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Markovian short rates in multidimensional

term structure Lévy models

PavelV. Gapeev∗ Uwe Küchler∗∗

We study a bond market model and the related term structure of interest rates in

which the prices of zero coupon bonds are driven by a multidimensional Lévy process.

We show that the short rate forms a Markov process if and only if the deterministic

forward rate volatility coefficients are decomposed into products of two factors where the

factor depending on the maturity time is the same for all components. The proof is based

on the analysis of sample path properties of the underlying multidimensional process.

1 Introduction

The unifying approach for modeling stochastic bond markets and valuing interest rate deriva-
tives presented by Heath, Jarrow and Morton [10] turned out to be a basic methodology in the
last decades. In the proposed term structure model the forward rate was assumed to solve a
stochastic differential equation driven by a multidimensional Wiener process. The restrictions
imposed on the form of the volatility coefficients lead to specific classes of term structure models
including well-known interest rate models (see e.g. Vasiček [20] and Cox, Ingersoll, and Ross
[5]). During the nineties, the same framework of term structure models driven by processes
with jumps has been investigated in detail. Shirakawa [18] studied a model driven by a Wiener
and a Poisson process. Björk, Kabanov, and Runggaldier [1] extended the driving stochastic
process to the sum of a diffusion and a marked point process having at most finitely many jumps
during every finite time interval. A general jump-diffusion bond market model was introduced
and studied by Björk et al. [2].

Among other important issues, the question of the short rate to have the Markov property
has attracted a considerable attention in the recent literature on term structures of interest
rates. The reason for that fact is the simplification of pricing formulas for bonds and derivatives
in the underlying bond market in that case. Carverhill [3] proved that the short rate process is
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Markovian within the Heath-Jarrow-Morton framework with deterministic volatility if and only
if the volatility coefficient factorizes into a product of two functions depending only on the actual
time and maturity time, respectively. Eberlein and Raible [7] (see also Eberlein [6]) generalised
the result of [3] to the case of a model driven by a Lévy process under an additional assumption
on the related characteristic function of the marginal distribution which particularly holds for
the class of hyperbolic distributions. Küchler and Naumann [13] extended this result to the
model containing new examples of driving processes like the class of bilateral gamma processes.
This class particularly includes the variance gamma processes which play an important role in
recent discussions of stochastic models in financial markets (see, e.g. Madan and Seneta [17]
and Madan [16], and more recently, Küchler and Tappe [14] and [15]). Other extensions of the
result of [3] were derived in [9] for a model driven by a Wiener and a compound Poisson process
with different volatility coefficients, and in [8] for a model driven by a fractional Brownian
motion. In the present paper, we investigate a bond market model with deterministic volatility
coefficients and the corresponding term structure of interest rates driven by a multidimensional
Lévy process. We show that the short rate has a Markov property if and only if the volatility
coefficients can be decomposed into the products of two factors depending only on the actual
time and maturity time where the maturity time factor is common for all the components of
the driving multidimensional process.

The paper is organised as follows. In Section 2, we introduce a bond market model with
deterministic volatility coefficients and the associated term structure of interest rates driven by
a multidimensional Lévy process. We also derive the relationships between the bond prices, the
instantaneous forward rates, as well as the short rate process under a martingale measure. In
Section 3, we present the necessary and sufficient conditions on the volatility coefficients under
which the short rate forms a Markov process. The current value of the bond price process can
then be expressed by means of the current value of the short rate process under this criterion.
The proof of this result is based on the analysis of sample path properties of the underlying
processes with independent increments and consists of several auxiliary assertions deduced in
Section 4.

2 The multidimensional term structure Lévy model

In this section, following the line of the arguments used in [1], we define the basic objects of
the bond market model driven by both a multidimensional Lévy process. We refer to [11] and
[19; Chapter III, Section 1] for the terminology and notions from stochastic analysis.

Suppose that on some stochastic base (Ω,F ,F = (Ft)t∈[0,T ∗], Q) with a fixed time horizon
T ∗ > 0 there exist a multidimensional process L = (L1

t , . . . , L
n
t )t∈[0,T ∗] the components Li =

(Li
t)t∈[0,T ∗] of which are assumed to be real-valued non-deterministic independent Lévy process

with generating triplets (bi, ci, Fi(dy)), for every i = 1, . . . , n , n ∈ N . Here, bi ∈ R and
ci ≥ 0 are some constants, and Fi(dy) is a positive σ -finite measure on (R,B(R)) satisfying
the condition: ∫

(|y| ∧ 1)Fi(dy) < ∞ (2.1)

for every i = 1, . . . , n , so that we can consider the truncation function h(y) = 0, y ∈ R (see,
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e.g. [19; Chapter III, Section 1]). Moreover, we assume that the condition:
∫

exy 11(|y| > 1)Fi(dy) < ∞ (2.2)

holds, for each x ∈ [−M,M ] and some M > 0 fixed, and every i = 1, . . . , n , where 11(·) denotes
the indication function. The condition of (2.2) guarantees the property that the integrals with
respect to the Lévy measures Fi(dy) presented below are well defined, for every i = 1, . . . , n .
Let F = (Ft)t∈[0,T ∗] be the natural filtration of the process L , that is, Ft = σ(Ls | 0 ≤ s ≤ t),
for all t ∈ [0, T ∗] .

Let us consider a term structure of bond prices {P (t, T ) | 0 ≤ t ≤ T ≤ T ∗} , where the
(positive) process P = (P (t, T ))t∈[0,T ] denotes the price of a zero coupon bond at time t
maturing at time T which satisfies the normalisation condition:

P (T, T ) = 1 (2.3)

for each T ∈ [0, T ∗] . Let us suppose that for all but fixed T ∈ [0, T ∗] the logarithm of the bond
price process P = (P (t, T ))t∈[0,T ] is given by the expression:

lnP (t, T ) = lnP (0, T ) +

∫ t

0

α(s, T ) ds+
n∑

i=1

∫ t

0

σi(s, T ) dL
i
s (2.4)

for all T ∈ [0, T ∗] and i = 1, . . . , n . Here, σi(t, T ), i = 1, . . . , n , are deterministic positive func-
tions defined on the triangle {(t, T ) | 0 ≤ t ≤ T ≤ T ∗} which are assumed to be continuously
differentiable (so that bounded) in both variables and satisfy the condition:

σi(T, T ) = 0 (2.5)

for all T ∈ [0, T ∗] . Then, the integral with respect to the process Li in (2.4) is understood in
the sense of integration by parts:

∫ t

0

σi(s, T ) dL
i
s = σi(t, T )L

i
t −

∫ t

0

Li
s dσi(s, T ) (2.6)

for all 0 ≤ t ≤ T ≤ T ∗ and every i = 1, . . . , n , and the function α(t, T ) will be specified below.
We will also suppose that we are allowed, by the regularity of the functions, to differentiate
under the integral sign, to interchange the order of limits and integrals, as well as to interchange
the order of integration and differentiation. We further assume that |σ(t, T )| ≤ M , for all
0 ≤ t ≤ T ≤ T ∗ , for M > 0 fixed above.

Assuming that, for each t ∈ [0, T ] fixed, the bond price P (t, T ) is (Q-a.s.) continuously
differentiable with respect to the variable T on [0, T ∗] , let us introduce the corresponding term
structure of interest rates {f(t, T ) | 0 ≤ t ≤ T ≤ T ∗} , where we have:

f(t, T ) = −
∂ lnP (t, T )

∂T
(2.7)

is the instantaneous forward rate contracted at time t for maturity T . On the other hand,
integrating the equation in (2.7) and using the condition of (2.3), we get:

P (t, T ) = exp

(
−

∫ T

t

f(t, u) du

)
(2.8)

3



for all 0 ≤ t ≤ T ≤ T ∗ , and hence, we see the one-to-one correspondence between the bond
prices and the forward rates. Let us also define the short rate process r = (r(t))t∈[0,T ∗] by:

r(t) = f(t, t) (2.9)

being the forward rate at time t for maturity t , and the associated with it money account
process B = (B(t))t∈[0,T ∗] by:

B(t) = exp

(∫ t

0

r(s) ds

)
(2.10)

playing the role of a numéraire in the model. Then, setting:

α(t, T ) = r(t)−
n∑

i=1

θi
(
σi(t, T )

)
(2.11)

for all t ∈ [0, T ] , by means of the arguments in [11; Chapter II, Section 2], we conclude
that the discounted bond price process (P (t, T )/B(t))t∈[0,T ] forms an (F, Q)-martingale (see [2;
Section 5]). Here, θi(x) is a cumulant function of the process Li defined by:

θi(x) = bi x+
cix

2

2
+

∫ (
exy − 1

)
Fi(dy) (2.12)

for all x ∈ [−M,M ] and every i = 1, . . . , n .
Hence, using the expression (2.11) for α(t, T ), we get that, under the measure Q and for

each T ∈ [0, T ∗] , the logarithm of the bond price in (2.4) admits the representation:

lnP (t, T ) = lnP (0, T ) +

∫ t

0

r(s) ds+
n∑

i=1

∫ t

0

σi(s, T ) dL
i
s −

n∑

i=1

∫ t

0

θi
(
σi(s, T )

)
ds (2.13)

and the forward rate process in (2.7) takes the form:

f(t, T ) = f(0, T )−
n∑

i=1

∫ t

0

γi(s, T ) dL
i
s +

n∑

i=1

∫ t

0

θ′i
(
σi(s, T )

)
γi(s, T ) ds (2.14)

for all t ∈ [0, T ] . Here, we define γi(t, T ) = ∂σi(t, T )/(∂T ), for all t ∈ [0, T ] and every
i = 1, . . . , n . Therefore, the short rate process in (2.9) is given by:

r(t) = f(0, t)− Z(t) +
n∑

i=1

∫ t

0

θ′i
(
σi(s, t)

)
γi(s, t) ds (2.15)

where we set:

Z(t) =
n∑

i=1

∫ t

0

γi(s, t) dL
i
s (2.16)

for all t ∈ [0, T ∗] .
Note that, in the Heath-Jarrow-Morton approach (see [10]) one starts with the specification

of the forward rates (2.14), so that the discounted bond prices turn out to be (F, Q)-martingales,
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or, in other words, Q is a martingale measure. In this case, integrating the expression in (2.14),
we easily get the following representation for the bond price in (2.8):

P (t, T ) (2.17)

=
P (0, T )

P (0, t)
exp

( n∑

i=1

∫ T

t

∫ t

0

γi(s, u) dL
i
s du−

n∑

i=1

∫ T

t

∫ t

0

θ′i
(
σi(s, u)

)
γi(s, u) ds du

)

where, by virtue of the conditions of (2.5), we have:

σi(t, T ) =

∫ T

t

γi(t, v) dv (2.18)

for all 0 ≤ t ≤ T ≤ T ∗ and every i = 1, . . . , n . Since the process (P (t, T )/B(t))t∈[0,T ] turns
out to be an (F, Q)-martingale under the condition of (2.11), according to the expression in
(2.10), it is easily shown that the bond price P = (P (t, T ))t∈[0,T ] can be represented as:

P (t, T ) = E

[
exp

(
−

∫ T

t

r(s) ds

) ∣∣∣∣Ft

]
(2.19)

for all t ∈ [0, T ] . Observe that, when the short rate r = (r(t))t∈[0,T ∗] is an (F, Q)-Markov
process, the expression in (2.19) takes the form:

P (t, T ) = E

[
exp

(
−

∫ T

t

r(s) ds

) ∣∣∣∣ r(t)
]

(2.20)

so that P (t, T ) = H(t, r(t), T ), for all 0 ≤ t ≤ T ≤ T ∗ , and some Borel function H defined
on [0, T ]×R× [0, T ∗] . In this case, we see from the expression in (2.20) that the current value
of the bond price can be expressed by means of the current value of the short rate. We finally
note from the expression in (2.15) that the short rate r = (r(t))t∈[0,T ∗] is a Markov process if
and only if so is the process Z = (Z(t))t∈[0,T ∗] defined in (2.16).

3 The results

In this section, we formulate and prove the following main result of the paper which extends
the results of [3], [7], [13], and [9] to the case of a multidimensional Lévy term structure model.

Theorem 3.1. Let Li = (Li
t)t∈[0,T ∗] , i = 1, . . . , n, n ∈ N, be real-valued nondeterministic

independent Lévy processes with triplets (bi, ci, Fi(dy)) satisfying the conditions of (2.1) and
(2.2). Suppose that the both functions t 7→ γi(t, T ) and t 7→ γi(t, T

∗), for every i = 1, . . . , n,
are nonconstant on [0, T ], for each T ∈ [0, T ∗]. Then, the short rate process r = (r(t))t∈[0,T ∗]

is Markovian if and only if there exist continuously differentiable functions ηi(t), t ∈ [0, T ∗],
for i = 1, . . . , n, and a function ζ(T ) > 0, for T ∈ [0, T ∗], not depending on i = 1, . . . , n, such
that the equality:

γi(t, T ) = ηi(t) ζ(T ) (3.1)

holds, for all 0 ≤ t ≤ T ≤ T ∗ and every i = 1, . . . , n.
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The proof of this assertion is based on several auxiliary technical lemmata which are deduced
in Section 4 below. We further assume that Li = (Li

t)t∈[0,T ∗] , i = 1, . . . , n , are real-valued
nondeterministic independent Lévy processes. We start with a simple extension of an assertion
from [7] to the case of a multidimensional Lévy process which is proved in Section 4 below.

Lemma 3.2. Suppose that Z = (Z(t))t∈[0,T ∗] from (2.16) is an (F, Q)-Markov process.
Then, for each 0 ≤ T ≤ S ≤ T ∗ fixed, the expression:

n∑

i=1

∫ T

0

γi(t, S) dL
i
t = Gn

( n∑

i=1

∫ T

0

γi(t, T ) dL
i
t

)
(Q-a.s.) (3.2)

holds, with a Borel function Gn , n ∈ N.

The proof of the next assertion is given in [13; Lemma 3.1] and is also presented in the next
section for completeness.

Lemma 3.3. Let fi(t) and gi(t), i = 1, . . . , n, n ∈ N, be continuously differentiable
nonconstant functions on [0, T ], for some T ∈ (0, T ∗] fixed. Suppose that fi(t) and gi(t)
are affine independent on [0, T ], that is, there are no constants ai, hi ∈ R such that fi(t) =
aigi(t) + hi , for all t ∈ [0, T ] and every i = 1, . . . , n. Then, the distribution of the vector:

(∫ T

0

fi(t) dL
i
t,

∫ T

0

gi(t) dL
i
t

)
(3.3)

has a nonzero absolutely continuous part (with respect to the Lebesgue measure λ2 on R
2 ), for

every i = 1, . . . , n.

The proof of this result is based on the following assertion which is proved in [12; Theo-
rem 3.1].

Lemma 3.4. Let fi(t), i = 1, . . . , n, n ∈ N, be continuously differentiable functions on
[0, T ], for some T ∈ (0, T ∗] fixed. Suppose that the equality:

Hn,i

(∫ T

0

fi(t) dL
i
t

)
= Li

T (Q-a.s.) (3.4)

holds, with a Borel function Hn,i , for every i = 1, . . . , n. Then, the function fi(t) is necessarily
a constant on [0, T ], for every i = 1, . . . , n.

As a next step we shall prove in Section 4 below an assertion being an extension of corre-
sponding results from [7], [12], [13], and [9] to the case of a multidimensional Lévy process.

Lemma 3.5. Let fi(t) and gi(t), i = 1, . . . , n, be continuously differentiable nonconstant
functions on [0, T ], for some T ∈ (0, T ∗] fixed. Suppose that the equality:

n∑

i=1

∫ T

0

fi(t) dL
i
t = Gn

( n∑

i=1

∫ T

0

gi(t) dL
i
t

)
(Q-a.s.) (3.5)

holds, with a Borel function Gn , n ∈ N. Then, there exists a constant a, not depending on
i = 1, . . . , n, such that fi(t) = agi(t), for all t ∈ [0, T ] and every i = 1, . . . , n.
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The proof of this result is given in Section 4 below as well. We continue with the proof of
the main result stated above.

Proof of Theorem 3.1. Let us first suppose that the functions γi(t, T ), 0 ≤ t ≤ T ≤ T ∗ ,
i = 1, . . . , n , satisfy the conditions of (3.1). In this case, the process Z = (Z(t))t∈[0,T ∗] defined
in (2.16) can be represented in the form:

Z(t) = ζ(t)

( n∑

i=1

∫ t

0

ηi(s) dL
i
s

)
(3.6)

for all t ∈ [0, T ∗] . Therefore, we may conclude that Z is a Markov process and so is the process
r = (r(t))t∈[0,T ∗] from (2.15).

We now assume that r = (r(t))t∈[0,T ∗] is a Markov process, and thus, by virtue of the
expression in (2.15) and (2.16), the Markov property holds for the process Z = (Z(t))t∈[0,T ∗]

as well. Moreover, it follows from the assertion of Lemma 3.2 that, for each 0 ≤ T ≤ S ≤ T ∗

fixed, the expression in (3.2) is satisfied, for a Borel function Gn , n ∈ N . Hence, by applying
the assertion of Lemma 3.5 to the functions t 7→ γi(t, T

∗) and t 7→ γi(t, T ), i = 1, . . . , n , we
get that the decomposition:

γi(t, T
∗) = ξ(T, T ∗) γi(t, T ) (3.7)

holds, with some function ξ(T, T ∗), not depending on t , for all 0 ≤ t ≤ T ≤ T ∗ and every
i = 1, . . . , n . Observe that, since the functions t 7→ γi(t, T ) are assumed to be nonconstant on
[0, T ] , we may conclude from the decomposition in (3.7) that ξ(T, T ∗) 6= 0, for each T ∈ (0, T ∗]
fixed. Recall that, since the functions σi(t, T ), i = 1, . . . , n , are assumed to be continuously
differentiable on the triangle {(t, T ) | 0 ≤ t ≤ T ≤ T ∗} , the functions T 7→ γi(t, T ), i =
1, . . . , n , are continuous on {(t, T ) | 0 ≤ t ≤ T ≤ T ∗} . Then, we have even ξ(T, T ∗) > 0 in
(3.7), because of the obvious property ξ(T ∗, T ∗) = 1 and a continuity argument. Otherwise,
it would follow that γi(t, T ) = 0, for all t ∈ [0, T ] and some T ∈ (0, T ∗] fixed, for every
i = 1, . . . , n , that is excluded by assumption. Thus, defining ηi(t) = γi(t, T

∗), i = 1, . . . , n ,
and ζ(T ) = 1/ξ(T, T ∗) > 0, for each 0 ≤ t ≤ T ≤ T ∗ , we obtain the decompositions in (3.1).
The continuous differentiability of the functions ηi(t), t ∈ [0, T ∗] , i = 1, . . . , n , follows directly
from the assumption on the functions t 7→ γi(t, T

∗) to be continuously differentiable on [0, T ∗] ,
respectively. �

Remark 3.6. In the assumptions of Theorem 3.1, we observe from the expressions in (2.18)
and (3.1) that the forward rate process in (2.14) admits the representation:

f(t, T ) = f(0, T )−
ζ(T )

ζ(t)
Z(t) (3.8)

+ ζ(T )
n∑

i=1

∫ t

0

(
bi ηi(s) + ci η

2
i (s)

∫ T

s

ζ(u) du+

∫
eηi(s)

∫ T

s
ζ(u) du yηi(s) y Fi(dy) ds

)

where the process Z = (Z(t))t∈[0,T ∗] is given by (3.6) and the short rate process from (2.15)
takes the form:

r(t) = f(0, t)− Z(t) (3.9)

+ ζ(t)
n∑

i=1

∫ t

0

(
bi ηi(s) + ci η

2
i (s)

∫ t

s

ζ(u) du+

∫
eηi(s)

∫ t

s
ζ(u) du yηi(s) y Fi(dy) ds

)
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for all t ∈ [0, T ∗] .

Example 3.7. Suppose that Li = (Li
t)t∈[0,T ∗] , i = 1, . . . , n , n ∈ N , are bilateral gamma

processes, that is, they are Lévy processes with the triplets (0, 0, Fi(dy)), where we have:

Fi(dy) =

(
αi,+

y
e−λi,+y 11(y > 0) +

αi,−

−y
eλi,−y 11(y < 0)

)
dy (3.10)

and λi,+, λi,−, αi,+, αi,− , i = 1, . . . , n , are some positive parameters (see e.g. [13; Section 5]).
In this case, if the condition:

∣∣σ(t, T )
∣∣ =

∣∣∣∣ηi(t)
∫ T

t

ζ(u)du

∣∣∣∣ < min
{
λi,+, λi,−

}
(3.11)

holds, for all 0 ≤ t ≤ T ≤ T ∗ and x ∈ R , and every i = 1, . . . , n , then the conditions in (2.2)
are satisfied with some M < min{λi,+, λi,−} . Thus, the assertion of Theorem 3.1 holds and the
expressions in (3.8) and (3.9) take the explicit form:

f(t, T ) = f(0, T )−
ζ(T )

ζ(t)
Z(t) (3.12)

+
n∑

i=1

∫ t

0

(
αi,+ηi(s)ζ(T )

λi,+ − ηi(s)
∫ T

s
ζ(u)du

−
αi,−ηi(s)ζ(T )

λi,− + ηi(s)
∫ T

s
ζ(u)du

)
ds

and

r(t) = f(0, t)− Z(t) (3.13)

+
n∑

i=1

∫ t

0

(
αi,+ηi(s)ζ(t)

λi,+ − ηi(s)
∫ t

s
ζ(u)du

−
αi,−ηi(s)ζ(t)

λi,− + ηi(s)
∫ t

s
ζ(u)du

)
ds

where the process Z = (Z(t))t∈[0,T ∗] is given by (3.6).

4 The proofs

In this section, we present the proof of the auxiliary assertions formulated in Section 3.

We start with the proof of a simple extension of an assertion from [7] to the case of a driving
multidimensional Lévy process.

Proof of Lemma 3.2. Observe that if the process Z = (Z(t))t∈[0,T ∗] from (2.16) is
Markovian, then we have:

E
[
Z(S)

∣∣FT

]
= E

[
Z(S)

∣∣Z(T )
]

(Q-a.s.) (4.1)

for all 0 ≤ T ≤ S ≤ T ∗ . Since the integrands γ(t, T ) for 0 ≤ t ≤ T ≤ T ∗ are deterministic
functions, it follows from the independence of increments of the processes L = (Lt)t∈[0,T ∗] that:

E
[
Z(S)

∣∣FT

]
= E

[ n∑

i=1

∫ T

0

γi(t, S) dL
i
t

∣∣∣∣FT

]
+ E

[ n∑

i=1

∫ S

T

γi(t, S) dL
i
t

]
(Q-a.s.) (4.2)
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and

E
[
Z(S)

∣∣Z(T )
]
= E

[ n∑

i=1

∫ T

0

γi(t, S) dL
i
t

∣∣∣∣Z(T )
]
+ E

[ n∑

i=1

∫ S

T

γi(t, S) dL
i
t

]
(Q-a.s.) (4.3)

for all 0 ≤ T ≤ S ≤ T ∗ . Hence, getting the expressions in (4.1)-(4.3) together, we obtain:

n∑

i=1

∫ T

0

γi(t, S) dL
i
t = E

[ n∑

i=1

∫ T

0

γi(t, S) dL
i
t

∣∣∣∣
n∑

i=1

∫ T

0

γi(t, T ) dL
i
t

]
(Q-a.s.) (4.4)

that immediately implies the desired assertion. �

Proof of Lemma 3.3. (i) In order to prove the desired assertion, let us first assume that
the process Li has the triplet (bi, ci, 0) with some ci > 0, for any i = 1, . . . , n . In this case, we
have Li

t = bit+W i
t , for t ∈ [0, T ∗] , where W i = (W i

t )t∈[0,T ∗] denotes the continuous martingale
part of the process Li , for every i = 1, . . . , n . Then, the process W i is Gaussian, and thus, by
means of Itô’s isometry, we get:

E

[(∫ T

0

(
fi(t)− ai gi(t)

)
dLi

t

)2]
=

∫ T

0

(
fi(t)− ai gi(t)

)2
d〈Li〉t (4.5)

=

∫ T

0

f 2
i (t) d〈L

i〉t − 2ai

∫ T

0

fi(t) gi(t) d〈L
i〉t + a2i

∫ T

0

g2i (t) d〈L
i〉t

which is strictly positive, for all ai ∈ R , by assumption. On the other hand, it is seen that
the expression in the right-hand side of (4.5) represents a quadratic polynomial in ai ∈ R , and
that expression is strictly positive obviously if and only if the inequality:

∫ T

0

fi(t) gi(t) d〈L
i〉t <

∫ T

0

f 2
i (t) d〈L

i〉t

∫ T

0

g2i (t) d〈L
i〉t (4.6)

holds. However, the latter fact means that the distribution of the vector in (3.3) have a nonzero
absolutely continuous part (with respect to the Lebesgue measure on R

2 ). Note that, since
any process Li with the triplet (bi, ci, Fi(dy)) can be decomposed as Li

t = bit +W i
t + J i

t , for
t ∈ [0, T ∗] , where the continuous martingale part W i is independent of the pure jump part
J i = (J i

t )t∈[0,T ∗] which has a triplet (0, 0, Fi(dy)), it remains us to prove the desired assertion
for pure jump processes Li , i = 1, . . . , n , only.

(ii) Let us now assume that Li has the triplet (0, 0, λi11(y = 1)) with some λi > 0 fixed,
for any i = 1, . . . , n . In this case, Li is a Poisson process of intensity λi and denote by
(τ im)m∈N the sequence of its jump times, for any i = 1, . . . , n . Define the mapping φi(u, v) by
φi(u, v) = (fi(u) + fi(v), gi(u) + gi(v)), for (u, v) ∈ [0, T ]2 . Then, by virtue of the assumptions
on the functions fi(t) and gi(t), the mapping φi(u, v) is continuously differentiable with a
nonzero Jacobian determinant:

Di(u, v) = det

(
f ′
i(u) f ′

i(v)
g′i(u) g′i(v)

)
(4.7)

at least in an open neighbourhood Ui(u0, v0) of some point (u0, v0) ∈ (0, t)2 fixed. In this
case, φi(u, v) maps Ui(u0, v0) bijectively to an open neighborhood Vi(φi(u0, v0)) of the point

9



φi(u0, v0) = (fi(u0) + fi(v0), gi(u0) + gi(v0)), and that the inverse mapping φ−1
i (x, y) is contin-

uously differentiable. Note that, because of the symmetry of the mapping φi(u, v) = φi(v, u),
there is no restriction to assume that Ui(u0, v0) is symmetric, so that (u, v) ∈ Ui(u0, v0) if
and only if (v, u) ∈ Ui(u0, v0). In particular, the set Ui(u0, v0) ∩ ∆T has a positive Lebesgue
measure, where we set ∆T = {(u, v) ∈ R

2 | 0 ≤ u ≤ v ≤ T} , for some i = 1, . . . , n .
It follows from the fact that Li is a Poisson process that P (τ i2 ≤ T < τ i3) > 0, for any

i = 1, . . . , n . Moreover, it follows from the properties of the Poisson process that the couple
(τ i1, τ

i
2) has a strictly positive density hi(u, v) on ∆T , and it is uniformly distributed under

{τ i2 ≤ T < τ i3} . Then, we have Q((τ i1, τ
i
2) ∈ Ui(u0, v0) | τ

i
2 ≤ T < τ i3) > 0, so that Q((τ i1, τ

i
2) ∈

Ui(u0, v0), τ
i
2 ≤ T < τ i3) > 0 holds. Hence, for any Borel set A ∈ B(R2), we have:

Q
(
φi(τ

i
1, τ

i
2) ∈ A

∣∣ (τ i1, τ i2) ∈ Ui(u0, v0), τ
i
2 ≤ T < τ i3

)
Q
(
(τ i1, τ

i
2) ∈ Ui(u0, v0)

∣∣ τ i2 ≤ T < τ i3
)

(4.8)

= Q
(
φi(τ

i
1, τ

i
2) ∈ A, (τ i1, τ

i
2) ∈ Ui(u0, v0)

∣∣ τ2 ≤ T < τ3
)

=

∫

φ−1

i
(A)∩Ui(u0,v0)

hi(u, v) dudv =

∫

φ−1(A)

hi(u, v) 11
(
(u, v) ∈ Ui(u0, v0)

)
dudv

=

∫

A

hi

(
φ−1
i (x, y)

)
D−1

i

(
φ−1
i (x, y)

)
11
(
(x, y) ∈ Vi(φ(u0, v0))

)
dxdy

where we mean D−1(u, v) = 1/D(u, v), for (u, v) ∈ [0, T ] . Hence, we may conclude that the
distribution of the vector φi(τ

i
1, τ

i
2) has an absolutely continuous part. Therefore, recalling the

fact that:
(∫ T

0

fi(t) dL
i
t,

∫ T

0

gi(t) dL
i
t

)
= φi(τ

i
1, τ

i
2) on

{
(τ i1, τ

i
2) ∈ Ui(u0, v0), τ

i
2 ≤ T < τ i3

}
(4.9)

we see that the distribution given by:

Q
(
φi(τ

i
1, τ

i
2) ∈ A

∣∣ (τ i1, τ i2) ∈ Ui(u0, v0), τ
i
2 ≤ T < τ i3

)
Q
(
(τ i1, τ

i
2) ∈ Ui(u0, v0), τ

i
2 ≤ T < τ i3

)
(4.10)

forms a nonzero absolutely continuous part for the distribution of the vector in (3.3), for any
Borel set A ∈ B(R2).

(iii) Let us now assume that Li with the triplet (0, 0, Fi(dy)) such that Fi(dy) satisfies
the condition of (2.2), while Fi(R) < ∞ holds, for any i = 1, . . . , n . In this case, Li is a

compound Poisson process which admits the representation Li
t =

∑N i
t

m=1 Y
i
m , for t ∈ [0, T ∗] ,

where N i = (N i
t )t∈[0,T ∗] is a Poisson process of intensity λi > 0 and jump times (τ im)m∈N , and

(Y i
m)m∈N is a sequence of mutually independent and independent of N i identically distributed

random variables with distribution Fi(dy)/λi , for some i = 1, . . . , n . There is no restriction
to assume that Fi({0}) = 0. Let us denote by Ψi(z1, z2; y1, y2) a version of the conditional
distribution:

Ψi(z1, z2; y1, y2) (4.11)

= Q

(∫ T

0

fi(t) dL
i
t ≤ z1,

∫ T

0

gi(t) dL
i
t ≤ z2

∣∣∣∣ τ
i
2 ≤ T < τ i3, Y

i
1 = y1, Y

i
2 = y2

)

for all (z1, z2) ∈ R
2 and some (y1, y2) ∈ R

2 fixed. Then, by virtue of independence of N i and
(Y i

1 , Y
i
2 ), we get:

Ψi(z1, z2; y1, y2) = Q
(
fi(τ

i
1) y1 + fi(τ

i
2) y2 ≤ z1, gi(τ

i
2) y1 + gi(τ

i
2) y2 ≤ z2

∣∣ τ i2 ≤ T < τ i3
)

(4.12)
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for (z1, z2) ∈ R
2 and Fi(dy1) ⊗ Fi(dy2)-a.s.. By taking into account the fact that the vector

(y1, y2) is unequal zero Fi(dy1)⊗Fi(dy2)-a.s., it follows from the arguments similar to the ones
used in part (ii) above that the function Ψi(z1, z2; y1, y2) has a nonzero absolutely continuous
part Fi(dy1)⊗ Fi(dy2)-a.s.. Then, because of the fact that:

Q

(∫ T

0

fi(t) dL
i
t ≤ z1,

∫ T

0

gi(t) dL
i
t ≤ z2

∣∣∣∣ τ
i
2 ≤ T < τ i3

)
(4.13)

=

∫ ∫
Ψi(z1, z2; y1, y2)Fi(dy1)⊗ Fi(dy2)

the same property holds for the conditional distribution of the vector in (3.3) under {τ i2 ≤ T <
τ i3} , for i = 1, . . . , n .

(iv) Let us finally assume that Li has the triplet (0, 0, Fi(dy)) such that Fi(dy) satisfies
the condition of (2.2), but Fi(R) = ∞ holds, for any i = 1, . . . , n . Then, for any relatively
small ε > 0 fixed, the process Li admits the Lévy-Itô decomposition:

Li
t = J i,ε

t + (Li
t − J i,ε

t ) with Li,ε
t =

∑

0<s≤t

∆Li
s 11

(
|∆Li

s| > ε
)

and ∆Li
t = Li

t − Li
t− (4.14)

for all t ∈ [0, T ∗] . Here, (J i,ε
t )t∈[0,T ∗] is a compound Poisson process for which the result of

part (iii) above holds, while (Li
t − J i,ε

t )t∈[0,T ∗] is a limit of compound Poisson processes, for any
i = 1, . . . , n . In this case, the desired assertion holds in its general form, because the vectors:
(∫ T

0

fi(t) dJ
i,ε
t ,

∫ T

0

gi(t) dJ
i,ε
t

)
and

(∫ T

0

fi(t) d(L
i
t − J i,ε

t ),

∫ T

0

gi(t) d(L
i
t − J i,ε

t )

)
(4.15)

are independent, for any i = 1, . . . , n . �

Proof of Lemma 3.5. (i) Assume that the functions fi(t) and gi(t) are affine independent
on [0, T ] , for every i = 1, . . . , n . Then, by virtue of the assertion of Lemma 3.3, we get that
the distribution of the vector:

(∫ T

0

fi(t) dL
i
t,

∫ T

0

gi(t) dL
i
t

)
(4.16)

has a nonzero absolutely continuous part, for every i = 1, . . . , n . Hence, by virtue of the
independence of the processes Li , i = 1, . . . , n , the distribution of the vector:

( n∑

i=1

∫ T

0

fi(t) dL
i
t,

n∑

i=1

∫ T

0

gi(t) dL
i
t

)
(4.17)

has an absolutely continuous part too, but the latter property cannot hold due to the condition
of (3.5). Thus, we may conclude that there exist ai, hi ∈ R such that the representation:

fi(t) = ai gi(t) + hi (4.18)

holds, for all t ∈ [0, T ] and every i = 1, . . . , n , and therefore, the expression:

n∑

i=1

∫ T

0

fi(t) dL
i
t =

n∑

i=1

ai

∫ T

0

gi(t) dL
i
t +

n∑

i=1

hi L
i
T (4.19)
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is satisfied.

(ii)We now show that one can take hi = 0 in the expression of (4.18), for every i = 1, . . . , n .
For this purpose, let us assume that hk 6= 0, for some k = 1, . . . , n . Then, we observe that, by
virtue of the expression in (3.5), the representation in (4.19) implies that the equality:

1

hk

Gn

( n∑

j=1

IjT

)
−

n∑

j=1

aj
hk

IjT −

n∑

j=1,j 6=k

hj

hk

Lj
T = Lk

T (Q-a.s.) (4.20)

holds, with some Borel function Gn , n ∈ N , where we set:

IjT =

∫ T

0

gj(t) dL
j
t (4.21)

for every j = 1, . . . , n . Thus, by virtue of the independence of the processes Li , i = 1, . . . , n ,
it follows from the expressions in (4.20) and (4.21) that:

1

hk

Gn

(
IkT +

n∑

j=1,j 6=k

uj

)
−

ak
hk

IkT −

n∑

j=1,j 6=k

aj
hk

uj −

n∑

j=1,j 6=k

hj

hk

vj = Lk
T (Q-a.s.) (4.22)

for Q(IjT , L
j
T )-almost all (uj, vj), for every j = 1, . . . , n , j 6= k . Hence, there exists at least

two vectors (u′
1, . . . , u

′
k−1, u

′
k+1, . . . , u

′
n) and (v′1, . . . , v

′
k−1, v

′
k+1, . . . , v

′
n) such that we have:

1

hk

Gn

(
IkT +

n∑

j=1,j 6=k

u′
j

)
−

ak
hk

IkT −

n∑

j=1,j 6=k

aj
hk

u′
j −

n∑

j=1,j 6=k

hj

hk

v′j = Lk
T (Q-a.s.) (4.23)

for some k = 1, . . . , n . Taking into account the fact that Lk is nondeterministic and applying
the result of Lemma 3.4 for the appropriate function in the expression of (4.23), for such
(u′

1, . . . , u
′
k−1, u

′
k+1, . . . , u

′
n) and (v′1, . . . , v

′
k−1, v

′
k+1, . . . , v

′
n) fixed, we may therefore conclude

that gk(t) would have to be constant on [0, T ] , that contradicts the assumption above. The
latter fact directly yields that hk has to be zero, for every k = 1, . . . , n .

(iii) We finally show that a1 = · · · = an in the representation of (4.18). In this case, using
the condition of (3.5) as well as the fact proved in part (ii) above that hi = 0 holds, for every
i = 1, . . . , n , in the representation of (4.18), we get from the expression in (4.19) that the
equality:

G̃n,k

( n∑

j=1

IjT

)
=

n∑

j=1,j 6=k

(aj − ak) I
j
T (Q-a.s.) (4.24)

holds, for any k = 1, . . . , n . Here, we set G̃n,k(x) = Gn(x) − akx , for all x ∈ R , and the
random variables IjT , j = 1, . . . , n , are defined in (4.21) above. Then, taking into account the
independence of the processes Li , i = 1, . . . , n , it follows from the expression in (4.24) that:

G̃n,k

( n∑

j=1

uj

)
=

n∑

j=1,j 6=k

(aj − ak) uj (4.25)

12



for Q(IjT )-almost all uj , for every j = 1, . . . , n . Thus, there exist at least n − 1 linearly
independent vectors (um

1 , . . . , u
m
k−1, u

m
k+1, . . . , u

m
n ), m = 1, . . . , n− 1, such that we have:

G̃n,k

(
uk +

n∑

j=1,j 6=k

um
j

)
=

n∑

j=1,j 6=k

(aj − ak) u
m
j (4.26)

for Q(IkT )-almost all uk , for every m = 1, . . . , n−1 and any k = 1, . . . , n . Hence, using the fact
that Lk is nondeterministic and the function gk(t) is nonconstant on [0, T ] by assumption, we
may conclude that there exist at least n− 1 points um

k , m = 1, . . . , n− 1, such that the values
um
1 + · · · + um

n , m = 1, . . . , n − 1, coincide with each other and the expressions in (4.26) hold
with uk = um

k , m = 1, . . . , n − 1, while the right-hand sides of (4.26) can represent different
numbers, for any k = 1, . . . , n . The latter fact implies that we must have aj = ak , for every
j = 1, . . . , n , j 6= k , and any k = 1, . . . , n , in the expressions of (4.26), and therefore, concludes
the proof of the lemma. �
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Lévy Processes - Theory and Applications. Barndorff-Nielsen, O. E., Mikosch, T. and
Resnick, S. eds. Birkhäuser, Basel (319–337).

[7] Eberlein, E. and Raible, S. (1999). Term structure models driven by general Lévy
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