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The depth-attenuation of sinking particulate organic carbon (POC) is of particular

importance for the ocean’s role in the global carbon cycle. Numerous idealized

flux-vs.-depth relationships are available to parameterize this process in Earth System

Models. Here we show that these relationships are statistically indistinguishable from

available POC flux profile data. Despite their quantitative similarity, we also show these

relationships have very different implications for the flux leaving the upper ocean, as

well as for the mechanisms governing POC flux. We discuss how this tension might

be addressed both observationally and in modeling studies.
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INTRODUCTION

The sinking flux of particulate organic carbon (POC) and other elements into and through the
ocean’s interior is a key flow in global elemental cycles (Williams and Follows, 2011). As the
complex mechanisms determining this material’s vertical redistribution remain poorly understood,
Earth System Models parameterize particle flux as an attenuating function of depth (Gloege et al.,
2017). The idealizedmodels used for this parameterization thereby influence the characterization of
global biogeochemistry. Several such models have been proposed, and have generally been argued
for based on their ability to fit measurement profiles (Martin et al., 1987; Armstrong et al., 2001).
Particle fluxes are however notoriously variable and challenging tomeasure (Buesseler, 1991), while
different functions’ goodness-of-fit are often strikingly similar (Figure 1). Indeed, Gloege et al.
(2017) showed the power and ballast models capture observations equally, as does an exponential
in the upper 1km. Such similarity is not uncommon when modeling variable environmental data,
but is of particular significance here for two reasons:

• All these models have plausible and distinct (if oversimplistic) mechanistic interpretations – e.g.,
that some material is labile and some is refractory, that remineralization systematically declines
with time/depth, or that remineralization is a second-order kinetic process. One may also argue
for other mechanistic models on similar grounds (see below). Thus, these quantitatively similar
models have differing implications for how particle flux works1.

1To leading order and on average over large spatiotemporal scales.
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• The “export” of carbon through an upper reference depth
horizon—usually the euphotic or mixed layer depth (ELD
or MLD)—is of substantial interest (Buesseler and Boyd,
2009; Palevsky and Doney, 2018). However, most particle flux
measurements have been made below the relevant horizon(s),
necessitating depth-correction when comparing models with
data and/or making global export estimates. These models
diverge at shallow depths, meaning they also have widely
differing implications for the magnitude of export through
these depth horizon(s).

Our purpose herein is to rigorously demonstrate the tension
between these models’ (i) different mechanistic interpretations
and (ii) their often sizable quantitative differences at shallow
depth horizons, vs. (iii) their quantitative similarity over the
depths at which most particle flux measurements have been
made. We derive several models mechanistically, compile a
large database of measurement profiles, and perform a suite
of statistical analyses. It is generally understood that these
models behave similarly relative to measurement variability,
and that extrapolation exaggerates differences. However, it is
our opinion that the extent of these issues when modeling
particle flux—the variety of plausible mechanistic models, the
substantial differences that can result from even small upwards
extrapolations, and the virtual impossibility of parsing between
models by fitting them to measurements—is underappreciated.
We discuss (i–iii) in turn, and how this tension might be
addressed.

i. Several Mechanistic Particle Flux
Attenuation Models
We describe seven models (Figure 1) relating POC2 flux
to depth, and provide mechanistic derivations for each
in the Supplementary Material (i). We note that these
models are neither exhaustive nor uniquely derivable, and
numerous neglected processes, from particle (dis)aggregation to
zooplankton behavior to ambient environmental conditions, also
play important roles (Van Mooy et al., 2002; Burd and Jackson,
2009; Turner, 2015).

The basic model is an exponential (Banse, 1990):

fe(z) := Ce−z/ℓ (1)

which considers POC flux f [g m−2 d−1] as attenuating with a
characteristic lengthscale ℓ := w/k[m] determined by the settling
velocity w [m/d] and remineralization rate k [1/d]. Here and
below, C [g m−2 d−1] is the scale parameter for POC flux, e.g.,
C = fe(0m). The most common model is a power-law or “Martin
curve” (Martin et al., 1987):

fp(z) := Cz−b (2)

which results from a systematic depth/time decrease of k
(or increase of w (Supplementary Material i), e.g., due to

2These equivalently apply to other elements or total matter.

consumption of progressively more refractory material. The
other major model is a “ballast” model (Armstrong et al., 2001):

fb(z) := Ce−z/ℓ
+ c (3)

which augments (1) with a refractory flux c. The original depth-
attenuation model is a rational (Suess, 1980):

fr(z) :=
C

z + a
(4)

which considers POC remineralization to function as a second-
order kinetic process. A double exponential (Lutz et al., 2002):

fd(z) := C1e
−z/ℓ1 + C2e

−z/ℓ2 (5)

is used to capture both rapidly- and slowly-attenuating fluxes. A
stretched exponential:

fs(z) := Ce−z(1−s)/ℓ (6)

where s ∈ [0, 1), results similarly to (2) from a systematic
depth/time decrease of k. Lastly, what we term a gamma model

fg(z) := CŴ(0, z/ℓmax) (7)

results from labile material within particles being protected
from bacteria by ballast minerals (Rothman and Forney, 2007),
where Ŵ(·, ·) is the upper incomplete gamma function and the
lengthscale ℓmax depends partially on particles’ microbial density.

Thus we have a suite of different models, each rooted
in the balance between gravitational settling and bacterial
remineralization, but assuming different basic characteristics for
this balance. Given the enormous complexity and variability of
the processes involved, all of the above are equally plausible
when treated as idealized mechanistic models for particle flux
attenuation.

ii. Large Differences in Export Estimates
As e.g., fp(z → 0) = ∞ while fe(z → 0) = C, the
differences between these models becomes arbitrarily large for
increasingly shallower depths. While these models are of course
not applicable all the way to z → 0, they are generally
used to model f below a chosen depth horizon that is often
appreciably shallower than most measurements (e.g., 50 vs. 150
m). Thus the different models may imply very different exports
through a depth horizon. This is evident in the figure; the
functions are similar through the measurements’ depth range
(100−1, 100 m), but fp(50m) exceeds fe(50m) by 132%, with the
other models yielding intermediate values. While the existence
of such differences is unsurprising, these have not yet been
thoroughly quantified; upon doing so, we found their magnitudes
to be surprisingly large.

To investigate how model choice affected export estimates, we
compiled a database of f measurement profiles. The compilation
(see Supplementary Material for description (ii.a) and to access
data) contains 722 profiles (n ≥ 3 depth points per profile)
measured with sediment traps or the 234Th technique across
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FIGURE 1 | (A) Seven models from the text fit to mesopelagic data from Figure 5 of Martin et al. (1987; their Open Ocean Composite’) and extended upwards to 50

m depth. Goodness-of-fits are very similar, but the power-law model overestimates particulate organic carbon (POC) flux at 50 m by 132% relative to the exponential

model. Inset shows attenuation ( 1
f
df
dz

) differences are even more pronounced. Attenuation for the exponential model coincides with most others around ∼400 m. (B)

Maximum tolerable root-mean-square error (RMSE) to distinguish models based on data from (A) with 90% confidence, estimated using a bootstrap method (see text

and Supplementary Material iii for details). Row corresponds to “true” model (from which data are assumed to be generated) and column corresponds to “false”

model (to be rejected). RMSEs are small relative to those in (A), indicating differences in goodness-of-fits between the models are not statistically significant. (C) Ratio

of power-law-model- and exponential-model-estimated POC flux at euphotic layer and mixed layer depths from the profiles in the data compilation as a function of

extrapolation distance. Gray shading shows nominal 25% measurement uncertainty. Note the y-axis is logarithmic. The power-law model systematically and

substantially overestimates relative to the exponential model (as well as the other models Supplementary Material ii.c). For 29 profiles, fp(MLD)/fe(MLD) > 10 (not

shown).

the global ocean. We used profiles rather than individual
measurements to derive the models’ parameter values from the
data being extrapolated. We then fit the above models using
nonlinear least-squares regression and minimizing relative3

error, and extrapolated these fits to climatological estimates of
ELD and MLD (see Supplementary Material ii.b for description
and analysis).

We found fp systematically overestimated and fe systematically
underestimated export relative to other models, and the range
fp:fe was often substantially larger than the nominal variability
between replicate measurements of 20–30% (Buesseler et al.,
2000, 2007; Stanley et al., 2004). For ELD, fp:fe >1.25/1.5/2
for 67/45/25% of profiles, respectively. For MLD, which was
typically shallower than ELD, fp:fe >1.25/1.5/2 for 75/62/49%
of profiles, respectively. The figure shows fp:fe for all profiles as
a function of extrapolation distance (i.e., the distance between
ELD or MLD and the shallowest measurement); fp:fe increases
with extrapolation distance as expected, but large differences
are not uncommon even for small extrapolation distances.
These analyses clearly indicate that the above models are often
quantitatively disparate at shallow depths. As these estimates are
all based on the same f (z) data from below the ELD and MLD,

they imply even larger differences in attenuation ( 1
f
df
dz
[m−1]) just

below these depth horizons (Figure 1).

3Minimizing absolute error yielded similar results (Supplementary Material ii.c).

Fortunately, having consistent end-members (fe, fp) simplifies
the situation. This suggests that when estimating export
by extrapolating a measurement, one can use (fe, fp) as
lower/upper bounds. We determined unbiased parameter values
of ℓ ≈ 500 m and b ≈ 0.7 (similar to Primeau,
2006) for doing so by comparing profile fits to fixed-
parameter extrapolations of only the shallowest measurement
in each profile (Supplementary Material ii.c). Using these
parameters, fp still systematically overestimates with respect
to fe; fp(ELD) : fe(ELD) ≤ 3.38 (median = 1.50), and
fp(MLD) : fe(MLD) ≤ 3.84 (median = 2.31). These parameter
estimates are however influenced by spatiotemporal biases in
sampling (Supplementary Material ii.a).

iii. Quantitative Indistinguishability
In contrast with (i–ii) above, these models are known to
behave similarly over the depths at which most particle
flux measurements have been made—in the mesopelagic
and bathypelagic4—especially relative to these measurements’
substantial variability and uncertainty (Figure 1). Are the
differences in these models’ ability to fit measurements sufficient
to parse between them?

4Excepting the exponential, which performs worse in the bathypelagic (Gloege

et al., 2017).
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To address this question we applied a statistical routine to the
profile database. The routine estimates for a set of measurements
what level of variability is tolerable to reject one model vs.
another at a chosen confidence level, or inversely the percent
confidence with which those measurements can reject one model
vs. another. Detailed description of the routine and examples of
its application are provided in the Supplementary Material (iii).
In brief, data are simulated from a “true” model, which is fit by a
“false” model to be rejected. The root-mean-square error (RMSE)
of the simulated data relative to each model provides a metric
of goodness-of-fit. Bootstrapping yields a percent confidence
in the true model vs. the false one. Repeating this process
yields a true-model-vs.-false-model table either of tolerable
measurement variabilities (Figure 1) or confidence levels of false
model rejection (Supplementary Material iii).

Applying this routine to the data in the figure indicates these
data are too variable for the differences in fit to be significant,
and that the RMSE would have to be < 1

2 its true value even to
reject an exponential in favor of other models. The stretched and
rational models are so similar that they cannot be distinguished
even at 1% measurement variability from data with this sample
size and depth spacing.

Assuming a conservative characteristic measurement
variability of 20%, no one model can be rejected with 90%
confidence in favor of any other for more than a handful
of profiles in the dataset (Supplementary Material iii).
Increasing depth range or sample size (either for composites
of profiles (Figure 1), or for high-resolution individual
profiles) tends to increase the maximum tolerable RMSE
(Supplementary Material iii). However, the statistical non-
significance of models’ differences in fit appears extremely
robust for realistic measurement variability. Thus, existing
measurement profiles appear insufficient to distinguish
between models. The exception to this is the exponential
when bathypelagic data are included, as this is the only model
for which attenuation does not change with depth. If for instance
the bathypelagic data from Figure 5 of Martin et al. (1987)
are included in the above analysis (11 data points from 1,400-
2,000m), an exponential could be rejected with 90% confidence
relative to a power-law or rational and vice versa if RMSE were
≤ 0.24 (an appreciable increase from the values seen in the table,
though still below the data’s true value), but the power-law and
rational can still only be rejected with respect to each other when
RMSE ≤ 0.04.

The root issue that complicates parsing between these models
from f (z) data5 is that the models have multiple free parameters

5Besides the data’s sparsity and variability, neither of which can be easily

ameliorated.

and therefore can take a wide range of shapes. Treating these
models as mechanistic and using additional measurements to
constrain their parameters may be useful in this regard. For
instance, by measuring average k̄ and w̄ independently of
f (z) data, one could fit the far-less-flexible exponential model
fe(z) = C exp[−z/(w̄/k̄)]. Being mechanistic, this approach can
also provide quantitative insight about the dominant processes
controlling particle flux. Of course, there are also other means
by which to parse between different representations of f (z),
such as suites of numerical simulations (Gloege et al., 2017),
chemical composition (Armstrong et al., 2001), or mass/energy
budgets (Burd et al., 2010); comprehensive understanding is
likely only possible from combining multiple approaches to
generate multiple constraints.

CONCLUSION

Several particle flux models capture observations equivalently,
but carry different implications mechanistically and for
magnitudes of export. Here we have attempted to illustrate
this tension. When depth-correction is necessary, functional
extrapolations are better used as lower (exponential) and upper
(power-law) bounds. Vertically extensive high-resolution data6,
paired with measurements of related quantities, may potentially
elucidate how best to represent these processes mechanistically
in Earth System Models.
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