

Abstract Test Case Prioritization Using

Repeated Small-Strength Level-Combination

Coverage

Rubing Huang, Weifeng Sun, Tsong Yueh Chen,

Dave Towey, Jinfu Chen, Weiwen Zong, Yunan Zhou

Faculty of Science and Engineering, University of Nottingham Ningbo

China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.

First published 2020

This work is made available under the terms of the Creative Commons

Attribution 4.0 International License:

http://creativecommons.org/licenses/by/4.0

The work is licenced to the University of Nottingham Ningbo China
under the Global University Publication Licence:
https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence.pdf

http://creativecommons.org/licenses/by/4.0
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Abstract Test Case Prioritization using Repeated
Small-strength Level-combination Coverage
Rubing Huang, Member, IEEE, Weifeng Sun, Tsong Yueh Chen, Senior Member, IEEE, Dave

Towey, Member, IEEE, Jinfu Chen, Member, IEEE, Weiwen Zong, Yunan Zhou

Abstract—Abstract Test Cases (ATCs) have been widely used in practice, including in combinatorial testing and in software product
line testing. When constructing a set of ATCs, due to limited testing resources in practice (for example in regression testing), Test Case
Prioritization (TCP) has been proposed to improve the testing quality, aiming at ordering test cases to increase the speed with which
faults are detected. One intuitive and extensively studied TCP technique for ATCs is λ-wise Level-combination Coverage based
Prioritization (λLCP), a static, black-box prioritization technique that only uses the ATC information to guide the prioritization process. A
challenge facing λLCP, however, is the necessity for the selection of the fixed prioritization strength λ before testing — testers need to
choose an appropriate λ value before testing begins. Choosing higher λ values may improve the testing effectiveness of λLCP (for
example, by finding faults faster), but may reduce the testing efficiency (by incurring additional prioritization costs). Conversely,
choosing lower λ values may improve the efficiency, but may also reduce the effectiveness. In this paper, we propose a new family of
λLCP techniques, Repeated Small-strength Level-combination Coverage-based Prioritization (RSLCP), that repeatedly achieves the
full combination coverage at lower strengths. RSLCP maintains λLCP’s advantages of being static and black box, but avoids the
challenge of prioritization strength selection. We performed an empirical study involving five different versions of each of five C
programs. Compared with λLCP, and Incremental-strength LCP (ILCP), our results show that RSLCP could provide a good trade-off
between testing effectiveness and efficiency. Our results also show that RSLCP is more effective and efficient than two popular
techniques of Similarity-based Prioritization (SP). In addition, the results of empirical studies also show that RSLCP can remain robust
over multiple system releases.

Index Terms—Software testing, regression testing, abstract test case, test case prioritization, level-combination coverage.

F

1 INTRODUCTION

IN practice, software systems are usually influenced by
different parameters or factors (such as configuration op-

tions and user inputs), with each parameter possibly having
a finite set of different levels or values. An abstract test case
(ATC) represents a combination of levels of different pa-
rameters, and has been used in different testing situations,
including combinatorial testing [1], software product lines
testing [2], and highly-configurable systems testing [3].

When an ATC set has been constructed, it is desirable
to execute all the test cases — in which case execution
order does not matter. However, due to often limited testing
resources, it is often possible to only run some of the ATCs
in the set. In such situations, the ATC execution order
may become critical, because a well-prioritized test case

• R. Huang is with the School of Computer Science and Communication
Engineering, and also with Jiangsu Key Laboratory of Security Technology
for Industrial Cyberspace, Jiangsu University, Zhenjiang, Jiangsu 212013,
China.
E-mail: rbhuang@ujs.edu.cn.

• W. Sun, J. Chen, W. Zong, and Y. Zhou are with the School of Computer
Science and Communication Engineering, Jiangsu University, Zhenjiang,
Jiangsu 212013, China.
E-mail: 3140608036@stmail.ujs.edu.cn, {jinfuchen, vevanzong,
zhouyn}@ujs.edu.cn.

• T. Y. Chen is with the Department of Computer Science and Software
Engineering, Swinburne University of Technology, Hawthorn, VIC 3122,
Australia.
E-mail: tychen@swin.edu.au.

• D. Towey is with the School of Computer Science, University of Notting-
ham Ningbo China, Ningbo, Zhejiang 315100, China.
E-mail: dave.towey@nottingham.edu.cn.

execution sequence may identify failures more quickly, and
thus may enable earlier fault characterization, diagnosis and
correction [1]. Generally speaking, the process of schedul-
ing the order of test cases is called Test Case Prioritization
(TCP) [4], and the prioritization of ATCs is called Abstract
Test Case Prioritization (ATCP) [5].

Many strategies have been proposed to guide ATCP
according to different criteria, for example random test case
prioritization [6, 7], and Similarity-based Prioritization (SP) [8–
10]. The most widely-used ATCP is λ-wise Level-combination
Coverage-based Prioritization (λLCP) [11], which adopts a
fixed strength λ (called the prioritization strength) to choose
each ATC in a greedy manner: When selecting each next
ATC from the candidates, λLCP calculates the number
of parameter-level combinations at a fixed prioritization
strength λ covered by each candidate that has not yet been
covered by executed test cases, and then chooses the one
with the maximum number of uncovered λ-wise parameter-
level combinations. λLCP has many advantages, including
that it is simple and intuitive [11]. Furthermore, because
it only uses the level-combination coverage information
derived from the test cases, rather than information from the
source code or program execution, λLCP is a static, black-
box technique [12]. Although previous studies have shown
that λLCP is an effective prioritization technique, in terms
of fault detection [6, 11, 13, 14], it does have a constraint that
the fixed strength λ must be set before prioritization begins.
Different λ values may lead to different performances, with
investigations [13, 14] finding that larger λ values may
improve the testing effectiveness of λLCP (for example, by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

finding faults faster), but may reduce the testing efficiency
(by incurring additional prioritization costs); conversely,
lower λ values may improve the efficiency, but may also
reduce the effectiveness.

Although it is intuitive that a small prioritization
strength for λLCP may be efficient (in terms of overheads),
it has also been shown that over 50% of faults can be
triggered by one parameter (1-wise combination coverage),
and more than 70% can triggered by two (2-wise combina-
tion coverage) [15, 16]. This indicates that choosing a small
prioritization strength may be effective for λLCP, especially
when the number of ATCs is small. However, when the
ATC candidate set is large, λLCP with small prioritization
strengths may become ineffective [17]. This is because, when
the small-strength (1-wise or 2-wise) level-combination cov-
erage is fully achieved by the selected or executed ATCs, the
remaining candidates are effectively randomly ordered.

In this paper we propose a new family of λLCP tech-
niques, Repeated Small-strength Level-combination Coverage-
based Prioritization (RSLCP). RSLCP attempts to overcome
the limitations of current versions of LCP, attempting to
better balance the trade-off between testing effectiveness
and efficiency. In particular, RSLCP begins with a small
prioritization strength λ (λ = 1, 2) to implement the λLCP
algorithm — which means that RSLCP is also initially λLCP.
Once the λ-wise level-combination coverage of selected or
executed ATCs is fully achieved — i.e., the number of λ-wise
level combinations covered by the selected ATCs is equal
to that covered by all candidates — then RSLCP restarts
with the same prioritization strength λ, repeating full λ-
wise level-combination coverage in the next round. This
process is repeated until all candidates have been chosen.
RSLCP has the following three advantages: (1) it is very
simple, adopting a similar mechanism to λLCP; (2) similar
to λLCP, it is a static, black-box prioritization method, using
only the level-combination coverage to guide the ATCP
(this means that it is not necessary to obtain source code
information, nor to execute the program); and (3) unlike
λLCP, it is not necessary to set the prioritization strength
before prioritizing ATCs.

To evaluate the proposed technique, we conducted em-
pirical studies on five C programs, each of which had five
different versions. In summary, the main contributions of
this paper are:

• We propose a new strategy to guide the ATC prioriti-
zation, Repeated Fixed-small-strength Level-combination
Coverage-based Prioritization (RSLCP), and describe a
framework to support it.

• Based on the proposed framework, we provide two
categories (using two different strategies) involving
six algorithms to implement RSLCP.

• We report on empirical studies investigating each
RSLCP technique, comparing with λLCP and SP,
from the perspectives of: testing effectiveness (the
speed of interaction coverage and fault detection);
testing efficiency (the prioritization cost); and robust-
ness (how well the overall fault detection potential is
maintained across different versions of the software
under test).

The rest of this paper is organized as follows: Section 2

describes the background information. Section 3 introduces
the RSLCP method, including the framework, algorithm,
complexity analysis, and mechanism. Section 4 presents
the research questions and experimental setup. Section 5
reports on the empirical studies conducted to answer the
research questions. Section 6 reviews related work, and,
finally, Section 7 concludes the paper, and discusses future
work.

2 BACKGROUND

In this section, we describe some background information
about abstract test cases and test case prioritization.

2.1 Abstract Test Case
Given some software under test (SUT) that has k parameters
that constitute a parameter set P = {p1, p2, · · · , pk}, with
a corresponding level set L = {L1, L2, · · · , Lk}, where
each parameter pi has some valid levels from the finite set
Li (i = 1, 2, · · · , k). In practice, parameters may represent
anything that influences the performance of the SUT, such
as components, configuration options, user inputs, and so
on. Let Q be the set of constraints on level combinations.
Definition 2.1. Input Parameter Model: An input pa-

rameter model (or input model) for the SUT, denoted as
Model(P,L,Q), is a model of the SUT that includes the set
of some parameters P that may influence the SUT, the set of
level sets L for each parameter, and constraints set Q on level
combinations.

For example, Figure 1 shows a screenshot of the font
settings for Microsoft Word 20131. As shown in the red
box, we only consider the Effects aspects of the font set-
tings, for which there are seven choices. Table 1 gives an

1. https://products.office.com/en-us/microsoft-word-2013.

Fig. 1. Screenshot of the font settings from Microsoft Word 2013.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1
An Input Parameter Model for Microsoft Word 2013 Font Effects.

Parameter p1: Strikethrough p2: Double Strikethrough p3: Superscript p4: Subscript p5: Small caps p6: All caps p7: Hidden

Level Yes (0) Yes (2) Yes (4) Yes (6) Yes (8) Yes (10) Yes (12)
No (1) No (3) No (5) No (7) No (9) No (11) No (13)

(Strikethrough = “Yes”) ↔ (Double Strikethrough = “No”), i.e., (p1 = “0”) ↔ (p2 = “3”).
(Superscript = “Yes”) ↔ (Subscript = “No”), i.e., (p3 = “4”) ↔ (p4 = “7”).
(Small caps = “Yes”) ↔ (All caps = “No”), i.e., (p5 = “8”) ↔ (p6 = “11”).

input parameter model for the font effects of Microsoft
Word 2013. The effects have seven parameters, each of
which can have two levels. It is not possible to have both
parameters from any of the sets (Strikethrough, Double
Strikethrough), (Superscript, Subscript), or (Small caps,
All caps) to be “Yes” at the same time. Therefore, there
are three level combination constraints. To simplify the rep-
resentation of this problem, each parameter can be denoted
by pi (i = 1, 2, · · · , 7), and each level can be labelled by an
integer (starting at 0), as shown in Table 1.

This example yields the following input parameter
model: Model(P = {p1, p2, · · · , p7}, L = {{“0”, “1”},
{“2”, “3”}, {“4”, “5”}, {“6”, “7”}, {“8”, “9”}, {“10”, “11”},
{“12”, “13”}},Q = {p1 = “0” ↔ p2 = “3”, p3 =
“4” ↔ p4 = “7”, p5 = “8” ↔ p6 = “11”}), where
the symbol ↔ represents implication. Because the
specific values of each parameter have no impact on
the SUT model, without loss of generality, we can use the
following abbreviated version: Model(|L1||L2| · · · |Lk|,Q).
Therefore, the above model can be represented as:
Model(27,Q = {“0”↔ “3”, “4”↔ “7”, “8”↔ “11”}).

Definition 2.2. Abstract Test Case: A k-tuple (l1, l2, · · · , lk)
is an abstract test case of the SUT where li ∈ Li, 1 ≤ i ≤ k.

If all the level constraints in Q are satisfied, then
the ATC is said to be valid, otherwise it is invalid.
An example of a valid ATC for the previous model is
(“0”, “3”, “4”, “7”, “8”, “11”, “12”); and an example of an
invalid one is (“0”, “2”, “5”, “6”, “9”, “10”, “13”) — be-
cause it violates the constraint (“0”↔ “3”).

Definition 2.3. η-wise Level Combination: An η-wise level
combination is a k-tuple (l̂1, l̂2, · · · , l̂k) involving η param-
eters with fixed levels (called fixed parameters) and (k − η)
parameters with arbitrary allowable levels (called free param-
eters that are denoted by “−”), where 0 ≤ η ≤ k and:

l̂i =

{
li ∈ Li, if pi is a fixed parameter;
−, if pi is a free parameter (1)

An η-wise level combination is also called an η-wise
schema [1]. Without loss of generality, to more clearly de-
scribe the problem, free parameters can be ignored. In
other words, an η-wise level combination can be consid-
ered an η-tuple. Intuitively speaking, any ATC can cov-
er some η-wise level combinations: for example, an ATC
(“1”, “2”, “4”, “7”, “8”, “11”, “13”) covers seven 1-wise lev-
el combinations (“1”), (“2”), (“4”), (“7”), (“8”), (“11”), and
(“13”). Similar to ATCs, an η-wise level combination may
also be either valid or invalid: for example, a 2-wise level
combination (“1”, “2”) is valid; but another one, (“0”, “2”),
is invalid. Obviously, a valid ATC covers all valid η-wise
level combinations, regardless of η values.

For ease of description, we define a function ψ(η, tc) for
an ATC tc that returns the set of all η-wise level combina-
tions covered by tc, i.e.:

ψ(η, tc) = {(vj1 , vj2 , · · · , vjη)|1 ≤ j1 < j2 < · · · < jη ≤ k} (2)

Similarly, a function ψ(η, T) for a set T of test cases can
be defined to return the set of all η-wise level combinations
covered by all model inputs in T , i.e.:

ψ(η, T) =
∪

tc∈T

ψ(η, tc) (3)

Obviously, the size of ψ(η, tc) (|ψ(η, tc)|) is equal to C
(
k, η

)
(the number of η-combinations from k elements).

We next present the definition of η-wise level-
combination coverage for an ATC, or for a subset of the
given test set.

Definition 2.4. η-wise Level-combination Coverage: Given
a valid test suite T , a valid ATC tc, and a subset T ′ of T
(tc ∈ T and T ′ ⊆ T), the η-wise level-combination coverage
of tc against T can be defined as the ratio of the number of
η-wise level combinations covered by tc to those covered by T :
|ψ(η,tc)|
|ψ(η,T)| . The η-wise level-combination coverage of test set T ′

against T can be written as: |ψ(η,T ′)|
|ψ(η,T)| .

2.2 Test Case Prioritization

Test Case Prioritization (TCP) seeks to schedule test cases
such that those with higher priority, according to some
criteria, are executed earlier than those with lower priority.
When testing resources are limited or insufficient for the
execution of all test cases in a test suite, a well-designed
test case execution order can be crucial. The problem of Test
Case Prioritization is defined as follows [4]:

Definition 2.5. Test Case Prioritization: Given a tuple (T,Ω, g),
where T is a test suite, Ω is the set of all possible permutations of
T , and g is a fitness function from Ω to real numbers, the goal of
test case prioritization is to find a prioritized test suite (also called
a test sequence) S ∈ Ω such that:

(∀S′) (S′ ∈ Ω) (S′ ̸= S) [g(S) ≥ g(S′)] (4)

According to Rothermel et al. [4], prioritization can be
done according to many possible criteria, including, for
example, code coverage [18]. To date, many TCP strategies
have been proposed, based on various concepts, including:
fault severity [19]; source code coverage [4, 20, 21]; search-
based techniques [18]; integer linear programming [22];
risk exposure [23]; historical records from recent regression
tests [24]; and information retrieval [25, 26]. Most strategies
can be classified as either meta-heuristic search methods or
greedy methods [27]. When TCP is applied to abstract test
cases, it is called Abstract Test Case Prioritization (ATCP) [5].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

3 REPEATED FIXED-SMALL-STRENGTH LEVEL-
COMBINATION COVERAGE-BASED PRIORITIZATION

In this section, we present a new family of λLCP techniques
that work by repeatedly using repeated, small-strength
level-combination coverage. We call these techniques Re-
peated Small-strength Level-combination Coverage-based Priori-
tization (RSLCP). We introduce two RSLCP versions in this
section, and present an analysis of the space and time
complexity for each version.

3.1 Framework
Unlike λLCP, because the RSLCP prioritization strength is
limited to 1 or 2, it is not necessary that a value be assigned
to λ before prioritizing ATCs.

As shown in Figure 2, RSLCP prioritizes an unordered
set of ATCs (denoted T) into a prioritized set S that has
been divided into α (α ≥ 1) disjoint and ordered parts
⟨S1, S2, · · · , Sα⟩, where each Si (i = 1, 2, · · · , α) has also
been prioritized using a prioritization strength λi. Formally,
the following five conditions must be satisfied:

1) Each Si is a non-empty test sequence, 1 ≤ i ≤ α;

2) T = S1

∪
S2

∪
· · ·
∪
Sα;

3) S = ⟨S1, S2, · · · , Sα⟩;

4) Si

∩
Sj = ∅, 1 ≤ i ̸= j ≤ α;

5) λi is used for the construction of Si

(5)

Condition 1 means each subset Si is both non-empty and
ordered. Condition 2 means that all test cases are divided
amongst the α subsets. Condition 3 means that S is ordered
by sequencing S1, S2, · · · , Sα successively (which means
that Sj+1 follows Sj (1 ≤ j < α)). According to Condition
4, no test case belongs to more than one test sequence, and,
finally, Condition 5 means that Si is constructed using the
prioritization strength λi.

Although the value of α is fully determined by the given
T , it does not impact on the framework or on the following
algorithms. We created two versions of the framework, an
independent and a partially-independent version.

3.1.1 RSLCP Independent Version
The RSLCP Independent Version (RSLCP-IV) guarantees
that construction of Si+1 is independent of construction of
Si (1 ≤ i < α). Formally, the following two conditions must
be satisfied:

1) λl ∈ {1, 2}, 1 ≤ l ≤ α;

2) ψ(λl, Sl) = ψ(λl, T \
∪l−1

i=1 Si)

 (6)

Condition 1 means that each subset Si adopts a small
strength (1 or 2) to guide the λLCP process. Condition 2
means that each subset Si covers all λi-wise level combi-
nations that could be covered by the candidates remaining
before constructing Si.

Although the construction of test sequences Si and
Si+1 (1 ≤ i < α) are independent, actually, construction
of Si may impact on the construction of Si+1 (because Si+1

is constructed using only those test cases remaining after
Si’s construction). The algorithms used to prioritize each
test sequence Si will be presented in Section 3.2.

�� �� ���

�������

�������

�� �� ��

���������

�

�������

Fig. 2. Illustration of RSLCP.

3.1.2 RSLCP Partially-independent Version
The RSLCP Partially-independent Version (RSLCP-PV) is
similar to the independent version, but involves some
Si+1 constructions that are based on the Si construction.
The following three conditions must be satisfied (assuming
S0 = ∅):

1) λ2x−1 = 1, λ2x = 2, 1 ≤ x ≤ ⌈α
2
⌉;

2) ψ(λ2x−1, S2x−1) = ψ(λ2x−1, T \
∪2x−2

i=1 Si);

3) ψ(λ2x, S2x−1

∪
S2x) = ψ(λ2x, T \

∪2x−2
i=1 Si)

 (7)

where x is an integer.
Condition 1 differs from that of RSLCP-IV by assigning

a prioritization strength of 1 to each Si when i is an odd
number, and a strength of 2 when i is even. Conditions 2 and
3 mean that, when i is odd, the corresponding test sequence
Si is constructed independently to achieve the highest 1-
wise level-combination coverage; but when i is even, the Si
is constructed so as to guarantee that Si and Si−1 cover
the same 2-wise level combinations as those covered by
the remaining candidates. In effect, RSLCP-PV first uses a
prioritization strength of 1 to construct the subset S2x−1,
and then considers S2x−1 as the already selected ATCs for
construction of the test sequence S2x. This process is then
repeatedly applied to the remaining candidates.

3.2 Algorithm

Algorithm 1 describes the basic RSLCP procedure, which
includes iteratively constructing each Si (i = 1, 2, · · · , α)
(Line 4). Once an Si is completely constructed, it is added to
the end of S (S ← S ≻ Si) (Line 5), and removed from the
candidate set T ′ (Line 6). The test sequence Si+1 can then
be constructed, with such constructions continuing until all
candidates have been chosen. Clearly, although construction
of the test sequence Si is independent of construction of
Sj (1 ≤ i ̸= j ≤ α), as can be seen, because Sj is
constructed using elements from candidates remaining after

Algorithm 1: RSLCP Procedure
Input: T = {tc1, tc2, · · · , tcn} ◃ Unordered ATCs
Output: S ◃ Prioritized ATCs
1: i← 1
2: T ′ ← T
3: while |S| ̸= n do
4: Construct Si by selecting elements from the remaining candidates

T ′ as subsequent ATCs in S, according to a specified criterion and
λi ∈ {1, 2}, i.e., Algorithm2(T ′, λi) or Algorithm3(T ′, λi).

5: S ← (S ≻ Si) ◃ Add Si into the end of S
6: T ′ ← (T ′ \ Si)
7: i← (i+ 1)
8: end while
9: return S

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Si’s construction, the construction of Si can impact that of
Sj .

We propose an algorithm to complete the construction
process for each Si. The algorithm draws from the well-
known greedy approach, Additional Greedy Approach [18],
which iteratively selects the element of maximum weight
(for the problem) from those parts not yet selected or
executed. The problem for construction of Si is to cover
the maximum number of λi-wise level combinations not
yet covered by test cases that have already been selected
or executed. Algorithm 2 describes the Additional Greedy
algorithm to construct Si for RSLCP-IV, and Algorithm 3
describes it for RSLCP-PV.

3.2.1 RSLCP-IV Algorithm

As shown in Algorithm 2, the RSLCP-IV algorithm chooses
one of the candidates as the next ATC in Si such that it
covers the maximum number of λi-wise level combinations
that have not yet been covered by the already selected or
executed ATCs in Si (Line 5). If more than one candidate
has the highest λi-wise level-combination coverage, then
a random tie-breaking mechanism [28] is used, so that one
best candidate is selected. This process is repeated until
either of the following two conditions is satisfied (Line 3):
(1) all candidates have been selected (i.e., T ′ = ∅); or (2)
Si achieves full λi-wise level-combination coverage against
T ′ (i.e., ψ(λi, Si) = TempSet, where TempSet is the set of
λi-wise level combinations covered by the remaining ATCs
after completely constructing Si−1).

For each prioritization strength λi (1 ≤ i ≤ α) used
for constructing Si, we use the following five assignment
categories:

• Pure 1-wise RSLCP-IV: Each prioritization strength
λi is assigned a value of 1: λ1 = λ2 = · · · = λα = 1.

• Pure 2-wise RSLCP-IV: Similar to the Pure 1-wise
RSLCP-IV, this category assigns each prioritization
strength λi a value of 2: λ1 = λ2 = · · · = λα = 2.

• (1 + 2)-wise RSLCP-IV: Unlike the previous two
assignment categories, this category uses a combina-
tion of 1 and 2 for the prioritization strengths. For Si
where i is an odd number, the prioritization strength
λi is assigned a value of 1; and when i is an even
number, λi is assigned a value of 2: λ1 = λ3 = · · · =
λ2⌈α

2 ⌉−1 = 1; and λ2 = λ4 = · · · = λ⌊α
2 ⌋ = 2.

• (2 + 1)-wise RSLCP-IV: This category inverts the (1 +
2)-wise RSLCP-IV category. For Si with even i num-
bers, λi is assigned a value of 1; Si with odd i num-

Algorithm 2: RSLCP-IV Si Construction(T ′, λi)

Input: T ′ ⊆ T ◃ Remaining candidates from T
Output: Si ◃ Prioritized ATCs
1: Si ← ⟨⟩
2: TempSet← ψ(λi, T

′)
3: while T ′ ̸= ∅ && ψ(λi, Si) ̸= TempSet do
4: Select tc ∈ T ′, where max

(∣∣ψ(λi, tc)∪ψ(λi, Si)
∣∣) ◃ Take

a random one in case of equality
5: Si ← (Si ≻ ⟨tc⟩)
6: T ′ ← (T ′ \ {tci})
7: end while
8: return Si

Algorithm 3: RSLCP-PV Si Construction(T ′, λi)

Input: T ′ ⊆ T ◃ Remaining candidates from T
Output: Si ◃ Prioritized ATCs
1: Si ← ⟨⟩
2: if λi == 1 then
3: S′ ← ∅
4: else ◃ For the case of λi = 2
5: S′ ← Si−1

6: end if
7: TempSet← ψ(λi, T

′ ∪S′)
8: while T ′ ̸= ∅ && ψ(λi, Si

∪
S′) ̸= TempSet do

9: Select tc ∈ T ′, where max
(∣∣ψ(λi, tc)∪ψ(λi, Si

∪
S′)

∣∣) ◃
Take a random one in case of equality

10: Si ← (Si ≻ ⟨tc⟩)
11: T ′ ← (T ′ \ {tci})
12: end while
13: return Si

bers is assigned 2: λ1 = λ3 = · · · = λ2⌈α
2 ⌉−1 = 2;

and λ2 = λ4 = · · · = λ⌊α
2 ⌋ = 1.

• Random Assignment RSLCP-IV: In this category,
each prioritization strength λi is randomly assigned
either a 1 or 2 value: λi = rand(1, 2), where rand(x, y)
is a function returning an integer in the range [x, y].

3.2.2 RSLCP-PV Algorithm
The RSLCP-PV algorithm (Algorithm 3) is similar to the (1
+ 2)-wise RSLCP-IV algorithm. Construction of Si with odd
values of i (S2x−1, 1 ≤ x ≤ α/2) uses the same mecha-
nism as the RSLCP-IV algorithm (a prioritization strength
of 1), indicating that this part is independent of previous
constructions (Line 3). However, when constructing Si for
even values of i (S2x), although the same prioritization
strength of 2 is used, this part is partially dependent (not
completely independent): information about the λ2x−1-wise
level combinations covered by ATCs in S2x−1 is used (Line
5). Random tie-breaking [28] is again used when there is
more than one candidate covering the same maximum level
of combinations.

The RSLCP-PV algorithm first uses a prioritization
strength of 1 to prioritize ATCs. When 1-wise level-
combination coverage has been fully achieved for S2x−1,
then a value of 2 is used for the prioritization strength.
Effectively, the RSLCP-PV algorithm uses incremental pri-
oritization strengths (from 1 to 2) to construct Si.

3.3 Complexity Analysis

In this section, we provide a brief analysis of both the space
and time complexity of RSLCP. We first introduce the data
structure used to store the λi-wise level combinations. Given
Model(|L1||L2| · · · |Lk|, Q) and ATC set T with size n, we
assume that δ = max1≤i≤k{|Li|}.

A 2-layer hierarchical data structure, denoted Hall, is
used to store all λi-wise level combinations derived from the
input parameter model. The first layer of Hall is an array of
C
(
k, λi) elements, each of which is a parameter combination

with size λi, denoted FCλi = (pj1 , pj2 , · · · , pjλi
), where

1 ≤ j1 < j2 < · · · < jλi ≤ k. In other words, this array
contains all possible λi-wise parameter combinations. Each
parameter combination in the first level is actually a pointer
to the next layer. Each structure in the second layer is a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

bitmap for all λi-wise level combinations derived from each
λi-wise parameter combination. Each bitmap uses a single
bit for each λi-wise level combination, with a value of 1
indicting that the relevant level combination has already
been covered by previously selected ATCs, but a value of
0 meaning that it has not yet been covered.

For each candidate tc ∈ T , we use an array Heach of
size C(k, λi), each element of which represents the index
of the λi-wise level combination of the corresponding FCλi

in the second level of Hall. To check whether each λi-wise
level combination is covered or not, its index can be used to
locate the relevant position in the bitmap.

3.3.1 Space Complexity
We next present an analysis of the space complexity of
RSLCP, which is determined by two parameters: (1) the
number of candidates, n; and (2) the number of η-wise (η ∈
{1, 2}) level combinations derived from the input parameter
model.

Because each candidate covers η-wise level combinations
of size C(k, η), the space complexity for parameter (1) is
O
(
n × C(k, η)

)
. The space complexity for parameter (2) is

determined by the input parameter model. As described in
the previous section, the data structure used to store the
possible η-wise level combinations, Hall, has two layers. The
first layer of Hall contains all η-wise parameter combination-
s, resulting in a space complexity of O1 = O

(
C(k, η)

)
. The

space complexity of the second layer, O2, can be described
as follows:

O2 = O

(∑
1≤j1<j2<···<jη≤k

(
|Lj1 ||Lj2 | · · · |Ljρi

|
))

< O

(∑
1≤j1<j2<···<jη≤k

(
δη
))

= O
(
C(k, η)× δη

)
(8)

Therefore, the RSLCP space complexity is:

O(RSLCP) = O
(
n× C(k, η)

)
+O1 +O2

< O
(
n× C(k, η)

)
+O

(
C(k, η)

)
+O

(
C(k, η)× δη

)
= O

(
C(k, η)×

(
n+ 1 + δη

))
= O

(
C(k, η)×

(
n+ δη

))
(9)

Because η is limited to a value of either 1 or 2, the best
space complexity is when η = 1, givingO

(
C(k, 1)×(n+δ)

)
,

which is of the same order asO
(
k×(n+δ)

)
. The worst space

complexity, when η = 2, is O
(
C(k, 2) ×

(
n + δ2

))
, which

is of the same order as O
(
k2 ×

(
n + δ2

))
. Of the different

versions of RSLCP, only Pure 1-wise RSLCP-IV has the best
space complexity.

3.3.2 Time Complexity
We next present an analysis of the time complexity of
RSLCP, which is also determined by two parameters: (1)
the number of candidates involved, n; and (2) the time com-
plexity of calculating uncovered η-wise level combinations
for each candidate.

Regarding Parameter (1), when selecting the i-th model
input from candidates, RSLCP needs to check each of the
(n− i+ 1) candidates. For Parameter (2), there is a need to
check whether or not the η-wise level combinations covered

by each candidate tc are covered by previously selected
ATCs. Since Heach stores the index of each η-wise level
combination, this check takes O(1) time for each η-wise
level combination. Therefore, the RSLCP time complexity
can be presented as:

O(RSLCP) = O

(
n∑

i=1

(
(n− i+ 1)× C(k, η)

))

= O

((
n∑

i=1

(n− i+ 1)

)
× C(k, η)

)

= O

(
n(n+ 1)

2
× C(k, η)

)
= O

(
n2 × C(k, η)

)
(10)

Similar to the results of the space complexity analysis,
RSLCP has best time complexity (O

(
n2 × k

)
) when η = 1,

and worst complexity (O
(
n2 × k2

)
) when η = 2. Again, of

the different RSLCP versions, only Pure 1-wise RSLCP-IV
has the best time complexity.

Previous investigations [27, 29] have shown that the or-
der of time complexity of λLCP is equal to O

(
n2×C(k, λ)

)
.

This means that when 1 ≤ λ ≤ ⌈k/2⌉, then as λ increases,
the prioritization time of λLCP also generally increases;
however, when ⌈k/2⌉ < λ ≤ k, then the prioritization time
generally decreases as λ increases. As discussed by Petke et
al. [13, 14], λ is generally assigned a value between 1 and 6,
which means that λ is generally less than ⌈k/2⌉, especially
when k is large. Since λLCP’s order of time complexity is
O
(
n2 × C(k, η)

)
(where η is equal to 1 or 2), it is expected

that RSLCP would have similar testing efficiency to λLCP
when λ is 1 or 2. However, RSLCP should be more efficient
than λLCP when λ is 3, 4, 5, or 6.

3.4 Discussion
This section briefly explains why RSLCP should achieve
improvements over λLCP. RSLCP attempts to provide a
trade-off between testing effectiveness and efficiency for pri-
oritizing ATCs. The analysis of time complexity showed that
the testing efficiency of RSLCP should be similar or better
than λLCP, which means that RSLCP is an efficient ATCP
technique. The rest of this analysis, therefore, addresses how
RSLCP should provide comparable testing effectiveness,
comparing RSLCP with λLCP for different λ values.

• When 1 ≤ λ ≤ 2: As discussed earlier (Section 3.1),
RSLCP uses either 1 or 2 when applying λLCP to the
prioritization of ATCs, which means that it would
cover 1-wise or 2-wise level combinations as quickly
as λLCP. This means that RSLCP should have testing
effectiveness that is at least similar to λLCP. Further-
more, when 1-wise or 2-wise level combinations have
been fully covered by the already selected ATCs,
λLCP then randomly prioritizes the remaining ATCs.
However, RSLCP repeats the λLCP process to pri-
oritize any remaining ATCs, which should provide
better performance than random prioritization (for
example, in terms of the speed of covering higher-
strength level combinations).

• When 3 ≤ λ ≤ 6: RSLCP should be faster at
covering 1-wise or 2-wise level combinations than

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

λLCP, because this is the basic principle of RSLCP.
Compared with λLCP, RSLCP may, however, be s-
lower at covering high-strength level combinations.
However, because RSLCP repeatedly achieves full 1-
wise or 2-wise interaction coverage, it may also be
able to quickly (to some extent) cover high-strength
level combinations. For example, if a candidate ATC
tc covers a set of 1-wise level combinations that have
not been covered by previously selected ATCs, tc
may also cover a set of λ-wise level combinations. In
other words, RSLCP may sometimes provide compa-
rable testing effectiveness to λLCP, when λ is high.

4 EXPERIMENTAL SETUP

In this section, we present the research questions related
to the testing effectiveness and efficiency of our proposed
techniques, and examine the experiments we conducted to
answer them.

4.1 Research Questions

In the field of test case prioritization, two important issues
are: (1) the prioritization effectiveness; and (2) the prioriti-
zation efficiency. Generally speaking, the prioritization ef-
fectiveness is measured by the rate of fault detection. How-
ever, due to the characteristics of ATCs, the prioritization
effectiveness can be also measured by the rate of interaction
coverage. In this study, therefore, we focus on the rates of
interaction coverage and fault detection with respect to the
effectiveness. Furthermore, when a new version of the SUT
is released, the original prioritized test suite may become
less effective: the initial test ordering might no longer be op-
timal. It would be helpful, therefore, for testers to know how
maintainable the fault detection potential (the robustness) of
a test suite prioritization technique is over multiple releases
of the system. The following four research questions were
designed to examine the testing effectiveness, prioritization
costs, and robustness of RSLCP.

RQ1: How well do the six RSLCP versions perform?

RQ1.1: How well do the five RSLCP-IV algorithms per-
form?

RQ1.2: How well does the RSLCP-PV algorithm com-
pare with the RSLCP-IV algorithms?

Answering RQ1 will help testers know which RSLCP
technique is the most effective or efficient. The two sub-
questions are designed to further investigate the best
RSLCP-IV algorithms and the differences between the
RSLCP-IV and RSLCP-PV algorithms.

RQ2: How well does RSLCP compare with λLCP?

As discussed, RSLCP attempts to balance the trade-
off between testing effectiveness and efficiency in λLCP.
Answering RQ2 should make it clear whether or not RSLCP
can achieve comparable testing effectiveness to current
λLCP techniques, which would help clarify whether or not
it should be considered as a cost-effective alternative.

RQ3: How does RSLCP compare with other widely-used
prioritization techniques such as Incremental-strength LCP
(ILCP), and Similarity-based Prioritization (SP)?

The ILCP is another ATCP technique to avoid the s-
election of prioritization strength existed in λLCP; while
the SP has been considered as an efficient prioritization
technique. Therefore, answer RQ3 would enable a better
understanding of the testing effectiveness and efficiency of
RSLCP (compared with those of ILCP and SP), which would
help decide whether it is more cost-effective or not.

RQ4: How robust is RSLCP across multiple releases of the
SUT?

Answering RQ4 will help identify the robustness of
RSLCP, and whether or not it degrades over multiple re-
leases of the system.

4.2 Subject Programs

In our empirical study, we considered five versions of five
programs (giving a total of twenty-five different programs)
written in the C programming language. The five programs,
which were obtained from the GNU FTP server2, were: a
tool for lexical analysis (flex); two widely-used command-
line tools for searching and processing text matching regular
expressions (grep and sed); a widely-used compression util-
ity (gzip); and a popular utility used to control the compile
and build processes of the programs (make).

These subject programs have been widely used in test
case prioritization research [4, 6, 13, 14, 29, 32–36]. Ta-
ble 2 gives the program details, including the input pa-
rameter model3, the number of ATCs obtained from the
Software-artifact Infrastructure Repository (SIR)4 [37], the
program size excluding comments in lines of code (mea-
sured by cloc5), the program version number, and the
number of faults in each version. The ATC set for each

2. http://ftp.gnu.org/.
3. The input parameter model of each program was taken from the

previous work by Petke et al. [13, 14].
4. http://sir.unl.edu/.
5. http://cloc.sourceforge.net/.

TABLE 2
Subject Programs

Subject ATCs Input Parameter Model Size Version Faults
flex-v1

500

9,470 2.4.7 32
flex-v2 Model(263251,Q) 12,231 2.5.1 32
flex-v3 |Q| = 12 12,249 2.5.2 20
flex-v4 12,379 2.5.3 33
flex-v5 12,366 2.5.4 32
grep-v1

440

11,988 2.2 56
grep-v2 Model(213342516181,Q) 12,724 2.3 58
grep-v3 |Q| = 83 12,826 2.4 54
grep-v4 20,838 2.5 58
grep-v5 58,344 2.7 59
gzip-v1

156

4,521 1.1.2 8
gzip-v2 Model(21331,Q) 5,048 1.2.2 8
gzip-v3 |Q| = 61 5,059 1.2.3 7
gzip-v4 5,178 1.2.4 7
gzip-v5 5,682 1.3 7
make-v1

111

18,568 3.76.1 37
make-v2 Model(210,Q) 19,663 3.77 29
make-v3 |Q| = 1 20,461 3.78.1 28
make-v4 23,125 3.79 29
make-v5 23,400 3.80 28
sed-v1

324

7,793 3.0.2 16
sed-v2 Model(27314161101,Q) 18,545 4.0.6 18
sed-v3 |Q| = 50 18,687 4.0.8 18
sed-v4 21,743 4.1.1 19
sed-v5 26,466 4.2 22

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 3
RSLCP, λLCP, ILCP, and SBP Techniques Considered in the Experiments

Category Mnemonic Description Prioritization Objective Reference

RSLCP

IV1 Pure 1-wise RSLCP-IV Covers the repeated maximum 1-wise level combinations Our study, and [17]
IV2 Pure 2-wise RSLCP-IV Covers the repeated maximum 2-wise level combinations Our study
IV3 (1 + 2)-wise RSLCP-IV Covers the independently-repeated maximum (1 + 2)-wise level combinations Our study
IV4 (2 + 1)-wise RSLCP-IV Covers the independently-repeated maximum (2 + 1)-wise level combinations Our study
IV5 Random Assignment RSLCP-IV Covers the independently-repeated maximum (1 or 2)-wise level combinations Our study
PV RSLCP-PV Covers the partially-independent-repeated maximum level combinations Our study

λLCP

1W LCP at prioritization strength 1 Covers the maximum 1-wise level combinations [30]
2W LCP at prioritization strength 2 Covers the maximum 2-wise level combinations [11]
3W LCP at prioritization strength 3 Covers the maximum 3-wise level combinations [11]
4W LCP at prioritization strength 4 Covers the maximum 4-wise level combinations [29]
5W LCP at prioritization strength 5 Covers the maximum 5-wise level combinations [31]
6W LCP at prioritization strength 6 Covers the maximum 6-wise level combinations [14]

ILCP ILCP Incremental-strength LCP Covers the maximum level combinations at incremental strengths [29]

SP GSP Global SP Achieves global maximum distance [8]
LSP Local SP Achieves local maximum distance [8]

program was constructed using the Test Specification Lan-
guage (TSL) [38]. Apart from the program make (for which
some ATCs were removed due to unsuccessful execution),
the ATCs used cover all valid level combinations at each
strength.

4.3 The 15 Studied Prioritization Techniques
Table 3 gives an overview of the 15 prioritization techniques
investigated, listing each technique’s category, mnemonic,
description, prioritization objective, and corresponding ref-
erence in the literature. Because RSLCP is a new version of
LCP, we also considered another λLCP version, denoted λW,
which we investigated for six λ values (λ = 1, 2, 3, 4, 5, 6),
following previous studies [6, 11, 14, 29–31]. In addition,
we also compared our methods with another two widely-
used ATCP techniques, Incremental-strength LCP (ILCP) [29],
and Similarity-based Prioritization (SP) [8]. ILCP makes use of
incremental strengths beginning with λ = 1 to run λLCP. We
examined two versions of SBP [8], Global SP (GSP), and Local
SP (LSP): GSP initially selects two elements as the first two
test cases with the minimum similarity, and then iteratively
chooses an element as the next test case such that it has the
minimum Jaccard similarity against previously selected test
cases; LSP, in contrast, iteratively chooses a pair of test cases
with the minimum Jaccard similarity until all candidates
have been chosen [8].

4.4 Fault Seeding
For each of the subject programs, the original version con-
tains no seeded-in faults. Although a number of hand-
seeded faults are available from the SIR [37], many of these
faults are easily detected (on average more than 60% of test
cases can reveal them). In this study, therefore, we used
mutation analysis [39] to seed in faults (see Table 2). As
discussed in previous studies [40, 41], mutation analysis
can provide more realistic faults than hand-seeding, and
may be more appropriate for studying test case prioritiza-
tion. Compared with real faults, however, the correlation
between mutant killing ability and real fault detection may
become weak when the test suite size is kept constant [42].
Nevertheless, the detection of real faults should improve
significantly when test suites attain the highest levels of
mutant kills [42]. In this study, each mutant could be killed
by the given test suite.

For the five subject programs, we used the same muta-
tion faults6 as used by Henard et al. [35]. More specifically,
for each version Vi (1 ≤ i ≤ 5) of each subject program,
the same mutant operators used in Andrews et al. [40]
were adopted to produce the faulty versions (mutants) for
our study. The operators used were: constant replacement;
statement deletion; unary insertion; arithmetic operator re-
placement; relational operator replacement; logical operator
replacement; and bitwise logical operator replacement. As
discussed by Henard et al. [35], equivalent7, and duplicated8

mutants were eliminated using the Trivial Compiler Equiva-
lence (TCE) [44] tool, resulting in about one third of the mu-
tants being removed. This was done to reduce interference

6. https://henard.net/research/regression/ICSE 2016/mutants/.
7. Equivalent mutants are functionally equivalent versions of the

original program [43].
8. Duplicated mutants are equivalent to other mutants, but not to the

original program [44].

TABLE 4
FTFI Number Distribution

Subject Program FTFI Number Total Number1 2 3 4 5 6 >6
flex-v1 2 7 7 4 2 7 3 32
flex-v2 2 7 9 4 1 6 3 32
flex-v3 2 4 6 3 0 4 1 20
flex-v4 2 7 9 3 3 6 3 33
flex-v5 2 8 7 4 2 6 3 32∑

10 33 38 18 8 29 13 149
grep-v1 2 20 17 8 9 0 0 56
grep-v2 2 19 17 8 11 0 1 58
grep-v3 1 21 14 9 9 0 0 54
grep-v4 1 18 15 16 8 0 0 58
grep-v5 2 16 18 14 9 0 0 59∑

8 94 81 55 46 0 1 285
gzip-v1 4 2 1 0 1 0 0 8
gzip-v2 4 2 1 0 1 0 0 8
gzip-v3 5 2 0 0 0 0 0 7
gzip-v4 5 2 0 0 0 0 0 7
gzip-v5 5 2 0 0 0 0 0 7∑

23 10 2 0 2 0 0 37
make-v1 0 0 0 0 1 1 35 37
make-v2 0 0 0 0 0 1 28 29
make-v3 0 0 0 0 2 0 26 28
make-v4 0 0 0 0 1 1 27 29
make-v5 0 0 0 0 1 1 26 28∑

0 0 0 0 5 4 142 151
sed-v1 0 8 5 3 0 0 0 16
sed-v2 1 9 7 1 0 0 0 18
sed-v3 1 9 7 1 0 0 0 18
sed-v4 1 8 8 2 0 0 0 19
sed-v5 1 12 7 2 0 0 0 22∑

4 46 34 9 0 0 0 93

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

in the fault detection evaluation of each prioritization tech-
nique. Furthermore, as suggested by Papadakis et al. [45],
subsumed mutants [46] (also called disjoint mutants [47])9

were also identified and discarded [35] to avoid biasing
the experimental results [43]. The subsumed mutants were
removed by executing all ATCs for each mutant, and iden-
tifying the failure-causing ATCs.

The performance of several ATCP techniques may de-
pend on the Failure-Triggering Fault Interaction (FTFI) value
of each mutant in each subject program, i.e., the number
of parameters required to detect a failure [15, 48]. Table 4
shows the FTFI number distribution of each program.

4.5 Evaluation Metrics

In this study, we focused on the testing effectiveness and
efficiency of RSLCP, from the perspectives of interaction
coverage, fault detection, and prioritization cost.

4.5.1 Interaction Coverage Metric

The rate of interaction coverage was used to evaluate the
speed of covering level combinations by the prioritized
test suite. The Average Percentage of τ -wise Covering-array
Coverage (APCC) [14], also called Average Percentage of Com-
binatorial Coverage [27], was used to measure the rate of
interaction coverage of strength τ achieved by prioritized
ATCs. Its definition is given as follows:

Definition 4.1. Average Percentage of τ -wise Covering-
array Coverage: Suppose S = ⟨t1, t2, · · · , tn⟩ is a prior-
itized set of ATCs with size n, the APCC definition of S at
strength τ (1 ≤ τ ≤ k) is:

APCC(τ, S) =

∑n
i=1

∣∣ψ(τ,∪i
j=1{tj})

∣∣
n× |ψ(τ, S)|

− 1

2n
(11)

The APCC metric values range from 0.0 to 1.0, with
higher values indicating better rates of interaction coverage
at a specific strength τ . In this paper, following previous
studies [14], we considered APCC with τ = 1, 2, 3, 4, 5, and
6.

4.5.2 Fault Detection Metric

We used the fault detection rates of each prioritization
technique as the fault detection metric. A well-known fit-
ness function is the Average Percentage of Faults Detected
(APFD) [4], which measures the fault detection rate of a
given prioritized test suite. Higher APFD values indicate
better prioritized test sequences. The APFD is defined as
follows:
Definition 4.2. Average Percentage of Faults Detected:

Suppose T is a test suite containing n test cases, and F is
a set of m faults revealed by T . Let SFi be the number of
test cases in the prioritized test suite S of T that are executed
before detecting fault fi. The APFD of S is calculated using
the following equation (from Rothermel et al. [4]):

APFD(S) = 1− SF1 + SF2 + · · ·+ SFm

n×m
+

1

2n
(12)

9. The mutants are subsumed or disjoint such that they are jointly
killed when other mutants are killed.

4.5.3 Efficiency Metric
The prioritization cost measures how quickly each priori-
tized test suite is constructed, and was used to represent the
efficiency of the technique. Obviously, lower prioritization
costs means better efficiency.

4.6 Inferential Statistical Analysis
Because some prioritization strategies involve randomiza-
tion (due to the random tie-breaking technique [28]), we
ran each experiment 1000 times, as suggested in previous
studies [49].

As part of the investigation, we wanted to determine the
statistical significance of any differences between the APCC
or APFD values (used to evaluate each prioritization tech-
nique), for which there are many statistical tests, such as the
t-test and Wilcoxon-Mann-Whitney test [49]. Because there
was no relationship among the 1000 iterations, we used an
unpaired test [35]. Furthermore, because no assumptions
were made about which prioritization technique was better
than the other, a two-tailed test was used [35]. Following
previous guidelines on inferential statistical approaches for
dealing with randomized algorithms [49, 50], we used the
unpaired two-tailed Wilcoxon-Mann-Whitney test to check
the statistical significance (at a significance level of 5%).

Since we used multiple statistical prioritization tech-
niques, we report the p-values, which indicate whether
or not the differences between two techniques are highly
significant. When the p-value between two techniques M1

and M2 is less 5%, the difference between M1 and M2

is highly significant; otherwise, it is not significant. As
Henard et al. [35] explained, however, with an increase of
the number of the executions, p will become sufficiently
small, which means that there are differences between two
algorithms. However, when the p-value is very small, it may
be difficult to identify which algorithm is actually the better.
We therefore used a different statistical measure, the effect
size, which is generally measured by the non-parametric
Varia and Delay effect size measure [51], Â12.

The Varia and Delay effect size measure should provide
more useful information when comparing two different al-
gorithms. Â12(M1,M2) = 0.50, for example, would indicate
that in the sample, there is no difference between algorithms
M1 and M2. Â12(M1,M2) > 0.50 would mean that M1 is
superior to M2; and Â12(M1,M2) < 0.50 would mean that
M2 is superior to M1. The further the Â12 value is from 0.50,
the larger is the effect size. Based on previous work [51],
we classify four categories of the effect size: no-difference
(|Â12(M1,M2) − 0.50| = 0); small (0 < |Â12(M1,M2) −
0.50| ≤ 0.10); medium (0.10 < |Â12(M1,M2) − 0.50| ≤
0.17); and large (|Â12(M1,M2)− 0.50| > 0.17).

5 RESULTS

This section presents the results of the experiments conduct-
ed, and answers the research questions. In the displayed
results, each box plot shows the distribution of the 1000
APCCs or APFDs (averaged over 1000 iterations), listed
horizontally across the figure. Each box plot shows the
mean (square in the box), median (line in the box), upper
and lower quartiles, and minimum and maximum APCC

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

values for the prioritization technique. In addition, a sta-
tistical analysis is given for each pairwise APCC or APFD
comparison of prioritization techniques. For example, for a
comparison between two methods M1 vs M2, we use m to
denote that there is no statistical difference between them
(i.e., their p-value is greater than 0.05); 4 to denote that M1

is significantly better (p-value is less than 0.05, and the effect
size Â12(M1,M2) is greater than 0.50); and 6 to denote
that M2 is significantly better (p-value is less than 0.05, and
Â12(M1,M2) is less than 0.50).

5.1 Interaction Coverage Results
In this section, we answer RQ1, RQ2, and RQ3, from the
perspective of the interaction coverage rates. Figures 3 to 7
present the APCC results for programs flex, grep, gzip, make,
and sed. Each figure describes different strength values for
APCC, i.e., τ is assigned 1, 2, 3, 4, 5, and 6. Tables 5 and
6 show the detailed Wilcoxon test APCC results at the 0.05
significance level for each comparison.

5.1.1 RQ1: RSLCP Techniques
Here, we try to answer the sub-questions of RQ1: RQ1.1
and RQ1.2, according to APCC, and then briefly analyze
each observation.

(1) RQ1.1: RSLCP-IV Techniques: Based on the experimen-
tal results, we can observe the following:s

• When τ = 1, all RSLCP-IV techniques have very
similar APCCs for all programs, because their 1-wise
APCCs have very similar distributions. According to
the statistical analysis (Table 5), however, IV1 and
IV3 generally have the best performances, followed
by IV5, regardless of subject programs (apart from
programs gzip and make).

• When 2 ≤ τ ≤ 6, it can be observed that IV2 overall
has the best performance for all programs, followed
by IV4; while IV1 is worst, followed by IV5 and IV3.
The statistical analysis (Table 5) also confirms these
observations.

The main reason for the first observation is that both
IV1 and IV3 initially make use of λ = 1 for prioritizing
ATCs, which is the same mechanism as 1W — 1W chooses
an element as the next test case such that it covers the
largest number of 1-wise level combination that have not
been covered by previously selected ATCs. When all 1-wise
level combinations have been covered by the selected ATCs,
the order of the remaining ATCs does not change the 1-
wise APCC value. Therefore, IV1 and IV3 perform very
similarly, and have better 1-wise APCCs than other RSLCP-
IV techniques. Regarding the difference for programs gzip
and make, a possible reason may be that an element covering
the largest number of uncovered 2-wise level combination-
s (selected as the next test case by IV2, IV4, and IV5),
could cover a comparable number of uncovered 1-wise level
combinations as IV1 and IV3, due to the characteristics of
the input parameter model (i.e., each parameter contains a
similar number of levels).

The second observation can be explained as follows:
Similar to the case of IV1 and IV3, IV2 and IV4 have the
same APCC values at τ = 2. However, IV2 repeatedly
covers entire 2-wise level combinations, which may provide
the faster speed to cover level combinations τ > 2 than other
RSLCP-IV techniques. Similarly, IV1 only repeatedly covers
entire 1-wise level combinations, which may not provide
higher rates of interaction coverage at higher strengths.

From the perspective of the interaction coverage rate, the
answer to RQ1.1 is: Overall, IV2 has the best performance
among all RSLCP-IV techniques, followed by IV4; and IV1
is generally the worst.

(2) RQ1.2: RSLCP-IV vs RSLCP-PV: Based on the experi-
mental data, we have the following observations:

• When τ = 1, PV has very similar APCC values to
RSLCP-IV techniques for all programs. Apart from
programs gzip and make, however, the statistical anal-
ysis shows that compared with IV1 and IV3, there is
no highly significant difference compared with PV;
while the difference between PV and IV2, IV4, or

97.0

97.2

97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

99.6

99.8

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(a) τ = 1

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(b) τ = 2

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

97.5

98.0

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(c) τ = 3

87

88

89

90

91

92

93

94

95

96

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(d) τ = 4

82

83

84

85

86

87

88

89

90

91

92

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(e) τ = 5

75

76

77

78

79

80

81

82

83

84

85

86

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(f) τ = 6

Fig. 3. APCC results for each prioritization technique for the program flex.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

96.8

97.0

97.2

97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(a) τ = 1

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

97.5

98.0

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(b) τ = 2

85

86

87

88

89

90

91

92

93

94

95

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(c) τ = 3

78

79

80

81

82

83

84

85

86

87

88

89

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(d) τ = 4

72

73

74

75

76

77

78

79

80

81

82

6W5W4W3W2WV 1W5 P P LSPP GSILC4 IV3 IV2 IV1 IVIV

A
P

C
C

 (
%

)

(e) τ = 5

66

67

68

69

70

71

72

73

74

75

6W5W4W3W2WV 1W5 P LSPP GILC4 IV3 IV2 IV1 IVIV

A
P

C
C

 (
%

)

SP

(f) τ = 6

Fig. 4. APCC results for each prioritization technique for the program grep.

96.6

96.8

97.0

97.2

97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(a) τ = 1

93.6

94.0

94.4

94.8

95.2

95.6

96.0

96.4

96.8

97.2

97.6

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(b) τ = 2

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)
(c) τ = 3

87.0

87.5

88.0

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

93.0

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(d) τ = 4

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(e) τ = 5

78.0
78.5
79.0
79.5
80.0
80.5
81.0
81.5
82.0
82.5
83.0
83.5
84.0
84.5
85.0
85.5
86.0

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(f) τ = 6

Fig. 5. APCC results for each prioritization technique for the program gzip.

IV5 is highly significant. In addition, the statistical
analysis also shows that PV is similar to IV1 and IV3,
but performs better than other RSLCP-IV techniques
when τ = 1.

• When 2 ≤ τ ≤ 6, PV is worse than IV2 for all
programs, but performs better than IV1, IV3, and
IV5. The statistical analysis confirms the box plot
observations. PV has comparable APCC values to
IV4. However, the statistical analysis shows that IV4
has significantly better 2-wise APCCs than PV; but
for high τ values, the opposite is true: PV has signif-
icantly better τ -wise APCCs than IV4.

A plausible reason to the first observation is that, as
was the case for IV1 and IV3, PV uses 1W at the start
of the prioritization process, which guarantees that it has
similar speeds to IV1 and IV3, but higher speeds than other
RSLCP-IV techniques for covering 1-wise level combina-

tions. However, IV2 uses 2W to prioritize ATCs, while PV
uses 1W and 2W to guide the prioritization. Therefore, IV2
may provide faster speeds than PV for covering high τ
value level combinations. Similarly, IV4 initially uses 2W
for prioritizing ATCs, and then independently chooses 1W
to prioritize the remaining ATCs when 2-wise level combi-
nations have been fully covered. This process may provide
better 2-wise APCCs than PV. However, when all 1-wise
level combinations have been covered by the selected ATCs,
PV does not independently use 2W for prioritizing the
remaining ATCs, i.e., it considers 2-wise level combinations
that have not yet been covered by previously selected ATCs
(obtained by 1W). This process may guarantee that PV has
higher APCCs than IV4.

With respect to the interaction coverage rate, the answer
to RQ1.2 is: Overall, PV achieves a better performance than
other RSLCP-IV techniques.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TA
B

LE
5

S
ta

tis
tic

al
A

na
ly

si
s

fo
rP

ai
rw

is
e

A
P

C
C

C
om

pa
ris

on
s

of
R

S
LC

P
Te

ch
ni

qu
es

(Â
1
2

va
lu

es
in

cl
ud

ed
in

br
ac

ke
ts

)

C
om

pa
ri

so
n

fle
x

gr
ep

gz
ip

m
ak

e
se

d
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
IV

1
vs

IV
2

4
(0

.7
2)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
4)

6
(0

.3
3)

4
(0

.9
2)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.4
9)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
1)

m
(0

.5
2)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
1)

6
(0

.0
5)

6
(0

.1
2)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
1

vs
IV

3
m

(0
.5

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

1)
6

(0
.1

0)
6

(0
.3

4)
m

(0
.5

2)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

9)
6

(0
.0

8)
6

(0
.1

0)
6

(0
.1

3)
6

(0
.1

5)
m

(0
.5

1)
6

(0
.2

0)
6

(0
.1

1)
6

(0
.1

2)
6

(0
.1

6)
6

(0
.2

3)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

1)
IV

1
vs

IV
4

4
(0

.7
2)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
6)

6
(0

.3
0)

4
(0

.9
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
1)

6
(0

.0
3)

m
(0

.5
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
2)

6
(0

.0
7)

6
(0

.1
5)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
1

vs
IV

5
4

(0
.6

2)
6

(0
.0

3)
6

(0
.0

1)
6

(0
.0

2)
6

(0
.0

9)
6

(0
.3

2)
4

(0
.7

1)
6

(0
.0

1)
6

(0
.0

1)
6

(0
.0

0)
6

(0
.0

1)
6

(0
.0

1)
m

(0
.5

0)
6

(0
.1

1)
6

(0
.1

0)
6

(0
.1

0)
6

(0
.1

1)
6

(0
.1

3)
m

(0
.5

0)
6

(0
.1

6)
6

(0
.1

1)
6

(0
.1

1)
6

(0
.1

4)
6

(0
.2

1)
4

(0
.7

4)
6

(0
.0

1)
6

(0
.0

1)
6

(0
.0

1)
6

(0
.0

1)
6

(0
.0

2)
IV

2
vs

IV
3

6
(0

.2
9)

4
(1

.0
0)

4
(0

.9
7)

4
(0

.8
2)

4
(0

.6
6)

m
(0

.5
0)

6
(0

.0
9)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
5)

4
(0

.8
9)

4
(0

.8
3)

m
(0

.5
1)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
8)

4
(0

.9
5)

m
(0

.4
9)

4
(0

.9
8)

4
(0

.9
8)

4
(0

.8
8)

4
(0

.7
7)

4
(0

.6
8)

6
(0

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
8)

4
(0

.9
4)

4
(0

.9
0)

IV
2

vs
IV

4
m

(0
.5

0)
m

(0
.4

9)
4

(0
.6

7)
4

(0
.6

5)
4

(0
.5

8)
6

(0
.4

5)
m

(0
.4

9)
m

(0
.4

9)
4

(0
.7

4)
4

(0
.7

5)
4

(0
.7

5)
4

(0
.7

3)
m

(0
.5

1)
4

(0
.5

2)
4

(0
.7

6)
4

(0
.7

7)
4

(0
.7

7)
4

(0
.7

7)
m

(0
.4

9)
m

(0
.5

0)
4

(0
.6

1)
4

(0
.6

3)
4

(0
.6

1)
4

(0
.5

8)
m

(0
.5

0)
m

(0
.5

2)
4

(0
.7

6)
4

(0
.7

5)
4

(0
.7

5)
4

(0
.7

4)
IV

2
vs

IV
5

6
(0

.4
0)

4
(0

.7
4)

4
(0

.7
9)

4
(0

.7
2)

4
(0

.6
2)

m
(0

.4
8)

6
(0

.2
9)

4
(0

.7
5)

4
(0

.8
5)

4
(0

.8
4)

4
(0

.8
1)

4
(0

.7
8)

m
(0

.5
0)

4
(0

.7
7)

4
(0

.8
5)

4
(0

.8
5)

4
(0

.8
5)

4
(0

.8
3)

m
(0

.4
8)

4
(0

.7
4)

4
(0

.7
8)

4
(0

.7
6)

4
(0

.7
0)

4
(0

.6
4)

6
(0

.2
4)

4
(0

.7
6)

4
(0

.8
5)

4
(0

.8
5)

4
(0

.8
3)

4
(0

.8
1)

IV
3

vs
IV

4
4

(0
.7

1)
6

(0
.0

0)
6

(0
.0

5)
6

(0
.2

9)
6

(0
.4

2)
6

(0
.4

6)
4

(0
.9

1)
6

(0
.0

0)
6

(0
.0

2)
6

(0
.1

6)
6

(0
.2

9)
6

(0
.3

6)
m

(0
.5

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

1)
6

(0
.0

7)
6

(0
.1

6)
m

(0
.5

0)
6

(0
.0

2)
6

(0
.0

4)
6

(0
.1

9)
6

(0
.3

1)
6

(0
.3

9)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

8)
6

(0
.1

9)
6

(0
.2

7)
IV

3
vs

IV
5

4
(0

.6
1)

6
(0

.3
2)

6
(0

.3
3)

6
(0

.4
2)

6
(0

.4
7)

m
(0

.4
8)

4
(0

.7
0)

6
(0

.3
9)

6
(0

.3
7)

6
(0

.4
0)

6
(0

.4
4)

6
(0

.4
6)

m
(0

.4
9)

6
(0

.3
3)

6
(0

.3
3)

6
(0

.3
2)

6
(0

.3
3)

6
(0

.3
6)

m
(0

.4
9)

6
(0

.3
2)

6
(0

.3
4)

6
(0

.3
9)

6
(0

.4
4)

6
(0

.4
7)

4
(0

.7
4)

6
(0

.3
8)

6
(0

.3
6)

6
(0

.3
7)

6
(0

.4
0)

6
(0

.4
3)

IV
4

vs
IV

5
6

(0
.4

0)
4

(0
.7

4)
4

(0
.6

9)
4

(0
.6

0)
4

(0
.5

5)
4

(0
.5

3)
6

(0
.3

0)
4

(0
.7

5)
4

(0
.7

3)
4

(0
.6

7)
4

(0
.6

2)
4

(0
.5

8)
m

(0
.4

9)
4

(0
.7

5)
4

(0
.7

1)
4

(0
.7

1)
4

(0
.6

9)
4

(0
.6

5)
m

(0
.4

9)
4

(0
.7

4)
4

(0
.7

2)
4

(0
.6

7)
4

(0
.6

1)
4

(0
.5

7)
6

(0
.2

4)
4

(0
.7

5)
4

(0
.7

3)
4

(0
.7

0)
4

(0
.6

6)
4

(0
.6

3)
IV

1
vs

PV
m

(0
.5

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

4)
6

(0
.2

8)
m

(0
.5

2)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

1)
m

(0
.5

1)
6

(0
.0

1)
6

(0
.0

1)
6

(0
.0

2)
6

(0
.0

6)
6

(0
.1

4)
m

(0
.4

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

2
vs

PV
6

(0
.2

9)
4

(0
.6

8)
4

(0
.5

7)
4

(0
.5

3)
m

(0
.5

0)
6

(0
.4

3)
6

(0
.1

0)
4

(0
.9

4)
4

(0
.5

9)
m

(0
.5

1)
m

(0
.4

9)
m

(0
.4

8)
m

(0
.5

1)
4

(0
.9

2)
4

(0
.7

8)
4

(0
.6

7)
4

(0
.6

1)
4

(0
.5

8)
m

(0
.4

9)
4

(0
.6

1)
4

(0
.6

1)
4

(0
.5

8)
4

(0
.5

6)
4

(0
.5

4)
6

(0
.0

0)
4

(1
.0

0)
4

(0
.8

0)
4

(0
.6

6)
4

(0
.6

1)
4

(0
.5

9)
IV

3
vs

PV
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

4)
6

(0
.2

0)
6

(0
.3

5)
6

(0
.4

4)
m

(0
.5

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

5)
6

(0
.1

1)
6

(0
.1

6)
m

(0
.5

0)
6

(0
.0

1)
6

(0
.0

0)
6

(0
.0

1)
6

(0
.0

4)
6

(0
.0

8)
m

(0
.5

0)
6

(0
.0

6)
6

(0
.0

7)
6

(0
.1

6)
6

(0
.2

7)
6

(0
.3

6)
m

(0
.4

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

4)
6

(0
.1

0)
6

(0
.1

5)
IV

4
vs

PV
6

(0
.2

9)
4

(0
.6

9)
6

(0
.4

0)
6

(0
.3

8)
6

(0
.4

2)
m

(0
.4

8)
6

(0
.1

0)
4

(0
.9

4)
6

(0
.3

4)
6

(0
.2

6)
6

(0
.2

5)
6

(0
.2

5)
m

(0
.4

9)
4

(0
.9

0)
4

(0
.5

7)
6

(0
.3

9)
6

(0
.3

2)
6

(0
.3

0)
m

(0
.5

0)
4

(0
.6

1)
m

(0
.5

1)
6

(0
.4

5)
6

(0
.4

4)
6

(0
.4

6)
6

(0
.0

0)
4

(1
.0

0)
4

(0
.5

5)
6

(0
.3

9)
6

(0
.3

5)
6

(0
.3

4)
IV

5
vs

PV
6

(0
.3

9)
6

(0
.3

6)
6

(0
.2

5)
6

(0
.3

0)
6

(0
.3

8)
6

(0
.4

5)
6

(0
.3

1)
6

(0
.4

6)
6

(0
.1

9)
6

(0
.1

7)
6

(0
.1

9)
6

(0
.2

1)
m

(0
.5

0)
6

(0
.4

6)
6

(0
.3

1)
6

(0
.2

3)
6

(0
.2

1)
6

(0
.2

1)
m

(0
.5

1)
6

(0
.3

3)
6

(0
.2

9)
6

(0
.3

0)
6

(0
.3

4)
6

(0
.3

9)
6

(0
.2

6)
m

(0
.4

8)
6

(0
.2

9)
6

(0
.2

3)
6

(0
.2

3)
6

(0
.2

5)

TA
B

LE
6

S
ta

tis
tic

al
A

na
ly

si
s

fo
rP

ai
rw

is
e

A
P

C
C

C
om

pa
ris

on
s

of
R

S
LC

P
ag

ai
ns

tO
th

er
AT

C
P

Te
ch

ni
qu

es
(Â

1
2

va
lu

es
in

cl
ud

ed
in

br
ac

ke
ts

)

C
om

pa
ri

so
n

fle
x

gr
ep

gz
ip

m
ak

e
se

d
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
τ

=1
τ

=2
τ

=3
τ

=4
τ

=5
τ

=6
IV

1
vs

1W
m

(0
.5

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
m

(0
.5

2)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.9

9)
4

(0
.9

0)
4

(0
.6

5)
m

(0
.4

9)
4

(0
.9

3)
4

(0
.9

7)
4

(0
.9

8)
4

(0
.9

9)
4

(1
.0

0)
m

(0
.5

0)
4

(0
.8

7)
4

(0
.9

1)
4

(0
.9

3)
4

(0
.9

3)
4

(0
.9

3)
m

(0
.4

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.9

9)
IV

2
vs

1W
6

(0
.2

8)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.0

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
m

(0
.5

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
m

(0
.4

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
IV

3
vs

1W
m

(0
.4

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
m

(0
.5

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
m

(0
.4

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
m

(0
.5

0)
4

(0
.9

7)
4

(0
.9

9)
4

(1
.0

0)
4

(0
.9

9)
4

(0
.9

9)
m

(0
.4

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
IV

4
vs

1W
6

(0
.2

8)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.1

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.4

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
m

(0
.5

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.9

9)
6

(0
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
IV

5
vs

1W
6

(0
.3

8)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.3

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.9

9)
m

(0
.5

0)
4

(0
.9

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
m

(0
.5

0)
4

(0
.9

7)
4

(0
.9

9)
4

(0
.9

9)
4

(0
.9

9)
4

(0
.9

9)
6

(0
.2

5)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
PV

vs
1W

m
(0

.4
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

m
(0

.4
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

m
(0

.4
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

m
(0

.4
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

m
(0

.4
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

IV
1

vs
2W

4
(0

.7
3)

6
(0

.0
0)

6
(0

.2
3)

4
(0

.8
7)

4
(0

.9
6)

4
(0

.9
7)

4
(0

.9
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
1)

6
(0

.0
2)

6
(0

.0
2)

m
(0

.5
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.1
6)

4
(0

.5
6)

4
(0

.8
4)

4
(0

.5
2)

6
(0

.0
0)

6
(0

.0
7)

6
(0

.3
5)

4
(0

.6
0)

4
(0

.7
3)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
1)

6
(0

.2
2)

6
(0

.3
7)

6
(0

.4
4)

IV
2

vs
2W

m
(0

.5
1)

m
(0

.5
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
9)

m
(0

.4
8)

m
(0

.4
8)

4
(1

.0
0)

4
(0

.9
9)

4
(0

.9
6)

4
(0

.8
6)

m
(0

.5
1)

m
(0

.5
0)

4
(0

.9
8)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

m
(0

.5
1)

m
(0

.5
0)

4
(0

.9
5)

4
(0

.9
8)

4
(0

.9
8)

4
(0

.9
7)

m
(0

.4
9)

m
(0

.4
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

IV
3

vs
2W

4
(0

.7
2)

6
(0

.0
0)

4
(0

.9
9)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
9)

4
(0

.9
0)

6
(0

.0
0)

4
(0

.7
2)

4
(0

.8
6)

4
(0

.7
7)

4
(0

.5
9)

m
(0

.5
0)

6
(0

.0
0)

6
(0

.0
7)

4
(0

.6
5)

4
(0

.9
3)

4
(0

.9
9)

m
(0

.5
1)

6
(0

.0
2)

6
(0

.3
8)

4
(0

.7
9)

4
(0

.9
0)

4
(0

.9
1)

4
(1

.0
0)

6
(0

.0
0)

4
(0

.8
7)

4
(0

.9
8)

4
(0

.9
9)

4
(0

.9
9)

IV
4

vs
2W

m
(0

.5
1)

m
(0

.5
1)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
9)

m
(0

.4
9)

m
(0

.4
9)

4
(0

.9
9)

4
(0

.9
7)

4
(0

.8
8)

4
(0

.7
0)

m
(0

.4
9)

6
(0

.4
8)

4
(0

.9
4)

4
(0

.9
9)

4
(1

.0
0)

4
(1

.0
0)

m
(0

.5
2)

m
(0

.5
1)

4
(0

.9
1)

4
(0

.9
6)

4
(0

.9
6)

4
(0

.9
5)

m
(0

.4
8)

6
(0

.4
7)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

IV
5

vs
2W

4
(0

.6
1)

6
(0

.2
6)

4
(0

.9
6)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
9)

4
(0

.7
0)

6
(0

.2
4)

4
(0

.7
1)

4
(0

.8
3)

4
(0

.7
7)

4
(0

.6
2)

m
(0

.5
1)

6
(0

.2
3)

m
(0

.5
0)

4
(0

.7
5)

4
(0

.9
2)

4
(0

.9
8)

4
(0

.5
2)

6
(0

.2
6)

4
(0

.5
9)

4
(0

.8
2)

4
(0

.9
1)

4
(0

.9
2)

4
(0

.7
5)

6
(0

.2
4)

4
(0

.8
2)

4
(0

.9
5)

4
(0

.9
7)

4
(0

.9
7)

PV
vs

2W
4

(0
.7

2)
6

(0
.3

2)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.8

9)
6

(0
.0

6)
4

(1
.0

0)
4

(0
.9

9)
4

(0
.9

6)
4

(0
.8

6)
m

(0
.5

0)
6

(0
.1

0)
4

(0
.9

3)
4

(0
.9

9)
4

(1
.0

0)
4

(1
.0

0)
m

(0
.5

1)
6

(0
.4

0)
4

(0
.8

8)
4

(0
.9

6)
4

(0
.9

7)
4

(0
.9

6)
4

(1
.0

0)
6

(0
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
IV

1
vs

3W
4

(0
.9

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.1

6)
4

(0
.9

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

2)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

2
vs

3W
4

(0
.8

0)
4

(0
.9

2)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

4)
6

(0
.2

5)
4

(0
.8

3)
4

(0
.9

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

1)
4

(0
.5

2)
6

(0
.0

6)
6

(0
.0

0)
6

(0
.0

1)
6

(0
.0

2)
m

(0
.4

8)
m

(0
.4

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

4)
6

(0
.1

5)
4

(0
.7

6)
4

(0
.9

6)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

3
vs

3W
4

(0
.9

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

2)
6

(0
.2

7)
4

(0
.9

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.4

9)
6

(0
.0

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

1)
6

(0
.0

7)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

4
vs

3W
4

(0
.8

0)
4

(0
.9

3)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

3)
6

(0
.3

0)
4

(0
.8

3)
4

(0
.9

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.4

9)
m

(0
.5

0)
6

(0
.0

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.4

9)
m

(0
.4

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

2)
6

(0
.1

1)
4

(0
.7

6)
4

(0
.9

5)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

5
vs

3W
4

(0
.8

5)
m

(0
.4

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

3)
6

(0
.2

8)
4

(0
.9

1)
m

(0
.4

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.2

5)
6

(0
.0

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.2

5)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

2)
6

(0
.0

9)
4

(0
.8

8)
6

(0
.4

6)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
PV

vs
3W

4
(0

.9
0)

4
(0

.8
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
5)

6
(0

.3
1)

4
(0

.9
8)

4
(0

.6
6)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

6
(0

.0
9)

6
(0

.0
2)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.4
9)

6
(0

.3
7)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
3)

6
(0

.1
2)

4
(1

.0
0)

6
(0

.0
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
1

vs
4W

4
(0

.9
9)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
2

vs
4W

4
(0

.9
7)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.9
7)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

4
(0

.5
3)

6
(0

.0
5)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

4
(0

.5
3)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.9
5)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
3

vs
4W

4
(0

.9
9)

6
(0

.4
6)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

6
(0

.0
2)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
4

vs
4W

4
(0

.9
7)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.9
7)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.4
9)

m
(0

.5
1)

6
(0

.0
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
1)

4
(0

.5
4)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.9
5)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
5

vs
4W

4
(0

.9
8)

4
(0

.6
7)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.9
9)

m
(0

.4
9)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

6
(0

.2
5)

6
(0

.0
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
1)

6
(0

.2
8)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.9
8)

m
(0

.4
8)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

PV
vs

4W
4

(0
.9

9)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

8)
6

(0
.0

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.4

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
6

(0
.2

5)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

1
vs

5W
4

(1
.0

0)
6

(0
.0

5)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(0
.7

4)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

2
vs

5W
4

(1
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

1)
4

(0
.5

5)
6

(0
.0

6)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(0
.7

2)
m

(0
.4

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(0
.9

9)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

3
vs

5W
4

(1
.0

0)
4

(0
.9

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
6

(0
.4

3)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(0
.7

3)
6

(0
.0

2)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

4
vs

5W
4

(1
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.4

9)
4

(0
.5

3)
6

(0
.0

2)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(0
.7

3)
m

(0
.4

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(0
.9

9)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

5
vs

5W
4

(1
.0

0)
4

(0
.8

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
4

(0
.5

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

1)
6

(0
.2

6)
6

(0
.0

2)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(0
.7

4)
6

(0
.2

5)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
m

(0
.4

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
PV

vs
5W

4
(1

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

6
(0

.1
0)

6
(0

.0
2)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.7
3)

6
(0

.3
9)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

4
(0

.8
2)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
1

vs
6W

4
(1

.0
0)

4
(0

.7
5)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.5
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.8
8)

6
(0

.0
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
2

vs
6W

4
(1

.0
0)

4
(1

.0
0)

4
(0

.8
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.5
2)

4
(0

.5
7)

6
(0

.0
4)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.8
7)

4
(0

.6
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
3

vs
6W

4
(1

.0
0)

4
(1

.0
0)

6
(0

.0
8)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.8
8)

6
(0

.0
4)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
4

vs
6W

4
(1

.0
0)

4
(1

.0
0)

4
(0

.6
6)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
1)

4
(0

.5
5)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.8
8)

4
(0

.6
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
5

vs
6W

4
(1

.0
0)

4
(0

.9
9)

6
(0

.4
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

4
(0

.8
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.5
2)

6
(0

.2
8)

6
(0

.0
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(0

.8
8)

6
(0

.3
2)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

4
(1

.0
0)

m
(0

.4
8)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

PV
vs

6W
4

(1
.0

0)
4

(1
.0

0)
4

(0
.7

5)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(0
.5

2)
6

(0
.1

5)
6

(0
.0

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(0
.8

8)
m

(0
.4

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
4

(0
.9

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

1
vs

IL
C

P
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

1)
6

(0
.0

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

2
vs

IL
C

P
6

(0
.2

8)
4

(0
.6

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

8)
4

(0
.9

3)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
4

(0
.9

2)
6

(0
.1

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.4

9)
4

(0
.6

1)
6

(0
.0

6)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

3
vs

IL
C

P
m

(0
.4

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.4

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

1)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

6)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

4
vs

IL
C

P
6

(0
.2

8)
4

(0
.6

9)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

8)
4

(0
.9

3)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.4

9)
4

(0
.8

9)
6

(0
.0

7)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
4

(0
.6

1)
6

(0
.0

4)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
4

(1
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
IV

5
vs

IL
C

P
6

(0
.3

8)
6

(0
.3

6)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.2

9)
6

(0
.4

5)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

0)
6

(0
.4

6)
6

(0
.0

4)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
m

(0
.5

1)
6

(0
.3

3)
6

(0
.0

2)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.2

6)
m

(0
.4

8)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
6

(0
.0

0)
PV

vs
IL

C
P

m
(0

.4
9)

m
(0

.5
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.4
8)

6
(0

.4
7)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

m
(0

.4
9)

6
(0

.0
6)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
0)

m
(0

.5
0)

6
(0

.0
4)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

m
(0

.5
1)

m
(0

.5
1)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

6
(0

.0
0)

IV
1

vs
G

SP
4

(0
.7

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.8

1)
4

(0
.8

5)
4

(0
.9

2)
4

(0
.9

5)
4

(0
.9

7)
4

(0
.9

8)
6

(0
.4

5)
6

(0
.1

9)
6

(0
.1

6)
6

(0
.1

5)
6

(0
.1

5)
6

(0
.1

6)
6

(0
.3

6)
6

(0
.1

0)
6

(0
.2

2)
6

(0
.4

1)
4

(0
.6

8)
4

(0
.8

9)
4

(1
.0

0)
4

(0
.9

4)
4

(0
.9

6)
4

(0
.9

7)
4

(0
.9

8)
4

(0
.9

9)
IV

2
vs

G
SP

4
(0

.5
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.2
3)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.4
6)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
7)

4
(0

.9
2)

6
(0

.3
4)

4
(0

.9
8)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

IV
3

vs
G

SP
4

(0
.7

8)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.8

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.4

5)
4

(0
.7

1)
4

(0
.6

4)
4

(0
.5

6)
m

(0
.4

9)
6

(0
.4

6)
6

(0
.3

5)
6

(0
.3

4)
4

(0
.6

9)
4

(0
.8

7)
4

(0
.9

6)
4

(0
.9

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
IV

4
vs

G
SP

4
(0

.6
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.2
5)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

6
(0

.4
4)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
8)

4
(0

.9
0)

4
(0

.7
8)

6
(0

.3
5)

4
(0

.9
7)

4
(0

.9
9)

4
(0

.9
9)

4
(0

.9
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

IV
5

vs
G

SP
4

(0
.6

8)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.5

3)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.4

5)
4

(0
.7

6)
4

(0
.7

4)
4

(0
.7

1)
4

(0
.6

6)
4

(0
.6

0)
6

(0
.3

6)
4

(0
.6

1)
4

(0
.7

6)
4

(0
.8

8)
4

(0
.9

6)
4

(0
.9

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
PV

vs
G

SP
4

(0
.7

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.7

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
6

(0
.4

5)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.9

9)
4

(0
.9

5)
4

(0
.8

9)
6

(0
.3

5)
4

(0
.9

0)
4

(0
.9

8)
4

(0
.9

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
IV

1
vs

LS
P

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
9)

4
(0

.8
9)

4
(0

.7
8)

4
(0

.7
1)

4
(1

.0
0)

4
(0

.9
9)

4
(0

.9
6)

4
(0

.9
2)

4
(0

.8
7)

4
(0

.8
1)

4
(0

.6
9)

4
(0

.5
7)

4
(0

.6
3)

4
(0

.7
3)

4
(0

.8
2)

4
(0

.8
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

IV
2

vs
LS

P
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.6

7)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
IV

3
vs

LS
P

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
9)

4
(0

.9
8)

4
(0

.6
8)

4
(0

.8
2)

4
(0

.9
3)

4
(0

.9
6)

4
(0

.9
7)

4
(0

.9
8)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

IV
4

vs
LS

P
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.6

8)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(0
.9

9)
4

(0
.9

9)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
4

(1
.0

0)
IV

5
vs

LS
P

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
9)

4
(0

.9
8)

4
(0

.9
7)

4
(0

.6
9)

4
(0

.8
6)

4
(0

.9
2)

4
(0

.9
6)

4
(0

.9
7)

4
(0

.9
8)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

PV
vs

LS
P

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.6
8)

4
(0

.9
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(0

.9
9)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

4
(1

.0
0)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

98.1

98.2

98.3

98.4

98.5

98.6

98.7

98.8

98.9

99.0

99.1

99.2

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(a) τ = 1

95.8

96.0

96.2

96.4

96.6

96.8

97.0

97.2

97.4

97.6

97.8

98.0

98.2

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(b) τ = 2

92.4

92.8

93.2

93.6

94.0

94.4

94.8

95.2

95.6

96.0

96.4

96.8

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(c) τ = 3

88.0

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(d) τ = 4

83.0
83.5
84.0
84.5
85.0
85.5
86.0
86.5
87.0
87.5
88.0
88.5
89.0
89.5
90.0
90.5
91.0

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(e) τ = 5

76

77

78

79

80

81

82

83

84

85

86

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(f) τ = 6

Fig. 6. APCC results for each prioritization technique for the program make.

96.6

96.8

97.0

97.2

97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(a) τ = 1

89

90

91

92

93

94

95

96

97

98

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(b) τ = 2

82

83

84

85

86

87

88

89

90

91

92

93

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)
(c) τ = 3

76

77

78

79

80

81

82

83

84

85

86

87

88

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(d) τ = 4

71

72

73

74

75

76

77

78

79

80

81

82

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)

(e) τ = 5

66

67

68

69

70

71

72

73

74

75

76

6W5W4W3W2W1WPV LSPGSPILCPIV5IV4IV3IV2IV1

A
P

C
C

 (
%

)
C

(%
)

(f) τ = 6

Fig. 7. APCC results for each prioritization technique for the program sed.

5.1.2 RQ2: RSLCP vs λLCP
Based on experimental results comparing RSLCP and λLCP,
we have the following observations:

• When the prioritization strength λ for λLCP is equal
to the strength value τ for APCC (i.e., λ = τ), λLCP
generally has similar or better APCC values than all
RSLCP techniques.

• Compared with λLCP at low λ values (such as 1W
and 2W, i.e., λ is 1 or 2), although all RSLCP tech-
niques have similar or worse λ-wise APCC values
when τ = λ, overall, they have better APCC values
at other strengths (when τ ̸= λ).

• Compared with λLCP at high λ values (such as 3W,
4W, 5W, and 6W, i.e., λ ≥ 3), when τ ≥ 3, RSLCP has
worse APCC values, irrespective of subject program.
However, when 1 ≤ τ < 3, RSLCP has comparable,
or even better, performance.

• The statistical analysis validates above three obser-
vations overall.

The first observation can be easily explained: λLCP
chooses the next test case with the largest number of
uncovered λ-wise level combinations, leading to highest
rate of interaction coverage. The second observation can be
explained by the fact that RSLCP repeatedly achieves full
1-wise or 2-wise level combination coverage, which may
provide comparable level combination coverage at high τ
values; however, once 1-wise (or 2-wise) level combinations
have been full covered by 1W (or 2W), the remaining ATCs
are randomly prioritized.

The third observation can be explained as follows: The
RSLCP techniques focus on the prioritization strength equal
to either 1 or 2, which guarantees better APCCs at τ = 1
or τ = 2. Although RSLCP could cover level combinations
at high τ values, its speed may be lower than that of λLCP

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

at high λ values. Additionally, λLCP also achieves a faster
speed of covering level combinations at low τ values, which
may explain why λLCP could sometimes achieve better
APCCs at low τ values (for example, 3W, 4W, and 5W have
higher 2-wise APCCs than IV1, IV3, IV5, and PV for the
programs gzip and make).

From the perspective of the interaction coverage rate,
the answer to RQ2 is: RSLCP generally has better τ -wise
APCC performances than λLCP at low λ values for τ ̸= λ;
while it has comparable (and even better) τ -wise APCCs for
1 ≤ τ < 3, compared with 3W, 4W, 5W, and 6W.

5.1.3 RQ3: RSLCP vs ILCP and SP
As illustrated in Figures 3 to 7 and Table 6, it can be observed
that:

• ILCP, IV1, IV3, and IV5 have comparable APCCs
when τ = 1; while IV2 and IV4 achieve better APCCs
when τ = 2. Similarly, PV achieves comparable 1-
wise and 2-wise APCCs to ILCP. However, for all
other τ values (i.e., 3 ≤ τ ≤ 6), ILCP performs
significantly better than all RSLCP techniques.

• Compared with GSP, different programs have differ-
ent observations. More specifically, RSLCP and GSP
have very similar 1-wise APCCs for the programs flex
and grep; GSP has higher 1-wise APCCs than RSLCP
for the programs gzip and make. For the program sed,
however, the 1-wise APCC performances of RSLCP
are better than those of GSP. In addition, the statis-
tical analysis shows that, overall, RSLCP performs
significantly better than GSP for the programs flex,
grep, and sed; while the opposite is true for gzip and
make. Nevertheless, when τ is greater than 1 (i.e.,
2 ≤ τ ≤ 6), all RSLCP techniques apart from IV1
have significantly better performances than GSP, for
all programs. IV1 performs better than GSP for the
programs flex, grep, and sed, but has worse perfor-
mance for gzip. Regarding the program make, IV1
outperforms GSP for τ equal to 2, 3, and 4, but GSP
is better than IV1 for τ equal to 5 and 6.

• Compared with LSP, all RSLCP techniques have
higher APCCs, irrespective of subject programs and
τ values. The statistical results confirm that the dif-
ferences between the APCCs of RSLCP and LSP are
highly significant.

The first observation can be explained as follows: On the
one hand, ILCP first adopts the same procedure as PV (it
initially uses 1W for prioritizing ATCs until all 1-wise level
combinations have been covered by the selected ATCs), and
then uses 2W for prioritizing the remaining ATCs to cover
uncovered 2-wise level combinations as quickly as possible.
Therefore, ILCP has comparable 1-wise APCCs to IV1, IV3,
IV5, and PV, and also has similar 2-wise APCCs to PV.
However, since IV2 and IV4 initially use 2W to guide the
prioritization, it is understandable that their 2-wise APCCs
are better than ILCP’s. On the other hand, when all 2-
wise level combinations have been covered by previously
selected ATCs, ILCP makes use of 3W to prioritize the
remaining ATCs, and attempts to cover uncovered 3-wise
level combinations as quickly as possible. ILCP iteratively
repeats this process, incrementing by 1 each time, until all

ATCs have been chosen, which may guarantee that ILCP
has higher APCCs at high τ values than RSLCP.

The second observation (that RSLCP generally has better
APCCs than GSP) can be explained as follows: RSLCP
makes use of the information of interaction coverage to
guide the prioritization of ATCs, but GSP uses the infor-
mation of similarity between each candidate and previously
selected ATCs. Therefore, RSLCP provides faster speed of
covering level combinations than GSP. Regarding why GSP
has higher 1-wise APCCs than RSLCP for the programs make
and gzip: GSP initially selects two elements from candidates
as the first two ATCs with the minimum Jaccard similarity,
indicating that these two ATCs cover the largest number
of 1-wise level combinations. Although GSP may choose
a different pair of elements as the first two ATCs due to
the tie-breaking [28], each pair of ATCs cover the same
maximum number of 1-wise level combinations. However,
RSLCP randomly chooses an element as the first ATC tc1,
and then chooses the second ATC tc2 such that it may cover
the largest number of uncovered 1-wise level combinations
by tc1. In other words, it is not guaranteed that tc1 and tc2
can over the maximum number of 1-wise level combinations
among all pairs of ATCs. As shown in Table 2, the input
parameter models for both make and gzip contain nearly all
parameters with the same number of levels, which means
that it is difficult for RSLCP to choose two ATCs with the
minimum Jaccard similarity. Therefore, after choosing two
ATCs, RSLCP may cover fewer 1-wise level combinations
than GSP, resulting in the lower 1-wise APCC.

For the final observation, the main reason can be de-
scribed as follows: LSP iteratively chooses a pair of elements
with the minimum Jaccard similarity as the next two ATCs
until all candidates have been selected, which indicates that
each pair of ATCs is constructed independently. In other
words, it is possible that two successive pairs of ATCs cover
very similar level combinations, leading to low interaction
coverage rates.

With respect to the rate of interaction coverage, the
answer to RQ3 is: RSLCP generally achieves lower APCCs
than ILCP, in most cases, but always has better performance
than SBP, and often also for GSP.

5.2 Fault Detection Results
In this section, we answer RQ1, RQ2, and RQ3, in terms
of the fault detection rates. Figures 8 to 12 present the
APFD results for programs flex, grep, gzip, make, and sed,
respectively. Each figure describes different versions for
APFD. Tables 7 and 8 show the detailed Wilcoxon test APFD
results at the 0.05 significance level for each comparison.

5.2.1 RQ1: RSLCP Techniques
Here, we attempt to answer the two sub-questions of RQ1,
RQ1.1 and RQ1.2, according to the APFD results.

(1) RQ1.1: RSLCP-IV Techniques: Based on the experimen-
tal data, we have the following observations:

• Among the five RSLCP-IV techniques, IV1 generally
performs worst, regardless of subject programs with
different versions. However, the APFD difference
between IV1 and the other RSLCP-IV techniques
(IV2, IV3, IV4, and IV5) seems small, in terms of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

both median and mean values: the differences between
the mean values of IV1 and each of the other four
RSLCP-IV techniques are less than 3%; and the differ-
ences between the median values range from 0% to
3% — program gzip with versions v3, v4, and v5, for
example, seems to have no difference in the median
values for each comparison. As shown in Table 7, it
can be observed that, apart from the comparison of
IV1 and IV3 for the program gzip with the last three
versions (i.e., v3, v4, and v5), the differences when
comparing any IVx (2 ≤ x ≤ 5) technique against
IV1 are highly significant — the corresponding p-
values are less than 0.05. Additionally, the effect
size measure Â12(IV1, IVx) values are less than 0.50,
which means that IVx outperforms IV1 more than
50% of the time for each version of each program.

• Regarding the comparisons among IV2, IV3, IV4, and
IV5, the greatest difference is less than 1% among all
programs, for both mean and median APFD values.
In other words, other than IV1, the RSLCP-IV tech-
niques all have very similar performance (according
to the fault detection rates). Regarding the compar-
ison between IVx and IVy (2 ≤ x ̸= y ≤ 5), most
p-values are greater than 0.05, indicating that any
differences between them are not significant. How-
ever, the effect size measure Â12(IVx, IVy) results
show that IV2 is the best, followed by IV4 and IV5.
Overall, the statistical analysis confirms the box plots
observations.

From the perspective of fault detection rate, the answer
to RQ1.1 is: IV1 has the worst fault detection rates, while
other RSLCP-IV techniques are similarly effective.

(2) RQ1.2: RSLCP-IV vs RSLCP-PV: Based on the experi-
mental results, we can observe the following:

Based on the box plots results, PV achieves higher
APFDs than IV1, and has comparable performance to the
other RSLCP-IV techniques, regardless of subject programs.
According to the statistical analysis, however, we have the
following observations:

• Regarding the p-values, all of the IV1 vs PV compar-
isons are highly significant, except for the programs
gzip-v3, gzip-v4, and gzip-v5. This means that the
APFDs are very different when comparing IV1 and
PV. The effect size measure Â12(IV1,PV) values have
different ranges for different programs: for example,
there are large differences for the programs flex and
sed, regardless of versions, because the Â12(IV1,PV)
values range from 0.24 to 0.33 (except for the pro-
gram sed-v1). However, for the programs grep, gzip,
and make, the Â12(IV1,PV) values range from 0.37 to
0.49, which means that their differences are relatively
medium or small.

• When comparing IVx (2 ≤ x ≤ 5) with PV, different
IVx techniques have different observations. More
specifically, apart from the programs sed-v4 and sed-
v5, there is no significant differences between IV2
and PV. Except for grep with the first three versions,
gzip with the last three versions, and make-v5, the d-
ifferences between IV3 and PV are highly significant.
In addition, the APFD differences between IV4 and
PV are highly significant for the programs flex (except
for flex-v3) and make, but not for the programs grep,
gzip, and sed, for all versions. Similarly, the differ-
ences between IV5 and PV are highly significant for
all versions of the programs flex and sed, and some
versions of other programs. Nevertheless, the effect
size measure Â12(IVx,PV) only ranges from 0.42 to
0.53, which indicates that the differences between

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

A
P

F
D

v5v4v3v2v1

 IV1 IV2 IV3 IV4 IV5 PV 1W 2W 3W 4W 5W 6W ILCP GSP LSP

Fig. 8. APFD results for each prioritization technique for the program flex.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

A
P

F
D

v5v4v3v2v1

 IV1 IV2 IV3 IV4 IV5 PV 1W 2W 3W 4W 5W 6W ILCP GSP LSP

Fig. 9. APFD results for each prioritization technique for the program grep.

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

v5v4v3v2v1

 IV1 IV2 IV3 IV4 IV5 PV 1W 2W 3W 4W 5W 6W ILCP GSP LSP

Fig. 10. APFD results for each prioritization technique for the program gzip.

them are small. As a consequence, we can conclude
that, overall, the statistical analysis confirms the box
plots results.

With respect to the rate of fault detection, the answer
to RQ1.2 is: RSLCP-PV performs significantly better than
IV1, but has very similar performances to other RSLCP-IV
techniques.

5.2.2 RQ2: RSLCP vs λLCP

Based on the experimental data comparing RSLCP and
λLCP, we have the following observations:

• The box plots distributions show that the differences
between RSLCP and λLCP are relatively small, re-
gardless of subject program. Both in terms of mean
and median values, this maximum difference be-
tween RSLCP and λLCP is only approximately 3.5%

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

32%

36%

40%

44%

48%

52%

56%

60%

64%

68%

72%

32%

36%

40%

44%

48%

52%

56%

60%

64%

68%

72%

A
P

F
D

v5v4v3v2v1

 IV1 IV2 IV3 IV4 IV5 PV 1W 2W 3W 4W 5W 6W ILCP GSP LSP

Fig. 11. APFD results for each prioritization technique for the program make.

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

A
P

F
D

v5v4v3v2v1

 IV1 IV2 IV3 IV4 IV5 PV 1W 2W 3W 4W 5W 6W ILCP GSP LSP

Fig. 12. APFD results for each prioritization technique for the program sed.

to 5.0%.
• Different programs may have different observations.

For example, for all five versions of the program
flex, all RSLCP techniques perform better than all
λLCP techniques; however, for the program sed, all
λLCP techniques (except 1W and 2W for some cases)
have higher mean and median APFD values than the
RSLCP techniques. Nevertheless, the RSLCP tech-
niques generally have comparable or better APFD

performances than 1W and 2W, and comparable per-
formances to 3W and 4W. Compared with 5W and
6W, overall RSLCP has the worse rates of fault de-
tection, however, it can sometimes have significantly
better performances.

• In general, the statistical analysis supports the ob-
servations above. It should be noted that for the
program flex, the difference between RSLCP and
λLCP has a large effect size in most cases (except

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

TABLE 7
Statistical Analysis for Pairwise APFD Comparisons of RSLCP Techniques (Â12 values included in brackets)

Comparison
flex grep gzip make sed

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5
IV1 vs IV2 6(0.26) 6(0.23) 6(0.28) 6(0.26) 6(0.26) 6(0.43) 6(0.43) 6(0.43) 6(0.36) 6(0.37) 6(0.41) 6(0.41) m(0.48) m(0.48) m(0.48) 6(0.43) 6(0.41) 6(0.41) 6(0.38) 6(0.43) 6(0.36) 6(0.28) 6(0.28) 6(0.29) 6(0.30)
IV1 vs IV3 6(0.30) 6(0.28) 6(0.32) 6(0.30) 6(0.30) 6(0.43) 6(0.42) 6(0.44) 6(0.40) 6(0.40) 6(0.46) 6(0.46) m(0.48) m(0.48) m(0.48) 6(0.45) 6(0.44) 6(0.44) 6(0.42) 6(0.45) 6(0.43) 6(0.37) 6(0.37) 6(0.37) 6(0.37)
IV1 vs IV4 6(0.29) 6(0.27) 6(0.31) 6(0.29) 6(0.29) 6(0.44) 6(0.44) 6(0.42) 6(0.39) 6(0.39) 6(0.43) 6(0.43) m(0.48) m(0.48) m(0.48) 6(0.46) 6(0.44) 6(0.45) 6(0.42) 6(0.46) 6(0.36) 6(0.29) 6(0.29) 6(0.31) 6(0.32)
IV1 vs IV5 6(0.29) 6(0.27) 6(0.32) 6(0.29) 6(0.30) 6(0.44) 6(0.43) 6(0.44) 6(0.40) 6(0.41) 6(0.44) 6(0.44) m(0.48) m(0.48) m(0.48) 6(0.44) 6(0.43) 6(0.43) 6(0.40) 6(0.44) 6(0.39) 6(0.34) 6(0.34) 6(0.35) 6(0.35)
IV2 vs IV3 4(0.54) 4(0.56) 4(0.54) 4(0.55) 4(0.55) m(0.50) m(0.49) m(0.51) 4(0.54) 4(0.53) 4(0.55) 4(0.55) m(0.51) m(0.51) m(0.51) m(0.51) 4(0.53) 4(0.53) 4(0.55) m(0.52) 4(0.58) 4(0.60) 4(0.60) 4(0.59) 4(0.58)
IV2 vs IV4 4(0.54) 4(0.55) 4(0.53) 4(0.53) 4(0.53) m(0.50) m(0.51) m(0.50) m(0.52) m(0.52) m(0.52) m(0.52) m(0.50) m(0.50) m(0.50) m(0.52) 4(0.54) 4(0.54) 4(0.55) 4(0.53) m(0.50) m(0.51) m(0.51) 4(0.53) m(0.52)
IV2 vs IV5 4(0.53) 4(0.55) 4(0.54) 4(0.54) 4(0.54) m(0.51) m(0.51) m(0.51) 4(0.54) 4(0.54) 4(0.53) 4(0.53) m(0.50) m(0.50) m(0.50) m(0.51) m(0.52) m(0.52) 4(0.53) m(0.50) 4(0.54) 4(0.57) 4(0.57) 4(0.57) 4(0.56)
IV3 vs IV4 m(0.49) m(0.49) m(0.48) m(0.49) m(0.49) m(0.51) m(0.52) m(0.48) m(0.48) m(0.49) 6(0.46) 6(0.46) m(0.49) m(0.49) m(0.49) m(0.51) m(0.50) m(0.51) m(0.50) m(0.51) 6(0.43) 6(0.42) 6(0.42) 6(0.44) 6(0.44)
IV3 vs IV5 m(0.49) m(0.49) m(0.50) m(0.49) m(0.49) m(0.51) m(0.52) m(0.50) m(0.50) m(0.50) m(0.48) 6(0.47) m(0.49) m(0.49) m(0.49) m(0.50) m(0.48) m(0.49) m(0.48) m(0.49) 6(0.47) 6(0.47) 6(0.47) m(0.48) m(0.48)
IV4 vs IV5 m(0.50) m(0.51) m(0.51) m(0.50) m(0.50) m(0.51) m(0.50) m(0.52) m(0.51) m(0.52) m(0.51) m(0.51) m(0.50) m(0.50) m(0.50) m(0.49) m(0.48) m(0.48) m(0.48) 6(0.47) 4(0.54) 4(0.55) 4(0.55) 4(0.54) 4(0.54)
IV1 vs PV 6(0.26) 6(0.24) 6(0.29) 6(0.26) 6(0.26) 6(0.43) 6(0.42) 6(0.42) 6(0.37) 6(0.37) 6(0.41) 6(0.41) m(0.49) m(0.49) m(0.49) 6(0.42) 6(0.41) 6(0.41) 6(0.37) 6(0.43) 6(0.37) 6(0.30) 6(0.30) 6(0.32) 6(0.33)
IV2 vs PV m(0.50) m(0.51) m(0.51) m(0.50) m(0.50) m(0.49) m(0.49) m(0.49) m(0.51) m(0.50) m(0.50) m(0.50) m(0.51) m(0.51) m(0.51) m(0.48) m(0.49) m(0.50) m(0.49) m(0.49) m(0.51) m(0.52) m(0.52) 4(0.53) 4(0.53)
IV3 vs PV 6(0.46) 6(0.45) 6(0.46) 6(0.45) 6(0.45) m(0.50) m(0.50) m(0.48) 6(0.47) 6(0.47) 6(0.45) 6(0.45) m(0.50) m(0.50) m(0.50) 6(0.47) 6(0.46) 6(0.46) 6(0.44) m(0.48) 6(0.44) 6(0.42) 6(0.42) 6(0.44) 6(0.45)
IV4 vs PV 6(0.46) 6(0.46) m(0.48) 6(0.47) 6(0.47) m(0.49) m(0.48) m(0.50) m(0.49) m(0.48) m(0.49) m(0.49) m(0.51) m(0.51) m(0.51) 6(0.46) 6(0.46) 6(0.46) 6(0.44) 6(0.47) m(0.51) m(0.50) m(0.50) m(0.51) m(0.51)
IV5 vs PV 6(0.47) 6(0.46) 6(0.47) 6(0.46) 6(0.46) m(0.48) m(0.48) m(0.48) 6(0.47) 6(0.47) 6(0.47) m(0.47) m(0.51) m(0.51) m(0.51) m(0.48) m(0.48) m(0.48) 6(0.46) m(0.49) 6(0.47) 6(0.45) 6(0.45) 6(0.47) 6(0.47)

TABLE 8
Statistical Analysis for Pairwise APFD Comparisons of RSLCP against Other ATCP Techniques (Â12 values included in brackets)

Comparison flex grep gzip make sed
v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

IV1 vs 1W 4(0.79) 4(0.79) 4(0.75) 4(0.78) 4(0.78) 4(0.66) 4(0.71) m(0.51) 4(0.66) 4(0.60) 4(0.57) 4(0.57) 6(0.47) 6(0.47) 6(0.47) 4(0.57) 6(0.40) 6(0.39) m(0.50) 6(0.29) m(0.49) 4(0.58) 4(0.58) 4(0.59) 4(0.64)
IV2 vs 1W 4(0.92) 4(0.94) 4(0.89) 4(0.92) 4(0.92) 4(0.72) 4(0.76) 4(0.57) 4(0.76) 4(0.71) 4(0.65) 4(0.65) m(0.50) m(0.50) m(0.50) 4(0.63) 6(0.47) 6(0.46) 4(0.61) 6(0.33) 4(0.63) 4(0.78) 4(0.78) 4(0.78) 4(0.80)
IV3 vs 1W 4(0.91) 4(0.92) 4(0.87) 4(0.90) 4(0.90) 4(0.72) 4(0.77) 4(0.56) 4(0.74) 4(0.68) 4(0.61) 4(0.61) m(0.49) m(0.49) m(0.49) 4(0.61) 6(0.44) 6(0.43) 4(0.57) 6(0.32) 4(0.56) 4(0.70) 4(0.70) 4(0.71) 4(0.74)
IV4 vs 1W 4(0.91) 4(0.92) 4(0.87) 4(0.91) 4(0.90) 4(0.72) 4(0.76) 4(0.58) 4(0.75) 4(0.69) 4(0.64) 4(0.64) m(0.49) m(0.49) m(0.49) 4(0.61) 6(0.44) 6(0.43) 4(0.56) 6(0.31) 4(0.63) 4(0.77) 4(0.77) 4(0.76) 4(0.78)
IV5 vs 1W 4(0.91) 4(0.92) 4(0.87) 4(0.90) 4(0.90) 4(0.71) 4(0.76) 4(0.56) 4(0.74) 4(0.67) 4(0.63) 4(0.63) m(0.49) m(0.49) m(0.49) 4(0.62) 6(0.46) 6(0.44) 4(0.58) 6(0.33) 4(0.59) 4(0.73) 4(0.73) 4(0.72) 4(0.75)
PV vs 1W 4(0.92) 4(0.94) 4(0.88) 4(0.92) 4(0.92) 4(0.72) 4(0.78) 4(0.58) 4(0.76) 4(0.70) 4(0.65) 4(0.65) m(0.49) m(0.49) m(0.49) 4(0.64) 6(0.47) 6(0.46) 4(0.61) 6(0.33) 4(0.62) 4(0.76) 4(0.76) 4(0.75) 4(0.77)
IV1 vs 2W 4(0.76) 4(0.75) 4(0.71) 4(0.74) 4(0.74) 6(0.42) 6(0.41) 6(0.28) 6(0.43) 6(0.37) m(0.49) m(0.49) m(0.48) m(0.48) m(0.48) 4(0.55) 6(0.39) 6(0.38) m(0.48) 6(0.29) 6(0.35) 6(0.27) 6(0.27) 6(0.30) 6(0.34)
IV2 vs 2W 4(0.90) 4(0.91) 4(0.86) 4(0.89) 4(0.89) m(0.49) m(0.47) 6(0.34) 4(0.56) m(0.49) 4(0.57) 4(0.57) m(0.50) m(0.50) m(0.50) 4(0.62) 6(0.47) 6(0.45) 4(0.60) 6(0.32) m(0.49) m(0.48) m(0.48) m(0.52) 4(0.54)
IV3 vs 2W 4(0.88) 4(0.89) 4(0.84) 4(0.87) 4(0.87) m(0.49) m(0.49) 6(0.33) m(0.52) 6(0.46) m(0.52) m(0.52) m(0.49) m(0.49) m(0.49) 4(0.60) 6(0.44) 6(0.42) 4(0.56) 6(0.31) 6(0.41) 6(0.39) 6(0.39) 6(0.43) 6(0.46)
IV4 vs 2W 4(0.89) 4(0.89) 4(0.85) 4(0.88) 4(0.88) m(0.48) 6(0.47) 6(0.35) 4(0.53) 6(0.47) 4(0.56) 4(0.56) m(0.50) m(0.50) m(0.50) 4(0.59) 6(0.44) 6(0.42) 4(0.56) 6(0.30) m(0.48) 6(0.46) 6(0.46) m(0.49) m(0.51)
IV5 vs 2W 4(0.89) 4(0.89) 4(0.84) 4(0.88) 4(0.88) m(0.47) 6(0.47) 6(0.33) m(0.52) 6(0.45) 4(0.54) 4(0.55) m(0.50) m(0.50) m(0.50) 4(0.61) 6(0.46) 6(0.44) 4(0.58) 6(0.32) 6(0.45) 6(0.42) 6(0.42) 6(0.45) m(0.48)
PV vs 2W 4(0.90) 4(0.91) 4(0.86) 4(0.89) 4(0.89) m(0.49) m(0.49) 6(0.35) 4(0.55) m(0.48) 4(0.57) 4(0.57) m(0.49) m(0.49) m(0.49) 4(0.63) 6(0.47) 6(0.45) 4(0.61) 6(0.33) 6(0.47) 6(0.46) 6(0.46) m(0.48) m(0.51)
IV1 vs 3W 4(0.74) 4(0.71) 4(0.70) 4(0.72) 4(0.72) 6(0.41) 6(0.40) 6(0.33) 6(0.36) 6(0.33) 6(0.38) 6(0.38) m(0.47) m(0.47) m(0.47) m(0.50) 6(0.43) 6(0.40) m(0.48) 6(0.32) 6(0.31) 6(0.15) 6(0.15) 6(0.22) 6(0.23)
IV2 vs 3W 4(0.90) 4(0.90) 4(0.85) 4(0.89) 4(0.88) 6(0.47) 6(0.47) 6(0.40) m(0.49) 6(0.46) 6(0.46) 6(0.46) m(0.50) m(0.50) m(0.50) 4(0.57) m(0.51) m(0.48) 4(0.60) 6(0.36) 6(0.45) 6(0.33) 6(0.33) 6(0.42) 6(0.41)
IV3 vs 3W 4(0.88) 4(0.87) 4(0.82) 4(0.86) 4(0.86) m(0.48) m(0.48) 6(0.39) 6(0.45) 6(0.42) 6(0.41) 6(0.41) m(0.49) m(0.49) m(0.49) 4(0.55) m(0.48) 6(0.45) 4(0.56) 6(0.36) 6(0.38) 6(0.24) 6(0.24) 6(0.33) 6(0.33)
IV4 vs 3W 4(0.88) 4(0.88) 4(0.83) 4(0.87) 4(0.87) 6(0.47) 6(0.47) 6(0.41) 6(0.47) 6(0.44) 6(0.44) 6(0.44) m(0.50) m(0.50) m(0.50) 4(0.54) m(0.48) 6(0.45) 4(0.56) 6(0.34) 6(0.45) 6(0.32) 6(0.32) 6(0.39) 6(0.39)
IV5 vs 3W 4(0.88) 4(0.88) 4(0.82) 4(0.87) 4(0.86) 6(0.46) 6(0.47) 6(0.39) 6(0.45) 6(0.42) 6(0.43) 6(0.43) m(0.50) m(0.50) m(0.50) 4(0.56) m(0.49) 6(0.47) 4(0.58) 6(0.37) 6(0.41) 6(0.27) 6(0.27) 6(0.36) 6(0.35)
PV vs 3W 4(0.90) 4(0.90) 4(0.84) 4(0.89) 4(0.88) m(0.48) m(0.48) 6(0.41) m(0.48) 6(0.45) 6(0.45) 6(0.45) m(0.49) m(0.49) m(0.49) 4(0.58) m(0.51) m(0.49) 4(0.61) 6(0.37) 6(0.44) 6(0.32) 6(0.32) 6(0.39) 6(0.38)
IV1 vs 4W 4(0.64) 4(0.62) 4(0.59) 4(0.63) 4(0.63) 6(0.43) 6(0.43) 6(0.34) 6(0.30) 6(0.27) 6(0.40) 6(0.40) m(0.48) m(0.48) m(0.48) 6(0.47) 6(0.45) 6(0.45) m(0.51) 6(0.39) 6(0.29) 6(0.12) 6(0.12) 6(0.18) 6(0.19)
IV2 vs 4W 4(0.83) 4(0.84) 4(0.76) 4(0.82) 4(0.82) m(0.50) m(0.50) 6(0.40) 6(0.43) 6(0.38) m(0.48) m(0.48) m(0.50) m(0.50) m(0.50) 4(0.53) 4(0.54) 4(0.54) 4(0.65) 6(0.45) 6(0.43) 6(0.29) 6(0.29) 6(0.39) 6(0.37)
IV3 vs 4W 4(0.81) 4(0.80) 4(0.73) 4(0.79) 4(0.79) m(0.50) m(0.51) 6(0.39) 6(0.40) 6(0.35) 6(0.43) 6(0.43) m(0.49) m(0.49) m(0.49) m(0.52) m(0.51) m(0.51) 4(0.60) 6(0.44) 6(0.36) 6(0.21) 6(0.21) 6(0.30) 6(0.30)
IV4 vs 4W 4(0.81) 4(0.81) 4(0.74) 4(0.80) 4(0.80) m(0.49) m(0.50) 6(0.41) 6(0.41) 6(0.37) 6(0.46) 6(0.46) m(0.50) m(0.50) m(0.50) m(0.51) m(0.51) m(0.50) 4(0.60) 6(0.42) 6(0.43) 6(0.29) 6(0.29) 6(0.36) 6(0.35)
IV5 vs 4W 4(0.81) 4(0.80) 4(0.73) 4(0.80) 4(0.79) m(0.49) m(0.50) 6(0.39) 6(0.40) 6(0.35) 6(0.45) 6(0.45) m(0.50) m(0.50) m(0.50) m(0.52) 4(0.53) m(0.52) 4(0.63) 6(0.45) 6(0.39) 6(0.24) 6(0.24) 6(0.32) 6(0.31)
PV vs 4W 4(0.83) 4(0.83) 4(0.76) 4(0.82) 4(0.82) m(0.50) m(0.51) 6(0.41) 6(0.43) 6(0.38) 6(0.47) 6(0.47) m(0.49) m(0.49) m(0.49) 4(0.55) 4(0.55) 4(0.54) 4(0.66) 6(0.45) 6(0.42) 6(0.29) 6(0.29) 6(0.36) 6(0.35)
IV1 vs 5W 4(0.57) 4(0.56) 4(0.57) 4(0.56) 4(0.56) 6(0.35) 6(0.33) 6(0.28) 6(0.25) 6(0.21) 6(0.38) 6(0.38) m(0.49) m(0.49) m(0.49) 6(0.44) 6(0.39) 6(0.39) 6(0.41) 6(0.37) 6(0.30) 6(0.12) 6(0.12) 6(0.18) 6(0.18)
IV2 vs 5W 4(0.78) 4(0.79) 4(0.74) 4(0.77) 4(0.77) 6(0.41) 6(0.40) 6(0.34) 6(0.38) 6(0.32) 6(0.45) 6(0.45) m(0.51) m(0.51) m(0.51) m(0.52) m(0.48) m(0.49) 4(0.56) 6(0.42) 6(0.44) 6(0.29) 6(0.29) 6(0.39) 6(0.37)
IV3 vs 5W 4(0.75) 4(0.75) 4(0.71) 4(0.74) 4(0.74) 6(0.42) 6(0.41) 6(0.33) 6(0.34) 6(0.29) 6(0.41) 6(0.40) m(0.50) m(0.50) m(0.50) m(0.50) 6(0.45) 6(0.45) m(0.50) 6(0.41) 6(0.36) 6(0.21) 6(0.21) 6(0.29) 6(0.29)
IV4 vs 5W 4(0.76) 4(0.76) 4(0.72) 4(0.75) 4(0.74) 6(0.41) 6(0.39) 6(0.35) 6(0.36) 6(0.31) 6(0.44) 6(0.44) m(0.51) m(0.51) m(0.51) m(0.49) 6(0.45) 6(0.44) m(0.50) 6(0.40) 6(0.44) 6(0.28) 6(0.28) 6(0.36) 6(0.34)
IV5 vs 5W 4(0.76) 4(0.76) 4(0.71) 4(0.74) 4(0.74) 6(0.40) 6(0.39) 6(0.33) 6(0.34) 6(0.29) 6(0.43) 6(0.43) m(0.51) m(0.51) m(0.51) m(0.51) 6(0.47) 6(0.46) 4(0.53) 6(0.42) 6(0.40) 6(0.24) 6(0.24) 6(0.32) 6(0.30)
PV vs 5W 4(0.78) 4(0.79) 4(0.74) 4(0.77) 4(0.77) 6(0.42) 6(0.41) 6(0.35) 6(0.37) 6(0.32) 6(0.45) 6(0.44) m(0.50) m(0.50) m(0.50) 4(0.53) m(0.49) m(0.49) 4(0.57) 6(0.43) 6(0.43) 6(0.28) 6(0.28) 6(0.35) 6(0.34)
IV1 vs 6W m(0.50) m(0.51) m(0.51) m(0.48) m(0.49) 6(0.36) 6(0.32) 6(0.28) 6(0.27) 6(0.23) 6(0.34) 6(0.34) m(0.50) m(0.50) m(0.50) 6(0.45) 6(0.33) 6(0.33) 6(0.37) 6(0.31) 6(0.30) 6(0.13) 6(0.13) 6(0.18) 6(0.19)
IV2 vs 6W 4(0.74) 4(0.77) 4(0.71) 4(0.72) 4(0.72) 6(0.43) 6(0.39) 6(0.34) 6(0.39) 6(0.34) 6(0.42) 6(0.42) m(0.52) m(0.52) m(0.52) m(0.52) 6(0.41) 6(0.41) m(0.52) 6(0.35) 6(0.44) 6(0.31) 6(0.31) 6(0.39) 6(0.38)
IV3 vs 6W 4(0.70) 4(0.72) 4(0.67) 4(0.68) 4(0.68) 6(0.43) 6(0.40) 6(0.34) 6(0.35) 6(0.31) 6(0.37) 6(0.37) m(0.51) m(0.51) m(0.51) m(0.51) 6(0.38) 6(0.38) 6(0.46) 6(0.35) 6(0.37) 6(0.23) 6(0.23) 6(0.30) 6(0.30)
IV4 vs 6W 4(0.71) 4(0.73) 4(0.69) 4(0.70) 4(0.69) 6(0.42) 6(0.39) 6(0.35) 6(0.37) 6(0.32) 6(0.40) 6(0.41) m(0.52) m(0.52) m(0.52) m(0.50) 6(0.38) 6(0.37) 6(0.45) 6(0.33) 6(0.44) 6(0.30) 6(0.30) 6(0.36) 6(0.36)
IV5 vs 6W 4(0.71) 4(0.73) 4(0.67) 4(0.69) 4(0.69) 6(0.41) 6(0.38) 6(0.33) 6(0.36) 6(0.31) 6(0.39) 6(0.39) m(0.52) m(0.52) m(0.52) m(0.51) 6(0.40) 6(0.39) m(0.49) 6(0.36) 6(0.40) 6(0.25) 6(0.25) 6(0.32) 6(0.32)
PV vs 6W 4(0.74) 4(0.76) 4(0.70) 4(0.72) 4(0.72) 6(0.43) 6(0.40) 6(0.35) 6(0.38) 6(0.34) 6(0.41) 6(0.41) m(0.51) m(0.51) m(0.51) 4(0.54) 6(0.42) 6(0.42) 4(0.53) 6(0.36) 6(0.43) 6(0.30) 6(0.30) 6(0.36) 6(0.35)

IV1 vs ILCP m(0.52) m(0.50) m(0.51) m(0.51) m(0.50) 6(0.35) 6(0.34) 6(0.30) 6(0.27) 6(0.24) 6(0.40) 6(0.40) m(0.48) m(0.48) m(0.48) 6(0.42) 6(0.33) 6(0.33) 6(0.34) 6(0.32) 6(0.32) 6(0.16) 6(0.16) 6(0.21) 6(0.22)
IV2 vs ILCP 4(0.77) 4(0.77) 4(0.70) 4(0.75) 4(0.75) 6(0.42) 6(0.41) 6(0.36) 6(0.40) 6(0.35) m(0.48) m(0.48) m(0.51) m(0.51) m(0.51) m(0.49) 6(0.41) 6(0.41) m(0.48) 6(0.36) 6(0.45) 6(0.35) 6(0.35) 6(0.42) 6(0.42)
IV3 vs ILCP 4(0.73) 4(0.72) 4(0.67) 4(0.71) 4(0.71) 6(0.42) 6(0.42) 6(0.35) 6(0.37) 6(0.32) 6(0.43) 6(0.43) m(0.50) m(0.50) m(0.50) m(0.48) 6(0.38) 6(0.39) 6(0.43) 6(0.36) 6(0.38) 6(0.26) 6(0.26) 6(0.33) 6(0.33)
IV4 vs ILCP 4(0.74) 4(0.73) 4(0.68) 4(0.72) 4(0.72) 6(0.41) 6(0.41) 6(0.37) 6(0.38) 6(0.33) 6(0.46) 6(0.46) m(0.50) m(0.50) m(0.50) 6(0.46) 6(0.38) 6(0.38) 6(0.42) 6(0.34) 6(0.45) 6(0.34) 6(0.34) 6(0.39) 6(0.39)
IV5 vs ILCP 4(0.74) 4(0.73) 4(0.67) 4(0.72) 4(0.71) 6(0.40) 6(0.40) 6(0.35) 6(0.37) 6(0.32) 6(0.45) 6(0.45) m(0.51) m(0.51) m(0.51) m(0.48) 6(0.40) 6(0.40) 6(0.45) 6(0.37) 6(0.41) 6(0.29) 6(0.29) 6(0.35) 6(0.35)
PV vs ILCP 4(0.77) 4(0.76) 4(0.69) 4(0.75) 4(0.75) 6(0.42) 6(0.42) 6(0.37) 6(0.39) 6(0.35) 6(0.47) 6(0.47) m(0.50) m(0.50) m(0.50) m(0.50) 6(0.42) 6(0.42) m(0.50) 6(0.37) 6(0.44) 6(0.34) 6(0.34) 6(0.39) 6(0.39)
IV1 vs GSP 6(0.45) 6(0.24) 4(0.67) 6(0.45) 6(0.45) 4(0.65) m(0.48) 4(0.72) 4(0.66) 4(0.62) m(0.48) 6(0.47) 6(0.44) 6(0.44) 6(0.44) 6(0.17) 6(0.14) 6(0.12) 6(0.07) 6(0.16) 6(0.46) 4(0.73) 4(0.73) 4(0.62) 6(0.34)
IV2 vs GSP 4(0.75) 4(0.56) 4(0.89) 4(0.76) 4(0.75) 4(0.71) 4(0.55) 4(0.78) 4(0.78) 4(0.75) 4(0.57) 4(0.56) 6(0.47) 6(0.47) 6(0.47) 6(0.18) 6(0.16) 6(0.13) 6(0.10) 6(0.16) 4(0.62) 4(0.90) 4(0.90) 4(0.82) 4(0.56)
IV3 vs GSP 4(0.71) m(0.49) 4(0.86) 4(0.71) 4(0.71) 4(0.72) 4(0.57) 4(0.77) 4(0.74) 4(0.71) m(0.52) m(0.51) 6(0.46) 6(0.46) 6(0.46) 6(0.18) 6(0.15) 6(0.12) 6(0.08) 6(0.16) 4(0.54) 4(0.84) 4(0.84) 4(0.75) m(0.48)
IV4 vs GSP 4(0.72) m(0.50) 4(0.87) 4(0.72) 4(0.72) 4(0.71) 4(0.55) 4(0.78) 4(0.76) 4(0.72) 4(0.55) 4(0.55) 6(0.46) 6(0.46) 6(0.46) 6(0.17) 6(0.15) 6(0.11) 6(0.08) 6(0.15) 4(0.62) 4(0.89) 4(0.89) 4(0.80) 4(0.54)
IV5 vs GSP 4(0.71) m(0.50) 4(0.85) 4(0.71) 4(0.71) 4(0.71) 4(0.55) 4(0.77) 4(0.74) 4(0.71) 4(0.54) 4(0.53) 6(0.46) 6(0.46) 6(0.46) 6(0.18) 6(0.16) 6(0.13) 6(0.08) 6(0.17) 4(0.58) 4(0.86) 4(0.86) 4(0.77) m(0.49)
PV vs GSP 4(0.76) 4(0.55) 4(0.88) 4(0.76) 4(0.75) 4(0.72) 4(0.57) 4(0.78) 4(0.77) 4(0.74) 4(0.57) 4(0.56) 6(0.46) 6(0.46) 6(0.46) 6(0.18) 6(0.18) 6(0.13) 6(0.11) 6(0.16) 4(0.61) 4(0.88) 4(0.88) 4(0.79) 4(0.53)
IV1 vs LSP 6(0.44) 6(0.34) 4(0.69) 6(0.45) 6(0.45) 4(0.81) 4(0.74) 4(0.70) 4(0.89) 4(0.89) 4(0.59) 4(0.59) 4(0.70) 4(0.70) 4(0.70) 6(0.27) 6(0.10) 6(0.09) 6(0.06) 6(0.09) 6(0.38) 4(0.83) 4(0.83) 4(0.59) m(0.49)
IV2 vs LSP 4(0.71) 4(0.65) 4(0.87) 4(0.72) 4(0.72) 4(0.85) 4(0.79) 4(0.76) 4(0.94) 4(0.94) 4(0.67) 4(0.67) 4(0.72) 4(0.72) 4(0.72) 6(0.31) 6(0.11) 6(0.09) 6(0.09) 6(0.09) 4(0.53) 4(0.95) 4(0.95) 4(0.81) 4(0.69)
IV3 vs LSP 4(0.67) 4(0.59) 4(0.85) 4(0.68) 4(0.68) 4(0.85) 4(0.80) 4(0.75) 4(0.93) 4(0.93) 4(0.63) 4(0.62) 4(0.71) 4(0.71) 4(0.71) 6(0.31) 6(0.10) 6(0.09) 6(0.08) 6(0.09) 6(0.45) 4(0.92) 4(0.92) 4(0.73) 4(0.61)
IV4 vs LSP 4(0.68) 4(0.60) 4(0.85) 4(0.69) 4(0.69) 4(0.85) 4(0.79) 4(0.76) 4(0.94) 4(0.93) 4(0.66) 4(0.66) 4(0.71) 4(0.71) 4(0.71) 6(0.29) 6(0.10) 6(0.08) 6(0.07) 6(0.08) 4(0.53) 4(0.95) 4(0.95) 4(0.79) 4(0.66)
IV5 vs LSP 4(0.68) 4(0.60) 4(0.84) 4(0.68) 4(0.68) 4(0.85) 4(0.79) 4(0.75) 4(0.93) 4(0.92) 4(0.65) 4(0.65) 4(0.71) 4(0.71) 4(0.71) 6(0.30) 6(0.11) 6(0.09) 6(0.07) 6(0.10) m(0.49) 4(0.93) 4(0.93) 4(0.75) 4(0.63)
PV vs LSP 4(0.71) 4(0.64) 4(0.87) 4(0.72) 4(0.72) 4(0.86) 4(0.81) 4(0.76) 4(0.94) 4(0.94) 4(0.67) 4(0.67) 4(0.71) 4(0.71) 4(0.71) 6(0.32) 6(0.12) 6(0.10) 6(0.10) 6(0.09) m(0.52) 4(0.94) 4(0.94) 4(0.78) 4(0.66)

for the comparisons of IV1 with 4W, 5W, and 6W)
— with the effect size values ranging from 67%
to 94%. However, for the program sed, the case is
generally the opposite: apart from 1W and 2W, all
other λLCP techniques generally have significantly
better performances than RSLCP, either with a large
or medium effect size.

From the perspective of the fault detection rate, the
answer to RQ2 is: Although RSLCP and λLCP have similar
APFD observations, overall, RSLCP is comparable or more
effective than λLCP with low λ values (1 or 2), and has
comparable (and sometimes superior) APFDs to λLCP with

medium λ values such as 3 and 4. In addition, RSLCP is
worse than λLCP with high λ values such as 5 and 6, but it
sometimes has much better fault detection rates.

5.2.3 RQ3: RSLCP vs ILCP and SP
Based on the experimental data comparing RSLCP, ILCP,
and SP, it can be seen that:

• Compared with ILCP, although RSLCP has relative
similar mean and median APFD values, it overall
has better rates of fault detection for the program flex
but worse performances for the other four programs,
irrespective of versions. The statistical analysis sup-
ports these box plot observations.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

• Compared with GSP, except for the program make,
and some versions of the program gzip, RSLCP gen-
erally has higher APFDs, both in terms of mean and
median values. The statistical analysis shows that
the differences between GSP and RSLCP are highly
significant, because their p-values are generally less
than 0.05; and the effect size Â12 values are within
a high or medium degree (except for the program
gzip).

• Compared with LSP, except for the program make,
RSLCP generally has better performances in most
cases, regardless of mean and median APFD values.
This observation is supported by the statistical anal-
ysis, i.e., nearly all the p values are less than 0.05; and
most effect size Â12 values are within a high degree.

From the perspective of fault detection rate, the answer
to RQ3 is: RSLCP generally performs worse than ILCP, but
can sometimes achieve a better performance. Compared
with SP (both GSP and LSP), RSLCP is generally more
effective, although it may be less effective in some cases.

As discussed in Section 5.1, RSLCP is faster at covering
1-wise or 2-wise level combinations than λLCP. In addition,
as shown in Table 4, the proportion of faults with the
FTFI number being 1 or 2 is about 27% to 30% for the
program flex; approximately 30% to 40% for grep; 75% to
100% for gzip; and 45% to 60% for the program sed. In
other words, RSLCP may have better or at least similar fault
detection rates to λLCP for these four programs. However,
as discussed in the APFD results, RSLCP is more effective
than λLCP for the program flex, but overall less effective
for the programs grep, gzip, and sed. This phenomenon may
be explained as follows: (1) λLCP could achieve the rates
of covering 1-wise and 2-wise level combinations to some
extent, which may detect faults with the FTFI number 1
and 2 as quickly as RSLCP. (2) Even though two faults may
have the same FTFI number, they may have very different
properties. For example, consider two faults f1 and f2 with
the FTFI number equal to 2, which means that both of them
could be caused by two parameters pi and pj from the input
parameter model Model(P,L,Q), i.e., pi, pj ∈ P , and the
corresponding levels are Li ∈ L and Lj ∈ L. The fault
f1 may be triggered by the combination of (pi = li) and
(pj = lj), where li ∈ Li and lj ∈ Lj ; while the fault may be
caused by the combination of (pi ̸= li) and (pj ̸= lj). There-
fore, the probability of detecting f1 is equal to 1

|Li|×|Lj | ; and

the probability of detecting f2 is (|Li|−1)×(|Lj |−1)
|Li|×|Lj | . In other

words, the number of ATCs required to detect f1 is much
fewer than that to detect f2, especially when the sizes of Li

and Lj are large. As a consequence, a higher rate of covering
1-wise or 2-wise level combinations does not always imply
a faster detection of 1-wise or 2-wise faults.

A possible reason to explain why RSLCP has significant-
ly worse APFD performance than SP for the program make
may be: As discussed in Section 5.1.3, SP first chooses the
best pair of elements as the first two ATCs that cover the
largest number of 1-wise level combinations. When there is
only one best pair (i.e., not a tie-breaking situation), the first
two ATCs are deterministic. If two such ATCs could detect
many faults, then SP could certainly achieve higher rates of
fault detection than RSLCP. Manual inspection of the ATC
set and mutants for the program make has confirmed this to
be the case.

5.3 Prioritization Cost Results
In this section, we answer RQ1, RQ2, and RQ3, from the
perspective of the prioritization cost. Table 9 shows the
prioritization time, in milliseconds, for the RSLCP, λLCP,
ILCP, and SP techniques. The table presents the mean pri-
oritization time (µ) and the standard deviation (σ) over the
1000 independent runs performed per technique.

5.3.1 RQ1: RSLCP Techniques
From the table, it can be clearly observed that among the six
RSLCP techniques, IV1 has the fastest prioritization, with
the other RSLCP techniques all showing similar prioriti-
zation costs. Therefore, the answer to RQ1.1 is that IV1 is
most efficient among RSLCP-IV techniques; while others are
comparable to each other. Similarly, the answer to RQ1.2
is: IV1 is more efficient than PV; while other RSLCP-IV
techniques are similar to RSLCP-PV.

5.3.2 RQ2: RSLCP vs λLCP
Compared with λLCP, IV1 requires a very similar time to
1W, with the other RSLCP techniques (IV2, IV3, IV4, IV5,
and PV) taking a very similar amount of time to 2W. In
addition, all the RSLCP techniques require considerably less
time than 3W, 4W, 5W, and 6W. From the perspective of
prioritization cost, therefore, the answer to RQ2 is: RSLCP
has similarly efficiency to λLCP when λ is small (such as 1
and 2), and requires much less time when λ is larger (such
as 3, 4, 5, and 6).

5.3.3 RQ3: RSLCP vs ILCP and SP
Compared with ILCP, each RSLCP technique requires sig-
nificantly less prioritization time, i.e., the mean (µ) prioriti-
zation time of ILCP ranges from 589 to 15,540 milliseconds;

TABLE 9
Prioritization Time (in milliseconds) Represented by Mean/Standard Deviation (µ/σ)

Subject RSLCP λLCP ILCP SP
IV1 IV2 IV3 IV4 IV5 PV 1W 2W 3W 4W 5W 6W GSP LSP

flex 40/8 100/8 111/6 111/5 111/5 109/6 39/11 97/14 236/27 399/11 460/12 327/17 1,602/36 1,321/19 1,299/20
grep 32/4 86/8 94/5 94/5 93/6 92/6 29/5 81/6 201/7 370/22 472/12 382/23 1,357/25 1,012/14 999/22
gzip 15/9 68/15 63/7 59/7 61/7 61/6 15/9 72/13 248/8 819/10 1822/17 2,962/37 15,540/93 175/7 176/10
make 6/8 20/7 35/7 35/6 34/6 34/6 6/8 20/7 64/6 126/6 165/8 158/12 589/13 69/8 69/8
sed 23/8 79/4 87/8 88/8 87/8 86/8 21/8 77/6 264/8 618/15 967/15 1,043/11 3,691/146 627/9 624/8∑

116/– 353/– 390/– 387/– 386/– 382/– 110/– 347/– 1,013/– 2,332/– 3,886/– 4,872/– 22,779/– 3,204/– 3,167/–

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

however, the mean time of RSLCP ranges from only 6 to 111
milliseconds. Similarly, RSLCP also needs much less time
than SP (both GSP and LSP) to prioritize ATCs. Therefore,
the answer to RQ3 is: The RSLCP techniques are much more
efficient than ILCP and SP.

5.4 Summary
By combining and summarizing the observations from the
experimental results of interaction coverage rates, the fault
detection rates, and the prioritization time, we have the
following conclusions:

• Compared with λLCP with low λ values (such as 1
and 2), RSLCP achieves superior or at least compara-
ble testing effectiveness, measured with APCC and
APFD, while maintaining testing efficiency.

• Compared with λLCP with medium λ values (such
as 3 and 4), RSLCP achieves comparable fault detec-
tion rates but has worse interaction coverage rates.
However, RSLCP also requires less prioritization
time.

• Compared with λLCP with high λ values (such as
5 and 6), RSLCP usually achieves worse (though
sometimes comparable or better) rates of interac-
tion coverage and fault detection, while maintaining
much better testing efficiency.

• Compared with ILCP, similar to λLCP with high λ
values, the testing effectiveness of RSLCP is gener-
ally worse than that of ILCP (although sometimes
RSLCP is better or comparable to ILCP), but RSLCP
is much more efficient than ILCP.

• Compared with SP, RSLCP not only provides better
testing effectiveness in most cases, but is also more
efficient.

As expected based on the discussion in Section 3.4,
overall, RSLCP provides a good trade-off between testing
effectiveness and efficiency.

5.5 Robustness across Versions
This section attempts to answer RQ4 about the robustness
of each RSLCP technique across different versions.

As shown in Figures 3 to 7, the APFD distributions for
each RSLCP technique are similar over the five versions
of each subject program. In addition, Table 10 presents the
mean and median APFDs of RSLCP over the five versions,
from which we can have the following observations:

• In terms of the mean APFD, even in the worst case,
it varies only slightly: from v1 to v5, for example,
varying less than 4.30% for IV1 and IV3 for all sub-
ject programs; and less than 4.00% for other RSLCP
techniques (IV2, IV4, IV5, and PV).

• With respect to the median APFD, the case is very
similar to that of the mean APFD: each RSLCP tech-
nique achieves the median value varying less than
4.00% over the five versions of each program, in the
worst case (except for a few cases, such as for flex),
where the median values vary approximately 4.27%,
4.01%, and 4.01% for IV1, IV3, and IV5, respectively).

Overall, it can be observed that the APFD is quite robust
over the five versions, for all RSLCP techniques, irrespective
of subject programs The answer to RQ4, therefore, is: Each
RSLCP technique can remain robust over multiple releases
of the SUT.

5.6 Threats to Validity
In this section, we examine some potential threats to the
validity of our study.

TABLE 10
Mean and Median APFD Values over Versions for Each RSLCP Technique

Subject Version Mean Median
IV1 IV2 IV3 IV4 IV5 PV IV1 IV2 IV3 IV4 IV5 PV

flex

v1 85.13% 87.06% 86.74% 86.80% 86.82% 87.04% 85.13% 87.10% 86.76% 86.81% 86.85% 87.04%
v2 86.08% 88.25% 87.84% 87.93% 87.88% 88.16% 86.12% 88.28% 87.81% 87.93% 87.96% 88.22%
v3 87.71% 89.60% 89.25% 89.39% 89.26% 89.53% 87.75% 89.53% 89.26% 89.46% 89.37% 89.58%
v4 86.08% 87.96% 87.63% 87.72% 87.68% 87.94% 86.09% 87.97% 87.60% 87.73% 87.76% 88.01%
v5 85.73% 87.62% 87.30% 87.38% 87.35% 87.61% 85.76% 87.63% 87.27% 87.39% 87.42% 87.67%

Max - Min 2.58% 2.54% 2.51% 2.59% 2.44% 2.49% 2.62% 2.43% 2.50% 2.65% 2.52% 2.54%

grep

v1 87.72% 88.03% 88.04% 88.02% 87.98% 88.06% 87.72% 88.06% 88.08% 87.97% 87.98% 88.06%
v2 86.49% 86.83% 86.90% 86.81% 86.81% 86.90% 86.51% 86.83% 86.93% 86.79% 86.83% 86.87%
v3 86.45% 86.84% 86.78% 86.87% 86.75% 86.87% 86.45% 86.86% 86.80% 86.86% 86.76% 86.93%
v4 84.86% 85.56% 85.36% 85.46% 85.37% 85.53% 84.87% 85.64% 85.43% 85.44% 85.41% 85.52%
v5 83.48% 84.19% 84.01% 84.09% 83.99% 84.18% 83.45% 84.24% 84.07% 84.10% 83.97% 84.15%

Max - Min 4.24% 3.84% 4.03% 3.93% 3.99% 3.88% 4.27% 3.82% 4.01% 3.87% 4.01% 3.91%

gzip

v1 94.22% 94.99% 94.58% 94.84% 94.76% 94.99% 94.55% 95.27% 94.79% 95.15% 95.03% 95.27%
v2 94.18% 94.96% 94.55% 94.82% 94.74% 94.96% 94.55% 95.19% 94.71% 95.11% 95.03% 95.19%
v3 98.33% 98.36% 98.35% 98.36% 98.36% 98.35% 98.31% 98.40% 98.40% 98.40% 98.40% 98.40%
v4 98.33% 98.36% 98.35% 98.36% 98.36% 98.35% 98.31% 98.40% 98.40% 98.40% 98.40% 98.40%
v5 98.33% 98.36% 98.35% 98.36% 98.36% 98.35% 98.31% 98.40% 98.40% 98.40% 98.40% 98.40%

Max - Min 4.15% 3.40% 3.80% 3.54% 3.62% 3.39% 3.76% 3.21% 3.69% 3.29% 3.37% 3.21%

make

v1 53.49% 54.18% 54.01% 53.92% 54.06% 54.28% 53.42% 54.04% 54.09% 53.88% 53.98% 54.36%
v2 50.43% 51.60% 51.16% 51.18% 51.38% 51.66% 50.28% 51.54% 51.04% 51.15% 51.43% 51.65%
v3 52.01% 53.16% 52.75% 52.67% 52.95% 53.21% 51.96% 53.09% 52.82% 52.78% 52.93% 53.11%
v4 53.04% 54.62% 54.08% 54.04% 54.29% 54.76% 52.98% 54.61% 54.16% 54.01% 54.35% 54.78%
v5 50.14% 50.99% 50.78% 50.64% 50.97% 51.08% 50.10% 50.84% 50.74% 50.64% 50.84% 51.03%

Max - Min 3.35% 3.63% 3.30% 3.40% 3.32% 3.68% 3.32% 3.77% 3.42% 3.37% 3.51% 3.75%

sed

v1 85.19% 86.86% 86.05% 86.86% 86.42% 86.73% 85.12% 86.97% 86.13% 87.01% 86.39% 86.92%
v2 88.14% 90.15% 89.34% 90.03% 89.62% 89.97% 88.17% 90.16% 89.34% 90.09% 89.68% 90.14%
v3 88.14% 90.15% 89.34% 90.03% 89.62% 89.97% 88.17% 90.16% 89.34% 90.09% 89.68% 90.14%
v4 87.03% 89.08% 88.28% 88.86% 88.47% 88.78% 87.01% 89.17% 88.28% 88.86% 88.52% 88.90%
v5 88.75% 90.27% 89.72% 90.13% 89.84% 90.05% 88.83% 90.37% 89.75% 90.25% 89.97% 90.18%

Max - Min 3.56% 3.41% 3.67% 3.27% 3.42% 3.32% 3.71% 3.40% 3.62% 3.24% 3.58% 3.26%

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

5.6.1 Construct Validity
In this study, we have focused on the testing effectiveness
and efficiency, measured using the rate of fault detection
and the prioritization time, respectively. The APFD metric
has been commonly adopted in the study of test case pri-
oritization [4, 6]; while the APCC metric has been widely
used in the field of combinatorial interaction testing [13, 14].
Nevertheless, we acknowledge that there may be other
metrics which are also pertinent to this study, for example,
Average Percentage of Statement Coverage (APSC) [18], Average
Percentage of Decision Coverage (APDC) [18], and Average
Percentage of Method Coverage (APMC) [52].

5.6.2 Internal Validity
Any potential threat to internal validity would be mainly
about the implementation of our algorithms. We have used
C++ to implement the algorithms, and have carefully tested
the implementation to minimize this threat as much as
possible.

5.6.3 External Validity
With respect to the external validity, the main threat is the
generalization of our results. We have used only five subject
programs, written in the C language, all of which are of
a relatively medium size. However, we believe that the
25 versions studied here (five versions of each of the five
programs) are sufficient to support the conclusions. Never-
theless, more larger size programs, or programs written in
different languages, will be required to further validate our
techniques.

A second potential threat to external validity relates to
the input parameter models for the subject programs, which
we adopted from previous studies [13, 14]. Based on these
models, we also availed of the widely-used sets of ATCs
provided by SIR [37] in our experiments. However, different
ATC sets may lead to different findings, and therefore differ-
ent models (for constrained or unconstrained environments)
and other sets of ATCs are still required to help generalize
our findings.

5.6.4 Conclusion Validity
The main potential threat to conclusion validity relates to
the randomized computation in our algorithms. To mini-
mize this threat, all algorithms were repeated 1000 times,
and inferential statistics was applied to the comparisons of
results.

6 RELATED WORK

In this section, we introduce some related work about
Abstract Test Case Prioritization (ATCP), which has been
widely researched in several different fields, including in
combinatorial testing [1], software product lines testing [2],
and highly-configurable systems testing [3].

According to Qu et al. [6], ATCP can be divided into two
categories: (1) Regeneration Prioritization Strategy (RPS) —
considering test case prioritization during ATC generation;
and (2) Pure Prioritization Strategy (PPS) — re-ordering a
given set of ATCs. Our proposed RSLCP method belongs
to the second category.

6.1 Regeneration Prioritization Strategy (RPS)
RPS has generally been applied to combinatorial testing,
which attempts to generate prioritized Covering Arrays
(CAs) — CAs are special sets of ATCs satisfying certain
criteria [53]. Two CA construction strategies exist: greedy and
meta-heuristic search.

6.1.1 Greedy Strategy
Bryce and Colbourn [54, 55] first proposed an RPS to gen-
erate the prioritized CAs by assigning test case weight to
interaction coverage. Their strategy defines a weight for
each parameter, calculates the weight for each parameter
interaction (called generation strength) at strength 2, and then
uses a greedy algorithm to construct pairwise prioritized
CAs. Qu et al. [6, 56] proposed different weighting assign-
ments for parameters and levels, including three weight-
ing methods based on code coverage and one based on
specification, and applied them to Bryce and Colbourn’s
method [54, 55], later extending this to configurable systems
[57], and then also using the installation and generation cost
of new configurations to improve the method [58].

6.1.2 Meta-heuristic Search Strategy
Chen et al. [59] used ant colony optimization to build 2-wise
prioritized CAs, using the same weighting calculations as
Bryce and Colbourn [54, 55]. Similarly, Lopez-Herrejon et
al. [60] used a genetic algorithm to generate the prioritized
pairwise CAs, applying them to software product lines.

6.2 Pure Prioritization Strategy (PPS)
Most prioritization studies have focused on interaction cov-
erage information or test case dissimilarity to guide the
prioritization of test cases. To clearly describe these strate-
gies, we classify them into two categories of prioritization
methods: level-combination coverage-based prioritization, and
similarity-based prioritization.

6.2.1 Level-combination Coverage-based Prioritization
Level-combination coverage-based prioritization (LCP) greedily
chooses an element from the candidates as the next test case
such that it covers the largest number of level combinations
that have not already been covered by previously selected
test cases. According to the prioritization strength(s) adopt-
ed, LCP can be categorized as Fixed-strength LCP (FLCP, i.e.,
λLCP), Incremental-strength LCP (ILCP), or Mixed-strength
LCP (MLCP). FLCP uses a fixed prioritization strength λ
throughout the entire prioritization process, whereas ILCP
and MLCP can use different strength values. When choosing
each element from the candidates as the next ATC in the test
sequence, both FLCP and ILCP use a single prioritization
strength (even though ILCP may change the prioritization
strength in later steps). MLCP, on the other hand, uses more
than one prioritization strength.

Regarding FLCP, Bryce and Memon [11] first proposed
λLCP for prioritizing existing test suites for GUI-based
programs using λ = 2, 3. Sampath et al. [61] applied FLCP
with λ = 1, 2 to reorder user-session test cases for web
applications. Bryce et al. [62] proposed a single model to
define generic prioritization criteria (including FLCP with
λ = 1, 2) that are applicable to event-driven software, such

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 22

as GUI and Web applications. Qu et al. [6, 56] used λLCP
with λ = 2, 3 to prioritize CAs by assigning a weighting
for each parameter, and then obtaining the weighting of
each test case. Bryce et al. [63] extended their λLCP (using
λ = 2) technique by defining the test case length as its
prioritization cost, suggesting that longer test cases would
require more execution time. Wang et al. [27] combined
test case weight and cost with Bryce and Memon’s λLCP
technique [11], and proposed two heuristic prioritization
methods to reorder CAs by considering total and additional
techniques. They also proposed a series of evaluation met-
rics based on test case weight and cost, and used them to
assess prioritized CAs. Huang et al. [7] extended the strategy
of adaptive random prioritization [32] to CAs, proposing a
method which, by replacing Bryce and Memon’s [11] λLCP
technique (with λ = 2, 3, 4), attempts to reduce time costs,
while maintaining testing effectiveness. Huang et al. [17]
proposed a new λLCP technique using repeated base-choice
coverage. This belongs to the same category as our proposed
RSLCP method IV1. Recently, Petke et al. [13, 14] conducted
an extensive study to investigate the testing effectiveness of
λLCP with λ = 2, 3, 4, 5, 6, showing that λLCP with small λ
values could achieve comparable performance to that with
high λ values.

For ILCP, Huang et al. [31] applied Bryce and Memon’s
[11] λLCP technique to the prioritization of Variable-strength
CAs (VCAs) [64], and proposed two new VCA prioritization
algorithms. The technique first uses the main-strength to
prioritize VCAs using λLCP, and when all level combina-
tions with the main-strength are covered by the selected test
cases, the technique then uses the sub-strength to order the
remaining candidate test cases. Huang et al. [29] used incre-
mental interaction coverage to guide CA prioritization, by
applying λLCP [11] with incremental prioritization strength
values. This approach starts with strength λ = 1, and then
increments the λ value when all possible λ-wise parameter-
level combinations have been covered by the selected test
cases.

Regarding MLCP, Huang et al. [33] proposed a new
dissimilarity measure based on the aggregate-strength inter-
action coverage, and presented a new greedy PPS algorithm
to prioritize CAs. This method combines the prioritiza-
tion strength values 1, 2, · · · , τ (where τ is the generation
strength of the given CA) to guide the selection of each test
case from the candidates.

According to the classifications above, different versions
of RSLCP belong to different categories. IV1 and IV2 belong
the category of FLCP, and IV3 and PV belong to the category
of ILCP. However, IV4 and IV5 do not fully belong the
categories above, because IV4 adopts decreasing strength-
s, and IV5 may adopt either incremental or decreasing
strengths. Nevertheless, when choosing an element from the
candidates as the next ATC each time, all RSLCP techniques
have the same mechanism as FLCP. Moreover, RSLCP has
the same aim as ILCP — overcoming the biased selection
of prioritization strength for λLCP. In order to cover all 1-
wise and 2-wise level combinations as quickly as possible,
PV uses the same process as ILCP. After that, PV repeats the
process, ignoring the previously selected ATCs. In contrast,
ILCP increments λ to 3 to prioritize the remaining ATCs,
considering the already selected ATCs — it checks the λ-

wise level combinations that have not been covered by the
previously selected ATCs.

6.2.2 Similarity-based Prioritization
Wu et al. [65] used Srikanth et al.’s [58] switching cost
between two test cases as the similarity measure to prior-
itize CAs, proposing two greedy algorithms and a graph-
based algorithm. Their extended work [66] proposed single-
objective algorithms to reduce the switching cost, and also
proposed hybrid and multi-objective algorithms to balance
the trade-off between high level-combination coverage and
low switching cost. Henard et al. [8] introduced another
similarity measure, and proposed two greedy PPSs for
software product lines — local maximum distance prioriti-
zation and global maximum distance prioritization. Recently,
Huang et al. [36] investigated 14 similarity measures for
two similarity-based prioritization algorithms proposed by
Henard et al. [8], attempting to identify the best similarity
measure for each algorithm. Al-Hajjaji et al. [9] also pro-
posed a new similarity measure, and applied it to the greedy
prioritization algorithm for software product lines.

Huang et al. [5] have also recently reported on an empir-
ical examination of 16 popular ATCP techniques, from the
perspective of fault detection effectiveness.

7 CONCLUSIONS AND FUTURE WORK

Abstract Test Case Prioritization (ATCP) has been widely
used in different testing situations, including combinato-
rial testing [1]. λ-wise Level-combination Coverage-based Pri-
oritization (λLCP) is perhaps the most well-known ATCP
technique [11]. λLCP requires to set a fixed prioritization
strength λ before testing. There is a trade-off between testing
effectiveness and efficiency for λLCP: When λ is higher,
λLCP has higher testing effectiveness but lower testing effi-
ciency; however, when λ is lower, it has lower testing effec-
tiveness but higher testing efficiency. In this paper, we have
proposed a new method that attempts to balance the trade-
off between testing effectiveness and efficiency for λLCP,
namely Repeated Small-strength Level-combination Coverage-
based Prioritization (RSLCP). RSLCP has the same advantages
as λLCP — it is simple, and is a static black-box technique
(which means that it neither requires information about the
source codes, nor is test execution necessary). However,
RSLCP also has some additional advantages compared with
λLCP, including that it does not face the requirement of
assigning a value to λ in advance of testing. We conducted
empirical studies to compare RSLCP with λLCP, Incremental-
strength LCP (ILCP), and Similarity-based Prioritization (SP),
in terms of interaction coverage rate, fault detection rate,
and prioritization cost. Based on these empirical studies, we
have the following findings:

• Among the six RSLCP techniques, IV1 generally has
the worst testing effectiveness, while the other five
techniques all have very similar performance.

• Compared with λLCP and ILCP, RSLCP could pro-
vide a good trade-off between testing effectiveness
and efficiency.

• Compared with SP, RSLCP not only provides better
testing rates of interaction coverage and fault detec-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 23

tion in most cases, but also requires less prioritization
time.

• All of the six RSLCP techniques are robust over
multiple releases of the software-systems under test.

Because of RSLCP’s potential for prioritizing abstract test
cases, in the future we would like to develop and examine
more cost-effective algorithms to achieve better trade-off
between testing effectiveness and efficiency. Multi-objective
algorithms, for example, will be considered in ATCP. We
will also conduct more empirical studies to further compare
with other ATCP techniques, and evaluate our techniques in
different applications (such as GUI and web applications),
especially in larger and more complex systems.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
many constructive comments. We would also like to thank
Christopher Henard for providing us the fault data for
the five subject programs. This work is supported by the
National Natural Science Foundation of China under grant
nos. 61502205, 61872167, 71471092, and U1836116, the Senior
Personnel Scientific Research Foundation of Jiangsu Univer-
sity under grant no. 14JDG039, and the Ningbo Science and
Technology Bureau under grant no. 2014A35006. This work
is also in part supported by the Young Backbone Teacher
Cultivation Project of Jiangsu University. Dave Towey ac-
knowledges the financial support from the Artificial Intelli-
gence and Optimisation Research Group of the University
of Nottingham Ningbo China, the International Doctoral
Innovation Centre, the Ningbo Education Bureau, the N-
ingbo Science and Technology Bureau, and the University
of Nottingham. (Corresponding author: Rubing Huang)

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial
testing,” ACM Computering Surveys, vol. 43, no. 2, pp.
11:1–11:29, 2011.

[2] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D.
McGregor, E. S. de Almeida, and S. R. de Lemos Meira,
“A systematic mapping study of software product lines
testing,” Information and Software Technology, vol. 53,
no. 5, pp. 407–423, 2011.

[3] X. Qu, “Testing of configurable systems,” Advances in
Computers, vol. 89, pp. 141–162, 2013.

[4] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEE
Transactions on Software Engineering, vol. 27, no. 10, pp.
929–948, 2001.

[5] R. Huang, W. Zong, D. Towey, Y. Zhou, and J. Chen,
“An empirical examination of abstract test case prioriti-
zation techniques,” in Proceedings of the 39th Internation-
al Conference on Software Engineering Companion (ICSE-
C’17), 2017, pp. 141–143.

[6] X. Qu, M. B. Cohen, and K. M. Woolf, “Combina-
torial interaction regression testing: A study of test
case generation and prioritization,” in Proceedings of
the 23rd International Conference on Software Maintenance
(ICSM’07), 2007, pp. 255–264.

[7] R. Huang, J. Chen, Z. Li, R. Wang, and Y. Lu, “Adaptive
random prioritization for interaction test suites,” in
Proceedings of the 29th Symposium on Applied Computing
(SAC’14), 2014, pp. 1058–1063.

[8] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Hey-
mans, and Y. L. Traon, “Bypassing the combinatorial
explosion: Using similarity to generate and prioritize
t-wise test configurations for software product lines,”
IEEE Transactions on Software Engineering, vol. 40, no. 7,
pp. 650–670, 2014.

[9] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and
G. Saake, “Similarity-based prioritization in software
product-line testing,” in Proceedings of 18th International
Software Product Line Conference (SPLC’14), 2014, pp.
197–206.

[10] H. Wu, C. Nie, F.-C. Kuo, H. K. N. Leung, and C. J.
Colbourn, “A discrete particle swarm optimization for
covering array generation,” IEEE Transactions on Evolu-
tionary Computation, vol. 19, no. 4, pp. 575–591, 2015.

[11] R. C. Bryce and A. M. Memon, “Test suite prioritization
by interaction coverage,” in Proceedings of the Workshop
on Domain Specific Approaches to Software Test Automation
(DoSTA’07), 2007, pp. 1–7.

[12] S. W. Thomas, H. Hemmati, A. E. Hassan, and
D. Blostein, “Static test case prioritization using topic
models,” Empirical Software Engineering, vol. 19, no. 1,
pp. 182–212, 2014.

[13] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Effi-
ciency and early fault detection with lower and higher
strength combinatorial interaction testing,” in Proceed-
ings of the 12th Joint Meeting on European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’13),
2013, pp. 26–36.

[14] ——, “Practical combinatorial interaction testing: Em-
pirical findings on efficiency and early fault detection,”
IEEE Transactions on Software Engineering, vol. 41, no. 9,
pp. 901–924, 2015.

[15] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software
fault interactions and implications for software test-
ing,” IEEE Transaction on Software Engineering, vol. 30,
no. 6, pp. 418–421, 2004.

[16] D. R. Kuhn, Y. Lei, and R. Kacker, “Practical combina-
torial testing: Beyond pairwise,” IT Professional, vol. 10,
no. 3, pp. 19–23, 2008.

[17] R. Huang, W. Zong, J. Chen, D. Towey, Y. Zhou, and
D. Chen, “Prioritizing interaction test suite using re-
peated base choice coverage,” in Proceedings of the 40th
Annual Computer Software and Applications Conference
(COMPSAC’16), 2016, pp. 174–184.

[18] Z. Li, M. Harman, and R. Hierons, “Search algorithms
for regression test case prioritization,” IEEE Transaction-
s on Software Engineering, vol. 33, no. 4, pp. 225–237,
2007.

[19] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incor-
porating varying test costs and fault severities into test
case prioritization,” in Proceedings of the 23rd Interna-
tional Conference on Software Engineering (ICSE’01), 2001,
pp. 329–338.

[20] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei,
“Bridging the gap between the total and addition-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 24

al test-case prioritization strategies,” in Proceedings of
the 35th International Conference on Software Engineering
(ICSE’13), 2013, pp. 192–201.

[21] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou,
and L. Zhang, “How does regression test prioritization
perform in real-world software evolution?” in Pro-
ceedings of the 38th International Conference on Software
Engineering (ICSE’16), 2016, pp. 535–546.

[22] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-
aware test-case prioritization using integer linear pro-
gramming,” in Proceedings of the 18th International Sym-
posium on Software Testing and Analysis (ISSTA’09), 2009,
pp. 213–224.

[23] H. Yoon and B. Choi, “A test case prioritization based
on degree of risk exposure and its empirical study,” In-
ternational Journal of Software Engineering and Knowledge
Engineering, vol. 21, no. 2, pp. 191–209, 2011.

[24] Y. Huang, K. Peng, and C. Huang, “A history-based
cost-cognizant test case prioritization technique in re-
gression testing,” Journal of Systems and Software, vol. 85,
no. 3, pp. 626–637, 2012.

[25] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An
information retrieval approach for regression test prior-
itization based on program changes,” in Proceedings of
the 37th International Conference on Software Engineering
(ICSE’15), 2015, pp. 268–279.

[26] A. Marchetto, M. M. Islam, W. Asghar, A. Susi, and
G. Scanniello, “A multi-objective technique to prioritize
test cases,” IEEE Transactions on Software Engineering,
vol. 42, no. 10, pp. 918–940, 2016.

[27] Z. Wang, L. Chen, B. Xu, and Y. Huang, “Cost-
cognizant combinatorial test case prioritization,” Inter-
national Journal of Software Engineering and Knowledge
Engineering, vol. 21, no. 6, pp. 829–854, 2011.

[28] R. Huang, J. Chen, D. Chen, and R. Wang, “How to do
tie-breaking in prioritization of interaction test suites?”
in Proceedings of the 26th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE’14),
2014, pp. 121–125.

[29] R. Huang, X. Xie, D. Towey, T. Y. Chen, Y. Lu, and
J. Chen, “Prioritization of combinatorial test cases by
incremental interaction coverage,” International Jour-
nal of Software Engineering and Knowledge Engineering,
vol. 23, no. 10, pp. 1427–1457, 2013.

[30] R. C. Bryce, S. Sampath, and A. M. Memon, “Develop-
ing a single model and test prioritization strategies for
event-driven software,” IEEE Transactions on Software
Engineering, vol. 37, no. 1, pp. 48–64, 2011.

[31] R. Huang, J. Chen, T. Zhang, R. Wang, and Y. Lu,
“Prioritizing variable-strength covering array,” in Pro-
ceedings of the 37th Annual Computer Software and Appli-
cations Conference (COMPSAC’13), 2013, pp. 502–601.

[32] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adap-
tive random test case prioritization,” in Proceedings of
the 24th International Conference on Automated Software
Engineering (ASE’09), 2009, pp. 233–244.

[33] R. Huang, J. Chen, D. Towey, A. Chan, and Y. Lu,
“Aggregate-strength interaction test suite prioritiza-
tion,” Journal of Systems and Software, vol. 99, pp. 36–51,
2015.

[34] B. Jiang and W. K. Chan., “Input-based adaptive ran-

domized test case prioritization: A local beam search
approach,” Journal of Systems and Software, vol. 105, pp.
91–106, 2015.

[35] C. Henard, M. Papadakis, M. Harman, Y. Jia, and
Y. L. Traon, “Comparing white-box and black-box test
prioritization,” in Proceedings of the 38th International
Conference on Software Engineering (ICSE’16), 2016, pp.
523–534.

[36] R. Huang, Y. Zhou, W. Zong, D. Towey, and J. Chen,
“An empirical comparison of similarity measures for
abstract test case prioritization,” in Proceedings of the
41st Annual Computer Software and Applications Confer-
ence (COMPSAC’17), 2017, pp. 3–12.

[37] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact,” Empirical Soft-
ware Engineering, vol. 10, no. 4, pp. 405–435, 2005.

[38] T. J. Ostrand and M. J. Balcer, “The category-partition
method for specifying and generating fuctional tests,”
Communications of the ACM, vol. 31, no. 6, pp. 676–686,
1988.

[39] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Transactions on
Software Engineering, vol. 37, no. 5, pp. 649–678, 2011.

[40] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin, “Using mutation analysis for assessing and
comparing testing coverage criteria,” IEEE Transactions
on Software Engineering, vol. 32, no. 8, pp. 608–624, 2006.

[41] H. Do and G. Rothermel, “On the use of mutation fault-
s in empirical assessments of test case prioritization
techniques,” IEEE Transactions on Software Engineering,
vol. 32, no. 9, pp. 733–752, 2006.

[42] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are
mutation scores correlated with real fault detection?: A
large scale empirical study on the relationship between
mutants and real faults,” in Proceedings of the 40th In-
ternational Conference on Software Engineering (ICSE’18).
New York, NY, USA: ACM, 2018, pp. 537–548.

[43] M. Papadakis, C. Henard, M. Harman, Y. Jia, and
Y. Le Traon, “Threats to the validity of mutation-based
test assessment,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA’16),
2016, pp. 354–365.

[44] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon,
“Trivial compiler equivalence: A large scale empirical
study of a simple, fast and effective equivalent mutant
detection technique,” in Proceedings of the 37th Interna-
tional Conference on Software Engineering (ICSE’15), 2015,
pp. 936–946.

[45] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon,
and M. Harman, “Mutation testing advances: An anal-
ysis and survey,” Advances in Computers, To appear,
2018.

[46] Y. Jia and M. Harman, “Higher order mutation testing,”
Information and Software Technology, vol. 51, no. 10, pp.
1379–1393, 2009.

[47] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating
mutation testing alternatives: A collateral experiment,”
in Proceedings of the 17th Asia-Pacific Software Engineering
Conference (APSEC’10), 2010, pp. 300–309.

[48] D. R. Kuhn and M. J. Reilly, “An investigation of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 25

the applicability of design of experiments to software
testing,” in Proceedings of the 27th Annual NASA God-
dard/IEEE Software Engineering Workshop (SEW-27’02),
2002, pp. 91–95.

[49] A. Arcuri and L. Briand, “A hitchhiker’s guide to
statistical tests for assessing randomized algorithms in
software engineering,” Software Testing, Verification and
Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[50] M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search
based software engineering: Techniques, taxonomy, tu-
torial,” Empirical Software Engineering and Verification,
pp. 1–59, 2012.

[51] A. Vargha and H. D. Delaney, “A critique and improv-
ment of the cl common language effect size statistics of
mcgraw and wong,” Journal of Education and Behavioral
Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[52] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie,
“To be optimal or not in test-case prioritization,” IEEE
Transactions on Software Engineering, vol. 42, no. 5, pp.
490–505, 2016.

[53] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn, “Constructing test suites for interaction test-
ing,” in Proceedings of the 25th International Conference on
Software Engineering (ICSE’03), 2003, pp. 38–48.

[54] R. C. Bryce and C. J. Colbourn, “Test prioritization
for pairwise interaction coverage,” in Proceedings of the
1st International Workshop on Advances in Model-based
Testing (A-MOST’05), 2005, pp. 1–7.

[55] ——, “Prioritized interaction testing for pairwise cov-
erage with seeding and contraints,” Information and
Software Technology, vol. 48, no. 10, pp. 960–970, 2006.

[56] X. Qu, M. B. Cohen, and K. M. Woolf, “A study in
prioritization for higher strength combinatorial test-
ing,” in Proceedings of the 2nd International Workshop on
Combinatorial Testing, (IWCT’13), 2013, pp. 285–294.

[57] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-
aware regression testing: an empirical study of sam-
pling and prioritization,” in Proceedings of the 17th In-
ternational Symposium on Software Testing and Analysis
(ISSTA’08), 2008, pp. 75–86.

[58] H. Srikanth, M. B. Cohen, and X. Qu, “Reducing
field failures in system configurable software: Cost-
based prioritization,” in Proceedings of the 20th Inter-
national Symposium on Software Reliability Engineering
(ISSRE’09), 2009, pp. 61–70.

[59] X. Chen, Q. Gu, X. Zhang, and D. Chen, “Building
prioritized pairwise interaction test suites with ant
colony optimization,” in Proceedings of the 9th Interna-
tional Conference on Quality Software (QSIC’09), 2009, pp.
347–352.

[60] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, E. N.
Haslinger, A. Egyed, and E. Alba, “A parallel evolu-
tionary algorithm for prioritized pairwise testing of
software product lines,” in Proceedings of the 16th In-
ternational Conference on Genetic and Evolutionary Com-
putation Conference (GECCO’14), 2014, pp. 1255–1262.

[61] S. Sampath, R. C. Bryce, G. Viswanath, V. Kandimalla,
and A. G. Koru, “Prioritizing user-session-based test
cases for web applications testing,” in Proceedings of the
1st International Conference on Software Testing, Verifica-
tion and Validation (ICST’08), 2008, pp. 141–150.

[62] R. C. Bryce, C. J. Colbourn, and D. R. Kuhn, “Find-
ing interaction faults adaptively using distance-based
strategies,” in Proceedings of the 18th International Con-
ference and Workshops on Engineering of Computer-Based
Systems (ECBS’11), 2011, pp. 4–13.

[63] R. C. Bryce, S. Sampath, J. B. Pedersen, and S. Manch-
ester, “Test suite prioritization by cost-based combina-
torial interaction coverage,” Journal of Systems Assur-
ance Engineering and Management, vol. 2, no. 2, pp. 126–
134, 2011.

[64] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J.
Colbourn, and J. S. Collofello, “Variable strength inter-
action testing of components,” in Proceedings of the 27th
Annual International Conference on Computer Software and
Applications (COMPSAC’03), 2003, pp. 413–418.

[65] H. Wu, C. Nie, and F.-C. Kuo, “Test suite prioritization
by switching cost,” in Proceedings of the 3rd International
Workshop on Combinatorial Testing (ICWT’14), 2014, pp.
133–142.

[66] ——, “The optimal testing order in the presence of
switching cost,” Information and Software Technology,
vol. 80, pp. 57–72, 2016.

Rubing Huang is an associate professor in the
Department of Software Engineering, School of
Computer Science and Communication Engi-
neering, Jiangsu University, China. He received
the Ph.D. degree from Huazhong University of
Science and Technology, China, in computer
science and technology. His current research
interests include software testing and software
maintenance, especially adaptive random test-
ing, random testing, combinatorial testing, and
regression testing. He has more than 40 publi-

cations in journals and proceedings, including in ICSE, IEEE-TR, JSS,
IST, IET Software, IJSEKE, SCN, COMPSAC, SEKE, and SAC. He has
served as the program committee member of SEKE14-19, SAC17-19,
CTA17-19, and AI Testing 2019. He is a senior member of the China
Computer Federation, and a member of the IEEE and the ACM. His
homepage is huangrubing.github.io.

Weifeng Sun is a candidate for the degree of
M.Eng in the School of Computer Science and
Communication Engineering, Jiangsu Universi-
ty (China). He received the B.Eng. degree in
computer science and technology from Jiangsu
University. His current research interests include
software testing.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 26

Tsong Yueh Chen received the B.Sc. and
M.Phil. degrees from The University of Hong
Kong, China; the M.Sc. and D.I.C. from the Impe-
rial College of Science and Technology, London,
U.K.; and the Ph.D. degree from The University
of Melbourne, Australia. He is currently a profes-
sor of software engineering in the Department
of Computer Science and Software Engineering,
Swinburne University of Technology, Australia.
He is the inventor of metamorphic testing and
adaptive random testing. His main research in-

terest is in software testing.

Dave Towey is an associate professor at Uni-
versity of Nottingham Ningbo China (UNNC), in
Zhejiang, China, where he serves as the direc-
tor of teaching and learning, and deputy head
of school, for the School of Computer Science.
He is also the deputy director of the Interna-
tional Doctoral Innovation Centre at UNNC. He
is a member of the UNNC Artificial Intelligence
and Optimization research group. His current
research interests include software testing and
technology enhanced teaching and learning. He

received the B.A. and M.A. degrees in computer science, linguistics,
and languages from the University of Dublin, Trinity College, Ireland;
the M.Ed. degree in education leadership from the University of Bristol,
U.K.; and the Ph.D. degree in computer science from The University of
Hong Kong, China. He co-founded the ICSE International Workshop on
Metamorphic Testing in 2016. He is a member of both the IEEE and the
ACM.

Jinfu Chen is a full professor in the School
of Computer Science and Communication Engi-
neering, Jiangsu University (China). He received
the B.Eng. degree from Nanchang Hangkong
University, Nanchang, China, in 2004, and Ph.D.
degree from Huazhong University of Science
and Technology, Wuhan, China, in 2009, both
in computer science and technology. His major
research interests include software engineering,
services computing and information security. He
is a member of the IEEE, the ACM, and the

China Computer Federation.

Weiwen Zong is a candidate for the degree of
M.Eng in the School of Computer Science and
Communication Engineering, Jiangsu Universi-
ty (China). She received the B.Eng. degree in
computer science and technology from Jiangsu
University. Her current research interests include
software testing. She is a member of the China
Computer Federation.

Yunan Zhou is a candidate for the degree of
M.Eng in the School of Computer Science and
Communication Engineering, Jiangsu Universi-
ty (China). She received the B.Eng. degree in
computer science and technology from Jiangsu
University. Her current research interests include
software testing. She is a member of the ACM.

