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ABSTRACT River flooding is a natural phenomenon that can have a devastating effect on human life and economic losses. 
There have been various approaches in studying river flooding; however, insufficient understanding and limited knowledge 
about flooding conditions hinder the development of prevention and control measures for this natural phenomenon. This paper 
entails a new approach for the prediction of water level in association with flood severity using the ensemble model. Our 
approach leverages the latest developments in the Internet of Things (IoT) and machine learning for the automated analysis of 
flood data that might be useful to prevent natural disasters. Research outcomes indicate that ensemble learning provides a more 
reliable tool to predict flood severity levels. The experimental results indicate that the ensemble learning using the Long-Short 
Term memory model and random forest outperformed individual models with a sensitivity, specificity and accuracy of 71.4%, 
85.9%, 81.13%, respectively. 
 
INDEX TERMS Internet of Things; Ensemble Machine learning; Flood sensor data; Long-Short term 
memory

I. INTRODUCTION 
Flooding is a natural disastrous phenomenon, having 
devastating impacts on goods, services, properties, and 
animal/human lives. An early warning about such a disaster 
might be helpful to mitigate the consequences and save lives. 
Though river flooding cannot be avoided, its impact may be 
minimized and controlled through appropriate planning and 
adoption of technologies such as IoT and ML. 
According to a recent research study by Gartner [1], 6.4 
billion connected objects/things were identified in 2016, 
representing an increase of over 3% compared to 2015, and 
expected to reach 20.8 billion by 2020. Some of these 
‘things’ include a variety of sensors that might be useful for 
improving the quality of data collected for the purpose of 
making better decisions. IoT is an increasingly growing topic 
and widely available for such purposes [2, 3]. It permits 
things to be controlled or sensed remotely across several 
network environments, providing an interface for direct 

control over the physical world [4]. To extract useful and 
effective data, ML offers an appealing method for predicting 
water levels, for example. The vast majority of 
environmental monitoring centers have adopted IoT to assist 
in environmental protection [5] [6].   
Sun et al. [7] indicate that the use of machine learning has 
significantly improved the detection of early flood warning 
using powerful deep learning algorithms.  Panchal et al. [8] 
show that gait characteristics can be utilised to capture flood 
levels and used machine learning algorithms including 
support vector machine and random forest for the analysis of 
the data. While Furquim et al. [9] propose a flood detection 
system based on IoT, machine learning and Wireless Sensor 
Networks (WSNs) in which fault-tolerance was embedded in 
their system to anticipate any risk of communication 
breakdown. Belal et al. [10] indicate that the lack of 
information about the quality of drinking water and the 
difficulty of early prediction of the flood has inspired various 
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researchers to monitor and detect flood. The authors 
highlighted the importance of gathering reliable and quality 
data for the validity of the analysis.          
In this research, we use multi-sensor data that originate from 
monitoring flood centres located in different countries 
around the world to determine rivers’ water levels. To this 
end, a variety of advanced predictive models and learning 
algorithms were developed (i.e., Artificial Neural Networks 
(ANN), Random Forest (RF), K-Nearest Neighbour 
classifier (KNN), Long-Short Term Memory (LSTM) and 
Support Vector Machine (SVM)). The aim is to utilize 
machine learning algorithms to analyse flood sensors log 
datasets, characterized by nonlinearities and dynamic 
characteristics.  
Despite the abundance of raw data, quality remains a concern 
to decision makers. For instance, missing values, get 
corrupted during transfer, and/or affected by noise are the 
most common factors that affect the data quality. To address 
this, a data science approach is adopted in this research for 
the analysis and feature extraction of sensory datasets, 
characterized by class imbalance, noise and missing values. 
Various ML techniques are used to analyze the flood sensor 
data. In the first round of simulation experiments, the single 
ML classification models were used that did not provide 
satisfactory performance and accuracy. Then, a new 
classifier which is based on the ensemble learning, was 
developed using LSTM, ANN and RF. Statistical results 
indicate the superiority of ensemble learning model over the 
all single/individual ML classifiers. 
Therefore, the “main” contributions of this paper are as 
follow: 

§ Ensemble various machine learning algorithm to 
predict the river levels severity using IoT sensor 
river data.  

§ Improving the process of multi-levels classification 
and accuracy of our classifiers using deep learning 
algorithm such as LSTM. 

The remainder of this paper is structured as follows. IoT and 
its application in disaster management scenarios is discussed 
in Section 2. The classification of flood sensor data is 
discussed in Section 3 along with the algorithms used in this 
research work. Section 4 discusses the methodology. The 
experimental design is described in Section 5, while Section 
6 presents the simulation results. This is followed by the 
discussion and analysis in Section 7. Finally, the conclusions 
and avenues for further research are presented in Section 8. 

II. DISASTER MANAGEMENTS USING IoT 
Since 1980s, the U.S. has sustained with over 200 weather 
and climate disasters, with cumulative costs exceeding $1.1 
trillion [11]. Despite restrictions when it comes to reduced 
size, restricted connectivity, continuous mobility, limited 
energy [12], and constrained storage, IoT has a role to play 
in avoiding and/or offsetting the consequences of disaster 

recovery [13, 14]. However, on the other side, the reduced 
size and continuous mobility of IoT devices [15] (e.g., micro 
cameras mounted on drones) provides them with a unique 
advantage for use in restricted access areas. Moreover, their 
limited energy and constrained storage features make 
disposable IoT devices ideal for one-time situation 
assessment. Indeed, some IoT devices, such as sensors, are 
major stakeholders in the design and implementation of any 
preventive strategy. Such devices can collect and transmit 
large amounts of data to modelling and decision support-
based systems, thus supporting the risk mitigation and the 
proactive deployment of emergency teams. Many studies 
have demonstrated the benefits of developing disaster 
recovery strategies based on IoT [16, 17, 18, 19]. In a disaster 
recovery situation, all ‘things’ including virtual or real 
entities such as human beings, inanimate objects, intelligent 
software agents and even virtual data could; contribute 
positively [20]. Maamar et al., in [21] introduce the concept 
of Process-of-Things (PoT) to allow the collaboration of 
living and no-living things [22]. A PoT is specified as a story 
that ``tells’’ how to discover and select things based on their 
capabilities, how to support things taking over new/adjusting 
their capabilities, how to facilitate the (dis)connection of 
things using pre-defined (social) relations, and how to 
incentivize/penalize things because of their 
constructive/destructive behaviors, respectively. Maamar et 
al., exemplified PoT within a healthcare scenario [23], where 
things representing medical equipment (e.g., thermometers), 
ambient facilities (e.g., air sensors), patients (e.g., smart 
wrists), and care providers (e.g., doctors) work together. 
Such a scenario can be easily related to a disaster recovery 
situation. In another work [24], Soubhagyalaxmi et al., 
discuss a disaster management system using IoT in India. 
The study indicates that around 57% of the land is vulnerable 
to earthquakes. Of these, 12% is vulnerable to severe 
earthquakes, 68% of the land is vulnerable to drought, 12% 
of the land is vulnerable to flood, 8% of the land is vulnerable 
to cyclones, and many cities in India are also affected by 
chemical, industrial and other types of man-made disasters. 
Likewise, Beltramo et al., [25] present the importance of IoT 
in natural risk management in terms of detection, prevention, 
and management with an economic evaluation of each stage. 

III. CLASSIFICATION OF FLOOD SENSOR DATA 
In recent years, a variety of ML techniques have been 
developed to handle the high dimensional datasets in diverse 
application domains [26]. These techniques can analyse 
large numbers of attributes and represent each object of 
interest with a distinct label. In short, a ML model learns to 
perform the mapping (or equivalently, approximate a 
function) between the input (feature) space and the output 
(object class) space. Each input vector corresponds to an 
object 𝒙, characterized by a set of features, whereas 𝒚 
describes the class label assigned to 𝒙. In this respect, the 
classification process employed to label training and testing 
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data sets is also known as a descriptive classifier, i.e., a 
method to discover the class label for various inputs [27, 28].  
To apply classification in the target research domain, it is 
vital to identify distinctive feature patterns from un-labelled 
datasets during the testing process.  
Equation (1) represents the class of linear classifiers [29].  

𝑔(𝑥) = 𝑤)𝑥 + 𝑏 (1) 

where 𝑔(𝑥)	represents the linear function with input ‘x’, ‘w’ 
is the weight vector and ‘b’ is the bias term. For two classes, 
e.g., 𝑐. and	𝑐/, the linear classifier results to a target class of 
𝑐., if g(x)>0, and a class of 𝑐/, when g(x)<0. However, since 
the real-world data is often nonlinear in nature, a nonlinear 
classifier is needed to be used that can capture the 
nonlinearities in the data and provide high classification 
performance, which is vital when it comes to predicting the 
onset of natural disaster phenomena. For the classification 
and analysis of both linear and nonlinear flood-sensor data, 
various classification techniques are used that include RF, 
SVM, ANN, KNN, and LSTM. Table 1 shows the 
configurations of the classifiers used in this research. 

TABLE 1:  ML CLASSIFIERS PARAMETERS AND DESCRIPTION 

Architecture Training 
Algorithm 

Parameters  

ANN (Multilayers Perceptron) 
Inputs: 11  
Hidden Layers: 2 
Activation 
Functions: Tansig 
Outputs: 3 classes 

Levenberg-
Marquardt 

Adaptive learning rate (LR) 
settings: 
initial value: 0.001 
coefficient for increasing 
LR: 10 
coefficient for decreasing 
LR: 0.1 
maximum learning rate: 
1e10 

RF (Random Forest) 
Inputs: 11 
Number of Trees: 
300 
Outputs: 3 classes 

Random feature 
bagging 

Total number of decision 
trees to be produced 200. 
Total number of feature 
subsets: 1 

SVM (Support vector Machine) 
Inputs: 11  
Outputs: 3 
 

Quadratic 
Optimization Kernel: Polynomial 

KNN (k-nearest-neighbours classifier) 
Inputs: 11 
Neighbours: 4  
Classes: 3 

K nearest 
neighbours 
measured by the 
distance function. 
 

Euclidean distance 

LSTM (Long-Short Term Memory) 
Layers: 2 error 

backpropagation 
algorithm 
 

Learning rate: 0.0001 - 
Number of units: 20; 30; 
50 
Number of epochs: 
100,000 with early 
stopping 

A. Random Forest Classifier  
Random Forest (RF) is utilised for regression and 
classification tasks. It is a series of decision trees, each of 

which acts as a weak classifier, typically characterized by 
poor prediction performance, however in aggregate form, it 
offers robust prediction. Therefore, this classifier can be 
thought of as a meta-learning model. RF was originally 
proposed by Ho [30, 31], and subsequently enhanced by 
Brieman [32], with the latter being widely used in recent 
studies. RF uses feature bagging and decision trees structures 
[33]. 
RF efficiently and effectively produces partitions of high-
dimensional features based on the divide-and-conquer 
strategy, over which a probability distribution is located. 
Moreover, it permits density estimation for arbitrary 
functions, which can be used in clustering, regression, and 
classification tasks. Classification results are obtained by 
averaging the decisions formed through the layers of the 
forest, permitting the collective knowledge of the decision-
tree learners to be incorporated. Equations 2 and 3 
summarize the RF.  
 
𝑓(𝑥) = .

2
3 𝑓(𝑥, 𝑥4𝑝	)

2
46.                             (2) 

where 𝑥 is the partial dependence variable and 𝑥4𝑝 refers to 
the data variable  
 
𝑓(𝑥) = log𝑡; −

.
=
3 (log𝑡>(y)

=
>6.                 (3)                               

 
where ‘J’ refers to the number of classes (3 in our case), and 
‘j’ refers to the individual class (i.e. 
normal/abnormal/dangerous water levels in this study). In 
addition, tA	belongs to the proportion of total votes for class 
‘j’.  

B. Support Vector Machines  
Support Vector Machines (SVMs) is a type of supervised 
learning and can be used for classification and regression 
problems. SVM is based on soft margin classification [34], 
which lends itself on concepts of statistical method theory 
[35]. Given a training dataset containing instance-label pairs 
{(𝑥., 𝑦.),… , (𝑥E, 𝑦E)} where 𝑥4 ∈ 𝑅I and	𝑦4 ∈ {−1, +1}, 
SVM solves the optimization problem: 

	K,L,MN
24O 1

2
||𝑤||/ + 𝐶S𝜉4

E

46.

 

          
(4) subject to 𝑦4(〈∅(𝑥4),𝑤〉 + 	𝑏) −

1 + 𝜉4 ≥ 0, 

𝜉4 ≥ 0, 𝑖 = 1… , 𝑁. 

where ∅(𝑥4) is a non-linear kernel that maps the training data 
onto a high-dimensional space. To separate the two classes, 
SVM works by finding the separating hyperplane that 
maximizes the margin between observations. The slack 
variables	𝜉4 allow misclassification of difficult or noisy 
patterns and C > 0 is the regularization parameter, which 
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controls the degree of overfitting. Finding the support 
vectors is made possible using the Lagrange multipliers 𝑎4 
allowing Equation 4 to be rewritten into its dual form: 

	
1
2
𝛼_𝑄𝛼 − 𝑒_	𝛼b

		24O  

subject to 𝑦_𝛼 = 0, 

0 ≤ 	𝛼4 ≤ 𝐶, 𝑖 = 1, … ,𝑁. 

 

 

(5) 

 

where 𝑒	 =	 [1, …1]_ is a vector of ones, Q is a m-by-m 
matrix, 𝑄4,; ≡ 𝑦4𝑦;𝐾(𝑥4, 𝑥;), and 𝐾(𝑥4, 𝑥;) ≡ ∅(𝑥4)_	∅(𝑥;) 
is the kernel function. Using this primal-dual relationship, 
the optimal 𝑤 can be found: 

 

𝑤 =									S𝑦4𝛼4∅(𝑥4)
E

46.

       
(6) 

Then the new samples are classified by: 
 
𝑠𝑔𝑛(𝑤_∅(𝑥) + 𝑏)

= 	𝑠𝑔𝑛(S𝑦4𝛼4𝐾(𝑥4, 𝑥)
E

4j.

) 
     (7) 

As previously mentioned, the separating hyperplane is found 
by solving the optimization problem, which allows the 
selection of the support vectors that maximize the margin 
between the two classes (e.g. normal vs abnormal water level 
in this case). The penalty parameter C is a critical tuning 
parameter for constructing a good model that generalizes 
well. In addition, several kernel functions are available to 
support the transformation of the input data into a higher-
dimensional space, where linear separability is possible. An 
example of such a function is the polynomial of order d: 
 

𝐾(𝑥, 𝑦) = (1 + 𝑥 ∙ 𝑦)I (8) 

C.    Artificial Neural Networks 
Neural Networks is a problem-solving approach based on a 
connectionist model. It comprises networks of 
interconnected neurons, whose weights are adapted until a 
solution emerges. Artificial Neural networks are inspired by 
biological neural networks found in the mammalian brain, to 
design and mimic the information processing capability of 
such powerful biological structures. A Multilayer Perceptron 
(MLP) is a ‘feedforward’ neural network, where information 
is transferred forward. The input information is presented to 
the network in the input layer, which transfers the 
information into a sequence of one or more hidden layers 
before it is represented as a pattern in the output layer. The 
transfer functions of the neurons in the hidden layers, and 
typically the output layer, are nonlinear. During the training 
process, the backpropagation algorithm is used to compute 

and updates weights in response to the error feedback. MLPs 
have been successfully used in many applications, including 
signal processing [36], facial expression analysis [37] and 
function approximation [38]. 
Several studies have been conducted to speed up and 
enhance the accuracy and performance of backpropagation 
learning. For instance, the use of a momentum term was 
proposed in [39], weight decay was used in [40], and variable 
learning rate was reported in [41]. Alternative neural 
computing approaches attempted to mimic additional 
biological neuronal characteristics such as axonal delays for 
improving performance [42]. A method that combines the 
advantages of gradient descent and second-order information 
is the Levenberg-Marquardt algorithm [39], which is used in 
the experiments of this research.  

D.   K-Nearest Neighbour Classifier 
K-Nearest Neighbour Classifier (KNN) is a lazy supervised 
learning algorithm that has been applied in various fields, 
such as statistical analysis, data mining, and pattern 
recognition [43]. Classifying data is based on the closest 
training samples in feature space. The aim is to classify the 
new (unseen) input patterns, based on a nominated number 
of their nearest neighbours. KNN is appropriate when there 
is no prior knowledge about the distribution of the data [44]. 
It works well in both training and testing [45]. The method 
consists of four steps. Firstly, training examples with their 
labels are stored in feature space. Next, the number of ‘k’ 
nearest neighbours and the appropriate distance metric are 
selected. Unseen data is fed into KNN and their nearest ‘k’ 
instances are found. Each of the new data is assigned the 
label corresponding to the majority label of its neighbours. 
The detailed description and mathematical formulation of 
KNN classifier can be found in [46]. 

E. Long-Short Term Memory (LSTM)   
LSTM was introduced by Hochreiter and Schmidhuber in 
1997 [47]. To elucidate the problem of gradient fading, the 
authors referred to the concept of memory cells. LSTM 
indicates the addition of short-term memory (STM) between 
memory cells since traditional neural networks have long-
term memory in the weights of the connections. Other 
adaptations including peephole connections [48] have been 
suggested. These loop closure connections enhance 
performance as they do not need to go through the activation 
function, thus reducing computational complexity. This 
typology has excessive diffusion and utilisation nowadays, 
where complex LSTM networks, consisting of multiple 
layers are utilised with reasonable computational costs. 

IV. Methodology 
Various ML techniques have been used  to predict the 
severity of flood disasters based on sensor data [49]. In this 
work, we compare the performance of popular ML methods 
(described in Section 3) on IoT flood sensor data and propose 
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an ensemble approach for a novel flood severity 
classification system. Since a flood can take place in any 
geographical area, the system uses local sensor data. The 
objective is to classify data collected from the flood sensors 
into three categories, namely, normal, abnormal, and high-
risk leading to flooding.  

The proposed system comprises of sequential components 
including; data collection from IoT sensors, pre-processing, 
feature-space data representation, classification model 
configuration and training using the processed data, and 
finally, models’ evaluation using the unseen testing data set.  
 

 
FIGURE 1. Overview of the data processing pipeline  

 
Figure 1 presents an overview of the sequential processing 
and analysis pipeline for the classification of flood sensor 
data. The processed flood sensor dataset is divided into three 
partitions for training, validation, and testing of the ML 
models. Eleven features (shown in Table 2) are fed into ML 
algorithms as inputs to perform classification of three output 
classes (see Table 2).  
Our system consists from data collection stage in which 
flood sensory data information will be collected. The 
collected data will be forwarded to pre-processing stage, 
which will be performed for cleaning and normalization of 
the data. In this case, 11 attributes are collected including 
monsoonal rain, duration in day, number of dead, number of 
displaced, snowmelt and ice jams, magnitude, centroid, 
heavy rain, torrential rain, total of affected area and tropical 
storm. The cleaned and normalized data using the 
appropriate attributes are forwarded to trained machine 
learning algorithms are used to classify the severity of the 
flooding.  

A. Data collection 
     The sensory data is collected from the Environment 
Agency [50], that contains a collection of datasets from 
various cities around the world. Each sample of the flood 
sensor datasets contains 11 features deemed important for 
predicting the severity (as illustrated in Table 2). The flood 
sensor data used in this study consists of 4214 flood samples, 
with the three target classes defining the severity of the flood. 
The outputs were coded as class one with 1181 data points  
 
(normal water level), class two with 306 data points 
(abnormal water level), class three 456 (high-risk water 

level). In terms of statistical procedures, the aggregate 
function is used to combine data from several measurements. 
Furthermore, when data is aggregated, groups of 
observations are substituted with summary statistics of the 
techniques, depending on those observations [51].  
 

TABLE 2: FLOOD SENSOR DATASET DESCRIPTIONS, SELECTED 
ALGORITHMS AND EVALUATION METRICS 

No Type Number  Description 

1 Data 
instances 4214 

Data for a period of 31 years were 
collected from the Environment 
Agency website. 

2 Class 
Variables 3 

Class 1: Normal water level 
Class 2: Abnormal water level 
Class 3: Dangerous water level  

3 Features 
(Attributes) 11  

Monsoonal Rain, Duration in day, 
Number of Dead, Number of 
Displaced, Snowmelt, and Ice Jams, 
Magnitude, Centroid, Heavy Rain, 
Torrential Rain, Total of Affected 
area, Tropical Storm  

4 

Evaluation 
Metrics of 
classification 
models  

5 F1 Score, Precision, Sensitivity, 
Accuracy, Specificity  

5 Visualization 
Techniques  5 

T-distributed Stochastic 
Neighbourhood Embedding (tSNE), 
Receiver operating characteristics 
(ROC) curve, Principal Component 
Analysis (PCA) and Area Under the 
Curve (AUC). 

6 ML 
Algorithms  5 ANN, RF, KNN, LSTM and SVM 

7 Ensemble 
Classifier 2 

(ANN Combination, ANN models 
with RF)  
(LSTM Combination, LSTM model 
with RF and LSTM with SVM) 

B. Pre-processing  



 

6 
 

To obtain accurate results with the use of ML techniques, it is 
important to appropriately prepare the aforementioned flood 
sensor data through pre-processing techniques, i.e., cleansing 
and normalization. Noise reduction and dealing with missing 
values are essential in ML and subsequently, for higher 
prediction accuracy and overall performance, which are 
performed following the data standardization tools explained 
in [52]. 

C. Exploratory analysis 
Exploratory analysis was utilised to identify possible outliers 
in the pre-processed data. This is an important step, as it 
provides further insight and increase the efficiency in terms of 
learnability of the data set by training models. To illustrate 
this, a visualisation of the flood sensor dataset using PCA is 
depicted in Figure 2. PCA is commonly used for 
dimensionality reduction and finds a great deal of use in a 
variety of applications [53]. It performs a linear mapping so 
that potential correlations in feature space are minimized and 
could be used for projection into a lower dimensional space. 
 

 
 
FIGURE 2. A projection of the three classes in the space of the first two 
Principal Components  

In Figure 4, a visualization of the three classes is shown in the 
space of the two principal components, i.e., the components 
which contain the highest amount of information, in terms of 
variability (variance) in the data. By evaluating the PCA plot, 
it is evident that the flood sensor data is not linearly separable.  

 
 

FIGURE 3. T-distributed Stochastic 
Neighbourhood Embedding Plot. 

Another type of visualisation we implemented is the T-
distributed Stochastic Neighbourhood Embedding (tSNE) 
[54], as shown in Figure 3. This is in fact a machine learning 
algorithm, which, unlike PCA, results to a non-linear 
projection of high-dimensional data into a lower 
dimensionality, typically two or three dimensions, subspace. 
In t-SNE, patterns which share similarities in the original 
feature space are projected in close proximity, while dissimilar 
patterns are projected at distant points with high probability. 
By examining Figure 5, there are considerable similarities 
between patterns belonging to different classes, as the 
corresponding clusters in the projection space are overlapping. 

D. Feature selection  
Feature selection is an important step for the analysis of 
standardized data, to enable our ML algorithms to train faster 
and overcome the problem of overfitting. There have been 
various approaches for the feature selection used in ML related 
problems including principal component analysis [42], 
information gain [55], chi-square test [56, 57] and many more. 
One of the key motivations of utilizing chi-square test in our 
approach is the way it ranks features based on statistical 
significance indicating the dependency between the current 
feature and the target class [57]. 
Let us consider the dimensionality of the original space to be 
‘d’, while the dimensionality of the reduced feature space to 
be ‘r’, where r< d. In this case, ‘r’ is determined using the chi-
square filtering approach to evaluate high-ranking features. If 
the chi-square test value is lower than a critical value (in our 
case we selected a value of 0.05) then the null hypothesis is 
selected and the feature is regarded as important; else, the null 
hypothesis is disregarded, and the feature is rejected. 
Algorithm 1 shows the proposed feature selection algorithm. 
Our algorithm selected 6 features which are considered 
important including magnitude, torrential rain, heavy rain, 
snowmelt and ice jams, monsoonal rain and tropical storm.    
 

Algorithm 1: Feature Selection Sets 
Let X be a set of data in form of signals such that X = 
{x| x ∈ S where S belongs to flood sensor data} & Xd 
where d is the dimensionality of the original feature 
space.   
Let Xc ∈ X where Xc = {x| x = Filtered(x)} & Xcr 
where r is the dimensionality of the selected feature 
space: r<d. Perform the following steps to identify the 
important feature set Xc: 
 
Foreach feature x in X Do: 

Perform Chi-square test for current x 
IF Chi-square(x) < critical value (0.05 in this 
case)  

Accept null hypothesis  
Add x to Xc i.e. x ∈ Xc  

ELSE 

PCA 1 

PC
A

 2
 

PCA 1 

PC
A

 2
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Accept alternative hypothesis (i.e., x ∉ 
Xc) 

End IF 
End Loop 

V. Experimental Design 
The evaluation metrics used in the experiments measure the 
results of the ML techniques in flood prediction (refer to Table 
3). The holdout approach is used to assess the generalization 
performance on an independent flood sensor dataset. 
The main objective of this work is to predict floor severity 
levels using multi-sensor flood data and advanced machine 
learning algorithms. This can provide improved prediction 
accuracy using the composition of data analysis and ML 
techniques to investigate the effect of integrating strong and 
weak classifiers and compare their performance with those of 
the individual classifiers.  
Experiments (A, B) are designed using cross-validation (with 
70% of the data used for the training, 10% for the validity and 
20% for testing) to evaluate the performance of the proposed 
approach: 
 

A) Multiple ML models (ANN, RF, KNN and LSTM) 
were trained and tested individually over the flood 
dataset. 

B) Ensemble model is trained and tested over the flood 
dataset (LSTM+SVM, LSTM+RF, ANN +RF) 
while using voting and stacking to measure the 
performance. 

Various statistical performance measures are utilised to 
benchmark our results including sensitivity, specificity and 
accuracy.   
 
Algorithm 2 shows the proposed system.  

Algorithm 2: Proposed Algorithm for sensor data 
classification and ML selection 
Let W, M, D, Dd, DI, TO, H, TS, SM, MS be various 
sets of values ⊂ Xc determined as Algorithm 1 
Let t, a and c are data values determined as 
Algorithm 1. 
 
n= 0 
Training = {t ∈ Xc} 
Test = {ts ∈ Xc & t ∉ Training} 
1: For every selected ML algorithm determined  
2: E[Sensitivity] = {S: S ⇒ ML (Training, Test)} 
3: Calculate the average output and classifier 
aggregation  
4: n = n +1 if n < Threshold, go to 1 else classify 
5: ∀ ml ∈ ML, if E[Sensitivity]ml < Th, ∃ e ∈ 
Ensemble| Ensemble ={x| x ensemble of various 
ML} & E[Sensitivity]e > Th where Th is a threshold 
value representing the required classification 
accuracy.  
 

A. Ensemble Classifiers 
Research studies indicated better classification performance 
obtained using a composition of multiple classifiers [58].  
Figure 2 illustrates the block diagram for the proposed system. 
There are 𝑁  input and output sets,	1, . . , 𝑋	and	1,… , 𝑌	, 
respectively.  The bootstrapping begins with a few training 
samples of 1, … , 𝑥 and 1,… , 𝑦	using the primitive model 
pool	1,…𝐵. Base models are represented through	1, … ,𝑀. To 
estimate the accuracy and performance of the final output, we 
averaged the outputs of the base classifiers using predicted 
class probabilities. As in the case of single classifiers, 
classification performance is measured in terms of Sensitivity, 
Specificity, Precision, Accuracy, and F1 Score. 

 
FIGURE 4. Ensemble Classifier (Training Process) 
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For the ensemble classifier, we used the stacked and the voting 
methods. The stacked method concerned with combining 
several classifiers with various learning algorithms. In our 
experiment, each selected model is trained using the same 
training sets as is illustrated in Figure 4.  

VI. CLASSIFICATION RESULTS  
In this section, we present the results of validation and testing 
for the single and ensemble classifiers. In summary, it is 
shown in Table 4 that ensemble classifiers outperform single 
classifiers. The top-performing single classifier in terms of the 
sensitivity for the classification of high-risk flooding class was 
LSTM, which produced a value of 0.925 in training/validation, 
however, its generalization was not as good, resulting to a 
sensitivity of 0.7 during testing. The worst performing 
classifier in terms of sensitivity was the SVM with the poor 
performance of 0.057 and 0.042 for the training and the 
testing, respectively. This indicated that selecting appropriate 
kernels for our three classes flood data may not be possible.  
In our experiments, single classifiers produced ACC values of 
0.557, 0.807, 0.867 and 0.935 for ANN, RF, KNN, LSTM 
respectively, during the validation/training. During testing, the 
performances of the classifiers are 0.582, 0.65, 0.538 and 0.81 
for ANN, RF, KNN, and LSTM respectively. Ensemble 
classifiers demonstrate better validation performance, as 
shown in Table 4 and Figures 6-8 which relate to the ROC and 
AUC graphs, respectively. The combination of ANN and RF 
classifiers shows an accuracy of 0.956 in validation, however, 
this reduces to 0.737 in testing in terms of the average for the 
three classes (stated in Table 2) for ensemble classifiers. 
Improved results are obtained with the combination of LSTM 
and RF, which demonstrates a validation accuracy of 0.997 
during training (Table 3), while in testing, this reduces to 0.811 
(Table 4). Still, the strong generalization of the ensemble 
classifier confirms that there is valuable information within the 
flood sensor data that can be captured with such types of ML 
structures. Furthermore, the ensemble classifier for LSTM and 
RF showed an average sensitivity of 0.714, followed by the 
ensemble of the LSTM and SVM with an average sensitivity 
of 0.69, then the ensemble of ANN and RF with an average 
sensitivity of 0.664 for the testing data.  

TABLE 3: PERFORMANCE EVALUATION PER MODEL 
(VALIDATION/TRAINING) 

Mod 

Target 
Class 
[C1, C2, 
C3] 

SEN Spec Prec F1 Accu 

ANN 
C 1 0.466 0.63 0.644 0.541 0.533 
C 2 0.541 0.559 0.278 0.367 0.555 
C 3 0.525 0.597 0.213 0.303 0.584 

RF 
C 1 0.695 0.885 0.896 0.783 0.773 
C 2 0.85 0.797 0.567 0.68 0.809 
C 3 0.742 0.859 0.522 0.613 0.839 

KNN 
C 1 0.809 0.677 0.782 0.795 0.755 
C 2 0.817 0.776 0.533 0.645 0.786 
C 3 0.738 0.851 0.507 0.601 0.832 

SVM C 1 0.003
5 

0.994
4 0.25 0.007

0 0.656 

C 2 0.931
0 

0.041
0 

0.3115
4 

0.466
8 0.3239 

C 3 0.057 0.961
1 0.4324 0.10 0.6528 

LSTM C 1 0.996 0.957
4 0.9238 0.958

76 0.9707 

C 2 0.781 0.960
7 

0.9026
5 

0.837
78 0.9037 

C 3 0.925 0.937
1 

0.8839
6 

0.904
01 0.9330 

LSTM + 
RF 

C 1 1 0.996
3 0.9929 0.996

44 0.9975 

C 2 0.984
67 1 1 0.992

28 0.9951 

C 3 1 0.996 0.9929 0.996
44 0.9975 

LSTM + 
SVM 

C 1 0.992
86 0.957 0.9235

9 
0.956
97 0.9695 

C 2 0.712
64 0.975 0.93 0.806

94 0.8915 

C 3 0.957
14 0.903 0.8375 0.893

33 0.9220 

ANN + 
RF 

C 1 0.985 0.913 0.942 0.963 0.956 
C 2 0.973 0.953 0.866 0.917 0.958 
C3 0.996 0.944 0.786 0.879 0.953 

 
TABLE 4: Performance evaluation per Model (testing) 

Mod 

Target 
Class 
[C1, C2, 
C3] 

SEN Spec Prec F1 Accu 

ANN 
C 1 0.535 0.6 0.711 0.611 0.558 
C 2 0.529 0.534 0.236 0.326 0.533 
C 3 0.691 0.548 0.197 0.306 0.568 

RF 
C 1 0.795 0.507 0.748 0.771 0.693 
C 2 0.682 0.668 0.358 0.47 0.671 
C 3 0.564 0.501 0.153 0.241 0.51 

KNN 
C 1 0.434 0.693 0.723 0.542 0.525 
C 2 0.682 0.447 0.251 0.367 0.497 
C 3 0.436 0.536 0.131 0.202 0.523 

SVM 

C 1 0 0.9925 0 0 0.6536 
C 2 0.907 0.05 0.307

2 
0.459

1 0.3219 

C 3 0.042 0.9333 0.25 0.073
17 0.6292 

LST
M 

C 1 0.914 0.8814
8 0.8 0.853

3 0.892 

C 2 0.538 0.8142
9 

0.573
7 

0.555
5 0.7268 

C 3 0.700 0.8888
9 

0.765
6 

0.731
4 0.824 

LST
M + 
RF 

C 1 0.885 0.9111 0.837
8 

0.861
11 0.9024 

C 2 0.6 0.7714 0.549
3 

0.573
53 0.717 

C 3 0.657 0.8963 0.766
67 

0.707
69 0.8146 

LST
M + 
SVM 

C 1 0.9 0.8814
8 

0.797
47 

0.845
64 0.8878 

C 2 0.47 0.8428
6 

0.584
91 

0.525
42 0.7268 

C 3 0.7 0.8592
6 

0.739
73 

0.755
24 0.8292 

ANN 
+ RF 

C 1 0.705 0.743 0.835 0.765 0.719 
C 2 0.706 0.716 0.403 0.513 0.714 
C 3 0.582 0.81 0.33 0.421 0.779 
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As single SVM classifier did not perform well during the 
training and the testing, the results for the ensemble classifier 
with SVM and LSTM indicate that the performance is based 
on the classification power of the LSTM rather than the SVM. 
Tables 3, 4 and Figures 5, 6 demonstrate the results for each 
classifier for estimating the performance evaluation 
techniques of the models. We used the holdout methods 
dividing the flood data into the training phase, validation phase 
and testing phase. The training data represents 70%, while the 
validation data sets represent 10%, and testing sets represents 
20%. To train the sensor data, it is crucial to perform two 
procedures: initially, we construct the first structure for each 
model based on the training set, to assess the error rates as 
shown in Figure 5, then based on the performance and 
accuracy that models received during the training sets, we 
estimate the error rate for each model as shown in Figure 6. 
 

 
FIGURE 5. ROC Curve Per Classifier for Flood 
Sensor Data (Validation/Training Phase) 

Figures 7 and 8 show the results for each class over the single 
classifiers and ensemble classifier. AUC shows outcomes for 
each model with three output targets. In AUC plots, the Y-axis 
demonstrates the corresponds to each model entries, whereas 
the X-axis shows the classes and classifier. When AUC yields 
one that refers to an ideal approach, while an AUC with 0.5 
illustrates random generalization. Each bar in AUC plot is 
associated with a corresponding curve. The main advantage of 
using AUC figure is to offer a standard graphical form. 

 
FIGURE 6. ROC Curve Per Classifier for Flood Sensor Data (Testing 
Phase) 
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FIGURE 7.    AUC per Classifier for Flood sensor data 
(Training Process) 

 

 
FIGURE 8. AUC per Classifier for Flood sensor data (Testing 

Process) 

 

 
FIGURE 9. ROC for the training data for flood sensor using ensemble 

(LSTM + RF) 

Compared to individual ML techniques, ensemble classifier 
indicated to acquire a great comparable performance and 
accuracy, besides being faster. In this aspect, the classification 
results in association with evaluation metrics based on 
confusion the table for three classes [class one, class two, and 
class three] are demonstrated in Tables 4 and 5. To elaborate 
that more, Ensemble classifier illustrated vital overlaps 
between inputs features and output classes. The ensemble 
classifier outperformed individual classifiers and yield such an 
acceptable performance and accuracy for three target output 
(classes) as shown in the ROC and AUC graphics. 
Furthermore, this also indicated that the ensemble classifier 
can handle multi-class problem compared to individual 
models that can handle only two classes problem. 

 
FIGURE 10. ROC for testing data flood sensor using ensemble 
(LSTM+RF) 

 

 
FIGURE 11. Processing time for individual and ensemble machine 
learning classifiers for testing.  
 



 

11 
 

The reason ensemble classifier outperforms individual models 
is due to the data variables’ distributions. We found that flood 
sensor data has strong non-linearities within the variables. To 
build such as accurate classifier, it is significant to alter the 
parameters in each classifier. Accordingly, to handle large 
instances in our flood sensor data, neural network and random 
forest combined some kinds of soft nonlinear boundaries. In 
the evaluation performance testing sets, we applied 200 trees 
for our random forest model that were enough to receive 
smooth of separation. Eventually, the ensemble classifier 
generated an optimal and robust results and this was because 
individual classifiers suffer from overfitting because of 
dealing with the non-linearities in the data. 

VII. CRITICAL DISCUSSION 

In this paper, an efficient data science approach is developed 
and used to analyze 11 attributes related to flood sensor data 
from a total of 4214 records for detection of water level 
severity. The accuracy of ensemble LSTM+ RF classifier is 
0.997 in training/validation phase, while an accuracy of 0.811 
was shown in testing using unseen data. Figures 9 and 10 show 
the ROC of this classifier for training and testing, respectively. 
Furthermore, Figure 11 indicates that the ensemble classifiers 
have readable processing time in comparison to single 
classifiers during testing.    
LSTM and random forest are two powerful classifiers for the 
analysis of data, which offer strong performance when 
compared to other models. These types of models applied the 
out-of-bag method based on the decision tree model rather 
than cross-validation to improve training and testing results.  
In general, ensemble classifier preserves the appealing 
features of decision trees, such as dealing with 
irrelevant/redundant descriptors. In terms of the training 
procedure, this model was much faster compared to the 
ensemble classifier. A key reason that the ensemble classifier 
yielded higher accuracy is that it was able to generalize better 
by using combined evidence of its member classifiers. In spite 
of a number of samples in the data sets are mislabeled, the 
ensemble classifier can easily estimate the missing values, and 
work effectively with imbalanced data, which poses a 
challenge for other models, for instance, SVM.  
As shown in Table 4, the ensemble classifiers generated high 
sensitivity and specificity for all the severity level classes 
while individual classifiers performed well using the 
sensitivity and specificity for the normal severity level class 
and failed to generate high performance to the other two 
classes (medium and dangerous level classes). This is due to 
the imbalanced representation of three classes in the dataset. 
However, the ensemble model performed comparatively 
better than individual models while simultaneously indicating 
superiority in the compromise between sensitivity and 
specificity for c2 and c3.      

VIII. CONCLUSIONS AND FUTURE WORK 

The collection of data through IoT platform and sensors 
mounted on the rivers can be used as inputs for the ML 
techniques to perform data science approaches for the 
detection of river flood severities. The proposed ensemble 
model in this research showed promising results for the 
detection of flood and can provide tools for warning for future 
flooding. Three flood data classes are considered in this 
research including normal, abnormal and dangerous water 
level classes. Performance evaluation metrics such as 
sensitivity and specificity and visualization techniques are 
used to evaluate the proposed ensemble machine learning 
approach. The results indicate that early warning of flood 
severity can be obtained using appropriate ensemble machine 
learning based data science techniques. Future work involves 
the use of particle swarm optimization and a genetic algorithm 
for optimization and selection of our machine learning 
approaches as well as the utilization of other deep learning 
algorithms for future regression of flood data. 
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