X = x ( r + ^ x )  2 .67
dt

We f i r s t  determine any p o te n t ia l  equ i l ib r iu m  values o f  x.  I f  x *  is

an e q u i l ib r iu m  value ,  then ^  evaluated a t  x=x* is zero .
dt

i . e .  dx I = 0
dt 1 X *  2.68
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But ^  I = X* ( r  +QCx*) 2.69
dt Ix*

X* -0  and x *  = £T are ( p o t e n t ia l l y )  e q u i l ib r iu m  values,  
oc

For a p o s i t iv e  e q u i l ib r iu m  value to e x is t  we requ ire  r and ^  

to  be o f  opposite signs.

To determine whether th is  e q u i l ib r iu m  point is s ta b le  or unstable

Let X = X* + £. where is a small disturbance.

Then ^  ^  (x *  + £ )  =  dx* + d t  2.70
dt dt  dt  dt

j f  1 .7 .

= ( x * + H )  ( r  +o^(x*  + £ ) )  2.72

= ( - £ + £ )  ( r + o c ( - £ + £ ) )  2 .73

= ( - £  + £ )  ( / - / + £ « < )  2.74

jwn. - r  E  ( ignor ing terms in £ o f  order 2 6 higher)  2 .75

ignoring the t r i v i a l  case r=o,  the e q u i l ib r iu m  is s tab le  i f  r >0 

and unstable i f  r <0.

We can summarise the resu l ts  in the fo l lowing ta b le :

resu l ts  from no in te rac t io n  resu l ts  from s e l f - '

I  ^  equi l  ibr ium°^^  ̂ s tab le  e q u i f  l’ërîùm^ "^°^stable

>0 >0 no no
>0 <0 no yes yes
<0 >0 no yes no
<0 <0 no no

Table 2 .2  Equi l ibrium & s t a b i l i t y  proper t ies  o f a one-species
s e l f - in te rac t io n  model.
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So the more complex community consis t ing o f  one species with  

s e l f - i n t e r a c t i o n  can have a s tab le  e q u i l ib r iu m ,  and hence can 

be more s tab le  than the one species wi th  no in te ra c t io n  community. 

Making the simple community more complex by adding an in te rac t io n  

can lead to s t a b i l i t y .  Note,  however, th a t  we cannot demonstrate 

the converse,  th a t  is removing the in te ra c t io n  from an unstable  

s i t u a t io n  might lead to s t a b i l i t y ,  because the simpler model 

does not have an e q u i l ib r iu m .

2 .1 1 .4  Models o f  communities consis t ing o f  two species

Let our community now consist  o f  two species i n i t i a l l y  obeying 

the fo l low ing  d i f f e r e n t i a l  equations:

^ 1 .  = + ' ^ 1 * /  2 .76
dt

2 .77

The two species do not in te ra c t  w ith  each o th e r .  The complexity  

of th is  community is described by the fa c t  tha t  there  are two 

species and two s e l f - i n t e r a c t i o n s .  The proper t ies  o f  the community 

in terms o f  e q u i l ib r iu m  values and s t a b i l i t y  can be determined 

from Table 2 .2

Suppose that  we add an in te ra c t io n  between the two species.  The 

equations might become :

dx..; = r^x.j +«<.jX.j^ + 2 .78
dt

dx = r^x^ + 0L2X2 '

Using the method o f  .Sect ion 2 .1 1 .2  we can determine whether there  

is a ( n o n - t r i v i a l ) e q u i l ib r iu m .

Let A =f \  2.80

^  2 V < 2■

21 = 2.81
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and r = 2.82

Then x *  = /  x , * \  = _ 1_  /  /5̂  - o q  r.j \ 2 .83(
\ X 2 *

Where iûk = « < . . ,  e<2 -  P 1 p2 2.83a

C le ar ly  the signs of  a l l  the parameters w i l l  be important in 

determining whether p o s i t iv e  equ i l ib r iu m  leve ls  e x i s t  or not .

Where equ i l ib r iu m  values do e x is t  we require  to determine whether  

they are s ta b le .

By perturbing both populations from t h e i r  e q u i l ib r iu m  sizes by 

amounts and£ 2  respect ive ly  and using the method of  Section 2 .1 1 .2  

we f ind  that

^  + f , *  £ 2  2 .84
dt

and ^  + o< 2 * ^ 2  2 .85
dt

where oc,*  = =<-2*  = ><2*o<.2 . f , *  °  ^ 1 * * ^ 1 ’

and ^ 2 *  = ^ 2 * ^ 2

The c h a r a c t e r is t i c  equation is

= 0. 2 .86

The roots o f  th is  equation are determined as fo l lows:

X  = K , *  +«^2*) ±  +«C2*) (<^*0^2*
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ible 2 .3  Equ i l ibr ium and s t a b i l i t y  condi t ions fo r  a 2-species community with

in te rac t ions

n '^1 *^1 OC2 h ^ 2 e q u i1ibrium e q u i1ibrium stab le s t a b i 1 i ty

/ - ) (+7-) ( + / “ ) ( + / “ ) ( + / - ) (Y/N) condi t ion (Y/N) condit ion

+ + + + + + N
+ + + + + - N
+ + + + - + N
+ + + + - - Y û<0 N
+ + + - + + N
+ + + - + - N
+ + + - - + Y El Y SI
+ + + - - - Y E2 N
+ + - + + + N
+ + - + + - Y El Y SI
+ + - + - + N
+ + - + - - Y E3 N
+ + - - + + Y ù>0 Y
+ + - - + - Y E4 Y
+ + - - - + Y E5 Y
+ + - - - - Y Cl Y A >0
+ - + + + + N
+ - + + + - N
+ - + + - + Y E5 N
+ - + + - - Y El N
+ - + - + + N
+ - + - + - N
+ - + - - + Y 6>0 Y S2
+ - + - - - N
+ - - + + + Y E3 N
+ - - + + - Y 6 <0 N
+ - - + - + Y El Y SI
+ - - + - - Y E2 N
+ - - - + + Y El Y A >0

- - - + - N
+ - - - - + Y E4 Y

- - - - - N
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ble 2 . 3  (cont in ued)

*•1 /2 1 ^  2 ^  2 equ i l ib r iu m  equi 1 ibr  ium s tab le  s t a b i l i t y

/ - )  ( + / - )  ( + / - )  (+ / " )  ( + / * )  ( + / * )  (Y/N) condi t ion (Y/N) condit ion

+ + + + + N

+ + + + -  Y E4 N

” + + + “ + N

+ + + “ “ Y El N

“ + + “ + + Y E2 N

+ + -  + -  Y El Y SI

+ + -  -  + Y 6  <0 N

+ + -  Y E3 N

+ -  + + + N

+ -  + + -  Y 0 > 0  Y S2

+ “ + “• +  N

+ “ + -  -  N

+ - -  + + Y El Y

+ -  -  + -  Y E5 Y

” + “ “ “ + N

-  + -  ~ -  N

+ + + + Y El  N

-  + + + -  Y E5 N

-  + + - +  Y E4 N

+ + -  Y A >0 N

+ -  + + Y E3 N

+ -  + -  N

-  + -  -  + Y El  Y SI

-  -  + -  -  -  N

-  - -  + + + Y E2 N

“ Y El  Y SI

-  “ -  + “ + N

N

+ Y A <0

+ N

+ N

-  . N
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T ab le  2 . 3  (cont inued)

A  is given by equation 2.83a (cs^̂ jOd̂  -  2 ^

Condition El :  i f  A  > (<o) 0 then *̂ 2” ^ 1 .  ^ (<o) O

and ^ 2  ^2 ^  (<0) O

Cond i t on E2 

on E3 

ion E4 

ion E5 

ion SI 

Condition S2

Cond i t  

Condi t  

Cond i t  

Cond i t

/ g , r 2  <0

/? 2 r ,  - « i , r 2  <0 

^ 2 ' ‘ l - ° " l ' ' 2

^1**2 "^ 2 ^ 1  

^  >0 andoc^ 4oĈ  < 0

1 +"^2 <0
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In order fo r  the real  part  o f  X to be negat ive  we require

i )  +c<2*) < 0  2.88

and i i )  " P i "  P ^ - )  > 0  2.89

Condition i i )  reduces to A  >0 since 2.90

•=x ,*« -2 *  - ^ , * ^ 2 *  = X," ‘ ^1^2^

*  *A
= XgA 2.91

and XI and *  > 0 .

We can now compile the e q u i l i b r i u m / s t a b i l i t y  ta b le  (Table 2 . 3 ) .

Two important observations can be made concerning the resu l ts  

presented in Table 2 . ^

i .  i f  the two species in a s tab le  community without  i n t e r s p e c i f i c  

in te rac t ions  ( r . > 0 . < 0 ,  i =1, ^ are allowed to in te r a c t  

(such that  r^ remains >0 a n d ^ |  remains <0,  i = 1 ,2 ) the 

community, by d e f i n i t i o n ,  becomes more complex, but the

tab le  shows that the existence of  a s tab le  e q u i l ib r iu m  now 

depends on the actual  values o f  the parameters.  In other  

words the more complex community is less l i k e l y  to be 

sta b le .

i i .  On the other hand, i f  the two species community without  

i n t e r s p e c i f i c  in te rac t io n  is unstable ,  then,  depending on 

the signs of  r . and x;, the a dd i t ion  of  an in te ra c t io n  

term in the model makes a s tab le  e q u i l ib r iu m  possib le .  In 

th is  case the more complex community is more s ta b le .

Models of  communities consist ing of  three species

So f a r  we have increased the complexity o f  the community by 

adding in te rac t ions  only .  Now l e t  us examine what happens 

when we add one species to a community such that  i t  in te rac ts  w i th  

only one other  species.
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Let  the i n i t i a l  community be descr ibed  by

dx? = x^ (r^ + " ^ 2^2  ̂ 2.93
dt

where a l l  the constants are p o s i t iv e .

This community has the s tab le  e q u i l ib r iu m

^1* “ 2 ^2 
—

’' 2*  "  f l  1^2 " ° ( | .  ""2 ^-95
A

i f  r ^^2 > ^ 2  (See Section 2 .1 1 .4  and Table 2 .3 )  2 .96

Now l e t  a t h i r d  species jo i n  the community 

The model might become

dxr = x  ̂ (r^-oc^x^ ” P i^ 2  ^1^3)
dt

2 .97

dx:? = X2 4^2 + ^2^1 ~®^2 ^2^ 2 .98
dt

dx ? = x_ ( -  r \  + %.j X . )  2 .99
dt  ̂  ̂ ;  I

(r^ > 0,  sign o f ^  , 3^  ̂ to be determined),  

is there  s t i l l  an equ i l ib r iu m  point?

Equation 2 .99  gives x *  = **3 2.100

^3

This leads to the necessary condit ion tha t  ^3  > 0.
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Equation 2 .98 gives

c < 2

2 "̂ 3 ” **2^3 2.101

^ 2 ^ 3

S ince^?3 > 0,  th is  gives the f u r t h e r  necessary condi t ion

^ 2   ̂ ^ 2 ^ 3  (i»^« x.| > r 2  )

1^2

Equation 2 .97 gives

= (5i=^r +

2 .1 0 2

= P i P i -<~3 -  +• r ?  —  Cl

=><* ^ 3

 •

=  r  f ) .  % % o c . ' i
ÎT\ ^  -*

 ̂ wVierg. or- '  ïs
% ^  ^  ^  I I <ZL̂ »̂V*\>rivl'VN \eOa.\ ojr

^  OC* »aVWj. 2.-Sf«oCi£

t  1^0«&eL .

s x * - = c /  I 2.103

«Txir,

This gives the f u r t h e r  condi t ions:

i f  / l  < 0,  X.1 ' > x , "  2.104

i f  X'l > 0,  x  ̂ ' < ' 2 .105
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Therefore adding one species to a s tab le  two species community 

(equation 2.92  and 2 .93 )  so tha t  the populat ion dynamics are  

described by equations 2 .9 6 ,  2 .97  and 2.98.  gives three necessary 

condi t ions fo r  there to be an e q u i l ib r iu m  instead o f  only one.

What can we say about the s t a b i l i t y  o f  the three species model.

The c h a ra c te rs t ic  equation is

-I?.

o

(Cl

2 . 106

v.e.

L (L

^  2 . 1 0 8  
-  3 ,  -  G

We can use the Routh-Hurwitz s t a b i l i t y  c r i t e r i a  (described in 

Section 2 .1 1 .6 )  to give three necessary and s u f f i c i e n t  condi t ions  

fo r  the roots of  th is  equation to l i e  in the l e f t  h a l f  complex 

plane.

These equations are:

i )  oc 1“ +-c<2'' > 0

i i )  _%i* > 0

i i i )  ('SCI + ^ 2 )  (<3t1 *<2 + Pi p  2 -  ^1 ^ 3 )

> -  M  «3 <^2

2 .109

2 . 1 1 0

2.111
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In th is  case condi t ion i )  is s a t i s f i e d  a u tom a t ica l ly  because**^!'

>0 and**2 > 0.

Condition i i )  is s a t i s f i e d  i f ^ r ^ 3  < 0 because^2 > 0.

i f  condi t ion i i )  is s a t i s f i e d ,  i t  is c le a r  tha t  condi t ion  i i i )  is 

a u tom at ica l ly  s a t i s f i e d .

Therefore in th is  example a necessary and s u f f i c i e n t  condit ion fo r  

s t a b i l i t y  is tha t  ^1 ^  3 < 0,  th a t  is the new in te r a c t io n  is a
predator-prey  r e l a t i o n .

Combining th is  condi t ion wi th  the condi t ions determined above 

fo r  there  to be an e q u i l ib r iu m  we see there are now four  condi t ions  

fo r  the 3-species model to have a s tab le  e q u i l ib r iu m .

These are:

!)  i f ;  > 0 2.112

i i )  (g r ,  > 2.113

i i i )  %1 < 0 2.114

iv)  r 2  0 ^  +|S ,  rg. > r ,  . 2 .115

A  ^3 ■
We might conclude from th is  example t h a t ,  given a s tab le  community 

of  a p a r t i c u l a r  complexi ty ,  then making th is  community more complex 

by adding a fu r t h e r  species does not necessar i ly  make the community 

more s ta b le .  I t  is evident  th a t  both the type and the s t rength  o f  

the new in te rac t ions  are important in determining whether or not 

the more complex community w i l l  have a s tab le  e q u i l ib r iu m .

We can a lso observe from th is  example t h a t ,  even i f  the o r ig in a l  

two species model does not have a s tab le  e q u i l ib r iu m  ( t h a t  is ,  

condit ion 2 .96 does not h o ld ) ,  the more complex community may s t i l l  

be s ta b le .

-  70 -



2 .1 1 .6  The général  case

2 .1 1 .6 .1  Introduction

From the s p e c i f i c  but simple examples given in Sections 2 .1 1 . 3 ,  4 

and 5 we might conclude tha t

i )  a community which is a t  a s tab le  e q u i l ib r iu m  may

become unstable i f  the complexity o f  the community 

is increased or decreased.

and i i )  a community which does not have a s ta b le  e q u i l ib r iu m  

(or indeed an equ i l ib r iu m )  may become s tab le  i f  i ts  

complexity is increased or decreased.

I t  is not hard to see tha t  these conclusions hold f o r  the  

equiva lent  n species d i f f e r e n t i a l  equation models, but do they 

answer our question; tha t  is ,  do they show tha t  there  is not a 

general r e la t io n s h ip  between community complexity and s t a b i l i t y .

Let us consider a general d i f f e r e n t i a l  equation model o f  a n species 

community.

dx . = f .  ( x ^ , . . . . , x ^ )  i = 1 , . . . . , n  2.116
dt '

where fj,' (_x) is any function o f  the ind iv idual  populat ion s ize s .

To determine whether a e q u i l ib r iu m  ex is ts  we f i r s t  need to f ind  

X  such that

f; (x ) = 0 i = 1 , .  . . . n .  2.117

îV -j-
For th is  to be a v a l id  e q u i l ib r iu m  we require  f u r t h e r  th a t  ^  % Ri^

where R^^ = [(x|   -------)  ̂ ) : X;' > 0 and X ; : € R ,  i = 1 , ------- , n ^  and R is the
set o f  real  numbers.

C le ar ly  in the most general case in which any or a l l  o f  the f.. are  

n o n - l in e a r ,  there  may be several  or no values o f  >< which s a t i s f y  the 

condi t ions.
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Vc #L
Whether a p a r t i c u l a r  x e w i l l  usual ly  depend both on the

actual  form o f  the functions  f |  and a lso on the values of  the 

parameters associated w i th  the f j .

For instance in the ' l i n e a r *  case in which

f j  = X j : ( r ,  + o ^ , , : x ,  ^;x^) ■ 2.118

*  a.
we can say _x R,  ̂ i f  and only i f  R  ̂ 2.119

where oC = ( r j   .................

R'e = y  DÇ : ><"g ^

e .g .  I f  n=1, : r ,  < 0 , c < , ,  ^ - o jA ^ C r . , .  , :  r ,>0 ,^ .„<0  j

Returning to the general  case we can examine the local  s t a b i l i t y

of  any X which s a t i s f i e s  2.117 (but is not necessar i ly  an element

of  R  ̂ ) .  Using our standard procedure we construct the community 
matr ix  A.

X =  X 2.120

X is lo c a l l y  s tab le  i f  a l l  the eigenvalues o f  A have non-p os i t ive  

real  pa r ts .  S u f f i c i e n t  condi t ions fo r  th is  . to be so are given 

by the Routh-Hurwitz c r i t e r i a .  E s s e n t ia l ly  the eigenvalues o f  A 

are the roots o f  the c h a r a c t e r is t i c  equation.

lA -  M  1 = 0 2.121

This is a polynominal o f  degree n in ^ , :

\  + a. \   ̂ + « . . .  + a . \  + a = .0.I n.-1 ^ n 2.122

The Routh-Hurwitz c r i t e r i a  s ta te  tha t  the system is s tab le  i f  the 

fo l lowing n condi t ions are t ru e .
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1̂ 1
0 . 0 . . . 0

93 32 31 1 . . . 0

^21-1 •

• • . . .
. . aj

> 0 i = 1 n 2 .123

Whether these n condi t ions hold w i l l  depend on the values o f  the 

a * .  These are functions o f  the^scij and these in turn depend on 

the functions  f ^ .

Let us again consider the l in e a r  case.

C le ar ly o c . j j  = o , C | j  x;  i = 1 , . . . . , n  j = 1 , . . . . , n  2.124

and X  is l o c a l l y  s tab le  only fo r  p a r t i c u l a r  values o f  t h e ; j  

and r . .

We can say x"fe L i f f ^ 6  Rg ( i f f  = i f  and only  i f )  

where L denotes th a t  x  is lo c a l l y  s tab le

2.125

and R

Therefore fo r  to be a v a l id  l o c a l l y  s ta b le .e q u i l ib r iu m  po in t  we 

requi re

or E R n R = S— e s
2 . 1 2 6

C le a r ly  s im i la r  regions can be defined f o r  the more general  case.

The question now is 'how does the s ize  of  the region o f  s ta b le
I

eq u i l ib r iu m  S change wi th  complexity?.

As discussed in Section 2 .8  complexity is a function  o f  the number 

of  species in the community and the number and strength  o f  in te ra c t io n s  

between these species.  In the context o f  my argument each set  o f  

parameters %  has associated with  ' t  a p a r t i c u l a r  s t a b i l i t y .

The more species there a re ,  the more condi t ions need to be s a t i s f i e d  

f o r  there  to be a s tab le  e q u i l ib r iu m ,  and the more in te ra c t io n s  

there  a re ,  the more there are o f  parameters whose values are  not 

zero.
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I t  is not c le a r  how to order parameter sets depending on the 

actual  s ize  o f  the parameters.

In the ' l i n e a r '  example the parameter set  is

^  = ( r  i » ^ i  j  ; i = 1 , . . . . , n ;  j = l , . . . . , n )  2.127

I f  we assume tha t  r|:fO V  j ,  then a measure o f  complexity might 

be

2 .1 2 8

r\ ( ^  \

where %  L  = I  ' ^  2.129

r  O  s  o  .

I n t u i t i v e l y ,  th e r e fo r e ,  the more complex the community, the less 

l i k e l y  i t  is to be s ta b le .

The problem is to c a lc u la t e  the s ize  o f  the region S fo r  the general  

d i f f e r e n t i a l  equation model o f  a community with  associated complexity  

C. In fa c t  to formulate the problem in th is  way is perhaps not 

very meaningful because the s ize  o f  S w i l l  not,  in ge nera l ,  be 

comparable between communities o f  d i f f e r i n g  complexity because 

the parameter spaces are l i k e l y  to be o f  d i f f e r e n t  dimensions.

However i t  is sensible to assume tha t  not a l l  the possible  values  

of  each .parameter are equa l ly  l i k e l y .  I f  we assoc iate  a 

p r o b a b i l i t y  densi ty  function g wi th  the parameter setocwe can 

p o t e n t i a l l y  c a lc u la te  the p r o b a b i l i t y  tha t  the community model 

is s ta b le .

Indeed th is  p r o b a b i l i t y  is J   ̂ g(oC ) d ^  2.130

In order to get an ind ica t ion  o f  the answer to our question i t  

would be necessary to eva luate  th is  expression fo r  a wide range 

of  the p o t e n t i a l l y  i n f i n i t e  d i f f e r e n t  forms the general  

d i f f e r e n t i a l  equation model may take and fo r  a wide range o f
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p r o b a b i l i t y  density  funct ions g. Without some f u r t h e r  s im p l i f i c a t io n  

even fo r  the l i n e a r  case a computer would be hard-worked to  give an 

answer.

2 .1 1 . 6 . 2  M. R. Gardner and W.R. Ashby

Gardner & Ashby, w hi le  inves t ig a t in g  the s t a b i l i t y  o f  general  large  

dynamic systems, provide a s im p l i f i c a t io n  o f  th is  problem which 

gives some answers. F i r s t l y  Ashby (1952) has demonstrated using 

Monte Carlo techniques th a t  fo r  systems with  n va r ia b les  whose 

dynamics are described by the system matr ix  A every element o f  

which is non-zero the p r o b a b i l i t y  o f  system s t a b i l i t y  decreases 

ra p id ly  as n increases.

However in general  not a l l  the system v ar ia b les  are going to 

i n te ra c t  and the re fo re  many o f  the elements o f  the matr ix  A 

w i l l  be zero.  Gardner & Ashby (1970) postulated a method o f  

measuring the average number o f  in te rac t ions  per system v a r ia b le  

and they term th is  measure 'connectance' .  In t h e i r  i n i t i a l  work 

they defined the connectance C as the percentage o f  non-zero  

elements in A and each non-zero non-diagonal element was selected  

from the uniform p r o b a b i l i t y  d i s t r i b u t i o n  U ( - 1 , 1 ) .  The elements 

of  the main diagonal were a l l  negative  and selected from the  

uniform d i s t r i b u t i o n  U ( - 1 , - 0 . l )  -  th a t  i s ,  each system v a r i a b l e  

alone is independently s ta b le .

Gardner S Ashby then used a computer to est imate  the p r o b a b i l i t y  

of  a system w ith  n v ar ia b les  and connectance C being s ta b le .

Some of  t h e i r  resu l ts  are summarised in Figure 2 .1 4 .

S<J

tooCO 8 0

C»'N/%c.cVo'vte. ( .

PtSOfC
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E s s e n t ia l ly  i t  appears tha t  as n increases there is a rapid  

change in p r o b a b i l i t y  of  s t a b i l i t y  from near ly  1 to near ly  0 

as connectance passes a c r i t i c a l  va lue .  Also fo r  a given 

connectance C the p r o b a b i l i t y  o f  s t a b i l i t y  decreases wi th  

increasing n and fo r  a given n the p r o b a b i l i t y  o f  s t a b i l i t y  

decreases with  increasing connectance C.

Now Gardner 6 Ashby considered a general dynamic system. C lear ly

such a system could be the populat ion dynamics o f  a b io log ica l

community and the system matr ix  A could be the community matr ix

described above. C is a measure o f  the average number of

in te rac t ions  per species and hence, fo r  given n, the la rg er  C

the more complex the community. .Hence thèse resu l ts  ind ica te  tha t  the

more complex the community, the less is the p r o b a b i l i t y  o f  i t  being s tab le

C le ar ly  Gardner 6 Ashby's resu l ts  are l im i ted  to smal l ish values of  

n because o f  the s ize  o f  the task on the computer. May (1972) 

uses a n a ly t ic a l  techniques to take th is  work a stage f u r t h e r .

2 .1 1 . 6 . 3  May

May (1972b) had s l i g h t l y  d i f f e r e n t  assumptions about the s t ru c tu re  

of  the community matrix  A. F i r s t l y  the diagonal elements are  

a l l  f ixed  a t  -1 -  i . e .  each species alone is s tab le  with  u n i t  damping 

t ime. Connectance is defined in a s im i la r  way but each non-zero 

element is assigned a t  random (from some s t a t i s t i c a l  d i s t r i b u t i o n )  

such that  i ts  expected value is zero and i t s  mean square value is 

06-. OÇ can be considered to be a measure o f  in te ra c t io n  s trength  

and in th is  case the expected strength is equal fo r  a l l  in te r a c t io n s .

May then fol lowed the arguments and theor ies  o f  Wigner ( 1959 ) to 

ind ica te  the p r o b a b i l i t y  tha t  a p a r t i c u l a r  community wi th  n (where 

n is large) species,  connectance C and in te rac t io n  strength  

is s tab le .

He found that  the community model is almost c e r t a i n l y  s tab le  i f

< (nC)2 2.131

and almost c e r t a i n l y  unstable i f

«  > (nc )^  2 .1 3 2



May's resu l ts  confirm Gardner S Ashby's resu l ts  tha t  there  is a 

sharp t r a n s i t io n  from s tab le  to unstable behaviour as the complexity,  

as measured by the connectance C and the average in te ra c t io n  strength  

oc, exceeds a c r i t i c a l  value .

May concluded t h a t ,  fo r  th is  p a r t i c u l a r  ensemble o f  mathematical  

models, too r ich  a web connectance or too large an average in te ra c t io n  

strength leads to i n s t a b i l i t y .  The la rge r  the number of  species, the  

more pronounced the e f f e c t .

C lear ly  the assumptions made by both Ashby and Gardner and May 

r e s t r i c t  the conclusions from being completely genera l ,  the main 

assumptions being tha t  each indiv idual  species is independently 

sta b le .  However the resu l ts  do tend to support our i n t u i t i v e  

conclusions tha t  s t a b i l i t y  is less l i k e l y  the more complex the 

commun i t y .

2.12 Conclusions

The point of  th is  Chapter has been to id e n t i f y  whether there is a 

general re la t io n s h ip  between community s t a b i l i t y  and community 

complexity both by considering arguments put forward by ecologis ts  

(and e s p e c ia l ly  t h e i r  in te r p r e t a t io n  o f  f i e l d  evidence) and by 
studying the s t a b i l i t y  proper t ies  o f  mathematical models of

communities o f  varying complexity.

i t  was seen tha t  eco logis ts  such as MacArthur, Elton & Hutchinson 

had, during the nineteen f i f t i e s ,  put forward arguments tha t  

suggested tha t  in general community s t a b i l i t y  increases with  

community complexity .  I t  is my opinion that  none o f  these arguments 

bear close scru t iny  and that  t h e i r  conclusions are mostly based on 

i n t u i t i v e  ideas.  The e f f o r t s  o f  Pimentel were perhaps more p o s i t iv e  

but r e a l l y  only succeeded in demonstrat ing how d i f f i c u l t  i t  is to 

set up f i e l d  experiments to study such b io lo g ica l  r e la t io n s h ip s .

The observations o f  Watt S Paine, however, do tend to show tha t  

the r e la t io n s h ip  is not necessar i ly  s t ra ig h t - fo r w a r d .

I t  is important to note tha t  none o f  the above workers gave a c le a r  

d e f i n i t i o n  o f  what he meant by s t a b i l i t y  or complexity.
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Evidence from studying some simple mathematical models of  

community populat ion dynamics supports the observations o f  Watt and 

Paine,  and indeed we may conclude:

d i f f e r e n t i a l  equation models o f  communities which are  

s tab le  may be made unstable by e i t h e r  making the community 

more or less complex and, conversely ,  models o f  communities 

which are unstable may be made s tab le  by e i t h e r  increasing or  

decreasing the community complexity.

However th is  is not a general r e la t io n s h ip  between s t a b i l i t y  S 

complexity.  A considerat ion of  the s t a b i l i t y  p roper t ies  of  

general  d i f f e r e n t i a l  equation models o f  communities o f  a r b i t r a r y  

complexity shows t h a t ,  i f  there is a r e la t io n s h ip ,  i t  is not 

easy to demonstrate one. I n t u i t i v e l y  s t a b i l i t y  is less l i k e l y  

the more condi t ions there are to be s a t i s f i e d  by the model parameters 

The number o f  condi t ions grow with  increasing complex ity .  F i n a l l y ,  

arguments put forward by May support th is  conclusion tha t  s t a b i l i t y  

is less l i k e l y  the more complex the community becomes.

How do these conclusions help fo r  example the conserva t io n is t  or  

the pest control  manager. Well they probably t e l l  such people 

what they have a lready discovered from experience.  A p a r t i c u l a r  

community is e i t h e r  r e l a t i v e l y  s tab le  or unstable and only a 

study o f  tha t  community w i l l  guide the expert  as to what s t ra tegy  

he should take.  I t  is c e r t a i n l y  dangerous to assume th a t  increasing  

the complexity of  the community by introducing a new species w i l l  

neccessar i ly  make the community more (or less) s ta b le .  Mathematical  

models, however, may be very useful  in using the experts  knowledge 

to simulate the populat ion dynamics and hence eva lua te  p o te n t ia l  

so lu t ions .
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3. Ehvî ronrhenta 1 heterogeheî ty  and commun î ty  stab i 1 i ty

3.1 Int roduction

Ecologists have been aware fo r  some time tha t  v a r i a b i l i t y  o f  the 

actual  c h a r a c t e r is t i c s  o f  the environment in which the populat ion o f  

a p a r t i c u l a r  species is l i v i n g  is l i k e l y  to have a s i g n i f i c a n t  e f f e c t  

on the dynamics o f  tha t  populat ion and hence on i t s  s t a b i l i t y .  For 

instance Hutchinson (1959) described what he termed the mosaic 

nature o f  the environment and c le a r l y  bel ieved j th a t  :th Is ; is  :.an 

important f a c to r  in determining how many species can e x is t  in a 

given environment and Den Boer (1968) in an in te r e s t in g  paper in which 

he described his concept o f  the 'spreading o f  r i s k '  stressed the 

importance o f  he terogeneity  o f  a l l  fac to rs  which might determine  

populat ion numbers.

More recen t ly  Levin (1974) claimed tha t  ' the  d i s t r i b u t i o n  o f  a 

species over i t s  range o f  hab i ta ts  is a fundamental and inseparable  

aspect o f  i t s  in te ra c t io n  with  i t s  environment,  and no complete 

study o f  populat ion dynamics can a f fo rd  to  ignore i t ' .

The purpose o f  th is  chapter is to study the possible  e f f e c t  o f

environmental  he terogenei ty  on the s t a b i l i t y  o f  the resident  

populat ions.  F i r s t l y  I w i l l  present and discuss in some d e t a i l  

f i e l d  and laboratory  evidence which has been gathered by a number 

o f  workers to demonstrate tha t  hete rogeneity  is important.  We w i l l  

observe from these discussions a number o f  d e f i n i t i o n s  o f  environmental  

hete rogene i ty .  I s h a l1 next attempt to combine these into a s in g le  

d e f i n i t i o n .  T h i rd ly  I shal l  review the types o f  mathematical models 

tha t  have been developed to study the e f f e c t  o f  environmental  

heterogeneity  on community s t a b i l i t y .

3 .2  Bio log ica l  evidence of  the importance o f  environmental  he terogene i ty

in determining community s t a b i l i t y _____________________

3.2 .1  In troduction

From a survey o f  the l i t e r a t u r e  i t  is c le a r  tha t  f i e l d  and experimental  

evidence o f  the importance o f  environmental  heterogenei ty  is somewhat 

l im i t e d .  This is perhaps not s u rp r is in g .  Experiments designed to



study the e f f e c t s  o f  hete rogeneity  in general would have to be very 

extensive  i f  they were to provide s u f f i c i e n t  da ta ,  and f i e l d  

observations often  tend to  lack v i t a l  information regarding the 

exact nature o f  he terogene i ty .

However a number o f  workers have reported useful  observat ional  

evidence and th is  together w i th  perhaps i n t u i t i v e  fe e l in g s  and some 

f u r t h e r  evidence provided by mathematical models a t  leas t  suggests 

the importance o f  environmental  hete rogenei ty .

In p a r t i c u l a r  Huffaker  (1958) was one o f  the f i r s t  to set up sensib le  

experiments in the laborato ry  in order to study heterogenei ty  and his 

work is now regarded as c la s s ic .  More recen t ly  Smith and Dawkins 

( 1971) have demonstrated tha t  the hunting behaviour o f  g reat  t i t s  

appears to depend on the d i s t r i b u t i o n  o f  food in the environment.

The comments and observations o f  Polyakov (1959) ,  who is one o f  a 

number o f  Russian n a t u r a l i s t s  who were involved in s e t t in g  up 

rodent control  programmes in the 1950's ,  are valuable  as are  the 

more recent observations and theor ies  o f  Hansson (1977,  1979).

F i n a l l y  the work o f  Beddington, Free and Lawton (1 978 ) ,  who combined 

laborato ry  and f i e l d  observations w i th  evidence from various  

mathematical models, is reported.

3 . 2 ,2  C. B. Huffaker

Huffaker (1958) car r ied  out a ser ies  o f  experiments the main aim of  

which was to e s ta b l is h  an ecosystem in which a predator  and a prey 

species could continue to l i v e  together fo r  a reasonable period o f  

t ime so that  t h e i r  in te rac t io n s  with  each other  could be studied in 

d e t a i l .  The predator species used in the experiments was the predatory  

mite Typhlodromus occidental  is and the prey species was the 

phytophagous mite Eotetranychus sexmaculatus.

Each experiment involved arranging oranges,  which provided the prey 

with  food, and s im i la r - s i z e d  waxed rubber b a l ls  on a t ra y  and 

introducing ind iv idua ls  o f  the prey species and, a t  a l a t e r  s tage,  o f  

the predator species on selected oranges. The number o f  prey and
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predator ind iv idua ls  in the universe ( i . e .  the t ra y )  was estimated  

at  c e r t a in  points in time from samples u n t i l  soon a f t e r  one or other  

o f  the species became e x t i n c t .

The ser ies  o f  experiments was designed so that  an a r b i t r a r y  se lect ion  

of  d i f f e r e n t  degrees of  dispers ion and segmentation o f  un i ts  o f  food 

fo r  the prey was achieved without a l t e r i n g  the t o t a l  surfaces fo r  

the predators to search and, i f  des ired ,  w ithout a l t e r i n g  the to t a l  

food used. This was done by covering the oranges to varying  degrees,  

so th a t  only a proport ion o f  each orange was exposed, and dispers ing  

them among the rubber b a l l s .  The most complex universe  constructed  

also included b a r r ie rs  to predator  dispersion and aids to prey 

movement so tha t  i t  was d i f f i c u l t  fo r  the predator  to contact a l l  

the areas occupied by prey a t  any one t ime.

Control experiments were a lso c arr ied  out in which only the prey 

were introduced to the universes.

From the control  experiments Huf faker  observed t h a t ,  i f  the oranges 

were more widely  dispersed, the prey populat ion tended to be more 

stab le  ( i . e .  exh ib i ted  smaller  o s c i l l a t io n s  in s ize )  al though the mean 

densi ty  tended to be smal le r .

When predators were introduced to universes in which the prey had 

easy access to food and hence no need fo r  dispersal  to obta in  food,  

then more often  than not both the predator and the prey populat ions  

became e x t i n c t .  In experiments in which the food was w idely  

dispersed i t  appeared th a t  over -populat ion o f  oranges by prey

ind iv idua ls  as the reason f o r  p r a c t i c a l l y  a l l  movement from orange 
to orange.  However, even w i th  wide food dispers ion i t  was chance 

whether the prey populat ion survived or not.

In the largest  and most complex universe studied coexis tence of  

predator and prey was achieved fo r  three  o s c i l l a t i o n s  in populat ion  

s izes .  In a l l  other  experiments only a s ing le  o s c i l l a t i o n  was 

achieved before e x t in c t io n  o f  a t l e a s t  the predator  species.
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Huffaker  concluded th a t  In a given universe whether the p a r t ic ip a n t  

populations survive is lo c a l l y  a matter o f  chance. As the universe  

increases in complexity so th is  chance increases.  He concluded 

fu r t h e r  tha t  although the act ion of  a predator  may lo c a l l y  be 

i n s ig n i f i c a n t  a t  a given t ime, predation may be more s ig n i f ic a n t  

throughout the la rger  sphere which can be reached by migrants 

from the over-populated areas.

What Huffaker described as universe complexity was the degree to

which the prey food was dispersed, the amount o f  food there  was in 

each a rea ,  the ease with  which prey and predator ind iv idua ls  could 

migrate (physical  b a r r ie rs  and a ids)  and the number and dispers ion  

of  refuges.  Also,  a t  any point  in time the prey had a p a r t i c u l a r  

d i s t r i b u t i o n  o f  numbers throughout the universe and lo c a l l y  th is  may 

have a f fe c ted  the p r o b a b i l i t y  tha t  predators found and k i l l e d  prey.

So in e f f e c t  the universes were heterogenous in both time and space.

Why should environmental  complexity increase the chance o f  prey 

and predator surv iva l?  Many ecologists  (eg Nicholson (1933 ) ,  Nicholson  

£ Bai ley (1935))  had b u i l t  mathematical models o f  predator -p rey  

in te rac t ions  which assumed tha t  predators search completely a t  random 

throughout the universe so that  the p r o b a b i l i t y  o f  locat ing  and k i l l i n g  

a prey depends only on the number o f  prey a v a i l a b le  and the predators  

e f f i c ie n c y  a t  k i l l i n g ,  and not on the actual  d i s t r i b u t i o n  o f  the prey 

in the universe.  Huffaker  argued s trongly  t h a t ,  due to the marked 

inconsistency of  hazards from one microhabi ta t  to another ,  such an 

assumption is d i f f i c u l t  to v is u a l is e  e i t h e r  in his experiments or  

in na ture .  The fa c t  tha t  the prey tended to clump together  in various  

locat ions  where food was concentrated meant th a t  the predators a lso  

tended to concentrate in those areas.  Some prey were able  to migrate  

r e l a t i v e l y  e a s i l y  to other  parts  o f  the universe which were predatoi— 

f re e  and hence propagate,  i t  would be some time before o v e r e x p lo i t a t io n  

o f  the fo o d - r ic h  areas forced the predators to disperse and hence to  

locate  these other  p re y - r ic h  areas.
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Do Huffakers conclusions apply in natura l  condit ions? Huffaker did 

acknowledge that  conclusions drawn from observations on such a r t i f i c i a l  

universes must have r e s t r i c t e d  value i f  the universes do not a l low a l l  

the important natura l  parameters p o s s i b i l i t y  o f  expression.  He 

believed t h a t ,  because he had succeeded in obta in ing  prolonged 

coexistence,  he had achieved t h i s .  I am not convinced of  th is  

argument because the environments he constructed were s t i l l  e s s e n t ia l l y  

a r t i f i c i a l .  What is c e r t a in  though is tha t  the experiments were 

car r ie d  out very c a r e f u l l y  and the method of  sampling was very  

accurate .

A r t i f i c i a l  or otherwise , increased environmental complex ity ,  tha t  is 

hete rogene i ty ,  gave g re a te r  chance o f  prolonged coex is tence.

3 . 2 .3  J.  N. M. Smith and R. Dawkins

Smith and Dawkins (1971) studied the hunting behaviour o f  ind iv idua l  

great  t i t s  in r e la t io n  to s p a t ia l  v a r ia t io n s  in t h e i r  food de ns i ty .

To do th is  they set up a p a r t i c u l a r  experimental  h a b i ta t  which contained  

four separate possible feeding areas.

i n i t i a l l y  Smith & Dawkins determined the pre fe rred  feeding area o f  

each t i t  by re leasing  each in d iv id u a l ,  one a t  a t ime, in to  the 

experimental  h a b i ta t  fo r  a period of  time and observing how many 

times i t  v is i t e d  each area .  The four feeding areas were then set a t  

d i f f e r e n t  dens i t ies  o f  food in such a way tha t  fo r  the p a r t i c u l a r  

bird under observation the lowest densi ty  o f  food was put in i t s  

prefe rred  area and the highest in i t s  least p re fe r red  area .

in v ar ia b ly  i t  was observed that  the pat tern  o f  behaviour o f  each 

bird changed so tha t  i t s  new pre ferred  area was the one wi th  the  

highest food dens i ty .  Smith £ Dawkins concluded th a t  t i t s  are  

capable o f  determining areas o f  high prey (food) densi ty  and w i l l  

v i s i t  tha t  area more f re q u e n t ly .
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Their  experiment a c t u a l l y  went f u r t h e r .  At a f ix e d  point through 

each t r i a l  the best area was swopped with  the worst ,  in a l l  but 

one case the birds did not reverse t h e i r  behaviour although i t  was * 

c le a r  th a t  they did v i s i t  the new best area and they were successful

in f in d in g  prey the re .

Smith S Dawkins pointed out tha t  id e a l l y  the behaviour o f  t i t s  should 

be investigated  under f i e l d  condi t ions to te s t  whether the laboratory  

f indings apply to w i ld  b i rd s ,  but th is  is very hard to achieve.  They 

c i te d  several  examples o f  non-random d i s t r i b u t i o n  o f  prey in the w i ld .

In p a r t i c u l a r  Gibb (1958) demonstrated s ig n i f i c a n t  v a r ia t io n s  in the 

in te n s i t y  o f  the larvae o f  the eucosmid moth Enarmonia conicol  ana 

which inhabi ts  pine cones and is preyed on during w in te r  by coal

and blue t i t s .  The in te n s i t y  o f  larvae per f i v e  pine cones showed

up to s ix te e n - fo ld  v a r i a t i o n .

la rva l  in te n s i t y  number o f  p lots

(no. o f  larvae per 5 

pine cones)

<2 93

2-3 131

3-4 43

>4 15

C le ar ly  the high in t e n s i t ie s  are less frequent .  Gibb found in fa c t  

tha t  the concentrat ion o f  t i t  predators on higher i n t e n s i t ie s  was 

somewhat weaker than Smith S Dawkins p red ic ted ,  but these were 

mainly n o n - t e r r a t o r ia l  birds searching over f a i r l y  large  areas.

Also Goss-Custard (1970) studied f locks  o f  red-shank (Tringa totanus)  

feeding in w in te r  on burrowing eniphipod Corophium v o lu t a t o r  in an 

estuar ine  h a b i t a t .  He found tha t  red-shank tended to feed in the 

more p r o f i t a b l e  areas and, in one p a r t i c u l a r  t ransec t  under observation:  

there  was a suggestion that  red-shank spent a d is propor t iona te  amount

o f  time feeding a t  the highest Corophium dens i ty .
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In conclusion what Smith S Dawkins experiments demonstrated was 

tha t  t i t s  may search fo r  t h e i r  prey in a non-random way. That 

i s ,  t h e i r  searching behaviour is a f fe c ted  by the d i s t r i b u t i o n  

of  the prey in i t s  environment and the re la t io n s h ip  between 

prey densi ty  and searching behaviour is not necessar i ly  

s tra ight forw ard  -  the birds do not necessar i ly  respond quick ly  

to changes in prey dens i ty .  In e f f e c t  the non-uniform 

d i s t r i b u t i o n  o f  the prey in i t s  environment makes the h a b i ta t  

s p a t i a l l y  heterogeneous, and, sincethe prey d i s t r i b u t i o n  is 

l i k e l y  to change wi th  t ime, the h a b i ta t  w i l l  in fa c t  be 

s p a t i a l l y  and tempora l ly heterogeneous.

3 .2 .4  I .  J.  Polyakov

Polyakov (1959) is one of  a number o f  Russian n a t u r a l i s t s  who 

have indicated that  environmental heterogeneity  is important  

in determining populat ion leve ls  and f lu c t u a t io n s .  He was 

p a r t i c u l a r l y  concerned wi th  fo recas t ing  the s ize  o f  vole  

populations so that  farmers could take adequate control  

measures to protect t h e i r  crops and pastures.  He presented  

data which indicates that  the amount and sor t  o f  food required  

by voles depends on the temperature and humidity o f  the 

immediate environment.

The sp a t ia l  boundaries o f  the to t a l  rodent populations th a t  

Polyakov was studying were e s s e n t i a l l y  the Russian borders,  

but c l e a r l y  the actual  d i s t r i b u t i o n  o f  the ind iv idua ls  w i th in  

these borders is o f  c r i t i c a l  value to the farmers.  Polyakov 

observed tha t  in locat ions where condi t ions are favourable  

and the vole numbers are increasing the voles tend to survive  

in areas where there  are favourable  condi t ions.  During 

periods o f  unfavourable condi t ions voles tend to  lose 

t h e i r  v i a b i l i t y ,  so that  even when favourable  condit ions  

re turn  the local  populations tend to per ish .  These populat ions  

tend to be small in number and weight o f  in d iv id u a ls ,  do not 

propogate or propogate with  lower i n t e n s i t y ,  have increased 

s u s c e p t i b i l i t y  to disease,  a lower level  of  metabolic exchange 

and a narrow range o f  optimum temperatures.  F ur the r ,  the way 

in which predators .a f fe c t  thenumber of  voles depends on the  

v i a b i l i t y  o f  the populat ion and the environmental cond i t ions .
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So the environmental  condi t ions can have a complicated e f f e c t  on 

the populat ion dynamics o f  rodents in Russia and the environment  

tends to  vary both s p a t i a l l y  and tempora l ly .  Russian n a t u r a l i s t s  

have recognised th is  and have b u i l t  both s p a t ia l  and temporal 

observations o f  rodent populations in to  fo recas t ing  models in order  

to p re d ic t  as accura te ly  as possible the s ize  and s p a t ia l  d i s t r i b u t i o n  

o f  such populat ions in Russia,

3 .2 . 5  L. Hansson

Based on f i e l d  evidence Hansson (1979) postulated a general hypothesis  

concerning the importance o f  what he terms landscape heterogeni ty  

in northern regions ( i . e .  Scandinavia) fo r  the breeding populat ion  

d e n s i t ie s  o f  homeotherms.

He pointed out th a t  few communities are a c t u a l l y  closed and th a t  

there  w i l l  be a f low o f  ind iv idua ls  in and ou t .  The neighbourhood 

between communities appears th e re fo re  to be important,  as does the  

r e l a t i v e  s u i t a b i l i t y  o f  a l t e r n a t i v e  h ab i ta ts  in a p a r t i c u l a r  landscape 

Hansson defines landscape ecology as the study o f  the e f f e c t  o f  the  

composition o f  various ecosystems (communities) in a landscape on the  

local populat ions.

In p a r t i c u l a r  Hansson (1977) described the behaviour o f  f i e l d  voles  

in heterogeneous landscapes. Vole populations are found in a v a r i e t y  

of  d e ns i t ie s  throughout Scandinavia and th is  appears to  depend to  

some extent on the p a r t i c u l a r  local  h a b i ta ts .  Voles do have a 

pre fe rred  h a b i ta t  but th is  is not always a v a i l a b l e .  Some h a b i ta ts  

tend to be more permanent than o thers .  Temporary ha b i ta ts  are o f te n  

those areas which are flooded seasonally  or leys which are cut once 

or twice an n u a l ly .

Su i tab le  hab i ta ts  are o f ten  separated by large un inhab i tab le  areas.  

Also s u i ta b le  hab i ta ts  may become unsui table  e i t h e r  seasonal ly  or  

fo r  i r r e g u la r  periods o f  t ime.  So the landscape can be heterogenous 

in both space and t ime.
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The pressure to move between s u i ta b le  hab i ta ts  depends on physical  

fac tors  such as seasonal f looding and a lso on o ther  fac to rs  such 

as the carry ing  capacity  o f  a p a r t i c u l a r  h a b i t a t .  By observat ion  

some h ab i ta ts  appear to be donor h ab i ta ts  in th a t  ind iv idua ls  tend 

to leave and seek other  s u i ta b le  h a b i ta ts .  Some ha b i ta ts  tend to be 

receptor hab i ta ts  and w i l l  accept ind iv idua ls  from other  h a b i ta ts .

There is a lso evidence fo r  movements o f  whole populat ions o f  f i e l d  

voles .  For instance,  seasonal f lood ing ,  causes populat ions to seek 

out higher ground and there  is s im i l a r  movement out o f  leys in the 

middle o f  summer.

Voles are j u s t  one example o f  species whose populat ion de n s i t ie s  are 

a f fec ted  by landscape heterogene i ty .  Hansson (1979) a lso c i te d  

f i e l d  evidence concerning c erv id s ,  foxes,  and o thers ,  in a l l  cases 

the large d i f fe re n c e  between the seasons in terms o f  h a b i ta t  

s u i t a b i l i t y  and the heterogeneity  o f  the landscape has an e f f e c t  

on the populat ion dynamics causing movements o f  in d iv id u a ls  and 

even whole populations between h a b i ta ts .

Hansson's general theory to account fo r  the importance o f  landscape 

heterogene ity  on homeotherm populat ions is presented diagrammatica l ly  

in Figures 3 . 1 ,  3 . 2 ,  3 .3  and 3 .4 .
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Figure 3.1 represents the proposed r e la t io n s h ip  between heterogeneity  

and sea sona l i ty .  The more seasonal a species tends to be, the more 

l i k e l y  heterogenei ty  w i l l  in f luence the breeding populat ions.  (By 

seasonal Hansson means th a t  the populat ion breeds only a t  c e r t a in  

times in the y e a r ) .

Figure 3 .2  proposes a r e la t io n s h ip  between h a b i ta t  d ispers ion and 

the m o b i l i t y  o f  the const i tuen t  species.  For animals w i th  low m o b i l i t y  

only f in e -g ra in ed  landscapes tend to be s u i t a b le ,  th a t  is landscapes 

which are r e l a t i v e l y  homogeneous, conta in ing p lenty  o f  a l im i te d  range 

of  food. Animals w i th  high m o b i l i t y  can a lso e x p l o i t  coarse-gra ined  

h a b i ta ts ,  th a t  is h ab i ta ts  providing a wide range o f  unevenly 

d is t r ib u te d  food.

Figure 3 .3  describes a r e la t io n s h ip  between the successional  stage  

o f  the breeding h a b i ta t  and disturbance in the h a b i t a t .  (Succession 

is a term which describes the apparent maturat ion o f  an environment  

in terms o f  i t s  complexity and c onst i tuent  s pec ies ) .  By d is turbance  

Hansson means th a t  new sources o f  food are introduced into  the  

h a b i t a t .  N a tu ra l ly  introduced disturbances o f  th is  kind only tend to  

a f f e c t  mature communi t i e s  whereas human disturbances can a f f e c t  e a r ly  

or la t e  successional stages.

Figure 3 .4  represents the proposed r e la t io n s h ip  between d is tance to  

the disturbance and the p r e d i c t a b i l i t y  o f  the d is turbance.  Accidental  

s i te s  o f  disturbance which increase the food supply only momentarily 

w i l l  a f f e c t  a few animals temporar i ly  and s p a t i a l l y  constant areas o f  

w in te r  support may inf luence large populat ions o f  a t  leas t  wide-ranging  

species.  In ha b i ta ts  o f  the l a t t e r  type there  may e ve n tu a l ly  develop  

breeding populat ions from the invading species.
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A l l  the fac to rs  described are l i k e l y  to in te r a c t  s t rongly  and the 

outcome fo r  p a r t i c u l a r  species and environments has to  be examined 

separa te ly .

Hansson admits th a t  his hypothesis is very general  and tha t  i t  can 

only be tested when appl ied  to p a r t i c u l a r  species and environments.

Of course i t  is v i r t u a l l y  impossible to exper im enta l ly  manipulate  

whole landscapes. A l t e r n a t i v e l y  repeated f i e l d  surveys and c r i t i c a l  

observations could be used but in p ra c t ic e  t h is  is a very d i f f i c u l t  

procedure.

However the importance o f  Hansson's theory is f i r s t l y  th a t  he 

believes  th a t  s p a t ia l  heterogeneity  is responsible fo r  the observed 

behaviour and c h a r a c t e r is t i c s  o f  c e r t a in  homeotherm populat ions and 

secondly the in t e r p r e t a t io n  o f  environmental he terogene i ty .  Two 

things are c le a r  in Hansson's ' d e f i n i t i o n '  o f  environmental  

heterogenei ty .  F i r s t  the environment tends to  consist  o f  a landscape 

of  hab i ta ts  some o f  which are ' s u i t a b le '  f o r  the p a r t i c u l a r  species  

to l i v e  in and some not .  Secondly the number and nature  o f  s u i ta b le  

hab i ta ts  w i th in  the landscape may change wi th  t ime. We w i l l  see 

l a t e r  tha t  th is  is a popular way of  modelling environmental  

heterogenei ty .

3 .2 . 6  J.  R. Beddington, C.A. Free and J .H .  Lawton

Beddington, Free S Lawton (1978) presented a mixture  o f  f i e l d ,  

laboratory  and mathematical evidence which suggests th a t  environmental  

heterogeneity  is important in determining community s t a b i l i t y .  In 

p a r t i c u l a r  they were in te rested  in the reasons f o r  success or  

otherwise o f  attempts to control  insect pests by the in t roduct ion  

o f  natura l  enemies, e s p e c ia l l y  insect paras i tes  ( p a r a s i t o i d s ) .

One measure o f  the e f f e c t  the in t roduction o f  a p a ra s i to id  has on i t s  

host is the r a t i o  (q) of  the populat ion s ize  o f  the host species in 

the presence o f  the p a ras i to id  to tha t  in the absence o f  the natura l  

enemy. They obtained estimates o f  q f o r  four laborato ry  h o s t -p a r a s i to id  

systems and a number o f  successful b io log ica l  contro l  programmes.
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In a l l  cases the laboratory  values o f  q were s i g n i f i c a n t l y  la rger  than

the f i e l d  values (a. . 3 compared to ^ ^ .0 0 5 ) .  They attempted to reproduce

these observed q values using mathematical models o f  the h o s t -p a ra s i to id  
r e la t i o n .

In the simplest model explored (Nicholson & Ba i ley  (1935) -  see 

Section 3 . 4 . 5 . 2 )  the paras i tes  were assumed to search completely  

a t  random fo r  the hosts and the host growth ra te  was such tha t  only 

a s in g le  eq u i l ib r iu m  populat ion level  was possib le .  This model could 

be made more complicated by introducing densi ty  dependent e f f e c t s  on 

the per cap i ta  ra te  o f  increase o f  the p a r a s i t o id .  In any case the  

smallest  value o f  q which could be generated was .33 .  This compares 

with  the values observed in laborato ry  experiments but is s i g n i f i c a n t l y  
la rge r  than f i e l d  values.

Further sop h is t ica t io n  o f  the model (e .g .  Hassell  (1978))  to include  

such fa c tors  as unequal generation time between the host and 

p a r a s i to id ,  non-constant searching e f f i c i e n c y  due to time spent on 

handling the host,  and f a l l - o f f  o f  searching e f f i c i e n c y  a t  low host 
d ens i t ies  f a i l e d  to reproduce f i e l d  q values.

One possible c r i t i c i s m  o f  the models used by Beddington, Free & Lawton 

is tha t  they are too u n r e a l i s t i c  fo r  modelling host depression in 

the f i e l d .  Beddington, Free & Lawton re fu ted th is  by showing tha t  

there is a key parameter in the models which is à measure o f  p a ra s i to id  

e f f i c ie n c y  ( i . e .  how good the p a ras i to id  is a t  catching and p a r a s i t i s in g  

the host) and which is roughly re la te d  to q. They presented data  

from f i e l d  experiments which show th a t  the order  o f  magnitude o f  the 

th e o re t ic a l  p a ra s i to id  e f f i c i e n c y  compares wi th the f i e l d  

values and they argue tha t  th is  s i g n i f i e s  tha t  the s t ru c tu re  o f  the 
model is b a s ic a l l y  sound.

They then looked fo r  a l t e r n a t i v e  reasons why f i e l d  q values should be 

so low. They observed tha t  one d i f fe re n c e  between the laboratory  and 

the f i e l d  is the g reater  s ize  and physical  complexity o f  the f i e l d  

environment.  The f i e l d  environment is s p a t i a l l y  : heterogeneous.
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Two ways in which s pa t ia l  . he terogenei ty  may a f f e c t  the host-  

paras i t o i d  community dynamics is i )  by providing refuges fo r  the  

host ( i . e .  locat ions in which the host is protected from p a ras i to id  

a t ta c k )  and i i )  by modifying the p a ra s i to id  a t ta c k  ra te .

Including refuges in the model led to  q values o f  the order .1 .  

Introducing modified a t ta c k  ra te s ,  in p a r t i c u l a r  by a l lowing the  

paras i to ids  to  favour a t tac k ing  'patches'  in the environment which 

have l o c a l l y  higher host d e n s i t ies  than other  patches,  led to low q 

values being re a d i ly  generated.

Beddington, Free & Lawton a lso described another way o f  generating  

low q values (due to May (1978))  which does not depend on s p a t ia l  

heterogenei ty .  This included vary ing the form o f  the host growth 

ra te  in the models so tha t  two lo c a l l y  s tab le  e q u i l ib r iu m  populat ion  

leve ls  were possib le .  Some studies have show th a t  th is  may be 

possible  in the f i e l d  due to background predation or paras i t ism  

( e .g .  Takahashi ( 1 9 6 4 ) ) .  When the host is constrained a t  the lower 

eq u i l ib r iu m  level  the q value may be small .

They f e l t  th a t  what evidence there  is supports heterogene i ty  as being 

commonly the most l i k e l y  so lu t io n .  This was mostly because models 

incorporat ing s p a t ia l  he terogeneity  p red ic t  th a t  q is re la te d  to  

searching e f f i c ie n c y  whereas i f  complex densi ty  dependence o f  the 

host growth ra te  were the reason, then the lower e q u i l ib r iu m  value  

w o u ld ’ la rg e ly  be determined by background m o r t a l i t y .  As discussed 

above, f i e l d  values do appear to be re la ted  to  e f f i c i e n c y .  Also 

evidence from paras i to ids  which have been successful  b io lo g ic a l  

control  agents suggested th a t  they had high response to  prey 

aggregation,  high dispersal  powers between patches and high e f f e c t i v e  

searching e f f i c i e n c i e s .  These are e xac t ly  the powers needed in 

s p a t i a l l y  heterogeneous environments.

One p a r t i c u l a r  c r i t i c i s m  of  Beddington, Free S Lawton's argument is 

tha t  the b io lo g ica l  da ta ,  as so of ten  is the case,  are l im i t e d  and 

what are a v a i l a b le  are subject to considerable  u n c e r t a in ty .  However 

the d i f fe re n c e  between the f i e l d  and laborato ry  q values is so 

s i g n i f i c a n t l y  d i f f e r e n t  t h a t ,  a l l  in a l l ,  th is  is powerful 1 evidence 

th a t  environmental  he terogenei ty  can have an important e f f e c t  on
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the community populat ion dynamics and hence on the determinat ion  

of  species persistence w i th in  th a t  community.

3 .3  D e f in i t io n  o f  envirôhrtièhtàl heterogeneity

3 . 3.1  introduction

From the work described in Section 3 .2  i t  appears th a t  there  are a 

number o f  types o f  environmental  heterogeneity  which are  important.

H uf faker 's  work was concerned both with  the physical  complexity o f  

the environment and the e f f e c t  o f  an uneven d i s t r i b u t i o n  o f  food on 

the populat ion o f  a p a r t i c u l a r  predator .  The physical  complexity  

was defined by the b a r r ie r s  and aids to ind iv idua l  movement which 

were included in the environment and was constant w i th  t ime. The 

d i s t r i b u t i o n  o f  food var ied  in both space and time due to  the 

ind iv idual  movement and the resu l ts  o f  in te r a c t io n s .  Somewhat 

s i m i l a r l y  Smith S Dawkins were concerned wi th  the e f f e c t  o f  tsmi'* r  

uneven d i s t r i b u t ’io’n.;of food^on the behaviour o f  a predator .

The heterogene ity  discussed by Hansson and by Polyakov is a l i t t l e  

d i f f e r e n t  in tha t  they were more concerned w i th  the physical  

complexity o f  the environment.  The environment may consist  o f  a 

number o f  s u i ta b le  hab i ta ts  d is t r ib u te d  between unsui tab le  areas.  

Populat ions o f  p a r t i c u l a r  species w i l l  tend to concentrate  in t h e i r  

p a r t i c u l a r  s u i ta b le  h a b i ta ts .  Each s u i tab le  h a b i ta t  w i l l  have i ts  

own degree o f  s u i t a b i l i t y  and the number of  s u i ta b le  h a b i ta ts  fo r  

each species and the degrees o f  s u i t a b i l i t y  may change wi th  t ime.  

Further ,  each s u i ta b le  h a b i ta t  may be phy s ic a l ly  heterogeneous in 

i t s e l f .  For instance there may be a temperature g ra d ien t  across 

the h a b i ta t  and th is  grad ient may change with  t ime.

So an environment may be considered to be heterogeneous because there  

are non-constant physical  proper t ies  in time and/or space, and/or  

because the  d i s t r i b u t i o n  o f  a populat ion w i th in  the environment is 

uneven. In e i t h e r  case th is  heterogene ity  is only important i f  

there is an e f f e c t  on the community populat ion dynamics.

This leads me to the fo l low ing  ser ies  o f  d e f i n i t i o n s .
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3 . 3 . 2  D é f i n i t i o n

i t  is important to de f ine  c l e a r l y  what the term environmental  

heterogeneity  means. There are three types o f  environmental  

heterogeneity  to be considered,  namely s p a t i a l ,  temporal and 

spat io-temporal  he terogene i ty .  These terms are a l l  o f ten  loosely  

covered by the term s p at ia l  he terogeneity  in the l i t e r a t u r e ,  though 

Levin (1976) gives a reasonably c le a r  descr ip t ion  o f  each. The 

terms physical heterogenei ty  and landscape heterogenei ty  have also  
appeared as we have seen above.

i f  we r e f e r  to the d e f i n i t i o n  o f  a community (Section 2 .3 )  we see 

th a t  a t  any point  in time the community is l i v i n g  in a p a r t i c u l a r  

physical enivronment,  the physical  c h a r a c t e r is t i c s  o f  which are 

l i k e l y  to determine the strength and p r o b a b i l i t y  o f  in te rac t io n s  

between ind iv idua ls  and hence the community populat ion dynamics.

i f  each physical property which a f f e c t s  the populat ion dynamics has 

( e f f e c t i v e l y )  the same value a t  each locat ion in the environment  

and throughout t ime, and the s trength and p r o b a b i l i t y  o f  in te rac t io n s  

between ind iv idua ls  is independent o f  t ime and location  then the 
environment is homogeneous.

So in theory the whole community may move location  and the environment  

s t i l l  remain homogeneous by my d e f i n i t i o n .  This is supported by 

Den Boer (1968) who defined the e f f e c t i v e  environment o f  a na tura l  

populat ion as ' t h a t  subset o f  i t s  environment whose components have 

a measurable in f luence on the s t a t i s t i c s  o f  the populat ion a t  some 

t im e ' .  A populat ion may migrate between environments which are  
e f f e c t i v e l y  the same.

i t  may be tha t  one or more o f  the physical proper t ies  o f  the environment  

may vary through time but a t  any point in time be constant in space, or  

the p r o b a b i l i t y  and strength o f  in te rac t ions  between in d iv id u a ls  may 

change w i th  time (as well  as the numbers o f  ind iv idua ls  present )  but 

remain independent o f  space, in th is  case the environment is e f f e c t i v e l y  
temporal ly heterogeneous.
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I f  a t  least  one o f  the physical p roper t ies  depends on the locat ion  

but is constant w i th  time or the s trength and p r o b a b i l i t y  o f  an 

in te ra c t io n  depends on the locat ion but is independent o f  t ime,  then 

the environment is s p a t i a l l y  heterogeneous.

An environment which is both temporal ly and s p a t i a l l y  heterogeneous 

is s pa t io - te m pora l ly  heterogeneous.

3  ̂ Approaches to modelling populat ion dynamics in a heterogeneous
envi ronment

3 .4 .1  Introduct ion

In Section 3 . 3 . 2  we fo rm al ly  defined three types o f  environmental  

heterogeneity^ temporal,  s p a t ia l  and spat io - tem pora l ,  although  

the l a t t e r  term merely appl ies  to an environment which is both 

temporal ly and s p a t i a l l y  heterogeneous.

Temporal heterogene ity  is r e l a t i v e l y  s t ra ig h t - fo rw a rd  to model by 

encorporating t ime-vary ing  parameters into the equations.  The 

v a r ia t io n  may be d e te rm in is t ic  or s tochast ic .  Some simple examples 

are discussed in Section 3 . 4 . 2 .

Modell ing sp a t ia l  heterogene ity  is much more complicated The 

mathematics are immediately more d i f f i c u l t  and there  are a lso  

several  d i f f e r e n t  types of  sp a t ia l  he terogeneity  to consider.  In 

order to s im p l i fy  the mathematics some people have included the  

e f f e c t s  o f  heterogeneity  i m p l i c i t l y  in what are e s s e n t i a l l y  models 

o f  homogeneous s i t u a t io n s .  An example o f  th is  approach is given in 

Section 3 . 4 . 3 .

However to understand more f u l l y  the e f fe c ts  o f  s p a t ia l  hete rogenei ty  

on populat ion and community dynamics i t  is necessary to develop more 

sophist icated models. The type o f  model appropr ia te  ( d i f f e r e n t i a l  

equation ,  d i f fe re n c e  equation or o ther )  depends not only on the types 

of  species and in te rac t io n  between them (as in homogeneous models) 

but a lso on the type o f  s p a t ia l  hete rogenei ty .
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Four types o f  s p a t ia l  hete rogeneity  are d iscernable  from the 

discussions in Section 3 .2  and the d e f i n i t i o n  o f  hete rogenei ty .

TYPE A -  environments which are e s s e n t i a l l y  homogeneous except

fo r  example providing a number o f  refuges fo r  p a r t i c u l a r  

ind iv idua ls  o f  species or physical b a r r ie r s  to the progress 

o f  predators .

TYPE B -  environments in which important physical fa c tors  such as 

temperature vary w i th  the pos i t ion  w i th in  the environment.

TYPE C -  environments in which an uneven d i s t r i b u t i o n  o f  one species  

may a f f e c t  the behaviour o f  others .

TYPE D -  environments in which patches o f  s u i ta b le  ha b i ta ts  are  

separated by areas o f  unsui table  h a b i ta ts .

In r e a l i t y  a p a r t i c u l a r  environment is l i k e l y  to have a mixture o f  

a l l  four  types o f  sp a t ia l  heterogeneity  plus other  types not mentioned

Type A can be r e l a t i v e l y  e a s i l y  modelled by i m p l i c i t  methods. Some 

examples are given in Section 3 . 4 . 4 .

Type A heterogeneity  is s t r i c t l y  speaking an example o f  type B. In 

th is  case i t  may be tha t  the values o f  c e r t a in  important physical  

fac tors  change s i g n i f i c a n t l y  wi th  s p a t ia l  loc a t ion .  I f  so populat ion  

density  can be made a function o f  continuous space as wel l  as time  

(d is c re te  or continuous) and, fo r  instance,  p a r t i a l  d i f f e r e n t i a l  

equation models can be developed. A short discussion is given in 

Section 3 . 4 . 4 . 2 .  In some cases o f  type B heterogenei ty  the parameter  

values may change in such a way tha t  the environment can be d iv ided up 

into  a number o f  d is cre te  homogeneous patches.  This technique has 

also been used in construct ing models f o r  types C and D. Choice of  

t imescale and the measure o f  populat ion or community s ize  becomes 

important.
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For type B and type C i t  is possible to develop models in which 

the populat ion density  in each patch or c e l l  can be measured and 

the t imescale can remain continuous (or in the d is c re te  case the  

u n i t  o f  t ime might be one ge nera t ion ) .  An example o f  such a 

model is given in Section 3 . 4 . 5 .

In type D heterogene ity  the environment is broken up into patches 

and the t imescale o f ten  becomes the l i f e - t i m e  o f  a community in 

such a patch.  The populat ion measure then becomes patch-occupancy,  

tha t  is the  proport ion o f  patches occupied by each species.

As indicated above mathematical models which aim to describe  

community dynamics in s p a t i a l l y  heterogeneous enviroments very  

quick ly  become extremely complicated and d i f f i c u l t  to analyse.  

Indeed few resu l ts  have been derived fo r  communities wi th  more 

than two species and even fo r  two species models extensive  use 

of  simulat ion models run on computers has been made.

In the fo l low ing  Sections I present some models which have been 

developed to describe the various types o f  he terogeneity  and in 

p a r t i c u l a r  to inv es t iga te  the e f f e c t  o f  s pa t ia l  he terogenei ty  on 

community s t a b i l i t y .

3 . 4 . 2  Temporal environmental  he terogenei ty

I t  is u n l ik e ly  th a t  a l l  o f  the environmental parameters which 

a f f e c t  the dynamics o f  a populat ion or a community w i l l  be constant  

through time (although they may be constant through space).  Some 

parameters may indeed vary c y c l i c a l l y  (e .g .  seasonal ly )  or in some 

other  d e te rm in is t ic  manner. Some parameters may vary randomly 

about a constant value or indeed a d e te rm in is t ic  va lue .  May (1974) 

considers b r i e f l y  two ways o f  modell ing temporal heterogenei ty  o f  

the environment.
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3 .4 .2 .1  D e te rm in is t ic  temporal he terogeneity

Consider fo r  example the simple exponential  growth model

d x ( t )  = r x ( t )  3.1
dt

Suppose tha t  the i n t r i n s i c  ra te  o f  increase r is in fa c t  a function  

of  t ,  r = r ( t ) .

I t  may be tha t  r var ies  seasonally .

e .g .  l e t  r = sin (wt) 3 .2

where w r e f l e c t s  a cyc le  of  one year .

C lear ly  the so lu t ion  of  the d i f f e r e n t i a l  equation is then

x(t) = X (Jj  exp ( s i n ( w t ' ) d t ' )

= x:(.Q exp ( 1 -  c o s (w t ) ) 3.3
w

The populat ion thus o s c i l l a t e s  with  a period o f  one year in a completely  

d e te rm in is t ic  manner.

Such complexit ies  can c le a r l y  be included in more sophist ica ted  

populat ion models in a s im i la r  way.

3 . 4 . 2 . 2  Random temporal heterogeneity

Consider now the l o g i s t i c  equation

d x ( t ) = x ( t )  ( k - x ( t ) )  3 .4
dt

and suppose that  the environmental parameter k v ar ies  randomly 

with  t ime.
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i . e .  k = + ^ ( t )  3.5

where k^ is the mean value of  k

and ( t ) i s  drawn from a random d i s t r i b u t i o n  o f  mean zero  and 

v a r ia n c e ^  ^

The value o f  x ( t )  now depends on the p r o b a b i l i t y  d i s t r i b u t i o n  which 

determines ^(( t )  and hence we need to t a l k  about the p r o b a b i l i t y  

of  there being x ind iv idua ls  in the populat ion at  t ime t  -  f  ( x , t ) .  

When the stochastic  term is white  noise i t  has been shown th a t :

( x , t ) = (m(x) f  ( x , t ) )  + i  ^  (v (x )  f  ( x , t ) )  3 .6
h  t

where m(x) = the expected value o f  x (k -x )  = x ( k ^ x )  3 .7

and v (x )  = the var iance of  x ( k - x )  -  3 .8

We can now t a l k  about the equ i l ib r iu m  p r o b a b i l i t y  function f  (x) 

which is independent o f  t ime and is given by

( x . t ) = o  3 _g

i t  can be shown tha t  in th is  case

f  (x) = C expl 2 ) V m(x*) dx'  
v(x )  V °  v ( x ' )

=  £  expl 2  y  kÿ-x' dx'

= C X  ̂  ̂ e x p ( - 2 x / S - 2 ^  3 .10

provided k^ > ^ f ^  where C is a normalising constant  

This is in fa c t  a standard Pearson Type I I I  gamma d i s t r i b u t i o n .
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2
I f  kd <  there  is no equi 1 ibrium so lu t io n .

The equ i l ib r iu m  so lut ion  shows tha t  the e q u i l ib r iu m  populat ion is 

d is t r ib u te d  about a mean m*(x) w ith  r e l a t i v e  v a r i a t i o n  r * ( x )  where

m* (x) = j  X f * ( x )  dx

= k .  ( ) 3 .11

and r * ( x )  = ( L ( x -  m * (x ) )^  f * ( x )  dx)^
m*(x)

= / < C £ / 2 k o _ V  3 . 1 2
\  1 - d^ /2k ;

I f  we p a r a l l e l  these resu l ts  w i th  the d e te r m in is t ic  case in which 

the 'mean' ig k^ and the s t a b i l i t y  condit ion  is purely  tha t  k  ̂ > 0,  

we can see tha t  temporal heterogeneity  has reduced the mean populat ion

level  and tha t  f lu c tu a t io n s  about th is  mean level  become more severe 

as the va 

unstable.

as the variance (E^approaches 2 For 2k* the  populat ion becomes

In genera l ,  fo r  communities in homogeneous environments modelled by 

d i f f e r e n t i a l  equations as in Section 2.11 the local  s t a b i l i t y  o f  

the equ i l ib r iu m  is determined by the value o f  the eigenvalue with  

the largest  real  p a r t .  In the equ iva lent  temporal ly heterogeneous 

case in which environmental  parameters are random i t  is apparant: 

from the above example a t  least tha t  the populat ion numbers w i l l  

vary about an equ i l ib r iu m  mean value in such a way th a t  s t a b i l i t y  

w i l l  also depend on the s ize  of  the v a r i a b i l i t y .  This v a r i a b i l i t y  

w i l l  usual ly  depend in turn on the v a r i a b i l i t y <2 o f  the environmental  

parameters . For s m a l l^  the populat ion is TFkely to be s ta b le .

For large ^  the populat ion may be unstable and indeed an eq u i l ib r iu m  

mean value may not e x i s t .
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Models fo r  communities wi th  more than one species l i v i n g  in a tempora l ly  

heterogeneous environment can be developed along s im i la r  l ines  and 

indeed May considers s p e c i f i c a l l y  a two-species model and also a 

general n-species model in which c e r ta in  environmental  parameters 

are described randomly. In each case the r a t i o  between the

absolute value o f  the real  part  o f  the eigenvalue o f  the equiva lent  

d e te rm in is t ic  system with  the largest  real  par t  and a measure of  

the environmental  variance is important in determining whether the 

community is s tab le  or not.

3 .4 . 3  Approaches to modell ing the e f f e c t  o f  s p a t ia l  environmental  

heterogene ity  by im p l ic i t  methôds._______ ______________

Rosenzweig and MacArthur ( I 963) used a general  continuous-t ime model 

to in ves t iga te  the e f f e c t  o f  sp a t ia l  heterogeneity  of  the environment  

on the dynamics o f  a predator-prey  community.

dx = f ( x )  - ^ ( x , y )  3.13
dt

dy = -ey +k^(x ,y )  3.14
dt

where x is the prey dens i ty ,  y the predator densi ty

f  is the ra te  of  change o f  prey in the absence o f  predators

^  is the ra te  of  predation

k is the e f f i c i e n c y  o f  convert ing prey into predators

e is the m o r ta l i t y  ra te  o f  predators

They investigated several  forms o f  the functions  f  and In 

p a r t i c u l a r  they s im p l i f i e d  the equations by put t ing

^  (x ,y )  = y p  (x)

and discovered th a t  the populat ion dynamics are  not fundamental ly  
a l t e r e d .
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Hence = f ( x )  - ( ^ ( x ) y
dt

3 .15

dy = -ey  + ky p { x )  
dt

3.16

The e q u i l ib r iu m  populat ion leve ls  x *  and y *  are given by

f (x&) -  y ÿ i ( x * )  = 0 

-  ey*  + ky* P (x * )  = 0
3 .17
3.18

Hence p  (x * )  = e /k

y *  = f ( x * )

iSôùtiv̂

3

3.19
3.20

3 5 i  f f T j?s o<̂ ;̂ gLŝ  %

The s t a b i l i t y  o f  th is  e q u i l ib r iu m  can be investigated in the usual 
way.

The community matr ix  is

df -  y*  
dx dx

k d^ y: 
dx

' d^ -jgf

/

3.21

and hence the c h a r a c t e r i s t i c  equation is

+ k^d^
Vdx dx /  dx

y* = 0
3.22

where X is an eigenvalue.
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The general  shapes of  the funct ions f  and^considered by 

Rosenzweig and MacArthur are shown in Figure 3 .6

6  - —t Wo. --sW of «J 4»V

For the e q u i l ib r iu m  to  be s tab le  we require

y *  % 0
dx

3.23

and ^  -  yd0 < 0
dx dx

3.24

Inequal i ty  3.23  is c l e a r l y  s a t i s f i e d  i f ÿ  is o f  the shape shown in 

Figure 3 .6a .

Inequal i ty .  3.24 is s a t i s f i e d  i f  ^  ^  0. (though t h is  is not a

necessary condi t ion )

Thus the e q u i l ib r iu m  is s ta b le  i f  the predator  i s o c l in e  (qquation 3 .20 )  

is crossed by the prey iso c l in e  (equation 3 .19)  to  the r ig h t  o f  i t s  

hump. Otherwise the eq u i l ib r iu m  may be unstable .  (See Figure 3 . 5 ) .

Certa in  assumptions can be made about the values o f  the parameters 

in the model and on the forms o f  funct ions f  a n d w h i c h  may r e f l e c t  

the e f f e c t  o f  sp a t ia l  hete rogene i ty .  For instance ,  Stemseth (1977)  

pointed out tha t  populat ion d ens i t ies  in homogeneous environments 

may be more v a r ia b le  fo r  a t  leas t  two reasons.
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î )  The supply o f  pre fe r red  food fo r  the prey may be g reater  

in homogeneous than In heterogeneous environments.  This 

means th a t  the carry ing  capaci ty  K o f  the environment 

( th a t  is the maximum densi ty  o f  prey th a t  can be supported 

in the absence o f  predators -  f  ( K ) =0) is g rea te r  in 

homogeneous environments.

In th is  case the hump in Figure 3 .5  is l i k e l y  to be f u r t h e r  to  

the r ig h t  fo r  homogeneous environments and hence the community 

less l i k e l y  to be s ta b le .

i i )  I t  is ea s ie r  fo r  predators to f in d  prey a t  low d en s i t ie s  

in homogeneous than in heterogeneous environments and thus 

the e q u i l ib r iu m  densi ty  o f  the prey may be sm al le r.

So in th is  case the prey is o c l in e  is l i k e l y  to cross the predator  

i so c l in e  fu r t h e r  to the l e f t  in homogeneous condi t ions and 

again the community w i l l  be less l i k e l y  to be s ta b le .

So in both cases modell ing sp a t ia l  heterogenei ty  i m p l i c i t l y  

indicates  th a t  heterogeneous environments may be more s ta b le  

than homogeneous ones.

3 .4 . 4  Physical  s p a t ia l  hete rogeneity

3 .4 .4 .1  Cover and refuges (h iding places) -  type A heterogenei ty

An environment may be s p a t i a l l y  heterogeneous purely  because i t  

o f f e r s  a number o f  hiding places to  the prey.  In such a case i t  

may be th a t  a t  any point in time a constant densi ty  o f  prey is 

protected from a t ta c k  by a predator .

Maynard-Smith (1974) used a d i f f e r e n t i a l  equation model to in v es t ig a te  

the e f f e c t  o f  th is  as fo l lows.

dx = ax -  hy (x -c )  3 .25
dt

dy = -ey + khy (x -c )  3 .26
dt
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where x and y are the prey and predator d ens i t ies  re spec t ive ly  and 

c is the constant number o f  hiding places per u n i t  area. , .

The e q u i l ib r iu m  dens i t ies  x *  and y *  are given by

x * - c  = e /kh 3.27

y = ax»
h (x * -c )

The community matr ix  is

/  a -  hy* - h ( x * “c ) \

\  khy* 0 /

3.28

3 .29

and the c h a r a c t e r is t i c  equation is

- X ( a - h y * )  + hey* = 0. 3.30

So the e q u i l ib r ium  is s tab le  i f

a -  hy* < 0 3.31

From equation 3.28 th is  is c l e a r l y  always the case and hence the  

e q u i l ib r iu m  is s ta b le .

As we saw in Section 2 .1 1 .2  i f  c=0 ( i . e .  no hiding places) then 

constant but unstable o s c i l l a t io n s  about the e q u i l ib r iu m  values  

ensue. The inclusion o f  hiding places makes the environment  

s p a t i a l l y  heterogeneous and the e q u i l ib r iu m  populat ion d en s i t ie s  

stab le  by damping the o s c i l l a t io n s .

3 . 4 . 4 . 2  Continuous heterogene ity  -  type B heterogeneity

In some s i tu a t io n s  the environment in which a community is l i v in g  

may be such tha t  .parameters which a f f e c t  the community populat ion  

dynamics ( f o r  example, temperature)  may vary s i g n i f i c a n t l y  w i th  the  

exact location w i th in  the environment.  This type o f  s p a t ia l  

heterogeneity  may be p a r t i c u l a r l y  important fo r  p lant  communities 

or plankton communities in the sea.
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There are e s s e n t i a l l y  two main approaches to modell ing such a 

s i t u a t io n .

As suggested by fo r  instance Levin (1976) the environment may be 

div ided up into  a large number o f  d is c re te  patches.  The community 

populat ion dynamics can depend on the local  condi t ions and migrat ion  

between patches can be included. As the number o f  patches is increased 

the continuous case is approximated.  This method is e s s e n t ia l l y  

s im i la r  to tha t  described in Section 3 .4 . 5  and 3 .4 . 6  and the main 

advantage is th a t  the mathematics is r e l a t i v e l y  easy to handle.

The a l t e r n a t i v e  method is  to  use p a r t i a l  d i f f e r e n t i a l  equations and I 

shal l  b r i e f l y  consider th is  approach in more d e t a i l .

Let us s t a r t  w i th  a s ing le  species in a one-dimensional  environment.

Suppose tha t  the populat ion s ize  x (s )  a t  each point s i n  the 

environment grows independently o f  a l l  other  locat ions and th a t  

there  is no migrat ion .

A general p a r t i a l  d i f f e r e n t i a l  equation model o f  th is  s i t u a t io n  would 

be

& x (s , t )  = f ( x ,s , t )  3 .32
a t

e .g .  a x ( s , t )  = r ( s ) x ( k ( s ) - x )  3.33
a t

The s ize  of  the to t a l  populat ion in the enviroment a t  time t  would be 

given by

x ( s , t ) d s  3.34

where 5 defines the sp a t ia l  l im i t s  o f  the environment.

I t  is more r e a l i s t i c  to assume tha t  some dispers ion o f  ind iv idua ls  

between locat ions w i l l  occur.
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The appropr ia te  p a r t i a l  d i f f e r e n t i a l  equation model which takes th is  

into account takes the fo l low ing  general form:

dx = f ( x , s , t )  + a  (D(s) 3x^ 3.35
dt ?s 3 1

where D(s) measures the d i f fu s io n  p o te n t ia l  a t  s .

This model can be extended to describe communities o f  in te ra c t in g  

species in a m-d’imensional s p a t ia l  environment.

dx. = f .  (x ,  5 ,  t )  + V *  D | (  —)x .  3.36
dt

where x  = ( x ^ , . . . . x ^ )

-  = (=1 

and V . g W  = + . . . . +  %lg

The advantage o f  th is  method over the f i r s t  ( i . e .  using d is c re te  

patches) is th a t  the number o f  equations is g r e a t ly  reduced however 

analys is  o f  such equations can be extremely d i f f i c u l t  even f o r  the 

very simplest forms o f  f .  and D . .

Since there  appears to have been few useful  re su l ts  der ived from 

such models I w i l l  not consider them f u r t h e r  here.  P a r t ia l  d i f f e r e n t i a l  

equation models have been used r e l a t i v e l y  successfu l ly  to model 

plankton communities, fo r  example Wroblewski, O' Brien & P l a t t  (1975)

3 . 4 .5  Non-random sp at ia l  d i s t r ib u t io n s  o f  populat ions -  type C hete rogene i ty

3 . 4 . 5 .1 im p l ic i t  refuges (May ( 1 9 7 8 ) ) .

We have seen from the discussions o f  heterogeneity  in Section 3 .2  

tha t  environments o ften  tend to be patchy in th a t  some areas are  

more densely populated than o thers .  I f  the prey populat ion is 

d is t r ib u te d  in such a way and the predators aggregate in areas of  

high prey densi ty  then the areas o f  low density  w i l l  be, a t  lea s t  

te m pora r i ly ,  refuges.



Too much of  such refuge may lead to the prey increasing uncontrol led  

by the predators ,  whi le  too l i t t l e  may not give any advantage to 

the prey over homogeneous environments.

Environmental patchiness (and i t  is important to note tha t  such 

patchiness may develop by chance and not because o f  any physical  

heterogene ity  o f  the environment) has been investigated in a number 

o f  ways as we shal l  see. One method o f  modell ing patchiness without  

s p e c i f i c a l l y  modell ing each ind iv idual  patch was put forward by 

May (1978).

May's model is p a r t i c u l a r l y  app l ic ab le  to arthropod h o s t -p a ra s i to id  

in te ra c t io n s .  In such re la t ionsh ips  each host (H) in any one 

generation is e i t h e r  paras i t ised '  by exac t ly .one  P aras î tè (P )  o f  escapes 

paras i t ism to give r ise  to F (> l )  progeny which become the next  

generation of  hosts.

The model is a d i f fe re n ce  equation one as fo l lows:

Hf+l  = F (1 + a 3.37

Pf+ I  = « t  ■ " t + i ' F  3.38

where ( l  + a P^/k)  ̂ is the p r o b a b i l i t y  o f  a host escaping p aras i t ism .

This p r o b a b i l i t y  is derived from the assumption th a t  the p r o b a b i l i t y  

fo r  a given host to be discovered by a p a ras i to id  d times during a 

generation is given by a negative  binomial p r o b a b i l i t y  d i s t r i b u t i o n  

with  'clumping' parameter k and mean a t ta c k  ra te  given by aP (see 

Southwood ( 1966) fo r  a descr ip t ion  o f  the negat ive  binomial d i s t r i b u t i o n )

Such searching by the p a ras i to id  is non-random and may r e s u l t  because 

the hosts are d is t r ib u te d  unevenly ( i . e .  in patches) throughout the  

environment.  May discussed experimental  and f i e l d  evidence which 

support tha t  the negative  binomial is an appropr ia te  approximation  

in some cases. G r i f f i t h s  & Moil ing ( 1969) ca r r ie d  out a ser ies  o f

experiments in which ichneumon Pleolophus Basizonus p aras i to id s  

attacked sawfly Neodiprion S e r t i f e r  hosts and the d i s t r i b u t i o n  o f  

attacks  per host was well  described by the negative  b inomial ,  and
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Hassel l (unpublished) has gathered data on a ttacks o f  Cÿzéhis alb icans  

on w in te r  moths which a lso f i t t e d  the negat ive  binomial d i s t r i b u t i o n .

The eq u i l ib r iu m  populat ion leve ls  H and P can be determined in 

the usual way by s e t t in g  H'  = and P* = P^^  ̂ = P^

Hence from equation 3 .37

P* = k -  1) /  a 3.40

and from equation 3.38

H = F P /  ( F - l )  2 . 4 i

The s t a b i l i t y  o f  th is  e q u i l ib r iu m  may be examined as fo l low s:

Let Hj. = H + 3.42

and Rt = P* + 3.43

where S   ̂ and are small disturbances from the e q u i l ib r iu m  
values.

Then H* + ^  = F (H* + 5 ^ )  ( l  + a (P* + f ^ ) / k ) " ' '  3 .44

= F H (1 + a P * /k ) " k  + F ^ t  (1 + a P * /k ) " ^

-  F H a ( l  + aP'Vk)"^*^"^^^ V^t 3,45

= H'‘ + -  aH'‘ (1 + aP* /k )"1   ̂ 3.46

(by expanding equation 3.44  as a Taylor  Series and ignoring terms 

o f  order 2 and above ini. ' jp).

and s i m i l a r l y  P* 4 - ^ ^ + /  = H* + “ (H* + ^  ^^^) /F  3 .47
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That  î s

E -  aH" (1 + aP'Vk)'’ 3.48

'f t+1 ~
3.49

The so lut ion  o f  these coupled d i f fe re n c e  equations is necessar i ly  

of  the form

f t  =

3.50

3.51

w h e r e i s  an eigenvalue o f  the system and A and B are  constants  

determined by the i n i t i a l  sizes o f  the per tu rba t ions .

Subs t i tu t ing  th is  so lut ion  into equations 3.48 and 3.49 gives

3.52

3.53

where© = aH (l+aP / k ) -1 3.54

The community matr ix  is thus

A -1 ©  \

3 .55

and the c h a r a c t e r is t i c  equation is

X ^ -  X ( l  + G /F  ) + 0 = 0 3 .56
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There are two values of > , > 1 1  and A 2, which satisfy this equation
and hence the solution of equations 3.48 and 3.49 becomes

+ l ^ 2 ^ 2  3 .57

f t  '  + ^2 ^ 2" 3 .58

where A Y A 2 , B ] ,, 6 2 , are; constants determined by the i n i t i a l  sizes o f  
the per tu rba t ions .

i t  is c le a r  from the nature o f  th is  so lut ion  tha t  in order f o r  the 

p e r t u r b a t io n s ^ ^  and to die  away with  time the moduli' o f ) ;   ̂ and 
\  2 must both be less than one.

Solving equation 3.55  f o r \  we see that

2 A =  (1 + @ /F )  ± 4(1 + e / F ) Z  -  4 6 ) 3 .59

= (1^ + 4c) 1/2 3.60

where b = 1 + 0 / F  3 5 ^

and c = - e  3.62

i t  Is s t ra igh t fo rw ard  to show th a t  fo r  the modultrsof X to be less 

than one the fo l low ing  condi t ions must be s a t i s f i e d .

1 -  b > c > -1 3.63

and 1 + b > c > -1 3 64

S ubst i tu t ing  the values o f  b and c (equations 3.61 and 3 .62 )  into  

equations 3.63 and 3.64 we obta in  the two condi t ions:

e / F  < e  <1 3 .65

3.662 +0/F  >“6 >-1
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The le f t -h a n d  side o f  both in e q u a l i t i e s  is s a t i s f i e d  autom at ica l ly  . 

since F is g rea te r  than one by d e f i n i t i o n  a n d © i s  g re a te r  than 

zero from equation 3 .54 .

The s t a b i l i t y  condi t ions thus reduce to the s in g le  c r i t e r i o n

e  < 1 3.67

S ubst i tu t ing  the values f o r  H and P' from equations 3.40 and 

3.41 into equation 3.54 we see that

- F " ^ )  /  ( 1 - f"1e  = k (1 -F  ’  ) /  (1 -F  ' )  3.68

is c le a r l y  a monotonie increasing function o f  k and© equals one 

when k equals one.

Therefore

Ô < 1 i f  and only i f  k < 1

When k is less than one the negative  binomial d i s t r i b u t i o n  is 

e s s e n t i a l l y  overdispersed ; and th is  means th a t  there  are enough 

patches r e l a t i v e l y  f re e  o f  paras i to ids  to provide refuges fo r  the  

host; and the h o s t -p a ra s i to id  r e la t io n s h ip  may be s ta b le .

3 . 4 . 5 . 2  Hassel l and May (1973)

Hassel l S May (1973) considered a ser ies  o f  mathematical models 

which they used to in v es t ig a te  the s t a b i l i t y  proper t ies  of  

h o s t -p a ra s i to id  re la t io n s h ip s .  The general form o f  these models is

Ht+1 = F " t  f  (P t .  " t )  3 .69

Pt+1 = " t  -  " t+  , / F  3.70

where H^, P  ̂ and F are as defined in Section 3 . 4 . 5 .1  and f  (P^,H^) 

is the p r o b a b i l i t y  o f  a host escaping paras i t ism during i t s  l i f e t i m e .
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Following the same argument as in Section 3 .4 . 5 .1  they investigated  

in p a r t i c u l a r  the e f f e c t  o f  a non-random searching s tra tegy  by the  

paras i to ids  in an environment in which the hosts are unevenly 

d is t r i b u t e d .  Further  they did th is  by modell ing more e x p l i c i t l y  

the ' e x a c t ' d i s t r i b u t i o n  o f  hosts and p a ras i to ids  in the h a b i ta t .

To do th is  they s p l i t  the h a b i ta t  in to  m patches and le toc .  and

denote the proport ion  o f  the to t a l  number of" hosts and paras i to ids  

in the i p a t c h .

Suppose th a t  w i th in  each patch i the pa ras i to ids  search fo r  hosts 

a t  random and w i th  a searching e f f i c ie n c y  ( i . e .  the average area  

searched by a s in g le  pa ra s i to id  in i t s  l i f e t i m e )  which is independent 

of  the number o f  hosts and p a ras i to id s .

The p r o b a b i l i t y  o f  a host escaping paras i t ism  in a p a r t i c u l a r  patch 

i is thus

exp ( -  a p .  P^) 3.71

The proport ion of  the t o t a l  number o f  hosts which escape paras i t ism  

in patch i is thus

. exp ( -a  P^) 3 .72

and the t o t a l  number o f  hosts escaping paras i t ism in the whole 

h a b i ta t  is

m
^22 ^ i  Gxp ( -a  Pi P p  3.73

i=1

The s p e c i f i c  model is the re fo re

m
^   ̂ ^t  S  I Gxp ( -a  p .  P t) 3 .74

1 = 1

Pft+T = H / -   ̂ / F  3.75
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The e q u i l ib r iu m  populat ion leve ls  H" and P' are given by

m ^
F S " ^ i ’ exp ( - a p | .  P") = 1 3.76

i=1

= 3.77
F

The s t a b i l i t y  o f  the e q u i l ib r iu m  can be investigated by considering  

the e f f e c t  o f  small p e r tuba t ions .

Let  ̂ 3 .78

Pt = P* + f t  3 .79

By s u b s t i tu t in g  these expressions in equations 3.74 and 3 .7 5 ,  

expanding in a Taylor  Series and ignoring terms o f  order two and , 

higher i n ^ , < ^  , the fo l low ing  equations may be derived:

^ t + 1  = + F H* ^ V t  + F 3.80
i  p'‘

SKt+1 = f t  -  2 t + i / F  3.81

m
where f  = Y ]  ' exp ( -a  p . P ) 3.82

i=1

Following the arguments o f  Section 3 .4 . 5 .1  the so lu t ion  o f  these  

coupled d i f fe re n ce  equations is necessar i ly  o f  the form o f  equations  

3.57 and 3 .58 .

The c h a r a c t e r i s t i c  equation o f  the system is

-  (1 + FH* -  H* -  FH ^  = 0 3.83
a p '
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The s o l u t i o n  o f  eq uat io n  3 .8 3  is given  by

1 /22 > =  (1 + F H'' H“ V )  ± ( d + F H ^ '^ f  -  H^%f)^+4FH^ %f)
&H'  hP* bP '  3 .84

and i t  is s t ra igh t fo rw ard  to show th a t  fo r  the modulus o f ) ;  to be 

less than one the fo l low ing  condi t ions must hold:

F H* < -  H* ^  < 2  3 .85
\  A  V *'*

F-1 dH i P  F

2 + FH" % f  >  (F -1)  3 66
cH àp*

in th is  p a r t i c u l a r  case

ï f  = 0 3 .87

and ^ f  = -a  . S . exp (-aj? .  P ') 3 .88
T-p:' ^  I '  I

i=1

and the s t a b i l i t y  c r i t e r i o n  becomes

m ^ j,
F (3 p. P ) exp (-ajS.  P") < F-1

i =1 ^
(since 3.86 is a u tom at ica l ly  s a t i s f i e d ) .
Hence, fo r  any p a r t i c u l a r  set  o f  values fo r  the host and p a ra s i to id  

d i s t r i b u t ionod. a n d a n d  the host e f f e c t i v e  ra te  o f  increase F, 

the s t a b i l i t y  o f  the h o s t -p a ra s i to id  re la t io n s h ip  may be determined,  

although th is  may require  extensive c a lc u la t io n s  fo r  each p a r t i c u l a r  

set o f  parameter values.

in nature the d i s t r i b u t i o n  o f  hosts and paras i tes  between the m 

areas might take any form, i t  w i l l  indeed be determined by the  

actual  community populat ion dynamics which in turn depend on a 

number o f  complicated fa c to rs .

3 .89
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In order to in ves t ig a te  the possible  e f f e c t  o f  aggregation o f  

paras i tes  in areas o f  high host density  May used a simple 

r e la t io n s h ip  b e t w e e n a n d / ? . '  as fo l lows:

A*
P ;  = C oc ,  3.90

m
where C = ( ^«=>C| ) 3.91

i=1

and ^  (^0) is termed the aggregation c o e f f i c i e n t ,

i ) Random search (/w =0 )

I fyxequals zero ,  then

^ i  “ i .  fo'" 1 = 1 , . . . . , m  3.92
m

In th is  case there  are an equal number o f  paras i tes  in each area  

i r re s p e c t iv e  o f  the host d istr ibution®^; -  th is  is ex a c t ly  the 

same as the s i t u a t io n  in which the paras i tes  search a t  random 

throughout the whole o f  the h a b i t a t .

In th is  case

f  = exp ( -  a__P ) 3.93
n

= 1/F (from equation 3 .76)  3.94

Hence the le f t -h a n d  side o f  equation 3 .89 becomes

a P* = In (F) 3 .95
n

I t  is easy to show that

In (F) > FJ_ 3 .96
F

and hence the model is unstable
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The model has in fa c t  been reduced to the random search model f i r s t  

put forward by Nicholson (1933) and Nicholson and Ba i ley  (1935)  

and the resu l ts  support t h e i r  conclusions that  a community consist ing  

o f  a p a ra s i te  populat ion which searches a t  random f o r  ind iv idua ls  

o f  a host populat ion regardless o f  the way in which the hosts are  

d is t r ib u te d  throughout the h a b i ta t  is unstable.

• ' )  very large

As/A increases the aggregation o f  paras i tes  in areas o f  highest host 

densi ty  becomes more marked.

When^ becomes very large the paras i tes  aggregate in the area o f  

highest host dens i ty .

In th is  case

f  = ( l - î f )  + y  exp ( -aP* )  3.97

where y  is the proport ion o f  hosts in the area o f  highest host den s i ty .  

From equation 3.76

F [ ( 1 - K  ) + X e x p  ( - a P i ]  = 1 3 .98

and hence

F (1-X) < 1  3 .99

fo r  an e q u i l ib r iu m  to e x i s t .

Further

aP* = -  In ( ^  -  ( 1 - * )^  3.100

In ( p y  ) 3.101

1-F ( l -%)

and F Xexp (-aP' ) = 1 - F  ( l - X )  3.102

(from equation 3 . 98 )
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Hence the  s t a b i l i t y  c r i t e r i o n  becomes

F ^ a P '  exp (-aP ) < F-1
F

3 .103

i . e .  ( l - F ( l - % ) )  in^ FZC ^ < F-1

l - F ( l - X )  F

3.104

(from equations 3.101 and 3 .102)

The in e q u a l i t i e s  3 .99 and 3.104 determine the parrs o f  values o f  

2̂  and F f o r  which a s tab le  equ i l ib r iu m  e x is t s .

The s t a b i l i t y  boundaries are sketched in Figure 3 .7 .

1---------

Host ‘f  ft» j  —-4-— —-

The f i r s t  po int  to note is th a t  s t a b i l i t y  is now poss ib le .  However 

fo r  low values o f # t h e r e  is too much refuge and no e q u i l ib r iu m  is 

possib le ,  and fo r  high values o f  F the range o f  values o f  # f o r  which 

a s tab le  e q u i l ib r ium  e x is ts  is narrow, i f  the propor t ion  o f  hosts 

accessib le  to paras i t ism is high then the e q u i l ib r iu m  is l i k e l y  to  

be unstable.

i i i )  0 </w <4%

In order to e a s i l y  eva luate  the e f f e c t  o f b e t w e e n  zero and i n f i n i t y  

i t  is necessary to def ine  more e x p l i c i t y  the host d i s t r i b u t i o n .
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= f or  one patch i

= 1-oc f o r  j # i .  
m - l

= <5

/ § j

where E
■ (;?r

and hence = (1 + é ( m - l ) ) '

May chose the fo l low ing  form:

3.105

3.106

3.107

3 .1 0 8

3.109

3 .110

in order to s a t i s f y  equation 3 .90 .

Hence in th is  s i t u a t io n  the hosts are d is t r ib u te d  in such a way 

th a t  there  is one high density  area and (m-l)  low densi ty  areas,  

and the degree o f  aggregation of  paras i tes  in the high densi ty  
area is determined byyu.

in th is  case

f  =o<e + ( l - o c ) e ^  3.111

where % P ' 3 112

Hence (from equation 3 .76)

F (®Ce + ( i - o £ ) e  ) = 1 3.113

(note tha t  f  is c l e a r l y  less than one and hence an e q u i l ib r iu m  e x i s t s ) .

The s t a b i l i t y  c r i t e r i o n  (equation 3 .89)  becomes

“I  F (o<.e + ë. ( i - o c ) e  ) < F-1 3.114
F
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Given values forocand m (the number o f  patches) i t  is possible  to  

determine from equations 3.112 and 3.114 a re la t io n s h ip  b e t w e e n ^  

and F which in turn determines the s t a b i l i t y  o f  the h o s t -p a ra s i to id  

community.

A sketch o f  the s t a b i l i t y  boundaries is given in Figure 3 .8 .

A

May noted four trends:

increasing pa ras i te  aggregation ( /*  ) increases s t a b i l i t y

-  s t a b i l i t y  is increased i f  there  are more low densi ty  

regions.

-  there  is a wider region o f  s t a b i l i t y  condit ions when 

is near 0 .5  then whenqcis very small or very la rg e .

-  s t a b i l i t y  breaks down abrupt ly  as F increases.
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3 . 4 . 5 . 3  Discussion of  Hàssél1 and May's, model

Hassel l & May (1973) used a r e l a t i v e l y  simple model to demonstrate 

t h a t ,  in a h o s t -p a ra s i to id  r e la t io n s h ip ,  i f  the p a ras i to id s  search 

completely a t  random fo r  the hosts then the re la t io n s h ip  w i l l  be 

unstable whereas i f  the paras i to ids  tend to aggregate in areas o f  

high host densi ty  then the r e la t io n s h ip  may be s ta b le .  Although 

they chose a p a r t i c u l a r  form o f  host d i s t r i b u t i o n  to  demonstrate t h i s ,  

they have done f u r t h e r  work which shows that  s im i la r  re su l ts  apply 

fo r  other  forms o f  d i s t r i b u t i o n .  In general the more uneven the  

host d i s t r i b u t i o n ,  the more l i k e l y  the r e la t io n s h ip  is to be s ta b le .

There are two main c r i t i c i s m s  o f  the model used.

F i r s t l y ,  in nature i t  is l i k e l y  th a t  the searching e f f i c i e n c y  (a) 

w i l l  depend on the numbers o f  hosts and pa ras i to ids  present and 

also  on such fac to rs  as the time wasted by a p a ras i to id  in 

unsuccessful ly engaging a host.  However Hassel l 6 May's model E 

includes such fac to rs  and the resu l ts  are not q u a l i t a t i v e l y  

d i f f e r e n t .

Secondly, in nature the d i s t r i b u t i o n  of  hosts and paras i tes  is not 

l i k e l y  to remain constant but w i l l  depend on the local  populat ion  

dynamics, the physical  he te rogenei ty  o f  the environment and the  

amount of  movement possib le .  Indeed Comins S Hassell  (1979)  

have extended Hassel l & May's model by a l lowing the pa ras i to ids  

to be capable o f  in s ta n t ly  sensing which area o f  the environment  

has the highest densi ty  o f  unparas i t ised hosts.  Hence a t  any time t  

a l l  the paras i to ids  are found in the area wi th  the highest densi ty  

of  healthy hosts.

They investigated the local  s t a b i l i t y  proper t ies  o f  th is  model and 

found th a t  they are not q u a l i t a t i v e l y  any d i f f e r e n t  from the  

' f i x e d  aggregat ion'  model. In the real  world the behaviour o f  the 

paras i tes  is l i k e l y  to l i e  somewhere between the two models and,  

as suggested above, o ther  fa c to r s ,  such as lo c a l l y  d i f f e r e n t  

populat ion dynamics, may have fu r t h e r  e f f e c t s .

-  121 -



However, since both 'extremes'  lead to s tab le  re la t io n s h ip s  under a 

wide range o f  condi t ions i t  seems reasonable to  conclude that  

s p a t ia l  heterogeneity  r e su l t in g  from an uneven d i s t r i b u t i o n  of  

hosts in the environment can s t a b i l i s e  a h o s t -p a ra s i to id  re la t io n s h ip  

provided th a t  the paras i to ids  aggregate in areas o f  higher host 

dens i ty .

3 . 4 . 6  Migrat ion -  type D heterogenei ty

3 .4 . 6 .1  A.Hastings

Hastings (1977) considered a predator-prey  community in an 

environment consist ing of  a large number o f  id e n t ica l  patches 

between which prey and predator  ind iv idua ls  can migrate a t  any t ime.

He assumed tha t  an any time t  a patch could be in one o f  only  

three s ta tes ;  empty; conta in ing only prey (p re y ) ;  conta in ing both 

prey and predator ( p r e d a t o r ) .

The ra te  o f  change o f  s ta te  o f  a patch is determined by some simple  

rules :

i )  An empty patch can only be invaded by prey,  thus c rea t in g  a 

prey patch.

i i )  A prey patch remains so u n t i l  i t  is invaded by a predator  

whence i t  becomes a predator patch.

i i i )  A predator patch becomes an empty patch a f t e r  a f ix ed  

length o f  time ( i . e .  the presence o f  predators always causes 

the e x t in c t io n  o f  both prey and predator  populat ions w i th in  

the p a tc h ) .

iv)  The ra te  a t  which predators migrate  to invade prey patches 

is d i r e c t l y  propor t iona l  to the number o f  predator  patches.
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v) The ra te  a t  which prey migrate to invade empty patches is

d i r e c t l y  proport ional  to the number o f  prey plus predator patches

A l l  patches are assumed t o  be equa l ly  accessib le  from a l l  other  

patches and the time i t  takes ind iv idua ls  to migrate  between 

patches is assumed to be i n s i g n i f i c a n t .

LetX.-be the f r a c t io n  o f  prey patches and y be the f r a c t io n  of  

predator  patches a t  time t ,  and, w ithout less o f  g e n e r a l i t y ,  

set the time i t  takes fo r  a predator patch to re turn to  the empty 

s ta te  to one.

From the assumptions the fo l lowing d i f f e r e n t i a l - d e l a y  model can 

be formulated.

dx = o c ( l - x - y )  (x+y) - p x y  3.115
dt

dy = P f x ( t )  y ( t )  -  x ( t - l ) y  ( t - l ) J  3.116
dt

with i n i t i a l  condi t ions

x ( t )  = 0 , { t )  ^ 3.117

' “ 1 1  t  < 0

y ( t )  = ^ a ( t )  3.118

Note that

0 £  X $  1, 0 < y £  1-x 3.119

and th a t  a t  any time t  the to t a l  number o f  predator  patches is

S
t

x (s )  y (s )ds  3.120

t -1

and hence the i n i t i a l  condi t ions must s a t i s f y  th is  equat ion.
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We now consider whether th is  model provides any equ i l ib r iu m  

population lev e ls .

There are  c l e a r l y  two t r i v i a l  e q u i l i b r i a  

X = 0,  y = 0

and X = 1, y" = 0

The f i r s t  is unstable since any small per turba t ion  from i t  w i l l  

c le a r l y  tend to grow.

The s t a b i l i t y  o f  the second depends on the values o f o c a n d p ,  but 

w i l l  not be considered fu r t h e r  here.

Other possible  ' e q ü î l ib r î i a  may be determined in the usual way by

s e t t in g  dx and equal to 0.
dt  dt

( l - x ‘-y ' ‘ ) ( x ' + y ') -  Pxy"* = 0 3.121

p  (x y -  X y ') 3.122

The unique n o n - t r i v i a l  so lut ion  is

x “ = 1 /p  3.123

1 -  1 -  1 +  1 
2 p  2 *  2

provided t h a t 1.

y *  = 1 -  1 -  1 + 1 ( ( 1 - 1 ) 2  ^  4 ) 1 / 2  3 .1 2 4

The local  s t a b i l i t y  o f  th is  e q u i l ib r iu m  can be examined by adding 

small per turbâ t  ions 2 a n d y t o  the e q u i l ib r iu m  values x and y 

re spe c t ive ly  and s u b s t i tu t in g  these expressions into  equations  

3.115 and 3 . 116 .
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This leads to the fo l lowing equations fo r^ a n d ' jp .

dfe = w. + y ') - j S y ' ' ) l +  + y 3.125
dt

= p y *  ( t )  - £ ( t - l ) )  + ( y  ( t )  -  \ K ( t - l ) ) .  3 .126
dt

The standard way o f  solving such equations is to t r y  solut ions of  

the form

ê  =  3 .127

Y  = B e ^  * 3.128

whereX is an e igenvalue,  and A and B are constants depending on 

the i n i t i a l  s ize  o f  the per tu rba t ions .

This leads to the c h a r a c t e r is t i c  equation

J5 -  K>  + Kc + d = 0 3.129

where K = ( l -e"^  ) / \  3 .130

1.2
C = oc-  2oC y + 2(x.p y 3.131

T
ii ii

d = -oc + 2o  ̂ + 2ocy + P  y 3.132
7 "

I f  a l l  so lu t ions o f  Equation 3.129 have negative  real  parts  then 

the e q u i l ib r iu m  is s ta b le .

By using the method o f  D - p a r t i t io n s  ( E l ' s g o l ' t s  and Norkin (1973))  

the regions of  s t a b i l i t y  fo r  pa i rs  o f  parameter valuesoc,^  may 

be determined.
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Such regions are shown schematically In Figure 3.9

in region I the predator populat ion becomes e x t i n c t .  This Is b e c a u s e  

Is less than I and hence the predators are unable to Invade enough 

new patches In the time I t  takes the current predator  patches to  

crash.

When^ Is large and*^ Is small (region I I I )  both species'  populat ions  

have a low e q u i l ib r iu m  density  which Is unstable since the prey 

patches are qu ick ly  Invaded but new ones are not created q u ic k ly  

enough.

In region I I  there  Is a lo c a l l y  s tab le  e q u i l ib r iu m  o f  prey and 

predator  patches.  In th is  case both the m o b i l i t y  o f  the predator  

and prey Is r e l a t i v e l y  high so th a t  dispers ion between patches 

becomes the s t a b i l i s i n g  f a c t o r .

There are a number o f  Important points to note about Hast ings'  

model, the main one being the r e l a t i v e  t imescale Involved.  E s s e n t ia l l y  

the Ind iv idual  populat ion dynamics w i th in  each patch are not modelled 

s p e c i f i c a l l y .  I t  Is assumed th a t  prey p e rs is t  In a prey patch u n t i l  

tha t  patch Is Invaded whence the local  predator -p rey  community 

becomes e x t in c t  a f t e r  a f ixed  period o f  t ime. The actual  s iz e  o f  

populat ions In each patch a t  t ime t  Is I r r e le v a n t  and the Important  

t imescale o f  the model becomes the predator  patch e x t in c t io n  t ime.

Any time re la ted  resul ts  when comparing resu l ts  from t h is  model should 

be re la ted  to th is  t imescale .
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Many other  mathematical eco log is ts  have developed models along 

s im i la r  l i n e s ,  a few involving  more than two species and more 

sophist icated w i th in -p a tc h  dynamics. The model o f  Z e lg le r  

described In Section 3 . 4 . 6 . 3  Is such an example as are models by 

Caswell (1977) , Hl lborn (1975) and Vandermeer (1973).

Another assumption which can be e a s i l y  modif ied Is th a t  a l l  patches 

are equa l ly  access ib le .  ' | t  may be more r e a l i s t i c  to l i m i t

movement to between nearest neighbours (e .g .  Z e lg le r  (1 9 77 ) ) .

However none o f  these modif icat ions  have been shown to disagree  

with  the general conclusion th a t  dispers ion between patches In a 

s p a t i a l l y  heterogeneous environment may lead to  s t a b i l i t y ,  al though,  

as we sha l l  see In the next sections ,  there  Is some debate as to  

whether continuous dispersion Is a c t u a l l y  s t a b i l i s i n g .

3 . 4 . 6 . 2  J.  Maynard Smith

Maynard Smith (1974) argued tha t  continuous populat ion exchange, such 

as that  due to continuous migrat ion o f  Ind iv idua ls  between s u i t a b le  

patches w i th in  the t o t a l  environment,  cannot provide e f f e c t i v e  

s t a b i 1Is a t Io n .

F i r s t l y  Maynard Smith considered a continuous h a b i ta t  broken up 

(somewhat c o n t r a d l c t a r I l y )  In to  a number o f  homogeneous c e l l s  and 

assumed th a t  migrat ion o f  Ind iv idua ls  between c e l l s  Is Instantaneous  

and tha t  no deaths occur during migrat ion .

Suppose th a t  the populat ion s ize  o f  a p a r t i c u l a r  species In a 

s in g le  c e l l  Is o s c i l l a t i n g  wi th  large amplitude.  W i l l  migrat ion  

reduce the s ize  o f  th is  amplitude? I f  neighbouring c e l l s  o s c i l l a t e  In 

phase, Maynard-Smlth argued th a t  migrat ion w i l l  have no e f f e c t .

This conclusion leads to a more s ig n i f i c a n t  question: does migrat ion  

tend to bring neighbouring c e l l s  In to  or out o f  phase?
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Maynard Smith considered four  possible  c r i t e r i a  f o r  migrat ion to  

occur In a predator-prey  community:

I )  prey migrate away from c e l l s  In which the number o f  prey 

Is high.

I I )  prey migrate away from c e l l s  In which the number of  

predators Is high.

I I I )  predators migrate away from c e l l s  In which, the number 

of  predators Is high.

Iv)  predators migrate away from c e l l s  In which the number o f  

prey Is low.

He argued tha t  types I )  and I I I )  tend to bring neighbouring c e l l s  

In to  phase but I I )  and Iv)  have no e f f e c t  on phase. Hence migrat ion  

does not tend to reduce populat ion amplitudes and so has no e f f e c t  

on s t a b I l l t y .

He recognised th a t  th is  conclusion Is a t  var iance wi th  the r e s u l t  

o f  H uf faker 's  c la s s ic  experiments (Section 3 . 2 . 2 )  In which slowing 

down the migrat ion o f  the predators and Increasing tha t  o f  the 

prey Increased the s t a b i l i t y  (pers is tence) o f  the system.

He the re fo re  constructed a 'd is c r e te  populat ion exchange' model In 

which each c e l l  can be In one of  a f i n i t e  number o f  s ta tes  (e .g .  

contain prey on ly ,  be empty) a t  t ime t ,  and each c e l l  has a t r a n s i t i o n  

p r o b a b i l i t y  o f  changing s ta te  a f t e r  each period o f  t ime T which 

depends In p a r t i c u l a r  on the s ta te  o f  I t s  nearest neighbours.

Simulation runs o f  th is  model on a computer demonstrated th a t  

p e rs is te n t  coexistence o f  predators and prey can occur w i th  a 

wide range o f  parameter values.
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Maynard Smith suggested that the following factors are important 
for stability

i) high capacity of prey for migration
II) cover or refuge for prey
III) predators only migrate during a restricted period 
Iv) large number of cells

3 . 4 . 6 . 3  B. P. Z e lg le r

Z e lg le r  (1977) attempted to make Maynard Smith's model more r igorous.

Firstly he proposed that the local community population dynamics In 
each cell obey the Lotka-Volterra equations with prey self-1 Imitation.

dx = ax(l-x) - xy 3.133
dt

^  = -by + xy 3.134
dt

where x and y denote the density of prey and predators respectively 
In the cel 1.

This model has the non-trlvlal equlllbrium

X = b 3.135
JU
y = a(l-b) 3.136

He then defined two positive numbers and L2  called the prey and 
predator extinction level respectively. The cell Is locally unstable 
If X < L, or y < L̂ .

Zelgler then defined a stability effect as one which makes the 
expected lifetime of the overall predatoi prey community significantly 
greater than that of the cells In Isolation.
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A c e l l  can be in one o f  f i v e  s ta te s .

i )  A c e l l  Is In the EMPTY s ta te  u n t i l  I t  Is Invaded by

X 2  prey when I t  enters the PREY s t a t e .

I I )  The prey populat ion grows according to  the l o g i s t i c  

equation u n t i l  the carry ing  capaci ty  Is reached 

when the c e l l  enters  the PREY s ta te  (unless the c e l l  

Is Invaded by preda tors ) .

I I I )  I f  a PREY or  PREY' c e l l  Is Invaded by 7=1*2 predators  

the c e l l  enters  the PRED s ta te .

Iv)  A f t e r  a c e r t a in  amount o f  t ime (which Is c a lc u la te d  from 

the elapsed time since the c e l l  entered the PREY s ta te )  

the densi ty  o f  prey w i l l  decl ine  below and the c e l l  

enters  the PRED' s t a t e .

v) The predator  densi ty  w i l l  then dec l ine  below Lg and

the EMPTY s ta te  Is entered.

I f  a c e l l  Is In s ta te  PREY' ( lo t s  o f  prey) or PRED' ( too few

prey,  lo ts  o f  predators)  migrat ion o f  prey or predators re sp e c t ive ly  

may occur.  Neighbouring empty c e l l s  may be converted to PREY c e l l s  

with  p r o b a b i l i t y  h and neighbouring PREY and PREY' c e l l s  may be 

converted to PRED c e l l s  with  p r o b a b i l i t y  p .  However th is  conversion/  

migration may only occur a t  f ix ed  points In time (defined by the  

Invasion r a t e ) .

The number o f  neighbouring c e l l s  to which prey or  predators may 

migrate Is spec i f ied  as a parameter o f  the model as Is the ra te  a t  

which migrat ion may take place ( I . e .  the Invasion r a t e ) ,  the time 

the prey populat ion takes to reach the carry ing  c a p a c i ty ,  the time the  

prey populat ion takes to dec l ine  below In the PRED s t a t e ,  and

the time the predator  populat ion takes to dec l ine  below Lg In the

PRED' s ta te .
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Simulat ion runs o f  th is  model on a computer demonstrated tha t  

persis tence (defined as the non-vanishing o f  both prey and 

predator  populations in a c e r t a in  period o f  t ime) is possible  fo r  

a wide range o f  values fo r  p and h (shown schematica l ly  in Figure 

3 . 10).

:o

I \ 0  : ^ % c».Vtg y V < (jf

In comparison Z e ig le r  then considered a continuous populat ion  

exchange model.

He divided the environment into m c e l l s  and described the community 

population dynamics in each c e l l  as fo l lows:

dx. = a 
d t '

( l - X .  ) -  X. y . +
I I

i: j  E NPREY
»PREY 3 - ' 3 7

= Vi ( * i - b )  + j  6 ( V j - V | )  DpRED 3.138

where i = l , . . . . , m  denotes which c e l l ,
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^PREY' ^&RED the sets o f  c e l l s  to which or  from which 

prey and predators respect ive ly  may migrate from or  to  

c e l l  i

and ^pR£DJ ^preY ̂ ^^^ure the s ize  o f  m igrat io n .

Z e ig le r  considered what he terms randomised phase/space so lu t ions o f

the above equation as fo l lows:

Let C be a cycle  o f  predator and prey populat ion sizes and l e t

L measure the arc length o f  C (see Figure 3 . 1 1 ) .

c^dig.-» '̂ ^ TfcAaVo r

--T
4 T

Let f  be a p r o b a b i l i t y  d i s t r i b u t i o n  over C 0 ,L ]  such tha t

Io f ( e )  d9 =1 , f ( e )  ÿ 0.  3 .1 3 9

The dis tance 9 measures the arc length along C from an i n i t i a l  

populat ion s ize  to the current populat ion s ize  and is termed the  

phase o f  the cel  1.
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I f  the  number o f  c e l l s . I s  very la rge ,  then there  is a random phase/  

space so lut ion  o f  the form (C , f )  i f  there  is a so lu t ion  o f  equations  

3 .137  and 3 .138  [ x j t ) ,  Yv ( t ) , . . . .  , x _ ( t ) , y ^ ( t ) ]  such: tha t  fo r  t ^  0.

i )  The populat ion sizes in every c e l l  are found somewhere
on C.

i i )  The proport ion o f  c e l l s  having phase in the in te rva l
( 0 ,0  + d8 )  is f (0) d9

i i i )  The number o f  c e l l s  in the neighbourhood Ni * ' (N )
PREY PRED

with  phase in (8 ,  0+d0) is N^^^^ f ( 0 )  d8.

Since the number o f  c e l l s  m is large the d i f fu s io n  terms in 

equations 3.137 and 3.138 can be w r i t t e n .

J T  NpREY %REY " S o  "pREY *PREY

^PREY ^PREY " * i^  ^ '^^ l

. Z  ^ OpRED "  j ' Dppp, dO 3.142

PRE» = OpRED "pRED " Y | )  3.143

where x = J o  x (0 )  f ( 0 )  d0, ÿ J o  y (0 )  f ( 0 )  d0 3.144

Hence the p a i r  o f  populat ion sizes [ x .  ( t ) ,  y . ( t )J  pred ic ted ’ by 

equations 3.137 and 3.138 fo r  each c e l l  i must each s a t i s f y  the 

fo l low ing  equations.

dx = x ( a - c - a x - y )  + cx 3.145
dt

= y (x -b -d )  + dÿ 3.146
dt

where c *̂ prey ^PREY’  ̂ “ ^PRED ^PRED x and y as defined  
by equation 3.144 are a l l  non-negative constants.
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These equations have a po int  e q u i l ib r iu m  given by

y*  = a - c - a x *  + cx 3.147

X *

y *  = dÿ 3.148

(b+d-x*)

This equ i l ib r iu m  is l o c a l l y  s tab le  and, b a s ic a l ly  from simulat ion  

runs,  Z e ig le r  claimed th a t  i t  is also g lo b a l ly  s ta b le .

This suggests tha t  the only random phase/space s o lu t io n  (C , f )  o f  

equations 3.137 and 3.138 is the t r i v i a l  point  cycle  where C =

(x * ,  y * )  and f  (0) = 1. In th is  case a l l  the c e l l s  remain a t  the  

same point  ( x * ,  y * )  and the c o n tr ibu t ion  of  continuous migrat ion  

e s s e n t i a l l y  vanishes.

Z e ig le r  then argued, I be l ie ve  f a l s e l y , ( s e e  next s e c t io n ) ,  tha t  

since the e f f e c t  o f  d i f fu s io n  vanishes the e q u i l ib r iu m  reduces 

to the Lotk a -V o l te rra  e q u i l ib r iu m  as predicted by equations  

3.133 and 3.134 and th is  is unstable.

He th e re fo re  concluded tha t  a randomised phase/space mode o f  

persis tence cannot be maintained by l in e a r  continuous d i f f u s i o n .

3 . 4 . 6 . 4 .  Discussion

Hasting's  model demonstrates tha t  migrat ion between patches in a 

patchy environment can be a s t a b i l i s i n g  f a c t o r .  However the  

precise condi t ions fo r  migrat ion are not s ta te d .  The t imescale  

o f  the model is set  by the time a predator-prey  re la t io n s h ip  

becomes e x t in c t  in an ind iv idua l  patch.  Hence the invasion rates  

oc andp do not necessar i ly  describe continuous m ig ra t io n ,  only  

th a t  a number o f  invasions occur in a u n i t  t ime.

Although the conclusion o f  Maynard Smith's and Z e ig le r ! s  arguments 

th a t  continuous l in e a r  migrat ion between patches cannot mainta in  

s t a b i l i t y  is possibly c o r r e c t ,  t h e i r  actual  arguments may be f a l s e .

I t  is probably b i o l o g i c a l l y  sensib le  to propose th a t  migrat ion  in 

any s ig n i f i c a n t  numbers w i l l  only occur under c e r t a in  condit ions
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and tha t  these condit ions w i l l  only occur fo r  c e r t a i n ,  r e l a t i v e l y  

shor t ,  periods o f  t ime. The resu l ts  o f  Maynard Smith's and Z e i g le r ' s  

simulat ions demonstrate th a t  such populat ion exchange can be 

s t a b i 1 iz in g .

' ' 
Maynard Smith's argument tha t  continuous migrat ion w i l l  not lead
to s t a b i l i t y  is d i f f i c u l t  to  fo l lo w  and appears to be based on 
f n t u i t  ion ra ther  than mathematical f a c f .

Z e ig le r  attempted to  make Maynard Smith's argument more r igorous.  

However I fee l  tha t  his analys is  o f  the continuous population  

exchange model can be c r i t i c i s e d  on a number o f  counts.

F i r s t l y  he somewhat understandably assumed th a t  the so lu t ions of  

the model equations 3.137 and 3.138 w i l l  take the same form 

w i th in  each c e l l  since the equations e s s e n t i a l l y  are the same 

fo r  each c e l l .  However th is  assumption may exclude v a l id  solut ions  

of  the equations,  in p a r t i c u l a r  the r e l a t i v e  s ize  o f  populat ions  

may depend on the i n i t i a l  populat ion sizes  which may be d i f f e r e n t  

fo r  each cel 1.

Further Z e ig le r  assumed tha t  x and y in equations 3.145 and 3.146  

are  constants whereas t h e i r  values depend on the actual  so lu t ion  

(C, f )  and hence on the values o f  x and y in equation 3 .144 .

F i n a l l y ,  even i f  x and y can be assumed to be constant,  the so lu t ion  

( x * ,  y * )  o f  equations 3.145 and 3.146 can only be maintained because 

there is continuous migrat ion and i t  is th e re fo re  f a ls e  to conclude 

th a t  migrat ion vanishes and th a t  the e q u i l ib r iu m  reduces to the  

L otk a -V o l te rra  case.

3 .5  Conclusions

The main aims o f  th is  chapter have been to de f ine  what is meant by 

the term environmental  hete rogeneity  and to in v es t ig a te  the e f f e c t  

o f  such heterogenei ty  on community s t a b i l i t y .
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I t  Is c le a r  tha t  there  are a number o f  types o f  environmental  

heterogenei ty  to be considered.

Temporal heterogeneity  is r e l a t i v e l y  s t ra igh t fo rw ard  to model 

and is not considered in any great d e t a i l .  Results obtained  

by May in p a r t i c u l a r  ind ica te  th a t  condi t ions f o r  community 

s t a b i l i t y  are more s t r in g en t  than fo r  the equ iva lent  time -

homogeneous case.

Spat ia l  he terogenei ty  may occur in a number o f  forms and perhaps 

one o f  the most important observations is tha t  s p a t ia l  hete rogenei ty  

may be created in a ph y s ica l ly  homogeneous ;environment by an uneven 

d i s t r i b u t i o n  o f  one species a f f e c t in g  the behaviour o f  another .

Ecologis ts ,  and indeed mathematical e co lo g is ts ,  have r a r e ly  f u l l y  

defined the terms heterogeneity  and use the term s p a t ia l  hete rogene i ty  

very loosely .  However, in most discussions o f  experiments and 

f i e l d  observations concerning s p a t i a l l y  heterogeneous environments  

the ind ica t ions  are th a t  such heterogenei ty  is s t a b i l i z i n g .

We have seen tha t  models of  community dynamics in s p a t i a l l y  heterogeneous 

environments can become very complex and d i f f i c u l t  to analyse and 

indeed few resu l ts  have been obtained f o r  communities o f  more than 

two species,  except by s im ula t ion .

Most of  the models discussed in Section 3 .4  support the theory th a t  

spat ia l  heterogene ity  is s t a b i l i z i n g .  I t  c e r t a i n l y  appears to be 

v a l id  fo r  communities in environments which p h y s ic a l ly  provide  

refuges or cover fo r  prey species,  and fo r  communities in environments 

in which ind iv idua ls  o f  prey species are d is t r ib u t e d  non-randomly 

and predators react to th is  by aggregating in areas o f  high prey  

densi ty .

There is some debate about the s t a b i l i z i n g  nature o f  migrat ion  

between patches in a patchy environment.  The model o f  Hastings  

demonstrates th a t  continuous migrat ion can lead to s t a b i l i z a t i o n  

of  a two-species community. Maynard Smith and Z e ig le r  argue th a t  

migration which only occurs a t  d is c re te  in te rv a ls  in t ime is more 

l i k e l y  to be s t a b i l i z i n g .
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In a l l  cases the general  conclusion is th a t  s p a t ia l  heterogene ity  

of  the environment in which a community is l i v i n g  is not l i k e l y  

to make the community less s ta b le .
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