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Abstract 

A new method, combining empirical modelling with time series Interferometric Synthetic Aperture Radar (InSAR) 

data, is proposed to provide an assessment of potential landslide volume and area. The method was developed to 

evaluate potential landslides in the Heitai river terrace of the Yellow River in central Gansu Province, China. The 

elevated terrace has a substantial loess cover and along the terrace edges many landslides have been triggered by 

gradually rising groundwater levels following continuous irrigation since 1968. These landslides can have significant 

impact on communities, affecting lives and livelihoods. Developing effective landslide risk management requires 

better understanding of potential landslide magnitude. Fifty mapped landslides were used to construct an empirical 

power-law relationship linking landslide area (AL) to volume (VL) (V! = 0.333 × A!".$%%). InSAR-derived ground 

displacement ranges from -64 mm/y to 24 mm/y along line of sight (LOS). Further interpretation of patterns based 

on remote sensing (InSAR & optical image ) and field survey enabled the identification of an additional 54 potential 
landslides (1.9×102 m2 ≤AL≤ 8.1×104 m2). In turn this enabled construction of a map that shows the magnitude 

of potential landslide activity. This research provides significant further scientific insights to inform landslide hazard 

and risk management, in a context of ongoing landscape evolution. It also provides further evidence that this 

methodology can be used to quantify the magnitude of potential landslides and thus contribute essential information 

towards landslide risk management. 
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1. Introduction 

Landslides involve the downward and outward mass movement of slope materials composed 

of rock, soils, artificial fills, or a combination of these materials (Cruden & Varnes, 1996). Ongoing 

population growth, rapidly expanding societies, coupled with gradually progressing environmental 

(climate) change enhances pressures on the natural environment and results in increased exposure 

to potentially unstable terrain. Landslides are geohazards that globally result in serious impacts, 
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annually causing tens of billions of US$ worth of damage and more than 4,300 lives lost (Froude 

and Petley, 2018; Intrieri et al., 2019).  

There is a continuing need to develop better tools to enhance the effectiveness of landslide risk 

management. These tools include mechanisms to identify landslides (historical events and potential 

landslides), to better understand where these are most likely to occur and what trigger thresholds 

apply, to evaluate the risk that these events pose and to identify appropriate mitigation interventions. 

In turn, effective management of these geohazards can then lead to sustainable development that is 

in harmony with the long-term geomorphological evolution of a particular region (Dai et al., 2002; 

Guzzetti et al., 2009; Martha et al., 2013). 

Recent developments in remote sensing techniques can significantly contribute to developing 

more effective landslide hazard and risk management. This includes more efficient mapping of 

landslides using high resolution satellite imagery in a three-dimensional virtual environment and 

manipulating this digital information to allow further quantitative analyses of landslide parameters 

(location, size, volume, state of activity; Guzzetti et al., 2005; Crosta et al., 2013; Broeckx et al., 

2018). In addition, ground deformation on a millimeter scale obtained using time-series InSAR 

(Interferometry Synthetic Aperture Radar) can be used to update landslide inventory maps and to 

identify pre-cursor signatures in the landscape that can be used to identify potential landslides 

(Wasowski and Bovenga et al., 2014; Novellino et al., 2017; Zhang et al., 2018; Ambrosi et al., 2018; 

Li et al., 2020).  

Remote sensing techniques have thus been used successfully to investigate the position and 

movements of landslides and unstable slopes. However, for disaster risk management it is of greater 

importance to obtain a measure of the magnitude of potential landslides, e.g. through estimating the 

volume of material involved (Corominas et al., 2014). This research highlights a feasible route to 

achieve this, using a case study of the Heitai river terrace in central Gansu Province, China.  

Identifying and quantifying the volume of a landslide is possible by measuring the shape and 

inferring the slip surface geometry of landslides from a range of observational data or using an 

empirical relationship between geometrical properties (Guzzetti et al., 2009; Malamud et al., 2010; 

Cui et al., 2018). However, this is generally a laborious and data-intensive assessment that is only 

realistic for individual events. When a large number of landslides are encountered this soon becomes 
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an unfeasible / uneconomical task and forecasting the volume of potential landslides is even more 

challenging as there is added uncertainty regarding the landslide geometry and morphology of 

potential slip surfaces.  

In this paper, a combined approach is illustrated that uses an empirical model, InSAR 

techniques and field surveying to evaluate the magnitude of potential landslides (Fig. 1). Firstly, a 

landslide inventory is established which records the area (AL) and volume (VL) of historic landslides 

(among other parameters). Subsequently, an empirical relationship between AL and VL is established 

(cf. Guzzetti et al., 2009). Time-series InSAR data, coupled with geomorphological observations 

are used to derive polygons showing the location and extent of potential landslides. The empirical 

relationship is used to convert these areas into volume estimations of these potential landslides. In 

turn, these estimations enable characterization of the magnitude of the potential events. 

 
Fig. 1 Workflow for the evaluation of the magnitude of potential landslides at the Heitai terrace, Gansu, 
China. An initial field survey was employed to verify the boundaries of landslides. Further field surveys 
enabled validation of the empirical model. 
2. Data and method 

2.1 Study area 

The Heitai terrace is located 42 km west of Lanzhou City in central Gansu Province, China 

(Fig. 2) and is characterized by a flat topography and deeply incised gullies marking the edge of a 

fluvial terrace landform (the Fourth Terrace of the Yellow River). The terrace covers an area of 
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approximately 12 km2 with a maximum length of 5 km (in W-E direction) and a width of 3 km (in 

N-S direction), at an elevation of approximately 1,730 m (Peng et al., 2017). The climate is 

characteristic of the cold-temperate and arid climates (Guo et al., 2015) with an average annual 

temperature of 8.4 ℃ and average annual precipitation of 310 mm. The influence of the summer 

monsoon is variable; but almost 70% of the annual precipitation occurs in the period from July to 

September.  

 
Fig. 2 The Heitai study area (top) and landslides inventory map (bottom). Red line (AA’) indicates the 
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location of the geological profile in Fig. 3. The background is Google Earth imagery. 

The superficial lithologies comprise a sequence (top to bottom) of aeolian loess (approximately 

55 m thick) overlying clay-rich loess (approx. 8 m thick), fluvial gravel (particle size of 2-10 cm) 

mixed with sands (comprising mainly quartz; approx. 5 m thick). The underlying bedrock surface 

is represented by sequences of mudstones and sandstones dipping 11o to the SE (Zeng et al., 2016) 

(Fig. 3). 

From 1968, irrigation systems were established to support agricultural activities developed on 

Heitai terrace. Approximately 5 times per year the terrace is irrigated resulting in a process of ground 

water recharge that has raised the groundwater level by 20 m at an average annual rate of 0.18 m 

(Xu et al., 2014). Raising groundwater levels induced more than 107 loess-related landslides since 

1969, destroying buildings, facilities and causing multiple fatalities (Dijkstra et al., 1994; Zeng et 

al., 2016). Presently, some 50 landslide signatures are still visible as older events are superseded by 

later ones (Fig. 2). 

 
Fig. 3 Geological cross-section of Heitai terrace. The locations are shown in Fig. 2 (line AA’). 
(modified from Peng et al., 2016) 

2.2 Landslide mapping 

A database of the geometrical characteristics for landslides along the Heitai terrace was collated 

by Peng et al. (2017). It records basic geometry (e.g., length, width, affected area, volume) of 

different landslides types. This database was expanded using detailed information on individual 

landslides from the literature (Xu et al., 2008; Xu et al., 2012; Dong et al., 2013; Zhang et al., 2017). 

In addition, information from all available maps and tables in the literature above were digitized 

and incorporated into the Heitai landslide inventory. Further 3D interpretation of satellite images 

from Google Earth, complemented by extensive field surveys, has resulted in improved 
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approximation of the volume for each of the 50 landslides. 

2.3 Relationship between area and volume 

Recent research proposes empirical models to link landslide area (AL) to landslide volume (VL) 

for different landslide types and for a range of physiographic and climatic settings (e.g. Guzzetti et 

al., 2009; Qiu et al., 2017; Zhuang et al., 2018). These models are relevant for a broad range of 

landslide areas (2×100 m2＜AL＜3.9×1010 m2) and describe the relationship between AL and VL in 

a distinct power law: 

																																																												𝑉! = ε × A!"                                    (1) 

where AL (m2) is area of source section of landslide, VL (m3) is volume of landslide, ε and 𝛼 are 

curve-fitting parameters.  

The construction of these empirical relationships is based on the analysis of detailed landslide 

inventories that contain relevant information including location, length, width, area, volume and 

landslide type. Establishing a comprehensive inventory requires an integrated approach involving 

essential components including field measurements, remote sensing (e.g. aerial photograph 

interpretation), geomorphological surveys, geotechnical investigations and geophysical surveys 

(Tsutsui et al., 2007; Guzzetti et al., 2009; Klar et al., 2011; Tseng et al., 2013; Chen et al., 2014; 

Cui et al., 2018). Most of the landslide geometric properties can be retrieved by interpreting high-

resolution aerial photographs, satellite images and DEMs (Digital Elevation Model) and further 

analysis in a GIS environment can assist with the establishment of a classification of landslide 

susceptibility. 

2.4 Potential landslides mapping using time series InSAR 

Synthetic Aperture Radar (SAR) is a coherent radar system where electromagnetic waves 

backscattered from the Earth’s surface are collected, usually from a spaceborne platform. The 

conventional DInSAR (Differential Interferometric Synthetic Aperture Radar) method uses two or 

more SAR images covering the same area and acquired at different times to determine ground 

displacement from phase differences detected during successive SAR acquisitions (Hanssen, 2001; 

Ferretti et al., 2007). DInSAR can be affected by temporal decorrelation effects and atmospheric 

noise (Wasowski and Bovenga, 2014), and various approaches of time series analysis of SAR data 

have been developed to mitigate these issues (Osmanoğlu et al., 2016 and references therein). The 

decorrelations and atmospheric disturbances are mitigated by identifying radar targets where time 
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series of ground deformation can be extracted (Ferretti et al., 2001).  

Time series InSAR algorithms can detect surface ground deformation with high precision (mm) 

for large areas and produce ground displacement rate maps for investigating landslide and potential 

landslides (Wasowski & Bovenga, 2014). In particular, the Small Baseline Subset (SBAS) technique 

has been used in this work. The SBAS algorithm uses distributed scatterers identified by imposing 

constraints on the spatial and temporal baselines of SAR data used for the interferograms in order 

to reduce orbital errors and decorrelation noise (Berardino et al., 2002). The SBAS technique was 

used to process 42 ascending Sentinel 1A images and obtain the ground displacement map. The 

images were acquired from 14th October 2014 to 7th May 2017, with the central incident angle of 

44.4° from the vertical. The 1-arcsecond (~30 m) Shuttle Radar Topography Mission (SRTM) data 

from the United States Geological Survey (USGS) was used to remove the topographic phase and 

geocode the InSAR products. With a perpendicular baseline threshold of 160 m and a temporal 

baseline of 80 days, 114 interferograms were generated (Fig. 4).  

 
Fig. 4 Spatial-temporal distribution of interferogram formation. Green dots and black lines represent 
images and interferometric pairs, respectively. The yellow dot in the red circle is the master image used 
for the co-registration. 

Once the spatial distributions of surface displacement are established, further interpretation of 

the observed pattern can lead to identification of displacement rate threshold to identify potential 

landslides depending on the lithological characteristics, failure mechanisms, sensor measurement 

precision and the investigation objectives (Wasowski & Bovenga, 2014). These thresholds are 

usually informed by statistical parameters such as standard deviation of displacement rates (Herrera 
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et al., 2013; Zhang et al., 2018).  

3. Results 

3.1 Dependency of volume on area 

Landslide dimensions are estimated using a 10 cm resolution Digital Elevation Model (DEM), 

3-D Laser Scanning by Peng et al. (2016, 2017) and refined by field investigations in this work. For 

the Heitai region, landslide areas cover a range from 9.6×102 m2 to 2.1×105 m2 and landslide 

volumes range from 9.1×102 m3 to 6.1×106 m3. Landslide magnitude can be expressed as the base 

10 logarithm of landslide volume (cf. Malamud et al, 2004) resulting in landslide magnitudes 

ranging from 2 to 6.  

The area (AL) and volume (VL) of 50 historical landslides were plotted in a log-log graph (Fig. 

5) and this shows a clear linear relationship between AL and VL across multiple orders of magnitude. 

Fitting a regression similar to the one proposed in Guzzetti et al. (2009) enables the derivation of 

the following formula: 

V# = 0.333 × A#$.&''    (R2 = 0.795)                                          (2) 

where the landslide volume (VL) can be calculated on the basis of the observed landslide area (AL) 

for this source area of landslides in the Heitai terrace. 

The bivariate kernel density estimation for the landslide data points in Fig. 5 shows that the 

best fit goes through the highest density and this suggests a good relationship to empirical model. 

Moreover, the upper and lower 95% prediction intervals (dashed red lines in Fig. 5) show that the 

scatter of the empirical data around the regression line is limited. Only one record falls outside the 

intervals indicating a robust empirical relationship. 
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Fig. 5 Empirical model for landslides obtained through a literature review and field survey. Dots portray 
the area, AL (x-axis, m2), and volume, VL (y-axis, m3), of 50 landslides. The solid red line represents the 
best fit obtained, adopting a least square linear fitting technique. Dashed red lines show 95% confidence 
intervals. Colours indicate density of points obtained through bivariate kernel density estimation.  

There are two observations that need to be considered in this relationship: the areal boundary 

and the type of the mapped landslides. Five types of landslide are included in the landslide inventory: 

loess-bedrock planar (translational) slide, loess-bedrock (complex) slide, loess flow slide, loess 

slides and loess flow (Peng et al., 2017). Considering the material of the landslide body, landslides 

were classified into loess and loess-bedrock slide. The morphology of the slip plane, and the post-

failure deformation behaviour both vary. However, these landslides have similar failure initiation 

mechanisms, with sliding initiated in a source area along the upper parts of the river terrace 

escarpment (Fig. 6).  

Where the slip surface is positioned largely along a loess-bedrock contact surface it tends to 

form a major planar slip surface. Where most of the slip surface is located in loess a rotational slip 

surface is common. For both these types of landslide the post-failure deformation is characterized 

by a rapid disintegration of the slide mass and a transition to flow-like movement with long runout 

distances. The potential area that is covered by the landslide bodies is influenced by factors such as 

antecedent moisture (groundwater table position), the local difference between minimum and 

maximum elevation, dominant lithology (loess, bedrock) and roughness of the ground over which 

a landslide travels; a detailed geo-mechanical analysis falls outside the present study. The 
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combination of area and volume for the different types (loess slide & loess-bedrock slide) of 

landslides encountered at the Heitai did not affect the empirical relationship shown in Fig. 5. 

 
Fig. 6 (Left) Conceptual diagram of typical Heitai landslide where the red line is the outline of the 
landslide and includes the source and depositional areas. (Right) A schematic section through a landslide 
showing the original slope profile, the post-event slope and the assumed position of the slip surface.  

3.2 Landslide mapping by SBAS-InSAR 

The mean displacement rate map obtained from the ascending Sentinel datasets is illustrated 

in Fig. 7. A higher threshold for different temporal coherence for extracting CTs (coherent targets) 

provides a smaller standard deviation of displacement rates of CTs, but a lower density introduces 

gaps of ground deformation for many slopes along the edges. Optimization of threshold versus 

density resulted in a coherence threshold of 0.35 corresponding to a standard deviation of velocity 

(5 mm/y) indicating a statistically acceptable accuracy of the InSAR results. At the same time, this 

coherence threshold provides an appropriate density of CTs covering the majority of slopes along 

terrace edges (Fig. 7). Therefore, the surface displacement rates are extracted for points with a 

temporal coherence threshold ≥ 0.35 to provide sufficient pixel density for mapping. A total of 

157,434 CTs cover the clipped SAR image (clipped to the terrace landform; approximate area 65 

km2) providing an average density of 2,399 CTs km-2. The density of CTs is deemed sufficient to 

detect the movements of all slopes along the terrace edge, and map the boundaries of potential 

landslides more accurately. The displacement was extracted along the Line-Of-Sight (LOS) where 

negative values represent ground motion away from the satellite, and positive values represent 

movement towards the satellite. The CTs completely cover the gullies and slopes due to the large 

incidence angle of LOS and higher temporal resolution of Sentinel 1A data (at least 12 days) with 

respect to some SAR platforms, such as Envisat ASAR (at least 35 days), ALOS PALSAR (at least 

46 days), RADARSAT-2 (at least 24 days) and COSMO-SkyMED (at least 16 days) (Fig. 4 & 7).  

Displacement rates between +24 mm/y and -64 mm/y were detected on the Heitai terrace and 
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slopes along the edge (Fig. 7). Most of the largest deformation rates in the northern, southwestern 

and southeastern sectors show displacement rates in excess of -60 mm/y which is consistent with 

previous findings (Xu et al., 2012; Xu et al., 2014; Peng et al., 2017; Shi et al., 2019).  

The displacements were verified by a series of field survey. The Heitai is a long-term field 

observatory that is subject to a large number of surveys each year (e.g. Guo et al., 2015; Zeng et al., 

2016). The mean LOS velocity of up to -30 mm/y in the western sector of the terrace represents 

subsidence associated with the development of a large number of sinkholes, consistent with 

subsidence rates observed in previous decades (Guo et al., 2015). In the central sector of the terrace, 

the displacement rates vary from -10 mm/y to -20 mm/y and indicate ground subsidence which has 

caused many cracks in buildings (average width ~ 2 cm) in the past 3 to 4 years. Most of the 

displacement rates from 10 mm/y to 20 mm/y indicate landslide deposits that are still active. It is 

notable that deformation rates exceeding 20 mm/y in the northern and southern edges of the terrace 

are consistent with the location of many fresh cracks which have widths of several tens of 

centimeters (Fig. 7). The detailed field surveys highlighted that small sinkholes, crack and signs of 

subsidence corresponded with displacement rates of approximately ± 5 mm/y. Displacement rates 

greater than ± 10 mm/y showed much larger features including large (> 150 mm width) and long 

(tens of meters) cracks, particularly along the terrace edge. As a consequence, a stability threshold 

of ± 10 mm/y has been chosen to identify potential landslide areas. If the LOS displacement is 

projected in the direction of the steepest slope (e.g. following the approach of Cigna et al. (2013) 

and Herrera et al. (2013)), most of the CTs would have larger displacement rates and the stability 

threshold defined for mapping would increase correspondingly. This projection could potentially 

result in CTs returning positive values and these would generally be discarded, resulting in a lower 

density of CTs (e.g. Herrera et al. (2013) and Zhang et al. (2018)). For this research it was therefore 

decided to use the LOS displacement as this ensured a higher density of CTs and enabled more 

detailed mapping of unstable slopes. 
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Fig. 7 Mean displacement rates estimated by SBAS and demonstrated by field survey for cracks and 
scarps investigation. Photographs on the top and below are cracks and scarps along the edge of terrace. 

Distribution of ground deformation and knowledge of slope instability in the Heitai region 

enabled identification and mapping of potentially unstable areas. The potential landslide inventory 

was prepared using the displacement rates from InSAR, available satellite imagery (Google Earth), 

aerial photos and topographic data at high spatial resolution. Specifically, Google Earth provides a 

three-dimensional virtual environment which can be used to view slope geometry.  

A minimum number of CTs should be considered to ensure that detected displacements are 

indicative of an impending landslide. Considering the area of mapped historical landslides (9.6×102 
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m2＜AL＜2.1×105 m2), original pixel spacing of Sentinel 1A (~ 14 m in azimuth and ~4 m in range) 

and the CTs density over the area of study, the minimum threshold to establish displacement rates 

is set at 4 CTs within an unstable slope polygon in this case.  

Geomorphological interpretation coupled with detailed field surveying of ground deformation 

and crack development along the terrace edges of the Heitai enabled the establishment of a set of 

criteria for the recognition and mapping of potential landslides in this study area  

l the lower margin of a potential landslide polygon appears along or just above the interface 

of loess and bedrock; 

l backscarps were defined on the basis of field evidence and informed by the position of 

cracks or a series of sinkholes parallel to edges of the terrace; 

l side scarps are sketched based on developing trends of cracks, valleys and valley shape; 

l CTs on existing landslide runout deposits with gentle topography (often with deformations 

larger than the stability threshold) are ignored. 

Based on the above criteria, 54 polygons representing the location and area of potential 

landslides were established (Fig. 8). The area of these potential landslides (AP) ranges from 1.9×

102 m3 to 8.1×104 m2, which is in a range similar to that of the mapped historical landslides. The 

total area of potential landslides is 9.8×105 m2. 

 
Fig. 8 Potential landslides mapped based on displacement rate map. The background is Google Earth 
imagery. 
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The absolute values of the CTs displacement rates (VS) located inside each polygon are used 

to represent the activities of these potential landslides. The mean velocity map of potential landslides 

(Fig. 9) shows that most of the slopes with VS greater than 30 mm/y are located along the northern 

edge of the terrace, where relatively few landslides have been triggered as yet. These significant 

pre-failure strains appear to indicate that along this northern edge of the Heitai terrace a new phase 

of intensive landslide activity is imminent (Fig. 9).  

 
Fig. 9 Displacement rates of potential landslides in Heitai terrace. The colours of outlined polygons 
indicate the mean LOS velocity of CTs inside the polygon. The background is Google Earth imagery. 

3.3 Potential landslide volume 

The empirical relationship shown in (2), generated using the SBAS-derived area as input, was 

used to calculate the volume of individual potential landslide (VP) (Table 1, Fig. 10, Fig. 11). Before 

7th May 2017, the 54 mapped potential landslides range in volume from 1.3×104 m3 to 2.49×106 m3, 

with the most numerous failures in the range 1.0×105 m3< VP ≤1.0×106 m3. However, 6 potential 

landslides with volume greater than 1.0×106 m3 account for the largest volume percentage in the 

total volume of all potential landslides. The results confirm the important contribution of large 

landslides to the total volume of landslide material in an area. The ratio between the mapped AP and 

the computed VP was used to calculate the thickness of potential landslides. For the mapped 

potential landslides, the landslide volume totaled VLT=2.0×107 m3, with a total area of ALT=9.8×105 

m2, corresponding to an average thickness of potential landslide material for the Heitai terrace of 20 
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m. The thickness of the individual landslide ranges from 7 m to 30 m, with an average of 15 m.  

Table 1 Statistics of the volume of forecasted potential landslides. VR indicates the volume range of 
potential landslides. N indicates the number of potential landslides in the volume range. PTN is the 
percentage of N in the total number of potential landslides. PTA is area percentage of potential landslides 
with same magnitude in the total area of potential landslides. PTV is volume percentage of potential 
landslides with same magnitude in the total volume of potential landslides.  

VR (m3) N PTN (%) PTA (%) PTV (%) 

1.3×104≤VP≤1.0×105 16 30 17 4 

1.0×105<VP≤1.0×106 32 59 45 45 

1.0×106<VP≤2.49×106 6 11 38 51 

 
Fig. 10 The volume of potential landslides calculated based on empirical relationship. The colours of 
polygons indicate the volume and magnitude of potential landslides. 
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Fig. 11 Landslide volume versus landslide rank. The column colour corresponds to landslide volume 
classes shown in Fig. 10. 

3.4 Pre-failure strains of potential landslides 

The movement of a landslide can be divided into four stages: 1) the pre-failure stage, 2) the 

onset of failure, 3) the post-failure stage and 4) the reactivation stage (Leroueil, 2001). The pre-

failure stage is crucial to forecast the time of slope failure and is controlled mostly by deformations 

due to local variation in stress, creep and progressive failure (Saito, 1969; Voight, 1989; Leroueil, 

2001; Federico et al., 2012; Carlà et al., 2019; Intrieri et al., 2019). 

For brittle materials that have very little or no discernable pre-failure strain it is difficult to 

detect the pre-cursors to failure. However, the pre-failure strains of loess deposits in Heitai terrace 

are well documented and observations from both laboratory tests and field investigations have 

shown that loess deposits can accumulate substantial pre-failure strains as a consequence of 

gradually accumulating micro-shears in the loess fabric (Zhang and Wang, 2017; Shi et al., 2019). 

Following on from the early works on pre-failure strain by Saito (1965) and Voight (1988), it has 

been proposed that extrapolation of the reciprocal of displacement rate (velocity) can indicate when 

a material would fail. However, the mobilization of pre-failure strains responds to varying stress 

and moisture conditions in these materials providing a potentially complex pattern of strain before 

accelerating until failure. Pre-failure strain can be summarized into three sub-phases (Saito, 1969; 

Voight, 1989; Petley et al., 2005; Federico et al., 2012) (Fig. 12): 

• Decelerating displacement where the displacement starts at a rapid rate and slows with 
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time; 

• Steady displacement where the displacement has a relatively uniform rate; 

• Accelerating displacement where the displacement has an accelerated rate and 

terminates. 

 
Fig. 12 Idealized pre-failure strain model 

The time series InSAR technique to monitor non-linear ground displacement at millimeter 

scale over time provides extremely valuable information to characterize not just the susceptibility 

of the terrain to generate a landslide, but also the type of pre-failure strain that the slope is subject 

to; decelerating (Fig. 13a); steady (Fig. 13b); or accelerating strains potentially leading to failure 

(Fig. 13c). The displacement trends of each polygon were checked using the PS Time Series Viewer 

plugin in QGIS software and, using geomorphological features, were classified manually to ensure 

accuracy. The pre-failure strain behavior was classified by the displacement trends of pixels in the 

section with largest displacement rates. Figure 14 shows potential landslides along the edges of the 

Heitai terrace classified according to these precursory characteristics. The majority of the potential 

landslides (i.e. 37, 1.6×107 m3, 83% of total volume) show steady strains behavior with a constant 

rate of displacement over the observed period. The displacement rates of 14 potential landslides 

(2.9×106 m3, 14% of total volume) show signs of accelerating strains. The remaining three potential 

landslides (0.7×106 m3, 3% of total volume) appear to be decelerating. 
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Fig. 13 Typical time-series of three types of pre-failure strain. a) Decelerating, b) steady and c) 
accelerating strain. 

 
Fig. 14 Pre-failure strain map of potential landslides in Heitai. The colours of outlined polygons 
indicate the types of strain of potential landslides. 
4. Discussion 

The proposed method provides reliable predictive capability with respect to area and volume 

of potential landslides at the Heitai river terrace, which are crucial parameters to assess and manage 

the associated risk. Studies about the empirical relationship between AL and VL are mostly 

established based on the volume and affected area of landslides (Malamud et al., 2004; Guzzetti et 

al., 2009; Qiu et al., 2017). Uncertainty in the established relationships can be introduced by local 

conditions, such as geometry and relief of slip surfaces which represents also a limitation to the 



19 
 

visibility of spaceborne SAR sensors (Notti et al., 2014) or where InSAR measurements are missing 

or incomplete because of land cover or displacements larger than the maximum detectable 

displacement (~28 mm between two consecutive acquisitions for Sentinel-1; Massonnet and Feigl, 

1998).  

The quality of a landslide inventory is an important factor affecting the reliability of the 

empirical relationship between AL and VL as mapping accuracy or incomplete inventories can skew 

the results. The landslide inventory in this study was obtained from literature review; it was updated 

through the interpretation of remote sensing data with high spatial resolution; and verified through 

a series of detailed field surveys. The lack of vegetation provided a good environment for the visual 

recognition of landslide morphology.  

Despite the small number of historical landslides in this study (50), the relationship indicates 

a clear linear trend and self-similar behavior allowing to infer a dependency between AL and VL, 

even if the inventory is incomplete. The relationship is also unaffected by the main types of 

landslides (loess & loess-bedrock) and is consistent with those reported by Guzzetti et al. (2009; 

Table 2 and Fig. 15).  

The relationship derived from this study exhibits a trend that is similar to those reported by 

Guzzetti et al. (2009), but it appears to represent landslides that have slightly larger volumes relative 

to the ground surface area. This is potentially caused by the dominance of potential landslides 

occurring along a high terrace edge and a substantial loess thickness (>50 m) influencing the depth 

of critical slip surfaces and resulting in a landslide population that would be marginally larger than 

those in more varied terrain.  

Table 2 A comparison of 9 empirical relationships reported by Guzzetti et al. (2009) linking landslide 
area AL to landslide volume VL. ID 10 represents the relationship obtained for this study. N indicates the 
number of events upon which each relationship is based. These relationships are illustrated in Fig. 15. 

ID Equation Min AL 
(m2) 

Max AL 
(m2) 

N Source 

1 V# = 0.074 × A#$.() 2.0×100 1.0×109 677 Guzzetti et al. (2009) 
2 V# = 0.1479 × A#$.&*+ 2.3×100 1.9×105 207 Simonett (1967) 
3 V# = 0.1549 × A#$.,',) 7.0×102 1.2×105 124 Guthrie and Evans 

(2004) 
4 V# = 0.39 × A#$.&$ 1.0×101 3.0×103 51 Imaizumi and Sidle 

(2007) 
5 V# = 0.0844 × A#$.(&-( 1.0×101 1.0×109 539 Guzzetti et al. (2008) 
6 V# = 0.19 × A#$.$' 5.0×101 4.0×103 11 Imaizumi et al. (2008) 
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7 V# = 0.328 × A#$.$,( 1.1×101 1.5×103 37 Rice and Foggin (1971) 
8 V# = 1.826 × A#,.+'+ 5.0×101 1.6×104 1019 Larsen and Torres 

Sanchez (1998) 
9 V# = 1.0359 × A#,.++ 2.0×102 5.2×104 615 Martin et al. (2002) 
10* V# = 0.333 × A#$.&'' 9.6×102 2.1×105 50 This work (Eq. (2)) 

 
Fig. 15 Empirical relationships linking landslide area (AL) and volume (VL) proposed in Guzzetti et al. 
(2009) and in this study (red line). 

The mapping of potential landslides is based on a combination of an InSAR-derived 

displacement rate map and an understanding of mass movement dynamics in the study area, gained 

from field mapping and literature review. Different time series InSAR techniques are applicable to 

different environments and objectives of research (Hooper et al., 2012; Wasowski & Bovenga, 2014). 

A sufficient density of CTs, which depends on the number and quality of images, temporal 

distribution and extent of data, characteristic of physical processes, CT detecting method and 

processing technique (Wasowski and Bovenga, 2014), can be used as support to distinguish the 

boundary of potential landslides. In addition, understanding the topography and mechanisms of 

geomorphological processes in the study area is vital, e.g. to improve identification and 

characterization of active slopes.  
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Fig. 16 Three landslides with Google earth image (a & c) in 3D ArcGlobe and photograph (b, d & e) as 
background. Yellow outlines indicate the forecasted source area of landslides, red outlines indicate the 
source area of landslides occurred after 5 February 2019, the black outlines indicate the affected area of 
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landslides. The geometrical properties of landslides were measured by Laser Rangefinder in the field. 
The Google Earth image was acquired on 5 February 2019. The photographs were taken by UAV on 17 
June 2019. The locations of b, d and e are show in Fig. 14. The black outlined stars indicate the location 
of InSAR time-series displacement in Fig. 17 for landslide in b, d & e. 

The validation of the forecasted magnitude of potential landslides was further enhanced 

following three case studies of events that occurred soon after InSAR monitoring from 14th October 

2014 to 7th May 2017. The geometrical and geomorphological characteristics of these three 

landslides were established using a Laser Rangefinder in the field (Fig. 16). The landslides shown 

in Fig. 16 are a re-activation of an existing landslide (16b), a re-activation of the crown area of an 

existing landslide (16d), and a new landslide (16e) respectively. The volume of the landslides was 

calculated as the product of the length, width and mean depth multiplied by a correction factor that 

depends on the geometry of the event. For a landslide occurring on a natural slope without previous 

slope failures, the coefficient is 0.5 (Figs. 16b and 16e). The correction factor is taken as 0.3 where 

a landslide occurs on the backscarp and overlaps with previous landslide deposits (Fig. 16d). The 

volume of the three landslides in Fig. 16b, d and e are 55.7×104 m3, 22.6×104 m3 and 17.3×104 m3 

compared to corresponding forecasted volumes of 66.7×104 m3, 14.5×104 m3 and 72.5×104 m3. This 

shows a good consistence between the forecasted and actual landslide volume with a small 

overestimation of volume for the landslide shown in Fig. 16b. Figure 16d indicates that our 

empirical method only slightly underestimated the actual landslide volume. The actual landslide in 

Fig. 16e is located within the forecasted area, but did not manifest an event (as yet) that is as large 

as the forecasted size. It can be concluded therefore, that the applied method of forecasting the 

location and magnitude of potential landslides can provide an adequate insight into where the 

greatest risk is located providing a useful guide to assist with the management of these geohazards.  

The three landslides shown in Fig. 16 have a similar geometry of the sliding surface; the 

landslides develop largely within the loess deposits and contain only small amounts of bedrock. 

This corresponds well with the assumption used for the identification of potential landslides in this 

study. In the field survey that was carried out before these landslides occurred, large cracks were 

observed along the upper margin of the potential landslide of Fig. 16e. However, there were no 

apparent cracks observed that would indicate the position of the backscarps of the landslides in Fig. 

16b and 16d. This supports the value of using CTs for the identification of potential landslides, and 

that further evidence from geomorphological features (trends of cracks, sinkholes, valleys and 
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ridges) can then provide added value for determining the extent of these potential events.  

 
Fig. 17 Time-series displacement from 14th October 2014 to 7th May 2017 for landslides shown in Fig. 
16b, 16d and 16e. 

Figure 17 shows the time-series displacements for landslides in Fig. 16. Interestingly, 

landslides in Fig. 16d and 16e show steady strains from October 2014 to May 2017, and landslide 

in Fig. 16b shows accelerating strains after February 2016. In Fig.17(16b), the acceleration occurred 

from February 2016 to September 2016 and February 2017 to May 2017, which is consistent with 

intensive irrigation activities in early Spring and corresponds with the timings of most landslides 

along the Heitai terrace. These three examples therefore provide a clear indication that extrapolating 

strain rates to obtain a time to failure must be used with great caution.  

The combination of InSAR and an empirical model not only extends their application, but also 

provides an important contribution towards the quantification of landslide risk assessment. The 

landslide volume that is determined using this approach enables estimation of the magnitude of 

potential landslides. Coupled with observations on the typical sliding velocity and runout distance 

of landslides in this region, in the near-future this could provide estimates of exposure to these 

hazards and improvements in risk reduction strategies for this region. Opportunities to estimate the 

probability of landslide occurrence will enhance as the InSAR time-series analysis accumulates. 

This study has shown that this is a plausible pathway to determine the magnitude of potential 

landslides in this region. It also highlights that further work is required to establish (semi-)empirical 

or physical models to evaluate the full potential of using time-series displacement generated by 

InSAR to predict the occurrence (time, place, size) of landslides (Saito, 1969; Petley et al., 2005; 
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Serena et al., 2017). Further analysis of these time-series displacement profiles of individual 

(potential) events can help to direct monitoring and observation resources to sites that are in an 

accelerating strain phase and help to highlight areas at risk that may require preventative evacuation. 

With time, this can result in a regional approach that addresses landslides hazard management 

throughout this part of the Loess Plateau and other similar regions.   

5. Conclusions 

An empirical model linking landslide area to volume was combined with an evaluation of time 

series InSAR to construct a method to forecast the location, area and volume of potential landslides 

in the Heitai terrace region of central Gansu Province, China. 

An inventory of 50 historical landslides was used to generate the empirical relationship (V# =

0.333 × A#$.&'' ), which is in good agreement with similar relationships established elsewhere 

(Guzzetti et al. 2009). The total area and volume of historical landslides are 1.26×106 m2 and 

3.86×107 m3, respectively. The magnitude of these historical landslides is expressed as the base 10 

logarithm of the landslide volume and varies from 3 to 6. 

42 Sentinel 1 images acquired from 14th October 2014 to 7th May 2017 were processed by 

SBAS technique to generate the ground displacement rates to support the identification and mapping 

of potential landslides. A total of 157,434 CTs (2399 CTs km-2) with displacement rates between 24 

mm/y and -64 mm/y were detected around the Heitai terrace. Fifty-four potential landslides were 

identified using the stability threshold of ±10 mm/y and further refined using geomorphological 

interpretation.  

Finally, the areas of these 54 potential landslides were mapped by time series InSAR and their 

volumes (VP) were calculated using the empirical relationship. Before 7th May 2017, 16 potential 

landslides are identified with volumes in the range 1.29×104 m3≤VP≤10×104 m3, 32 potential 

landslides with volumes in the range 1×105 m3<VP≤10×105 m3, 6 potential landslides with volumes 

in the range 1×106 m3<VP≤4.27×106 m3. 

The approach of this study enabled identification of location, area and volume of potential 

landslides in the Heitai terrace. The magnitude of these potential landslides (an expression based on 

the base 10 logarithm of landslide volume) helps to convey the severity of these events, were they 

to occur. Once the InSAR-based displacement time-series becomes longer, it is anticipated that 
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analyses of the patterns of pre-failure strains will provide further insights into forecasting time to 

failure. The further development of effective landslide risk management in this region will benefit 

from this approach as it will provide the best available knowledge to characterize the location and 

size of a potential event. With careful analysis of the pattern of pre-failure strains this combined 

knowledge will be instrumental in designing appropriate management and mitigation strategies. The 

information also enables assessment of the potential for post-failure mobility and the modeling of 

landslide runout. In turn this enables designation of zones at risk from these potential landslides in 

the Heitai region and this will be reported in a separate paper. 

Extending this method over a larger area in this part of the Loess Plateau will enhance the 

quality of the landslide inventory and fine-tune the empirical relationship. The landslides in the 

Heitai area generally occur entirely within the loess deposits, with the deepest slip surfaces 

positioned along the loess-bedrock interface. This rule of thumb works well in this region and it is 

reasonable to assume that this can also be applied in many other parts of the 440,000 km2 large 

Loess Plateau or areas elsewhere where such clear distinctions in surface strata and underlying 

bedrock exist. This method has the potential to generate very useful information across a much 

larger regions that will benefit landslide risk assessment, hazard management, and research on 

landscape evolution.  
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List of Figure Captions 
Fig. 1 Workflow for the evaluation of the magnitude of potential landslides at the Heitai terrace, Gansu, 
China. An initial field survey was employed to verify the boundaries of landslides. Further field surveys 
enabled validation of the empirical model. 
Fig. 2 The Heitai study area (top) and landslides inventory map (bottom). Red line (AA’) indicates the 
location of the geological profile in Fig. 3. The background is Google Earth imagery. 
Fig. 3 Geological cross-section of Heitai terrace. The locations are shown in Fig. 2 (line AA’). 
(modified from Peng et al., 2016) 
Fig. 4 Spatial-temporal distribution of interferogram formation. Green dots and black lines represent 
images and interferometric pairs, respectively. The yellow dot in the red circle is the master image used 
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for the co-registration. 
Fig. 5 Empirical model for landslides obtained through a literature review and field survey. Dots portray 
the area, AL (x-axis, m2), and volume, VL (y-axis, m3), of 50 landslides. The solid red line represents the 
best fit obtained, adopting a least square linear fitting technique. Dashed red lines show 95% confidence 
intervals. Colours indicate density of points obtained through bivariate kernel density estimation.  
Fig. 6 (Left) Conceptual diagram of typical Heitai landslide where the red line is the outline of the 
landslide and includes the source and depositional areas. (Right) A schematic section through a landslide 
showing the original slope profile, the post-event slope and the assumed position of the slip surface.  
Fig. 7 Mean displacement rates estimated by SBAS and demonstrated by field survey for cracks and 
scarps investigation. Photographs on the top and below are cracks and scarps along the edge of terrace. 
Fig. 8 Potential landslides mapped based on displacement rate map. The background is Google Earth 
imagery. 
Fig. 9 Displacement rates of potential landslides in Heitai terrace. The colours of outlined polygons 
indicate the mean LOS velocity of CTs inside the polygon. The background is Google Earth imagery. 
Fig. 10 The volume of potential landslides calculated based on empirical relationship. The colours of 
polygons indicate the volume and magnitude of potential landslides. 
Fig. 11 Landslide volume versus landslide rank. The column colour corresponds to landslide volume 
classes shown in Fig. 10. 
Fig. 12 Idealized pre-failure strain model 
Fig. 13 Typical time-series of three types of pre-failure strain. a) Decelerating, b) steady and c) 
accelerating strain. 
Fig. 14 Pre-failure strain map of potential landslides in Heitai. The colours of outlined polygons 
indicate the types of strain of potential landslides. 
Fig. 15 Empirical relationships linking landslide area (AL) and volume (VL) proposed in Guzzetti et al. 
(2009) and in this study (red line). 
Fig. 16 Three landslides with Google earth image (a & c) in 3D ArcGlobe and photograph (b, d & e) as 
background. Yellow outlines indicate the forecasted source area of landslides, red outlines indicate the 
source area of landslides occurred after 5 February 2019, the black outlines indicate the affected area of 
landslides. The geometrical properties of landslides were measured by Laser Rangefinder in the field. 
The Google Earth image was acquired on 5 February 2019. The photographs were taken by UAV on 17 
June 2019. The locations of b, d and e are show in Fig. 14. The black outlined stars indicate the location 
of InSAR time-series displacement in Fig. 17 for landslide in b, d & e. 
Fig. 17 Time-series displacement from 14th October 2014 to 7th May 2017 for landslides shown in Fig. 
16b, 16d and 16e. 


