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" Abstract

The aim of this dissertation is to study two aspects of the stability
properties of a biological community. These are firstly their relationship
with the structural complexity of the community and secondly»thé effect

of spatial heterogeneity of the environment in which the community lives.

Chapter 1 introduces the subject of population dynamics and discusses

the reasons for using mathematical models to study it.

The first part of Chapter 2 defines the terminology, especially the

meaning of stability. The second part considers the biological evidence
for a relationship between stability and ¢omplexity while the third part
investigates the stability properties of mathematical>models of communities
of varying cohp]exities. It is concluded that there is no general
relationship, but that the more combTex a community the more unlikely

it is to be stable.

The first part of Chapter 3 discusses the bioligical evidence for the
importance of the effect of spatial heterogeneity on stability and
proposes a definition of this term. The second part describes different
ways of mpdelling community 'population dynamics in spatially heterogeneous
environments. It is concluded that spatial'heterogenefty is not likely .

to make a community less stable.
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1.1.

1.2,

ChaEter 1. Introduction

Aim of the dissertation

The aim of this dissertation is to study two aspects of
biological population dynamics.

These are i) the relationship between the stabi]ity of a
biological community and the structural complexity
of that community

and ii) the relationship between fhe stability of a
biological community and spétial heterogeneity of

the habitat in which that community exists.
’ (

Reasons for studying Population Dynamics

A biological population might be defined as a number of
individuals of a single species in one place. The study of
population dynamics involves investigating how a population changes
through timevand why. The value of such studies is manifold and
depends on the type of population under consideration.

When the populations of particular plants and animals grow
above a certain size, they become what are known as pest species.

Examples of pest species include the cottony cushion scale

(lcerya purchasi) which attacks Citrus trees by sucking the sap

from leaves and twigs, the froghopper (Aeneolamia varia saccharia)

which attacks sugar cane in Trinidad and the larch saw-fly

(Pristiphera erichsonii) which has been a serious pest of larch

trees in Canada since the last century.
Control of pest populations is important both economically,
especially to farmers, and in the prevention of the spread of

diseases such as malaria for which the mosquito (Anopheles spp)

is a vector and rabies for which the red fox and lately domestic

dogs are vectors.
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A control strategy may involve the use of an expensive
pesticide or the introduction of a natural enemy of the particular
pest species. Whatever method is chosen, a good understandiﬁg of
the underlying population dyhamics of the community involved is
essential if an expensive waste of resources or undesirable side
effects, such as outbreaks of other pest species which hitherto
had been under control, are to be avoided.

A good review article discussing the importance of studying
population»dynémics to pest control strategies is given by May
(1976).

The study of human populations is called demography. It is
important economically and sociolqgically for those such as
governhents, sociologists and town planners to be able to estimate
confidently how the human population is likely to change over a
period of years. For instance, if the birth rate in a particular
country begins to fall, it is likely that the number of teachers
and even schools required in a number of years time will be
reduced.

The study of human populations on a world scale is also
important, especially studies concerning the under-developed
countries. A good discussion of world demography is given in Krebs
(1972) while an introduction to demography is given by Bogue (1969).

Another aspect of population dynamics is epidemiology, the -
study of epidemic diseases and in particular how to control them.
A good review of the population biology of infectious diseases is

given by Anderson and May (1979).

The use of Mathematics

In order to study population dynamics it is often necessary
to count or estimate the number of individuals in a population

at a particular time. The use of mathematics naturally follows

-2.—



1.4,

in attempting to determine how the numbers change through time.
The appropriate mathematics involve constructing mathematical
models.

In general mathematical models tell us what may be not what is.

This is true even in physics. For instance, Newton's Laws of
Motion do not hold exactly, especially for small values of mass
and distance. However measurements from physical experiﬁents tend
to be relatively constant from replicate to replicate. This is
certainly not so in biological experiments.

‘Biological data is renouned for its variability. This is
especially apparant in many sets of data concerning population
biology, whether it be, for example, estimates of the number in
a population, estimates of the number of species in a particular
habitat, or the number of eggs laid by a female housefly per day.

The fitting of any model to biological data is therefore likely
to be a formidable task. Confidence in the mathematical models
is often low and conclusions drawn are open to extensive criticism.
However there have been some notable successes in the field of
population dynamics which encourage mathematicians to persevere.
For instance, the use of mathematical models in the fishing
industry has proved very useful. |In particular, one early model
developed for its economic importance for the dynamics of exploited
fish populations by trawling in the North Sea is that of Beverton

and Holt (1957).

Types of Mathematical Models

Many different types of mathematical models have been employed
in population dynamics. These include differential equations,

difference equations, probabalistic models and simulation models.



Differential equations are often used to model populations
(and communities) which exhibit continually overlapping generations,
that is populations in which birth is effectively a continuous
process through time, as in humans. Such models tend to break-
down at low populations levels, but have proved useful in numerous

cases. The Lotka-Volterra coupled differential equations

dh = h(r-ecp) 1.1
dt
dp = p(-s+PBh) 1.2
dt

is a classical example of such a model for a predator (p) - prey
(h) relationship.

Difference equations can be used to describe populations of
species which have non-overlapping generations. |Insect parasitoids
(hymenoptera and diptera) that attack the insect herbivores (mostly
lepidoptera) have a generation time the same length as that of
their hosts, so that for instance, if a hymenopterous adult female
attacks the second instar larva of a species of lepidepteran, the
development of that hymenopteran is timed so that the next
generation of females is flying at the time the next second instar
of the lepidopteran is available. Difference equations have been
used extensively to model host-parasitoid relationships. An
investigation of the stability of such models is given by Hassell
and May (1973). |

The restriction to large numbers is still important.

If the parameters in such equations are constant, the models

are deterministic. A random element may be introduced by allowing

the parameters to vary at random through time.

If small population numbers are to be considered, growth in

integral units can be described by probabalistic methods.



Continuous growth is modelled by considering the probability of
a birth or death in an infinitesimal time interval while in discrete
growth a fixed time interval is chosen.

Markov chain type models have been used by for example Zeigler
(1977) to model spatial heterogeneity of the environment and its
effect on the community dynamics. The habitat is divided into
a definite number of patches each of which can take on a number
of states. The transition between states of a particular patch
is then made to depend on the number of patches in each state at
a particular time. Transition may be continuous or discrete.

Another popular way of describing population dynamics is by
simulation models. These models can be very detailed and are
usually applied to specific populations or communities. They are
run on a computer (digital or analogue) and are very flexible,
especiaily when investfgating the effects of discrete events such
as natural catastrophies (e.g. a sudden change in the environment)
or control strategies (application of an insecticide). One
example of the use of simulation models in population dynamics is
presented by Meek (1981) who modelled the liver fluke in sheep
interaction and in particular investigated control strategies.

One further way of classifying mathematical models is into
general or specific models. Both types of mode]‘may be empirical
or complicated, however the latter type describes particular
species or communities, as in the exampTe by Meek referred to above,
while the former type is used in an attempt to establish general
ecological theories. It is the general approach and the difficult-
ies associated with it which are considered mostly in this

dissertation and mainly deterministic models are used.



‘Why Study Stability?

The two aspects of population biology considered in this
dissértation both involve community stability. For thé purpose
of this section stability will be defined to be a property a
population has if its numbers tend to remain at a more or less
steady value for a period of time. Stability will be defined more
carefully, as indeed it has to be, in the next chapter, however
it is useful at this point to consider why it is necessary to
study stability in mathematical models of biological populations.
There are a number of important questions to be answered
concerning population biology. For instance, why do some species
persist? Why do some species become extinct? Why do some species
remain at low population numbers, then suddenly reach epidemic

values? The spruce budworm (E. choristoneura fumiferana) is an

example of one such species. Why does the addition of a natural
enemy to a pest population sometimes control the number of pests
to a tolerable but persistent level? Why does this control
strategy often fail? .

In order to answer these general questions by means of
mathematical models and in particular to determine certain key
factors such as number and type of links in the food cﬁain or
heterogeneity of the environment; it is useful to have a reference
point from which to work. While populations in nature will always
be subject to fluctuations due to a possibly uncountable number
of factors, a convenient and | feel appropriate reference point
to investigate is the equilibrium point (or points) of the
mathematical model. A model can be considered to be at equilibrium
if the populations numbers do not change through time unless they

are perturbed. The stability of the model can then be investigated



1.6.

by perturbing the numbers from their equilibrium values and
monitoring whether they return to equilibrium. In this way the
importance of the various parameters in the model concerning the

above questions might be determined.

The Importance of Definitions

One important consideration when applying mathematical models
to describe the real world is the consistency of terminology. For
instance, what do we mean by stability of a biological population
and how does this compare to the stability of a mathematical
model”? One essential way of avoiding confusion over terminology
is to define all tefms clearly and to demonstrate how the
properties of a model may be related to the real world.

| hope that this will be evident throughout this dissertation.



Chapter 2 The relationship between the stability of a natural

2.1.

2.2,

community and its structural complexity

Introduction

The object of this chapter is to demonstrate whether or not /
there is a general relationship between the stability of a natural
community and the structural complexity of that community. We will
do this both by studying evidence from field observations and by
studying general mathematical models of community population
dynamics.

We wil] need to define a number of terms and answer a few
preliminéry questions, namely:

i) what is a population?

ii) what is a community?

iii) how can a popu]atidn change in size?

iv)  how can we model this?

v) what do we mean by stability of mathematical models?

vi)  how can we relate this definition to natural populations?
vii) what do we mean by complexity of a community?

We wili then consider what types of relationship there may be
between stability and complexity and will refer to evidence from
field experiments and the literature for and against these
relationships.

Fiha]ly we will compare the conclusions from field observations
with results obtained by considering the relationship between the

stability of solutions of simple mathematical models of communities

~and the complexity of these communities.

Definition of a population

I propose the following definition of a population ;

a population is a group of individuals of the same species

-8 -



in the same place at the same time.

A number of other definitions have been used in the literature.
For instance, Williamson (1972) defines a population as a 'group
of individuals of the same species in one place' and Krebs (1972)
uses the definition 'a group of individuals of the same species
in a particular place at a particular time'. Both these definitions
can be criticised because they exclude groups of individuals which .
move location, e.g. during migration. Krebs definition also implies
that the same group of individuals forms a different population
at different times whereas it is actually the same population with
different population characteristics (e.g. size).

Solomon (1962) defines a population as a group of individuals
of the same species. This definition is essentially identical to
the one | have used, the 'same place at the same time' being implied.
My definition automatically includes herds and flocks which are
groups of individuals of the same species which move around
together. The exact meaning of the 'same place' has to remain
somewhat hazy, but fortunatly this does not really matter. Den
Boer (1968) attempts to include this in his definition: a
population is a group of indivuduals of one species living in a
specified locality whose limits are spatially determined by natural
barriers or are arbitrarily set by the ecologist. For instancé,
we may consider the populations of field mice in a particular
field, in Hertfordshire, in England or in the world. What one
must do is to specify the location. Individuals may migrate out
of or into the location and hence may leave or join the population

at any time,



2.3.

2.4,

Definition of a community

I propose the following definition of a community:

A community is a group of populations in the same place at
the same time.

As for the definition of a population there are a number of
different definitions of a community used in the literature. For
instance, Krebs (1972) defines a community as an ‘assembiage of
populations living in a prescribed area' while Fager (1963) uses
the somewhat looser definition 'a group of species which are often
found living together.'

Fager's definition hints that there may be something more
fundamental about the concept of a community and indeed in nature
community patterns do occur. That is, certain groups of species
do tend to be found living together more often than others. This
has led to two schools of thought as to the biological significance
of the community. On the one hand ecologists such as F.E.Clements
and A.G.Tawley consider the community to be essentially a biological
organism or superorganism. On the other hand the community may
merely be a haphazard collection of species with the same physical
resource requirements._

These arguments do not concern our theme however. What is
important’is that when a group of species live together in the
same place, however that place is defined, they interact and because
they interact the population sizes of the individual species depend

on the structure of the community.

Why does the size of a population change through time?

The size of a population may change over a period of time

due to at’least ome of .the following reasons. Some individuals

may be born, some may die, some may emigrate to another'population

of the same species, and some may immigrate into the population

- 10 -



from another population of the same species.
The effect of these events on the size of the population can
be represented by what Williamson (1972) describes as the funda-

mental equation of population dynamics.

Kepr = % + B D+ 1 -E 2.1,
where Xt = number of individuals in population at time t
Xcsar = Dumber of .individuals in population at time twt
B = number of births during time interval at
D = number of deaths during time interval Ot
| = npumber of immigrants during time interval ot -
E = number of emmigrants during time interval 4t

The numbers of events, B, D, | and E, tend to be functions
of time, physical parameters and what might be termed 'living
parameters'. Physical parameters include such factors as weather
and amount of physical (inorganic) resource available (e.g. water).
'Living parameters' may include the numbers of individuals of |
cohabiting species present and behavioural aspects of these species
(e.g. predator-prey relationships).

Many physical factors tend to be continually changing through
time and indeed space. Consequently the rates of change of individual
populations are likely to be continually changing, and, because
population change depends also on the so called 'living

parameters', communities are continually changing in size.

- 11 -



2.5

How can we model population dynamics?

In Section 1.3 it was stated that it is natural to use mathematics
to attempt to explain how the size of a population changes through
time (and indeed space), and a number of different types of

mathematical model that might be suitable were briefly mentioned.

Most of these models are based on the fundamental equation of

population dynamics:

xt+At = xt +B-D+1~-E

which is described in the previous section (equation 2.1).
Here it is presented in the form of a difference equation,

The equation has a parallel formulation as a differential equation.

i.e. dx= b-d+i-e 2,2
dt

where x = x(t) is the size of the population at time t and b, d, i
and e respectively are the instantaneous rates of births, deaths,
immigration and emigration at time t. As before these rates may

be functions of time, 'physical' and 'living' parameters.

i.e. Q‘i=b(t’2‘_’P_) - d(t,x,q) + i(t,_)s,_r_,‘) - e(t,x,s)
dt 2.3

where X: is the size of the ith population,
x o= (x5 ..nn, x.)
where there are n species in the community,
and p, g, r and s are sets of parameters.
Equation 2.3 may be written in.the more general form
dx. = f(x, u) 2.4
at' -7

The simplest differential equation which has been used to model

population dynamics is the exponential growth (decay) equation.

dx = X 2.5
dt ‘

whereeC=b - d + i - e and is a constant,

- 12 -



The rate of growth (decay) of the population at time t is directly
proportional to the size (x) of the population at time t. The
constant of proportionality is in effect a lumped parameter
describing the net effect of the four fundemental factors of
population change. This equation has proved to be a good model to
describe the dynamics of a population growing in an extremely

favourable environment (Figure 2.1).

Xo

Fiquwe 2.1 Example of exeouu*:e.\.t%row\-\\ .
A slightly more sophisticated differential equation model of
population growth is the logistic equation. This was first
proposed by Verhulst as far back as 1838 as a model to describe
human population growth, and was derived independently in 1920 by

Pearl & Reed, again to model human population dynamics.

The equation is

dx = rx(k-x)
t k 2.6

Here r is the intrinsic rate of natural increase, that is, the
maximum rate of increase the population can obtain under given

conditions. It is assumed that there is no migration.

k is often called the carrying capacity of the environment.
Essentially the model assumes that there is a limited resource
available in the environment, so that it can only support a

maximum number (k) of individuals (Figure 2.2)

- 13 -
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Fiqure 2.2 Example of Yogistic gfowth.

The logistic equation has frequently been used to model 'sigmoid;
growth curves. For instance, G. F. Gause carried out a number of
experiments with laboratory populations of microorganisms during
the 1930's, and he fitted the logistic curve to describe the

population growth of some individual species (Gause (1937)).

The suitability of the logistic curve to fitting such responses
has been questioned by various authors (Williamson (1972), Sang
(1950), and Feller (1940)),however it has certainly proved a

very useful first approximation in the past.

Community population dynamics can be modelled by systems of

differential equations.

One of the simplest and most famous examples is the predator-prey
model which was derived independently by Lotka (1925) & Volterra
(1926):

dh = (r-o<p)h 2.6a
dt
dp = (-s +f3h)p k 2.6b
dt

The prey species h is assumed to grow exponentially in the absence of
predators p, while the predator population size is assumed to decay
exponentially in the absence of prey. When both species are present,
seph is essentially the rate at which predators meet and successfully
ki1l prey and Sph is the consequent increase in the instantaneous

growth rate of the predator population.

- 14 -



The prediction of the equations is that the population size of
both the predator and the prey oscillates, the amplitude of the
oscillations being dependent entirely on the initial population sizes.
This model is clearly not very realistic and has perhaps
surprisingly been used a gfeat deal as the basis for more elabourate
mathematical models (e.g. Zeigler (1977)). However again it has

proved to be a very useful approximation (Figure 2.3).

‘\ 4

x

L4

. 4 .
Eﬂ‘ oe 2.3 Pr Y oscillahong predicted bg e Lotkha- Vollterrm egpaticss

In general a community containing n species might be modelled by

a system of n differential equation.

n
e.g. dx; =x; (r.- o X, ) i=1, ...., n 2.7
dt By ij |

J=

The examples of differential equation models quoted above are
relatively simple and correspondingly may be very unrealistic
when it comes to applying them to particular examples. However

they may be made more sophisticated in a number of ways.

i) Age structure

Often within a population individuals of different ages will have

different population dynamics.. Even so, it may still be reasonable
to use differential equation models. For example, if the young of
a particular species are attacked by a particular predator but the

adults are not, the following system of equations may apply:

dy =ra- (d+ s) y - yp

dt 2.8
da = sy - ea
dt 2.9

it 2.10
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where y, a and p are the number of young prey,‘adu]t prey and
predators respectively at time t, ra is the birth rate of the
prey, dy is the death rate of young prey, sy is the rate at

which young prey become adults, ea is the adult prey death

rate, tp is the rate of decrease of the predator population in

the absence of prey, andocypammigyp are the instantaneous effects
of the predators successfully meeting and eating prey on the young

prey and the predator. populations respectively.

i)  Time deléys

One immediate criticism of the Lotka-Volterra predator-prey model

is that the effect of the predators eating prey at the rate oc hp

at time t on the predator population size will not be instantaneous.
One way of overcoming this is to introduce time delays into the

differential equations (equation 6a and 6b).

For example, the Lotka-Volterra equations may become

(r-=p)h 2.11

i}l =

dt

dp = sp +Bh(t-T) p(t-T) 2.12
dt ’

where T is the time delay between when the predators ate the prey
and when there is a consequent effect on the predator population

growth rate.

This sophistication to the model is not jn fact partichlarly
realistic (for instance the time delay T is not likely to be
constant), but serves to demonstrate one way in which time delays

may be introduced into differential equation models. May (1972a) |
is one author who has discussed the effect of introducing time delays

on the ensuing population dynamics.
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2.6

The environment in which a population or community liQes may

offer a different set of conditions to each individual depending

on its exact location within the environment, and this may affect
the overall population dynamics. This is especially true for plants
and for animals which do not move far relative to the environment
under consideration. For instance, the environment may be a
particular field which is on a hill, and a diversity in conditions
within the field may be decreasing water content in the soil

depending on distance up the hill.

Spatial heterogeneity is discussed in.more detail in chapter 3.

As was pointed out in Section 1.3 differential equations are not

the only type of mathematical model that might be used to describe
population dynamics, and indeed it is often not applicable to

use them. In particular it is not realistic to use differential
equations to model populations which have non-overlapping generations.
Also, because population change occurs in discrete steps, they do

not apply when the size of the population is small. However such
models can often be useful both in modelling specific populations

and; more important from the point of view of this dissertation,

they might be used to explore general ecological theories.

Definition of stability

The size of a natural population tends to be continually changing
through time. Often, at least over short periods of time, these
changes demonstrate some definite trend. For instance, the population
size may be growing; it may be decreasing; or it may demonstrate
regular or irreg&lar cycles. These trends may occur for a nhumber

of reasons. A species may have invaded a habitat which is particularly
favourable. It is clearly inconceivable that a population should
continue to grow in size ad infinitum as there can only be a finite
amount of resourcer(e.g. space) available. Therefore, either some

regulation of the population growth will occur, or the resources will
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be used up, the individual members of the population will starve,
and the population size will be drastically reduced. In the latter
case the population might be said to be 'unstable'. In the former

case the population 'may' be 'stable'.

Many ecologists do not attempt to define stability in the literature.
This may be because a satisfactory definition does not exist. However,
much of the research into population dynamics USing-mathematics has
concerned stability and therefore it must be necessary to be able to
relate - this .stability to that of the biologicali populations being

modelled.

Orians (1974) recognised this and complained 'concepts are normally
discussed with poorly defined terms, reflecting an uncertainty

about what concepts of stability are useful in ecology and, even
more important, what we wish to understand about natural ecosystems®.
He is supported by Margalef (1968) who went as far as saying 'it is
perhaps questionable whether the term stability should be retained,

as it has been :used too ‘much in-different-and divergent speculation’.

Krebs (1972) suggested that a population is stable if it persists
in the face of fluctuations or if it demonstrates a lack of or only
small fluctuations. Elton (1958) defined a population to be
unstable if it is 'more subject to destructive oscillations’,

while Williamson (1972) implied a similar definition and suggested
further that some measure of population size variability might also

measure stability.

The unsuitability of Kreb's definition is clearly shown by the

example he used to demonstrate what he considers to be a stable
population. This is the tawny owl population near Oxford, England
between 1947 and 1959, the graph of which is shown in Figure 2.h.

The population certainly demonstrates only minor fluctuations and
persists over the period of time studied, and if this is to be a
reasonable definition of stability, then the population is stable.
However the population size is clearly increasing with time and in the
spirit of the opening paragraph of this section, it is not intuitively

stable.
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Intuitively a population is stable if its size remains constant
over a period of time, and this constant level is maintained even

when factors on which the population depends are subjected to
perturbations.

At this point it is sensible to define mathematical stability.

2.6.1 Mathematical stability

Let P be a mathematical model of a biological population.
Let x(t) measure the predicted size of this population at time t.

Then x(t) is generated by the model P and therefore depends on
the parameters of the model. These parameters will measure some
of the factors discussed in Section 2.4 and the model will be
some formulation of the fundamental equation of population

dynamics (Equation 2.1).

For example, the model may be the logistic equation (Equation 2.6)
in which r () is a measure of the maximum (or intrinsic) rate
of increase of the population and k () is a measure of the
carrying capacity of the environment, that is the maximum number

of individuals that the habitat can support.

There are two types of stability to be discussed: local and global.
A population which is globally stable is automatically locally
stable, but a population which is locally stable is not necessarily

globally stable.
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A population model is locally stable if

. .
i) there is a population size x (>0) such that if the
population attains that size, it will remain at that

size unless disturbed.

and ii) if the population size is disturbed slightly
from this equilibrium size, the model will drive
the size back to this value, though it may take

infinite time.

For example, in the logistic model (Equation 2.6) the values

x =o and x =k are both equilibrium points.
First consider the point x =o.
Let x(t) = x  +&(t) denote a small disturbance from this equilibrium.

Then dx(t) = d&(t) = rs(t) (k-2(t) 2.13
dt dt Tk

If we neglect all terms of order two and higher in& (t), this equation
reduces to

dg (t)
dt

n

r&(t) , 2.14

and the solution of this gives
£(t) = &(0) e

Clearly if the population size is disturbed from a value of zero
by a small amount, then the size will tend to grow. The equilibrium
size x = o is therefore locally and hence globally unstable.

. ot
Now let us consider the point x = k

Following the above procedure, let x(t) = x +&(t) = k + 5(t).
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Then dx(t) = d(t) = r (k+&(t)) (1- K+=(t))
dt dt k

-r (k+5(0)  Z(1) | 2.15
k

Neglecting terms of order two or above in &(t), this equation

reduces to

ds(t) = -rg(t) 2.16

and the solution of this gives

€ (t)=2(0) e "t 2.17

This demonstrates that, if the population size is disturbed slightly
from the value k, it will tend to return to k. This equilibrium
point is therefore locally stable, though not necessarily globally

stable,
A population is globally stable if

i) there is a population size " (>0) such that, so long
as the population size is greater than 0 at some time
t, the population is bound to attain that size and
will stay there unless disturbed.
and ii) if the population is disturbed from x*, so
long as x(t) does not become o, the model will drive

3
the population size back to x .

In particular, for differential equations of the general form

dx = f(x, p) 2.18

t
where f is the parameter set, Lyapunov has shown that an

equilibrium point is globally stable if there exists a function
v(x) such that
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i) wv(x) €0 for all x

oL

and ii) "dv(x) evaluated at x=x is greater than 0.
dt '
For the logistic model let v(x) = -(k-x)2

Clearly v(x) £ o for all x

LI}

and dv 2(k-x) dx
dt dt

2rx (k-x) (k=-x)

2rk (k-x)2 >0 for all x > o 2.19

3.

Therefore the equilibrium point x =k is globally stable.

2.6.2 How can we relate this mathematical definition of stability to

a natural population?

To answer this question it is necessary to consider what information
is available concerning the size of the natural population. What
the ecologist usually has or can obtain is a series of estimates

of the population size over a period of time. These estimates may
in fact be actual counts, in which case there is an accurate

history of the results of the population dynamics over that period.
More often, however, these estimates are relative counts. For
example, the number of individuals in a small portion of the habitat
is counted and an estimate of the total population size is calculated
by multiplying this number by the number of such portions in the
habitat. Southwood (1966) has described a number of methods of
estimating the size of natural insect populations. Such estimates
are subject to sampling errors and, such is the nature of biological

data, these errors are likely to be large.
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The ecologist can use the éort of data discuséed aone to decide
whether or not the population éize is stable, at leaét err a
period of time, in the mathematical sense that | haVe defined.

That is, he must decide whether the population size can be
considered to be constant over the period of time, and, if so
whether any fluctuations in the population size are of a reasonably
small amplitude. The questions now are what do | mean by 'can be

considered to be constant' and 'fluctuations are of a reasonable size'.

These questions are perhaps easier to answer if absolute counts are
available, however, if we assume that sampling errors are either
completely random or highly positively correlated with the absolute
counts, then it is relatively simple in many cases to decide whether

the size of a population is not constant over a period of time.

The population size cannot be considered to be constant if

i) the size demonstrates a significant increase (e.qg.
Figure 2.4)

ii) the size demonstrates a significant decrease (e.g.
Figure 2.5)
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iii) the size demonstrates definite cycles of reqular or

irregular period and varying or constant amplitude
(e.g. Figure 2. 6)
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In many other cases the population size will demonstrate no definite
pattern or trend. Are such populations varying, due to a continual
perturbation of the controlling parameters, about a constant
equilibrium level or are such populations in a completely uncontrolled
state?

From a practical point of view I suggest that the answer to this
question depends to some extent on the value of the running mean of
the population size and especially on the size of the observed

fluctuations.

If the population is fluctuating, due to perturbations in the
controlling factors, about a constant equilibrium level, then the
running mean m(t) (that is, m(t) is the mean population count
between the beginning of the time period and time t) is likely to be
reasonably constant. Some sensible limits should be set such that,
if the running mean goes outside these limits (and stays outside

for some time), the population size can no longer be considered

to be constant. These limits may be defined statistically, perhaps
taking into account known sampling errors, or they may be set

by the ecologist using his working knowledge (or indeed a Baysian

approach).
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The value of the running mean determines the equilibrium level of
the population size. The size of the fluctuations are the key to
determining stability. Clearly different species and different
conditions lead to differing potentials for increase, and it may
be that species with high intrinsic rates of increase (sometimes

labelled r-species) may be inherently more unstable.

However the size of fluctuations must be éompared to the size of
the mean level in order to give an indication of.stabi]ity, that is
it is the relative size of the fluctuations that is important.

I suggest that the coefficient of variation is a suitable indicator

of stability.

The coefficient of variation of the population size over a period
of time is defined as one hundred times the standard deviation of
the size divided by the mean size. The smaller this value, the more

likely the population size is to be at a (locally) stable equilibrium.

For example, consider Figure 2.7. It is clear that the hypothetical
population 2 is far more likely to be stable, than hypothetical
population 1 and this is reflected by the difference in the
coefficients of variation which is 52% for ponulation 1 and.13%

for population 2.

The coefficient of variation as a measure of variation can only be
considered a crude practical guide to stability and may indeed be highly
misleading in some cases. A more sophisticated way of measuring the
stability of natural populations by assessing the variation of population
numbers about mean levels can be provided by stochastic population models

an introduction to the theory of which is presented by Bartlett (1960).

_25..



2.6.3 "Conclusions

2.7

The type of population (and hence community) stability relevant
to this dissertation is that which pertains to the size of the

population (and to the size of the member populations of the community).

The mathematical definition of this stability is precise. In nature
it is difficult to apply a parallel definition, but | suggest the

following 'practical rule'.

The size of a natural population might be considered to be at a

locally stable equilibrium level between times t1 and t2 if

i) the running mean size lies between certain limits

and ii) the coefficient of variation of the size between

these times is less than a certain percentage.

The exact values of the critical limits in this rule need further

thought and | do not feel qualified to make any suggestions

without having examined a large amount of relevant data. However
this is not relevant to this dissertation. What | have tried to do
in discussing stability is to demonstrate how a particular
mathematical definition of stability might be applied to natural
populations, and | feel that it is this relationship which should

be carefully assessed when interpreting the results from mathematical

models,

Community Structure

In order to define the complexity of a community, it is first

‘necessary to briefly discuss community structure. By community

structure | mean the functional relationships within and between
species in the community. Functional relationships involve how
members of a species relate to their environment and, in particular,
this means what food they eat and what physical resources they share
with other species. These relationships determine the dynamics of

the community population sizes.



If the population size of one species in the communlty |$ different
in the absence than in the presence of a second ‘species (all other
population sizes being held constant), then we say the two species
interact. Some interactions are obvious. For instance, individual
A may eat indi?idua] B. If A and B are from different species,
this is a predator-prey relationship. |If they are from the same

species, this is cannibalism.

Some interactions are not so obvious. For example, Birch (1957)

defines competition as follows:

Competition occurs when a number of organisms (of the same or of
~ different species) utilize common resources that are in short
supply; or, if the resources are not in short supply, competition
occurs when the organisms seeking that resource nevertheless

harm one or other in the process,

Williamson (1972) argues that it is not the type of interactions
that is important when studying population dynamics but the effect.
Following Odum (1953) he lists the following effects:

+ (e.g. symbiosis)
o (e.g. commensalism)

- (e.g. predator-prey)

o + 4+ +

- (e.g. amensalism)

- (e.g. competition)

A positive sign (+) indicates that the population size of that
species increases in the presence of the other species, a negative

sign (=) indicates a decrease and a zero indicates no effect.

Probably the most important effect is the +- effect which is caused
by one species eating or living off another. Because species do
not eat every other species, it is possible to divide the commun ity
into trophic levels. Species at the same trophic level have
similar eating habits. For example the community may consist of
plants, herbf?ors and carnivors, each type of organism constituting

a trophic level. In practice this 'structuring' of the community is
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2.8

not straightforward® however (and the definition of a trophic
level is not clear) and there may .be several levels for a particular

community.

Another important effect is that caused by competition. Because
species in different trophic levels tend to differ biologically,

they also tend not to compete. Competition occurs mainly within
trophic levels either for food or space. However, many ecologists
have argued that competition does not occur in nature, at least

where some sort of equilibrium state has been achieved. Gauses (1934)
famous experiments involving paramecium led him to suggest that

two species with a similar ecology cannot live in the same community.
This idea was developed further by Hardin (1960) who states that
species in nature are not in competition. Unfortunately experimental
and natural evidence for and against this argument are difficult

to interpret.

Community complexity

Krebs (1972) lists five characteristics of a community:

i) species diversity
ii) growth form

iii) dominance

iv) relative abundance

v) trophic structure

Williamson (1972) lists many more properties of a community

that may be measured and divides them into four classes:

Class A Class B Class C Class D
richness stratification metabolism vulnerability
diversity periodism ~ energetics stability
complexity succession success

climax distribution

development

latitudinal variation
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Class A are properties related to the number of Species; Claés B
are ecological properties of commhnities‘which change through
either space or time. Class C relates to the flow of energy
through a community. Class D are properties measured on the

observed changes of numbers in time.

Notice that Williamson includes complexity as a property of a
community that might be measured. At first sight it may appear

that the complexity of a community depends on most of these
properties. For example, it may be that the greater the stratification,
the more complex the community might be considered to be. However,

in this chapter we are concerned with investigating the relationship,
if any, between community stability and complexity. We have

already discussed that the way to investigate this mathematically

is to consider the community to be in equilibrium and we have

noted that, given the community structure, it is the population
dynamics that determines the stability. We then discussed that
community structure depends on the species present and how they

react with themselves, with each other, and with their environment.
We should therefore include in any list of community properties

i) physical environment (habitat including climate)

and ii) species interactions (includes trophic structure,
competition)

The physical envfronment determines the type and strength of the

interactions. (e.g. whether competition occurs).

If a community is assumed to have reached some sort of equilibrium

in terms of diversity and population sizes, then such properties

as isuccession, ‘climax and development can be considered to have
reached a éonclusion. Properties such as energetics and metabolism
are contained in the strength of the community food links. Properties
such as growth form, dominance, relative abundance, stratlflcatlon

and periodism are the results of the population or communlty

dynamics.
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The complexity of the community is therefore determined by

i) the number of species in the community

and ii)  the number and the strength of species interactions.
Although in nature the number and strength of species interactions
may be subject to great variability, this need not concern us when

considering equilibrium conditions.

2.9 Evidence that stability increases as the community becomes more complex.

2.9.1 Introduction

The proposition that community stability increases as the community
becomes more complex was widely (wildly?) supported by ecologists
in the 1950's and early 1960's. In particular it is a view which
was shared by Hutchinson (1959), Eiton (1958), Allee, Emerson,

Park and Schmidt (1949), and Odum (1953), and it is a theory

which was 'proved' to be mathematically valid by MacArthur (1955).
I will consider the arguments of three of these authors in more
detail and then discuss a field experiment by Pimentel (1961)

which was designed to test this proposition.

2.9.2 R.H. MacArthur (1955).

MacArthur (1955) is one of the few authors who has attempted to
define community stability. He observed that in some communities
the abundances of populations tend to remain quite constant

while in other communities they tend to vary considerably. The
first type of community we tend to call stable, the second unstable.
This observation led him to offer the following qualitative

definition of community stability.

Definition: if one species in the community has abnormal abundance
~at a particular time, the community is unstable if the population
numbers of the other species in the community change markedly in

abundance as a result of the first.
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‘This definition might be conéidered identical to saying that
if a community is disturbed from an equilibrium in some way,
the community is unstable if it fails to return to equilibrium.

If all fluctuations tend to die out,*the community is stable.

MacArthur following Odum (1953) went on to put forward a
qualitati?e condition for stability. The more choice of

food species each species has, the more stable the community.
That is, the more complex the community food web, the more stable
the community. He rationalised this viewpoint by considering
that if one species in the community is particularly abundant,
then it will need many predators to dissipate the energy

and hence dampen any adverse effects on community stability, and
it will need a large number of prey, so that no one prey species

is likely to be reduced to a dangerously low level.

MacArthur then attempted to prove mathematically that greater

community complexity leads to greater community stability.
He made the following assumptibns.

i) The more choice of food a species has, the more stable

the community.

ii) If each species in the community has at most only one

predator and one prey, stability is minimised.

iii) Community food webs which give identical choice in

terms of probabilities have equal stability.
Consider for example the two food webs illustrated below

(Figure 2.8) which, by the above assumptions, are required to demonstrate

equal stability.
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The pi's in the diagrams represent the proportions of the total
number of the prey species of a particular predator formed by the
prey species i. For instance, in Figure 2.8 a Py is the fraction

of the prey species b and e eaten by the predator a, that is p1=%.

Based on these assumptions MacArthur determined to find a function

which would measure stability. He realised that these are the assumptions
that Shannon and Weaver (1949) used to define the entropy function in
communication theory. This function is unlquely determined (apart

from a constant) by the assumptions and can be written as

n

S = - ji: f; log (fj) 2.20
j=i

Where S is stability and the fj are the products of the P; along
each of the n paths through the food web.

For example, for the food web in Figure 2.8 a)

- {pypg Tog (p4py) + pypy log (pypy) + pyPg Tog (pgps) + PyPg Tog (pypg)
log (4).

If this measure of stability is reasonable, a number of interesting

observations can be made.
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i) Stability increases as the number of links increases.

ii) If the number of prey species for each species remains
constant, an increase in the number of species in the

community will increase the stability.

iii) A gTVen stability can be achieved either by a large number
of species with a fairly restricted diet, or by a smaller
number of species each eating a wide variety of the other

species.

iv) The maximum stability possible for n species arises when
there are n trophic levels with one species on each, eating
all species below. The minimum stability would arise with -
one species eating all the others, these all being on the

same trophic level.

One cannot criticise the mathematics associated with MacArthur's
argument, but one can argue with both his assumptions and his approach
in general. MaéArthur's first assumption is that greater choice of
prey leads to greater stability. Surely this is just a statement of
the 'theorem' he proceeds to prove and this is therefore not

surprising.

Of greater significance | feel is that MacArthur based his arguments

on statics rather than dynamics. It may be intuitively sensible to
associate greater stability with greatér choice, however what is

also important is the actual numbers of each species present at a
particular time. We have seen that these numbers tend to change
through time - due to unpredictable density independent factors and

to density dependent factors. It is the stability of the dynamics

of the community that is of interest and it may be that a simple system

is far more stable than a complex orie.
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2.9.3

2.9.3.1

"'C. S. Elton

C.'S. Elton (1958)

Elton (1958) collated six pieces of evidence which he claimed

suggested that the 'balance of relatively simple-communitieé of

plants and animals is more easily upset than that of richer ones;

that is, more subject to destructive oscillations in populations and

more vulnerable to invasions!'.

This evidence may be listed as follows:

i)

i)

iii)

iv)

v)

vi)

mathematical models of simple two species communities tend

to be unstable.

]aboratdry experiments involving simple communities (for

instance, Gause (1934)) often show them to be very unstable.

natural habitats on small islands seem to be much more

vulnerable to invading species than those of the continents.

invasions and outbreaks most often happen on cultivated or

planted land.

tropical rain forests, which may be described as having complex

communities, do not tend to suffer outbreaks of pests.

pesticides have caused outbreaks by the elimination of
predators or parasites from the insect community of crop plants

in particular orchards.

Elton concluded that complexity of populations is a property of the

community to be studied and used in conservation and he stressed the

importance of learning how to manage the environment, using general

laws like this, for three ends:



and

2.9.3.2

i) to create refuges for wild animals.

ii) to make our surroundings interesting and satisfying.

iii) to promote the stability of populations and a varied
community in which all kinds of compensatory pressures

will be exercised on populations.

Discussion of Elton's ldeas

Each piece of evidence on which Elton based his conclusions is
either directly misleading or can equally well be interpreted in

other ways. | shall consider each piece of evidence in turn.

i) Mathematical models of simple two species communities
can indeed be unstable, but this is not necessarily so
and, as we shall discover, mathematical models of more complex

communities can be less stable.

ii) At the time Elton was writing many laboratory experiments
including simple communities, especially those conducted
by Gause using parameciae, had often shown such communities
to be unstable. At the same time, there was little evidence
from laboratory experiments that more complex communities
were more likely to be stable. Further, laboratory
communities are by their nature artificial and this, as we

shall discuss later, may be important.

iii) Elton's third piece of evidence, that natural habitats on
small islands tend to be more vulnerable to invasions than those
of the continents,highlights another important point.
Elton's 'definition' of stability includes resistance to
invasion, whereas the definition | have decided upon
essentially does not. The addition of a species to the
cdmmunity in effect initiallyrmakes that community more
complex by creating new interactions"and changing the
strength of existing ones. What then happens to the

community in terms of stability must surely depend on what
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iv)

v)

vi)

effect these changeé have on the community population
dynamicé. It could thus be argued that inVasion causes
increaged complexity which causes instability! It might
also be argued that similar effects in continental habitats
are difficult to measure because it is not easy to actually

isolate communities in the same way.

As indicated in ii) above, unnatural communities may
tend to be unstable not because they are often simple

but because they are artificial.

That tropical rain forests contain complex communities which
do not tend to be subject to outbreaks has until lately
appeared to have been true. The composition of such
communities has evolved over a very long period of time

in what is essentially a very stable environment (i.e.

the environmental parameters remain relatively constant).
Recently the stability of such habitats has been attacked
(for instance, large areas of forest are being cleared)

and consequently outbreaks and extinctions have occurred.

So is it evolution, stability of environment, or compliexity,

or all of these which determine the stability of the community?

The fact that the elimination of predators or parasites

from insect communities of crop plants can lead to outbreaks

~ can again equally well be attributed to the unnaturalness

of crop communities;or .indeed to the delicate-balance of any
community, regardless of its complexity. Removal of a
species from a community will lead to the elimination of

a number of interactions and the modification of others,

and this may change the community population dynamics
significant]y. The cbmmunity will need to find a new

stable balance which, assuming little or no immigration

~of new species, will be a community containing less species!
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2.9.4 G. E. Hutchinson

2.9.4.1'G.'E.'HUtchinson‘(1§59)

In his presidential address to the American Society of Naturalists

in December 1958 G. E. Hutchinson (1959) posed the question 'why

are there so many species?' This question is, of course, fundamental
to the theme of this chapter. Central to his discussion is the
importance of food chains and, in particular, the importénce of

the interrelation of food chains.

A food chain consists of several species arranged in a hierachy

such that each species eats the next species in the chain.
e.g. pine tree - aphids - spiders - warblers - hawks

Elton (1927) was one early ecologist who recognised that food chains

tend to be interrelated with other food chains to form food webs.

If a predator has more than one prey to choose from, the predator

is less likely to become extinct if its favoured. .prey becomes scarce.
Hutchinson felt that, at the time of writing, ecological theory said
that there is.great divérsity of organisms because communities of
many diversified species are better able to persist than are
communities of less diversified species. He also suggested that

the addition of a new species to a community, although likely to
reduce the average population of the species originally present in
niches the new species may share, may reduce fluctuations and hence
lead to greater community stability. Hutchinson went on to suggest that,
because there are not more species than there are, there must be
some limit to the complexity of food webs. This limit may be set by

such factors as niche size and spatial heterogeneity.
2.9.4.2 Discussion

Hutchinson's paper clearly reflects the general view of the times
that the more complex a community the more stable it is likely to
be. It is strongly influenced by MacArthurs' apparent theorm, and

can again be criticised for using aguments concerned with static
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2.9.4

2.9.4.1

2.9.4.2

"G. E. Hutchinson

'G.“E;‘HUtchinéén‘(1959)

In his presidential address to the American Society of Naturalists

in December 1958 G. E. Hutchinson (1959) posed the question 'why

are there so many species?' This question is, of course, fundamental
to the theme of this chapter. Central to his discussion is the
importance of food chains and, in parficular, the importance of

the interrelation of food chains.

A food chain consists of several species arranged in a hierachy

such that each species eats the next species in the chain.
e.g. pine tree - aphids - spiders - warblers - hawks

Elton (1927) was one early ecologist who recognised that food chains

tend to be interrelated with other food chains to form food webs.

If a predator has more than one prey to choose from, the predator

is less likely to become extinct if its faVoureH.prey becomes scarse.
Hutchinson felt that, at the time of writing, ecological theory said
that there is.great divérsity of organisms because communities of
many diversified species are better able to persist than are
communities of less diversified species. He also suggested that

the addition of a new species to a community, although likely to
reduce the average population of the species originally present in
niches the new species may share, may reduce fluctuations and hence
lead to greater cdmmunity stability. Hutchinson went on to suggest that,
because there are not more species than there are, there must be
some limit to the complexity of food webs. This limit may be set by

such factors as niche size and spatial heterogeneity.

Discussion

Hutchinson's paper clearly reflects the general view of the times
that the more complex a community the more stable it is likely to

be. It is strongly influenced by MacArthurs' apparent theorm, and

can again be criticised for using aguments concerned with static
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2.9.5

2.9.5.1

relationships rather than dynamic. Further, although there is some
discussion concerning food webs, there is no clear definition of

either complexity or stability.

Pimentel

D. Pimentel (1961)

Pimentel (1961) proposed three hypotheses regarding the relationship
between community stability and complexity which are based on the
views and observations of such authors as Elton, Hutchinson and

A. J. Nicholson (1933). They are as follows:

i) diversity of host or prey species provides alternative
food for the parasites and predators, and this leads to

greater stability.

ii) diversity in types of parasitic and predaceous species
feeding on one species of herbivore leads to greater

stability.

iii) increased diversity of feeding habits of the species
members of the community leads to greater stability

of the organisation.

Pimentel tested these hypotheses in the field by carrying out an
experiment involving the animal community associated with the

family of species Brassica oleracea L. (Cruciferae) which includes

cabbage, collards, Brussels Sprouts and kale.

B. oleracea plants were planted in a 15-year fallow field in which
approximately three hundred species of other plants and an estimated
three fhousand species of heterotrophs already existed. This plot
constituted a 'mixed-species' planting or complex community. At the
same time another field, which wasrseparated sufficiently from the
fallow field to miﬁimise migration and which contained no other

species, was planted with the same varieties of B. oleracea.



This plot constituted a 'single-species' planting or simple

community.

One hundred plant Samp]es from each field were collected weekly

during the summer months for two consecutive years, and the animal

populations were identified and counted. These animals were mainly

insects and included Lepidoptéra, Homoptera, Hemiptera, Coléoptera,

Diptera, Hymenoptera, Neuroptera and Arachnida.

The results can be summarised as follows:

Pif)

v)

vi)

In 1957, 27 taxa were associated with B. oleracea
grown in the mixed-species planting and 50 taxa were
associated with it in the single-species planting.

In 1958, the figures were 39 and 50 respectively.

There were three to four times as many parasitic
and predaceous taxa present in the single-species

planting than is the mixed-species planting.

Aphids, flea beetle, and lepidopteran populations at
times reached outbreak levels in the single-species

planting, but never in the mixed-species planting.

There were more host and prey type species present

in the mixed-species planting.

There was a greater diversity of parasites and predators

in the mixed-species planting.

Predominant in the single-species planting were
coccinellids and syrphids which are specific eaters
which attack mainly aphids. In the mixed-species
planting spiders existed. These are relatively
non-specific feeders and tend to attack whatever

is abundant. at the time.
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Pimentel concluded from results i)to iii)that the single—épecies
planting was far Iesé Stable than the mixed Specieé‘planting, and
that results iv)to vi)lend support to his hypotheses i)to iii)
respectively. Since these hypotheées are concerned with properties
of complex communities and the mixed-species planting was essentially
more complex than the single-spécies planting, Pimentel is suggesting
that his results Support the theory that, in general, increased

community complexity gives increased stability.

2.9.5.2 Discussion of Pimentel's paper

At first sight Pimentel's conclusions may seem reasonable.

However, | feel that the following criticisms are relevant.

The results do suggest that the 'simple' community is not at a
stable equilibrium, but there is no clear evidence to suggest

that the 'complex' community is anywhere near a stable equilibrium,
and indeed it may be that this community is equally or even less
stable. Further, both the 'simple' and 'complex' communities
studied are infact .subcommunities. They are the communities of

animals associated with the family of species Brassica oleracea L.

in each field. It is not clear how complex the complete communities

were or how strong the links were between the subcommunity and

the rest of the community in each case.

Also both communities were subject to invasion by other species.
Essentially this means that the complexity of each community was
continually changing and hence that the nature of the population
dynamics involved were continually changing also.” It will.be seen later
(Section 2.11) by using mathematical models what effect this might

have on stability.
It is also important to note that Pimentel only studied two levels

of compiexity and hence his experimentwas inadequate to 'prove' any

general relationship between stability and complexity.
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Two less important points.which perhaps did not have a significant
effect on the results are firstly that the communities were both
somewhat artificial and secondly that each community 1lived under

different environmental conditions.

These criticisms essentially say two things about experiments 1ike

Pimentel's. Firstly it is important to define terms such as

complexity and stability clearly, and secondly it is very difficult,
~ perhaps impossible, to 'design' useful field trials to investigate

any relationship between complexity and stability.

2.10 Evidence that the relationship between stability and complexity is

not straightforward.

2.10.1 Introduction

By the mid-1960's the popular view discussed in Section 2.9 was
beihg challenged far more Strongly. Watt (1965) and Paine (1966)
were two ecologists who put forward evidence and ideas which
pointed to a less certain relationship between complexity and
stability.

2.10.2 K. E. F. Watt

2.10.2.1 Vatt (1965)

Watt (1965) discussed community stability and the strategy of
biological control. He recognised two contrasting theories
concerning the relationship between community structure and
stability and the importance of the theories in determining an
effective strategy for the biological control of pest species.
On the one hand he pointed to the observations anhd 'theories of
those such as Elton and MacArthur who advocate that stability
increases as the number of links in the community increases. On
the other hand in particular he quoted’Zﬁ%lfar(1963).

"
Zwolfer analysed the structure of parasite complexes of six species
of Lepidoptera. In each case that he considered the host species
was attacked by at least one biologically specialised and synchronised

parasite species, but in two of the six cases the parasites were
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subjected to hea?y competition by other parasites. In these two
‘cases the mixture of paraéites failed to control the host abhndance
to low levels, wherea§ in the other hore Sfmple caseé the parasites
reached a high efficiency against their hosts (i.e. the ratio of

parasitised hosts to all hosts was high).

" These obser?ations caused Watt to note that there was a need to
develop a more sophisticated theory of community-stability. In

an attempt to do this Watt looked to two sources of information.
First he looked in the literature of pest population dynamics and
found that in general most unstable pests, that is pests whose
populations fluctuate widely, have a wide range of natural enemies,
for example grasshoppers (Edwards (1964) ). Secondly he analysed some
data from the Canadian Insect Forest Survey (McGugan (1958),
Prentice (1962, 1963)).

In particular Watt considered data concerning one particular type
of insect, Macrolepidoptera (moths and butterflies), and attempted to

determine

i)  the effect of the number of tree host species on the
stability and -abundance of forest Macrolepideptera.

and ii) the effect of the number of insect species eating the
same host plants on the stability and :abundance of 3

particular species of forest Macrolepideptera.

Watt measured abundance by the mean arithmetric mean count (that is,
the mean over all species of the mean counts for each individual
species over time), and he measured stability by the mean standard

error of logarithms of counts.

The statistics relating to i) above are plotted in Figures 2.9 and
2.10. Solitary and gregarious species are treated separately

because both abundance and instability were generally greater for
gregarious IarVal feeders than for solitary larval feeders. It it
clear from these grabhs that, for both solitary and gregarious
species, mean abundance tended to be higher and stability to be lower

in euryphagous species (that is, species which eat widely) than in
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stenophagoué species (that.is, species which feed on a narrow range
of food).

This suggesté that the stability of a herbivore decreases as the
number of links between it and its food increases. This is represented .

pictorially below.

Herbivore Herbivore

/ more stable thai///// \\\\\\

plant 1 plant 1 pltant 2 plant 3

This conclusion presented Watt with a dilemma because he was aware
of a number of contrasting examples. For inétance, the spruce
budworm, which is a very unstable species, feeds principally on

only two hosts, the balsam fir and the white spruce. However, these
two species do fill a large proportion of the environment of the
spruce budworm and hence Watt concluded that stability decreases

with the proportion of the environment which is filled with food.

i.e. Herbivore Herbivore

is more stable than

plant occupying plant occupying
50% of habitat 75% of habitat

The statistics relating to ii) above are plotted in Figures 2.11

and 2.12. Watt considered the mean number of insect species eating
the same host plant to be a measure of the number of different

species that utilise the same food resources. He then assumed

that whenever two or more species were known to eat the same host
plant there was competition and that this competition was more intense

the greater the number of species eating the same array of plants.

It thus follows from the graphs that, for both gregarious and

solitary species, abundance was - least where competition was most
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intense but that stability of a species was greater the greater

number of competing species it had.

Watt then put forward a hypothesis which aimed to explain both these
results and observations and those of Zwolfer mentioned above.
Essentially Zwolfer found that increased competition at the parasite
trophic level caused instability of the host (the host escaped
control). However Watt interpreted this result as being due to
excessive competition within the parasite trophic level forcing
excessive stability on that trophic level. Watt's hypothesis thus

became three propositions.

i) Stability of a trophic level increases with the number

of competing species at that level.

ii) Stability of a trophic level decreases with the number

of competing species - that feed on it.

iii) Stability of a trophic level decreases with the ptroportion o

the environment containing useful food.

2.10.2.2 Discussion of Watt's ideas

It is essential to note firstly that Watt has investigated the effect
of increased complexity within a particular trophic level on the
stability of that trophic level or of a higher or lower trophic
level. He did not look at a complete community and compare its
complexity with its stability. Further we might criticise Watt's
measurement of both stability and complexity. His measurement of
stability firstly does not take into account the relative size

of fluctuations when compared to the mean abundance and secondly

does not contain an indication of how large the sampling errors were.

His measurement of complexity does not take into account the relative
strengths of interactions and his evidence that there is real competition

for resources is somewhat vague.

In fact his proposition iii) is a good example of the impoftance of
the strength of interactions because essentially it says that a

few strong interactions (e.g. two plant species comprising 90% of
a8 herbivore's fodd) may have the same effect on stakility as many

interactions of low strength (e.g. ten plant species comprising



2,10.3

2.10.3.1

90% of a herbivore's food).

However Watt's argument is useful to my main themé if :we accept

these aboVe criticisms. Whene?er a complexity effect has led to
instability of a trophic level we know that the whole community was
unstable. Whenever a complexity effect led to increased stability we
are not quite so sure of the effect on the stability of the whole
community. We therefore have evidence that the relationship

between complexity and stability is not in generél straightforward
but depends very much on the strength, nature and number of

interactions between trophic levels.

R. T. Paine

Paine (1966)

Paine (1966) offered some interesting observations and experimental
evidence concerning the hypothesis that local species diversity is
directly related to the efficiency with which predators prevent the
monopolization of the major environmental requisites by one species.
This hypothesis is a modification of the complexity begets stability
theme because it suggests that the actual composition of the \

community is important, that is the efficiency of the predators.

Paine defined a subweb as a group of organisms capped by a terminal

carnivore and trophically ipterrelated in such a way that at higher
levels there is little transfer of energy to co-occurring subwebs.‘
He observed three such subwebs involving marine intertidal zones,
one in a north temperate climate, one in a subtropical climate and

one in a tropical climate.

The north temperate subweb, which was located at Mukkaw Bay,

Washington is represented schematically below (Figure 2.13).

- 47 -



PisA3TER

THAS

Chitors  LimPers  EvAGs Acor™ AMLTELLD
Czsp)  tZap)  Cise) s:::;!s
Elgure 232 The  Plsaster domina¥ed  Svbueh  aX
fMokhow Baq Cfawm Palne Lr966)) |
There were two carnivorous species, Pisaster and Thais. Both these
predators ate barnacles as their main prey, although the barnacles

calorific value to Pisaster was only a third of .bivalve or ‘chiton.

Since 1963 a typical piece of the shoreline at Mukkaw Bay has
been kept free of pjgsasterand has been compared against a control
area which was left unaltered. At first it was observed that the

barnacle Balanus qianﬁuig_Spread to occupy between 60 and 80 per

cent of the available space. There has since continued a successive
replacement of species by more efficient utilisers of space. The

control ' area did not change.
Paine observed the following from this field experiment.

i) The removal of Pisaster reduced the community from a fifteen

species to an eight species system.

ii) The standing crop was increased.
iii) The area became trophically simpler.
iv) A food chain not containing Pisaster was removed. This

indicates that a number of food chains may have been
strongly influenced by Pisaster, but by an indirect

methed.
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2.10.3.2

These observations tend to disagree with the complexity begets
stability theory. In the absence of predation the community

tends towards simplicity.

Paine then built on his theme that local diversity is related

to the efficiency with which predators prevent monopolization

of major environmental requisites by one species by comparing

the three subwebs. All three subwebs contained one or two species
capable of monopolising much of the space, but this only happened

in the tropical subweb. In the other two areas there were top
predators which ate masses of space-consuming species and therefore
prevented monopolies. When a top predator was artificially removed,

the systems converged towards: simplicity.
This evidence again leads to a conclusion that stability increases/
decreases with complexity is far to naive an argument and that

the actual composition of the food web is important.

Discussion of Paine's paper

Although Paine only considered subcommunities, his observations and
field experiments give particularly strong evidence that the actual
composition of the food web is extremely important in determining
stability. The removal of just one species (which is equivalent

to removing a number of interactions and modifying the strength of
others) from what appears to be a stable subcommunity led to the
extinction of six other species before the subcommunity began to

approach a further stable equilibrium.

In particular Paine observed the effect of predators, showing that
species diversity within a subcommunity appears to depend on the
number of predators and their efficiency in preventing other species
from monopolizing some important, limiting, requisite. This
efficiency is directly related to the strength and nature of the
interactions between the predators and their prey (and each other)
and hence his conclusions are likely to apply at all trophic levels.
Again this is evidence that it is the actual structure of the

community that is important in determining stability.
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2.1

2.11.1

2.11.2

The use of mathematical models to investigate relationships

Introduction

As discussed in Section 2.5 one way of modelling population dynamics
is to use differential equations. In this Section we will inVeétigate
the re]ationéhip between the stability of differential equation models
of community dynamics and the complexity 6f the community. We
consider first an argument put forward by May (1971) that stability
tends to be less the more species there are in the community model.
This is clearly in direct conflict with the thoughts of MacArthur,

et. al. We then consider some simple models in more detail and

show that conclusions are not so straightforward.
Finally we will discuss the work of Gardner and Ashby (1970) and
some further work by May (1972b) in an attempt to seek a general

conclusion.

May's argument

May (1971) considered Elton's (1958) assertion that mathematical
models of simple communities tend to be unstable whereas models

of more complex communities are likely to be stable. May assumed
that the type of model Elton was referring to was the Lotka-Volterra
model of a predator-prey community (equations 2.6a and b), the

equations of which are repeated here for convenience.

dh = h (r -e<p) } 2.21
dt :

dp = p (s +Bh) 2.22
dt

where h represents the prey population density and p the predator

‘population density.

In order to determine whether these equations have any (non-trivial)

equilibria we attempt to find h* and p* such that dh and dp are both
dt dt

equal to zero when evaluated at (h*, p¥)
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That is,

~'dh é'gg =0 . 2.23
dt (h#,p*) dt (h#,p*)
Let A = (0 -e) , 2.24
( )
( B 0)
x = (h) 2.25
(p) )
and r = (r) 2.26
(-s )
For gé = gﬂ =0
dt dt
dp
dt

We require

r + Ax = 0 2.27

That is x = -A 2.28

Where A-1 isvthe matrix inverse of A

ﬁ': = k h?':) = - 1 0 9")( r) 2.29
p* e-c]g -f 0/\-s :

and hence the (unique)positive equilibrium population sizes are

Thus

given by

h* = s;/% and p* = r/ot 2.30
We now need to determine whether the equilibrium values are stable.
We disturb the communfty from equilibrium by adding small perturbations

€ and ¥ to h* and p* respectively and investigate the ensuing population

dynamics.
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C(hE45) (r-ec( pt +y)

(hx + &) ( -) 2.31
since r-etp* =0

Ignoring terms of orderZywe obtain

ds = -oth*y/ | 2.32
dt

Similarly
dy = Bp*s 2.33
dt

We can combine equations 2.32 and 2.33 in a matrix equation

dg = Axg , 2.34

dt ’
where

_ <

g = (¢) 2.35

and A* = 0 Tl
f* 0 2.36

where o % =eoch* 2.37
and R* = fp* 2.38

May calls A* the community matrix,



The solution of eqhation 2.34 may be written as

g =cet 2.39

where ¢ = (C1 2.40
C,

are constants which depend on the initial size of the perturbations

and X is an eigenvalue of the matrix A%,
For the equilfbrium to be stable we require that the real part of the
eigenvalue A is negative (because in this case éat will approach zero

at t becomes large).

A is an eigenvalue of A* if the characteristic equation

A - A1V =0 2.41
here _— o\ 2.42
0 1

and A denotes the determinant of A.

tAx - 21\ = ‘ N \ 2.43

The characteristic equation is thus
2
} +eLZ"'g"" =0 2.4b4

The solutions of this equation are

1
) = -4_- i (o(.:':F?':) 2 = i w i 2.145
and hence
Y Cpq Sin (Wt + CYy)
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This means that the size of the predator and prey populations will
oscillate about their equilibrium levels (equation 2.30) with constant
amplitudes and period until further disturbed, the size of the

amplitudes depending on the size of the initial perturbations.

This model is therefore not stable in the sense that the population

sizes do not return to the equilibrium values after perturbation.

May then went on to consider a model of a community which contains

n predators and n prey.z The lequations ‘are as follows:

n
(Cj": = hi (I"i'Za(ij pj) _ i=1,....,N 2.47
j=t
n
dp, = p; (-s, + ﬁ:ij hy) is1,....,n 2.48
I I .
dt i

where h; and p; denote the population sizes of the | prey and

predator species respectively.

The equilibrium levels are given by

h* = g”! s and _E = A-I.L 2.49
where h¥* = (h &, ..... ,h#*)! , P = (p. % . uvuu,p.®’
1- n 1 n
S E feperenne,si)! r=(rF.... ri%) !
—_— \Sf ’ n) ’ L ( 1,, . n)
A = (a(ij) and B= (Bij) ) 2.50

(Tee dash' denotes vector transpose)

May assumed that the wvalues of the parameters are such that the
equilibrium levels are all finite and positive. | feel that it
is important to note that there are conditions on the values of
the parameters which dictate whether such valid equilibriums
exist. The more complex ¢ommunity may not be so likely to have

a valid equilibrium.
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The characteristic equation of this system is given by

NI A% |
= 0 2.51
85 I

where A% = &ﬁ hi*) , B* = (’gij'p?) and T = the nxn identity

j

matrix.

It can be shown that this equation is a polynominal of degree n

2
in X and consequently it has n pairs of roots of the form
b =+ (x + iy)

It is clear therefore that either each pair of roots is pure
imaginary (i.e. x=0) or there exists at least one root such
that x%0. In this case clearly one root of the pair will have

a positive real part (i.e. either x>0 or -x>0)

This means that the more complex community described by equations
2.47 and 2.48 either has the same stability properties as the two
species predator-prey community, that is the population sizes of
each predator and each prey oscillate with constant amplitude
through time, or there exists an eigenvalue with a positive real

part and the community is unstable.

May then attempted to generalise this result by considering a n

species community modelled by the following equations

dx.. = k. (x) , izl,.....,n
at ' ’ 2.52
where ki (x) = filx) gj (xq,..... DX Feds X jgseeens y X

and the equation f.i(x{) ="0 has the unique solution x.;= 0.

Otherwise the functions f.; and g'; are completely arbitrary.
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For there to exist an equilibrium set of finite and positive

population sizes x* = (x1?3.;;.,,xﬁ* ) we require that
95 (xx) =0 : for all i g i1,....,,n‘} 2.53

Assuming that this is the case we can examine the stability

of this equilibrium as follows:

Let  x, =x.* + &i (i=1,.....,n) 2,54
Then dx, = dg = k. (x* +£) 2.55
ax at .

where £ = (51,....,25)
. n . »
Thus g_f_i a k(%) o+ E €] ggﬁ) 2.56

J

(by expanding k;j (x* +€) as a Taylor Series and neglecting terms

in £of order 2 and above)

n
= Z € ¥k.(x*) 2.57
j=1 3y

n ’ .
-2 éj(‘m:' (%) gj (%) + F (x%) 3gi(x*) ) 2,58
3= 3% A,

j=1 o i ' 7_;___i;_ 2.59

The characteristic equation for this model can therefore be written

as
IA =21} = o0 2.60

where A = (a,.) (i,j=1,....,n) 2.61
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such that a. 0 .and ; '2.62

]

aij ' fi(xi*)"UEQFX*) ’ 2.63
| .

Because the diagonal elements of the community matrix A are all
zero it can be shown that the coefficient of)Pf1. in the characteristic
equation (equation 2.60) vanishes. Hence the sum of the n roots )

k
of the equation must vanish.

3

That is S ks X + iy, = 0 2.64

n
k=1

=~
]
—

Therefore either

i) all the X, are zero and the roots are pure imaginary

or ii) atleast one root has a positive real part
keti

So this more general model displays similar stability properties

to the n predator-n prey Lotka-Volterra model. May commented

that, apart from the mild restrictions already mentioned, the

general model may be arbitrarily complex. He commented further

that the inclusion of such factors as time delay, predator saturation,
predator switching and density-dependent fecundity are not likely

to significantly alter the picture. He concluded that 'if we contrast
‘simple few-species mathematical models with the analagously simple
multispecies models, the latter are in general less stable that the

former,!

| feel that this is a somewhat premature and unfair conclusion
from this particular argument. Certainly May has achieved his
main objective which was to demonstrate that Elton's assertion
that mathematical models of complex communities tend to be more
stable than models of simple éommunities is false. However his

argument does not demonstrate that the converse is true.
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2.11.3

2.11.3.1

What he does show is that, in general, differential equation models

of n épecies communities with no species self-interaction are unstable
(or at best pure]y oscillatory). He doeS not.demonétrate that,

for such mode]s, as n increases the modelé become less stable in

some way (e.g. the poéiti?e real part of the dominant eigenQalue
increases as n increaées). Also this result holds for n=1 and infact,
when n=1, it ié only when the interaction is predator-prey that the
model is necessarily purely oscillatory. Therefore essentially May
is demonstrating that differential equation models of predator-prey

communities with no species self-interaction are unstable.

| feel that the most important inference from these results is that
species self-interaction is essential for stability to be feasible.
Therefore is order to investigate the relationship between stability
and complexity it is sensible to include such interactions in the

models.

This | attempt to do in the next section.

Models of communities consisting of only 1 species

Simple exponenfial growth

The model is

dx = rx 2.65
d% )

where x is the size of the population at time t

and r is the intrinsic rate of increase (see Section 2.5)
The solution of this model is

X = xoert 2.66
where x5 is the éize of tﬁé populat}on at t=o

If r >0, the population grows uncontrolled.
If r =0, the population remains at X, (i.e. is at equilibrium)
but is unstable.

If r >0, the population becomes extinct.
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2.11.3.2

. These results are summarised in the following table. -

oL
b

r "eguilibrium "‘stable
>0 no -
=0 yes no
<o no -

Table 2.1 Equilibrium and stability properties of simple

exponential growth.
* We ignore equilibrium values <o throughout this discussion.

So the simplest differential equation model of the simplest community,
that is one containing only one species and that species does not
interact with itself, does not have a stable equilibrium. Infact

it ohly exhibits an equilibrium value in the trivial case when

r=o, and this is clearly unstable because every value of x is
potentially an equilibrium point, but if the population size is
disturbed from x it will remain at the new value until disturbed

again.

Self-interaction

Now let us suppose that the one species in our community interacts
with itself. We might model the population dynamics of this
community with the following differential equation:

dx =rx + = x2 = x(r+egx) 2.67

t

We first determine any potential equilibrium values of x. If x* is

an equilibrium value, then dx evaluated at x=x* is zero.
dt

i.e. dx =0 : : .
dt x* 2.68
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But "ax ' = x* (r +9Cx¥) | 2.69

=0 and x* ="-r are (potentially) eqﬁilibriﬁm Qalﬁes.
A 4

For a positive equilibrium value to exist we require r and <c

to be of opposite signs.
To determine whether this equilibrium point is stable or unstable

let x=x*+§& where & is a small disturbance.

Then dx = d (x* +&) = dx* + dg - 2.70
dt dt dt  dt ‘ :
= dg | 2.71
dt
= (x* +&) (r+at(xx +g)) 2,72
= (-r+&) (r +(-r +&)) 2.73
= =<
= (-r+g) (-7 +8&x) - 2.74
=

o r& (ignoring terms in&of order 2 & higher) 2.75

Ignoring the trivial case r=o, the equilibrium is stable if r o

and unstable if r <o.

We can summarise the results in the following table:

results from no interaction results from self-"

c1:.: model in ion mode
r =< equilibrium stable equ??fB?Fug slab!e
>0 >0 no _ no / _
>0 <o no _ yes yes
<o >0 no o ' yes no
<o <o no no

Table 2.2 Equilibrium & stability properties of a one-species

self-interaction model.
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2.11.4

So the more complex community consisting of one species with

self-interaction can have a stable equilibrium, and hence can

be more stable than the one species with no interaction community.

Making the simple community more complex by adding an interaction
can lead to stability. Note, howeQer, that we cannot demonétrate
the converée, that is removing the interaction from an unstable
situation might lead to stability, because the simpler model

does not have an equilibrium,

Models of communities consisting of two species

Let our community now consist of two species initially obeying

the following differential equations:

dx = [.X, +%. X 2
Efl“ ™1 171

.2
5_:1_>52_ = X, tX,X,
dt .

The two species do not interact with each other. The complexity
of this community is described by the fact that there are two
species and two self-interactions. The properties of the communi
in terms of equilibrium values and stability can be determined
from Table 2.2

Suppose that we add an interaction between the two species. The

equations might become:

2
dxfl = X hex, 4 lelxz = X, (r1ﬂx1+$1x2)
dx = r,x, +oi,X,2 ]
_333 o 2 -+-£2x1x2 = X (r2*°%X2+§5X1)'

Using the method of .Section2.11.2 we can determine whether there

is a (non-trivial) equilibrium.

Let A ={ %1 ﬁ]
}32 w2

- 61 -

2.76

2.77

ty

2.78

2.79

2.80

2.81



Then x* = (x]*) = 51 rp —9 ry
X, % VA B- ry "X 2
Where O = o .o, - EB1R2

Clearly the signs of all the parameters will be important in

determining whether positive equilibrium levels exist or not.

Where equilibrium values do exist we require to determine whether

they are stable.

By perturbing both populations from their equilibrium sizes by

2.82

2.83

2.83a

amounts&,1 andg, respectively and using the method of Section 2.11.2

~we find that

d&1 =°‘1*£1 + ﬁl* s,
dt

and ifTi— = ﬁzz':z] +°<2:': 52

whereu'lx = xl':9(1, “.2.: = x2='°(2’ ﬂ]:‘ = X]7‘ 51,

and  Ro* = x* g,

The characteristic equation is

2 * ES % % - & %
Moo et st - B,

The roots of this equation are determined as follows:

0.

2.84

2.85

2.86

2 e
) = @;ﬁ:’: +°‘2:':) + [(ql:': +°(2:'<) -4 (0‘]*“2* -5]:': FZ:':)J 2.87

2
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ble 2.3 Equilibrium and stability conditions for a 2-species community with

interactions

i f s1 o By B2 equilibrium equilibrium stable  stability
/=) (+7=)  (+/=). (/=) (+/-)  (+7-) (Y/N) condition (Y/N) condition
+ + + % + . + N

+ + + + + - N

+ + + + - + N

+ + + + - - Y 4<0 N

+ + + - + + N

+ + + - + - N

+ + + - - + Y E1 Y S1
+ + . + - - - Y E2

+ + - + + + N

+ + - + + - Y E1 Y S1
+ + - + - + N

+ + - + - - Y E3 N

+ + - - + + Y 08>0 Y

+ + - - + - Y E4 Y

+ + - - - + Y E5 Y

+ + - - - - Y C1 Y A >0
+ - + + + + N

+ - + + + - N

+ - + + - + Y E5 N

+ - + + - - Y E1

+ - + - + + N

+ - + - + - N v
+ - + - - + Y 48>0 Y S2
+ - + - - - N

+ - - + 4 + Y E3 N

+ - - + + - Y a<o N

+ - - + - + Y E1 Y S1
+ - - + - - Y E2 N

+ - - - + Y E1 Y a >0
+ - - - + - N

+ - - - - + Y E Y

+ - - - - - N



ble 2.3 (continued)

T 2 =1 =3 By By cquilibrium equilibrium stable  .stability
1) /=) (#17) (+£7) (+1-)  (+/-) (Y/N)  condition (Y/N) condition
- + + + + + N

- + + + + - Y Es N

- + + + - + N

- + + + - - Y E1 N

- + + - + + Y E2 N

- + + - + - Y E1 Y S1
- + + - - + Y 8 <0 N

- + + - - - Y E3 N

- + - + + + N

- + - + + - Y 450 Y S2
- + - + - + N

- + - + - - N

- + - - + + Y E1 Y 48>0
- + - - + - Y E5

- + - - - + N

- + - - - - N

- - + + + + Y E1 N

- - + + + - Y E5 N

- - + + - + Y EL N

- - + + - - Y & >0 N

- - + - + + Y E3 N

- - + - + - N

- - + - - + Y E1 : Y S1
- - + - - - N

- - - + + + Y E2 N

- - - + + - Y E1 Y S1
- - - + - + N

- - - + - - N

~ - - - + + Y & <0 N

- - - - + - N

- - - - - + N

- - - - - - N
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Table 2.3 (continued)

A is given by equation 2.83a (::41042 _61@2),

Condition E1:

Condition
Condition
Condition
Condition
Condition

Condition

E2:
E3:
Ek:
ES:
St:

S2:

if A> (<o) 0 then 51 Fm g Ty > (<o) ©

and £, ri-oc; r, > (0o

B yry =otyry <0
fory moqry <0
ﬁ Zr1 -c&lr2 >0
£1r2 mot,r, >0
A >0 andx, X, < 0

12

X1 4%2 <0
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2.11.5

In order for the real part of A to be negative we require

i) (o(]* +c£2*) <0 2.88
and ii) (cL1*o(2* - Pl*rpz*) >0 2.89
Condition ii) reduces to & >0 since 2.90

<yttt ByEBot = e, - iR
= x. %A 2.91

and Xi* and XZ% > 0.
We can now compile the equilibrium/;tability table (Table 2.3).
Two .important observations can be made concerning the results
presented in Table 2.3
i. If the two species in a stable community without interspecific

interactions (ri>0,°<i<0, i=1, 2 are allowed to interact

(such that r_remains >0 and; remains <0, i=1,2) the

|
community, by definition, becomes more complex, but the

table shows that the existence of a stable equilibrium now

depends on the actual values of the parameters. In other

words the more complex community is less likely to be

stable.

ii. On the other hand, if the two species community without

interspecific interaction is unstable, then, depending on

the signs of r and 'Xj, the addition of an interaction
term in the model makes a stable equilibrium possible.

this case the more complex community is more stable.

Hodels of communities cohsiéting of three spécies

So far we have increased the complexity of the community by

adding interactions only. Now let us examine what happens

In

when we add one species to a community such that it interacts with

only one other species.
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Let the initial community be described by

= %y (g =etxy = Bix,)

o .
ol

_(1)_(2 xz (l"2 +32x1 _dzxz)

t
where all the constants are positive.

This community has the stable equilibrium

X% = sy BT,
A

Xk = FBy "oty Ty
A

if ri, >s¢yry (See Section 2.11.4 and Table 2.3)
Now let a third species join the community

The model might become

d—ﬁ% = x; (ry-ee,x; =Byx, + X1x3)
22 = % 4y T Boxy megy X))
dz.tz = X3 (- |'3+2f3 x1)

(r, >0, sign ofa’,b'B to be determined).

3
Is there still an equilibrium point?

Equation 2.99 gives x,% = '3

X3

This leads to the necessary condition that Xé > 0.
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Equation 2.98 gives

”“

2 '..."2.7’.’%."71‘

=<,

ﬁ29r3- r2X3 2.101

x2&3

SinceKB > 0, this gives the further necessary condition

ﬁz r3 > rz()’3 (i.e. xT > r_2) ; 2.102
73 |
Equation 2.97 gives
- “ »
X, = Bixy + X, -G
¥\
= R Birsf T2 X3 ry o3 0
°(‘2. Xs *3
-1
= sty v BiB2 [ 3- K,; :x\'j
=<z & X‘b

7 .
where X, 1§ Ve

[ -~ ] ZWA"\'\\N’;UM \euva\ OS—

2, 1A Yna 2 -speces
model .

b [x - =, ] 2.103
‘I-K\

This gives the further conditions:

1

Q(a_‘

{

oL
1 %

if Y1 <0, x.>x 2,104

1 %

if 8150, %7 <x; 2.105

- 68 -



Therefore adding one species to a stable two specieé community
(equation 2.92 and 2.93) so that the population dynamics are
described by .equations 2.96, 2.97 and 2.98. gives three necessary

conditions for there to be an equilibrium instead of only one.
What can we say about the stability of the three species model.

The characterstic equation is

QN
~
[ 3
I
£
[ 4
.*
b
0
f»
O

« 2.106

PR GReL B | EGERAN DY FY A SOV Ay

« »* -« 2.]07
+ xp [K3 ‘dz *)\] =0

3 ‘ T » w
e, \ + (‘-"(\* * 0(1_*\\ * (ds‘dt'° ﬁ) B2 - XI‘KJ‘\X

LRV
—8‘33°(1.*~0

=

2.108

We can use the Routh-Hurwitz stability criteria’ (described in
Section 2.11.6) to give three necessary and sufficient conditions
for the roots of this equation to lie in the left half complex

plane.

These equations are:

oo a2 s 0 2.109
i ¥Rt g . 2,110

i) @ a2’y @it LB B2t - ¥17¥3Y
‘ .- ,H* x3*ccz* 2.111
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In this case condition i) is satisfied automatically because ™1
e
>0 and®€2" > 0.

Condition ii) is satisfied if 81 ¥3" < 0 because™2” > 0.

If condition ii) is satisfied, it is clear that condition iii) is

automatically satisfied.

Therefore in this example a necessary and sufficient condition for
o oo

stability is that ¥ 8'3 < 0, that is the new interaction is a

predator-prey relation.

Combining this condition with the conditions determined above
for there to be an equilibrium we see there are now four conditions

for the 3-species model to have a stable equilibrium.

These are:

i) A3so0 2.112

i) GXZ ry > 1Yy | 2.113

iii) 1<0 | 2.114

iv) ry g, +I§] ry. > r3;_, 2.115
~ 7

We might conclude from this example that, given a stable community

of a particular complexity, then making this community more complex
by adding a further species does not necessarily make the community
more stable. [t is evident that both the type and the strength of

the new interactions are important in determining whether or not

the more complex community will have a stable equilibrium,

We can also observe from this example that, even if the original
two species model does not have a stable equilibrium (that is,
condition 2.96 does not hold), the more complex community may still
be stable.
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2.11.6 "The‘geﬁeral'case

9.11.6.1 Introduction

From the specific but simple examples given in Sections 2.11.3, 4

and 5 we might conclude that

i) a community which is at a stable equilibrium may
become unstable if the complexity of the community

is increased or decreased.

and i) a community which does not have a stable equilibrium
(or indeed an equilibrium) may become stable if its

complexity is increased or decreased.

It is not hard to see that these conclusions hold for the
equivalent n species differential equation models, but do they
answer our question; that is, do they show that there is not a

general relationship between community complexity and stability.

Let us consider a general differential equation model of a n species

community.

Eh&i = f. (xl,....,x“) izl,.000yn 2.116
dt '

where f; (x) is any function of the individual population sizes.

To determine whether a equilibrium exists we first need to find

o+

ﬁf such that

fi-(x) =0 i=1,....n. 2.117

For this to be a valid equilibrium we require further that 5? € RH:

+ . . . . -
where R~ = iﬁﬁ"""ﬁf) : %> 0 and xreR, |=1,....{n3 and R is the
set of real numbers. : :

Clearly in the most general case in which any or all of the f. are
non-linear, there may be several or no values of x which satisfy the

conditions.
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Whether a particular‘iﬁeFm+ will .usually dépend both on the
actual form of the functions f{ and also on the values of the

parameters associated with the fi'

For instance in the 'linear' case in which

ff = xi,(ri +0d 41X, +....+o<in:xn) 2.118
we can say x € R.n+ if and only if x€R « 2.119
where o€ = (ry,...., P s e ene ot ny)
and R' =)ok x* Ri*
e 2_ * _2 n S

-
4
H

e.g. If n=1, R% =§.(rifx]ﬁ): rq< 0,0<11 < Q}I\?(rﬁ, j]):r1>0;¥11<0J

Returning to the general case we can examine the local stability
of any 5% which satisfies 2.117 (but is not necessarily an element
of Rr:). Using our standard procedure we construct the community
matrix A,

als
w

A = (K ), whereX f? = .. X = 5% 2,120

l_] J S;(-l
J

-

ot

5" is locally stable if all the eigenvalues of A have non-positive
real parts. Sufficient conditions for this . to be so are given
by the Routh-Hurwitz criteria. Essentially the eigenvalues of A

are the roots of the characteristic equation.
1A =21 1 =0 | 2.121
This is a polynominal of degree n h1):
A a AT e e N+ e =0, 2.122

n

The Routh-Hurwitz criteria state that the system is stable if the

following n conditions are true.
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81 1 0. 0 . 0

a3 ap aj’ i 0 _
A BN T F R 2.123

a2i_1 . . e e s e e a.i

Whether these n conditions hold will depend on the values of the

, *

aj. These are functions of thes¢jj and these in turn depend on
the functions fjy.

Let us again consider the linear case.

ale oo
w

Clear]ycgih" =Ly X i=1,....,n  j=l,....,n 2.12h

and 5? is locally stable only for particular values of theot;j

and ry.

We can say x g L iffec& Rg (jff

n

if and only if) 2.125

g

w

where L denotes that x is locally stable

and Rg =§=§ P ox e L.&. ©

Therefore for x* to be a valid locally. stable equilibrium point we
require
o« € R NR =5 | - 2.126
— e $

Clearly similar regions can be defined for the more general‘case.

The question now is 'how does the size of the region of stable

'
equilibrium S change with complexity?.

As discussed in Section 2.8 complexity is a function of the number

of species in the community and the number and strength of interactions
between these species. In the context of my argument each set of
parameters € has associated jth it a particular stability.

The more species there are, the more conditions need to be satisfied
for there to be a stable equilibrium, and the more interactions

there are, the more there are of parameters whose values are not

zero.
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It . is not clear how to order parameter sets depending on the

actual size of the parameters.
In the 'linear' example the parameter set is

% = (rj,9¢qj 5 i=1,....,n5 j=1,....,n) 2.127

If we assume that ri0 V;, then a measure of complexity might
be

C o= n+ >, 4 (=) 2.128
U,S

Aalnn)) » 1

' f oty #o 2.129

1]

where  § i (etiy)

"

(o} G =y =o.

Intuitively, therefore, the more complex the community, the less

likely it is to be stable,

The problem is to calculate the size of the region S for the general
differential equation model of a community with associated complexity
C. In fact to formulate the problem in this way is perhaps not |
very meaningful because the size of S will not, in general, be
comparable between communities of differing complexity because

the parameter spaces are likely to be of different dimensions.
However it is sensible to assume that not all the possible values

of each  parameter are equally likely. If we associate a

probability density function g with the parameter setetwe can
potentially calculate the probability that'the community model

is stable.
Indeed this probability is S‘S glxx ) d=x 2.130

In order to get an indication of the answer to our question it
would be necessary to evaluate this expression for a wide range
of the potentially infinite different forms the general

differential equation model may take and for a wide range of
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probability density functions g. Without some further simplification
even for the linear case a computer would be hard-worked to give an

answer.

M. R. Gardner and W.R. Ashby

Gardner & Ashby, while investigating the stability of general large
dynamic systems, provide a simplification of this problem which
gives some answers. Firstly Ashby (1952) has demonstrated using
Monte Carlo techniques that for systems with n variables whose
dynamics are described by the system matrix A evéry element of

which is non-zero the probability of system stability decreases

However in general not all the system variables are going to
interact and therefore many of the elements of the matrix A
will be zero. Gardner & Ashby (1970) postulated a method of
measuring the average number of interactions per system variable
and they term this measure 'connectance'. In their initial work
they defined the connectance C as the percentage of nén-zero
elements in A and each non-zero non-diagonal element was selected
from the uniform probability distribution U (-1,1). The elements
of the main diagonal were all negative and selected from the

uniform distribution U(-1,-0.1) - that is, each system variable

Gardner & Ashby then used a computer to estimate the probability

of a system with n variables and connectance C being stable.

e e ey

Figre 20 Qadakios of srabNivy
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2.11.6.2
rapidly as n increases.
alone is independently stable.
Some of their results are summarised in Figure 2.14,
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~Essentially it appears that .as n increases there ié a rapid
change in probability of stability from nearly 1 to nearly 0
as connectance passes a critical value. Also for a given
connectance C the probability of stability decreases with
increasing n and for a given n the probability of stability

decreases with increasing connectance C.

Now Gardner & Ashby considered a general dynamic system. Clearly

such a system could be the population dynamics of a biological
community and the system matrix A could be the community matrix
described above. C is a measure of the average number of

interactions per species and hence, for given n, the larger C

the more complex the community, .Hence thése results indicaté that the

more complex the community, the less is the probability of it being stable

Clearly Gardner & Ashby's results are limited to smallish values of
n because of the size of the task on the computer. May (1972)

uses analytical techniques to take this work a stage further.

2.11.6.3 May
May (1972b) had slightly different assumptions about the structure
of the community matrix A. Firstly the diagonal elements are
all fixed at -1 - i.e. each species alone is stable with unit damping
time. Connectance is defined in a similar way but each non-zero
element is assigned at random (from some statistical distribution)
such that its expected value is zero and its mean square value is
oL. o& can be considered to be a measure of interaction strength

and in this case the expected strength is equal for all interactions.

May then followed the arguments and theories of Wigner (.1959) to
indicate the probability that a particular community with n (where
n is large) species, connectance C and interaction strength o¢

is stable.

He found that the community model is almost certainly stable if
-]
ot < (nC)I 2.131
and almost certainly unstable if
~ > (nc).% 2.132
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2,

12

May's .results confirm Gardner & Ashby's results that there is a
sharp transition from stable to unstable behaviour as the complexity,
as measured by the connectance C and the average interaction strength

o, exceeds a critical value.

May concluded that, for this pafticular ensemble of mathematical
models, too rich a web connectance or too large an average interaction
strength leads to instability. The larger the number of species, the

more pronounced the effect.

Clearly the assumptions made by both Ashby and Gardner and May
restrict the conclusions from being completely general, the main
assumptions being that each individual species is independently
stable. However the results do tend to support our intuitive
conclusions that stability is less likely the more complex the

community.
Conclusions

The point of this Chapter has been to identify whether there is a
general relationship between community stability and community
complexity both by considering arguments put forward by ecologists
(and especially their interpretation of field evidence) and by

studying the stability properties of mathematical models of

communities of varying complexity.

It was seen that ecologists such as MacArthur,rE]ton & Hutchinson
had, during the nineteen fifties, put forward arguments that
suggested that in general community stability increases with
community complexity. It is my opinion that none of these arguments
bear close scrutiny and that their conclusions are mostly based on
intuitive ideas. The efforts of Pimentel were perhaps more positive
but really only succeeded in demonstrating how difficult it is to
set up field experiments to study such biological relationships.

The observations of Watt & Paine, however, do tend to show that

the relationship is not necessarily straight-forward.

It is important to noté that none of the above workers gave a clear

definition of what he meant by stability or complexity.
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EV|dence from studying some SImp]e mathematical models of

community population dynamics supports the observatlons of Watt and

Paine, and indeed we may conclude:

differential equation models of communities which are

stable may be made unstable by either making the community
more or less complex and, conversely, models of communities
which are unstable may be made stable by éither intreasing or

decreasing the community complexity.

However this is not a general relationship between stability &
complexity. A consideration of the stability properties of
general differential equation models of communities of arbitrary
tomplexity shows that, if there is a relationship, it is not
easy to demonstrate one. Intuitively stability is less likely
the more conditions there are to be satisfied by the model parameters.
The number of conditions grow with increasing complexity. Finally,
arguments put forward by May support this conclusion that stability

is less likely the more complex the community becomes.

How do these conclusions help for example the conservationist or

the pest control manager. Well they probably tell such people

what they have already discovered from experience. A particular
community is either relatively stable or unstable and only a

study of that community will guide the expert as to what strategy

he should take. It is certainly dangerous to assume that increasing
the complexity of the community by introducing a new species will
neccessarily make the community more (or less) stable. Mathematical
models, however, may be‘very useful in using the experts knowledge
to simulate the population dynamics and hence evaluate potential

solutions.
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3.1

3.2

3.2.1

‘Environmental heterogeneity and community stability

“Introduction

Ecologists have been aware for some time that variability of the
actual characteristics of the environment in which the population of

a particular species is living is likely to have a significant effect
on the dynamics of that population and hence on its stability. For
instance Hutchinson (1959) described what he termed the mosaic

nature of the environment and clearly believed_that :this: is:an
important factor in determining how many species can exist in a

given environment and Den Boer (1968) in an interesting paper in which
he described his concept of the 'spreading of risk' stressed the
importance of heterogeneity of all factors which might determine

population numbers,

More recently Levin (1974) claimed that 'the distribution of a
species over its range of habitats is a fundamental and inseparable
aspect of its interaction with its environment, and no complete

study of population dynamics can afford to ignore it'.

The purpose of this chapter is to study the possible effect of
environmental heterogeneity on the stability of the resident
populations. Firstly | will present and discuss in some detail

field and laboratory evidence which has been gathered by a number

of workers to demonstrate that heterogeneity is important. We will
observe from these discussions a number of definitions of environmental
heterogeneity. | shallnext attempt to combine these into a single
definition. Thirdly | shall review the types of mathematical models
that have been developed to study the effect of environmental

heterogeneity on community stability.

Biological evidence of the importance of environmental heterogeneity

in determining community stability

Introduction

From a survey of the literature it is clear that field and experimental
evidence of the importance of environmental heterogeneity is somewhat

limited. This is perhaps not surprising. Experiments designed to
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study the effects of heterogeneity in general woﬁ]d have ‘to be very
extensive if they were to provide sufficient data, and field
observations often tend to lack vital information regarding the

exact nature of heterogeneity.

However a number of workers have reported useful observational
evidence and this together with perhaps intuitive feelings and some
further evidence provided by mathematical models at least suggests

the importance of environmental heterogeneity.

In particular Huffaker (1958) was one of the first to set up sensible
experiments in the laboratory in order to study heterogeneity and his
work is now regarded as classic. More recently Smith and Dawkins
(1971) have demonstrated that the hunting behaviour of great tits

appears to depend on the distribution of food in the environment.

The comments and observations of Polyakov (1959), who is one of a
number of Russian naturalists who were involved in setting up
rodent control programmes in the 1950's, are valuable as are the

more recent observations and theories of Hansson (1977, 1979).
Finally the work of Beddington, Free and Lawton (1978), who combined
laboratory and field observations with evidence from various

mathematical models, is reported.

3.2,2 C. B. Huffaker

Huffaker (1958) carried out a series of experiments the main aim of
which was to establish an ecosystem in which a predator and a prey
species could continue to live together for a reasonable period of
time so that their interactions with each other could be studied in
detail. The predator species used in the experiments was the predatory

mite Typhlodromus occidentalis and the prey species was the

phytophagous mite Eotetranychus sexmaculatus.

Each experiment involved arranging oranges, which provided the prey
with food, and similar-sized waxed rubber balls on a tray and
introducing individuals of the prey species and, at a later stage, of

the predator species on selected oranges. The number of prey and

- 80 -



predator individuals in the universe (i.e. the tray) was estimated
at certain points in time from samples until soon after one or other

of the species became extinct.

The series of experiments was designed so that an arbitrary selection
of different degrees of dispersion and segmentation of units of food
for the prey was achieved without altering the total surfaces for

the predators to search and, if desired, without altering the total
food used. This was done by covering the oranges to varying degrees,
so that only a proportion of each orange was exposed, and dispersing
them among the rubber balls. The most complex universe constructed
also included barriers to predator dispersion and aids to prey
movement so that it was difficult for the predator to contact all

the areas occupied by prey at any one time.

Control experiments were also carried out in which only the prey

were introduced to the universes.

From the control experiments Huffaker observed that, if the oranges
were more widely dispersed, the prey population tended to be more
stable (i.e. exhibited smaller oscillations in size) although the mean

density tended to be smaller.

When predators were introduced to universes in which the prey had
easy access to food and hence no need for dispersé] to obtain food,
then more often than not both the predator and the prey populations
became extinct. In experiments in which the food was widely
dispersed it appeared that over-population of oranges by prey
‘indiVi&uals as the reason for practically all movement from orange
to orange. However, even with wide food dispersion it was chance

whether the prey population survived or not.

In the largest and most complex universe studied ‘coexistence of
predator and prey was achieved for three oscillations in population
sizes.  In all other experiments only a single oscillation was

achieved before extinction of .atleast the predator species.
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Huffaker concluded that in a given universe whether the participant
populations survive is locally a matter of chance; "As the dni?erse
increases in complexity so this chance increaseé. He conclﬁded
fﬁrther that although the action of a predator may locally be:
insignificant at a given time, predation may be more éignificant
throughout the larger sphere which can be reached by migrants

from the over-populated areas.

What Huffaker described as universe complexity was the degree to
which the prey food was dispersed, the amount of food there was in
each area, the ease with which prey and predator individuals could
migrate (physical barriers and aids) and the number and dispersion
of refuges. Also, at any point in time the prey had a particular
distribution of numbers throughout the universe and locally this may

have affected the probability that predators found and killed prey.
So in effect the universes were heterogenous in both time and space.

Why should environmental complexity increase the chance of prey

and predator survival? Many ecologists (eg Nicholson (1933), Nicholson
& Bailey (1935)) had built mathematical models of predator-prey
interactions which assumed that predators search completely at random
throughout the universe so that the probability of locating and killing
a prey depends only on the number of prey available and the predators
efficiency at killing, and not on the actual distribution of the prey
in the universe. Huffaker argued strongly thaf, due to the marked
inconsistency of hazards from one microhabitat to another, such an
assumption is difficult to visualise either in his experiments or

in nature. The fact that the prey tended to clump together in various
locations where food was concentrated meant that the predators also
tended to concentrate in those areas. Some prey were able to migrate
relatively easily to other parts of the universe which were predator-
free and hence propagate. It would be some time before overexploitation
of the food-rich areas forced the predators to disperseand hence to

locate these other prey-rich areas.
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3.2.3

Do Huffakers conclusions apply in natural conditions? Huffaker did
acknowledge that conclusions drawn from observatjoné on such artificial
universes must have restricted Value if the .universes do not allow all
the important natural parameters possibility of expression. He
believed that, because he had succeeded in obtaining prolonged
coexistence, he had achieved this. | am not conVinced of this

argument because the environments he constructed were still essentially
artificial. What is certain though is that the experiments were
carried out very carefully and the method of sampling was very

accurate.

Artificial or otherwise, increased environmental complexity, that is

heterogeneity, gave greater chance of prolonged coexistence.

J. N. M. Smith and R. Dawkins

Smith and Dawkins (1971) studied the hunting behaviour of individual
great tits in relation to spatial variations in their food density.
To do this they set up a particular experimental habitat which contained

four separate possible feeding areas.

Initially Smith & Dawkins determined the preferred feeding area of
each tit by releasing each individual, one at a time, into the
experimental habitat for a period of time and observing how many
times it visited each area. The four feeding areas were then set at
different densities of food in such a way that for the particular
bird under observation the lowest density of food was put in its

preferred area and the highest in its least preferred area.

Invariably it was observed that the pattern of behaviour of each
bird changed so that its new preferred area was the one with the
highest food density. Smith & Dawkins concluded that tits are

capable of determining areas of high prey (food) density and will

visit that area more frequently.
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Their experiment actually went further. At a fixed point through
each trial the best area waé swoppéd with the worét. “In all but
one case the birds did not reverse their behaviour althoﬁgh it was -
clear that they did visit the new best area and they were successful

in finding prey there.

Smith & Dawkins pointed out that ideally the behaviour of tits should
be investigated under field conditions to test whether the laboratory
findings apply to wild birds, but this is very hard to achieve. They

- cited several examples of non-random distribution of prey in the wild.

In particular Gibb (1958) demonstrated significant variations in the

intensity of the larvae of the eucosmid moth Enarmonia conicolana

which inhabits pine cones and is preyed on during winter by coal
and blue tits. The intensity of larvae per five pine cones showed

up to sixteen-fold variation.

larval intensity number of plots

(no. of larvae per 5

pine cones)

<2 93

2-3 131
3-4 43
>h 15

Clearly the high intensities are less frequent. Gibb found infact
that the concentration of tit predators on higher intensities was
somewhat weaker than Smith & Dawkins predicted, but these were

mainly non-terratorial birds searching over fairly large areas.

Also Goss-Custard (1970) studied flocks of red-shank (Tringa totanus)

feeding in winter on burrowing eniphipod Cérophium volutator in an

estuarine habitat. He found that red-shank tended to feed in the
more profitable areas and, in one particular transect under observation:

there was a suggestion that red-shank spent a disproportionate amount

of time feeding at the highest Corophium density.
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3.2.4

In conclusion what Smith & Dawkins experiments demonstrated was
that tits may search for their prey in a non-random way. That
is, their searching behaviour is affected by the distribution
of the prey in its environment and the relationship between
prey density and searching behaviour is not necessarily
straightforward - the birds do not necessarily respond quickly
to changes in prey density. |In effect the non-uniform
distribution of the prey in its environment makes the habitat
spatially Heterogéneous,-énd, sincethe prey distribution is
likely to change with time, the habitat will infact be

spatially and temporally heterogeneous.

I. J. Polyakov

Polyakov (1959) is one of a number of Russian naturalists who
have indicated that environmental hetefogeneity is important
in determining population levels and fluctuations. He was
particularly concerned with forecasting the size of vole
populations so that farmers could take adequate control
measures to protect their crops and pastures. He presented
data which indicates that the amount and sort of food required
by voles depends on the temperature and humidity of the

immediate environment.

The .spatial boundaries of the total rodent populations that
Polyakov was studying were essentially the Russian borders,
but clearly the actual distribution of the individuals within
these borders is of critical value to the farmers. Polyakov
observed that in locations where conditions are favourable
and the vole numbers are increasing the voles tend to survive
in areas where there are favourable conditions. During
periods of unfavourable conditions voles tend to lose

their viability, so that even when faVourable conditions
return the local populations tend to perish. These populations
tend to be small in number and weight of individuals, do not

propogate or propogate with lower intensity, have increased

- susceptibility to disease, a lower level of metabolic exchange

and a narrow range of optimum temperatures. Further, the way
in which predators .affect thenumber of voles depénds on the

viability of the population and the environmental conditions.
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3.2.5

So the environmental conditions can have a complicated effect on

the population dynamics of rodents in Russia and the environment

tends to vary both épatial]y and -temporally. Rﬁﬁsian natﬁralisté

have recognised this and have built both spatial and temporal
observations of rodent populations into forecasting models in order

to predict as accurately as possible the size and spatial diétribution

of such populations in Russia.

L. Hansson

Based on field evidence Hansson (1979) postulated a general hypothesis

concerning the importance of what he terms landscape heterogenity

'in northern regions (i.e. Scandinavia) for the breeding population

densities of homeotherms.

He pointed out that few communities are actually closed and that

there will be a flow of individuals in ahd out. The neighbourhood
between communities appears therefore to be important, as does the
relative suitability of alternative habitats in a particular landscape.
Hansson defines landscape ecology as the study of the effect of the
composition of various ecosystems (communities) in a landscape on the

local populations.

In particular Hansson (1977) described the behaviour of field voles
in -heterogeneous landscapes. Vole populations are found in a variety
of densities throughout Scandinavia and this appears to depend to
some extent on the particular local habitats. Voles do have a
preferred habitat but this is not always available. Some habitats
tend to be more permanent than others. Temporary habitats are often
those areas which are flooded seasonally or leys which are cut once

or twice annually.

Suitable habitats are often separated by large uninhabitable areas.
Also suitable habitats may become unsuitable either seasonally or
for irregular periods of time. So the landscape can be heterogenous

in both space and time.
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The pressure to move between suitable habitats depends on phyéical
factors such as seasonal flooding and also on other . factors such

as the carrying capacity of a particular habitat. By observatlon
some habitats appear to be donor habitats in that |nd|V|duaIs tend
to leave and seek other suitable habitats. Some habitats tend to be

receptor habitats and will accept individuals from other habitats.

There is also evidence for movements of whole populations of field
voles. For instance, seasonal flooding, causes populations to seek
out higher ground and there is similar movement out of leys in the

middle of summer.

Voles are just'oné example of species whose population densities are
affected by landscape heterogeneity. Hansson (1979) also cited
field evidence concerning cervids, foxes, and others. In all cases
the large difference between the seasons in terms of habitat
éuitability and the heterogeneity of the landscape has an effect

on the population dynami¢s: causing movements of individuals and

even whole populations between habitats.

Hansson's general theory to account for the importance of landscape
heterogeneity on homeotherm populations is presented diagrammatically
in Figures 3.1, 3.2, 3.3 and 3.4.
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Flgure 3.1 represents the proposed re]atlonshlp between heterogenelty
and seasonality. The more seasonal a species tends to be, the more
likely heterogeneity will influence the breeding populations. (By
seasonal Hansson means that the population breeds only at certain

times in the year).

Figure 3.2 proposes a relationship between habitat dispersion and

the mobility of the constituent species. For animals with low mobility
only fine-grained landscapes tend to be suitable, that is landscapes
which are relatively homogeneous, containing plenty of a limited range
of food. Animals with high mobility can also exploit coarse-grained
habitats, that is habitats providing a wide range of unevenly
distributed food.

Figure 3.3 describes a relationship between the successional stage

of the breeding habitat and disturbance in the habitat. (Succession
is a term which describes the apparant maturation of an environment
in terms of its complexity and constituent species). By disturbance
Hansson means that new sources of food are introduced into the
habitat. Naturally introduced disturbances of this kind only tend to
affect mature communities whereas human disturbances can affect early

or late successional stages.

Figure 3.h4 represents the proposed relationship between distance to

the disturbance and the predictability of the disturbance. Accidental
sites of disturbance which increase the food supply only'momehtarily
will affect a few animals temporarily and spatially constant areas of
winter support may influence large populations of at least wide-ranging
species. In habitats of the latter type there may eventually develop

breeding populations from the invading species.
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A1l the factors described are likely to interact strongly and the
outcome for particular species and environments has to be examined

separately.

Hansson admits that his hypothesis is very general and that it can
only be tested when applied to particular species and enQironments.
Of course it is virtually impossible to experimentally manipulate
whole Iahdscapes. Alternatively repeated field surveys and critical
observations could be used but in practice this is a very difficult

procedure,

However the.importance of Hansson's theory is firstly that he
believes that spatial heterogeneity is responsible for the observed
behaviour and characteristics of certain hemeotherm populations and
secondly the interpretation of environmental heterogeneity. Two
things are clear in Hansson's 'definition' of environmental
heterogeneity. First the environment tends to consist of a landscape
of habitats some of which are 'suitable' for the particular species
to live in and some not. Secondly the number and nature of suitable
habitats within the landscape may change with time. We will see
later that this is a popular way of modelling environmental

heterogeneity.

3.2.6 J. R. Beddington, C.A. Free and J.H. Lawton

Beddington, Free & Lawton (1978)Apresented a mixture of field,
laboratory and mathematical evidence which suggests that environmental
heterogeneity is important in determining community stability. In
particular they were interested in the reasons for success or
otherwise of attempts to control insect pests by the introduction

of natural enemies, especially insect parasites (parasitoids).

One measure of the effect the introduction of a parasitoid has on its
host is the ratio (q) of the population size of the host species in

the presence of the parasitoid to that in the absence of the natural
enemy. They obtained estimates of q for four laboratory host-parasitoid

systems and a number of successful biological control programmes.
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In all cases the laboratory values of q were 5|gnlf|cantly larger than
the field values (~.3 compared to~-.005). They attempted to reproduce
these observed q values using mathematical models of the host- -parasitoid

relation.

In the simplest model explored (Nicholson & Bailey (1935) - see

Section 3.4.5.2) the parasites were assumed to search completely

at random for the hosts and the host growth rate was such that only .

a single equilibrium population level was possible. This model could
be made more complicated by introducing density dependent effects on
the per capita rate of increase of the parasitoid. In any case the
smallest value of q which could be generated was .33. This compares
with the values observed in laboratory experiments but is significantly

larger than field values.

Further sophistication of the model (e.g. Hassell (1978)) to include
such factors as unequal generation time between the host and
parasitoid, non-constant searching efficiency due to time spent on
handling the host, and fall-off of searching efficiency at low host

densities failed to reproduce field q values.

One possible criticism of the models used by Beddington, Free & Lawton
is that they are too unrealistic for modelling host depression in

the field. Beddington, Free & Lawton refuted this by showing that

there is a key parameter in the models which is a measure of parasitoid
efficiency (i.e. how good the parasitoid is at catching and parasitising
the host) and which is roughly related to q. They presented data

from field experiments which show that the order of magnitude of the
theoretical parasitoid efficiency compares with the field . -

values and they argue that this signifies that the structure of the

model is basically sound.

They then looked for alternative reasons why field q values should be
so low. They observed that one difference between the laboratory and
the field is the greater size and physical complexity. of the field

environment. The field environment is spatially ‘heterogeneous.
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Two ways in which spatial heterogeneity may affect the host-
parasitoid community dynamics is i) by providing refuges for the
host (i.e. locations in which the host is protected from parasitoid

attack) and ii) by modifying the parasitoid attack rate.

Including refuges in the model led to q values of the order .1.
Introducing modified attack rates, in particular by allowing the
parasitoids to favour attacking 'patches' in the environment which
have locally higher host densities than other patches, led to low q

values being readilyvgenerated.

Beddfngton, Free & Lawton also described another way of generating
low q values (due to May (1978)) which does not depend on spatial
heterogeneity. This included varying the form of the host growth
rate in the models so that two locally stable equilibrium population
levels were possible. Some studies have show that this may be
possible in the field due to background predation or parasitism
(e.g. Takahashi (1964)). When the host is constrained at the lower

equilibrium level the q value may be small.

They felt that what evidence there is supports heterogeneity as being
commonly the most likely solution. This was mostly because models
incorporating spatial heterogeneity predict that q is related to
searching efficiency whereas if complex density dependence of the
host growth rate were the reason, then the lower equilibrium value
would ' largely be determined by background mortality. As discussed
above, field values do appear to be related to efficiency. Also
evidence from parasitoids which have been successful biological
control agents suggested that they had high response to prey
aggregation, high dispersal powers between patches and high effective
searching efficiencies. These are exactly the powers needed in

spatially heterogeneous environments.

One particular criticism of Beddington, Free & Lawton's argument is
that the biological data, as so often is the case, are limited and
what are available aresubject to considerable uncertainty. However
the difference between the field and laboratory q values is so
significantly different that, all in all, this is powerfull evidence

that environmental heterogeneity can have an important effect on
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the community population dynamics and hence on the determination

of species persistence within that community.

3.3 "'Definition of environméntal heterogeneity

3.3.1 Introduction

From the work described in Section 3.2 it appears that there are a

number of types of environmental heterogeneity which are important.

Huffaker's work was concerned both with the physical complexity of
the environment and the effect of an uneven distribution of food on
the population of a particular predator. The physical complexity
was defined by the barriers and aids to individual movement which
were included in the environment and was constant with time. The
distribution of food varied in both space and time due to the
individual movement and the results of interactions. Somewhat
similarly Smith & Dawkins were concerned with the ‘effect -of @an'. i

uneven distribution.:of food“on the behaviour of a predator.

The heterogeneity discussed by Hansson and by Polyakov is a little
different in that they were more concerned with the physical
complexity of the environment. The environment hay consist of a
number of suitable habitats distributed between unsuitable areas.
Populations of particular species will tend to concentrate in their
particular suitable habitats. Each suitable habitat will have its
own degree of suitability and the number of suitable habitats for
each species and the degrees of suitability may change with time.
Further, each suitable habitat may be physically heterogenéous in
itself. For instance there may be a temperature gradient across

the habitat and this gradient may change with time.

So an environment may be considered to be heterogeneous because there
are non-constant physical properties in time and/or space, and/or
because the distribution of a population within the environment is
uneven. In either case this heterogeneity is only important if

there is an effect on the community population dynamics.

This leads me to the following series of definitions.
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3.3.2 'befinition

It is important to define clearly what the term envrronmental
heterogeneity means. There are three types of environmental
heterogeneity to be considered, namely spatial, temporal and
spatio-temporal heterogeneity. These terms are all often loosely
covered by the term spatial heterogeneity in the literature, though
Levin (1976) gives a reasonably clear description of each. The
terms physical heterogeneity and landscape heterogeneity have also

appeared as we have seen above.

If we refer to the definition of a community (Section 2.3) we see
that at any point in time the community is living in a particular
physical enivronment, the physical characteristics of which are
likely to determine the strength and probability of interactions

between individuals and hence the community population dynamics.

If each physical property which affects the population dynamics has
(effectively) the same value at each location in the environment

and throughout time, and the strength and probability of interactions
between individuals is independent of time and location then the

environment is homogeneous.

So in theory the whole community may move location and the environment
still remain homogeneous by my definition. This is supported by

Den Boer (1968) who defined the effective environment of a natural
population as 'that subset of its environment whose components have

a measurable influence on the statistics of the population at some
time'. A population may migrate between environments which are

effectively the same.

It may be that one or more of the physical properties of the environment
may vary through time but at any point in time be constant in space, or
the probability and strength of interactions between individuals may
change with time (as well as the numbers of individuals present) but
remain independent of space. In this case the environment is effectively

temporally heterogeneous.
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3.4

3.h4.1

If at least one of the physical properties depends on the location
but is constant with time or the strength and probability of an
interaction depends on the location but is independent of time, then

the environment is spatially heterogeneous.

An environment which is both temporally and spatially heterogeneous

is spatio-temporally heterogeneous.

Approaches to modelling population dynamics in a heterogeneous

environment

Introduction

In Section 3.3.2 we formally defined three types of environmental
heterogeneity,; temporal, spatial and spatio-temporal, although
the latter term merely applies to an environment which is both

temporally and spatially heterogeneous.

Temporal heterogeneity is relatively straight-forward to model by
encorporating time-varying parameters into the equations. The
variation may be deterministic or stochastic. Some simple examples

are discussed in Section 3.4.2.

Modelling spatial heterogeneity is much more complicated The
mathematics are immediately more difficult and there are also
several different types of spatial heterogeneity to consider. In
order to simplify the mathematics some people have included the
effects of heterogeneity implicitly in what are essentially models
of homogeneous situations. An example of this approach is given in
Section 3.4.3.

However to understand more fully the effects of spatial heterogeneity
on population and community dynamics it is necessary to develop more
sophisticated models. The type of model appropriate (differential

equation, difference equation or other) depends not only on the types

~of species and interaction between them (as in homogeneous models)

but also on the type of spatial heterogeneity.
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Four types of spatial heterogeneity are discernable from the

discussions in Section 3.2 and the definition of heterogeneity.

TYPE A - environments which are essentially homogeneous except
for example providing a number of refuges for particular
individuals of species or physical barriers to the progress

of predatbrs.

environments in which important physical factors such as

TYPE B -
temperature vary with the position within the environment.
TYPE C - environments in which an uneven distribution of one species
may affect the behaviour of others.
TYPE D - environments in which patches of suitable habitats are

separated by areas of unsuitable habitats.

In reality a particular environment is likely to have a mixture of

all four types of spatial heterogeneity plus other types not mentioned.

Type A can be relatively easily modelled by implicit methods. Some

examples are given in Section 3.4.4,

Type A heterogeneity is strictly speaking an example of type B. In
this case it may be that the values of certain important physical
factors change significantly with spatial location. If so population
density can be made a function of continuous space as well as time
(discrete or continuous) and, for instance, partial differential
equation models can be developed. A short discussion is given in
Section 3,4,4,2, In some cases of type B heterogeneity the parameter
values may change in such a way that the environment can be divided up .
into a number of discrete homogeneous patches. This technique has
also been used in constructing models for types C and D. Choice of
timescale and the measure of population or community size becomes

important.
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3.4.2

For type B and type C it is possible to develop modelé in which

the population density in each patch or cell can be measﬁred and
the timescale can remain continuous (or in the diScrete case the
unit of time might be one generation). An example of such a

model is given in Section 3.4.5.

In type D heterogeneity the environment is broken up into patches

and the timescale often becomes the life-time of a community in

such a patch. The population measure then becomes patch-occupancy,

that is the proportion of patches occupied by each species.

As indicated above mathematical models which aim to describe

community dynamics in spatially heterogeneous enviroments very
quickly become extremely complicated and difficult to analyse.
Indeed few results have been derived for communities with more
than two species and even for two species models extensive use

of simulation models run on computers has been made.

In the following Sections | present some models which have been
developed to describe the various types of heterogeneity and in
particular to investigate the effect of spatial heterogeneity on

community stability.

Temporal environmental heterogeneity

It is unlikely that all of the environmental parameters which
affect the dynamics of a population or a community will be constant
through time (although they may be constant through space). Some
parameters may indeed vary cyclically (e.g. seasonally) or in some
other deterministic manner. Some parameters may vary randomly
about a constant value or indeed a deterministic value. May (1974)
considers briefly two ways of modelling temporal heterogeneity of

the environment.
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3.b.2.1

3.4.2.2

Consider for example the simple exponential growth mode

dx(t) = r x(t) 3.1
dt

Suppose that the intrinsic rate of increase r is infact a function

of t, r = r(t).

It may be that r varies seasonally.

e.g. let r=sin (wt) ’ 3.2
where w reflects a cycle of one year.

Clearly the solution of the differential equation is then

t
{t) = x (0 exp ( Sc sin(wt')dt')
= x(0 exp ( 1 - cos(wt)) 3.3
W

The population thus oscillates with a period of one year in a completely

deterministic manner.

Such complexities can clearly be included in more sophisticated

population models in a similar way.

Random temporal heterogeneity

Consider now the logistic equation

ax(®) = x(®)  (kex(t)) 3.4
dt

and suppose that the environmental parameter k varies randomly

with time.
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ie. k=ky +d(t)
where kg is the mear value of k

and X'(t)is drawn from a random distribution of mean zero and

. 2
varianceé

The value of x(t) now depends on the probability distribution which
determines ¥ (t) and hence we need to talk about the probability
of there being x individuals in the population at time t - f (x,t).
When the stcchastic term is white noise it has been shown that:

d (x,t) = -3 (m(x) £ (x,8)) + $32 (v(x) £ (x,t))
>t dx ™

where m(x) = the expected value of x (k-x) = x (ké-x)

the variance of x(k-x) = 52x2

and  v(x)

We can now talk about the equilibrium probability function £ (x)

which is independent of time and is given by

df (x,t) = ©
Bt

It can be shown that in this case
% [ X
f(x) = C exp[ %J o m(x') dx'
v{x) °  YxN

X
exp(ZSo' kex ! dx')

62x

C
Z a2
X 6

2
=C x 2(kc/6 )'2 exp ('2)(/623

provided ko > %6’2 where C is a normalising constant

This is infact a standard Pearson Type |1l gamma distribution.
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If ko <%‘6’2 there is no equilibrium solution.

The equilibrium solution shows that the equilibrium population is
distributed about a mean m*(x) with relative variation r*(x) where

ov

S)x f*(x) dx

(-]

m* (X)
& ,
ke ( alyvt _ 3.11

and  r#(x) (}:?x- m# (x)) % £%(x) dx)%

m* (x)

3 1
(e:Z/Zk, 2 3.12
1- 8% /2kg |

If we parallelthese results with the deterministic case in which

the 'mean' js kg and the stability condition is purely that k, > 0,

we can see that temporal heterogeneity has reduced the mean population
level and that fluctuations about this mean level become more severe
as the variance sxépproaches 2%, Fore?S 2k, the population becomes

unstable.

In general, for communities in hemogeneous environments modelled by
differential equations as in Section 2.11 the local stability of

the equilibrium is determined by the value of the eigenvalue with
the largest real part. In the equivalent temporally heterogeneous
case in which environmental parameters are random it is apparant
from the above example at least that the population numbers will
vary about an equilibrium mean value in such a way that stability
will also depend on the size of the variability. This variability
will usually depend in turn on the variability¢5;of the environmental
parameters. ., For sma]lénghe population is‘likely to be stable.
For Iarge<51%he population may be unstable and indeed an equilibrium

- mean value may not exist.
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3.4.3

Models for communities with more than one specieé liQing in a temporally
heterogeneohé environment can be developed along éimilar lines and
indeed May considers specifically a two-species model and also a

general n-speciesmodel in which certain environmental parameters

are described randomly. . In each case the ratio between the
absolute value of the real part of the eigenvalue of the equivalent
deterministic system with the largest real part and a measure of

the environmental variance is important in determining whether the

community is stable or not.

Approaches to modelling the effect of spatial environmental

heterogeneity by implicit methods.

Rosenzweig and MacArthur (1963) used a general continuous-time model
to investigate the effect of spatial heterogeneity of the environment

on the dynamics of a predator-prey community,

f(x) - (x,y) 3.13

dx
dt

-ey +k¢(x,y) v 3.14

[aR Yo I
+

where x is the prey density, y the predator density

is the rate of change of prey in the absence of predators

X

f

§5 is the rate of predation

k is the efficiency of converting prey into predators
e

is the mortality rate of predators

They investigated several forms of the functions f and¢. In

particular they simplified the equations by putting

P (xy) = yP(x)

and discovered that the population dynamics are‘not fundamentally

altered.
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Hence Cdx o= f(x) -¢(x)y - 3.15
dt
dy = -ey + ky¢(x) | 3V.716
dt

The equilibrium population levels x* and y* are gi?en by

fx*) - y@P(x*) =0 | 3.17
- ey*® + ky*¢(x=’=) =0 3.18
Hence ¢ (x*) = e/k 3.19
3.20
|~
- Fiavre 35 fradarer ank ey fodines gor
T Resentuaiy ome\ o anvLLJoA&-L Ser Yexx)
The stablllty of this equlllbrlum can be lnvestlgétéd in the usual
way.
The community matrix is
df - yxd9 -4
dx dx 3.21
k dg y* 0
dx
and hence the characteristic equation is
2 * *
h) ‘k(.@i - Y4) + k§dg v* =0 3.22
dx dx dx

where A is an eigenvalue.
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The .general shapes of the functions f and¢consndered by

Rosenzweig and MacArthur are shown in Figure 3.6

.:E;i;. I:AZ;]f:"‘f,: T IR N T ‘é"‘“'
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i g ane\ 9} m o\era& mTy ‘*'”—"t‘“‘% W‘el“'MS‘E;“:!"W‘-:_?E‘f:
For the equilibrium to be stable we require
kpdg yx 3 0 3.23
dx
*®
and df - yd§ < 0 3.24
dx X

Inequality 3.23 is clearly satisfied if¢ is of the shape shown in
Figure 3.6a.

Inequality. 3.24 is satisfied if %j_ < 0. (though this is not a
: X

necessary condition)

Thus the equilibrium is stable if the predator isocline (gquation 3.20)
is crossed by the prey isocline (equation 3.19) to the right of its
hump. Otherwise the equilibrium may be unstable. (See Figure 3.5).

Certain assumptions can be made about the values of the‘parameters
in the model and on the forms of functions f and¢vﬁﬁch may reflect
the effect of spatial heterogeneity. For instance, Stemseth (1977)
pointed out that population densities in hemogeneous environments

may be more variable for at least two reasons,
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i) The supply of preferred food for the prey may .be greater
in homogeneoué than in heterogeneoué EnVironmenfs. Thié
means that the carrying capacity K of the environment
(that is the maximum density of prey that can be éupported
in the absence of predators - f(K) =0) is greater in

homogeneous environments.

In this case the hump in Figure 3.5 is likely to be further to
the right for homogeneous environments and hence the community

less likely to be stable.

ii) It is easier for predators to find prey at low densities
in homogeneous than in heterogeneous environments and thus

the equifibrium density of the prey may be smaller.

So in this case the prey isocline is likely to cross the predator
isocline further to the left in homogeneous conditions and

again the community will be less likely to be stable.
So in both cases modelling spatial heterogeneity implicitly
indicates that heterogeneous environments may be more stable

than homogeneous ones.

3.4.4 Physical spatial heterogeneity

3.4.4.1 cover and refuges (hiding places) - type A heterogeneity

An environment may be spatially heterogeneous purely because it
offers a number of hiding places to the prey. In such a case it
may be that at any point in time a constant density of prey is
protected from attack by a predator.

Maynard-Smith (1974) used a differential equation model to investigate
the effect of this as follows.

dx = ax - hy (x-c) f , 3,25
dat |

dy = -ey + khy (x-c) 3.26
dat
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3.4.4.2

where x and y are the prey and predator densities respectively and

c is the constant number of hiding places-per-unit area.,
The equilibrium densities x* and y* are given by

x*-c = e/kh

= ax=%
h(x*-c)

The community matrix is -

( a - hy* -h(x*-c))
khys 0

and the characteristic equation is
hY 2 - A (a-hy*) + hey* = 0.
So the equilibrium is stable if
a-hy* < 0

From equation 3.28 this is clearly always the case and hence the

equilibrium is stable.

As we saw in Section 2.11.2 if c=0 (i.e. no hiding places) then
constant but unstable oscillations about the equilibrium values
ensue. The inclusion of hiding places makes the environment

spatially heterogeneous and the equilibrium population densities

stable by damping the oscillations.

Continuous heterogeneity - type B heterogeneity

In some situations the environment in which a community is living
may be such that parameters' which affect the community population
dynamics (for example, temperature) may vary significantly with the
exact location within the environment. This type of spatial
heterogeneity may be particularly important for plant communities

or plankton communities in the sea.
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There are essentially two main approaches to modelling such a

situation.

As suggested by for instance Levin (1976) the environment may be
divided up into a large number of discrete patches. The commﬁnity
population dynamics can depend on the local conditions and migration
between patches can be included. As the number of patches is increased
the continuous case is approximated. This method is essentially
similar to that described in Section 3.4.5 and 3.4.6 and the main

advantage is that the mathematics is relatively easy to handle.

The alternative method is to use partial differential equations and |

shall briefly consider this approach in more detail.

Let us start with a single species in a one-dimensional environment.
Suppose that the population size x(s) at each point s in the
environment grows independently of all other locations and that

there is no migration.

A general partial differential equation model of this situation would
be

dx(s,t) = fx,st) ' 3.32
It
e.g. ax(s,t) = r(s)x(k(s)-x) , 3.33

Yt

The size of the total population in the enviroment at time t would be

given by
JS x(s,t)ds ' 3.34

where S defines the spatial limits of the environment.

It is more realistic to assume that some dispersion of individuals

between locations will occur.
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3.4.5

3.4.5.1

The appropriate partial differential equation model which takes this

into account takes the following general form:

dx = flx,s,t) + ¥ (D(s) Ax) 335
dt ‘ 3s as
where D(s) measures the diffusion potential at s.
This model can be extended to describe communities of interacting
species in a :m~dimensional spatial environment.
dx, = f, (x, s, t) + V. Di(é)xi - 3.36
dt™
where x = (x1,....xn)
S = (sl,....sm)
and V.g(s) = 3qg +....+ g

as, ds
m

The advantage of this method over the first (i.e. using discrete

patches) is that the number of equations is greatly reduced however

analysis of such equations can be extremely difficult even for the

very simplest forms of fi and Di'

Since there appears to have been few useful results derived from
such models | will not consider them further here. Partial differential
equation models have been used relatively successfully to model

plankton communities, for example Wroblewski, 0' Brien & Platt (1975)

Non-random spatial distributions of populations - type C héterogeneity

Implicit refuges (May (1978)).

We have seen from the discussions of heterogeneity in Section 3.2
that environments often tend to be patchy in that some areas are
more densely populated than others. |f the prey population is
distributed in such a way and the :predators aggregate in areas of
high prey density then the areas of low density will be, at least

temporarily, refuges.

an<



Too much of such refuge may lead to the prey increaéing uncontrolled
by the predators, while too little may not give any advantage to

the prey over homogeneous environments.

Environmental patchiness (and it is important to note that such
patchiness may develop by chance and not because of any physical
heterogeneity of the environment) has been investigated in a number
of ways as we shall see. One method of modelling patchiness without
specifically modelling each individual patch was put forWard by

May (1978).

May's model is particularly applicable to arthropod host-parasitoid
interactions. In such relationships each host (H) in any one
generation is either parasjtised by exactly.one parasité(P) oFf escapes
parasitism to give rise to F (>1) progeny which become the next

generation of hosts.

The model is a difference equation one as follows:

et = FHO(1+ a P f 3.37

Per = Hp - Hy/F 3.38

where (1 + a Pt/k)-k is the probability of a host escaping parasitism.

This probability is derived from the assumption that the probability
for a given host to be discovered by a parasitoid d times during a
generation is given by a negative binomial probability distribution
with 'clumping' parameter k and mean attack rate given by aP (see

Southwood (1966) for a description of the negative binomial distribution).

Such searching by the parasitoid is non-random and may result because
the hosts are distributed unevenly (i.e. in patches) throughout the
environment. May discussed experimental and field evidence which
support that the negative binomial is an appropriate approximation

in some cases. Griffiths & Holling (1969) carried out a series of

experiments in which ichneumon Pleolophus Basizonus parasitoids

attacked sawfly Neodiprion Sertifer hosts and the distribution of

attacks per host was well described by the negative binomial, and
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Hassell (unpublished) has gathered data on attacks of'Cyzénié‘albICans

on winter moths which also fitted the negative binomial distribution.

The equilibrium population levels H and P" can be determined in

the . usual way by setting HY = Ht+1 = H, and P* = Pt+1 =P,

Hence from equation 3,37

P* =k FY% - 1) /a 3.40
and from equatioﬁ 3.38
W = FP* / (F-1) 3.41

The stability of this equilibrium may be examined as follows:

Let Ht =H + E‘t 3.42
and PR =P + Ve _ 3.43
where éft and Vjt are small disturbances from the equilibrium
values.
% _ » % b3 -k
Then H™ + ét+l =F (H +$t) (1 +a (P -H}’t)/k) , 3.44
=FH (1+aP /)™ +Ft (1 +ap*)7K
- FH (1 + ap™/k)" (ke Y, 3.45
_ % - % F3 -1
=H +~2t aH (1 + aP /k) V/t ; 3.46
(by éxbanding equation 3.4k4 as a Téylor"Series and ignoring terms
of order 2 and above in&Vy).
and similarly P* +\, ‘'= H: + € ¢ - W+ g )/F 3.47
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That .is

_ _ _ % % -1,
€ oy =& mal (L xaP/k) Y,

"(t+1 = ét - ‘ft+1/F

The solution of these coupled difference equations is necessarily

of the form

£y

ANt

BaE

"

where) is an eigenvalue of the system and A and B are constants

determined by the initial sizes of the perturbations.

Substituting this solution into equations 3.48 and 3.49 gives

I
o

(A-1) &, + X

|
o

(2%'1) ¢ * AV,

where® = aH~ (1+aP"/k)-1

The community matrix is thus

A -1 o
A
F

and the characteristic equation is

A2 X1 +9/F) + © =0

- 110 -

3.48

3.49

.3.50

3.51

3.52

3.53

3.54

3‘55

3.56



There are two values of),)l and )\_2, which satisfy this equation

and hence the solution of equations 3.48 and 3.49 becomes

_ t t

t t
B] )\1 + BZ>‘2 | 3.58

Ve

where Ay, A2, By, Bz,ane:constants determined by the initial sizes of

the perturbations.
It is clear from the nature of this solution that in order for the
perturbationszt and q}t to die away with time the moduli ofA1 and

)2 must both be less than one.

Solving equation 3.55 for)\we see that

2X= (1 +6/F) £ 4(1 +8/F)? - 4o)1/2 | 3.59
=bs (V24 uc)1/? 3.60

where b = 1 +0/F ‘ 3.61
and c = -6 3.62

It is straightforward to show that for the modulusof )\ to be less

than one the following conditions must be satisfied.

1-b>c> -1 3.63
and 1 +b>c> -1 3.64

Substituting the values of b and ¢ (equations 3.61 and 3.62) into

equations 3.63 and 3.64 we obtain the two conditions:

©/F <6 <1 3.65
T 2 40/F >-8 >-1 - | 3.66
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The left-hand side of both inequalities is satisfied automatically
since F is greater than one by definition and & is greater than

zero from equation 3.5k,
The stability conditions thus reduce to the single criterion
6 <1 ' 3.67

Substituting the values for H and P° from equations 3.40 and

3.41 into equation 3.54 we see that
0=k (1-F"ﬁ‘) / (1-F"1) | 3.68

is clearly a monotonic increasing function of k and € equals one

when k equals one.
Therefore

© <1 ifandonly if k<1
When k is less than one the negative binomial distribution is
essentially overdispersed | and ‘this means that there are enough
patches relatively free of parasitoids to provide refuges for the

host, and the host-parasitoid relationship may be stable.

3.4.5.2 Hassell and May (1973)

Hassell & May (1973) considered a series of mathematical models
which they used to investigate the stability properties of

host-parasitoid relationships. The general form of these models is

Ht+1

Prer = He 7 He g

]

FHF (P, H) - 3.69

/F : 3.70

where Ht’ P, and F are as defined in Section 3.4.5.1 and f (Pt’Ht)

is the probability of a host escaping parasitism during its lifetime.
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Following the same argument .as in Section 3.4.5.1 they investigated
in particular the éffect of a non-random searching strategy by the
parasitoids in an environment in which the hosts are ﬁnevenly
distributed. Further they did this by modelling more explicitly

the 'exact' distribution of hosts and parasitoids in the habitat.

To do this they split the habitat into m patches and letcxi and
ﬁi'denote the proportion of the total number of' hosts and parasitoids

.th

in the i~ patch.

Suppose that within each patch i the parasitoids search for hosts
at random and with a searching efficiency (i.e. the average area
searched by a single parasitoid in its lifetime) which is independent

of the number of hosts and parasitoids.

"The probability of a host escaping parasitism in a particular patch

i is thus
exp (- aBi Pt) 3.71

The proportion of the total number of hosts Ht which escape parasitism

in patch i is thus

S< . exp (-a Bi Pt) _ 3.72

and the total number of hosts escaping parasitism in the whole

habitat is

. ;
H, Zec; exp (-aPi Py . 3.73

i=1

The specific model is therefore

m B

Ht"l:T = F Ht Z o< ; exp ('aﬁi Pt) 3.74
i=1 '

Poeer™ Mo " Mo /F 3.75
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L o

The equilibrium population .levels H* and P~ are giQen by

m & .
F 3ot exp (-afi P) =1 3.76
i=1 .
P* = W (1) A 77
=!

The stability of the equilibrium can be investigated by considering
the effect of small pertubations.

let H =H +§&, ~ 3.78

O
L}

¢ P" .|.qjt 3.79

By substituting these expressions in equations 3.74 and 3.75,
expanding in a Taylor Series and ignoring terms of order two and

higher h12,(f , the following equations may be derived:

gt+1=(1+FH* h_f\)gt + FH*B_f_;‘/t ~ 3.80
AH” dp”
Wes1 =8¢ = Epq/F 3.81
m %
where f = Zui} exp (-af; P") - 3.82

i=1

Following the arguments of Section 3.4.5.1 the solution of these
coupled difference equations is necessarily of the form of equations
"~ 3.57 and 3.58.

The characteristic equation of the system is

A2 - 1+ 3f, - W 'é_ﬂu))s - FH3f =0 3.83
AH:\ BP“ aPn
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The solution of equation 3.83 is given by

2= (1 +F H*' éi,_" H*?_f_) + ((1+FH*'£- H*ﬁ2+l}FH*‘ﬁ)_1/2
§SH” 3P SH®  »P 3P 3.8

and it is straightforward to show that for the modulus of ) to be

less than one the following conditions must hold:

ale
w~

F H 3F < - H"¥ < 1 3.85

F-1 K" 3 F

2+ FHUM > (F-1) ¥ , 3.86
aH™ op=

In this particular case

X =0 3.87
T
and é_f_L = -a Zui ﬁi exp (-agi P”) 3.88
AP i=1
and the stability criterion becomes
m E % ﬁ ...)
F <. (afp,P’) exp (a5, P") < F-1 3.89
;E} i i i 3

(since 3.86 is automatically satisfied).
Hence, for any particular set of values for the host and parasitoid

distributiono; andBi and the host effective rate of increase F,
the stability of the host-parasitoid relationship may be determined,
although this may require extensive calculations for each particular

set of parameter values.

In nature the distribution of hosts and parasites between the m
areas might take any form. It will indeed be determined by the
actual community population dynamics which in turn depend on a

number of complicated factors.
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In order to investigate the poséib]e effect of aggregation of
parasites in areas of high host density May used a simple

relationship betweencti and 3{ as follows:

m
) NS
where C = (Zui ) 3.91
i=1
and /M (Zp) is termed the aggregation coefficient.
i) Random search (m =0 )
If/aequals zero, then
B; =1 for i=l,....m 3.92
m
In this case there are an equal number of parasites in each area
irrespective of the host distributions; - this is exactly the
same as the situation in which the parasites search at random
throughout the whole of the habitat.
In this case
f = exp (-aP) 3.33
n
= 1/F (from equation 3.76) ‘ 3.9%4
Hence the left-hand side of equation 3.89 becomes
a P’ = In (F) 3.95
n
It is easy to show that
In (F) > F-1 3.96
F

and hence the model is unstable.
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The model has infact been reduced to the random search model first
put forward by Nicholson (1933) and Nicholson and Bailey (1935)

and the results support their conclusions that a commﬁnity consisting
of a parasite population which searches at random for indiQidua]s

of a host population regardless of the way in which the hosts are

- distributed throughout the habitat is unstable.

ii) /4veryflarge

As pincreases the aggregation of parasites in areas of highest host

density becomes more marked.

Whenf\becomes very large the parasites aggregate in the area of

highest host density.
In this case

f = (1-¥) + Y¥Yexp (-aP¥) | 3.97
where ¥ is the proportion of hosts in the area of highest host density.

From equation 3.76

FL(1-8) +%exp (-aP™) 1 = 1 | 3.98
and hence
F (1-8) <1 ’ 3.99

for an equilibrium to exist.

Further
aP* = - In (L1- (1-’2{.)\ | 3.100
= in( FY ) 3.101
1-F(1-¥)
and  FYexp (-aP™) = 1 -F (1-Y) | 3.102

(from equation 3.98)
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Hence the stability criterion becomes

FYaP” exp (-ap™) <E_]_ 3.103
F
i.e. (1-F(1-¥)) In(" ) <E1 3.104
1-F(1-¥) F

(from equations 3.101 and 3.102)

The inequalities 3.99 and 3.104 determine the pairs of values of
¥ and F for which a stable equilibrium exists.

The stability boundaries are sketched in Figure 3.7.

. \mskq\»\e e.qp»\\’bhu;

. PA“*S \\&
f": A"\ Db “\““)" W"‘;&" ‘“5‘5“3‘*& \a !\\n. arm gg“hg\.,gy
hQS‘ A%Js\s "]A—’ ﬂ) _‘_‘_: ,,_»1_4_7.!:_ 7

i

The first point to note is that stability is now possible. However
for low values of & there is too much refuge and no equilibrium is
possible, and for high values of F the range of values of ¥ for which
a stable equilibrium exists is narrow. If the proportion of hosts

accessible to parasitism is high then the equilibrium is likely to
be unstable.

iti) 0 <mc<em

~In order to easily evaluate the effect ofM between zero and infinity

it is necessary to define more explicity the host distribution.
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May chose the following form:

S4 =9 for one patch i. . 3.105
o<, = 1= for j#i. - 3.106
m-\ ‘
FJJ = Z!g 3.108
where & = (1_—_5)/“ 3.109
m-1
-1
and hence 8 = (1 +&(m-1)) 3.110
in order to satisfy equation 3.90.
Hence in this situation the hosts are distributed in such a way
that there is one high density area and (m-1) low density areas,
and the degree of aggregation of parasites in the high density
area is determined by/n.
In this case
- -2
f =xe + (1-o¢) e ¢ 3.1
where 2 =xBp" | 3.112
Hence (from equation 3.76)
: -2 - &%
F o(xe + (1-o¢)e ) =1 3.113

(note that f is clearly less than one and hence an equilibrium exists).
The stability criterion (equation 3.89) becomes

) -2 - &z )
2F (ke + & (1-oc)e” ) < F-1 3.114

-
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Given values forecand m (the number of patches) it is poésible to
determine from equations 3.112 and 3.114 a relationship between m
and F which in turn determines the stability of the host-parasitoid

community.

A sketch of the stability boundaries is given in Figure 3.8.

May noted four trends:
- increasing parasite aggregation (M) increases stability.

- stability is increased if there are more low density

regions.

- there is a wider region of stability conditions when =<

is near 0.5 then whenwis very small or very large.

- stability breaks down abruptly as F increases.
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3.4.5.3 'Discussion of Hassell and May's model

Hassell & May (1973) used a relatively simple model to demonstrate
that, in a host-parasitoid relationship, if the parasitoids search
completely at random for the hosts then the relationship will be
unstable whereas if the parasitoids tend to aggregate in areas of
high host density then the relationship may be stable. Although

they chose a particular form of host distribution to demonstrate this,
they have done further work which shows that similar results apply

for other forms of distribution. In general the more uneven the

host distribution, the more likely the relationship is to be stable.
There are two main criticisms of the model used.

Firstly, in nature it is likely that the searching efficiency (a)
will depend on the numbers of hosts and parasitoids presant and
also on such factors as the time wasted by a parasitoid in
unsuccessfully engaging a host. However Hassell & May's model E
includes such factors and the results are not qualitatively
different.

Secondly, in nature the distribution of hosts and parasites is not
likely to remain constant but will depend on the lTocal population
dynamics, the physical heterogeneity of the environment and the
amount of movement possible. Indeed Comins & Hassell (1979)

have extended Hassell & May's modél by allowing the parasitoids

to be capable of instantly sensing which area of the environment
has the highest density of unparasitised hosts. Hence at any time t
all the parasitoids are found in the area with the highest density
of healthy hostsT '

They investigated the local stability properties of this model and
found that they are not qualitatively any different from the
'fixed aggregation' model. In the real world the behaviour of the
parasites is likely to lie somewhere between the two models and,
as suggested above, other factors, such as locally different

population dynamics, may have further effects.
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However, since both 'extremes' lead to stable relationshipé under a
wide range of conditions it ééems reasonable to conclude that

spatial heterogeneity resulting from an uneven distribution of

hosts in the environment can stabilise a host-parasitoid relationship
provided that the parasitoids aggregate in areas of higher host

density.

3.4.6 Migration - type D heterogeneity

3.4.6.1 A.Haétings

Hastings (1977) considered a predator-prey community in an
environment consisting of a large number of identical patches

between which prey and predator individuals can migrate at any time.

He assumed that an any time t a patch could be in one of only
three states: empty; containing only prey (prey); containing both

prey and predator (predator).

The rate of change of state of a patch is determined by some simple

rules:

i) An empty patch can only be invaded by prey, thus creating a
prey patch.

ii) A prey patch remains so until it is invaded by a predator

whence it becomes a predator patch.

iii) A predator patch becomes an empty patch after a fixed
length of time (i.e. the presence of predators always causes
the extinction of both prey and predator populations within
the patch).

iv) The rate at which predators migrate to invade prey patches

is directly proportional to the number of predator patches.
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V) The rate at which prey migrate to invade empty patches is

directly proportional to the number of prey plus predator patches.

A1l patches are assumed to be equally accessible from all other
patches and the time it takes individuals to migrate between

patches is assumed to be insignificant.

LetX-be the fraction of prey patches and y be the fraction of
predator patches at time t, and, without less of generality,
set the time it takes for a predator patch to return to the empty

state to one.

From the assumptions the following differential-delay model can

be formulated.

dx = et (1-x-y) (x+y) - Pxy

dt

gl = BLx(t) y(t) - x(t-1)y (t-1)]
t

with initial conditions

x(t) =&, (t)
-1<t<0
y(t) =Fa(t)
Note that

and that at any time t the total number of predator patches is

e
y(t) =ﬁ§ x(s) y(s)ds

t-1

and hence the initial conditions must satisfy this equation.
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We now consider whether this model provides any eqﬁilibriﬁm

population levels.

There are clearly two trivial equilibria

% %

The first is unstable since any small perturbation from it will

clearly tend to grow.

The stability of the second depends on the values of oc and B, but

will not be considered further here.

Other possible ~equitibria may be determined in the usual way by

setting dx and. dy equal to 0.
dt dt

n

o (]-x.:_y..) (x=‘+y") _ ﬁ):y&

v
%
~<
i
x
<
1}
O o

The unique non-trivial solution is

x = 1/2

# 1 ((1-n% 4 1)172

s e‘ﬁ

1
2

o] —
R
N

1
P
provided that > 1.

The local stability of this equilibrium can be examlned by addlng
small perturbations & andy to the equilibrium values x and y~
respectively and substituting these expressions into equations

3.115 and 3.116,
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This leads to the following equations for£andy.

5{3 = (oc-Zu(‘/‘g + y*) -$ y*)i + (:&-2«('1/‘; + y*)-.l)ﬂa 3.125
dt

o - By (s(t) -£(t-1)) + (y(t) - W(t-1)). 3.126
t

The standard way of solving such equations is to try solutions of

the form
£ = nett | 3.127
Yy = Be)\t ' ' 3.128

where) is an eigenvalue, and A and B are constants depending on

the initial size of the perturbations. -

This leads to the characteristic equation

S-KMN + Kc+d=0 3.129
where K = (1-e™)/\ 3.130
* :‘:2
C=0oc- 20t -xfy +2xfy 3.131
ﬁ .
d= -x+ 2+ 2y + By 3.132

If all solutions of Equation 3.129 have negative real parts then

the equilibrium is stable.

"By using the method of D-partitions (El1'sgol'ts and Norkin (1973))
the regions of stability for pairs of parameter valuesec,R may

be determined.
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Such regions are shown schematically in Figure 3.9
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In region | the predator population becomes extinct. This is because B
is less than | and hence the predators are unable to invade enough
new patches in the time it takes the current predator patches to

crash.

When B is large andxis small (region 1l1) both species' populations
have a low equilibrium density which is unstable since the prey
patches are quickly invaded but new ones are not created quickly

“enough.

In region Il there is a locally stable equilibrium of prey and
predator patches. In this case both the mobility of the predator
and prey is relatively high so that diSpersion between patches

becomes the stabilising factor.

There are a number of important points to note about Hastings'

model, the main one being the relative timescale involved. Essentially
the individual population dynamics within each patch are not modelled
specifically. It is assumed that prey persist in a prey patch until
that patch is invaded whence the local predator-prey community

becomes extinct after a fixed period of time. The actual size of
populations in each patch at time t is irrelevant and the important
timescale of the model becomes the predator patch extinction time.

Any time related results when comparing results from this model should

be related to this timescale.
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3.4.6.2

Many other mathematical ecologists have developed models along
similar lines, a few inQo]Ving more than two épecieé and more
sophisticated within-patch dynamicé; The model of Zeigler
described in Section 3.4.6.3 is such an example as are models by
Caswell (1977) , Hilborn (1975) and Vandermeer (1973).

Another assumption which can be easily modified is that all patches

~ are equally accessible. - It may be more realistic to limit

movement to between nearest neighbours (e.g. Zeigler (1977)).

However none of these modifications have been shown to disagree
with the general conclusion that dispersion between patches in a
spatially heterogeneous environment may lead to stability, although,
as we shall see in the next sections, there is some debate as to

whether continuous dispersion is actually stabilising.

J. Maynard Smith

Maynard Smith (1974) argued that continuous population exchange, such
as that due to continuous migration of individuals between suitable

patches within the total environment, cannot provide effective

stabilisation.

Firstly Maynard Smith considered a continuous habitat broken up
(somewhat contradictarily) into a number of homogeneous cells and
assumed that migration of individuals between cells is instantaneous

and that no deaths occur during migration.

Suppose that the population size of a particular species in a
single cell is oscillating with large amplitude. Will migration
reduce the size of this amplitude? If neighbouring cells oscillate in

phase, Maynard-Smith argued that migration will have no effect.

This conclusion leads to a more significant question: does migration

‘tend to bring neighbouring cells into or out of phase?
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Maynard Smith considered four possible criteria for migration to

occur in a predator-prey community:

i) prey migrate away from cells in which the number of prey
is high.

ii) prey migrate away from cells in which the number of

predators is high.

iii) predators migrate away from cells in which, the number

of predators is high.

iv) predators migrate away from cells in which the number of

prey is low.

He argued that types i) and iii) tend to bring neighbouring cells
into phase but ii) and iv) have no effect on phase. Hence migration
does not tend to reduce population amplitudes and 50 has no effect
on stability.

He recognised that this conclusion is at variance with the result:
of Huffaker's classic experiments (Section 3.2.2) in which slowing
down the migration of the predators and increasing that of the

prey increased the stability (persistence) of the system.

He therefore constructed a 'discrete population exchange' model in
which each cell can be in one of a finite number of states (e.g.
contain prey only, be empty) at time t, and each cell has a transition
probability of changing state after each period of time T which

depends in particular on the state of its nearest neighbours.
~ Simulation runs of this model on a computer demonstrated that

persistent coexistence of predators and prey can occur with a

wide range of parameter values.
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Maynard Smith suggested that the following factors are important

for stability
i) high capacity of prey for migration
ii) cover or refuge for prey
'iii) predators only migrate during a restricted period
iv)  large number of cells
3.4.6.3 B.P. Zeigler

Zeigler (1977) attempted to make Maynard $mith's model more rigorous.

Firstly he proposed that the local community population dynamics in

each cell obey the Lotka-Volterra equations with prey self-limitation.

‘ax(l-x) - Xy 3.133

.c-]£=

dt

dy = -by + xy 3.134
dt ’

where x and y denote the density of prey and predators respectively

in the cell.

This model has the non-trivial equilibrium

x* = b | 3.135

y a(1-b) 3.136

He then defined two positive numbers L1 and L2 called the prey and
predator extinction level respectively. The cell is locally unstable

if x <L, or VAR L2.

1

Zeigler then defined a stability effect as one which makes the
expected lifetime of the overall predator-prey community significantly

greater than that of the cells in isolation.
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A cell can be in one of five states.

i) Acell is in the EMPTY state until it is invaded by
x > L, prey when it enters the PREY state.

ii) The prey population grows according to the logistic
equation until the carrying capacity is reached
when the cell enters the PREY state (unless the cell

is invaded by predators).

iii) If a PREY or PREY' cell is invaded by y=L, predators
the cell enters the PRED state.

iv) After a certain amount of time (which is calculated from
the elapsed time since the cell entered the PREY state)
the density of prey will decline below L1 and the cell
enters the PRED' state.

v)  The predator density will then decline below L2 and
the EMPTY state is entered.

If a cell is in state PREY' (lots of prey) or PRED' (too few

prey, lots of predators) migration of prey or predators respectively
may occur. Neighbouring empty cells may be converted to PREY cells
with probability h and neighbouring PREY and PREY' cells may be
converted to PRED cells with probability p. However this conversion/
migration may only occur at fixed points in time (defined by the

invasion rate).

The number of neighbouring cells to which prey or predators may
migrate is specified as a parameter of the model as is the rate at
which migration may take place (i.e. the invasion rate), the time

the prey population takes to reach the carrying capacity, the time the
in the PRED state, and

in the

prey population takes to decline below L,

the time the predator population takes to decline below L
PRED' state.

2
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Slmulatlon runs of thlS model on a computer demonstrated that
persistence (defined as the non-vanishing of both prey and
predator populations in a certain period of time) is posslb!e for
"~ a wide range of values for p and h (shown schematlcally in Figure

3.10).
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In comparison Zeigler then considered a continuous population

exchange model.

He divided the environment into m cells and described the community

population dynamics in each cell as follows:

dx, = aX. (1-X.) - Xy. + :E: ©(x, - x,) D_ 3.137
L i - i’ EN J ! PREY.

J € Npppy
%%i = (x;-b) + j € Npgep (Vj'yi) DorED 3.138

where i=1,....,m denotes which cell,
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NPREY' NPRED are thelsets of cells to which or from which
prey and predators respectively may migrate from or to

cell i

and D D

PRED ? Pprpy Measure the size of migration.

Zeigler considered what he terms randomised phase/space solutions of

the above equation as follows:

Let C be a cycle of predator and prey population sizes and let

L measure the arc length of C (see Figure 3.11).

Pictociol feg@ientalis of

—— T T
££§e$°f“i“a‘¢'¢5jfﬁﬂé“h
R b e e

Let f be a probability distribution over [ 0,L] such that

L
,(o £(8) de =1 , £(8) 3 0. 3.139

The distance 8 measures the arc length along C from an initial
population size to the current population size and is termed the

phase of the cell.
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If the number of cells.is very large, then there is a random phase/

space solution of the form (C,f) if there is a solution of equations

3.137 and 3.138 [x, (t), vy, (t),....x {t), ¥, (€)1 suchi that for t3 0.
i) The population sizes in every cell are found somewhere
on C.

ii) The proportion of cells having phase in the interval
(8,8 +d8) is f(8) da

iii) The number of cells in the neighbourhood N_° * (N. .°)
ith in (8, B+d0) Ts N (N5 ) £(6) do.
with phase in 8, 6+ is NPREY NERED' f da.

Since the number of cells m is large the diffusion terms in

equations 3.137 and 3.138 can be written.

2 » L

) - x.) D =\ - x, , - de 3.140
J € Npppy (g = xp) DoREY Xo (x(8) - x;) F(8) N ev Oprey 3130
Perey  Mprey X = %;) 3.141

L »
-y D =1, -y, i . D____de 3.142

Y. . by = vp) D eRed jo (y(8) - y;) ,f(e) Nogep Pprep 98 3-1
] PRED = Dprep Merep 7 7 Vy) 3.143

- L- _ (L

where x = So x(8) f(8) de, vy =So y(8) f(8) de 3.144

Hence the pair of population sizes [xi(t), yi(tX];predicted'by
equations 3.137 and 3.138 for each cell i must each satisfy the

following equations.

dx = x(a-c-ax-y) + cx ' 3.145
dt

dy =y (x-b-d) + dy 3.146
dt :

where c = DPREY N?REY’ d = Dprep Nprep @nd X and ; as defined

by equation 3.144 are all non-negative constants.
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These equations have a point equilibrium given by -

y:': = a-c-ax* +£'.'_;<. 3.1"}7
X%
y:‘.“: d';' 3.1’48
(b+d=-x*)

This equilibrium is locally stable and, basical]y from simulation

runs, Zeigler claimed that it is also globally stable.

This suggests that the only random phase/space solution (C,f) of
equations 3.137 and 3.138 is the trivial point cycle where C =
(x*, y*) and f (0) = 1. In this case all the cells remain at the
same point (x*, y*) and the contribution of continuous migration

essentially vanishes.

Zeigler then argued, | believe falsely. (see next section), that
since the effect of diffusion vanishes the equilibrium reduces
to the Lotka-Volterra equilibrium as predicted = by equations
3.133 and 3.134 and this is unstable.

He therefore concluded that a randomised phase/space mode of

persistence cannot be maintained by linear continuous diffusion.
3.4.6.4. Discussion

Hasting's model demonstrates that migration between patches in a
patchy environment can be a stabilising factor. However the
precise conditions for migration are not stated. The timescale
of the model is set by the time a predator-prey relationship
becomes extinct in an individual patch. Hence the invasion rates
o< and B do not necessarily describe continuous migration, only

that a number of invasions occur in a unit time.

Although the conclusion of Maynard = Smith's and Zeigler!s arguments
that continuous linear migration between patches cannot maintain

stability is possibly correct, their actual arguments may be false.

It is probably biologically sensible to propose that migration in

any significant numbers will only occur under certain conditions
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3.5

and that these conditions will only occur for certain, relatively
short, periods of time. The results of.Maynard Smith's.and Zeigler's
simulations demonstrate that such population exchange can be

stabilizing.

Maynard Smith's argument that contiruous higration will nbt.leéd
to stability is difficult to follow and appears to be based on
intuition,rather:than mathematical fact.

Zeigler attempted to make Maynard Smith's argument more rigorous.
However | feel that his analysis of the continuous population

exchange model can be criticised on a number of counts.

Firstly he somewhat understandably assumed that the solutions of
the model equations 3.137 and 3.138 will take the same form

within each cell since the equations essentially are the same

for each cell. However this assumption may exclude yajjd solutions
of the equations, in particular the relative size of populations
may depend on the initial population sizes which may be different

for each cell.

Further Zeigler assumed that x and y in equations 3.145 and 3.146
are constants whereas their values depend on the actual solution

(C, f) and hence on the values of x and y in equation 3.1k4k,

Finally, even if % and ; can be assumed to be constant, the solution
(x*, y*) of equations 3.145 and 3.146 can only be maintained because
there is continuous migration and it is therefore false to conclude
that migration vanishes and that the equilibrium reduces to the

Lotka-Volterra case.

Conclusions

The main aims of this chapter have been to define what is meant by
the term environmental heterogeneity and to investigate the effect

of such heterogeneity on community stability.
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It is clear that there are a number of types of envnronmental

heterogeneity to be consudered

Temporal heterogeneity is relatively straightforward to model
and is not considered in any greét detail. Results obtained
by May in particular indicate that conditions for community

stability are more stringent than for the equivalent time -

homogeneous 'case. -

Spatial heterogeneity may occur in a number of forms and perhaps
one of the most important observations is that spatial heterogeneity
may be created in a physically homogeneous ;environment by an uneven

distribution of one species affecting the behaviour of another.

Ecologists, and indeed mathematical ecologists, have rarely fully
defined the terms heterogeneity and use the term spatial heterogeneity
very loosely. However, in most discussions of experiments and

field observations concerning spatially heterogeneous environments

the indications are that such heterogeneity is stabilizing.

We have seen that models of community dynamics in spatially heterogeneous
environments can become very complex and difficult to analyse and
indeed few results have been obtained for communities of more than

two species, except by simulation.

Most of the models discussed in Section 3.4 support the theory that
spatial heterogeneity is stabilizing. It certainly appears to be
valid for communities in environments which physica]ly provide

refuges or cover for prey species, and for communities in environments
in which individuals of prey species are distributed non-randomly

and predators react to this by aggregating in areas of high prey
density.

There is some debate about the stabilizing nature of migrafion
between patches in a patchy environment. The model of Hastings
demonstrates that continuous migration can lead to stabilization
of a two-species community. Maynard Smith and Zeigler argue that
migration which only occurs at discrete intervals in time is more

likely to be stabilizing.
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In all cases the general conclusion is that spatial heterogeneity
of the environment in which a community is living is not likely

to make the community less stable.
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