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Abstract

Narrowing is one of the primary methods for implementing functional

logic programming languages. Property-based testing is an automatic ap-

proach to assuring the correctness of software systems. In recent years, a

number of systems have been developed that seek to apply the benefits of

narrowing in the area of property-based testing. This thesis considers two

limitations with these systems. First of all, most of the existing narrowing-

based testing tools have focused on practical issues, and lack supporting

theory. And secondly, these tools typically only perform well on properties

that have particular forms. We address these limitations by developing an

approach to narrowing that is both practical and principled, and demon-

strate how this can be used to expand the range of properties that can be

automatically tested using a narrowing-based approach.
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Chapter 1

Introduction

Narrowing is a commonly used evaluation strategy in functional-logic pro-

gramming languages which combines the functional approach to program-

ming with logic programming’s ability to compute with incomplete infor-

mation. In logic programming, incomplete information within a program is

represented by free variables and logical features can then be used to sub-

ject the result of a program to a constraint. The problem is then to find

bindings for the free variables in the program which satisfy the constraint.

Narrowing is a strategy to achieve this, which evaluates the program while

delaying the instantiation of free variables until they are required to con-

tinue. This strategy has proved successful, performing far better than the

basic strategy in which free variables are guessed blindly [6], and has been

used in many functional-logic languages.

Property-based testing, popularised by systems such as QuickCheck [16],

is an automated approach to testing in which a program is validated against

a specification. In most tools, the specification consists of properties writ-

ten as programs outputting Boolean values. Input data is generated ran-

domly or systematically, and the program is executed in an attempt to find

1



Chapter 1. Introduction 2

a counterexample. Property-based testing can offer significant advantages

over traditional testing methods, such as unit testing. Particularly, a pro-

grammer is often able to achieve more thorough testing with less effort as

test cases can be automatically generated and evaluated.

The application of narrowing to property-based testing is a natural fit.

In property-based testing we are attempting to find a counterexample to

a property which can be written directly as a functional-logic program.

Furthermore, traditional property-based testing can be viewed as taking

a blind guess – an approach which narrowing had already been shown

to improve upon. It is no surprise then that research into testing with

narrowing inspired strategies is an active area of research with tools being

developed to tackle a range of problems related to property-based testing.

These problems include the generation of test cases [15, 32, 33], end-to-

end property-based testing [12, 13, 48] and achieving program coverage in

testing [23, 38].

This thesis builds on research on property-based testing using narrow-

ing on two frontiers. First of all, we address the lack of a formal basis

for most tools, which have generally focused on the practical aspects of

implementation and benchmarking. And secondly, we expand the scope of

properties which can be tested both effectively and directly with narrowing.

More precisely, the thesis makes the following contributions:

• We formalise narrowing as an extension to a functional programming

language. The use of an underlying functional language simplifies

the formalisation and is particularly suited for the formalisation of

narrowing property-based testing tools, many of which are based on

functional languages.

• We develop a narrowing evaluation strategy based on the concept of
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overlapping patterns, which increases the scope of properties which

are testable in an effective manner by narrowing. This work builds

on the formalisation noted above.

• We implement a narrowing property-based testing tool for a func-

tional programming language that is a subset of Haskell. The tool

supports random and enumerative testing along with different nar-

rowing strategies including using overlapping patterns.

• We evaluate the implementation using a number of case studies. We

compare a basic property-based testing strategy with traditional nar-

rowing and overlapping narrowing strategies, and measure several

metrics to give insight into the differences in performance.

Parts of the thesis are based on two published papers, with the author of

the thesis as the lead author for each paper:

• Jonathan Fowler and Graham Hutton, “Towards a theory of Reach”,

in the Proceedings of the 16th International Symposium on trends in

Functional Programming, 2015. [26]

• Jonathan Fowler and Graham Hutton, “Failing Faster: Overlapping

Patterns for Property-Based Testing”, in the Proceedings of the 19th

International Symposium on Practical Aspects of Declarative Lan-

guages, 2017. [27]

The thesis is structured as follows:

Chapter 2 provides the necessary background to the theory used in the

thesis. We introduce narrowing, property-based testing, existing narrowing

property-based testing tools, and operational semantics.
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Chapter 3 lays the foundation for a theory of narrowing as an extension to

a functional programming language. We use a minimal language that isn’t

suitable for actual programming but provides enough features to demon-

strate the essence of narrowing. We demonstrate the practical application

of our theory in the area of property-based testing.

Chapter 4 develops an implementation of a property-based testing tool

using narrowing. Two variants of the narrowing tool are benchmarked

against a basic tool on a variety of properties, and we identify some of the

features of properties that can influence performance.

Chapter 5 builds on the formalisation of narrowing in chapter 3 by adding

overlapping patterns to the language. This new feature improves perfor-

mance when defining conditions using conjunctions, and supports the def-

inition of bespoke size constraints, which we illustrate in two case studies.

Chapter 6 extends the implementation from chapter 4 with overlapping pat-

terns and evaluates the performance against the original narrowing tool.

The new implementation gives improved performance and a better distribu-

tuion of test cases on certain forms of properties.

The thesis is aimed at a reader who is familiar with the basics of func-

tional programming in a language such as Haskell (in particular, the use

of strong typing, recursive datatypes and functions, and inductive proofs),

but we don’t assume any specialised knowledge in areas such as logic pro-

gramming, narrowing, property-based testing, or program semantics.



Chapter 2

Background

In this chapter we provide some background on a range of different top-

ics that are central to the thesis, namely functional-logic programming

(section 2.1), property-based testing (section 2.2), research into combin-

ing these two notions (section 2.3), and finally, operational semantics (sec-

tion 2.4). As noted at the end of the previous chapter, the reader is assumed

to be familiar with the basics of functional programming.

2.1 Functional-Logic Programming

In this section we introduce functional-logic programming and give a sim-

ple example in one of the principal languages, Curry [29]. We use this

example to demonstrate the idea of narrowing and then discuss a number

of additional topics from the research literature.

Functional-logic programming aims to combine the features and advan-

tages of the two declarative programming paradigms from which its name

derives. There have been two main approaches to this union: beginning

with a logic language and adding functional programming features, as in

5
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the Mercury programming language [50]; or conversely, beginning with a

functional language and adding logic programming features, as in the Curry

programming language [29]. This thesis takes inspiration mainly from the

latter approach.

The Curry language offers a functional programming language with

Haskell-like syntax which also includes logic programming features, the

most important of which are two small but semantically powerful additions.

The first and most significant addition is free variables, more commonly

called logic variables in logic programming, which can be instantiated to

any value of their type. The second is inspired by the observation that most

of the functionality deriving from the Horn clauses of logic programming

can be encoded using partial pattern matching (along with free variables).

Therefore, Curry adds partial pattern matching as a language feature.

We demonstrate these language features with an example. We consider

a datatype of people, and a partial function which defines the mother of

some of the people:

data Person = Alice | James | Liz | Eve

mother :: Person → Person

mother Alice = Liz

mother James = Eve

mother Liz = Eve

Suppose that we wish to compute who the children of Eve are, i.e. any x

which satisfies mother x ≡ Eve. We can do this in a simple manner using

functional-logic programming. First, we define a helper function when:

when :: Bool → a → a

when True a = a
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The partial function when takes a condition and a value and returns the

value only when the condition is true. Note that when the condition is

false, rather then giving a runtime error as in a functional language such as

Haskell, in Curry failure of a pattern match results in backtracking. Now

utilising a free variable we can define the children of a mother:

children :: Person → Person

children a = let x free in when (mother x ≡ a) x

For example, children Eve will produce all the children of Eve. In particu-

lar, the function will create a free variable x , and only return a value when

this free variable is bound to a person whose mother is Eve. As there are

two possible solutions, James or Liz , the function is non-deterministic. To

compute these solutions Curry uses a narrowing strategy.

Narrowing [4] is an evaluation strategy which refines the values of free

variables as and when they are needed. A substitution is used to store the

values of these variables and is extended each time a new free variable is in-

troduced. We demonstrate how this works on our example. Beginning with

the empty substitution { } with no variables, we can expand the expression

children Eve (without affecting the substitution) by simply inlining the

body of the definition of children:

1) { }

children Eve

→ let x free in when (mother x ≡ Eve) x

The next step is to remove the let expression by introducing a free variable x

into the substitution (which is initially bound to itself):

2) {x 7→ x }

when (mother x ≡ Eve) x
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Evaluating the when function requires a pattern match on its first argu-

ment. In order to evaluate the argument, mother x ≡ a, we need the value

of x . First we refine the value of x to Alice and reduce:

3 a) {x 7→ Alice}

when (mother Alice ≡ Eve) Alice

→ when (Liz ≡ Eve) Alice

→ when False Alice

→ ⊥

Alice is not a child of Liz and consequently the pattern match for when

fails, which results in a failed state ⊥. The computation backtracks and

an alternative binding is considered. This time x is refined to James:

3 b) {x 7→ James}

when (mother James ≡ Eve) James

→ when True James

→ James

James is a child of Liz and the computation ends successfully. If we were

enumerating solutions we could go on by trying the other possible bindings

for x and find Liz as another child of Eve. This concludes the example.

We note that although the presentation of narrowing given is consistent

with how Curry operates, the style is representative of the approach in

this thesis as opposed to a more traditional interpretation [28]. A further

example of narrowing is given in chapter 3, where we show the evaluation

of a property-based testing example and demonstrate how it is beneficial

in this setting.
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2.1.1 Further Functional-Logic Topics

Below we briefly discuss some additional features and evaluation strategies

that are commonly found in functional logic languages.

Residuation

Residuation [28] is an alternative evaluation strategy for functional-logic

programs that can either be used on its own or in combination with nar-

rowing. With narrowing, when we encounter a free variable it is instan-

tiated with a possible value in order to make progress. In contrast, with

residuation when we encounter a free variable we suspend evaluation of the

current expression; evaluation then continues with the next expression to

be considered, with the suspended expression being resumed as and when

its free variable becomes bound during subsequent evaluations.

This approach can be beneficial as it delays the binding of a free vari-

able, which may allow more evaluation to be shared between different in-

stantiations of the variable. However, it suffers from two related drawbacks.

First of all, suspended evaluations are not guaranteed to be restarted, and

hence evaluation may fail to produce a result. And secondly, to work ef-

fectively it generally requires additional annotations from the programmer

to control where residuation should be used, to ensure that free variables

eventually become bound. For these reasons, in this thesis we restricted

our attention to a narrowing-based evaluation strategy.

Equational Constraints

Equational constraints [6, 29] are an additional feature in languages such as

Curry, which can be considered as an optimisation of the standard equality

operator in programming languages. By way of example, consider the list
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equality [Alice, x ] ≡ [y, z ], in which each of the variables x , y and z is

free. Such an equality can be solved by instantiating the variable y to

Alice, and the variables x and z to any identical value of the Person type,

which gives four possible solutions. In contrast, the equational constraint

[Alice, x ] =:= [y, z ] can be solved by instantiating y to Alice as before, and

simply binding x to z (or equivalently, vice versa), reducing the number of

possible solutions to just one by delaying the instantiation of x and z .

This facility can sometimes be useful. For example, pattern matching

on functions can be desugared into equational constraints [6]. However,

the use of such constraints necessitates moving into the realms of logic pro-

gramming, whereas our focus is on the use of logic programming techniques

to test properties expressed in the functional paradigm. Nonetheless, it

would be interesting to explore the addition of equational constraints to

our theoretical and practical developments.

Non-Deterministic Pattern Matching

In some functional logic languages, including Curry, pattern matching can

also be non-deterministic. That is, it may produce different result values

for the same argument value. For example, using this idea, the children

function from the previous section could also be expressed as:

children :: Person → Person

children Liz = Alice

children Eve = James

children Eve = Liz

Note that there are two alternatives for matching Eve. In Curry, pattern

matching is evaluated independently of the order in which the alternatives
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appear, so either choice is possible. We do not consider this form of pat-

tern matching in the thesis for two reasons. Firstly, the syntax that is used

conflicts with the form of pattern matching developed in chapter 5, where

we consider overlapping pattern matching that is deterministic. And sec-

ondly, the functionality of non-deterministic pattern matching can already

be obtained using free variables and traditional pattern matching [3] (and

also the converse [5], free variables can be modelled using non-deterministic

pattern matching).

2.2 Property-Based Testing

In this section, we introduce property-based testing through a QuickCheck

example, and then discuss further aspects including properties with pre-

conditions, the distribution of test cases, and number of related research

areas.

Any testing tool must have a criterion by which it determines whether a

particular test has passed or failed. In property-based testing, this criterion

is given by a specification – a set of properties the program should satisfy.

As an example, we consider a specification of the reverse function, which

we have taken from the original QuickCheck paper [16]:

reverse [x ] = [x ]

reverse (xs ++ ys) = reverse ys ++ reverse xs

reverse (reverse xs) = xs

Any reverse function must satisfy all three of these properties. In order to

use a property as an automated criterion for testing, we must convert it

into a program which determines whether the property fails or succeeds on
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a given input. In QuickCheck, properties are written in Haskell, and the

specification above can be written as follows:

propRevOne x = reverse [x ] ≡ [x ]

propRevApp xs ys = reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

propRevRev xs = reverse (reverse xs) ≡ xs

For example, the last property states that for any input list xs, reversing

the list twice should return the original list. Each property can be tested

by simply supplying an input and then evaluating the property. Therefore,

testing becomes a problem of generating inputs. In this case, for the top

property we have to generate an element — for example, we could choose

an integer — and for the other two properties we need to generate lists of

elements.

QuickCheck generates inputs randomly and provides a library of com-

binators to aid in doing so. For example, a generator for a list of integers

can be defined in QuickCheck as follows:

generateLists :: Gen [Int ]

generateLists = frequency [

(1, return [ ]),

(4, (:) <$> elements [1 . . 10] <∗> generateLists)]

The frequency and elements combinators choose a random value from a

list. The frequency combinator does so according to the weights given in

the list, and so this generator creates an empty list 20% of the time and

80% of the time adds an element, randomly chosen from 1 to 10 using the

elements combinator, before being called recursively.

We now have all the parts to run tests on each of the properties. For

example, running the following QuickCheck test validates propRevRev:
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> quickCheck (forAll generateLists propRevRev)

+++ OK, passed 100 tests.

QuickCheck generates one hundred random lists and finds each satisfies the

property. The tool can test many examples using only a specification and a

generator. In fact, in this case we do not even need to define the generator

and can instead use QuickCheck’s standard generator for a list of integers:

> quickCheck (propRevRev :: [Int ]→ Bool)

+++ OK, passed 100 tests.

2.2.1 Preconditions

Many properties only hold if the input is of a certain form. For example,

consider a binary search tree, the datatype of which could be represented

as follows:

data Tree a = Leaf | Node Tree a Tree

There is an implicit assumption that the elements of such a tree are ordered,

otherwise most functions defined on the tree will not work correctly. For

example, a member function which determines whether a given element is

in a tree should satisfy something akin to the following property:

propMember :: Int → Tree Int → Bool

propMember a t = member a t ≡ any (≡ a) t

This property states that an integer is a member of a tree if any element in

the tree is equal to that integer. However, a typical definition of a member

function will not satisfy this property, because for efficiency the function
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will typically exploit the ordering of the tree. Hence, we need to add a

precondition that the tree is ordered:

propMember a t = ordered t =⇒ member a t ≡ any (≡ a) t

The implication operator used here is not the traditional one. Importantly,

it separates those inputs which fail the precondition, which are invalid test

cases, from those that satisfy the precondition and the property (whereas

with a traditional implication these both evaluate to true). When reporting

the results of a test only the valid test cases are counted.

However, testing the above property with a standard generator for trees

still won’t be effective. This is because filtering the test cases alters the

distribution – randomly generated large trees are much less likely to be

ordered, and therefore there is skew towards smaller trees. One approach

to resolving this issue is to write a custom generator for ordered trees. In

this thesis we will explore an alternative approach, based upon generating

ordered trees directly from the ordered precondition.

2.2.2 Distribution of Test Cases

One of the major decisions in property-based testing is choosing how test

cases are distributed. Most tools either generate test cases by enumeration

or randomly. We discuss the variations, advantages and disadvantages of

each in terms of the resulting distributions:

Enumeration

In enumerative testing, all inputs are tested up to a size limit. Runciman

et al. [48] motivate this approach with the observation that if a program

fails its specification then “it almost always fails in some simple case”. And
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furthermore, they also observe the contraposition “if a program does not fail

in any simple case, it hardly ever fails in any case”. Therefore, enumerating

and testing the simple cases should offer a reasonable assurance that the

property is satisfied.

This approach also has the benefit that if a counterexample is found, it

will find the smallest counterexample as all inputs up to a certain depth are

considered. Preconditions are also of less concern than in random testing,

as invalid test cases can be filtered out without impacting the distribution.

The primary disadvantage of enumeration is that the number of test cases

often increases exponentially with the size limit, meaning that it is often

difficult to enumerate beyond a relatively small size of input. This problem

is often apparent with the traditional method of limiting the depth of con-

structors, however recent research [1] has shown that limiting the number

of constructors is generally more effective and works well in practice. Enu-

meration is used in a variety of property-based testing tools [33, 38, 48, 21].

Random

In random testing, as the name suggests the basic idea is that inputs are

generated according to a random distribution. The types of distribution

can be broadly broken down into two categories: uniform and non-uniform.

In uniform distributions, test cases are selected with equal probability from

a bounded selection. In practice, however, this can be difficult to achieve

in an efficient manner, because even calculating the number of test cases

within the given bound can be problematic, which in turn makes calculating

the frequency of a test case difficult.

In non-uniform distributions, test cases are selected based on user-

defined probabilities. For instance, in the generateLists example from ear-
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lier in this chapter, we assigned different weights to the two constructors

for lists, resulting in a non-uniform distribution of test cases. The pri-

mary advantage of this approach is that it is straightforward to implement.

The disadvantage is that it can be difficult to select appropriate weights to

ensure that the resulting distribution gives a suitable test coverage.

2.2.3 Related Areas

In this section, we give a brief overview of two further research areas that

are not directly used in the thesis but may be useful to readers who are

interested in applying our results in their own work.

Shrinking

After finding a counterexample to a property, the program in question will

need debugging. The size of the counterexample will affect the ease of this

process – the trace of a program run on a small counterexample will gener-

ally be small and the error should be easy to spot. However, property-based

testing, particularly with random generation, can produce large counterex-

amples. Shrinking is a process to reduce the size of these counterexamples

in order to simplify debugging. In QuickCheck, shrinking can be achieved

by defining a shrinking function [30, 14], which given an input, produces a

list of similar but smaller inputs. For example, a shrinking function for a

list of integers could be defined as follows:

shrinkList :: [Int ]→ [ [Int ] ]

shrinkList [ ] = [ ]

shrinkList (a : l) = [ l ]

++ [a : l ′ | l ′ ← shrinkList l ]

++ [a′ : l | a′ ← shrinkInt a ]
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That is, if the list is empty, then the input is already minimal. Otherwise,

for a non-empty list there are three possibilities: remove the head of the

list, retain the head and shrink the tail of the list, or shrink the head of

the list (using a function to shrink integers) and retain the tail.

Given such a shrink function, when QuickCheck finds a counterexample

it also checks all shrinkings of this value, and only reports the counterexam-

ple when it cannot be shrunk further. Note that the result is not necessarily

the minimal counterexample, but in practice this is often the case.

Generating and simplifying specifications

Property-based testing requires a programmer to create specifications for

their programs. To aid a programmer in this task, a number of tools have

been constructed to assist in the automated discovery of specifications. For

example, QuickSpec [18] and Speculate [10] attempt to discover specifica-

tions by enumerating possible properties they may satisfy, and then using

a property-based testing methodology to either discard or accept the prop-

erties. HipSpec [17] takes this process further by trying to construct formal

proofs of the properties that are generated.

Another related area is attempting to simplify specifications, and check-

ing their completness. For example, in the reverse specification given on

page 11, the third property is redundant as it is implied by the first two

properties, and furthermore, the first two properties uniquely characterise

reverse, i.e. any function which satisfies these two properties is equivalent

to the reverse function. The FitSpec [9] tool can be used to test a specifi-

cation for completeness and suggest possible redundancies.
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2.3 Narrowing In Property-Based Testing

The application of functional-logic programming techniques to property-

based testing is a natural idea, as can be seen by the ease in which the

latter can be embedded in the former. That is, the essence of property-

based testing — to find a counterexample that refutes a property — can

be realised succinctly as a functional-logic program:

refute :: (a → Bool)→ a

refute p = let x free in when (¬ p x) x

This definition expresses that we can refute a property by first creating a

free variable, and then selecting all possible values for this variable that

do not satisfy the given property. However, while refute has the desired

behaviour, the approach requires the use of a functional-logic language,

whereas in this thesis we are interested in testing using a functional lan-

guage. Hence, we need to consider alternative approaches.

Even within the context of a functional-logic language, there are chal-

lenges that remain with the use of refute for property-based testing. For

example, a common pattern in properties is to have a precondition consist-

ing of the conjunction of multiple constraints and on this form of property

the standard narrowing based evaluation strategy is often ineffective. We

give a simple example of such a property at the beginning of chapter 5,

along with explanation of why standard narrowing is not effective when

testing the property.

To resolve these tensions, in this thesis we develop an approach to nar-

rowing for functional languages that is specifically designed to support

property-based testing, and show how this can be extended to increase the

scope of properties that can be effectively tested. We will discuss other
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narrowing-based approaches and tools for property-based testing in the

related work sections of subsequent chapters.

2.4 Operational Semantics

The semantics of a programming language describes its behaviour, thereby

giving each program a meaning. In this thesis we use the operational ap-

proach, in which the behaviour of a program is described as a series of com-

putational steps. Operational semantics can be classifed into two styles,

small-step and big-step, both of which are used in this thesis.

To illustrate the two styles, in this section we consider a simple example

language comprising logical values and conditional expressions:

Expr ::= val Bool | if Expr Expr Expr

The expression if e e′ e′′ is an if -expression, in which the subject is e, the

then branch is e′ and the required else branch is e′′.

2.4.1 Small-Step Semantics

Small-step semantics, also known as structured operational semantics [46],

describes the individual steps of a computation. These steps can then be

chained together into a sequence of reductions. In this thesis, we use a

style of small step semantics known as reduction semantics [22]. In this

style, local reduction rules are defined along with the contexts in which

these rules can be applied. For our example language, the local reduction

rules are given by a relation →R ⊆ Expr×Expr defined as follows:

if (val True) e e′ →R e if (val False) e e′ →R e
′
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The first rule states that if the subject of an if -expression is True then the

expression can be reduced to the then branch. The second rule covers the

case when the subject is False.

We then define the contexts in which these rules can be applied. Infor-

mally, a context is an expression with a singular hole, denoted by •, and

a substitution C[e] replaces the hole in a context C with the expression e.

For our language, we define the notion of contexts as follows:

• context

C context

(if C e e′) context

The above definition expresses that a local reduction rule can either be

applied directly, or in the subject of an if -expression. This form of context

defines a reduction strategy in which the subject of an if -expression must

be reduced before the branches are considered. It is also possible to define

a full reduction semantics in which the hole in the context can also appear

in the branches of an if -expression and therefore a reduction can happen

anywhere in the expression. This idea will be used later on in the thesis

when we come to consider overlapping patterns.

A small-step semantics for expressions,→ ⊆ Expr×Expr, is then given

simply by applying a local reduction rule in a context:

e→R e
′ C context

C[e]→ C[e′]

This rule represent a single reduction step. We can chain these reductions



Chapter 2. Background 21

together by taking the reflexive-transitive closure of the relation:

e→∗ e

e→ e′ e′ →∗ e′′

e→∗ e′′

In this thesis we use small-step semantics in chapters 3 and 5. As we

shall see, using a small-step approach gives a natural means of extending

a functional semantics to a narrowing semantics, and is also well-suited to

defining the semantics of overlapping patterns.

2.4.2 Big-Step Semantics

Big-step semantics, also known as natural semantics [31], describes the

complete reduction of an expression to its final result. For our example

language, a big-step semantics ⇓⊆ Expr×Bool can be defined as follows:

val b ⇓ b

e ⇓ True e′ ⇓ b

if e e′ e′′ ⇓ b

e ⇓ False e′′ ⇓ b

if e e′ e′′ ⇓ b

The first rule expresses that if the initial expression is already a logical

value, then this value is the result of the evaluation. The second rule states

that when evaluating an if -expression, if the subject evaluates to True,

then the expression evaluates to the result of the then branch. The third

gives a similar rule for when the subject evaluates to False.

In this thesis we use big-step semantics in chapters 4 and 6, to define

a call-by-need narrowing semantics. Big-step semantics are well-suited for

this purpose, as they have a close relation to our actual implementation,

which is coded as an abstract machine in Haskell. For example, the above

big-step semantics can be realised in Haskell as follows:
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evalBig :: Monad m ⇒ Expr → m Bool

evalBig (val b) = return b

evalBig (if e e′ e′′) = do

b ← evalBig e

case b of

True→ evalBig e′

False→ evalBig e′′

We have used a monadic style for the code, even though it is not strictly

necessary here, for consistency with the rest of the thesis in which the use of

monads plays an important role. The first case of the function implements

the first rule of the semantics. The second case implements the second and

third rules. We could also have combined these two rules in the semantics if

we wished, but we preferred to keep the case analsysis at the rule level. This

aside, the main difference between the semantics and the implementation

is that the implementation makes the order of evaluation explicit, whereas

in the semantics the order is only implicit.

2.5 Conclusion

In this chapter we have set the scene for the rest of the thesis, by reviewing

the basic ideas of functional-logic programming, property-based testing,

and the operational approach to semantics.



Chapter 3

Narrowing Theory

In this chapter we develop a narrowing theory that can be used as justifica-

tion for a narrowing tool such as the one found in chapter 4, and which we

use as a foundation for our more complex overlapping theory (chapter 5).

It is based on the paper Towards a Theory of Reach [26].

3.1 Introduction

Narrowing-inspired evaluation strategies have been used by many tools

for the purpose of property-based testing a functional programming lan-

guage [15, 33, 38, 48]. This research has generally focused on the practical

issues concerning implementation and performance. In this chapter, we

lay the groundwork for proving the correctness of such tools. We do so

by considering narrowing as an extension to a semantics for a functional

programming language and then relating the extension back to the original

semantics by giving a soundness and a completeness theorem.

To focus on the essence of the problem, we initially consider a min-

imal language with a standard non-strict semantics (section 3.3). The

23
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language only includes Booleans and lists along with if-expressions and

case-expressions. Abstracting away from the details of a real language

such as Haskell we keep the presentation neat and concise but still include

enough detail to understand the properties of narrowing.

To define the narrowing semantics we first add free variables. In the

semantics (section 3.4) these variables are refined, bound to a constructor,

when they are required for evaluation to continue. These refinements are

stored in a substitution which is accrued during evaluation.

The relation between the extended and original semantics is formalised

by a soundness and a completeness theorem (section 3.5), of which the

proofs have been formally verified in Agda (section 3.6). Here we present

proofs of the main results based on a number of lemmas, but for brevity

we have not provided proofs of the lemmas, which can be found in the

accompanying Agda code [24]. We then describe how the language can

be extended with a number of additional features and extend the Agda

formalisation accordingly (section 3.7). Finally, we discuss related work

and draw conclusions (sections 3.8 and 3.9).

Although property-based testing is only one use of such a narrowing

semantics we adopt it to give the chapter context. First, in a step-by-step

example of narrowing (section 3.2), which we subsequently use to discuss

the advantages of narrowing in property-based testing. Then throughout

we discuss the refutation of a property as an application of our theory. This

special case of the theory shows that if the narrowing semantics derives a

refutation then this is a refutation in the original language (soundness),

and that if a refutation exists then it exists in the narrowing semantics

(completeness).



Chapter 3. Narrowing Theory 25

3.2 Narrowing Step-by-Step

In this section we give a demonstration of narrowing on a property-based

testing example and in doing so we explain why narrowing is beneficial to

testing. We consider the following property of the union function 1:

propUnion :: Ord a ⇒ [a ]→ [a ]→ Result

propUnion x y = set x ∧ set y =⇒ set (union x y)

The propUnion property asserts the result of the union is a finite set, when

its two inputs are finite sets. We represent finite sets as strictly ordered

lists and the condition set determines whether a list is a valid set. Such a

property is difficult to test directly using property-based testing. This is

because most standardly generated lists will not satisfy the set condition,

and as such lists cannot be used to test the union function, they are not

valid test cases. QuickCheck solves this problem by allowing users to define

custom generators [16], however by using narrowing we can avoid the need

to do so. In fact, sets are generated effectively by a narrowing evaluation

of the set condition with a free variable input and we can test the entire

property effectively by evaluating it with two free variables as input. We

now demonstrate how this idea works in practice.

For our example of a narrowing evaluation we focus on the set condition

which will be the first sub-expression of propUnion to be evaluated. We

use the following definition of the set condition:
1Note, we have used Haskell as opposed to our minimal language in order to give a

meaningful example.
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set :: Ord a ⇒ [a ]→ Bool

set l = case l of

[ ]→ True

(a : l ′)→ set ′ a l ′

set ′ a l = case l of

[ ]→ True

(a′ : l ′)→ a < a′ ∧ set ′ a′ l ′

We evaluate the expression set with a free variable applied and bind a free

variable whenever its value is required to proceed with evaluation, i.e. when

the free variable is the subject of the case expression being evaluated. Each

state during the evaluation is given by an expression and a substitution,

a mapping which is an accumulation of the free variable bindings up to

the current point of evaluation. For our example, the initial expression is

set l, in which l is free, and the initial substitution is the trivial mapping

{ l 7→ l }:

1) { l 7→ l }

set l

Starting with the trivial mapping rather than the traditional empty map-

ping helps with the formalisation, as discussed further in section 3.4.1. The

first step of evaluation is to inline the definition for set l:

2) { l 7→ l }

(case l of

[ ]→ True

(a : l ′)→ ...)

In order for evaluation to continue the value of the free variable l is now

required, which necessitates a refinement. The variable is of list type, and
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therefore can be refined to either the empty list or a cons constructor. To

begin with, we bind it to the empty list, represented by the substitution

l 7→ [ ], and then continue evaluating the expression.

3) { l 7→ [ ]}

True

The expression has evaluated to True and therefore we have generated a

set which is our binding for l the empty list [ ]. Although this is a set it is

not a particularly interesting one. We now look at another scenario to see

where narrowing is beneficial. We start part way through the narrowing

with the substitution { l 7→ 0 : a : l ′}:

4) { l 7→ 0 : a : l ′}

0< a ∧ set ′ a l ′

The value of a is required to continue. Consider if we bind it to 0:

5 a) { l 7→ 0 : 0 : l ′}

False

The expression is evaluated to False as a set should only have one of each

element (as encoded with a strict order). The variable l ′ is left free in

the substitution and we can conclude that no binding of l ′ will ever give a

set. Narrowing allows us to immediately discard any list of this form and

therefore stops the generation of many invalid test cases.

In order to continue generating a set we have to backtrack, undoing our

last binding of a 7→ 0. We might try a 7→ 1 instead:

5 b) { l 7→ 0 : 1 : l ′}

set ′ 1 l ′
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Now if we bind l ′ to [ ], then another solution is formed with the final

substitution being l 7→ 0 : 1 : [ ].

At the beginning of this section we claimed that narrowing was able

to generate solutions effectively. The natural question then is what do we

mean by effectively? In the next chapter, we test an implementation of a

narrowing tool on this property and find that it is able to generate random

test cases with a well-defined distributed and reasonable performance. As

the definition of reasonable performance is somewhat subjective we also dis-

cuss what drives the performance. Particularly, performance is reasonable

for this property because the maximum amount of backtracking required

increases linearly with the depth limit imposed (section 4.4).

3.2.1 Benefits of Narrowing

The primary benefit of narrowing occurs when a result is deduced for a

range of inputs as free variables remain in the substitution. In our example

we saw the substitution { l 7→ 0 : 0 : l ′} in which l ′ remains free, returned

False when applied to the set condition. This allowed us to conclude any

test case beginning with two zeroes is not valid and therefore removes the

need for them to be evaluated individually. For property-based testing

particularly, narrowing could conclude a range of inputs is invalid (as in

the example), could conclude a range of inputs all satisfy a property or

could conclude that a range of inputs refutes a property.

A second benefit often associated with narrowing is shared evaluation.

In many implementations of narrowing, the evaluation between different

inputs is shared up to the point where their differences cause execution

to take separate branches. Shared evaluation is typically a feature of lan-

guages with dedicated narrowing evaluation, such as Curry [29]. However
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sharing generally necessitates specific compiler support whereas narrowing

without sharing can sometimes be implemented with only limited compiler

support. For example, the tool Lazy Smallcheck [48] utilises the already

existing error-handling functionality in the Glasgow Haskell Compiler to

implement a narrowing inspired evaluation which does not have sharing.

In the next chapter, we compare the performance of narrowing evaluation

with and without sharing against a basic evaluation strategy.

3.3 Language and Semantics

In this section we introduce the language that we use to give a theory of

narrowing. The language is not suitable for actual programming, but does

provide enough structure to describe the key mechanisms of narrowing.

To this end the language has only two types, Booleans and lists, which

provides enough to describe properties and demonstrate the key properties

of narrowing. The grammar for expressions of the language is defined as

follows:

Expr ::= False | True | if Expr Expr Expr

| [ ] | Expr : Expr | case Expr Expr Alt

| varVar

Alt ::= (Var : Var)→ Expr

Val ::= False | True | [ ] | Val : Val

Type ::= Bool | [Type ]

That is an expression is either a boolean, a list, an if-statement, a case

expression on lists or a variable. Case expressions have the form case e e[] f ,

where e is the subject, e[] is the first alternative for the empty list and f is
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the second alternative for the cons constructor. Expressions are assumed

to be closed – variables only appear within the case expression in which

they are bound. The values of the language are Booleans and lists. All the

expressions are assumed to be well-typed under a standard set of typing

rules.

Note that the language does not contain functions or recursion, as these

are not required to study the ‘essence’ of narrowing. We do however pro-

vide an additional Agda formalisation that incorporates these features, as

discussed in section 3.7.

The behaviour of expressions is defined as a small-step operational se-

mantics. First we define the redex reductions, →R ⊆ Expr×Expr, which

are the local reduction rules:

if True e →R e
if-1

if False e→R e
if-2

case [] e →R e
case-1

f = (u : v)→ e

case (a : l) f →R e[u/a, v/l]
case-2

Using a small-step semantics will allow for a natural extension to narrowing

later. The semantics for the if-statements and case expressions are stan-

dard, where e[u/a] denotes the substitution of variable u by the expression

a in the expression e in a capture avoiding manner. Next we define the

contexts in which a redex can applied:

• context

C context

(if C e e′) context

C context

(case C e f) context
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A context is an expression with a hole, •, within it which represents where

a reduction can be performed. In our semantics we can either apply a

reduction to the top-level expression or within the subject of case and if

expressions. The replacement of the hole in a context with an expression

e is denoted C[e].

We can now define the operational semantics of the language. The

reduction rule, → ⊆ Expr×Expr, is given by:

e→R e
′ C context

C[e]→ C[e′]

When applying the semantics in practice, we often use the reflexive transi-

tive closure, →∗, which is defined in the normal manner:

e→ e′ e′ →∗ e′′

e→∗ e′′
seq

e→∗ e
refl

The semantics can be shown by standard methods to be normalising (al-

ways terminates in a finite number of steps) and deterministic (always pro-

duces a single possible result). However, neither property is a requirement

for the extension to narrowing or the correctness result which follows.

3.4 Narrowing Semantics

In this section we define a narrowing semantics for our minimal language

extended with free variables. As illustrated in section 3.2, the basic idea

of narrowing is that when evaluation of an expression is suspended on

the value of a free variable, we allow evaluation to proceed by performing
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a refinement, in which each partial value that the variable could have is

considered in turn. As evaluation proceeds a substitution is gradually built

up which tracks the instantiation of free variables. Finally, we consider how

the narrowing semantics can be used in property-based testing.

3.4.1 Adding Free Variables

Before we define the narrowing semantics we need to extend our language

with free variables. One possible encoding of free variables is to simply

allow our expressions to be open, letting the existing variables be free.

Although this is the approach taken by others, such as the Reach work [38,

39], we choose to syntactically separate the free variables as an extension

of the language. Our reason for making this choice is that free variables are

independent of the normal variables of a language. For example, it is easy

to make a similar extension to a language that does not have any form of

variables.

The extended grammar for expressions is defined below, in which each

rule is now parameterised by a set X of free variables and their types,

and expressions and values are extended with free variables of the form

fvar X . Note that we do not require the set of variables for an expression

to be minimal, i.e. the set may contain variables that are not used in the

expression.

ExprX ::= False | True | if ExprX ExprX ExprX

| [ ] | ExprX : ExprX | case ExprX ExprX AltX

| varVar | fvar X

AltX ::= (Var : Var)→ ExprX

ValX ::= False | True | [ ] | ValX : ValX | fvar X
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We will view values of type ValX as partial values, in the sense that

they may contain undefined components represented by the free variables.

We can also view the original grammars as special cases of the free variable

versions in which the free variable sets are empty, i.e. Expr ≡ Expr∅, Alt ≡

Alt∅ and Val ≡ Val∅. We write x :: t ∈ X if x is a free variable in X with

type t. When the type isn’t important we shorten this to x ∈ X

Substitutions

Substitutions are used to update the free variables in an expression by

providing a mapping from each free variable to a partial value. Formally,

a substitution of type X → Y is a mapping from the set of free variables

X to partial values that contain free variables from the set Y :

SubX→Y = X → ValY

Defining substitutions in this manner rather than as a partial mapping from

an infinite set of variables results in a simpler formalisation in Agda. In

particular, incorporating the set of variables for the domain and range di-

rectly into the type removes the need to add the variable sets as constraints

later on. A second benefit of this approach is that it yields a monadic in-

terpretation of the composition of substitutions. Given this representation

the traditional empty map becomes the trivial map in which each variable

is mapped to itself.

A special case of a substitution occurs when the resulting free variable

set is empty and therefore binds each variable to a value. We call such a

substitution an input:

InpX = SubX→∅
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[ ] :: ExprX → SubX→Y → ExprY

False [σ ] = False

True [σ ] = True

if e e′ e′′ [σ ] = if (e [σ ]) (e′ [σ ]) (e′′ [σ ])

[ ] [σ ] = [ ]

(a : l) [σ ] = a [σ ] : l [σ ]

case e e′ ((v : v ′)→ e′′) [σ ] = case (e [σ ]) (e′ [σ ]) ((v : v ′)→ e′′ [σ ])

varv [σ ] = varv

fvar x [σ ] = σ x

Figure 3.1: The application of a substitution to an expression.

We denote substitutions by σ and inputs by τ . The process of applying

a substitution is defined recursively in the normal way (Figure 3.1). Note

that applying an input to an expression results in an expression in our

original language.

3.4.2 Preliminaries

We define a number of extra concepts that are used in our formalisation of

narrowing, in the form of suspended expressions, minimal narrowing sets,

and the composition of substitutions.

Suspended expressions

An expression e is suspended on a free variable x , denoted by e( x, if the

value of the variable is required for evaluation of the expression to proceed

any further. For our language, an expression is suspended on a free variable
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if it appears in the evaluation context:

C context

C[x]( x

Expressions that are suspended can make no further transitions in our

small-step operational semantics. However, the converse is not true. In

particular, values cannot make further transitions, but are not suspended.

Minimal narrowing set

When an expression is suspended there is a set of possible refinements that

can be performed. A refinement is a substitution that should be minimal,

in the sense that it should only instantiate a free variable just enough to

allow evaluation to continue, and no further. In our language, when the

free variable has Boolean type it is refined to True or False and when it

has a list type it is refined to [ ] or (x : x ′) where x and x ′ are new free

variables.

To formalise this idea, we begin by writing x / a for the one-point

substitution that maps the free variable x ∈ X to the partial value a ∈ ValY

and leaves all other variables in X unchanged, defined as follows:

(/) :: (x ∈ X)→ ValY → SubX→X[x/Y ]

(x / a) x ′ | x ≡ x ′ = a

| otherwise = fvar x ′

The return type of the substitution is given by X [x / Y ] = (X − {x }) ∪

Y , in which the element x ∈ X is replaced by the set Y . Note that

the type of (/) depends on the name of the variable x , i.e. the operator

has a dependent type. Being precise in this manner helps to simplify our
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Agda formalisation. Using this operator we can now define the minimal

narrowing set, NarrX(x), of a free variable x ∈ X. In the case where

x :: Bool, we have:

NarrX(x) = {x/ False, x/ True} where x :: Bool ∈ X

A Boolean free variable can either be replaced by True or False. In

both cases the resulting variable set will be X[x/∅]. In the case where the

free variable is list:

NarrX(x) = {x/[], x/(y : y′)} where x :: [a] ∈ X

y, y′ /∈ X, y :: a, y′ :: [a]

The free variable can either be replaced by the empty list or the cons con-

structor. In the empty list case there are no fields and the resulting variable

set is again X[x/∅]. The cons case is more interesting as there are two fields.

Each field is replaced by a new free variable, y and y ′, of the correct type

and the new variable set includes these variables: X[x/{y :: a, y′ :: [a]}].

The narrowing set has two properties that play an important role in

completeness of the lazy narrowing semantics. Firstly, the minimal nar-

rowing set itself obeys a notion of completeness, in the sense that for every

input that is possible before the narrowing there exists a substitution in

which the input remains possible. And secondly, each substitution in the

minimal narrowing set is advancing, in that it always instantiates a vari-

able. These properties are formalised in section 3.5.2.
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Composition of Substitutions

As evaluation proceeds under narrowing, we will construct a substitution

in a compositional manner from the refinements. In order to define a com-

position operator for substitutions, we first note that Val forms a monad

under the following definitions:

return :: X → ValX

return = fvar

(>>=) :: ValX → (X → ValY )→ ValY

False >>= σ = False

True >>= σ = True

[ ] >>= σ = [ ]

(e : e′) >>= σ = (e >>= σ) : (e′ >>= σ)

fvar x >>= σ = σ x

We note in passing that this is the free monad of the underlying func-

tor for partial values. Using the >>= operator for this monad it is then

straightforward to define the composition operator for substitutions:

(>=>) :: SubX→Y → SubY→Z → SubX→Z

sa>=>sa′ = λa → sa a >>= sa′

Moreover, expanding out the definition of Sub in the type for the >=>

operator gives (X → Val Y )→ (Y → Val Z )→ (X → Val Z ), which cor-

responds to the standard notion of Kleisli composition for the Val monad.

Along with the monad laws we require one more law, relating the com-

position of substitutions to the application of a substitution.

Lemma 1. The sequential application of substitutions to an expression is
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equivalent to the application of the composed substitutions to the expression:

e[σ][σ′] ≡ e[σ >=>σ′]

3.4.3 Semantics

We now have all the ingredients required to define a narrowing semantics

for our minimal language. A step in the new semantics is either:

• a single step in the original semantics; or

• a refinement, if the expression is suspended.

To keep track of the substitutions that are applied during narrowing, we

write e  〈e′, σ〉 to mean that expression e can make the transition to

expression e′ in a single step, where σ is the substitution that has been

applied when a refinement is made. In the case of a step in the original

semantics, we simply return the identity substitution, which is given by the

return operator of the Val monad. More formally, we define a transition

relation  ⊆ ExprX × (ExprY × SubX→Y ) for narrowing by the following

two inference rules:

e→X e
′

e 〈e′, return〉
prom

e( x σ ∈ NarrX(x)

e 〈e[σ], σ〉
ref

The first rule promotes transitions from the original semantics to the new

semantics, where→X ⊆ ExprX ×ExprX is the trivial lifting of the transition

relation → ⊆ Expr×Expr to operate on expressions with free variables in

the set X, for which the inference rules remain syntactically the same as

previously except that they now operate on expressions of a more general
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form. The second rule applies a minimal narrowing step to a suspended

expression.

The definition of how to sequence steps in our extended semantics,

which takes into account the additional presence of substitutions, is given

by a relation  ∗ that is defined by the following two rules:

e 〈e′, σ〉 e′  ∗ 〈e′′, σ′〉

e ∗ 〈e′′, σ >=>σ′〉
seq

e ∈ ExprX τ ∈ InpX

e ∗ 〈e[τ ], τ〉
fill

The first rule simply composes the substitutions from the two component

reductions. The second rule performs a final substitution that instantiates

any remaining free variables and in doing so makes formalising the relation

to the original semantics simpler.

3.4.4 Property-Based Testing

Property-based testing attempts to find an input which refutes a property.

The set of possible refutations to a property, refute(e) ⊆ InpX , can be given

by:

τ ∈ refute(e) ⇐⇒ e[τ ]→∗ False

That is, an input τ that provides values for the free variables refutes the

property e iff the input applied to the property evaluates to False.

We can give an alternative definition of refutation by using our narrow-

ing semantics. Given a property, e ∈ ExprX , the set of inputs refuteN(e) ∈
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InpX that refute the condition are defined as follows:

τ ∈ refuteN(e) ⇐⇒ e ∗ 〈False, τ〉

That is, an input τ refutes a property iff there is a narrowing reduction

sequence that evaluates to False and whose ending substitution can be fur-

ther refined to the input τ . The key difference with our original definition

of refute is that the narrowing semantics constructs an input substitution

during the reduction sequence, whereas the original semantics requires that

we are given an input so that it can be applied prior to starting the re-

duction process. In the next section we show that these two notions of

refutation coincide.

3.5 Correctness of the Narrowing Semantics

We formalise the relationship between our narrowing semantics and the

original semantics. This relationship is characterised by two properties,

soundness and completeness, which are proved using a number of lemmas.

The proofs of the lemmas themselves are provided in the associated Agda

formalisation.

3.5.1 Soundness

Lemma 2. A transition in the original semantics can be lifted through a

substitution. Given a substitution σ ∈ SubX→Y , we have:

e→X e
′ =⇒ e[σ]→Y e

′[σ]
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Theorem 3.1 (Soundness). For every reduction sequence in the narrowing

semantics there is a corresponding sequence in the original semantics:

e ∗ 〈e′, τ〉 =⇒ e[τ ]→∗ e′

Proof. The proof proceeds by rule induction on the definition for the nar-

rowing relation  ∗, for which there are three cases to consider.

Case 1 In the base case when the narrowing is a simple application of

e ∗ 〈e[τ ], τ〉
fill

the goal follows immediately from the reflexivity of →∗:

e[τ ]→∗ e[τ ]
refl

Case 2 There are two inductive cases to consider, depending on the na-

ture of the first reduction in a narrowing sequence. We first consider the

case when the reduction is a refinement, constructed as follows:

ref
e( x σ ∈ NarrX(x)

e 〈e[σ], σ〉 e[σ] ∗ 〈e′, τ〉

e ∗ 〈e′, σ >=>τ〉
seq

We are now free to use the three assumptions e ( x, σ ∈ NarrX(x) and

e[σ]  ∗ 〈e′, τ〉 in our proof. In this case, we only require the third of

these assumptions in order to verify our goal, by first using the induction

hypothesis (ih) e[σ]  ∗ 〈e′, τ〉 =⇒ e[σ][τ ] →∗ e′, and then applying
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lemma 1:
e[σ] ∗ 〈e′, τ〉

e[σ][τ ]→∗ e′
ih

e[σ >=>τ ]→∗ e′
lemma 1

Case 3 We now consider the case when the first reduction is a promoted

reduction from the original language, constructed as follows:

prom
e→X e

′

e 〈e′, return〉 e′  ∗ 〈e′′, τ〉

e ∗ 〈e′′, return>=>τ〉
seq

In this case our goal can then be verified by lifting the reduction from the

original language through the input substitution using lemma 2, sequenc-

ing with the result of applying the induction hypothesis to the remaining

reduction sequence, and finally applying an identity law for Kleisli compo-

sition:

lemma 2
e→X e

′

e[τ ]→ e′[τ ]

e′  ∗ 〈e′′, τ〉

e′[τ ]→∗ e′′
ih

e[τ ]→∗ e′′
seq

e[return>=>τ ]→∗ e′′
id

Although the above proof was presented specifically for the narrowing

semantics given in section 3.4, it is not dependent on the properties of the

narrowing set or the condition for applying a refinement (in our case sus-

pension of the variable). Therefore the proof is also valid for any narrowing

set and any applicability condition.
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3.5.2 Completeness

Definition 3.1. We exploit two pre-orderings on substitutions, which re-

spectively capture the idea of one substitution being a prefix or suffix of

another:

σ1 v σ2 ⇐⇒ ∃σ′. σ1 >=>σ′ ≡ σ2

σ1 6 σ2 ⇐⇒ ∃σ′. σ′>=>σ1 ≡ σ2

Lemma 3. If the source expression of a transition in the original semantics

is not suspended then the transition can be ‘unlifted’. Given a substitution

σ ∈ SubX→Y and a transition e[σ]→Y e
′ for which e 6( x, we have:

∃e′′. e→X e′′ ∧ e′′[σ] ≡ e′

Lemma 4. The narrowing set is complete. For every input there is a

substitution in the narrowing set that is a prefix of the input:

∀x ∈ X, τ ∈ InpX . ∃σ ∈ NarrX(x). σ v τ

Lemma 5. The narrowing set is advancing. The identity substitution is a

strict prefix of every substitution in the narrowing set:

∀x ∈ X, σ ∈ NarrX(x). return @ σ

Lemma 6. The suffix relation < is well-founded. For any finite substitu-

tion τ0, there only exists finite chains of substitutions τi such that:

τn < ... < τ1 < τ0
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Lemma 7. A suffix formed by an advancing prefix is strict.

σ >=>σ1 ≡ σ2 ∧ return @ σ =⇒ σ1 < σ2

Theorem 3.2 (Completeness). For every reduction sequence in the original

semantics there is a corresponding reduction in the narrowing semantics:

e[τ ]→∗ e′ =⇒ e ∗ 〈e′, τ〉

Assuming that τ is a finite substitution.

Proof. The proof proceeds by double induction. First on the length of the

reduction sequence e[τ ]→∗ e′ and then on the size of the input τ .

Case 1 In the base case when the evaluation is just reflexivity

e[τ ]→∗ e[τ ]
refl

the goal follows immediately by instantiating free variables:

e ∗ 〈e[τ ], τ〉
fill

Case 2 There are two inductive cases to consider, depending on whether

or not the expression e is suspended when the sequencing rule is applied:

e[τ ]→ e′ e′ →∗ e′′

e[τ ]→∗ e′′
seq

In the case when e is not suspended our goal can be verified as follows, in

which the two branches of the proof tree exploit the two conclusions from
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lemma 3:

prom

lemma 3
e→ e′τ

e 〈e′τ , return〉

e′ →∗ e′′

e′τ [τ ]→∗ e′′
lemma 3

e′τ  
∗ 〈e′′, τ〉

ih

e ∗ 〈e′′, return>=>τ〉
seq

e ∗ 〈e′′, τ〉
id

Case 3 Finally, the we consider the case when e is suspended on x . As

the narrowing set Narr(x) is complete (lemma 4), there exists a valid re-

finement that is a prefix of the input τ i.e. a substitution σ ∈ Narr(x) and

input τ ′ for which τ ≡ σ >=>τ ′. Based upon this observation our goal can

then be verified as follows:

ref
e( x σ ∈ Narr(x)

e 〈e[σ], σ〉

e[τ ]→∗ e′

e[σ][τ ′]→∗ e′
lemma 1

e[σ] ∗ 〈e′, τ ′〉
ih

e ∗ 〈e′, σ >=>τ ′〉
seq

e ∗ 〈e′, τ〉
lemma 4

In this case, the length of the reduction sequence of the induction hy-

pothesis is the same as the length of the reduction sequence in the original

statement. In this case we rely on our second inductive principle, the size

of the input. Via lemma 5 and 7 we have input τ ′ is a strict suffix of τ , that

is τ ′ < τ . Together with lemma 6 this guarantees the well-foundedness of

the proof.

Whereas the soundness proof was independent of the properties of the
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narrowing set and the condition for its applicability, the completeness proof

relies on the fact that the narrowing set is complete and advancing, and

that a refinement can always be applied when an expression is suspended.

3.5.3 Correctness

Using the soundness and completeness results, it is now straightforward to

prove that our two notions of refutation are equivalent:

Theorem 3.3 (Correctness). For all expressions e ∈ ExprX :

refuteN(e) ≡ refute(e)

Proof.

τ ∈ refuteN(e) ⇐⇒ e ∗ 〈False, τ〉 (by definition)

⇐⇒ e[τ ]→∗ False (theorems 3.1 and 3.2)

⇐⇒ τ ∈ refute(e) (by definition)

3.6 Agda Formalisation

The correctness result has also been formalised in the Agda [41]. The un-

derlying minimal language of the Agda formalisation has minor differences,

with a natural number type instead of Boolean and list types. This is be-

cause it was formalised for the paper, Towards a Theory of Reach [24],

which is the basis of this chapter. The changes only result in small differ-

ences in the proofs of lemmas but the soundness and completeness proofs
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remain identical.

Apart from this the Agda formalisation follows the presentation given

in the chapter closely: the language grammar and semantic rules convert

directly to inductive datatypes, and rule induction translates to recursive

dependent functions. A proof of the main result and all associated lemmas

is available online from:

http://tinyurl.com/reachtheory

Using Agda brings a number of important benefits. First of all, it pro-

vides a guarantee that the results are correct. Secondly, it helped guide the

development of the theory and proofs, resulting in a number of simplifica-

tions. For example, when translating our original formalisation into Agda

we found that it contained a subtle error. The process of correcting the

error also pointed towards a neater theory. In particular, our original nar-

rowing formulation kept the substitution as an environment, only replacing

free variables when they were needed. The most natural way to fix the er-

ror was to apply the substitution to the current expression immediately,

removing the need to keep the substitution as an environment. This also

removed an unnecessary distinction in the formalisation: in the original

formulation the expression/environment pair 〈e, σ〉 behaved equivalently

to the pair 〈e[σ], σ〉, yet the two were distinct. And finally, the use of

Agda had a positive effect on the formulation of the representation of sub-

stitutions. In order to ensure totality in the Agda we had to parameterise

substitutions with the set of variables used in their domain and result. Far

from being a hindrance, this led to the monadic formulation of composition.

http://tinyurl.com/reachtheory
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3.7 Extending the Language

In this chapter we focused on a minimal language to emphasise the key

elements of the process of narrowing. However, our results also scale up

to a more realistic language that includes function application, lambda

abstraction and fixed points [24]. This section briefly describes the changes

that are required to the Agda formalisation.

First of all, the expression grammar is extended to include the three new

constructors: function application, lambda abstraction and fixed points.

The small step semantics is extended to account for the new language

constructs.

Our formalisation of the narrowing semantics for the extended language

restricts free variables, and by extension narrowing, to first-order datatypes

(Boolean and List types). Although this is certainly a limitation, it is

standard in the narrowing literature, where a narrowing theory is generally

described for first-order data initially, and then potentially extended to the

higher-order case in subsequent work. With this restriction, the alteration

to the narrowing semantics and correctness proof is minor. The suspension

predicate, e ( x, has to be updated as an expression can now be sus-

pended within a function application or a fixpoint expression. We defined

the narrowing semantics by lifting the original semantics, and this defini-

tion remains unchanged except that we now lift the extended semantics.

Finally, the lemmas, particularly the lift and unlift lemmas (2 and 3), need

updating to account for the additional cases. The proof of soundness and

completeness remain identical under the updated lemmas.
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3.8 Related Work

There is a large body of work on the theory of narrowing in functional

logic programming. We introduce and compare two particularly relevant

theories to ours. In their seminal work, Antoy et al. [4] established the

soundness and completeness of the related notion of needed narrowing, and

the optimality of needed narrowing within a restricted domain. However,

whereas our formalisation is based on extending a small-step semantics,

theirs is based on classical rewrite systems. As a result, our approach is

easier to mechanically verify, which we have done, as the semantics of our

language has a direct representation in proof assistants. In fact, to the best

of our knowledge, this is a first time that a lazy narrowing formalisation

has had such a verification.

A formulation of narrowing which is more closely related to ours is given

by Albert et al. [2] in which a “natural” big-step semantics is defined before

an implementation driven small-step semantics is introduced. Both seman-

tics are call-by-need, implement sharing, and are proved to be equivalent.

They go on to extend the small-step semantics with additional features

such as equational constraints and external functions. There is a difference

in motive in comparison to our work, as they establish narrowing as a pro-

gramming language feature whereas we are interested in using narrowing

to analyse the operation of a program. The difference manifests itself in

the theories: they relate their small-step semantics back to their defining

big-step semantics, whereas we relate our lazy narrowing semantics back

to the underlying functional semantics.
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3.9 Conclusion

We have established the correctness of a narrowing semantics as an exten-

sion of a semantics for a minimal language. Our final formulation of the

semantics is the result of several iterations and improvements, and captures

the main ideas of narrowing in a simple and concise manner. In particular,

the use of an underlying small-step semantics was instrumental in simpli-

fying the theory. The simplicity along with the use of precise types enables

a direct translation of our result to the Agda system [24].

In chapter 5 we develop the theory by defining a narrowing semantics for

a more complex language which includes the novel notion of an overlapping

pattern. There are a number of other interesting directions in which the

theory could be extended, which we discuss at the end of that that chapter.
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Implementation and

Evaluation

In the previous chapter we developed a theory of narrowing for a simple

call-by-name functional language. In this chapter, we show how this idea

can be realised in practice for a call-by-need language. We begin by defining

our language and its big-step operational semantics. We then show how

this can be implemented in Haskell, and how the resulting system can be

used for property-based testing. Finally, we evaluate the performance of

the system on a number of case studies.

4.1 Language and Semantics

The semantics for our prototype implementation differs in several ways

from the semantics in the previous chapter. The biggest change is the shift

to call-by-need evaluation which we explain shortly. We also use a big-step

style of presentation as this style leads to a close relation with our imple-

mentation in Haskell. Finally, we move to a complete functional-language

51
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which includes algebraic datatypes and parametric polymorphism, which

is suitable for expressing our examples.

Call-by-need For our formalisation in the previous chapter we used a

call-by-name semantics, in which variable substitution occurs in place, i.e.

by replacing any occurrences of the variable with the expression being sub-

stituted. Whereas this is convenient for formalisation it is often inefficient

in practice as the substituted expression may have to be evaluated multiple

times if it has been substituted in multiple places. To avoid this inefficiency

while retaining a non-strict semantics in this chapter we use a call-by-need

semantics. In call-by-need evaluation, substitutions are stored in an envi-

ronment called a heap, and when a variable’s value is required it is taken

from the heap and evaluated. The variable’s value is then stored back on

the heap so it can be reused.

Evaluation sharing It is important to note that we discuss two differ-

ent forms of evaluation sharing in this thesis – one relating to evaluation

sharing between narrowing evaluations and the other via the heap in call-

by-need evaluation. As our main concern is narrowing, we reserve the term

evaluation sharing for the sharing between narrowing evaluations and refer

to the sharing in call-by-need as evaluation reuse.

4.1.1 Language

The basis of our implementation is a core functional language (figure 4.1)

which is similar to the core language of Haskell[36]. The top level of the

language is given by function definitions which consist of a function iden-

tifier Fun, a list of arguments and an expression that forms the body of
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DefnX ::= Fun Var = ExprX

ExprX ::= Fun ExprX | Con ExprX | varVar | fvar X
| let Var = ExprX in ExprX
| case ExprX of AltX | ⊥

ValX ::= Con ValX | fvar X | ⊥
AltX ::= Con Var → ExprX

Figure 4.1: The core language for our tool

the function. The expression can be: an application of a function, the ap-

plication of a constructor, a variable, a free variable, a let binding, a case

expression or bottom. Expressions should be well-typed under the standard

typing rules, with each type having an associated set of constructors (the

typing rules have been omitted as they are standard). Case expressions

should have a complete set of alternatives. To simplify the semantics, we

assume that function and constructor applications are complete however

this is not a restriction in our implementation and the semantics of partial

applications can be added using standard techniques [44]. Only function

definitions in the language are allowed to be recursive, in particular we do

not consider recursive let expressions. The bottom expression is primar-

ily used to allow size limits on the inputs but is analogous to the Haskell

equivalent.

We typically denote definitions by f , expressions by e, constructors by

c, closed variables by u and v, and free variables by x and y.

Narrowing

Similarly to section 3.4.1, we define refinements as a function from a set of

typed variables to partial values of the given type: SubX→Y = X → ValY .

The minimal narrowing set is a set of refinements each of which replaces a
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single variable with a constructor, and is given by

NarrX(xt) = {x / c y | c ∈ cons(t)} y /∈ X

where xt denotes x of type t and cons(t) is the set of constructors of type t

and the constructor application, c y, is complete with each variable having

the correct type. The refinements form a monad, as defined in section 3.4.1.

4.1.2 Semantics

We define the call-by-need narrowing evaluation of our language using a

big-step semantics. Each state in the evaluation is represented by an en-

vironment which consists of an expression and a heap, which is a mapping

from variables to expressions used to avoid repeated evaluation of the same

expression. We also record the substitution accumulated by narrowing

steps. Formally, we have the following definitions:

HeapX ⊆ Var ×ExprX

EnvX = ExprX ×HeapX

⇓ ⊆ EnvX ×(EnvY × SubX→Y )

We define evaluation to be complete when the expression is in weak head

normal form, which occurs when the top-level expression is a constructor.

Note, because we have restricted the language to complete applications

there is no other type of expression in weak head normal form. This can

be written as a “reflexive” rule:

〈c e, s〉 ⇓ 〈c e, s, return〉
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This forms our base rule and states that any expression which is a con-

structor evaluates to itself with no update to the heap or substitution.

If the expression to be evaluated is a free variable, then a narrowing

step is applied:

σ ∈ NarrX(x) 〈fvar x[σ], s[σ]〉 ⇓ 〈e, s′, σ′〉

〈fvar x, s〉 ⇓ 〈e, s′, σ >=>σ′〉

A refinement is taken from the narrowing set and applied to both the

current expression and the expressions on the heap. Note the semantics

does not define how the refinement should be chosen from the narrowing

set; this is left for the implementation. In this chapter we implement two

possible methods: enumerating the refinements and random choice.

Variables are introduced to the heap during the evaluation of let ex-

pressions and function application:

〈e′, {v 7→ e} ∪ s〉 ⇓ 〈e′′, s′, σ〉

〈let v = e in e′, s〉 ⇓ 〈e′′, s′, σ〉

〈e, {v 7→ e} ∪ s〉 ⇓ 〈e′, s′, σ〉 (e, v) = fresh(f)

〈f e, s〉 ⇓ 〈e′, s′, σ〉

In which the term fresh(f) produces a new instantiation of f with fresh

variables and v 7→ e is the mapping of each variable in v to its corresponding

expression in e.

The rule for evaluating a variable is:

〈e, s〉 ⇓ 〈e′, s′, σ〉 v 7→ e ∈ s

〈var v, s〉 ⇓ 〈e′, s′[v/e′], σ〉
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The variable’s binding is taken from the heap, evaluated and then the heap

is updated with the result.

The semantics of case expressions are defined in the standard way:

〈e, s〉 ⇓ 〈c e, s′, σ〉 〈e′[v/e], s′〉 ⇓ 〈e′′, s′′, σ′〉 c v 7→ e′ ∈ alt

〈case e of alt, s〉 ⇓ 〈e′′, s′′, σ >=>σ′〉

Note that the evaluation uses direct substitution and does not add variables

to the heap. Instead we maximise evaluation reuse by converting expres-

sions to an atomic form which utilises let expressions, which we describe

after giving the semantic rules for ⊥, which are as follows:

〈⊥, s〉 ⇓ 〈⊥, s, return〉

〈e, s〉 ⇓ 〈⊥, s′, σ〉

〈case e of alt, s〉 ⇓ 〈⊥, s′, σ〉

The semantics are those of a standard error type: if ⊥ is required for

evaluation then it is propagated to the result.

Atomic Form

As part of our compilation we convert all constructors in our expressions

into an atomic form by binding their non trivial fields to variables. A

constructor is in atomic form if it has the following structure:

AtomX ::= Con AtomX | Var | X

This atomic form is similar to that used in the Glasgow Haskell Com-

piler [44]. To convert an expression to this form we can bind the fields of

constructors using let expressions, for example:

c1 (c2 e) e′ → let v = e in let v′ = e′ in c1 (c2 v) v′ (e,e′ not atomic)
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We use an atomic form rather than introducing variables from alternatives

onto the heap in order to ensure evaluation reuse. In particular, if we have

an expression of the following form,

case v of

c v ′ →

. .

and v evaluates to c e then just adding v′ 7→ e to the heap will not ensure

evaluation reuse as v will still be bound to c e (and therefore e maybe

re-evaluated without sharing). However if e is atomic then it is either a

constructor, in which case there is no evaluation to be done, or a variable,

in which case the evaluation will be shared.

4.2 Implementation

Our implementation of the semantics is an abstract machine written in

Haskell. In this section, we give an overview by describing the surface

syntax, providing an example of the conversion from semantics to a pro-

gram and show how we handle the non-determinism of narrowing. The

implementation is freely available online from:

https://github.com/jonfowler/narrowcheck

4.2.1 Syntax

The syntax we use for our language is a subset of Haskell which is desugared

into the core language described in the previous section. Figure 4.2 shows

the set function from section 3.2 converted from Haskell to our implemen-

tation. Several changes have been made. The set ′ where clause has been

https://github.com/jonfowler/narrowcheck
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data List a = Cons a (List a) | Empty

set :: List Nat → Bool

set Empty = True

set (Cons a l) = set ′ a l

set ′ a Empty = True

set ′ a (Cons a′ l) = a < a′ ∧ set ′ a′ l

Figure 4.2: The set function from section 3.2 in our implementation.

replaced with a top-level definition, the function has been made monomor-

phic to remove the need for the Ord typeclass, the syntactic sugar for lists

has been replaced and the guards have been removed. Apart from these

changes the function remains the same. In examples we still use Haskell for

convenience, however all the examples can be converted into our language

and the code can be found in the examples folder of the repository [25].

To obtain the core language, nested pattern matches are desugared

to individual case expressions using the method described by Wadler [43,

Chapter 5]. Additionally we convert to atomic form as described in the

previous section.

4.2.2 Semantics to Implementation

The semantics from the previous section are converted into an evaluation

function. The function utilises a monad, Narrow, which is a combination

of a state monad, which stores the evaluation environment including the

heap, and a non-deterministic monad, Refine, which tracks the refinements

made during narrowing and is explained in the next section.

As an example we show the part of the eval function which evaluates a
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variable by retrieving its value from the heap, evaluating it and updating

the heap with the result. The function utilises two helper functions getVar ::

Var → Narrow Expr , which gets the value of a variable from the heap; and

updateVar :: Var → Expr → Narrow (), which updates the value of a

variable on the heap.

type Narrow = StateT Env Refine

eval :: Expr → Narrow (Expr , Sub)

eval ...

eval (varv) = do

e ← getVar v

(e′, σ)← eval e

updateVar v e′

return (e′, σ)

4.2.3 Search Tree

To capture the non-determinism of narrowing we use a search tree to rep-

resent the result of evaluation. The branches of the trees are possible

narrowing refinements and the leaves contain the result of evaluation. Dif-

ferent search strategies can be defined by different traversals of the tree.

The data type and monad instance are as follows:

data Refinement = Refinement {refinement :: Sub, freq :: Int }

data Refine a = Branch [(Refinement,Refine a)]

| Leaf a
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instance Monad Refine where

return = Leaf

Leaf a >>= f = f a

Branch as >>= f = Branch $ (map ◦ fmap) f as

The branches of the tree are labelled with the refinement they represent

and the frequency with which the refinement should occur in a random

search strategy (section 4.3.3). Similarly to composing refinements (sec-

tion 3.4.2), we note that this is a free monad on the underlying func-

tor data BranchF a = BranchF [(Refinement, a)]. We can now lift the

branching logic into a monad operator branch, which hides the tree struc-

ture:

branch :: [Refinement ]→ Narrow Refinement

branch rs = StateT $ λs → Branch (map (λr → (r ,Leaf (r , s))) rs)

Finally, we can implement the narrowing rule as part of the eval function:

eval :: Expr → Narrow (Expr , Sub)

eval . .

eval (fvar x) = do

σ ← branch $ narrowingSet x

modifyHeap (fmap (subst σ)) -- update the heap

(e, σ′)← eval (subst σ (fvar x))

pure (e, σ >=>σ′)

The definition uses three helper functions: narrowingSet :: FreeVar →

[Refinement ], which gives the narrowing set for a typed free variables;

modifyHeap :: (Heap → Heap) → Narrow (), which modifies the heap; and

subst, which substitutes a refinement into an expression.
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The above definition updates the heap as soon as refinement is made,

while this reflects the semantics it is somewhat expensive in practice as the

heap is repeatedly traversed. To avoid this, in the actual implementation

we store the refinements as part of the environment and only apply the

refinement when a free variable is encountered.

4.2.4 Running a narrowing evaluation

Running a narrowing evaluation is now quite simple. We wrap the eval

function in a simple helper, by means of the following definition:

narrow :: Expr → Env → Refine (Expr , Sub)

narrow e env = evalStateT (eval e) env

The narrow function takes an expression and an evaluation environment

and produces a tree of results. For example we can use it to evaluate the

union example from section 3.2 as follows

narrow {seqN 2 $ union (fvarx) (fvar y)} unionEnv

where the term inside the curly braces is an expression in our language with

seqN a function that forces the first n values of a list, and the unionEnv

is an evaluation environment with an empty heap and contains function

definitions for union, seqN and their dependencies. This evaluates to a tree

containing results and the refinements on the leaves, such as the following:

0 : 1 : l {x 7→ [0], y 7→ 1 : l}

On the left we have the result of the union of x and y, in which the first

two elements have been forced and l remains free, and on the right is the
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substitution created by the narrowing evaluation.

4.3 Property-Based Testing

This section describes how the implementation that we have developed

above can be used for property-based testing.

4.3.1 Properties

Properties in our system are functions with return type Result, which rep-

resents three possible outcomes: a failed precondition, in which case the

test case is invalid; a successful result, where the test case satisfies the

property; or a failure, where the test case is a counterexample:

data Result = Invalid | Success | Failure

Properties are typically defined using a specialised implication operator

( =⇒ ) :: Bool → Bool → Result, defined as follows:

( =⇒ ) :: Bool → Bool → Result

False =⇒ = Invalid

True =⇒ b = property b

property :: Bool → Result

property False = Failure

property True = Success

Property-based testing can then be run on any typed, first-order, mono-

morphic definition with a return type of Result. For example, we can test

the propUnion property from section 3.2, as follows:
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$ narrowcheck -p propUnion Union.hs

Property refuted with input:

[0]

[0]
This example runs a random test, of up to one hundred test cases, of

the property propUnion specified by the -p flag. A narrowing evaluation

strategy is used on the property with generated free variable arguments, i.e.

propUnion (fvar x) (fvar y). This particular test run records a failure

with the two arguments, [0] and [0], using the faulty implementation of

union which does not remove duplicate elements.

4.3.2 Size Limit

In enumerative and random testing it is often important to limit the size of

test cases. In enumerative testing a size limit ensures the pool of test cases

is finite, and in random testing a size limit stops test cases getting too big

and possibly even growing infinitely (it is possible to have a distribution

in which a test case is finite with probability less than 1). To achieve this,

we enforce a maximum constructor depth on each test case. We define the

depth over values without free variables but with bottoms Val⊥ = Val∅.

This allows us to use the same definition for both a narrowing evaluation

strategy and the basic evaluation strategy which we compare it against.

We define define depthn(t) ⊆ Val⊥ as the set of values with depth equal to

or less than n of type t by the following rules,

∀ c ∈ t. ¬fieldless(c)

⊥ ∈ depth0(t)

fieldless(c)

c ∅ ∈ depth0(t)

∀a ∈ a. a ∈ depthn(t)

c a ∈ depthn+1(t)
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where fieldless is a predicate asserting a constructor has no fields. Field-

less constructors are given zero depth, and therefore any type with a triv-

ial constructor has a value at any depth. For types without a fieldless

constructor we include ⊥ in the zero depth set. It should be noted that

⊥ will only appear in fields of zero depth whereas fieldless constructors

can be lifted to any depth, e.g. Left ⊥ ∈ depth1(Either Bool Bool) but

⊥ /∈ depth1(Either Bool Bool) whereas False ∈ depthn(Bool) for all n.

This definition of depth has been chosen carefully to give a fair compar-

ison between the basic evaluation strategy, which will evaluate each test

case in a set individually, and narrowing, which might reach a conclusion

for a group of test cases. The use of ⊥ ensures that the basic method con-

siders all the same test cases but as ⊥ only appears in fields where there is

no other valid value there are no superfluous test cases. If a test evaluates

to ⊥ the result is taken to be invalid.

We can add a size limit to a narrowing evaluation by updating our

definition of the narrowing set,

NarrX(xt0) = {c ∅ | c ∈ cons(t), fieldless(c)} ∃ c ∈ t. fieldless(c)

NarrX(xt0) = {⊥} ∀ c ∈ t. ¬fieldless(c)

NarrX(xtn+1) = {x / c yn | c ∈ cons(t)} yn /∈ X

where xn denotes a free variable decorated with a maximum depth of n,

4.3.3 Search Strategies

We consider two enumeration-based search strategies and one random search

strategy. For enumeration, we use one strategy which implements narrow-

ing with shared evaluation and one which implements narrowing without
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shared evaluation, which allows us to compare the performance impacts of

narrowing and sharing evaluation separately.

Enumeration

The full narrowing enumerative strategy simply explores the tree from left

to right, and returns all the results as a list:

enumerate :: Refine a → [a ]

enumerate (Leaf a) = [a ]

enumerate (Branch bs) = concatMap (enumerate ◦ snd) bs

This definition of enumerate will benefit from evaluation sharing when the

search tree is produced from a narrowing evaluation, as at each branch the

evaluation performed so far will be reused in each sub-tree.

To implement evaluation without sharing, we need to restart evaluation

for each test case. To do so, we keep track of the next test case to be

performed with a path through the search tree and regenerate the search

tree each time. The implementation is shown in Figure 4.3.

Random Search

For our random search we give each constructor a weighting which deter-

mines the frequency with which it is chosen in the random search. To

declare the weights in the implementation we use a pragma called DIST

(short for distribution). For example, we can give weights to the leaf and

node constructors of a binary search tree as follows:

data BST a = Node (BST a) a (BST a) | End

{-# DIST Node 4 #-}

{-# DIST End 1 #-}
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-- A path is an infinite stream of Ints, each representing the next

-- branch of the tree to evaluate:

type Path = [Int ]

-- Evaluate the branch corresponding to a path and return the

-- next path if one still exists:

evaluatePath :: Refine a → Path → (Maybe Path, a)

evaluatePath (Leaf a) = (Nothing, a)

evaluatePath (Branch bs) (i : p)

= case evaluatePath (bs !! i) p of

(Nothing, a)

| (i + 1) ≡ length bs → (Nothing, a)

| otherwise → (Just (i + 1 : repeat 0), a)

(Just p, a)→ (Just (i : p), a)

-- Enumerate paths in order, we accept a function as an

-- argument so Haskell does not store the evaluation tree:

noShareEnumerate :: (b → Refine a)→ b → [a ]

noShareEnumerate f b = go f b (Just (repeat 0))

where go Nothing = [ ]

go f b (Just p)

= let (p′, a) = evaluatePath (f b) p

in a : go f b p′

Figure 4.3: An enumeration strategy without evaluation sharing.
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Our random search implements backtracking. That is, when it arrives

at an invalid leaf or empty branch the last step is undone and a different

branch is tried. It is desirable to limit this process as otherwise the search

might get stuck in a locale of the search tree in which there are no possible

solutions. There are two simple ways to limit backtracking. One is to

limit the total number of backtracking steps, such as the approach taken

by Claessen at al. [15]. The approach we take is to limit the number of

backtracking steps taken from any leaf. This makes it easier to reason

about the effect of backtracking because this form of backtracking has no

global state and therefore can be reasoned about locally.

There is a trade off between the size of the backtrack limit and the

fidelity of the distribution. Without a backtrack limit, the frequency of a

refinement in the distribution will be proportional to its weight, so long as

there is a valid test case which includes that refinement. With a backtrack

limit this is not the case as generation may fail even if there is a valid test

case which uses refinement. The lower the backtrack limit the higher the

probability of failure resulting in a greater skew of the distribution. We

explore the effects of different backtrack limits in the case studies (§4.4).

A basic implementation of a random generator can be found in Fig-

ure 4.4. It is a slight simplification of our actual generator which also uses

a strategy similar to that of non-sharing enumeration to stop evaluation

being shared between runs. For random testing this is sensible as it avoids

high memory use1 and as the evaluation of random test cases often deviate

early, that is they take a different branch of the program, sharing gives

little performance benefit. It should be noted that shared evaluation still
1Note that for enumeration we do not have high memory use because we only need

to store the current evaluation path, as once part of the evaluation tree has been enu-
merated it is not reused and so can be garbage collected
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import System.Random

-- Select a random element from a non-empty list and also

-- return the rest of the list

takeRand :: [a ]→ State StdGen (a, [a ])

takeRand l = do

i ← state $ randomR (0 . . length l − 1)

let (l1 , a : l2 ) = splitAt i l

return (a, l1 ++ l2 )

randomSearch :: Int → Refine (Maybe a)→ Rand (Maybe a)

randomSearch backtrack t = go t [ ] where

go (Leaf (Just a)) = return (Just a)

go (Branch bs) backups | ¬ (null bs) = do

(t ′, bs′)← takeRand bs

go t ′ (take backtrack (bs′ : backups))

go (bs : backups) = go (Branch bs) backups

go = return Nothing

Figure 4.4: Implementation of a random, backtracking search

occurs within a run through the backtracking process.

4.4 Case Studies

We explore the performance of our narrowing based tool in a number of

case studies. In each case we test a property of a program by executing the

property with our narrowing based evaluation. We compare a selection of

metrics to a basic strategy in which test data is generated generically and
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then applied to the property and executed traditionally. The code for the

case studies can be found in appendix A and on Github [25].

We look at three different programs which highlight different features a

property might have. The aim is to provide a discussion of the main factors

which affect the performance of testing a property. A more exhaustive

benchmark with a larger number of properties is provided in chapter 6

where we compare the narrowing tool to an extended overlapping narrowing

tool. Here and there we have only compared the performance of our tool

against different variants of itself. In an ideal world we would have also

compared the performance to existing property-based testing solutions, we

have not done so because making such a comparison meaningful is difficult

as for convenience our tool runs in an abstract machine and that carries a

large performance penalty.

One important discussion is the effect of the backtrack limit on the

performance of random testing and the distribution of generated test cases.

For our main comparison we use a conservative limit of 3. At this level

backtracking has only a small impact on performance which allows a direct

comparison to the basic method.

4.4.1 Basic Strategy

The basic strategy is to generate an input and then apply it to the property.

We use the same construction depth limit and in random testing generate

constructors with the same weights as we do with the narrowing tool. The

tests run in an equivalent abstract machine for direct comparison.
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4.4.2 Evaluation

For enumerative testing we repeat each experiment ten times with a time

limit of twelve minutes. For random testing we run one thousand test cases

and repeat each experiment forty times with a time limit of four minutes.

For both we increase the construction depth incrementally until an experi-

ment exceeds the time limit. The limits were chosen after experimentation

to give us a range of results within a reasonable time while allowing for

repetition.

All results reported were obtained using a quad-core Intel i5 running

at 3.2GHz, with 16GB RAM, under 64-bit Ubuntu 16.04 LTS with kernel

4.4.0. The program is written without the use of parallel features and so the

number of cores is expected to only have a limited effect on performance.

4.4.3 Metrics

Along with the time taken we measure a number of other metrics in order

to give us an insight into the drivers of performance. For enumerative

testing we measure the number of generated and invalid tests considered.

For random testing we measure the success rate of generating values and

the average size of values.

Number of test cases and invalid tests cases

We count the number of generated test cases (which might have either sat-

isfied or refuted the property) along with the number of invalid possibilities

tried. The sum of these two metrics is equal to the number of leaves in

the search tree. These metrics are the same for narrowing with and with-

out sharing but differ in the basic strategy. We refer to them as tests and
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invalid respectively in results tables.

Success Rate

For random testing we measure the percent of test cases which satisfy the

precondition and thereby perform a valid test. We call this the success rate

and it is an important measurement as a low success rate may indicate a

bad distribution of test cases.

Average Size

In order to assess the distribution of randomly generated values we measure

their average size. Unlike other tests we use a problem-specific measure-

ment of size. This is usually the size of the spine structure, e.g. the length

of a list or the number of nodes in a tree.

4.4.4 Union of Sets

We begin by evaluating the union property on which we originally demon-

strated narrowing (§3.2). The property, which we specialise for natural

numbers, is defined as follows:

data Nat = Z | S Nat

propUnion :: [Nat ]→ [Nat ]→ Bool

propUnion x y = set x ∧ set y =⇒ set (union x y)

The property asserts that if the two input lists satisfy the set condition

then their union should also. We recall that the sets are represented by

strictly increasing lists and test a faulty implementation of union (Fig. 4.5).

The performance results for testing the union property are given in

Figure 4.6. The tables, 4.6a and 4.6b, show the metrics for enumerative
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set :: [Nat ]→ Bool

set [ ] = True

set (a : l) = set ′ a l

where set ′ a [ ] = True

set ′ a (a′ : l) = a < a′ ∧ set ′ a′ l

union :: [Nat ]→ [Nat ]→ Bool

union [ ] l = l

union l [ ] = l

union (a : l) (a′ : l ′) | a < a′ = a : union l (a′ : l ′)

| otherwise = a′ : union (a : l) l ′

Figure 4.5: The set condition and a faulty implementation of union

and random search at a selection of construction depths (including the

maximum construction depth for each problem). The two graphs, 4.6c

and 4.6d, show the time taken across the construction depths. Note that

we give graphs for enumerative testing a logarithmic scale, owing to the

typically exponential performance, whereas the graphs for random testing

have a linear scale.

Enumeration

The results for the enumerative evaluation can be found in the graph 4.6c

and the table 4.6a.

Observation 1. The performance of the narrowing with sharing tool is

several orders of magnitudes faster than the basic method. The narrowing

tool can produce 710,000 test cases with a maximum depth of 15 within

the time limit whereas the basic method is only able to produce 441 of size
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Strat Metric 5 6 7 .. 12 .. 15
Basic time 6.54s 294s - .. - .. -

tests 169 441 - .. - .. -
invalid 1.1e5 3.8e6 - .. - .. -

Narr no share 36.1ms 120ms 394ms .. 133s .. -
sharing 9.05ms 25.1ms 68.9ms .. 11.3s .. 241s
tests 104 248 596 .. 4.9e4 .. 7.1e5
invalid 105 300 870 .. 1.7e5 .. 3.8e6

(a) Benchmark results for testing the union property by enumer-
ation to given construction depth.

Strat Metric 5 10 15 20 ∞
Basic time 581ms 1.01s 1.25s 1.35s 1.46s

success 12.0% 12.2% 12.2% 12.2% 12.2%
size 0.65 0.66 0.66 0.66 0.66

Narr time 566ms 1.46s 1.78s 2.10s 4.21s
success 50.7% 36.2% 49.7% 60.9% 100.0%
size 1.75 1.70 2.23 2.70 5.01

(b) Benchmark results for testing the union property by random
generation with maximum construction depth. The size metric
is the average list length of all the inputs.
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Figure 4.6: Benchmark results for testing the union property
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6.

This can be explained by the narrowing tool’s ability to determine the

result of partially bound inputs, as shown step-by-step in section 3.2. For

example, if the partial input begins with two zeroes, (0 : 0 : l), the tool

already determines it is Invalid and no further inputs of this form need to

be tried. In contrast the basic method has to try all inputs of this form

within the construction depth. In the table 4.6a we can see at construction

depth 6 there is only 441 combinations where both lists satisfy the set

condition but over 3,000,000 where they don’t.

The ability to determine partially bound inputs also explains the dis-

crepancy in the number of test cases generated between the two methods,

with the narrowing tool generating fewer test cases. This is because it is

possible for a partially bound input to be a successful test case. For exam-

ple, the partial input consisting of [ ] and [n ] already satisfies the property

for any value of n.

Observation 2. The majority of the performance increase happens due

to narrowing evaluation but shared evaluation also provides a performance

benefit. At depth 6, narrowing with sharing is 4.8 times faster than nar-

rowing without sharing but narrowing without sharing is 2453 times faster

than basic evaluation.

Random

For the random search we use a weighting of 1 for the empty constructor

and 5 for the cons constructor. The zero and successor constructor are given

equal weightings. The usual backtrack limit of 3 is used for the narrowing

tool. The results can be found in the graph 4.6d and the table 4.6b.
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Observation 3. Although the basic strategy performs quickly it actually

fails to produce anything but trivial values. This can be observed as the

average length of the lists remains at 0.66 with the strategy only producing

a successful value 12.2% of the time.

This is unsurprising considering at depth 5 the basic method is choosing

between over 100,000 test cases of which only 169 are valid (note that the

comparatively high success rate occurs as the distribution is not uniform).

Of the 12.2% success rate, 9.3% are accounted for test cases where both

inputs have a length of either one or less and are therefore trivially ordered.

Therefore testing with this method is not very effective.

Observation 4. Using a narrowing strategy and with the depth limit above

10, the success rate and average size of the test cases generated increases

with the depth limit. Without a depth limit the success rate is 100% and

the average size is 5.

The reason the success rate increases with depth is due to properties of

the set function. In particular, generating the final value of a set is only

possible if the depth limit allows the value to be strictly greater than the

previous one. As the depth limit increases it is more likely that there is a

greater value and without a depth limit there will always be.

The average size of 5, which occurs when testing without a depth limit,

is the expected average as the length of the list forms a geometrical distri-

bution.

Observation 5. Increasing the backtrack limit to 30, or removing it en-

tirely, increased the success rate of generating a value to 100% while im-

proving performance (table 4.7). This also resulted in an increase in the
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Strat Metric 5 10 15 20 ∞
3 time 566ms 1.46s 1.78s 2.10s 4.21s

success 50.7% 36.2% 49.7% 60.9% 100.0%
size 1.75 1.70 2.23 2.70 5.01

30 time 386ms 764ms 1.16s 1.55s 4.19s
success 100.0% 100.0% 100.0% 100.0% 100.0%
size 1.81 2.61 3.23 3.69 5.00

∞ time 388ms 762ms 1.16s 1.55s 4.14s
success 100.0% 100.0% 100.0% 100.0% 100.0%
size 1.82 2.61 3.22 3.68 4.98

Figure 4.7: Performance results for different backtrack limits testing the
union property randomly with the narrowing tool.

average length of generated test cases in the tests where a construction

depth limit was imposed.

Typically, increasing the backtrack limit will result in worse perfor-

mance as the tool will have to search harder for a solution, often with

diminishing returns. For the union property this is not the case. This

is because when trying to find a final value in a set it is also possible to

backtrack further, ending the set rather than generating the value. At a

backtrack depth of 3 this is rarely possible however with backtrack limit of

30 it is almost always possible for our distribution.

4.4.5 Reverse

We consider the staple property-based testing example of appending re-

versed lists:

propReverse :: [Nat ]→ [Nat ]→ Result

propReverse as bs = property $

reverse (as ++ bs) ≡ (reverse bs ++ reverse as)
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Strat Metric 3 4 5 6
Basic time 36.6ms 925ms 31.2s -

tests 256 4225 1.1e5 -
invalid 0 0 0 -

Narr no share 65.4ms 1.70s 59.5s -
sharing 12.9ms 189ms 4.61s 168s
tests 256 4225 1.1e5 3.8e6
invalid 0 0 0 0

(a) Benchmark results for testing the reverse property by enu-
meration to given construction depth

Strat Metric 5 10 15 20 ∞
Basic time 265ms 373ms 424ms 446ms 470ms

success 100.0% 100.0% 100.0% 100.0% 100.0%
size 2.98 4.17 4.66 4.85 5.01

Narr time 455ms 638ms 715ms 749ms 776ms
success 100.0% 100.0% 100.0% 100.0% 100.0%
size 2.99 4.20 4.68 4.86 5.00

(b) Benchmark results for testing the reverse property by random
generation with maximum construction depth
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Figure 4.8: Benchmark results for testing the reverse property



Chapter 4. Implementation and Evaluation 78

For this property there is no precondition and therefore all test cases are

valid. We use the following correct implementation of reverse:

reverse :: [a ]→ [a ]

reverse l = go [ ] l

where go acc [ ] = acc

go acc (a : l) = go (a : acc) l

Enumeration

The results for the enumerative evaluation can be found in the table 4.8a

and the graph 4.8c.

Observation 6. The full narrowing tool has better performance than the

basic evaluation strategy. For example, at depth five the narrowing strategy

completes on average around seven times faster than the basic method.

Observation 7. Narrowing without sharing is the worst performing strat-

egy, taking around twice as long as the basic strategy at depth five.

These two observations together suggest that shared evaluation is ben-

eficial for performance but narrowing does not improve performance. To

explain this we note that propReverse is hyper-strict, that is it requires

the entire input to be evaluated to produce a result. This is because the

equality needs to check that every element of the list is the same in order

to conclude the two lists are equal and as this is a correct implementation

this always happens. This can be seen experimentally as both the basic

and narrowing strategies evaluate the same number of test cases. As the

property is hyper-strict narrowing never produces an answer for a range of

inputs and therefore is not beneficial.
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Sharing evaluation however does produce a significant benefit as large

parts of the evaluation do not need to be repeated. For example, the struc-

ture of the reversed list will be evaluated first and so this evaluation will be

shared between any inputs with the same list structure. Narrowing with-

out sharing gives the worst performance as it has the overhead of having to

perform substitution in narrowing steps but does not benefit from sharing.

Random

For the random search we use a weighting of 1 for the empty constructor and

5 for the cons constructor for the list type and a equal weightings to the zero

and successor constructor. We chose these weightings as experimentation

showed they gave a reasonable distribution of test cases.

Observation 8. Both strategies have a 100% success rate as there is no

precondition and the test sets do contain any ⊥ terms.

Observation 9. The narrowing strategy is slower. Without a depth limit

it takes 776ms whereas the basic strategy takes 460ms, which is 1.65 times

faster.

As there is no precondition or invalid test cases there is no requirement

to backtrack and therefore the random strategy does not benefit from any

form of evaluation sharing. This result is consistent with the non-sharing

result for enumeration. As no backtracking is necessary the backtrack limit

does not affect performance and therefore no comparison is provided.

4.4.6 Ordered Trees

Next we consider an implementation of a delete function for an ordered

tree. The property we check asserts that the tree remains ordered after an
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element is deleted from it:

data Tree = Node Tree Nat Tree | Leaf

propDel a t = ord t =⇒ ord (del a t)

The definitions for the ordered condition and delete function can be found in

figure 4.9. It should be noted that there are more efficient implementations

of the ordered condition. In particular linear time implementations exist

whereas this implementation has a worst case of quadratic time. We use

this inefficient version as it demonstrates a key issue with narrowing and

random testing.

Enumeration

The results for the enumerative evaluation can be found in the table 4.10a

and the graph 4.10c.

Observation 10. Both methodologies can enumerate all the test cases up

to construction depth 4, with the full narrowing tool being approximately

100 times faster than the basic method.

This perfomance difference can once again be explained by the narrow-

ing tool’s ability to prune the search space by evaluating partial inputs.

There are 238,145 trees at construction depth 4, of which only 2004 sat-

isfy the ord constraint. With the basic method of evaluation each tree has

to be tested separately in combination with the 5 possible values for the

second argument of propDel, the element being deleted. The narrowing

evaluation benefits by discarding many partial unordered trees before they

are completed, testing under 10,000 partial inputs in total.

The size of the search space increases exponentially and there are over
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ord :: Tree → Bool

ord Leaf = True

ord (Node t1 a t2 ) = allT (6 a) t1 ∧ ord t1

∧ allT (> a) t2 ∧ ord t2

allT :: (Nat → Tree)→ Tree → Bool

allT p Leaf = True

allT p (Node t1 a t2 ) = p a ∧ allT t1 ∧ allT t2

del :: Nat → Tree → Tree

del Leaf = Leaf

del a (Node t1 a′ t2 ) | a < a′ = Node (del a t1 ) a′ t2

| a > a′ = Node t1 a′ (del a t2 )

| otherwise = append t1 t2

append :: Tree → Tree → Tree

append Leaf t = t

append (Node t1 a t2 ) t3 = Node t1 a (append t2 t3 )

Figure 4.9: Implementation of the ordered condition, ord, and delete func-
tion, del
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Strat Metric 2 3 4 5
Basic time 2.02ms 124ms 189s -

tests 21 228 1.0e4 -
invalid 6 748 1.2e6 -

Narr no share 2.23ms 57.6ms 7.26s -
sharing 1.24ms 21.4ms 1.84s -
tests 13 122 4593 -
invalid 2 41 4186 -

(a) Benchmark results for testing the ordered tree property by
enumeration to given construction depth

Strat Metric 4 5 6 7 8 9
Basic time 273ms 357ms 456ms 620ms 845ms 1.17s*

success 50.2% 45.5% 44.7% 44.1% 43.9% 43.9%
size 0.97 0.62 0.45 0.38 0.36 0.35

Narr time 557ms 974ms 1.61s 2.50s 3.76s 5.67s*
success 67.9% 54.1% 49.1% 47.7% 47.6% 47.0%
size 1.85 1.28 0.88 0.70 0.61 0.58

* Experiment discontinued due to declining size rather than time limit.
(b) Benchmark results for testing the ordered tree property by
random generation with maximum construction depth. The size
metric is the average number of nodes in generated tree.
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Figure 4.10: Benchmark results for testing the ordered tree property
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200 billion trees of construction depth 6. Hence it is not surprising that

neither method is able to enumerate the test cases at this depth.

Observation 11. Evaluation sharing consistently performs better with a

four times speedup at depth 4.

Random

For the random testing, we use a weighting of two for the nodes and one for

the leaves. The usual backtracking limit of 3 is used for the narrowing tool.

The size metric is the average number of nodes in the tree. The results can

be found in the table 4.10b and the graph 4.10d.

Observation 12. Neither method is effective at random testing, with the

average size of tree declining as the construction depth increases.

The reason the size of generated trees decreases is due to the relation

between the size of a tree and the probability that it is ordered. For large

trees, with lots of elements, it is highly likely that some of the elements

are unordered and therefore such trees are unlikely to be valid test cases.

Correspondingly, small trees have a higher probability of being ordered and

therefore are more likely to make successful test cases, reducing the average

size.

It may still be surprising that the average size decreases rather than

staying roughly the same. This happens because of the construction limit

which causes a proportionally higher number of medium suchThat trees to

be generated when the limit is low. As before, these are more likely to be

ordered than the larger trees generated at higher construction depth.

The above explanation suffices to explain why the basic method gen-

erates smaller trees but does not explain why the narrowing tool also has
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Strat Metric 4 5 6 7 8 9
3 time 557ms 974ms 1.61s 2.50s 3.76s 5.67s

success 67.9% 54.1% 49.1% 47.7% 47.6% 47.0%
size 1.85 1.28 0.88 0.70 0.61 0.58

30 time 967ms 20.6s 60.5s 122s - -
success 100.0% 79.6% 66.4% 61.7% - -
size 3.10 3.10 3.07 3.26 - -

∞ time 971ms - - - - -
success 100.0% - - - - -
size 3.13 - - - - -

Figure 4.11: Performance results for different backtrack limits testing the
ordered tree property randomly with the narrowing tool.

this flaw. To explain, we consider the partial tree, Node t1 a t2 , for which

the following condition should be satisfied:

allT (6 a) t1 ∧ ord t1 ∧ allT (> a) t2 ∧ ord t2

The first two conditions, that all elements in the left sub-tree are less than

the node element and that the left sub-tree is ordered, are not independent

as they are both conditions on the left sub-tree. As narrowing the sub-tree

to satisfy the first condition only sometimes yields a tree which is ordered,

we often end up in situation where there is no solution within the backtrack

limit. Similarly to previously, a large sub-tree is less likely to be ordered

and therefore smaller trees are favoured. The latter two conditions, on

the right sub-tree, also suffer from a similar relationship. Interdependent

conditions turn out to be a common problem in the evaluation of properties

and are the motivation for the overlapping narrowing language explored in

the next chapter.

We test the narrowing tool with an increased backtrack limit of 30 and

without a backtrack limit. The results can be found in figure 4.11.
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Observation 13. Increasing the backtrack limit increased the success rate

of generated values and increased the average size of trees produced at the

cost of performance.

At depth 4, increasing the backtrack limit to 30 results in a 100% success

rate and increases the average size from around 1.9 to 3.1. Increasing the

construction depth still does not result in an increase in average size, with

only construction depth 7 resulting in a slightly increased average size of

3.26. Without a construction depth limit, construction depth 4 was the

maximum completed in a time limit; however, as it is possible to enumerate

this depth in reasonable time we conclude that there is little benefit to

random testing over enumeration using narrowing.

4.4.7 Huffman Compression

Finally, we consider an implementation of Huffman compression similar

to that implemented by Bird [8]. The implementation supplies an encode

function which compresses a string based on a table of codes, a decode

function which reverses the compression, and a mkHuff function which

generates an optimal table of codes for a given string. We consider a

property that asserts that encoding and decoding a string should result in

the same string:

data Letter = A | B | C | D | E

propHuff :: [Letter ]→ Result

propHuff s = ¬ (null s) =⇒ decode t (encode t s) ≡ s

where t = mkHuff s
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Strat Metric 4 5 6 7 8
Basic time 428ms 2.89s 18.4s 111s 641s

tests 780 3905 2.0e4 9.8e4 4.9e5
invalid 1 1 1 1 1

Narr no share 555ms 3.72s 23.4s 141s -
sharing 397ms 2.62s 16.3s 96.8s 556s
tests 780 3905 2.0e4 9.8e4 4.9e5
invalid 1 1 1 1 1

(a) Benchmark results for testing the Huffman property by enu-
meration to given construction depth

Strat Metric 5 10 15 20 ∞
Basic time 595ms 912ms 1.03s 1.07s 1.11s

success 83.2% 83.6% 83.6% 83.6% 83.4%
size 3.60 5.06 5.62 5.83 6.03

Narr time 819ms 1.25s 1.43s 1.50s 1.55s
success 100.0% 100.0% 100.0% 100.0% 100.0%
size 3.60 5.02 5.61 5.86 6.00

(b) Benchmark results for testing the Huffman property by ran-
dom generation with maximum construction depth
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Figure 4.12: Benchmark results for testing the Huffman property
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Enumeration

The results for the enumerative evaluation can be found in the graph 4.12c

and the table 4.12a.

Observation 14. Narrowing with sharing performs the fastest, followed

by the basic strategy, and narrowing without sharing being the worst. The

performance differences are small in comparison with our other case studies.

At depth 7, the basic strategy is 15% slower than the sharing strategy and

narrowing without sharing is a further 27% slower.

This property follows a similar pattern to the reverse property. The

encode function is hyper-strict, requiring its full argument before it returns

any result, and as the precondition is also trivial narrowing offers little

benefit. Once again evaluation sharing provides some benefit.

Random

We use a weighting of 1 for the empty constructor, 5 for the cons constructor

and equal weightings for the letters. The usual backtrack limit of 3 is used

for the narrowing tool. The results can be found in the graph 4.12d and

the table 4.12b.

Observation 15. The basic method performs better than the narrowing

method, which is 40% slower with no construction depth limit.

Again similar to the reverse property, the basic method performs better

as backtracking is not necessary, apart from for the trivial precondition,

and therefore the main performance impact comes from the overhead of

narrowing. The precondition, reduces the success rate of the basic method

to 83.6% but this does not skew the distribution as it only discards the
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empty list. Both strategies adhere, within a small margin of error, to the

expected average size of 6 when no construction depth is imposed.

4.4.8 Summary

We summarise the findings from our case studies.

Shared Evaluation in Enumeration

Shared evaluation offers a consistent performance increase over narrowing

without sharing with all the case studies benefiting to various degrees (ob-

servations 2, 6, 11, and 14). In two case studies, the union property and

reverse, sharing resulted in over a ten times performance benefit at the

maximum comparable depth.

Although our results show that it is possible for shared evaluation to

give a substantial performance benefit, it is important to note that the

performance effect will vary dependent on implementation. As our imple-

mentation evaluates in an abstract machine which utilises Haskell’s runtime

system it is particularly suited to shared evaluation due to Haskell’s call-

by-need evaluation system. More research is required to see whether these

performance benefits can be realised in a compiled system.

Narrowing in Enumeration

Narrowing improved performance by multiple magnitudes in the enumera-

tion of the union and ordered tree problems at their maximum comparable

depths (observations 1 and 10). Whereas the performance increase from

shared evaluation was roughly constant the performance increase from nar-

rowing grew with the construction depth for these two problems. For these

case studies the performance increase was driven primarily by the nar-
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rowing of preconditions which determined that ranges of test cases were

invalid.

In the reverse and Huffman encoding case studies, narrowing performed

slightly worse. This was because both properties are hyper-strict, requiring

the whole input in order to produce a result and so narrowing was not

beneficial and incurred an overhead from handling substitutions.

Random Testing and Backtrack Limit

Narrowing had a positive impact on random testing for the union and

ordered tree case studies, but carried a small performance penalty on the

reverse and Huffman case studies. This aligns with the impact of narrowing

for enumerative testing. We focus discussion on the union and ordered tree

case studies.

In the union case study we found the basic method produced a distri-

bution heavily skewed towards small trivial test cases whereas narrowing

was able to produce a reasonable distribution. This situation was further

improved by increasing the backtrack limit, which also increased the per-

formance. In the ordered tree case study we found both the basic method

and the narrowing method produced heavily skewed results, albeit some-

what less so in the narrowing case. Increasing the backtrack limit improved

the distribution somewhat however the results were still clearly skewed and

much slower. We identified interdependent conditions as the reason for this

slowdown which we address in subsequent chapters.
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4.5 Related Work

In this section we discuss related work, focusing on the implementations of

property-based testing tools which utilise narrowing.

Reach The work in the chapter is inspired by Naylor and Runciman’s

work on Reach [38, 39]. Whereas our work is focused on property-based

testing, their aim was finding test cases which evaluate a target placed a

program, for which they considered two different forms of analysis. Initially,

they developed a ‘forward’ analysis that attempts to solve this problem by

enumerating test cases using a narrowing evaluation strategy similar to

ours. They then went on to develop a ‘backward’ anaylser which solves

the problem by beginning at the target and evaluating the program in the

opposite direction.

Lazy SmallCheck Around the same time, Runciman and Naylor also de-

veloped Lazy SmallCheck [48], a property-based testing system for Haskell.

The system was based on an enumerative search strategy to cover all test

cases up to a given depth, and implemented a form of narrowing by using

the error-handling functionality in the underlying Haskell compiler. How-

ever, this implementation does not share evaluation between test cases,

and so is comparable to the wide version of the evaluation strategy that we

considered in this chapter albeit using efficient compiled Haskell as opposed

to an abstract machine. The tool also introduces parallel conjunction, an

operator which helps alleviate interdependent conditions and that we gen-

eralise in the next chapters.

First-order data generation Lindblad developed a tool for the gener-

ation of first-order data [33]. Similarly to Lazy SmallCheck, it is based on
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the idea of enumerating test cases up to a given depth. The tool provides

a language for expressing properties of data, and exploits narrowing and

a parallel version of the conjunction operation to generate data satisfying

these properties.

FEAT Duregard et al. develop an algebra for producing enumerations

of algebraic data-types in their paper FEAT: Functional Enumeration of

Algebraic Types [21]. The algebra allows efficient random access to the

enumerated values and they evaluate their library by using random testing

with backtracking on a property-based testing case study.

EasyCheck Christiansen and Fischer developed the property-based test-

ing tool EasyCheck [13], for the functional-logic language Curry. The tool

utilises the language’s narrowing evaluation strategy, and supports a novel

form of random testing that aims to maximise the amount of evaluation

sharing between test cases. However, this form of random testing has the

drawback of producing a lot of similar test cases, which often necessitates

running the tool multiple times to produce a wide range of test cases.

Lucky Lampropoulos et al. developed Lucky [32], a domain-specific lan-

guage for generating test cases for property-based testing. The language

combines narrowing with the use of a custom constraint solver to avoid

instantiating free variables too early. They provided a formalisation along

with a prototype interpreter which they demonstrated on a number of case

studies.
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4.6 Conclusion and Further Work

In this chapter, we developed and evaluated a narrowing-based tool for

property-based testing. We gave a formal narrowing semantics for the lan-

guage which the tool is based on and described how this could be converted

into an implementation. In evaluation, we found that both evaluation

sharing and narrowing can provide performance benefits, with the former

providing a consistent improvement and the latter providing substantial

improvements but only on a subset of problems.

There is plenty of scope for this research to be extended. We do so in the

following chapter, by adding overlapping patterns to the language which

helps address the problem of interdependent conditions that we found in

this chapter. A few other potential avenues are discussed below.

In this work we have considered a narrowing implementation as an

abstract machine. However to truly establish performance benefits it would

be necessary to compare compiled programs. Work on compiled narrowing

is still an area of active research [11, 7], and property-based testing is an

interesting application for a narrowing compiler.

In our case studies evaluation sharing showed consistent performance

benefits and there is potential to expand the scope of this feature. In

our tool, evaluation sharing ends as soon as the evaluation of the inputs

diverges, however the inputs might have other common parts. For example,

evaluation of reverse l ′ within the expression reverse l ++reverse l ′ will only

be shared between evaluations with the same input l, but evaluation of

this expression could be shared irrespective of the input l. Expanding

evaluation sharing will be a trade off between additional overheads such as

memory use and the benefits of storing the evaluation so careful analysis

would probably required to determine where it would be effective.
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Overlapping Patterns

In this chapter we develop and formalise the notion of overlapping pat-

tern matching in order to increase the effectiveness of narrowing. Over-

lapping patterns address the issue of co-dependent conditions, as seen in

the previous chapter, and allow properties to be encoded with bespoke size

constraints.

We begin the chapter by motivating and introducing overlapping pat-

terns through an example. Then, building on the work of chapter 3, we

formalise a narrowing semantics that includes overlapping patterns. We

then examine two property-based testing case studies to see how overlap-

ping patterns can be used in practice, before reviewing related work and

concluding.

This chapter is based on the paper Failing Faster: Overlapping Pat-

terns for Property-Based Testing [27]. In this next chapter we extend our

implementation with overlapping patterns and evaluate the performance.

93
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5.1 Motivation and Basic Idea

To motivate the need for overlapping patterns we take a look at a property

that epitomizes the issue of co-dependent conditions. The property,

propSort n l = perm n l =⇒ sort l ≡ [0 . . (n − 1)]

states that if a list l is a permutation of the numbers from 0 to n− 1, then

sorting this list will give the expected result. We take the perm condition

to be defined as follows:

perm :: Nat → [Nat ]→ Bool

perm n l = length l ≡ n ∧ all (<n) l ∧ allDiff l

That is, a list l is a permutation of the natural numbers below a given

limit n if three conditions are satisfied: the list has the correct length, all

the numbers in the list are below the limit, and all the numbers in the list

are different. Preconditions defined as a conjunction of constraints in this

manner are a common pattern in properties; for example, the ordered tree

property we considered also had this pattern (section 4.4). The two last

constraints, all (<n) and allDiff , are co-dependent as they both constrain

the elements of the list. Note that although the first constraint is also

on the list, we don’t consider this to be co-dependent with the other two

as it is a condition on the structure of the list while the others can be

satisfied independent of the structure. We use an inductive definition of

natural numbers, as narrowing is more effective on algebraic data types

than primitive data types [39], with values built from the constructors

Zero and Suc.

First, we consider using a traditional narrowing evaluation to satisfy

the perm condition and generate test cases for the property. We generate
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permutations of size 4 by evaluating perm 4 x in which x is free variable.

Evaluating to satisfy the first condition, length x ≡ 4, will refine the free

variable by applying the following substitution,

x 7→ [x0, x1, x2, x3]

which represents all possible lists of length 4 as each xi is a free variable.

Continuing by narrowing on the second constraint, all (<4) l, we consider

the following state, part way through the evaluation:

x 7→ [1, 1, x2, x3]

The first two elements of the list have each been refined to 1 and according

to the current constraint, all (<4) x , we have neither failed nor succeeded

and as such we continue evaluation by refining x2 and x3. However, no input

of this form satisfies the final condition allDiff x . The evaluation will have

to backtrack, considering all combinations of x2 and x3, without success.

Moreover, as we consider generating longer permutations, the number of

inputs to consider increases exponentially.

Note that the problem is not resolved by reordering the conditions. For

example, suppose that we swapped the order of the last two conditions:

perm n l = length l ≡ n ∧ allDiff l ∧ all (<n) l

Then we quickly run into a similar issue. For example, the partial solution,

l = [4, x1, x2, x3] does not fail the allDiff l constraint, however it will fail

the all (<4) l constraint but only after the remaining variables x1, x2, x3 are

refined while evaluating allDiff . In both cases, the backtracking is caused

because a partially refined input fails to satisfy a later condition but this
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is not evident at the time due to the evaluation order. A natural way to

avoid this problem is to evaluate all the conditions simultaneously, rather

than sequentially.

To realise this behaviour, we replace traditional pattern matching in

our language with overlapping pattern matching. Pattern matching in the

language is then order-independent, and in each iteration of narrowing all

relevant arguments to a pattern match are normalised.

By way of example, consider the logical conjunction operator, which is

traditionally defined as follows:

False ∧ = False

True ∧ x = x

Using this definition, progress can only be made by evaluating the first

argument of a conjunction, because each clause of the definition depends

on the value of the first argument. Instead, we re-define the operator using

overlapping patterns, using a special-purpose pragma to indicate the change

in intended semantics:

{-# OVERLAP (∧) #-}

False ∧ = False

True ∧ x = x

∧ False = False

x ∧ True = x

The definition has two new clauses, given by simply swapping the order of

the arguments in the original definition. The idea is that a pattern match

can succeed on any of the four clauses, independent of the order that they

are stated in. Using this definition, progress can be made by evaluating
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either argument of the conjunction as the new clauses are no longer depen-

dent on the first argument. For example, we can now reduce x ∧ False to

False for any expression x , which is not the case with the original defini-

tion. To take advantage of this additional power, the underlying narrowing

mechanism must be modified to evaluate both arguments of the pattern

match before it refines variables.

In the perm example above, we considered the list l = [1, 1, x2, x3] and

found that it required a large amount of backtracking. In particular, the

constraint allDiff l only failed once we had considered all combinations of

x2 and x3. The new overlapping conjunction operator avoids this problem

because it is not biased to the left-argument, allowing allDiff l to fail

immediately for this example list without the need to further refine the

remaining variables.

This additional efficiency is also borne out in practice. For example,

using the implementation that we describe in the next chapter, in the time

that it takes to generate one hundred valid permutations of length eight

for the perm constraint defined using the traditional conjunction operator,

we can generate one hundred valid permutations of length thirty using the

overlapping version. It is also important to note, in this example and in

general we only have to change the property to use overlapping patterns

and not the program itself to get the desired performance.

However, we have to be careful when using overlapping pattern match-

ing not to introduce non-determinism. Consider the following dangerous

function:
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{-# OVERLAP danger #-}

danger False = False

danger True = True

danger False = True

danger True = True

Using this definition, danger False False can reduce to either False or

True, depending on whether the first or third clause is used, and is therefore

non-deterministic. To counter this, we require overlapping definitions to

satisfy confluence laws which guarantee that evaluation is deterministic if

all expressions are terminating. The law states that overlapping clauses

of a definition should produce the same result and is given formally in

section 5.2.1. In principle we could check this condition statically however

we currently require the user ensure this law is obeyed.

Other logical operators such as disjunction and implication can be de-

fined using overlapping patterns in a similar manner to conjunction, and

will benefit from similar improvements in efficiency. The mechanism can

also be used with other data types. A few examples can be found in Fig-

ure 5.1, where overlapping definitions of the addition and maximum op-

erators on natural numbers, and for the applicative operator [37] on the

Maybe type are given. As illustrated by the latter example, overlapping

definitions are not restricted to commutative operators.

5.2 Generalizing and Formalizing

In this section we define the syntax and semantics of our language of over-

lapping patterns. We consider the normalising subset of the language and
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{-# OVERLAP (+) #-}

(+) :: Nat → Nat → Nat

Zero + y = y

Suc x + y = Suc (x + y)

x + Zero = x

x + Suc y = Suc (x + y)

{-# OVERLAP max #-}

max :: Nat → Nat → Nat

max Zero y = y

max (Suc x) y = Suc (max x (pred y))

max x Zero = x

max x (Suc y) = Suc (max (pred x) y)

where

pred Zero = Zero

pred (Suc x) = x

{-# OVERLAP (<∗>) #-}

(<∗>) :: Maybe (a → b)→ Maybe a → Maybe b

Nothing <∗> = Nothing

Just f <∗> a = fmap f a

<∗> Nothing = Nothing

f <∗> Just a = fmap ( $ a) f

Figure 5.1: Example overlapping function definitions.
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show that a confluence restriction on definitions is sufficient to guarantee

that the language is deterministic. We then extend the semantics with

narrowing, and show that the new semantics is sound and complete with

respect to the original version of the semantics.

We use a small functional programming core language with definitions,

constructors, variables, lambda expressions and application. To simplify

the theory, the language only allows one form of pattern matching: at

the top-level of a function definition, interpreted in an overlapping, order-

independent manner. However, other forms of pattern matching, such as

case expressions and non-overlapping patterns, can readily be rewritten

into this form.

The syntax of the language is formally defined as follows:

DefnX ::= Var Patts = ExprX

ExprX ::= Con | Var | X | ExprX ExprX | λVar . ExprX

Patts ::= Var (Con Var) Var

That is, a definition is made up of a list of clauses, with a pattern for

each argument on the left and an expression on the right. We discuss the

exact form of definitions after covering the rest of the language. Expressions

and definitions are parameterised by a set of free variables X, which is only

used in the narrowing semantics. The language has a standard set of typing

rules, which we omit for brevity. Each type has a set of constructors and the

patterns used in definitions should form a covering of these constructors.

We assume, each variable only appears once in a pattern, and the only free

variables in an expression should be those that appear in the set X .

We often use f for definitions, e for expressions, c for constructors,

u and v for closed variables, x and y for free variables, and p and q for
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patterns. We take f e to mean the definition f completely applied to a

sequence of arguments e, i.e. the length of the sequence of arguments is the

same as the arity of the definition.

Overlapping definitions

The definitions in the language are functions with precisely one overlapping

pattern match. This is represented in the left hand side of a clause, in

which each argument has a pattern and precisely one of these patterns is

an un-nested constructor pattern and the rest are variables. We explain

the reasoning behind this form of pattern matching via three questions:

Why does pattern matching occur within a definition? Or con-

versely, why not define pattern matching using a case expression as we did

in chapter 3? The answer is to allow for normalising, recursive programs

in the context of a full reduction semantics. Using case expressions and

recursion will often result in there being infinite reduction sequences as

reduction can be performed within the alternatives. By including pattern

matching in definitions we can force the evaluation of an argument before

a definition is applied and its right-hand side comes into scope.

Why does each clause only have a single pattern match? Using a

single pattern match simplifies aspects of the semantics and the implemen-

tation in the next chapter. Just as standard nested pattern matching can be

deconstructed into individual case expressions, it is possible to deconstruct

nested overlapping patterns into a sequence of overlapping definitions with

a single pattern match. It should be noted that unlike nested traditional

pattern matching, which often results in simpler definitions, we have not

found any useful examples of nested overlapping patterns as most functions
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benefiting from an overlapping definition are basic operations.

Why do definitions overlap on every argument? As we can form

standard pattern matching by definitions with one argument and other

functions by using lambda expressions, it is enough to consider definitions

to be overlapping on all arguments.

5.2.1 Semantics

We give a standard small-step operational semantics to the language in a

contextual style. We start by defining a full reduction semantics, in which

any reducible term in an expression can be reduced. This allows us to

define notions of equivalence and establish confluence properties. We then

define a call-by-name evaluation strategy by limiting the form of contexts

that can be used, which is then used to define the narrowing strategy.

First we define a local semantics→R ⊆ ExprX ×ExprX that performs

basic reduction steps on expressions, which is then lifted into an evalua-

tion context. For the semantics, we require substitutions binding standard

variables to expressions. To avoid confusion, in this chapter we refer to

narrowing substitutions exclusively as refinements and reserve the term

substitution for mappings from standard variables, which we typically de-

note using s and t. We write e[s] for the application of a substitution to

each variable in an expression, ∅ for the identity substitution that maps

each variable to itself, and s; t for the composition of substitutions.

The first local rule is the standard β-rule:

(λv.e) e′ →R e[v 7→ e′]
sub
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The second rule states that we can reduce a definition if the pattern of any

of its clauses matches the arguments, where f p = e ∈ defn(f) means that

the clause f p = e is part of the definition for the function f . In contrast

to traditional pattern matching, the clauses of a definition may be applied

in any order.

f p = e′ ∈ defn(f) Matches(p, e, s)

f e→R e
′[s]

match

The predicate Matches used above captures the idea of a successful match of

expressions against patterns with s the resulting substitution. It is defined

as follows,

Match(v, e, {v 7→ e}) Match(c v, c e, {v 7→ e})

Matches(ε, ε, ∅)

Match(p, e, s) Matches(p, e, t)

Matches(p p, e e, s; t)

in which Match gives the definition for a single pattern, Matches for a list

of patterns and where v 7→ e is the binding of each of the variables in v to

its corresponding expression in e.

In turn, a context is an expression with a singular hole in any location,
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as defined by the following set of inference rules:

[] context
hole

C context

(λv.C) context
lam

C context

(C e) context
app-l

C context

(e C) context
app-r

We use inference rules above rather than a grammar because the extra

generality of this notation is used when contexts are revised later on. As

usual, we write C[e] for the result of replacing the hole in C with the

expression e. Note that the semantics will reduce under lambda (the LAM

rule), this is to establish an equivalence relation between terms and allow a

fully general confluence law but does occur in actual evaluation as defined

in section 5.2.2.

Using the local semantics and the notion of contexts we can now define

the full reduction semantics for expressions in our language.

Definition 5.1. The full reduction semantics, →⊆ ExprX × ExprX , is

defined below:

e→R e
′ C context

C[e]→ C[e′]

Definition 5.2. →∗ is the reflexive/transitive closure of →.

A reduction to normal form, which we use in this chapter to establish

the relation to the narrowing semantics, is given by:

Definition 5.3. A normalising reduction sequence is a reduction sequence
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to an expression which can no longer be reduced.

e ↓ e′ ⇐⇒ e→∗ e′ ∧ e′ 6→

To ensure that our language is deterministic and avoid examples such

as danger False False from section 5.1 that have more than one normal

form, we require all definitions to satisfy a confluence property. To formalise

this property we first define the notions of definitional equivalence and

unification.

Definition 5.4. Two expressions are definitionally equivalent, written e ≡

e′, if there are reduction sequences from e and e′ to the same expression:

e ≡ e′ ⇐⇒ ∃e′′. e→∗ e′′ ∧ e′ →∗ e′′

Informally, two patterns are unifiable if there is an expression which

matches both the patterns. We can formalise this by giving a pair of sub-

stitutions which when applied to each pattern yield the common expression.

Definition 5.5. The most general unifier is defined by the inference rules

below. Unify(p, q, s1, s2) denotes the unification of patterns p and q by

substitutions s1 and s2, and similarly for a list of patterns with Unifies.

Note we are using the assumption that every variable appears only once in
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each pattern here.

Unify(v, p, {v 7→ p}, ∅) Unify(c v, c v′, {v 7→ v′}, ∅)

Unify(c v, v, ∅, {v 7→ c v})

Unifies(ε, ε, ∅, ∅)

Unify(p, q, s1, s2) Unifies(p, q, s′1, s′2)

Unifies(p p, q q, s1; s′1, s2; s′2)

This definition has the expected behaviour, that is:

Unify(p, q, s1, s2)

=⇒ p[s1] = q[s2] (unifier)

∧ ∀t1t2. p[t1] = q[t2]. ∃r. s1; r = t1 ∧ s2; r = t2 (most general)

If the patterns of two clauses of a definition are unifiable then, given

a suitable context, it is possible for two different MATCH reductions in our

semantics to be applied. In order to maintain determinism for such clauses

a confluence restriction is required. The confluence restriction states that

the right-hand sides of each pair of clauses must be definitionally equivalent

under their unifying substitution if one exists. In principle for the termi-

nating subset of the language we could check whether a definition satisfies

the confluence property automatically by generating the unifiers pairwise

and normalising each clause.

Definition 5.6. A definition satisfies the confluence restriction if for any

pair of clauses, f p = e and f q = e′, we have the following property:

Unifies(p, q, s1, s2) =⇒ e[s1] ≡ e′[s2]
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Theorem 5.1. The relation →∗ is confluent if all the definitions satisfy

the confluence restriction, i.e. for any reductions e →∗ e1, e →∗ e2, there

exists an expression e′ such that e1 →∗ e′ and e2 →∗ e′.

Proof. By parallel reduction [45, 40] with special consideration for overlap-

ping patterns.

It follows in the standard way from the above confluence property that

any expression that only has finite reduction sequences has precisely one

normal form. Hence, our semantics is deterministic for such expressions.

5.2.2 Evaluation Order

Our current semantics allows reduction rules to be applied in any context

and in any order. This is convenient for defining the behavioural properties

of the semantics, but in order to define the narrowing semantics and give

an efficient implementation, we need to restrict where reduction rules are

applied. To do this we define a subset of contexts called evaluation contexts.

The notion of evaluation context is call-by-name, and hence only evalu-

ates the left-hand side of an application. When the expression is a definition

applied to some arguments then the arguments are reduced until one is a

constructor and therefore a pattern match is possible. We do not assert

in what order the arguments should be reduced but in our implementation

the reduction occurs from left to right. The rules are defined formally as
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follows,

• evalcxt
hole

C evalcxt

(C e) evalcxt
app-l

C = e C e′ C evalcxt ∀e ∈ e e′. ¬whnf (e)

(f C) evalcxt
args

in which C is a list of expressions with one context. The predicate ¬whnf

asserts that an expression is not in weak head normal form. In this case

that means that none of the expressions is a constructors and therefore it

is not possible to reduce the definition using a pattern match. Note, we

can always make progress as every argument in a definition must perform

a pattern match (arguments which do not perform a pattern match are

introduced using a lambda).

Definition 5.7. The evaluation reduction semantics, →E, is defined by:

C evalcxt e→R e
′

C[e]→E C[e′]

5.2.3 Narrowing

The narrowing semantics follows a similar format to our previous formali-

sation (section 3.4). We reiterate the definitions both for convenience and

to update them to our current language.

Refinement

We define the partial values of the language, as follows:



Chapter 5. Overlapping Patterns 109

ValX = Con ValX | X

A refinement of type X 7→ Y is a function from the free variable set X to

ValY . Composition of refinements, which we denote by>=>, is defined in the

standard way. The null refinement, return ∈ X 7→ X, corresponds to the

trivial substitution that maps each free variable to itself. The refinements

adhere to lemma 1:

e[σ][σ′] ≡ e[σ >=>σ′]

That is, the sequential application of refinements is equivalent to the ap-

plication of composed refinements.

We define inputs as refinements mapping variables to values i.e. of type

X 7→ Val∅. We denote refinements with σ and inputs with τ .

Narrowing Set

The narrowing set is defined as previously as the complete, advancing and

minimal set of refinements which replace a single variable. The narrowing

set for free variable x of type t is given as follows,

NarrX(xt) = {x / c y | c ∈ cons(t)} y /∈ X

where cons(t) are the constructors of type t. Formal definitions of complete

and advancing are given in section 3.5, lemmas 4 and 5. Completeness

ensures that every constructor is represented in the narrowing set, and

advancing that every refinement in the set is not trivial which is important

for the well-foundedness of the completeness theorem.
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Semantics

An expression is suspended on a free variable if it is an evaluation context

and there are no other possible evaluation reductions to make. This can

be defined as follows:

C[x] 6→E C evalcxt

C[x]( x

Note an expression might be suspended on multiple different free variables

when an overlapping definition is being evaluated; refining any of them will

allow progress to be made. This definition differs from that in section 3.4

by the requirement that there are no possible reductions. In the previous

semantics this requirement was implicit as there was only one possible

reduction. Here it ensures that the expression is only suspended if no

progress can be made.

We can now define narrowing reduction as follows:

Definition 5.8. The narrowing reduction,  ⊆ ExprX ×(ExprY ×(X 7→

Y )), is defined by the following two inference rules:

e→E e
′

e 〈e′, return〉

e( x σ ∈ NarrX(x)

e 〈e[σ], σ〉

The first rule states that any evaluation reduction is also a narrowing re-

duction, with no refinement necessary. The second states that if evaluation

is suspended then a narrowing step should be taken.
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Definition 5.9. A narrowing evaluation to normal form is given by:

e[τ ] ↓ e′ e 6→E e 6(

e

 

〈e′, τ〉

e 〈e, σ〉 e′
 

〈e′′, σ′〉

e

 
〈e′′, σ >=>σ′〉

The second rule, composing reductions, is standard. The first rule, which

corresponds to a base rule, refines the remaining free variables by applying

an arbitrary input and then normalises the resulting expression. The ap-

plication of an input simplifies the formulation of the completeness result.

The two conditions for the base rule, e 6→E and e 6(, are equivalent to

the notion of the expression being in weak head normal form. Therefore,

this definition corresponds to a narrowing evaluation to weak head normal

form followed by a normalisation in the normal language. Alternatively, we

could have opted to apply the narrowing strategy recursively once reach-

ing weak head normal form, but we decided not to do this as the current

formulation is simpler and sufficient for our purposes.

Soundness

Before providing the definition and proof of soundness we remind the reader

of lemma 2, which is also satisfied by the overlapping semantics. The lemma

states that for any refinement σ we have:

e→ e′ =⇒ e[σ]→ e′[σ]

Theorem 5.2. (narrowing is sound.) For every normalising narrowing
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reduction there exists a corresponding reduction in the original semantics:

e

 

〈e′, τ〉 =⇒ e[τ ] ↓ e′

Proof. The proof proceeds by rule induction on the definition for the nar-

rowing relation

 

, for which there are three cases to consider.

Case 1 In the base case when the narrowing reduction is complete and

the expression is normalised in the original language,

e[τ ] ↓ e′ e 6→ e 6(

e

 

〈e′, τ〉

then the result appears as the first assumption of the rule, e[τ ] ↓ e′.

Case 2 There are two inductive cases to consider, depending on the na-

ture of the first reduction in the narrowing reduction. We first consider the

case when the reduction is a refinement, constructed as follows:

e( x σ ∈ NarrX(x)

e 〈e[σ], σ〉 e[σ]

 

〈e′, τ〉

e

 

〈e′, σ >=>τ〉

The proof follows from applying the inductive hypothesis on the final as-

sumption, (ih) e[σ]

 

〈e′, τ〉 =⇒ e[σ][τ ] ↓ e′, and then applying lemma 1:

e[σ]

 

〈e′, τ〉

e[σ][τ ] ↓ e′
ih

e[σ >=>τ ] ↓ e′
lemma 1
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Case 3 We now consider the case when the first step is a reduction from

the evaluation reduction semantics, constructed as follows:

e→E e
′

e 〈e′, return〉 e′

 
〈e′′, τ〉

e

 

〈e′′, return>=>τ〉

In this case we use →E⊆→ and lemma 2, to lift the reduction into the

original semantics and sequence it with the evaluation formed from the

inductive hypothesis:

lemma 2
e→E e

′

e[τ ]→ e′[τ ]

e′

 

〈e′′, τ〉

e′[τ ] ↓ e′′
ih

e[τ ] ↓ e′′

e[return>=>τ ] ↓ e′′
id

Completeness

To ensure that the corresponding completeness theorem is valid, we restrict

our attention to expressions that strongly normalise under any refinement.

We begin by defining the set of expressions that normalise.

Definition 5.10. The set of normalising expressions, Norm, can be defined

by the inductive rule:

∀e′. e→ e′ =⇒ e′ ∈ Norm

e ∈ Norm
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Definition 5.11. An expression always normalises, e ∈ Norm[], if it nor-

malises under any refinement:

e ∈ Norm[] ⇐⇒ ∀σ. e[σ] ∈ Norm

It should be noted that e ∈ Norm[] does not imply that there are no infinite

narrowing reductions. For example, if we consider the even function,

even Zero = True

even (Suc n) = ¬ (even n)

then the expression even x has an infinite narrowing sequence in which

we repeatedly apply the Suc refinement. We state one lemma concerning

Norm[] before proceeding with the completeness theorem.

Lemma 8. Norm[] is closed under →

e ∈ Norm[] ∧ e→ e′ =⇒ e′ ∈ Norm[]

Proof. For each σ, use lemma 2 to lift the reduction to e[σ] → e′[σ], then

e′[σ] ∈ Norm follows as e[σ] ∈ Norm.

Theorem 5.3. (narrowing is complete.) For every reduction of a normal-

ising expression there is a corresponding narrowing reduction:

e ∈ Norm[] ∧ e[τ ] ↓ e′ =⇒ e

 

〈e′, τ〉

Proof. In order to complete the proof, we need to prove a slightly gener-

alised statement:

e1 ∈ Norm[] ∧ e0[τ ] ↓ e′ ∧ e0[τ ]→∗ e1[τ ] =⇒ e1

 

〈e′, τ〉
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Generalising the statement in this way weakens the assumptions and allows

us to use the statement inductively. We consider three possible inductive

cases and prove formally that the inductive hypothesis used in each case is

well-founded. The basis of this well-foundedness is a strict lexicographical

order formed from either a decrease in the size of the input, τ , or a step in

a normalising evaluation.

Case 1 When there are no more reductions, e1 6→, and e1 is not suspended

on any free variable, we have e1 6(, i.e. e1 is in weak head normal form.

Then we can form the solution using our assumptions and confluence:

confluence
e0[τ ] ↓ e′ e0[τ ]→∗ e1[τ ]

e1[τ ] ↓ e′ e1 6→ e1 6(

e1

 

〈e′, τ〉

Case 2 If there exists e1 →E e′1 then we can perform a reduction. We

can form the assumptions to use the statement inductively,

ih

e1 ∈ Norm[] e1 →E e
′
1

e′1 ∈ Norm[] e0[τ ] ↓ e′

e0[τ ]→∗ e1[τ ]

e1 →E e
′
1

e1[τ ]→ e′1[τ ]

e0[τ ]→∗ e′1[τ ]

e′1

 

〈e′, τ〉

where the left branch utilises lemma 8 and the right branch lemma 2. The

well-foundedness of this application of the inductive hypothesis comes from

progress towards normalising e1. Note that the input τ remains the same.

The proof follows by lifting the reduction into the narrowing language and
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then sequencing with the inductive hypothesis:

e1 →E e
′
1

e1  〈e′1, return〉

..

e′1

 

〈e′, τ〉
ih

e1

 

〈e′, τ〉

Case 3 Finally, if the expression is suspended, e1 ( x, then we need to

take a narrowing step. By the completeness of the narrowing set, lemma 4,

we have σ ∈ Narrx such that σ >=>τ ′ = τ . Then we can use the statement

inductively,

e1 ∈ Norm[]

e1[σ] ∈ Norm[]

e0[τ ]→ e′

(e0[σ])[τ ′]→ e′

e0[τ ]→∗ e1[τ ]

(e0[σ])[τ ′]→∗ (e1[σ])[τ ′]

e1[σ]

 

〈e′, τ ′〉
ih

where the left branch makes use of the definition of Norm[], and the re-

maining two branches both use the simple property of composed substitu-

tions (lemma 1). The well-foundedness is given by a decreasing input size,

τ ′ < τ , which is guarenteed by the advancing property of the narrowing set

(lemma 5). The proof then follows by appending a narrowing step to our

inductive hypothesis:

e1 ( x σ ∈ NarrX(x)

e1  〈e1[σ], σ〉

..

e1[σ]

 

〈e′, τ ′〉
ih

e1

 

〈e′, σ >=>τ ′〉

Well Foundedness The proof is well-founded based on the combination

of two well-founded partial orders, the ordering of inputs on strict suffixes
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and the ordering of normalising expressions under→. The suffix order and

its well-founded nature were established in section 3.5.2 and required for

a refinement, X 7→ Y , the domain and range to be finite and each of the

variables in Y to appear at least once in the result. These restrictions have

no impact for our use. We combine the orders lexicographically, with the

suffix order taking priority, as follows:

τ ′ < τ

(τ ′, e′) < (τ, e)

e→ e′ e ∈ Norm

(τ, e′) < (τ, e)

It is well known that lexicographical product of two well-founded orders is

also well-founded. In case 2 of our proof the inductive hypothesis is valid

under the second rule, that is the input refinement stays the same and

the normalising expression is reduced. In case 3 the inductive hypothesis is

valid under the first rule; the input refinement is a strict suffix of the original

refinement because the refinements in our narrowing set are advancing.

In contrast to the soundness proof which proceeds similarly to that of

the previous formulation, this proof of completeness differs significantly.

In particular, the proof of completeness in the previous formulation relied

on an almost direct correspondence between the narrowing semantics and

the original semantics (lemma 3), whereas here we utilise confluence and

normalisation to establish the relationship.

A weaker confluence?

It could be argued that the definition of confluence is too strong for the

purpose of narrowing because it disallows some definitions which behave

identically under narrowing. A pertinent example is multiplication. We

might expect the following definition to be valid:
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Zero ∗ v = Zero

Suc u ∗ v = u ∗ v + v

u ∗ Zero = Zero

u ∗ Suc v = u + u ∗ v

However, if we consider (Suc u) ∗ (Suc v) then we have two possible re-

duction sequences:

Suc u ∗ Suc v → (u ∗ (Suc v)) + Suc v → Suc ((u + u ∗ v) + v)

Suc u ∗ Suc v → Suc u + (Suc u ∗ v) → Suc (u + (u ∗ v + v))

The two results, which are in normal form, are not definitionally equal as

the + operators are associated differently. However, from a perspective of

narrowing we might consider these two expressions to behave the same.

That is, under any refinement the observable result of x ∗ y is the same, in

which we only consider constructors to be observable.

While it seems possible to formalise the above notion by basing conflu-

ence on a equality based on observation as opposed to definitional equality,

doing so would add to the complexity of the formalisation. As all the func-

tions we use obey the definitional notion of confluence we have not explored

this avenue further at the present time.

We could also consider extending the domain of valid functions by di-

rectly extending the reduction rules of → and the notion of definitional

equality. For example, we could imagine adding the reduction rule,

(u+ v) + w → u+ (v + w)

which would equate the two alternative multiplication reductions and has

the advantage of being directly applicable to our theory. However, without
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a general method for adding such reduction rules, we would have to check

confluence is obeyed every time a rule is added.

5.3 Property-based testing examples

In this section we consider two examples of using overlapping patterns to

aid property-based testing. We focus on the generation of data for testing

and demonstrate two programming techniques which we use frequently in

the case studies in the next chapter. The first example demonstrates how

overlapping patterns can be used to encode bespoke size constraints in

the generation of ordered trees. The second demonstrates how additional

free variables can aid in writing efficient narrowing through the example of

typed expressions in a simple language.

Our aim in each case is to find a definition of the precondition that

eliminates the need for backtracking (apart from rebinding of a single con-

structor). We say that such a constraint fails fast. Formally, a constraint

fails fast if when testing any partial value against the constraint it either

directly fails or there is a refinement of the value that succeeds. The needed

narrowing generator formed by a constraint which fails fast is generally effi-

cient. In this section we focus on the qualitative experience of programming

with overlapping patterns. Performance results and detailed description of

the implementation can be found in the next chapter.

5.3.1 Ordered Trees

We recall our definition of ordered trees as binary trees with natural num-

bers stored in ascending order within the nodes:

data Tree = Leaf | Node Tree Nat Tree



Chapter 5. Overlapping Patterns 120

ord :: Tree → Bool

ord Leaf = True

ord (Node t1 a t2 ) = allT (6 a) t1 ∧ ord t1

∧ allT (> a) t2 ∧ ord t2

Note that this definition now uses overlapping conjunction and in doing

so addresses the issue of co-dependent conditions we found in the previous

chapter. If evaluating the first constraint, allT (6 a) t1 , causes the second

constraint, the recursive call to ord, to fail then overlapping conjunction

will ensure this failure is realised immediately.

We consider again the order preserving characteristic of a delete func-

tion that removes a given element from a tree:

propDelete :: Nat → Tree → Bool

propDelete a t = ord t =⇒ ord (del a t)

Unfortunately, if we test this property in its current form it will often fail to

halt, because randomly generated values of recursively defined types such

as trees are often infinite. Before we resolved this problem by setting a

global limit on the depth of constructors (section 4.3.2), however this limit

can result in backtracking as to satisfy ord a natural number might be

required that breaks the limit. For random testing it is sufficient to limit

the number or depth of nodes without restricting the elements, and doing

so avoids backtracking. We can use overlapping patterns to achieve this.

First of all, we define a suchThat function, which can be used to add

size constraints to a property:
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{-# OVERLAP suchThat #-}

suchThat :: Result → Bool → Result

suchThat Invalid = Invalid

suchThat Success x = if x then Success else Invalid

suchThat Failure x = if x then Failure else Invalid

suchThat False = Invalid

suchThat x True = x

We can then use this function to update our property,

propDelete n a t =

(ordered t =⇒ ordered (delete a t))

‘suchThat‘ (depthTree t 6 n)

in which the depthTree constraint is given by:

depthTree :: Tree → Nat

depthTree Leaf = Zero

depthTree (Node t1 t2 ) = Suc (max (depthTree t1 ) (depthTree t2 ))

The use of overlapping patterns is crucial in two ways. Firstly, in the

suchThat constraint the overlapping patterns ensure that the constraint is

always evaluated. The left-biased nature of our implementation means this

suchThat constraint will not impact the evaluation of the property in any

other way. Secondly, the definition of depthTree relies on the overlapping

version of the maximum function. This is important as a traditional maxi-

mum function only evaluates its right side once it has completed evaluation

of its left side and so during narrowing the right branch of the tree could

become arbitrarily large without triggering the size limit.

To ensure termination in enumerative testing, we need to limit the size

of elements. We also opt to limit the number of the nodes as opposed to
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the depth of nodes as Duregaard showed in his thesis [1] that limiting the

size of terms in this way is generally more effective for enumerative testing.

The property then becomes

propDeleteEnum n a t

= (ordered t =⇒ ordered (delete a t))

‘suchThat‘ (sizeTree t 6 n ∧ allT (6 n) t)

in which the sizeTree is given by:

sizeTree :: Tree → Nat

sizeTree Leaf = Zero

sizeTree (Node t1 t1 ) = Suc (sizeTree t1 + sizeTree t2 )

Again, this definition uses an overlapping function + in order to ensure

that the size limit is always adhered to. We know of no way of defining

such a size limit without the use of overlapping addition and therefore don’t

believe this size limit can be defined in already existing tools which only

implement parallel conjunction. In contrast the depth limit condition can

be defined only using of overlapping conjunction as so:

depthLessThan :: Tree → Nat → Bool

depthLessThan Leaf = True

depthLessThan (Node ) Zero = False

depthLessThan (Node t1 t2 ) (Suc n) = t1 ‘depthLessThan‘ n ∧ t2 ‘depthLessThan‘ n

In general, bespoke size limits are useful both to avoid backtracking,

which makes property-based testing more efficient, and to allow greater

flexibility in terms of distribution. The above properties are evaluated in

the next chapter, where we see in practice that evaluating these properties

with overlapping patterns does indeed only require trivial backtracking, and
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also that the use of overlapping patterns offers a substantial performance

improvement over traditional narrowing.

5.3.2 Well-Typed Expressions

In this example we generate typed expressions for a simple language. We

use this example to demonstrate a technique for building constraints that

fail fast that combines well with the use of overlapping patterns. The lan-

guage has addition, conditional expressions, natural numbers, and logical

values:

data Expr = Add Expr Expr | If Expr Expr Expr | N Nat | B Bool

A useful property for this language states that for any well-typed expression

up to a given depth, evaluating the expression will not produce an error:

propEval n e

= (typed e =⇒ notError (eval e))

‘suchThat‘ (depthExpr e 6 n)

We will focus on the typed condition. This condition has a simple definition

in terms of a more general function typeOf that attempts to determine the

type of an expression, which may be either Nat or Bool, with the Maybe

mechanism being used handle the possibility that an expression may be

ill-typed:

data Type = Nat | Bool

typeOf :: Expr → Maybe Type

typeOf (Add e e′) = case (typeOf e, typeOf e′) of

(Just Nat, Just Nat)→ Just Nat

→ Nothing
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typeOf (If e e′ e′′) = case (typeOf e, typeOf e′, typeOf e′′) of

(Just Bool, Just t ′, Just t ′′) | t ′ ≡ t ′′ → Just t ′

→ Nothing

typeOf (N ) = Just Nat

typeOf (B ) = Just Bool

However, the function typeOf has an inefficient narrowing semantics. For

example, an expression of the form If (Add u v) w x is ill-typed for any

u, v,w, x , because it is already evident that the first argument is not a

logical value, but a version of typed defined using the function typeOf would

not be able to deduce this until specific expressions had been filled in for

the variables u and v. In other words, the typed condition does not fail

fast.

To solve this problem we define an alternative constraint, hasType ::

Expr → Type → Bool, in which the type of the expression is taken as an

argument rather then returned as a result. In this manner, the type is

refined during the narrowing process alongside the expression itself.

hasType (Add e e′) Nat = hasType e Nat ∧ hasType e′ Nat

hasType (If e e′ e′′) t = hasType e Bool ∧ hasType e′ t ∧ hasType e′′ t

hasType (N ) Nat = True

hasType (B ) Bool = True

hasType = False

If we reconsider our example expression, If (Add u v) w x , then we can see

our new typing constraint identifies this as being ill-typed:
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hasType (If (Add u v) w x) t

= hasType (Add u v) Bool ∧ hasType w t ∧ hasType x t

= False ∧ hasType w t ∧ hasType x t

= False

The hasType program does not fail fast but satisfies a similar weaker

condition: any partial value formed by evaluating the constraint with free

arguments either directly fails when applied to the constraint, or there is a

refinement of the value that succeeds.

Using the hasType constraint, our original property concerning well-

typed expressions up to a given depth can now be reformulated to include

the type of the expression as an additional narrowing variable:

propEval n t e

= (hasType e t =⇒ noError (eval e))

‘suchThat‘ (depthExpr e 6 n)

Here we have used an additional narrowing variable to help enforce a global

constraint, that the expression is typed. The essential idea is to realise the

constraint as a datatype, in this case that datatype is simply the type of

an expression, and then write a condition which relates this datatype to

the data being generated. In this way sub-terms can be provided a shared

context in a manner which is narrowable. Another example, is to generate

perfectly balanced trees, in which all branches have the same depth. We

need to share the depth across the sub-trees in a narrowable fashion and

can do so with the following function,
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balanced :: Tree → Nat → Bool

balanced Leaf x = x ≡ Zero

balanced (Node ) Zero = False

balanced (Node t1 t2 ) (Suc n) = balanced t1 n ∧ balanced t2 n

in which balanced t n is satisfied if all the branches of t have depth n.

A property which takes n as a narrowing variable will generate balanced

trees. We use a very similar function to enforce the balance condition of

red-black trees in the next chapter.

5.4 Related Work

The functional logic language Curry [29] implements needed narrowing,

and supports the use of overlapping patterns in definitions. However, the

semantics is different to our system and in effect the two are unrelated. In

particular, overlapping patterns in Curry are non-deterministic and pro-

vide a convenient syntax to use the inherent non-determinism of narrowing

easily. Overlapping patterns in our language are deterministic and allow ad-

ditional reductions in the narrowing semantics. Furthermore unlike Curry

overlapping patterns they cannot be encoded using other narrowing con-

structs [5].

The form of overlapping patterns that we use in our system is similar

to that proposed by Cockx [19, 20], who develops the idea in the context

of dependent type theory and the Agda programming language. However,

the intended purpose is different, with our aim being to improve the perfor-

mance of property-based testing under a narrowing semantics, and Cockx

seeking to simplify the development of proofs in a dependently-typed set-

ting.
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A number of narrowing-based testing tools use the notion of parallel

conjunction. The idea originates in Lindblad’s work on data generation [33]

and Lazy Smallcheck [48], both of which use an enumerative style of testing.

Subsequently, parallel conjunction has been used by Claessen et al. [15] to

randomly generate data with a uniform distribution. Parallel conjunction is

equivalent to overlapping conjunction, but whereas previous testing work

using this operator has been more practically focused, we have given a

precise narrowing semantics for a general form of overlapping definitions.

The research of Claessen et al. is the most similar to our work, in that

they also use a narrowing-style for random testing. However, their aim

of producing a uniform distribution, using a variant of Feat [21], makes

backtracking hard to avoid for many problems.

5.5 Conclusion and Future Work

In this chapter we have motivated and formalised an extension to our nar-

rowing semantics to allow overlapping patterns in definitions. We saw two

benefits of overlapping patterns in property-based testing. Firstly, in the

evaluation of co-dependent conditions, and secondly, by enabling the en-

coding of size constraints. In the next chapter we give an account of the

implementation and evaluate the performance benefits of overlapping pat-

terns. Below we reflect on our new semantics and suggest some possible

directions for further work.

While overlapping patterns can improve the performance of property-

based testing, the use of narrowing can lead to subtle performance issues,

as we saw in section 5.3 with the typeOf constraint. To avoid performance

issues close attention must be paid to possible sources of backtracking.
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Overlapping patterns help by making it easier to define constraints with

limited backtracking, but they are no silver bullet, and further research is

required to establish appropriate methodologies for identifying and limiting

sources of backtracking.

In our original paper [27] we were unsure of the necessity of general over-

lapping definitions, stating that in most cases it might suffice to use over-

lapping conjunction along with the additional narrowing variables. Since

then we have found multiple uses which seemingly cannot be encoded with

the above scheme. For example, the author knows of no way of achieving

the behaviour of suchThat function, and no way to enforce a limit on the

number of nodes in tree, with only narrowing and overlapping conjunction.

Although these uses are not strictly critical to property-based testing they

certainly are useful in giving the programmer flexibility and in easing the

creation of fast failing preconditions.

We discussed one possible area of future research in finding a less re-

strictive definition of confluence (section 5.2.3). The theory could also be

extended by the addition of other language features, and how these inter-

act with narrowing and overlapping patterns would require further research.

Adding the capability to refine and narrow first and higher-order functions

is one possible extension for which the trie representation of partial func-

tions used in the extended Lazy Smallcheck [47] offers a starting direction.

Another interesting area is the addition of locally bound narrowing vari-

ables, which are difficult to add directly to our theory as they have no

analogy in traditional functional language.

It would also be interesting to investigate the analysis of programs which

use overlapping patterns. For example, identifying cases where a condition

does not fail fast would be useful. It would be very challenging to produce a
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static analysis which achieves this but a run-time analysis which determine

when a condition is not failing fast could be practically useful.



Chapter 6

Implementation and

Evaluation

In this chapter we develop an implementation of narrowing with overlap-

ping patterns by extending the tool that was developed in chapter 4. We

begin by defining the language and operational semantics, paying particu-

lar attention to how the semantics is designed to handle the combination of

overlapping patterns and narrowing effectively. We then evaluate the per-

formance of the tool on a number of case studies by comparing narrowing

with overlapping patterns against the traditional form of narrowing.

6.1 Language and Semantics

In this section we give the core language and semantics of our implemen-

tation with overlapping patterns. Whereas the semantics in the previous

chapter was designed to give an intuitive, theoretical account of overlapping

patterns, the semantics of this chapter reflects the implementation closely.

In particular, the semantics is call-by-need, is implemented with continua-

130



Chapter 6. Implementation and Evaluation 131

tions for efficiency purposes, and is explicit in the order of evaluation and

narrowing.

The core language is defined by the following grammar:

DefnX ::= Fun Var = ExprX

ExprX ::= Fun ExprX | Con ExprX | ExprX ExprX | varVar

| fvar X | let Var = ExprX in ExprX

| CasesX

CasesX ::= (CaseX ||CasesX) | CaseX

CaseX = case Var of Con Var → ExprX

ValX ::= Con ValX | fvar X

The language consists of definitions, functions, constructors applied to list

of expressions, applications, variables, free variables, let expressions and

overlapping case expressions. Unlike in chapter 4 we consider partially

applied functions as they play an important role in the semantics. Con-

structor applications are still assumed to be complete and the language is

assumed to be typed under the standard rules.

The syntax for overlapping patterns differs somewhat from chapter 5 to

simplify the definition of the semantics. In particular, we have taken pat-

tern matching out of definitions and instead represent overlapping patterns

as a series of case expressions. For example, the overlapping definition of

the max function is given by:
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max x y = case x of

Zero→ y

(Suc x ′)→ Suc (max x ′ (pred y))

|| case y of

Zero→ x

(Suc y ′)→ Suc (max (pred x) y ′)

Here, the max function is represented by two case expressions, either of

which can be reduced to proceed with evaluation. Once one of the case ex-

pressions has been matched the other case expressions can be dropped. The

subjects of case expressions are restricted to variables in order to maximise

sharing. With this restriction it is easy to convert an overlapping set of

case expressions into an overlapping definition from chapter 5, by creating

a function with arguments equal to the number of case expressions.

We typically denote definitions by f , expressions by e, constructors by

c, closed variables by u and v, and free variables by x and y. We denote a

function of arity n as fn and similarly a list with its length as en.

Continuation semantics

The use of overlapping patterns places special requirements on the eval-

uation. Whereas for traditional narrowing we could apply a narrowing

step immediately on encountering a free variable in the evaluation con-

text, with overlapping patterns evaluation could still make progress on a

separate branch. Therefore, an expression is only suspended when every

overlapping branch is suspended. To represent this the semantics is given

by interspersing a big-step reduction, which evaluates every branch until it

is suspended, with narrowing steps.

As we have to traverse every branch of an expression after each nar-
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rowing step it is important to minimise the cost of doing so. Therefore,

we utilise local stacks to store continuations, which reduces the need to

traverse the expression and puts the focus on the evaluation context. A

stack is defined as follows:

StackX ::= ∅ | • ExprX ; StackX | varVar ; StackX

That is, the stack is either empty, has an application on top or has a

variable on top.

Next, we define the big step semantics which reduces an expression to

either a suspended form or a result. We do so by first defining a single-

step reduction relation→, which represents the standard, non-overlapping,

part of the semantics and is a reduction of an environment consisting of

an expression, a stack and a heap. In this setting, the heap is a mapping

from variables to an expression and a stack, with the addition of a stack

required to store progress when an expression is suspended.

First, we define the rules for applications and functions:

〈e e′, κ, s〉 → 〈e, • e′;κ, s〉

m > n

〈fm en, • e;κ, s〉 → 〈fm ee, κ, s〉

(e, v) = fresh(f)

〈fm em, κ, s〉 → 〈e, κ, s ∪ {vi 7→ (ei, ∅)|vi ∈ v, ei ∈ e}〉

That is, we evaluate an application by pushing it to the stack. If we are

evaluating an incomplete function application, then we pop an argument

off the stack. Finally, if we are evaluating a complete function application

then we inline the definition and add the arguments to the heap.



Chapter 6. Implementation and Evaluation 134

Next, we define the rules for let expressions and variables:

〈let v = e in e′, κ, s〉 → 〈e′, κ, s ∪ {v 7→ (e, ∅)}〉

v 7→ (e, κ′) ∈ s

〈v, κ, s〉 → 〈e, κ′; var v;κ, s〉

whnf (e)

〈e, var v;κ, s〉 → 〈e, κ, s[v 7→ (e, ∅)]〉

That is, to evaluate a let expression we add the expression to the heap

with an empty stack. When a variable is to be evaluated, we retrieve

its value from the heap and push the variable and its local stack onto

the environment stack. When a variable is on top of a stack, and the

expression is in weak head normal form we save this result onto the heap.

An expression is in weak head normal form if it is a constructor or a partially

applied function, and is defined formally as such:

whnf (c e)

m > n

whnf (fm en)

We can now lift the sequence of local reductions into a big step seman-

tics,

whnf (e)

〈e, ∅, s〉 ⇓ 〈e, ∅, s〉

env → env ′ env ′ ⇓ env ′′

env ⇓ env ′′

which, in its current form is a standard functional semantics for the terms

on which it is defined. We now need to define the semantics for an expres-
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sion suspended on a free variable and for overlapping case expressions.

Suspending semantics

When an expression becomes suspended on a free variable we must store

any progress made in evaluating the variables. We introduce a new state

to our environment for when the expression is suspended, writing 〈e (

x, κ, s〉 for the expression e being suspended on x. We have the following

rules,

〈fvar x, κ, s〉 → 〈fvar x( x, κ, s〉

∀u. var u /∈ κ

〈e( x, κ; var v; κ′, s〉 → 〈var v( x, κ′, s[v 7→ (e, κ)]〉

where the first rule defines the transition to a suspended state, which occurs

when a free variable is in focus. The second rule stores the current eval-

uation state into the first variable on the stack, and updates the variable

with any progress which has been made in its evaluation.

We add another final state to the big-step semantics,

∀u. var u /∈ κ

〈e( x, κ, s〉 ⇓ 〈e( x, κ, s〉

which states that a suspended expression without any more variables to

update has completed evaluation.
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Overlapping semantics

The most complex part of the semantics is the evaluation of overlapping

patterns. We evaluate the case expressions in turn. If a case expression

successfully matches, evaluation proceeds along that branch. If a case

expression is suspended then we continue with the next case expression,

unless there are no more in which case the overlapping pattern is suspended.

To encode this we define a special reduction ⇓∗ which is a relation from

a partial evaluated overlapping pattern to a resulting environment. The

partially evaluated environment has the form 〈cs( x, cs′, κ, s〉, in which

cs is the already evaluated component of the overlapping pattern which is

suspended on x, cs′ is the part to be evaluated, and κ, s are the stack and

heap as normal.

The evaluation of an overlapping pattern is defined in terms of this

relation as follows,

cs = e0 || .. || en 〈∅( •, cs, κ, s〉 ⇓∗ 〈e, κ′, s′〉

〈cs, κ, s〉 ⇓ 〈e, κ′, s′〉

where • represents the absence of a free variable, and will be filled in sub-

sequently. Note, the resulting expression e may or may not be suspended.

When the evaluation of the case subject succeeds we have the following

rule:

〈var v, ∅, s〉 ⇓ 〈c e, ∅, s′〉

〈e[v/e], κ, s′〉 ⇓ 〈e′, κ′, s′′〉 c v 7→ e ∈ alt

〈cs( x, case v of alt || cs′, κ, s〉 ⇓∗ 〈e′, κ′, s′′〉

That is, the result of the case subject is matched with its alternative and
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evaluation continues along this branch.

When the case expression is suspended on its subject we have the fol-

lowing rule:

〈var v, ∅, s〉 ⇓ 〈var v( y, ∅, s′〉

〈(cs || case v of alt)( (x<|> y), cs′, κ, s′〉 ⇓∗ 〈e′, κ′, s′′〉

〈cs( x, case v of alt || cs′, κ, s〉 ⇓∗ 〈e′, κ′, s′′〉

That is, we proceed with evaluation by trying to evaluate the next case ex-

pression, and add the suspended case expression to those already evaluated.

If an overlapping pattern is suspended we consider it to be suspended on

the first case expression. Therefore, we define the function <|> as follows:

• <|> y = y

x <|> = x

Considering an overlapping pattern to be suspended on the first case ex-

pression falls short of the ideal of pattern matching being entirely order

independent however it turns out to be helpful in practice. For example,

we use suchThat to add size constraints to the end of properties and doing

so ensures that we don’t refine a test case prematurely just to satisfy a size

constraint.

Finally, if we have exhausted the case expressions then the overlapping

pattern is suspended:

〈cs( x, ∅, κ, s〉 ⇓∗ 〈cs( x, κ, s〉

This finishes the definition of ⇓ which reduces an expression either to a

result or until it is suspended on all branches.
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Narrowing semantics

We can define the narrowing semantics now by interspersing narrowing

steps between evaluations. The

 

reduction is defined as follows:

〈e, κ, s〉 ⇓ 〈e′, ∅, s′〉 whnf (e′)

〈e, κ, s〉

 

〈e′, s′, return〉

σ ∈ NarrX(x) 〈e, κ, s〉 ⇓ 〈e′( x, κ′, s′〉

〈e′[σ], κ′[σ], s′[σ]〉

 

〈e′′, s′′, σ′〉

〈e( x, κ, s〉

 

〈e′′, s′′, σ >=>σ′〉

That is, if the expression is in weak head normal form then evaluation

terminates. Otherwise, the expression is suspended and a refinement is

chosen from the narrowing set NarrX(x), which was defined in section 5.2,

and applied to the environment before the expression re-evaluated.

6.2 Implementation

The implementation is an abstract machine written in Haskell, which ex-

tends the implementation of chapter 4. The implementation and the case

studies in this chapter can be found in the following repository:

https://github.com/jonfowler/narrowcheck

The language used is the same subset of Haskell as in chapter 4, with the

addition of functions defined using overlapping patterns. This language is

desugared into the core language given in section 6.1. Overlapping func-

tions are denoted using a pragma. For example,

https://github.com/jonfowler/narrowcheck
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{-# OVERLAP max #-}

max Zero y = y

max (Suc x) y = Suc (max x (pred y))

max x Zero = x

max x (Suc y) = Suc (max (pred x) y)

is an overlapping definition of max and will be desugared to the function

given in the previous section. The implementation has similar features

as the previous implementation. That is, it converts expressions to an

atomic form (section 4.1), implements narrowing using the same search

tree (section 4.2) and uses the same search strategies (section 4.3).

The main difference in the implementation is a new eval function which

reflects the new semantics. As in the semantics, we define the evaluation

by first defining a function that reduces an expression until it is suspended

on a free variable, and then defining eval by interspersing these reductions

with narrowing steps.

The type of evalToSuspend, which corresponds to ⇓, is as follows:

type Env = (Stack,Heap)

evalToSuspend :: Monad m ⇒

Expr → StateT Env m (Expr ,Maybe FreeVar)

That is, evalToSuspend takes an expression and produces a new expression,

along with either a free variable when the new expression is suspended, or

Nothing in which case the expression will be in weak head normal form.

During the reduction, updates will be made to the environment, which is

formed of a heap and a stack, but no narrowing steps will be performed.

The implementation of evalToSuspend follows ⇓ closely.
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The evalToSuspend function is then utilised to realise the full overlap-

ping narrowing semantics

 

in the following eval function:

type Narrow = StateT Env Refine

eval :: Expr → Narrow (Expr , Sub)

eval e = do

(e′, suspendedOn)← evalToSuspend e

case suspendedOn of

Nothing → return (e′, subReturn)

Just x → do

σ ← branch $ narrowingSet x

refineEnv σ

(e′′, σ′)← eval (subst σ e′)

return (e′′, σ >=>σ′)

The function uses the Refine monad defined in section 4.2, which handles

the non-determinism caused from the choice of narrowing steps. The eval-

uation uses one additional helper function, refineEnv :: Sub → Narrow (),

which applies a substitution to the environment. The return substitution is

denoted subReturn. The definition follows

 

closely, with the two branches

of the case expression corresponding to the two rules.

6.2.1 Optimisations

The implementation contains two optimisations not covered by the seman-

tics given for the core language, which we describe briefly below.

1. If an expression becomes suspended in an environment with no over-

lapping case expressions, then a narrowing step can be performed

directly, and by doing so we avoid having to traverse the expression
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tree. This can be implemented easily by keeping a Boolean in the en-

vironment representing whether we are in a unique non-overlapping

branch.

2. To avoid having to traverse the entire tree after each narrowing step,

at each overlapping branch we keep track of the free variables the

branch is suspended on. When we perform a narrowing step, we con-

sider the refined free variable the active variable, and on the subse-

quent evaluation we only evaluate the branches which are suspended

on this variable.

6.3 Case Studies

In this section, we compare the performance of evaluating properties with

and without the use of overlapping patterns. We consider testing by enu-

merating test cases and random choice, and we measure the metrics for

those that we defined in section 4.4. We consider the union and ordered

tree properties from chapter 4, the permutation and well-typed expression

properties from chapter 5, and two new case studies. We do not consider

the reverse and Huffman properties as these are not impacted by narrowing

for the reasons explained in chapter 4, and therefore overlapping patterns

will also not impact their evaluation. The code for the case studies can be

found in appendix A and on Github [25].

6.3.1 Size Limits and Distribution

The use of overlapping patterns to define bespoke size limits gives an im-

portant performance benefit for some problems, but also makes direct com-

parison to a traditional narrowing evaluation difficult. This is because if
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we use a bespoke size limit for the overlapping version and traditional size

limit for the traditional version, the distribution of the test cases differ sub-

stantially. For this reason, we opt to use overlapping patterns in traditional

properties but only to encode bespoke size limits.

We can give a size parameter to the tool using the -s flag:

$ narrowcheck -s 8 -p propSort Perm.hs

+++ Ok, successfully passed 100 tests in 0.59s

Properties with bespoke size limits are represented by a function in which

the first argument is the size parameter and is of type Nat.

6.3.2 Evaluation

We evaluate the case studies in the same fashion as in section 4.4, which

we recall for convenience. For enumerative testing we repeated each exper-

iment ten times with a time limit of twelve minutes. For random testing we

ran one thousand test cases and repeated each experiment forty times with

a time limit of four minutes. For both we increased the size limit incremen-

tally until an experiment exceeds the time limit. All results reported were

obtained using a quad-core Intel i5 running at 3.2GHz, with 16GB RAM,

under 64-bit Ubuntu 16.04 LTS with kernel 4.4.0.

We use a backtrack limit of 30 for random testing, as we found this to

be a reasonable compromise in the case studies of section 4.4. When testing

by enumeration we use the evaluation sharing definition (section 4.3), as

this proved previously to give a performance benefit.
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6.3.3 Sorted Permutations

First we consider the motivational example for overlapping patterns given

in chapter 5. The property asserts that sorting a permutation should give

an ascending sequence and is given by:

propSort :: Nat → [Nat ]→ Bool

propSort n l = length l ≡ n ∧ all (<n) l ∧ allDiff l

=⇒ sort l ≡ [0 . . (n − 1)]

The property requires no bespoke size limit, as the first the two components

of the precondition restrain the size of a test case.

The performance results for testing the permutation property are given

in Figure 6.1. Table 6.1a shows the time taken to enumerate test cases at

different size limits, and also shows the number of successful and invalid

test cases at each limit. Graph 6.1c is a plot of the time taken at these

size limits. Note that the scale here, and for other enumeration graphs,

is logarithmic as the time taken to enumerate tests cases typically grows

exponential with the size limit.

Table 6.1b shows the time taken to produce 1000 random permuta-

tions of the given size and also includes the success rate for creating these

permutations. As the size of a permutation is preordained we do not mea-

sure an average size for this property. Graph 6.1d is a plot of time taken

at these size limits. This graph, along with the other graphs for random

performance, has a linear scale.

Enumeration

The results for the testing propSort by enumeration can be found in the

table 6.1a and the graph 6.1c.



Chapter 6. Implementation and Evaluation 144

Strat Metric 3 4 5 6 7 8
Narr time 3.32ms 30.5ms 427ms 7.40s 151s -

tests 6 24 120 720 5040 -
invalid 38.0 322 3792 5.5e4 9.6e5 -

Over time 2.31ms 12.4ms 89.0ms 744ms 7.15s 74.9s
tests 6 24 120 720 5040 4.0e4
invalid 29.0 146 917 6710 5.6e4 5.1e5

(a) Benchmark results for enumerating all tests of the permuta-
tion property of a given size

Strat Metric 5 6 10 20 32
Narr time 6.48s 54.2s - - -

success 100.0% 100.0% - - -
Over time 1.54s 2.23s 7.26s 50.6s 231s

success 100.0% 100.0% 100.0% 100.0% 100.0%

(b) Benchmark results for testing 1000 permutations of a given
size
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(d) Testing permutation prob-
lem on 1000 randomly generated
inputs

Figure 6.1: Benchmark results for testing the permutation property
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Observation 1. Evaluating the property utilising overlapping patterns is

significantly faster. Enumerating values of depth seven takes over twenty

times as long without overlapping patterns.

This performance result is driven by the differing number of test cases

which need to be considered. We can see the traditional narrowing evalua-

tion evaluates almost a million test cases, almost all invalid, at depth seven

with the overlapping version only needing to check around 60 thousand.

This is due to the co-dependent conditions which cause the traditional nar-

rowing strategy to backtrack over a large number of invalid test cases. For

example, as we saw in section 5.1, traditional narrowing cannot determine

that [1, 1, x2, x3] can never be a valid permutation and will have to back-

track over all combinations of x2, x3. In contrast, overlapping patterns will

determine this is not valid immediately and will do so for any invalid pre-

fix. It should be noted that the overlapping pattern version still does not

satisfy our fails fast condition (defined in section 5.3), because sometimes

multiple backtracking steps are required to find a suitable element of the

permutation.

Random

All constructors are given equal weight and a backtrack limit of 30 is used.

The results can be found in the table 6.1b and the graph 6.1d. As all

permutations are the same “size” we don’t include a size metric.

Observation 2. Random testing is more effective with overlapping pat-

terns. In the allocated time overlapping evaluation can generate 1000 values

of depth 32 whereas the maximum depth achieved by traditional evaluation

was 6.
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The difference in performance is again explained by the co-dependent

patterns, with traditional evaluation having to perform large amounts of

backtracking. There is no benefit to random testing for traditional evalu-

ation as it is unable to test 1000 random permutation of size seven in the

given time, but was able to enumerate all of these permutations within the

same time period. Random testing with overlapping patterns however is

beneficial as 1000 tests of size 32 can be performed whereas a maximum of

size 8 was reached by enumeration.

6.3.4 Union of Sets

We evaluate the performance of the union property given in section 4.4.

The property checks whether a union function produces a valid set when

given two valid sets:

propUnion :: Nat → [Nat ]→ [Nat ]→ Result

propUnion n x y = suchThat

(set x ∧ set y =⇒ set (union x y))

(length x 6 n f length y 6 n f all (6 n) x f all (6 n) y)

A set is represented by an ordered list. We constrain the length of the list

and each element of the list to be less than or equal to the given size. We use

the same size constraint for both the narrowing and overlapping versions

of the tests (section 6.3.1). Note, this size constraint utilises overlapping

conjunction, as does the definition of suchThat. To represent this we use

the f operator to denote conjunction that is overlapping even when using

traditional evaluation.
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Strat Metric 4 5 6 7 8 9
Narr time 157ms 728ms 3.34s 15.1s 66.9s 293s

tests 961 3969 1.6e4 6.5e4 2.6e5 1.0e6
invalid 2021 9533 4.3e4 1.9e5 8.5e5 3.7e6

Over time 157ms 731ms 3.35s 15.1s 66.9s 293s
tests 961 3969 1.6e4 6.5e4 2.6e5 1.0e6
invalid 2021 9533 4.3e4 1.9e5 8.5e5 3.7e6

(a) Benchmark results for enumerating tests of the union prop-
erty with maximum construction depth

Strat Metric 10 20 30 40 ∞
Narr time 2.47s 4.39s 5.99s 6.68s 7.69s

success 100.0% 100.0% 91.3% 96.0% 100.0%
size 3.40 4.35 4.23 4.58 5.04

Over time 2.49s 4.36s 6.04s 6.59s 7.52s
success 100.0% 100.0% 91.0% 96.3% 100.0%
size 3.41 4.32 4.21 4.57 4.99

(b) Benchmark results for 1000 random tests of the union prop-
erty with maximum construction depth
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(d) Testing the union property
on 1000 randomly generated in-
puts

Figure 6.2: Benchmark results for testing the union property
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Enumeration

The results for testing propUnion by enumeration can be found in the

table 6.2a and the graph 6.2c.

Observation 3. There is no significant performance difference between

evaluation with and without overlapping patterns.

Although the definition of set,

set [ ] = True

set (a : l) = set ′ a l

set ′ a [ ] = True

set ′ a (a′ : l) = a < a′ ∧ set ′ a′ l

contains a conjunction, whether it is overlapping has little impact on per-

formance. Although both sides of the conjunction depend on a′, progress

on the right side can only be made once l has been refined and therefore

overlapping patterns have no impact.

Random

All constructors are given equal weight and a backtrack limit of 30 is used.

The results can be found in the table 6.2b and the graph 6.2d. The size

metric is given by the average number of elements in the sets.

Observation 4. Once again, the two modes of evaluation have no signifi-

cant performance difference.

There is little performance difference for the same reason as when test-

ing by enumeration. That is, although set uses an overlapping conjunction,

the order the free variables are refined means the left side of the conjunction

is completely evaluated before any progress is made on the right side.
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6.3.5 Ordered Trees

Next we assess the ordered tree property which we used as a case study for

overlapping patterns. The property is given by,

propDelete :: Nat → Nat → Tree → Result

propDelete n a t = suchThat

(ordered t =⇒ ordered (delete a t))

(sizeLimit n a t)

in which we use different definitions of sizeLimit for enumeration and ran-

dom testing.

Enumeration

The results for testing propDelete by enumeration can be found in the

table 6.3a and the graph 6.3c. For enumeration we limit the total number

of nodes in the tree and the size of each element:

sizeLimit n a t = a 6 n f countNodes t 6 n f maxNode t 6 n

The definition of countNodes and maxNode use the overlapping version of

+ and max respectively. For tree-based structures it is often useful to limit

the number of nodes rather than the depth, as it is typically only possible to

enumerate to a low max depth as the number of test cases grows extremely

quickly.

Observation 5. Enumerating with overlapping patterns is significantly

faster than without. At depth six the overlapping version is over four

times as fast.

Once again, we find this performance difference is largely driven by the

difference in the number of potential test cases considered. At depth six,
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Strat Metric 3 4 5 6 7
Narr time 52.4ms 563ms 6.77s 99.3s -

tests 211 1191 6483 3.4e4 -
invalid 431 4346 5.1e4 6.8e5 -

Over time 51.5ms 413ms 3.10s 22.6s 144s
tests 211 1191 6483 3.4e4 1.8e5
invalid 361 2536 1.6e4 1.0e5 5.9e5

(a) Benchmark results for enumerating all ordered trees with up
to a given number of nodes

Strat Metric 2 3 4 10 12
Narr time 343ms 131s - - -

success 100.0% 90.1% - - -
size 1.55 2.49 - - -

Over time 417ms 911ms 1.87s 62.3s 183s
success 100.0% 100.0% 100.0% 100.0% 100.0%
size 1.56 2.71 4.31 33.6 60.5

(b) Benchmark results for testing 1000 ordered trees with given
maximum depth
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(d) Testing ordered tree prop-
erty on 1000 randomly gener-
ated inputs

Figure 6.3: Benchmark results for testing the ordered tree property
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overlapping patterns has to evaluate less than a fifth of the test cases. This

is because of co-dependent patterns in the ordered constraint,

ordered Leaf = True

ordered (Node t1 a t2 ) = all (6 a) t1 ∧ ord t1

∧ all (> a) t2 ∧ ord t2

in which the first and last pair of constraints are co-dependent.

Random

As in section 4.4, the node constructor is given a weight of two and the

leaf constructor a weight of one. The backtrack limit of 30 is used. The

results can be found in the table 6.3b and the graph 6.3d. The average size

metric is given by the number of nodes in the graph. We use a depth limit

to restrain the size:

depthLimit n t = maxDepth t 6 n

We do not have to limit the size of the elements as they follow a geometric

distribution and therefore their size is limited probabilistically.

Observation 6. Evaluating with overlapping patterns is far more effective

in random testing. The maximum depth obtained within the time limit

without overlapping patterns was three with an average size of two and a

half. The maximum depth achieved with overlapping patterns was twelve

with an average size of over sixty.

The performance difference is far more pronounced than in enumerative

testing. This is likely because when backtracking in enumerative testing

the cost is amortised across successful test cases, whereas in random testing

a large amount of backtracking may be required to generate a single value.
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We can see in the overlapping case that the generation of test cases is

100% successful, as we noted in the previous chapter the ordered tree pre-

condition satisfies the fails fast condition and therefore only ever backtracks

a single time. We can confirm this experimentally by setting the backtrack

limit to 1 and seeing that the success rate is still 100%.

Overall, random testing is effective with overlapping patterns in the

sense that it allows the testing of far bigger trees than using enumeration.

The average size of sixty in the final test run is far greater than the max

enumerated size of seven. With traditional narrowing this is not the case,

with the average size being less than three.

6.3.6 Well-Typed Expressions

Next, we look at the well-typed expression property which we used to

demonstrate the technique of using narrowing variables to enforce con-

straints (section 4.4). The property

propEval :: Nat → Type → Expr → Result

propEval n t e = suchThat

(hasType e t =⇒ noError (eval e))

(sizeLimit n e)

asserts that a well-typed expression evaluates without error. The use of

an additional narrowing variable for the type ensures the property has

efficient narrowing semantics. We use different size limits for enumeration

and random testing.
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Strat Metric 2 3 4 5 6 7
Narr time 7.11ms 58.4ms 546ms 5.42s 55.0s 567s

tests 45 332 2791 2.5e4 2.3e5 2.2e6
invalid 196 1422 1.2e4 1.1e5 1.0e6 1.0e7

Over time 7.25ms 59.7ms 555ms 5.50s 55.7s 571s
tests 45 332 2791 2.5e4 2.3e5 2.2e6
invalid 196 1422 1.2e4 1.1e5 1.0e6 1.0e7

(a) Benchmark results for enumerating all expressions up to max-
imum depth

Strat Metric 4 6 8 10 12
Narr time 1.25s 3.78s 11.6s 34.6s 103s

success 100.0% 100.0% 100.0% 100.0% 100.0%
size 12.0 31.2 77.7 189 439

Over time 1.28s 3.98s 12.2s 35.9s 109s
success 100.0% 100.0% 100.0% 100.0% 100.0%
size 11.9 30.8 78.2 185 438

(b) Benchmark results for testing 1000 expressions with given
maximum depth
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(d) Testing well-typed expres-
sion property on 1000 randomly
generated inputs

Figure 6.4: Benchmark results for testing the well-typed expression
property



Chapter 6. Implementation and Evaluation 154

Enumeration

The results for testing propEval by enumeration can be found in the ta-

ble 6.4a and the graph 6.4c. The size restraint,

countExpr (B ) = Zero

countExpr (N n) = n

countExpr (Add e e′) = Suc (countExpr e + countExpr e′)

countExpr (If e e′ e′′)

= Suc (countExpr e + countExpr e′ + countExpr e′′)

sizeLimit n e = countExpr e 6 n

places a limit on the number of nodes. We give Booleans and the zero nat-

ural the weight of zero. This ensures that there is always a valid refinement

that can be made during evaluation, which is not the case with a traditional

size limit. Ensuring size constraints always allow a valid refinement is good

principle and is generally achievable by identifying bases cases which can

be given “zero” size.

Observation 7. Performance with and without overlapping patterns is

very similar.

Once again, the hasType condition contains no co-dependent constraints

and therefore there is no substantial performance difference. The over-

lapping version is consistently slightly slower, which is likely due to the

overhead of traversing the overlapping conjunction in hasType.

Random

All constructors are given equal weight and a backtrack limit of 30 is used.

The results can be found in the table 6.4b and the graph 6.4d. The size

limit is given by the depth of an expression,
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sizeLimit n e = depthExpr e 6 n

where depthExpr is equivalent to countExpr with addition replaced by the

maximum function. The average size metric is calculated by counting the

number of Add, If ,N ,B constructors in the expression.

Observation 8. The overlapping version takes around 5% longer to eval-

uate than the non-overlapping version.

Again, this difference is likely caused by the additional overhead of

traversing the overlapping conjunction in hasType. We find both evaluation

strategies able to test large well-typed expressions effectively, with each

being able to test 1000 expressions with an average of over 400 nodes within

the time limit.

6.3.7 N-Queens Constraint Problem

Here we change our focus to a constraint problem and consider the classic

puzzle of finding a layout of n queens on a n × n chess board such that

no queens threatens another. For this problem we use our tool in generate

mode for which it generates solutions to a given predicate. For example we

can execute the command,

$ narrowcheck -g -e -s 4 -p nQueens Perm.hs

+++ Ok, enumerated 2 solutions in 18.2ms

[2,4,1,3]

[3,1,4,2]

where flag -g indicates we are generating solutions, and flag -e that we

are enumerating. The example gives the solutions to the 4-queens problem
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in which board is represented by a list of naturals, each representing the

position of a queen on a row. The constraint problem is given by:

nQueens :: Nat → [Nat ]→ Bool

nQueens n x

= length x ≡ n ∧ all (<n) x ∧ allDiff x

∧ diagonalAsc x ∧ diagonalDesc x

where the first two constraints check the board is of size n, the next con-

straint checks the columns contain only one queen, and the final two con-

straints check that no diagonal contains more than one queen.

Enumeration

The results for enumerating solutions for a given n-queen problem can be

found in the table 6.5a and the graph 6.5c.

Observation 9. The use of overlapping patterns improves performance

significantly. Within the allocated time the overlapping version is able to

enumerate the 2680 solutions to the 11-queens problem whereas the non-

overlapping version is only able to enumerate the forty solutions to the

7-queens problem.

This problem is similar to the permutation example, as the constraint

is the same as the permutation condition with the addition of two extra

constraints on the diagonals. We find that evaluation without overlapping

patterns performs similarly to that problem, with both enumerating size

7 lists in around 150 seconds. The overlapping version however can enu-

merate to greater depths on this problem, enumerating size 11 lists in the

allocated time, compared to 8 in the permutation example. This is because

the additional constraints allow many partial values to be discarded early
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Strat Metric 6 7 8 9 10 11
Narr time 7.72s 160s - - - -

solutions 4 40 - - - -
failures 5.6e4 9.6e5 - - - -

Over time 127ms 602ms 3.05s 16.1s 87.8s 514s
solutions 4 40 92 352 724 2680
failures 898 3553 1.6e4 7.2e4 3.5e5 1.8e6

(a) Benchmark results for enumerating the solutions to the n-
queens problem

Strat Metric 4 5 6 7 8 9
Narr time 10.3s 28.5s - - - -

success 100.0% 100.0% - - - -
Over time 2.85s 2.94s 23.2s 11.6s 85.6s 61.0s

success 100.0% 100.0% 100.0% 100.0% 44.4% 47.6%

(b) Benchmark results for generating 1000 solutions to the n-
queens problem
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(d) Generating 1000 solutions to
the n-queens constraint problem

Figure 6.5: Benchmark results for solving the n-queens problem
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– the total number of partial values considered at depth 8 is around 1600

in this problem, whereas it is over 50,000 when evaluating the permutation

property.

Random

All constructors are given equal weight and a backtrack limit of 30 is used.

The results can be found in the table 6.5b and the graph 6.5d.

Observation 10. Again, the use of overlapping patterns significantly im-

proves performance. Using overlapping patterns we can generate 1000 so-

lutions up to size 9 within the allocated time, whereas without it was only

possible to generate up to size 5.

We find that both evaluation strategies are slower at generating solu-

tions than in the permutation example. This isn’t surprising as the ad-

ditional constraints make it harder to find a solution. With overlapping

patterns this difference is very large. In the permutation example we were

able to test up to size 32 whereas we were only able to generate up to size 9

here. This is because when generating permutations it will always be possi-

ble to find a valid element as long as the initial segment is valid. This limits

the amount of backtracking required. However in the n-queens problem it

might not be possible to place a queen in a row, even though the initial

rows obey the constraints. For example, [1, 3, x], has no possible placement

for x even though the first two queens do not threaten each other. This

means that sometimes large amounts of backtracking are required. We can

see this experimentally as at sizes 8 and 9 the tool fails to find a solution

around 50% of the time with a backtrack limit of 30.
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6.3.8 Red-Black Trees

Finally, we consider a balanced tree implementation in the form of ordered

red-black trees, as given by Okasaki [42]. The tree is made of nodes, each

coloured either red or black. Every branch of the tree has to have the same

number of black nodes and no red node can have a red child. These two

constraints together imply that branches differ in length by a factor of two

at most, which is the sense in which a red-black tree is balanced. We define

the data-type for red-black trees as follows:

data RedBlack

= L -- Leaves

| N Colour RedBlack Nat RedBlack -- Coloured nodes

data Colour

= R -- Red

| B -- Black

That is, a red-black tree is a binary tree in which the nodes are coloured

and contain an element in the form of a natural number. As usual, these

elements should be ordered in a valid tree. Note, we have used short names

as it is convenient in the definition of insert (Fig. 6.6).

We define the condition of tree being red-black by

redBlack :: Nat → RedBlack → Bool

redBlack b t = rootBlack t ∧ black b t ∧ red t ∧ ordered t

in which the only constraint which we have not already stated is rootBlack,

which asserts that the root node is black. The black condition is the most

interesting. This condition takes an argument b, which will be used as a

narrowing variable, and asserts that each branch has b black nodes. This
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definition has efficient narrowing semantics, and similarly to hasType, the

narrowing variable is used to share context between multiple branches while

allowing the context to be refinable.

The property we test is on a faulty implementation of an insert function,

shown in Figure 6.6, which was considered by Naylor [38]. The fault is

especially interesting as it is in a rarely evaluated branch of the program,

and therefore can be difficult to detect. The property is:

propInsert :: Nat → Nat → Nat → Tree → Result

propInsert n b a t = suchThat

(redBlack b t =⇒ redBlack ′ (insert a t))

(sizeLimit n b a t)

The property asserts that a red-black tree should still be red-black after it

has a new element inserted. On the right side we use a second version of the

red-black condition, redBlack ′, which is the same as redBlack but does not

take a narrowing variable. We do so because the depth of black nodes in

the resulting tree might differ from the original tree. Ideally, we would be

able to write something akin to exists b′◦redBlack b′ (insert a t t) in which

a new narrowing variable is introduced with existential quantification i.e.

to satisfy the condition we need to find a value b′ that satisfies condition

and to refute it we need to show none do. Adding such a feature could be

an avenue of future research.

Enumeration

The results of testing propInsert by enumeration can be found in the ta-

ble 6.7a and the graph 6.7c. We constrain the total number of nodes and

the magnitude of each element by the size limit. This can be encoded as:
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data RedBlack

= L -- Leaves

| N Colour RedBlack Nat RedBlack -- Coloured nodes

data Colour

= R -- Red

| B -- Black

insert :: Nat → RedBlack → RedBlack

insert x L = N R L x L

insert x (N col a y b)

| x < y = balance col (insert x a) y b

| x > y = balance col a y (insert x b)

| otherwise = N col a y b

balance :: Colour → Tree → Nat → Tree → Tree

balance B (N R (N R a x b) y c) z d = N R (N B a x b) y (N B c z d)

balance B (N R a x (N R b y c)) z d = N R (N B a x b) y (N B c z d)

balance B a x (N R (N R b y c) z d) = N R (N B a x c) y (N B b z d)

balance B a x (N R b y (N R c z d)) = N R (N B a x b) y (N B c z d)

balance col a x b = N col a x b

Figure 6.6: A faulty implementation of an insert function. The error occurs
on the third line of balance in which subtrees b and c are swapped.
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Strat Metric 2 3 4 5 6
Narr time 14.3ms 83.9ms 1.50s 35.7s 584s

tests 48 260 3190 5.4e4* 6.8e5*
invalid 63 291 4240 1.1e5 2.4e6

Over time 15.0ms 84.1ms 1.51s 33.3s 499s
tests 48 260 3190 5.4e4* 6.8e5*
invalid 62 262 3316 5.8e4 7.2e5

* counter-example was found

(a) Benchmark results for enumerating all red-black trees with
a set number of nodes

Strat Metric 3 4 5 6 7 8
Narr time 9.76s 21.9s 41.7s 54.2s 60.7s 72.2s

success 80.5% 63.5% 48.1% 43.8% 43.8% 43.6%
size 2.06 1.24 0.51 0.32 0.32 0.32
found 0% 62.5% 12.5% 0% 0% 0%

Over time 2.09s 3.94s 7.48s 14.7s 29.7s 61.5s
success 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
size 2.95 4.74 7.16 10.7 15.5 21.7
found 0% 97.5% 97.5% 100% 100% 100%

(b) Benchmark results for testing 1000 red-black trees with a
given depth of black nodes. The found field gives the percent of
test runs in which a counter-example was found.
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property by enumeration
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(d) Testing red-black tree prop-
erty on 1000 randomly gener-
ated inputs

Figure 6.7: Benchmark results for testing the red-black tree property
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sizeLimit :: Nat → Nat → Nat → Tree → Result

sizeLimit n b a t

= (countReds t + 2ˆb − 1) 6 n

∧ all (6) n t

∧ a 6 n

In the first condition we calculate the number of elements in the tree by

adding the current number of red nodes to the projected number of black

nodes, 2ˆb− 1. We define a narrowing version of the exponential function

as:

(ˆ) :: Nat → Nat → Nat

ˆ Zero = 1

x ˆ Suc n = x + x ∗ pred (x ˆn)

Unlike a traditional definition of the exponential function, this version can

reduce the expression 2ˆ Suc n to Suc (Suc (2∗pred (2ˆn)), which encodes

the fact that 21+n > 2. For our purposes, this means that at all points

in the evaluation, the projected count of black nodes will be equal to the

number of black nodes required if the black node depth is not increased

further.

Observation 11. The overlapping version performs better, enumerating

all trees with of six or fewer nodes around 15% faster than the traditional

version.

The performance difference is again explained by the differing number

of test cases which need to be considered. In total, the overlapping version

considers around 1.4 million cases whereas the narrowing version considers

over 3 million. In contrast to the other case studies considered, the speedup
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Strat Metric 2 3 4 5
Narr time 3.7ms 57.9ms 8.33s 432s*

tests 17 133 5671 383*
invalid 13 308 1.0e5 1.1e7*

Over time 4.0ms 59.2ms 6.42s 0.27s*
tests 17 133 5671 383*
invalid 13 245 3.5e4 929*

* metrics for finding the first counter-example, as full
enumeration was not completed

Figure 6.8: Benchmark results for enumerating red-black trees with the
depth limit defined in section 4.3

of around 15% is substantially less than the over 50% reduction in the

number of test cases. This is likely because the red-black constraint has

many conditions and therefore traversing these conditions between each

narrowing step will incur a significant performance penalty.

Observation 12. At depth five 480 failing test cases are found and at

depth six 14,080 failing test cases are found.

Observation 13. Using the non-bespoke depth limit from section 4.3, the

tool could find a counter-example at depth five but failed to complete the

enumeration (Fig. 6.8).

This result seems to indicate that the use of a bespoke size limit was

beneficial. With the bespoke size limit counterexamples were found at two

depths in which the enumeration was completed, but without the bespoke

limit we are only able to find a counter-example part way through an

enumeration which doesn’t finish in reasonable time. However, the bespoke

size limit does take longer to find the first counter-example, taking over 10

seconds whereas using overlapping patterns with a traditional limit one

was found in under half a second. This time difference is likely because
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the bespoke size limit has to consider trees with much larger elements and

so each red-black configuration will have many more test cases (as this

particular bug is predominantly caused by the colouring and shape of the

tree this evaluation is wasted). It should also be noted that the time to

find the first counter-example is not necessarily reliable, in the sense that it

is likely to be highly dependent on the order of refinement and evaluation.

The results for the traditional size limit also show a far greater difference

in performance between overlapping and narrowing evaluation. The first

counter-example is found in under half a second with overlapping patterns,

but takes over seven minutes without. This is likely because much bigger

trees are considered at this depth in which co-dependent constraints have a

much larger impact. This can be seen in the huge difference in invalid test

cases considered, over 10 million without overlapping evaluation compared

to around 1000 with.

Random

As in the ordered tree example, we give nodes a weight of two and leaves

a weight of one. The normal backtrack limit of 30 is used. The size limit

enforces a limit on the depth of the nodes in the tree but does not limit

the size of elements:

sizeLimit n t = maxDepth t 6 n

maxDepth L = Zero

maxDepth (N t1 t2 ) = Suc (max (maxDepth t1 ) (maxDepth t2 ))

The results can be found in the table 6.7b and the graph 6.7d. The size

metric is the average number of nodes in the tree.
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Observation 14. The traditional version is ineffective at random test-

ing the red-black property. As the size limit increases the success rate of

generating test cases and the average size of the trees generated declines.

This result is not surprising, as we saw previously that the traditional

version fails to produce ordered trees effectively and this problem has the

additional constraint of generating trees satisfying the red-black condition.

The condition consists of two components, the red and black constraints,

which are co-dependent as both constraints restrict the colours of the tree

nodes. With the chosen constructor weightings, the empty tree and one

node tree account for 40.7% of the test cases, which is almost all the 43.6%

of the successful tests at size 8.

Observation 15. The overlapping version is effective at random testing,

generating 1000 random test cases with average size of more than twenty

nodes within the allocated time. The backtrack limit was never reached

at any depth, and therefore the tool successfully generated a test case at

every attempt.

When evaluated in an overlapping fashion the precondition will fail as

soon as either the red or the black constraint becomes unsolvable. The

amount of backtracking required is generally small and if we instead limit

the depth of black nodes, sizeLimit n b = b 6 n, a backtrack limit of

3 will always suffice (if we are at the limit of black nodes we might have to

backtrack over the black node variable, the colour of the node and then we

will always be able to replace the node with a leaf). We chose the actual

limit in order to get greater granularity in the size limit and give more

detailed results.

Observation 16. From depth four onward, the tool consistently finds the
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bug in the program. At depth 4 an average test run completes within 4

seconds.

Random testing is arguably more effective than enumerative testing in

this case study as it generally finds a counter-example much faster and

can do so at a depth limit which is much less than the maximum limit

completed, suggesting that random testing could comfortably find an even

rarer bug. Whereas enumerative testing generally has an exponentially

increasing search space and ends up testing many similar test cases, random

testing only samples from the increasing search space and typically has few

similar test cases1. The exponential nature of enumerative testing also

impacts the ease of testing. In this study we used a carefully designed

bespoke limit for enumerative testing to try and minimise the exponential

increase in search space but random testing is effective with a simple depth

limit.

6.3.9 Discussion

We review the impact of overlapping patterns on performance before dis-

cussing the overall experience of testing with narrowing and overlapping

patterns.

Performance

Overall, we found overlapping patterns to improve the performance of

property-based testing. On four of the six case studies we looked at, the

overlapping version was substantially faster at evaluating test cases. On

the other two there was little performance difference between the two with
1Random testing does repeat trivial test cases many times, however these test cases

account for only a negligible amount of computation time and, if desired, the repetition
could easily be avoided by remembering which small test cases have been performed.
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only a very minor performance penalty for overlapping patterns in some

cases.

We found that overlapping patterns had the biggest impact in random

testing. In all five property-based testing case studies we were able to

test much larger test cases by random testing than by enumeration. In

contrast, the traditional method was only able to consistently generate

larger test cases in two of the case studies and was completely ineffective

for the remaining three (sorted permutations, ordered trees, and red-black

trees).

We have used bespoke size limits extensively in the case studies, and

for some of the case studies they reduce the need for backtracking (ordered

trees, union and red-black trees). More research is needed to establish

whether they have a significant impact on the effectiveness of testing. This

type of comparison is harder to evaluate as changing the size limit impacts

the distribution, and therefore the comparison cannot be made based on

time taken. Other metrics, such as the ability to find counter-examples or

code coverage would have to be used.

Experience

The use of overlapping patterns allows us to write property with a precon-

dition formed of a conjunction of constraints with a reasonable expectation

that the property can be tested effectively. Furthermore, we can use them

to define a size constraint which is tailored to the data-type being generated

– not only giving the user greater control over the distributions of tests,

but also helping to eliminate backtracking and therefore making testing

more effective. It should be noted that while we have sometimes resorted

to quite complex size limits in order to eliminate backtracking, for example
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the size limit in the red-black property, a simple size limit is generally suf-

ficient to achieve good results. For enumerative testing, Duregaard [1] has

shown that limiting the number of constructors is effective, and for random

testing limiting the depth of the spine of a data-type generally works well.

As we noted in the previous chapter, narrowing can lead to subtle per-

formance bugs. This is apparent in red-black property where we used

both an additional narrowing variable to restrain the black nodes, and a

non-standard exponent function. Whereas the exponent function was only

used in a size constraint and not strictly necessary, it is difficult to write

a version of the black constraint with efficient semantics without using an

additional narrowing variable. These optimisations are likely to be surpris-

ing to a functional programmer who is not familiar with narrowing, and so

experience is needed to be fully proficient at property-based testing with

narrowing. However, experience is also needed in order to write bespoke

generators à la QuickCheck, and the combination of overlapping patterns

and narrowing will work well on a large proportion of properties immedi-

ately. A programmer can always try this as a low effort approach, and

fallback on a different approach if it fails.

6.4 Related Work

In this section we review related work, discussing techniques related to

overlapping patterns.

Parallel Conjunction Several property-based testing tools have a spe-

cial parallel conjunction operator which is equivalent to the overlapping

definition of conjunction [33, 48, 15]. The implementation used by these

tools utilises the Glasgow Haskell Compiler’s exception handling, which



Chapter 6. Implementation and Evaluation 170

necessitates re-evaluating the program after every refinement. In compari-

son, we define a semantics which both covers the more general concept of

overlapping patterns and also stores the progress made in the evaluation.

Residuation Residuation is an alternative strategy for the evaluation of

functional-logic languages used in many implementations [34, 35, 49, 28].

In a similar manner to our semantics, expressions are evaluated determinis-

tically and suspended when a variable is required to continue. Expressions

are combined with an operator synonymous with parallel conjunction. Un-

like our semantics, refinements or instantiations can only be made by the

use of explicit predicates. This has the advantage of giving the program-

mer greater control but has two significant disadvantages: a refinement

may happen on a variable which is not currently impeding evaluation; and

the process is incomplete, in the sense that it is unable to compute solutions

if insufficient instantiations are made.

6.5 Conclusion and Further Work

In this chapter, we developed and evaluated our property-based testing

tool extending it with an implementation of overlapping patterns. We

concluded that the use of overlapping patterns is beneficial in the testing of

properties and allows a greater variety of properties to be tested effectively

in an automated fashion. This benefit stems from two advantages: the

ability to evaluate a combination of constraints effectively using overlapping

conjunction, and the use of bespoke size limits. There are many ways this

research could be extended, a few of which we discuss below.

The combination of overlapping patterns and narrowing requires a novel

evaluation strategy as every branch of a term has to be reduced, which gen-
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erally necessitates traversing the entire term, before a narrowing step can

be undertaken. There are many interesting avenues to explore to make

this process more efficient, such as the compilation of programs or explor-

ing different novel evaluation strategies. For example, we could consider

beginning evaluation from the leaves of an expression, which has the po-

tential advantage of avoiding traversing the expression tree each time a

narrowing step is made.

Measuring program coverage is a natural way of judging the effective-

ness of testing, and using narrowing to help improve the code coverage of

testing has been explored [38, 23]. However, the application of heuristics to

direct evaluation is often hampered by the need to resolve a precondition

before the program being scrutinised is evaluated. Using overlapping pat-

terns we can easily avert this problem, simply by changing the evaluation

order of implication in the following way:

{-# OVERLAP (⇐= ) #-}

(⇐= ) :: Result → Bool → Result

Success ⇐= True = Success

Failure ⇐= True = Failure

⇐= False = Invalid

Such a definition allows the tested program to be evaluated immediately,

and therefore could allow for more sophisticated heuristics.



Chapter 7

Conclusion

In this final chapter we draw some conclusions on the work of the thesis. In

particular, we provide a retrospective summary of the main achievements

of each chapter, reflect on our original objectives in light of what we have

achieved, and discuss some potential avenues for further work.

7.1 Summary

• In chapter 3 we established a theory of narrowing as an extension to

a functional programming language. The main result of the chapter

was a soundness and completeness theorem that related a narrowing

semantics to a functional semantics for a minimal language.

• In chapter 4 we developed a narrowing tool for the purpose of property-

based testing. The tool was evaluated against a basic tool, which

does not utilise narrowing, and confirmed previous research that nar-

rowing improves the performance on certain property-based testing

problems. We tested two different narrowing evaluations, with and

without shared evaluation, allowing us to apportion the performance

172
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benefits of narrowing between shared evaluation and wide evaluation.

• In chapter 5 we expanded our formalisation to include the notion of

overlapping patterns. Overlapping patterns allow evaluation of mul-

tiple branches of a program simultaneously, potentially deriving a

result with fewer instantiated free variables. We showed two advan-

tages of this extension for property-based testing: allowing effective

combining of constraints and allowing for the definition of bespoke

size constraints.

• In chapter 6 we extended our narrowing tool to incorporate overlap-

ping patterns. We benchmarked the tool, using the original narrow-

ing tool as comparison, and saw that overlapping patterns extend

the range of properties that can be effectively tested in an automatic

fashion.

7.2 Reflection

The starting point for the research undertaken in this thesis was the follow-

ing proposition: that narrowing is a useful tool for property-based testing

in functional programming languages such as Haskell.

To validate this proposition, we have:

• Developed a theory of narrowing for functional languages. Previ-

ous work in this area has focused on practical issues concerned with

adding narrowing to a functional language. To the best of our knowl-

edge, this thesis presents the first supporting theory for such an ex-

tension. Rather than developing the theory from scratch, we built

upon existing theories of functional programming in order to reuse
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ideas and results, which simplified our development.

• Produced a theory of overlapping patterns for functional languages.

This work formalises and generalises the notion of parallel conjunc-

tion, which has previously been used to improve the performance of

several testing tools. The use of overlapping patterns in a narrow-

ing evaluation can delay the instantiation of free variables, which can

bring significant performance benefits in property-based testing.

• Implemented a property-based testing system based on our theories.

We developed a prototype implementation in Haskell, which realises

all of the ideas from the thesis. The system implements a narrow-

ing evaluation strategy, supports overlapping patterns, and provides

functionality for both enumerative and random testing of properties.

• Demonstrated the practical utility of our system on a range of ex-

amples. We considered some classic examples from the literature on

property-based testing, and showed how the combination of the use of

narrowing and overlapping patterns can both improve performance,

and expand the range of properties that can be effectively tested in

an automatic manner without the use of a custom generator. Other

properties could be tested effectively with alterations, such as adding

a bespoke size limit or introducing narrowing variables, which reduce

the amount of backtracking.

7.3 Further work

Based on the results of our research during the last four years, we feel

that the use of narrowing is beneficial for property-based testing and is
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an interesting avenue for future research. At the end of each chapter,

we suggested potential areas for future research specific to the chapter in

question. Here we summarise a few of these potential direction of research:

• Investigating the impact of narrowing on space usage. The main

benchmark which we have used in this thesis is the time taken to

complete a task, however it would also be interesting to investigate

the space usage. There is often a trade off between these two perfor-

mance measures, and we expect to find this is true for the techniques

of evaluation sharing and overlapping patterns, both of which gener-

ally speed up evaluation but have additional space requirements.

• Eliminating backtracking To use narrowing effectively for testing we

found it is necessary to minimise or eliminate backtracking. Tech-

niques such as overlapping patterns help achieve this goal, however

they come with no guarantee. This motivates two potential areas

of research. Firstly, investigating effective means of proving when

a narrowing evaluation will not backtrack. And secondly, designing

narrowing languages in which the lack of backtracking is guaranteed

by construction.

• Implementing a compiled version of narrowing. The direct compila-

tion of narrowing to machine-code or a low level intermediate repre-

sentation is relatively new topic in functional-logic languages, with

most implementations either compiling to a different high-level lan-

guage or running in abstract machines (as in this thesis). It would be

interesting to see whether our approach to formalising narrowing as

an extension to a functional language could also be applied to compi-

lation by building a narrowing compiler as an extension to a compiler

for a functional language.
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Case study code

This appendix includes the code for the case studies in chapters 4 and 6.

For brevity the code provided here is presented in Haskell, the actual code

consumed by our tool is a subset of Haskell, without some of the syntactic

sugar, and can be found on Github [25].

A.1 Naturals

The code for naturals which are used in many of the examples.

module Nat where

import Prelude hiding ((ˆ))

data Nat = Zero | Suc Nat deriving Show

(ˆ) :: Nat → Nat → Nat

ˆ Zero = 1

aˆ(Suc x) = a + (a ∗ pred (aˆx))

lengthNat :: [a ]→ Nat

lengthNat = foldr(const Suc),Zero ·

176
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instance Enum Nat where

toEnum = fromIntegral

fromEnum Zero = 0

fromEnum (Suc n) = 1 + fromEnum n

instance Eq Nat where

Zero ≡ Zero = True

Zero ≡ Suc = False

Suc ≡ Zero = False

Suc x ≡ Suc y = x ≡ y

instance Ord Nat where

Zero 6 = True

Suc 6 Zero = False

Suc x 6 Suc y = x 6 y

Zero> = False

Suc x > Suc y = x > y

Suc > Zero = True

max Zero y = y

max x Zero = x

max (Suc x) y = Suc (max x (pred y))

instance Num Nat where

Zero +y = y

Suc x + y = Suc (x + y)

x − Zero = x

Zero− = Zero

Suc x − Suc y = x − y

Zero ∗ = Zero
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(Suc x) ∗ y = y + (x ∗ y)

fromInteger 0 = Zero

fromInteger n = Suc (fromInteger (n − 1))

abs n = n

signum = Suc Zero

A.2 Union of Sets

The union of sets case study, sections 4.4.4 and 6.3.4.

module Union where

import Nat

import Prelude

import Property

{-# Dist [] 1 #-}

{-# Dist (:) 5 #-}

check :: [Nat ]→ [Nat ]→ Result

check l l ′ = set l ∧ set l ′ =⇒ set (union l l ′)

set :: [Nat ]→ Bool

set [ ] = True

set (a : l) = go a l

where

go [ ] = True

go b (c : l ′) = (b < c) ∧ go c l ′

union :: [Nat ]→ [Nat ]→ [Nat ]

union [ ] l = l
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union l [ ] = l

union (a : l) (a′ : l ′)

| a < a′ = a : union l (a′ : l ′)

| otherwise = a′ : union (a : l) l ′

A.3 Reverse

The reverse case study, section 4.4.5.

module Reverse where

import Prelude hiding (Char)

import Property

{-# DIST [] 1 #-}

{-# DIST (:) 5 #-}

data Char = U | V |W | X | Y deriving (Eq,Enum,Ord, Show)

checkBasic :: [Char ]→ [Char ]→ Result

checkBasic l l ′ = post $ reverse (l ++ l ′) ≡ (reverse l ′ ++ reverse l)

A.4 Huffman Compression

The Huffman compression case study, section 4.4.7.

module Huffman where

import Data.List

import Data.Maybe

import Nat

import Property
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import Prelude hiding (Char)

data Tree = Leaf Char | Fork Tree Tree deriving (Eq,Ord, Show)

data Char = U | V |W | X | Y deriving (Eq,Enum,Ord, Show)

{-# DIST [] 1 #-}

{-# DIST (:) 5 #-}

checkBasic :: [Char ]→ Result

checkBasic l = ¬ (null l) =⇒ l ≡ encodeDecode l

encodeDecode :: [Char ]→ [Char ]

encodeDecode l = let t = huffTree l in decode t (encode t l)

decode :: Tree → [Bool ]→ [Char ]

decode [ ] = [ ]

decode t bs = dec t bs

where

dec (Leaf x) bs′ = x : decode t bs′

dec (Fork t ′ ) (False :bs′) = dec t ′ bs′

dec (Fork t ′) (True :bs′) = dec t ′ bs′

encode :: Tree → [Char ]→ [Bool ]

encode t =

let table = codeTable t

in concatMap (fromJust ◦ (‘lookup‘table))

collate :: [Char ]→ [(Nat,Tree)]

collate [ ] = [ ]

collate (c : cs) = let

(n, cs′) = countRemove c (c : cs)

in insert (n,Leaf c) (collate cs′)

countRemove :: Char → [Char ]→ (Nat, [Char ])
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countRemove [ ] = (0, [ ])

countRemove x (y : ys) = let

(count, rest) = countRemove x ys

in if x ≡ y then (count + 1, rest) else (count, y : rest)

huffTree :: [Char ]→ Tree

huffTree cs = mkHuff (collate cs)

mkHuff :: [(Nat,Tree)]→ Tree

mkHuff [( , t)] = Fork t (Leaf Y ) -- Tree must have two elements

mkHuff l = go l

where

go [( , t)] = t

go ((n0 , t0 ) : (n1 , t1 ) : wts) =

go (insert (n0 + n1 ,Fork t0 t1 ) wts)

codeTable :: Tree → [(Char , [Bool ])]

codeTable t = go [ ] t

where

go p (Leaf x) = [(x , p)]

go p (Fork xt yt) = go (p ++ [False ]) xt ++ go (p ++ [True ]) yt

A.5 Overlapping Prelude

The overlapping “Prelude” replaces logical operators with their overlapping

counterparts.

module OverlapPrelude

(module Prelude

, ( ∧ )
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, (∨)

) where

import Prelude hiding (( ∧ ), (∨))

{-# OVERLAP ( ∧ ) #-}

( ∧ ) :: Bool → Bool → Bool

False ∧ = False

∧ False = False

True ∧ y = y

x ∧ True = x

{-# OVERLAP (∨) #-}

(∨) :: Bool → Bool → Bool

False ∨ y = y

x ∨ False = x

True ∨ = True

∨ True = True

A.6 Overlapping Naturals

An overlapping implementations of the natural module.

module OverlapNat where

import Prelude hiding ((ˆ))

data Nat = Zero | Suc Nat deriving Show

(ˆ) :: Nat → Nat → Nat

ˆ Zero = 1

aˆ(Suc x) = a + (a ∗ pred (aˆx))

instance Enum Nat where
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toEnum = fromIntegral

fromEnum Zero = 0

fromEnum (Suc n) = 1 + fromEnum n

instance Eq Nat where

Zero ≡ Zero = True

Zero ≡ Suc = False

Suc ≡ Zero = False

Suc x ≡ Suc y = x ≡ y

instance Ord Nat where

Zero 6 = True

Suc 6 Zero = False

Suc x 6 Suc y = x 6 y

Zero> = False

Suc x > Suc y = x > y

Suc > Zero = True

{-# OVERLAP max #-}

max Zero y = y

max x Zero = x

max (Suc x) y = Suc (max x (pred y))

max x (Suc y) = Suc (max (pred x) y)

instance Num Nat where

{-# OVERLAP (+) #-}

Zero +y = y

Suc x + y = Suc (x + y)

x + Zero = x

x + Suc y = Suc (x + y)
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x − Zero = x

Zero− = Zero

Suc x − Suc y = x − y

Zero ∗ = Zero

(Suc x) ∗ y = y + (x ∗ y)

fromInteger 0 = Zero

fromInteger n = Suc (fromInteger (n − 1))

abs n = n

signum = Suc Zero

A.7 Sorted Permutations

The permutation case study, section 6.3.3. For this and following examples

the overlapping versions can be used by providing the −DOVERLAP flag.

This swaps the ‘Nat‘ and ‘Prelude‘ libraries for their overlapping counter-

parts.

{-# LANGUAGE CPP #-}

{-# LANGUAGE NoImplicitPrelude #-}

module Perm where

#ifdef OVERLAP

import OverlapPrelude hiding ((ˆ))

import OverlapNat

#else

import Prelude hiding ((ˆ))

import Nat

#endif
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import Data.List

import Property

check :: Nat → [Nat ]→ Result

check n l = perm n l =⇒ [0 . . n − 1] ≡ sort l

perm :: Nat → [Nat ]→ Bool

perm n l = (n ≡ lengthNat l) ∧ all (<n) l ∧ allDiff l

allDiff :: [Nat ]→ Bool

allDiff [ ] = True

allDiff (n : l) = notElem n l ∧ allDiff l

A.8 Ordered Trees

The ordered tree case study, sections 4.4.6 and 6.3.5. Three properties are

provided check for the results in chapter 4, checkEnum with a size limit for

enumerative testing and checkRand with a size limit for random testing.

The bespoke size limits are defined in the OrderedTreeType module which

always uses overlapping functions.

{-# LANGUAGE CPP #-}

{-# LANGUAGE NoImplicitPrelude #-}

{-# LANGUAGE DeriveFunctor #-}

{-# LANGUAGE DeriveFoldable #-}

module OrderedTreeType where

import OverlapPrelude hiding ((ˆ))

import OverlapNat

data Tree a = Leaf | Node (Tree a) a (Tree a)

deriving (Eq, Show,Functor ,Foldable)
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{-# DIST Leaf 1 #-}

{-# DIST Node 2 #-}

countTree :: Tree a → Nat

countTree Leaf = Zero

countTree (Node t1 t2 ) = Suc (countTree t1 + countTree t2 )

depthTree :: Tree a → Nat

depthTree Leaf = Zero

depthTree (Node t1 t2 ) = Suc (max (depthTree t1 ) (depthTree t2 ))

depthElem :: Tree Nat → Nat

depthElem Leaf = Zero

depthElem (Node t1 a t2 ) =

maximum [a, depthElem t1 , depthElem t2 ]

enumSize :: Nat → Tree Nat → Bool

enumSize i t = (countTree t 6 i) ∧ all (6 4) t

{-# LANGUAGE CPP #-}

{-# LANGUAGE NoImplicitPrelude #-}

module OrderedTree where

#ifdef OVERLAP

import OverlapPrelude hiding ((ˆ))

import OverlapNat

#else

import Prelude hiding ((ˆ))

import Nat

#endif
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import OrderedTreeType

import Property

check :: Nat → Tree Nat → Result

check n t = ordered t =⇒ ordered (del n t)

checkRand :: Nat → Nat → Tree Nat → Result

checkRand i n t = check n t ‘suchThat‘ depthTree t 6 i

checkEnum :: Nat → Tree Nat → Result

checkEnum i t

= check 1 t ‘suchThat‘ enumSize i t

del :: Ord a ⇒ a → Tree a → Tree a

del Leaf = Leaf

del n (Node t1 a t2 )

| a < n = Node t1 a (del n t2 )

| n > a = Node (del n t1 ) a t2

| otherwise = ext t1 t2

where

ext Leaf t = t

ext (Node t11 b t12 ) t = Node t11 b (ext t12 t)

ordered :: Ord a ⇒ Tree a → Bool

ordered Leaf = True

ordered (Node t1 a t2 )

= all (6 a) t1 ∧ ordered t1

∧ all (> a) t2 ∧ ordered t2
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A.9 Well-Typed Expressions

The well-typed expression case study, section 6.3.6

{-# NoImplicitPrelude #-}

module ExprType where

import OverlapNat

data Expr

= Add Expr Expr

| If Expr Expr Expr

| Natural Nat

| Boolean Bool

countExpr :: Expr → Nat

countExpr (Natural v) = v

countExpr (Boolean ) = Zero

countExpr (If e e′ e′′) =

Suc (countExpr e + countExpr e′ + countExpr e′′)

countExpr (Add e e′) = Suc (countExpr e + countExpr e′)

depthExpr :: Expr → Nat

depthExpr (Natural v) = v

depthExpr (Boolean ) = Zero

depthExpr (If e e′ e′′) = Suc $

maximum [depthExpr e, depthExpr e′, depthExpr e′′ ]

depthExpr (Add e e′) = Suc (max (depthExpr e) (depthExpr e′))

{-# LANGUAGE CPP #-}

{-# LANGUAGE NoImplicitPrelude #-}
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module Expr where

#ifdef OVERLAP

import OverlapPrelude hiding ((ˆ))

import OverlapNat

#else

import Prelude hiding ((ˆ))

import Nat

#endif

import ExprType

import Property

import Control.Monad

import Data.Maybe

data Type = Nat | Bool | NoType

check :: Type → Expr → Result

check t e = hasType e t =⇒ isJust (evalExpr e)

checkRand :: Nat → Type → Expr → Result

checkRand n t e

= check t e ‘suchThat‘ depthExpr e 6 n

checkEnum :: Nat → Type → Expr → Result

checkEnum n t e

= check t e ‘suchThat‘ countExpr e 6 n

hasType :: Expr → Type → Bool

hasType (Natural ) Nat = True

hasType (Boolean ) Bool = True

hasType (If e e′ e′′) t =

hasType e Bool ∧ hasType e′ t ∧ hasType e′′ t
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hasType (Add e e′) Nat = hasType e Nat ∧ hasType e′ Nat

hasType = False

evalExpr :: Expr → Maybe Expr

evalExpr (Natural n) = Just $ Natural n

evalExpr (Boolean b) = Just $ Boolean b

evalExpr (Add e e′) = join $

evalAdd <$> evalExpr e <∗> evalExpr e′

evalExpr (If e e′ e′′) = join $

evalIf <$> evalExpr e <∗> evalExpr e′ <∗> evalExpr e′′

evalAdd :: Expr → Expr → Maybe Expr

evalAdd (Natural n) (Natural m) = Just $ Natural (n + m)

evalAdd = Nothing

evalIf :: Expr → Expr → Expr → Maybe Expr

evalIf (Boolean True) p = Just p

evalIf (Boolean False) q = Just q

evalIf = Nothing

A.10 N-Queens Constraint Problem

The n-queens constraint problem, section 6.3.7

{-# LANGUAGE CPP #-}

{-# LANGUAGE NoImplicitPrelude #-}

module NQueens where

#ifdef OVERLAP

import OverlapPrelude hiding ((ˆ))

import OverlapNat
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#else

import Prelude hiding ((ˆ))

import Nat

#endif

import Property

nQueens :: Nat → [Nat ]→ Result

nQueens n l

= (n ≡ lengthNat l)

∧ all (<n) l

∧ allDiff l

∧ checkDiagonals (map (n−) l)

∧ checkDiagonals l =⇒ True

checkDiagonals :: [Nat ]→ Bool

checkDiagonals [ ] = True

checkDiagonals (n : l) = checkDiag n l ∧ checkDiagonals l

where

checkDiag [ ] = True

checkDiag Zero = True

checkDiag (Suc n′) (a : l ′) = (n′ 6≡ a) ∧ checkDiag n′ l ′

allDiff :: [Nat ]→ Bool

allDiff [ ] = True

allDiff (n : l) = notElem n l ∧ allDiff l

A.11 Red-Black Trees

The red-black tree case study, section 6.3.8
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{-# LANGUAGE CPP #-}

{-# LANGUAGE NoImplicitPrelude #-}

{-# LANGUAGE DeriveFunctor #-}

{-# LANGUAGE DeriveFoldable #-}

module RedBlackType where

import OverlapPrelude hiding ((ˆ))

import OverlapNat

data Colour = R | B

deriving (Eq, Show)

data Tree a

= L | N Colour (Tree a) a (Tree a)

deriving (Eq,Foldable,Functor , Show)

type SizeNat = Nat

{-# DIST L 1 #-}

{-# DIST N 2 #-}

maxElem :: Tree Nat → Nat

maxElem L = Zero

maxElem (N t0 a t1 ) = maximum [a,maxElem t0 ,maxElem t1 ]

enumSize :: Nat → Nat → Nat → Tree Nat → Bool

enumSize n k a t

= (countReds t + pred (2ˆk) 6 n)

∧ all (6 n) t

∧ (a 6 n)

countReds :: Tree a → Nat

countReds (N R t1 t2 ) = 1 + countReds t1 + countReds t2

countReds (N B t1 t2 ) = countReds t1 + countReds t2
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countReds L = Zero

treeDepth :: Tree a → Nat

treeDepth L = Zero

treeDepth (N t1 t2 ) = Suc (max (treeDepth t1 ) (treeDepth t2 ))

{-# LANGUAGE CPP #-}

{-# LANGUAGE NoImplicitPrelude #-}

module RedBlack where

#ifdef OVERLAP

import OverlapPrelude hiding ((ˆ))

import OverlapNat

#else

import Prelude hiding ((ˆ))

import Nat

#endif

import Property

import RedBlackType

checkRand :: Nat → Nat → Nat → Tree Nat → Result

checkRand n k a t

= redBlackN k t =⇒ redBlack (insert a t)

‘suchThat‘ treeDepth t 6 n

checkEnum :: Nat → Nat → Nat → Tree Nat → Result

checkEnum n k a t

= redBlackN k t =⇒ redBlack (insert a t)

‘suchThat‘ enumSize n k a t
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redBlackN :: Ord a ⇒ Nat → Tree a → Bool

redBlackN k t = blackRoot t ∧ blackN t k ∧ red t ∧ ord t

redBlack :: Ord a ⇒ Tree a → Bool

redBlack t = blackRoot t ∧ black t ∧ red t ∧ ord t

insert :: Ord a ⇒ a → Tree a → Tree a

insert x s = makeBlack (ins s)

where

ins L = N R L x L

ins (N col a y b)

| x < y = balance col (ins a) y b

| x > y = balance col a y (ins b)

| otherwise = N col a y b

makeBlack (N a y b) = N B a y b

balance :: Colour → Tree a → a → Tree a → Tree a

balance B (N R (N R a x b) y c) z d = N R (N B a x b) y (N B c z d)

balance B (N R a x (N R b y c)) z d = N R (N B a x b) y (N B c z d)

balance B a x (N R (N R c y b) z d) = N R (N B a x b) y (N B c z d)

balance B a x (N R b y (N R c z d)) = N R (N B a x b) y (N B c z d)

balance col a x b = N col a x b

blackRoot :: Tree a → Bool

blackRoot L = True

blackRoot (N B ) = True

blackRoot = False

-- INVARIANT 1. No red node has a red parent.

red :: Tree a → Bool

red L = True
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red (N col a b) = (¬ (isRed col) ∨ (blackRoot a ∧ blackRoot b))

∧ red a ∧ red b

isRed :: Colour → Bool

isRed R = True

isRed B = False

-- INVARIANT 2. Every path from the root to an empty node

-- contains the same number of black nodes.

black :: Tree a → Bool

black = fst ◦ go

where

go L = (True, Zero)

go (N c t1 t2 ) = let

(b1 , d1 ) = go t1

(b2 , d2 ) = go t2

in (b1 ∧ b2 ∧ (d1 ≡ d2 )

, if isRed c then max d1 d2 else Suc (max d1 d2 )

)

-- Is a fixed black depth

blackN :: Tree a → Nat → Bool

blackN L Zero = True

blackN (N R t1 t2 ) n = blackN t1 n ∧ blackN t2 n

blackN (N B t1 t2 ) (Suc n) = blackN t1 n ∧ blackN t2 n

blackN = False

-- INVARIANT 3. Trees are ordered.

ord :: Ord a ⇒ Tree a → Bool

ord L = True
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ord (N t0 a t1 ) = all (6 a) t0 ∧ all (> a) t1 ∧ ord t0 ∧ ord t1
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