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Abstract

Typhoid fever, caused by the bacterium Salmonella Typhi, is a severe febrile
illness, with over 20 million cases and 100 thousand deaths occurring annually.
In 2011, Blantyre, Malawi experienced a sharp increase in the incidence of
typhoid fever, and transmission continues today. Although the disease is
generally known to spread through the fecal-oral route, the precise mechanisms
of transmission in endemic locations are not well characterized. Therefore, a
challenge exists in determining which water and sanitation interventions may
be the most important for control of typhoid fever. This thesis attempts to
identify risk factors for typhoid fever in this setting, and employs geostatistical,
epidemiological, and genomic approaches to data collected as part of routine
disease surveillance as well as typhoid-specific epidemiological studies. The
findings from this thesis indicate that transmission of typhoid fever in Blantyre
is complex, with both environmental and social factors important components.
Evidence of environmental transmission as found, through the use of non-
drinking water from local rivers identified as a risk factor. This finding was used
to generate hypotheses: testing whether river catchments are predictors of
genomic patterns, and exploring rainfall anomalies as time-dependent predictors
of incidence. Both investigations yielded significant results: river catchments
were predictors of genomic patterns, and rainfall anomalies were found to be
protective, further bolstering the hypothesized environmental component of
transmission. Typhoid fever can also lead to severe clinical complications, and
a methodological contribution was included that enabled the attribution of
intestinal perforations to typhoid fever, independent of microbiological testing.
Although new vaccines for typhoid offer a promising tool for control, investment

in non-vaccine interventions will likely be critical for elimination, and the work
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presented suggests possible opportunities for interventions focused around

hydrological systems and water usage.
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1 Introduction

1.1 Thesis overview

The overall focus of this thesis is on the epidemiology of typhoid fever in
Blantyre, Malawi. This involves a number of statistical analysis approaches:
incorporating genomic, spatial, and risk factor data to better understand

transmission in this setting.

1.2 Typhoid fever

1.2.1 Epidemiological overview and burden

Typhoid fever, caused by the bacterium Salmonella enterica serovar Typhi (S.
Typhi), remains a significant cause of morbidity and mortality in the developing
world. Estimated global burden is approximated at 10-20 million cases per year
[1-4], with the majority of cases occurring in Africa and south Asia. The disease

is primarily characterized by a high, sustained fever.

As high fever may indicate any number of diseases, including, but not
limited to malaria, tuberculosis, influenza, or other bacterial bloodstream
infections, symptom-based diagnosis is not possible. The gold standard
diagnostic test for typhoid fever is by culture of blood or a bone marrow sample,
which requires diagnostic infrastructure that does not exist in many clinics in
resource-limited settings. Rapid diagnostics or alternative burden evaluation
methods either perform poorly or do not exist. Typhoid fever surveillance is
therefore often limited to passive surveillance from a few major hospitals in these
regions. Because of these challenges, estimates of burden are limited to few
reporting sites, with as few as 13-14 low and middle-income countries
contributing data to global burden estimates [2,3]. Where blood culture

diagnostics do exist, sensitivity of this method for detection of S. Typhi is
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limited, with sensitivity estimates at approximately 59% [5]. Therefore, under-
reporting of cases is an accepted challenge in typhoid fever epidemiology and
estimates of disease burden, affecting the targeting of control strategies, and

general advocacy of typhoid as a global health problem.

Without effective treatment, typhoid fever can be a fatal disease. Case-
fatality is currently estimated to be 1-2% in endemic countries [4,6]. The most
extreme complication is intestinal perforation, requiring surgical intervention to
resolve. However, data on “surgical typhoid” are largely absent from global
burden of disease estimates [4]. Antibiotics are the primary tool of treatment
for typhoid fever, but resistance is an ongoing concern. Resistance to
chloramphenicol, the antibiotic originally used for treatment of typhoid fever,
was reported as early as the 1950s [7], and outbreaks of these resistant strains
were reported in the 1970s [8]. Since then, multi-drug resistant (MDR) typhoid
fever, or typhoid fever resistant to three or more first-line antibiotics, including
chloramphenicol, has become a global concern [9]. More recently, resistance to
fluoroquinolones has emerged, and has become widespread in Asia [10]. Most
recently, the appearance of extensively drug resistant (XDR) typhoid fever,
which extends resistance to third generation cephalosporins, was reported in
2018 [11], further limiting the treatment of typhoid fever. For XDR typhoid,
azithromycin is the only widely available/ affordable antibiotic remaining for
treatment of the disease. We are therefore threatened by typhoid that is
impossible to treat. In the pre-antibiotic era, case-fatality was estimated to be
15% [12], meaning deaths from typhoid fever could increase an order of

magnitude without effective control measures.

1.2.2 Control strategies and challenges

Vaccines for typhoid fever have been in development since the late 1800s [13].

Field trials of candidate vaccines such as the live oral vaccine Ty2la vaccine
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occurred beginning in the 1970s, and demonstrated long-lasting efficacy in school
age children [14]. However, formulas that were safe and immunogenic in young
children, had long lasting immunogenicity, and were feasible to distribute in
developing countries were lacking. The development of new conjugate vaccines
(TCVs) for typhoid has provided alternatives that are safe, efficacious, and
likely to provide lasting immunity in young children [15]. World health
organization (WHO) prequalification of the first conjugate vaccines occurred in
January of 2018 [16]. As a result, there has been an increased effort to prevent

typhoid through vaccination in areas of highest burden, with field trials

underway in a number of locations [17].

Although vaccines for typhoid fever have occasionally been demonstrated
to be effective in reducing incidence in settings with large-scale field trials [18],
elimination of local transmission of the disease has not yet occurred without
water or sanitation interventions. In the United States, typhoid incidence
declined after widespread sanitation and water improvements were implemented
throughout the early 1900s, a common theme across most developed countries.
In Santiago, Chile, a ban on the irrigation of produce with wastewater in the
1990s helped expedite control to elimination as a public health problem, and
was aided, but not driven by, use of the vaccine [19]. Mass vaccination initiatives
for typhoid fever have not previously occurred, but the conjugate vaccine offers

an opportunity to do so.

There is some concern that even widespread use of TCVs may not be
able to eliminate typhoid fever as a public health problem. Human challenge
models suggest a high level of clinical protection conferred with the vaccine
using a syndrome-based definition, 87% [15]. However, protection from any
microbiological outcome was only estimated at 55%, suggesting the presence of

the bacteria in the body, and subsequent shedding of the disease, still may occur.
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If these observations hold in endemic settings, although the conjugate vaccine
may be an excellent vaccine for reduction in mortality outcomes and clinical
disease, its usefulness as a tool for reduction of ongoing transmission, and

therefore control, may be limited.

Because of this uncertainty, exploration of non-vaccine interventions is
still necessary. Barring widespread sanitation and water improvements,
understanding specifically how S. Typhi is transmitted is a critical step in this

process.

1.2.3 Transmission routes

S. Typhi, the aetiological agent of typhoid fever, is a human restricted pathogen
whose only known reservoir is human hosts. It is believed that typhoid fever is
transmitted through the fecal-oral route, in which individuals are exposed
through ingestion of S. Typhi that has previously been excreted through the
feces of an individual shedding the disease. How this chain of exposure occurs
can vary between locations, however at a high level, transmission is often

categorized into two modes: “short-cycle” and “long-cycle”.

Short-cycle transmission represents infections spread from person-to-
person through proximate contaminated food vehicles, a route made famous by
the case of “Typhoid Mary” [20]. If an infectious individual does not have access
to or use appropriate hand hygiene, S. Typhi on their hands is capable of
infecting others, through food vehicles. This transmission route has been well
documented in reviews of outbreaks [21]. After the decline of typhoid fever
occurred through improvements in sanitation systems and water treatment,
outbreaks of typhoid fever can still occur through food handlers. Today, short-
cycle outbreaks of typhoid fever still occur in the United States, mostly through

long-term carriers of the disease [22,23].
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Long-cycle transmission represents infections transmitted through
environmental mediators. Examples of these mediators include drinking water,
open sewers, and food crops irrigated with wastewater. The dominant
environmental mediators can vary between locations: In Kathmandu, Nepal, the
contamination of drinking water from stone taps with sewage has been
implicated as a likely transmission route for typhoid [24], while in Santiago,
Chile, in the 1980s, high endemic levels of typhoid were maintained through the
irrigation of produce with contaminated wastewater [19]. It is critical to note
that, in the majority of locations, what happens to S. Typhi in between fecal
excretion into the environment and exposure of the next individual is uncertain;
we do not know what the ecological niches are, or if there is an environmental

reservoir, as is the case with V. cholerae [25].

The relative importance of intermediate ecological niches to typhoid
transmission is unknown. Risk factor studies have attempted to identify
potential exposures (a review of these exposures is contained in section 2.1), yet
identifying the contaminant of these exposures is often difficult. For example, it
is currently unclear how to disentangle whether lettuce, if identified as a risk
factor, was contaminated by irrigation of produce through the long-cycle, or
through a food handler directly. These unknowns lead to general uncertainty in
which environmental and/or behavioral interventions are most important for

control.

1.2.4 Presence and persistence of Salmonella Typhi in the

environment
The environmentally mediated component of typhoid transmission is enabled
through the extended shedding of infected individuals, and persistence of S.

Typhi in the environment.
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Individuals with typhoid fever may demonstrate prolonged periods of
shedding. Those who are acutely infected with typhoid typically shed S. Typhi
from 2 to 4 weeks [26,27]. Further, approximately 2 percent of infected
individuals become chronic carriers, defined as individuals who shed §. Typhi
for more than a year. This is due to the colonization of S. Typhi in the
gallbladder [28], and these chronic carriers are capable of shedding S. Typhi for
a lifetime. However effective treatment with antibiotics, particularly

fluorquinolones, is known to curtail shedding of the disease [29].

S. Typhi is additionally capable of surviving in the environment, and has
been experimentally demonstrated in the laboratory in both water and food. A
study in 1999 explored the survival of Salmonella Typhi in water [30]. By
marking S. Typhi with a green fluorescence protein, researchers were able to
explore both the decline of culturable cells in water, but also propose that
survival and conversion to viable-but non-culturable (VBNC) cells occurs. The
study found that the decline of culturable cells in all types of water was rapid
over the 27-day period (0.75 day' and 1.3 day' exponential decay in
groundwater and pondwater, respectively), with viable cell counts declining at
a lower decay rate (0.25 day! and 0.35 day™ exponential decay) for groundwater
and pondwater, respectively). Survival is better in groundwater than pond
water, a conclusion attributed to the greater presence of protozoa in the latter

medium.

S. Typhi’s survival in food vehicles is under-studied compared to
Salmonella strains that cause outbreaks in developing countries today
(Salmonella  Typhimurium, Salmonella Enteritidis). A study in 1976
contaminated young lettuce plants with Salmonella Typhi, and demonstrated
survival of the bacteria declined over time, but persisted to the age of maturity

of the plant [31]. One study showed survival of typhi on sprouts up to 10 days,
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and even demonstrated growth in experiments with inoculation at the seed
germination stage [32]. The book Microbial Survival in the Environment (1984)
offers a comprehensive view of laboratory studies from mostly the 1920s through
the 1940s: sewage sludge (2- 83 days), radish surfaces (60 days), soil (10-70 days)
were some of the mediums tested, with the primary take-away being that there
is evidence of heterogeneity of S. Typhi survival in the environment, and there

is a possibility on certain vehicles for it to persist for weeks to months [33].

1.2.5 Detection of Salmonella Typhi in the environment

Few studies have attempted to detect S. Typhi in the environment in endemic
settings. Successful identification of environmental S. Typhi through culture was
demonstrated in Santiago, Chile in the 1970s. Moore swabs, passive filtration
tools made of sterile fabric or gauze [34], were used in the to isolate and culture
live S. Typhi from both from sewage drainage outside the homes of chronic
carriers [35] as well as from the irrigation water [36]. However, even with the
swabs placed directly outside the homes of known shedders of S. Typhi,
sensitivity was low at 25% [37]. Culturing of live S. Typhi from environmental
samples in present day has not yielded positive results [24,38], and therefore live

culture is not currently accepted as a sensitive detection method.

One potential reason for the lack of sensitivity of culture methods in the
detection of live Salmonella Typhi is that S. Typhi may enter a viable-but-non-
culturable state (VNBC). VNBC cells of S. Typhi have been shown to be able
to be epidemiologically relevant, however: a laboratory study in 1996

resuscitated VNBC cells with broth, and successfully colonized mice [39].

Quantitative PCR is an alternative to culture methods, as VBNC cells
could be detected without resuscitation. PCR was used to detect S. Typhi in

drinking water samples in Kathmandu, Nepal [24], which supported conclusions
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that the contamination of stone aquifers are a likely driver of typhoid in the
city. These methods have additionally been applied in Dhaka and Mirzapur,
Bangladesh [40], yielding contrasting detection rates in drinking water samples

between the two cities.

Some challenges exist in the interpretation of these results, however. New
evidence suggests that when using qPCR for environmental samples to detect
S. Typhi, the commonly used primers used are subject to specificity issues. This
specifically relates to the ability to differentiate between S. Typhi and non-
typhoidal Salmonella in samples spiked with both [41]. Therefore, without either
improved culture methods for growing live S. Typhi in a laboratory setting, or
investment in qPCR methods that prioritize specificity, which require moving
beyond a single gene target, our ability to conclusively detect and measure S.

Typhi in the environment is limited.

1.3 Study population: Blantyre, Malawi

1.3.1 Geographic and demographic context

The city of Blantyre is located in the Southern Region of Malawi (Figure 2.1,
Chapter 2). The city is geographically diverse: the area surrounding the city is
mountainous, and the city itself contains a number of small mountains and hills.
The city additionally contains ten major rivers, which all drain out of the city.
The city has experienced substantial population growth, with the estimated
population growing from 649,000 in 2008 to 800,000 in 2018 according to census
[42]. Much of the population lives in unplanned areas or informal settlements,
the largest of which is Ndirande, with 118,000 individuals living in this area as

of 2007 [43].

In these informal settlements, sewage infrastructure and safe water

availability is not reliable. The National Statistics Office of Malawi conducts a
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Welfare Monitoring Survey, most recently in 2011 [44], and reflects the reality
of informal settlements and lack of infrastructure. It was estimated that only
3.6% of the city’s population has a toilet that flushes to the sewage system, and
59.6% of the population use a ‘basic latrine’, which, out of the choices (flush or
pour flush to sewer system, flush to a septic tank, an improved latrine, VIP,
eco-san), likely indicates a pit latrine. Although this was not surveyed, it has
been noted that the rocky soil in Blantyre often prevents the digging of pit
latrines further than three meters deep [45], possibly adding a challenge to

sewage management.

In 2012, the Millennium Cities Initiative additionally conducted a case
study in Blantyre to assess the city’s health, water and sanitation, education,
gender, and infrastructure needs according to the Millennium Development
Goals. An assessment of wastewater treatment revealed that, although there are
five treatment facilities, three are not functioning. According to this document,
the wastewater and sewage that is supposed to be treated at these facilities is

often diverted to the rivers, untreated [45].

Drinking water is an additional challenge in the city: From the Welfare
Monitoring Survey [44], only 23.8% of the population has water piped into their
property, indicating a need to travel outside the home (at least short distances)
for water. 65.5% of the population retrieved water from a public tap or
standpipe, while 7.1% used a bore hole. The quality of these sources was not
assessed. Almost all residents surveyed (98.7%) purchased food from a local

market, while 22% additionally grew their own produce.

1.3.2 Disease surveillance in Blantyre

Blantyre is the site of Queen Elizabeth Central Hospital (QECH), the largest

government hospital in Malawi. The hospital provides free healthcare to
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residents of Blantyre, and is a referral center for the surrounding Southern
region of the country. The Malawi-Liverpool Wellcome Trust Clinical Research
Programme (MLW) was established in 1995, and has conducted continuous

routine blood culture surveillance at QECH, beginning in 1998.

Between 1998 and 2010, an average of 14 cases of typhoid fever per year
were diagnosed at QECH, and only 6.8% were resistant to ampicillin,
chloramphenicol, and cotrimoxazole. However, by 2014 there were 782 cases per
year, 97% of which were resistant to all three of these antibiotics [46]. Potential
drivers of the emergence of typhoid fever were explored in a mathematical
modelling study, including increased duration of infectiousness and increased
transmission rate [47]. It was found that an increased duration of shedding in
the population, possibly caused by multi-drug resistance preventing the ability
of first-line antibiotics to be effective in treating the disease, may be responsible
for the emergence seen. This model was based on simplified assumptions of
transmission and population mixing, and despite transmission still occurring

today, the mechanisms of typhoid fever transmission are unknown.

1.3.3 Morbidity, carriage, and genomic epidemiology of
typhoid (MCET) study
The previous sections demonstrate both a need for non-vaccine interventions for
control of typhoid fever, as well as methodological limitations in our ability to
rapidly determine them through current epidemiological and microbiological
methods. Given advances in sequencing technology and ease of geo-location of
cases, opportunities exist to better understand typhoid transmission in
combination with statistical analysis techniques, and doing so in a single site
may offer a framework for assessment of these methods and their conclusions in

parallel.
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The morbidity, carriage, and genomic epidemiology of typhoid (MCET)
study was initialized in 2015, after the confirmed emergence of typhoid fever, in
order to better understand transmission of typhoid fever in Blantyre, Malawi.
This project harnessed the routine blood culture surveillance ongoing at QECH
to recruit hospital cases of typhoid fever into a cohort study. The households of
cases were geo-located, and demographic information was recorded. Within this
cohort, a nested case-control study of children 9 years of age and under was
conducted to identify risk factors for typhoid fever, using additional controls
recruited from the community. Further, a subset of isolates was whole-genome

sequenced.

1.4 Aims and structure of the thesis

The goals of my thesis were to utilize MCET data, along with data collected
through routine blood culture surveillance at MLW, to better understand the
epidemiology and transmission of typhoid fever in this setting. This included
utilizing multiple methodological approaches and specific questions nested
within each. The specific aims are listed below, with methodological rationale

following;:

1. Case-control analysis to identify risk factors for typhoid fever in Blantyre,
Malawi (Chapter 2)

2. Incidence mapping to identify areas of highest incidence and unexpected
hot-spots (Chapter 3)

3. Spatial-genomic analysis to explore spatial scales of genetic relatedness
of case isolates as a proxy for the transmission process (Chapter 3)

4. Analysis of temporal trends to explore the relationship between patterns

of rainfall and typhoid incidence (Chapter 4)
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5. (analysis contribution) Predicting the impact of the increase in typhoid
fever on reported surgical intestinal perforations, a severe complication

of typhoid fever (Chapter 5)

1.5 Methods overview

The following sections outline methodological approaches and motivation for

employing these methods.

1.5.1 Spatial statistical methods for epidemiological data

Within the field of infectious disease epidemiology, the ability to geolocate cases
in a population is becoming increasingly efficient and inexpensive due to
advances in GPS technology and decreasing costs of using these tools. Therefore,
spatial analysis methods are becoming more widely used alongside

epidemiological data.

In descriptive studies of spatial patterns of cases, the goal of the analysis
is often limited to the detection (or not) of clustering of cases, usually by testing
the null hypothesis that the observed spatial pattern is completely random. The
formal definition of completely random depends on the data-format: for point
data, a completely random pattern is a realization of a Poisson process; for
small-area count data, a completely random pattern is one for which the counts
follow independent Poisson distributions. For a review of clustering methods

see, for example, Alexander and Cuzick (1992) [48].

Previous examples of the use of spatial statistical methods for the analysis
of typhoid data are mostly limited to this type of cluster detection.
Spatiotemporal cluster detection was used for typhoid in rural Cambodia, which
noted heterogeneity in clusters of disease across both space and time in the
study site [49]. Similar clustering was noted for typhoid fever in Dhaka,

Bangladesh [50].
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With the understanding from these clustering investigations that cases
of typhoid fever may occur non-randomly across space, some studies have
incorporated this clustering into risk factor outcomes. In Kibera, Kenya, a
spatial case-control study was conducted in order to understand the drivers of
incidence in the setting [51]. Spline smoothing was used to account for spatial

autocorrelation.

The spatial statistical methods that are used in this thesis have the more
ambitious goal of estimating the strength and scale of spatial dependence within

a geostatistical modelling framework, as described below.

1.5.2 Tools for geostatistical modelling

Given the increase in availability of spatial data, tools for geostatistical
modelling have become more widely available. The primary tool used for spatial
analyses in this thesis is PrevMap, a package in R, which is based on a

generalized linear mixed modelling framework [52].

Briefly, generalized linear mixed models are statistical models that allow
for random effects. Random effects are, essentially, unobserved random
processes that account for variation in the outcome that cannot be explained by
measured explanatory variables or sampling variation. For example, if we model
the growth of a child over time, we may need to include a random effect on the
level of individual child, to account for unexplained differences between children
if their size at the beginning of the observations is not measured. These random

effects are most often assumed to be normally distributed.

When measurements are taken across space, we can similarly assume that
there will be some random differences in measurement that vary across space.
Often in practice, it has been observed that this variability, however, is spatially

correlated. That is, observations that are closer together have more similar
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outcomes than those that are further apart. Modelling this type of spatially
correlated random effect and model structure is often referred to as model-based

geostatistics [53].

For illustrative purposes, equation 1.1 is an example of the
parameterization of a linear geostatistical model, as implemented in PrevMap

and proposed in [53]:

The random effects in these models are comprised of two components, Z; and
S(z;). Z; are independent zero-mean Gaussian random variables, essentially the
spatially-uncorrelated random effects. Also known as the ‘nugget effect,” this
component is named for the variation in presence of gold nuggets at a single
mining site. In an epidemiological setting it can represent either variance in
measurements at a single spatial point, or spatial correlation that is occurring
at a smaller scale than what is sampled. S(x) is the spatially structured random
effect, or the ‘spatial random effect’. This is parameterized by a multivariate
normal distribution and a covariance matrix. The values making up the

covariance matrix can be obtained from the variogram as defined in equation

1.2:
V(u) = >+ o¥{1- p(u)} [1.2]

In equation 1.2, t? is the aforementioned nugget effect, o? is the partial sill, and
o (u) represents the correlation at distance u. The variance of Yis 1>+ o® The
covariance between any two values of Y at locations distance u apart is o%p (u).
In PrevMap, the Matérn correlation function [54] is used for p(u). A schematic

representation of a typical variogram, is shown in Figure 1.1.
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Figure 1.1 Theoretical variogram illustrating the parameterization of the

spatial random effect.

In addition to the sill, 12+ %, and nugget, 1°, represented in Figure 1.1, the
shape and effective distance of spatial correlation complete the specification of
the variogram. The smoothness and physical range of spatial correlation are
contained in the p(u) function of equation 1.2. For the Matérn correlation
function, these are components represented by two parameters, x and o,

respectively [equation 1.3].
o(uw)= {2K' T'(x)}'(h/ ¢)<Ki(h/3) [1.3]
Where K is the modified Bessel function of the third kind of order x.

In addition to any predetermined covariates included in a geostatistical
model, we must fit the parameters determining the spatial random effect. Fitting
typically occurs for the parameters 1%, o® , and ¢, while x remains fixed, as it
is difficult to estimate [55]. Fitting these geostatistical models occurs through
Maximum Likelihood Estimation for linear models, and Markov-Chain Monte
Carlo methods for generalized linear geostatistical models. Both of these

processes are automated through PrevMap.
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PrevMap has successfully been applied across a number of studies. For
example, mapping the incidence of Snakebites in Sri Lanka [56], and exploring
the impact of changing sample size on the ability to accurately detect Malaria

hotspots [57].

1.5.3 Genetic analysis approaches and multidimensional

scaling

Genomics have been a useful tool for better understanding the epidemiology of
infectious diseases. With the increased availability and decreasing costs of
obtaining whole genome sequence (WGS) data, applications have been diverse;
WGS data have been used to understand the dynamics of an outbreak of
Mycobacterium tuberculosis [58], and trace the origins of the 2014 Ebola

epidemic [59].

Sequencing of Salmonella Typhi offers distinct challenges. The highly
clonal nature of S. Typhi was originally revealed through analysis of 200 gene
fragments (88,739 base-pairs). Only 88 single nucleotide polymorphisms (SNPs)
were identified after sequencing 105 Typhi isolates, confirming the highly clonal
nature of S. Typhi and identifying the drug resistant haplotype H58 [60]. Given
the genome is over 4 million base-pairs long, further evolutionary signal can be
revealed analysis of the entire genome [61]. The first multiple-genome study
sequenced 17 isolates from the previous gene fragment analysis, identified 1,964
SNPs, excluding repetitive regions [62], however there are now thousands of

genomes available which has led to a revision of the haplotyping scheme [63].

Some studies have previously explored the spatial patterns of S. Typhi
genomics. SNP typing for 1,500 previously identified SNPs was performed on
pediatric S. Typhi isolated in Kathmandu, Nepal [64], and isolates were

categorized into 28 distinct genotypes. Geospatial analysis of these patterns [62]
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found no household clustering. However, these 28 genotypes were not linked
together in any way via genetic relatedness, so these were treated as independent
categorical variables. This makes any in-depth analysis challenging, and may
mask more subtle patterns of relatedness. On a more macro-scale, the
spatiotemporal distribution of genomic lineages, defined as groups containing a
combination of SNPs identified through whole-genome sequencing, were
explored in Siem Reap province in Cambodia [49], and revealed distinct spatial-
genetic clusters. However, this study is similarly limited in that the analysis was

restricted to using the categorical representation of these genomic lineages.

Multidimensional scaling (MDS) and other multivariate methods such as
principal components analysis (PCA) have been useful for extracting continuous
summary measures of genetic relatedness since the 1960s [65]. These methods
reduce complex data containing relational measures of genetic-relatedness, to a
small number of synthetic variables that can approximate components of this
relatedness in a pre-specified number of dimensions. This approach is agnostic
to assumptions of evolutionary models or common ancestors. Its aim is simply
to describe relationships between isolates. This can be particularly useful in
exploratory scenarios, and allows us to retain a continuous representation of
genetic relatedness across samples, as opposed to categorical haplotypes or
lineages, as described above. These multivariate methods of summarizing genetic
relatedness have been used widely, for example, in the exploration of spatial
transmission in malaria genetics [66] and global population structures in human

population genetics [67].

1.5.4 Weather patterns and disease
In addition to spatial and genomic analyses methods, for diseases that are
possibly mediated by the environment, characterizing the temporal trends of

infectious disease in relation to weather patterns may offer complementary
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insights into transmission patterns of disease. For well-characterized
transmission routes, such as malaria, incorporating weather into statistical
models can allow for evaluation of variables for early warning systems [68]. For
diseases without established transmission routes, weather patterns can offer
unique insight into mechanisms at play, such as pathogen accumulation during

the dry seasons, as suggested for diarrheal illness [69].

Because many diseases exhibit seasonal dynamics, and so do weather
patterns, cross-correlation of disease and weather patterns is to be expected
regardless of whether a mechanistic link occurs. This makes establishing a causal
link challenging. Typhoid is known to be a seasonal disease across most settings
[70]. Therefore, unsurprisingly, rainfall is correlated with typhoid incidence. In
Dhaka, it was found that a 3-5 week lag in rainfall was associated with an
increase in typhoid cases [50]. In a multi-site investigation, it was observed that
rainfall often precedes the disease, and a positive association with temperature

is frequent [70], however this was not a universal finding across sites.

In analysis scenarios where cross-correlation is a given due to seasonality
of both the weather and disease pattern, a method of more convincingly
establishing causality from a time series analysis can be helpful. Working with
extreme disease or weather events in this context, rather than the raw data,
offers a potential solution. As extreme events do not tend to have seasonal
regularity, there is no expected cross-correlation, as long as the extreme events
can be effectively identified. For example, more or less rainfall than expected in
a given season predicting more or fewer cases than expected may be more
convincing than a seasonal lag, when establishing a causal link. This approach
has been used in establishing the link between rainfall events and diarrhea [69)].

Methods of identifying these extreme events and incorporating them into a
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model vary but can include using pre-specified thresholds, or by extracting

residuals from a smoothed (de-seasonalized) model.
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Abstract

Typhoid fever remains a major cause of morbidity and mortality in low and
middle-income settings. In the last 10 years, several reports have described the
re-emergence of typhoid fever in southern and eastern Africa, associated with
multidrug-resistant H58 Salmonella Typhi. Here, we identify risk factors for
pediatric typhoid fever in a large epidemic in Blantyre, Malawi.

A case-control study was conducted between April 2015 and November
2016. Cases were recruited at a large teaching hospital, while controls were
recruited from the community, matched by residential ward. Stepwise variable
selection and likelihood ratio testing were used to select candidate risk factors
for a final logistic regression model.

Use of river water for cooking and cleaning was highly associated with
risk of typhoid fever (OR 4.6 [CI: 1.6-12.5]). Additional risk factors included
protective effects of soap in the household (OR 0.6 [CI: 0.4-0.98]) and more than
one water sources used in the previous 3 weeks (OR 3.2 [CI: 1.6-6.2]).
Attendance at school or other daycare was also identified as a risk factor (OR
2.7 [CI: 1.4-5.3]) and was associated with the highest attributable risk (51.3%).

These results highlight diverse risk factors for typhoid fever in Malawi,
with implications for control in addition to the provision of safe drinking water.
There is an urgent need to improve our understanding of transmission pathways
of typhoid fever, both to develop tools for detecting S. Typhi in the environment,

and inform water, sanitation, and hygiene interventions.

2.1 Introduction

Typhoid fever continues to be a major cause of morbidity and mortality in low
and middle-income settings, with an estimated 10-20 million cases occurring
annually, and approximately 200,000 deaths [1-3]. In south and southeast Asia,

Salmonella Typhi was identified as the most common bacterial pathogen
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associated with bloodstream infection (BSI) among hospitalized patients
between 1990 and 2010 [71]. In contrast, S. Typhi was not described as a major
cause of BSI in southern and eastern African countries during the same period,
even in centers with long term bacteremia surveillance [72]. Instead,
nontyphoidal serovars of Salmonella were much more prominent causes of BSI.
Since 2012, the picture has changed dramatically, with multiple reports
describing the emergence of typhoid as a major cause of BSI in southern and
eastern Africa [46,73-75]. Though the drivers of this recent emergence remain
unclear, typhoid is now acknowledged as a significant public health problem in
both Africa and Asia [76].

S. Typhi is a human-restricted pathogen, and transmission occurs via the
fecal-oral route. Its ecological niche after excretion remains poorly described,
but there is evidence for heterogeneity in pathways of environmental exposure.
For example, typhoid transmission has been linked to contamination of the
water supply in Kathmandu, Nepal [24], whereas in Santiago, Chile, endemicity
was maintained until the early 1990s through irrigation of salad crops with
wastewater [19]. These contrasting data suggest that the critical intervention
points at which typhoid transmission may be interrupted in the environment
may be context-specific. In addition to transmission through an ecological niche,
S. Typhi may also be transmitted within the household, most often through
direct contamination of food by an infected individual. This type of transmission
is not only present in endemic settings, but has led to outbreaks of typhoid after
endemicity has been interrupted through widespread sanitation improvements
[21]. This poses an additional challenge for control.

Both transmission pathways are important in the spread of S. Typhi, but
their relative importance in endemic settings is poorly understood. Risk factor

studies have been conducted in a variety of locations, including both endemic
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and outbreak settings, to better understand the dominant drivers of
transmission. Previously identified risk factors for typhoid include recent
contact with individuals diagnosed with typhoid or enteric fever [77-79], food,
including consuming flavored ices [80] and ice cream [81] or ice cubes [82], buying
lunch at school [80] or eating roadside or outdoor vended food [81-83], and
drinking unsafe or untreated water at home [79,82,84] or drinking water at work
[81]. Exposure to water used for purposes other than drinking has also been
identified as a risk for typhoid, such as bathing and brushing teeth [82]. Findings
on sanitation show lack of soap in the household and limited handwashing are
associated with typhoid [78,82,83,85,86], while having a latrine in the household
has been found to be protective in Indonesia [78], but a risk factor in Nepal [87].
In endemic locations, the majority of work has been done in Asian, Oceanian,
and South American countries, and has so far been limited on the African
continent [77-86].

These findings implicate a variety of water, sanitation, and hygiene
(WASH) factors, but the heterogeneity among locations indicates a need for
site-specific investigation, particularly in regions that have been under-studied
or where typhoid is re-emerging. Furthermore, although many food and water
exposures have been previously identified, detailed studies describing where in
the food preparation or production cycle, or through which aspect of water usage
S. Typhi is entering and amplifying are lacking. This hampers the planning of
effective intervention strategies at the source of contamination. Understanding
the complexity of water, sanitation and hygiene factors in transmission has
assumed greater importance following the emergence of cephalosporin resistant
typhoid in Pakistan [11], which threatens the role of antimicrobials in typhoid
control. Whilst the typhoid conjugate vaccine offers a promising tool for control,

targeted water and sanitation interventions are likely to be necessary too.
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Blantyre is the second-largest city in the country of Malawi, located in
the Southern region (Figure 2.1). WASH-related interventions over the last 10
years in Blantyre have focused on water access, with an increase in kiosks, trials
of delivery systems, and protection of open sources, but interventions on
household water treatment and improved sanitation have been limited. Blantyre
has experienced a sharp increase in typhoid, increasing from an average of 14
cases per year between 1998 and 2010, to over 700 in 2013 [46]. Typhoid has
remained endemic in Blantyre, and the mechanism of this sustained
transmission is currently unknown. We therefore conducted a case-control study

to investigate risk factors for typhoid in this setting.

2.2 Methods

2.2.1 Data collection and study site

Queen Elizabeth Central Hospital (QECH) in Blantyre, Malawi, provides free
healthcare to urban Blantyre and the surrounding district, and tertiary care to
the Southern region of Malawi. Laboratory surveillance for BSI has been routine
since 1998, and is conducted through the Malawi-Liverpool-Wellcome Trust
Clinical Research Programme (MLW), based at QECH [88]. Pediatric patients
are eligible for routine blood culture if they present to the hospital with non-
specific febrile illness and test negative for malaria, have persistent febrile illness
after treatment for malaria, or are severely ill with suspected sepsis. Blood was
drawn for each eligible patient (2-4mL), followed by automated culture
(BacT/ALERT, Biomerieux) and serotyping for identification of Salmonella
Typhi [88].

Cases were defined as children under 9 years of age with blood culture
confirmed S. Typhi infection diagnosed between April 2015 and November 2016
at QECH, and who originated from the Blantyre urban area. Eligible controls

were healthy children under 9 years of age and were recruited at a 4:1 ratio
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throughout the study period. Children under 9 years of age were prioritized for
the study because of the known frequency of typhoid in this age group [46]. A
high-resolution census sub-divided urban Blantyre into 393 enumeration areas
(EAs), each with an estimated population size (Figure 2.1) [42]. To avoid spatial
over-matching, which would have made it impossible to identify small-scale
spatial heterogeneity of risk, controls were matched by larger residential wards
rather than by EA. To approximate the random selection of controls within a
ward, we selected EAs with probability proportional to population size. Within
each sampled EA, households were approached along a random path until an

eligible control was identified and consent was taken from legal guardians.

® control household
® case household

control-to-case ratio

Nk

cases

Figure 2.1 Location of Blantyre within the country of Malawi (inset), and the
Blantyre study boundaries. Enumeration areas are represented by the smaller
polygons, while residential wards are indicated in the larger, shaded by the ratio
of controls to cases. Households of cases (red) and controls (black) are plotted

as points, with precise locations masked by randomization.
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Exclusion criteria specific to cases after initial recruitment was living outside
EA boundaries. For both cases and controls, individuals were excluded if they
had a household member who previously was diagnosed with typhoid during the
period of the study.

A standardized questionnaire was administered to the guardians of
participants, where guardian was defined as a caregiver for the child, above 18
years of age. The questionnaire recorded both demographic and socioeconomic
indicators, as well as potential risk factors for typhoid. The incubation period
for typhoid in outbreak settings can be highly variable, but is not known to
frequently extend longer than three weeks [21]. Therefore, questions
distinguished exposure in the last three weeks from exposure in the last year.
Sources of water for drinking and water used for cooking and cleaning were
separately surveyed. The location and altitude of households and identified
water sources were collected using Garmin Etrex 30 GPS devices.

Controls were requested to provide a stool sample to describe

asymptomatic shedding of S. Typhi, described in Supplementary Material 2.1.

2.2.2 Statistical analysis

Logistic regression was used to assess potential risk factors in the study.
Residential ward was included as a fixed effect for all analyses, to take account
of the stratified sampling design for controls. The majority of predictor variables
were assessed directly from the questionnaire, while distance to hospital,
distance to primary water source, and elevation change between the household
and water source were calculated for each individual, using the recorded
household locations, water source locations, and ascertained GPS coordinates of
QECH. Due to the large number of questions in the initial survey, stepwise
forward variable selection was conducted to reduce the number to an

interpretable size. This process began with the base model, defined as the fixed
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effect of residential ward, plus intercept. At each iteration, likelihood ratio tests
were conducted to compare the base model with each potential variable
addition. The variable addition resulting in the lowest p-value from the
likelihood ratio test was then added to the model. The process was repeated
with the base model now updated with the added variable. The process stopped
when no variable addition improved the model at a significance level of p<0.05.

The final logistic regression model was fitted using the resulting selected
variables. Odds ratios with 95% confidence intervals were calculated using
coefficients and standard errors estimated from the fitted model. Unadjusted
individual odds ratios were also calculated for each selected variable to assess
dependence of multivariate model findings on the combination of included
parameters. To enable comparison between continuous variables in the study,
we rescaled each so an increase in scaled value is equal to one standard deviation
increase in the unscaled value. Due to only one individual reporting more than
one febrile family member, and one individual reporting more than two water
sources, for the final model fit these continuous variables were converted to
categorical variables.

Finally, we extend the multivariate logistic regression model to estimate
the potential percentage reduction in cases in our population attributed to
removing reported exposures. Detailed methods are described (Supplementary
Material 2.2). Because we do not know the null exposure value of continuous
variables, these calculations were only made for variables that were binary, and
those were estimated to be significant in the model.

To investigate spatial correlation in risk within residential wards, we
assessed the residuals of the fitted logistic regression model [53]. All statistical

analyses were conducted using R statistical software, version 3.5.1 [89].
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This study was approved by the University of Malawi, College of
Medicine Research and Ethics Committee [P.08/14/1617], the Liverpool School
of Tropical Medicine Research Ethics Committee [14.042] and the Lancaster

University Faculty of Health and Medicine Ethics Committee [FHMREC17014].

2.3 Results

During the study period, 189 children were diagnosed with blood culture
confirmed typhoid (Figure 2.2). There were no cases of Salmonella Paratyphi A.
125 cases were included in the study, with a median age of 5 (IQR 3-7); 60
patients were not recruited, amongst whom 35 declined participation, 24 could
not be reached after diagnosis, and 1 patient died from complications of
perforation prior to recruitment. After recruitment, two patients were excluded
because they were secondary cases in households that had previously been
surveyed, and two cases were excluded from the analysis because their household
location fell outside the study boundary. One control was excluded, due to
another household member having culture-confirmed typhoid during the week

of recruitment.

189 eligible cases 515 eligible controls

60 not recruited
1 death
35 declined participation
24 not trackable

1 exclusion

culture-confirmed typhoid case
in household

A 4

4 excluded
2 living outside of study area
2 secondary cases in same
household

y

125 cases included 514 controls included

Figure 2.2 Consort chart for cases and controls in the study.
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Cases tended to be older than controls (Table 2.1) but were similar in
distribution of gender. Though the overall ratio of controls to cases was 4.2:1,
control ascertainment resulted in a heterogeneity of the ratio of controls to cases
between residential wards (Figure 2.1). Six residential wards did not contain
any cases. Amongst the 123 controls tested, 0/123(0%) were stool culture
positive for S. Typhi, therefore no further action was taken, however,

3/123(2.4%) were PCR positive (95% CI:0.8-6.9%).

Table 2.1 Baseline characteristics of cases and controls enrolled in the study.

Characteristic Cases (n=125) Controls p-value
(n=>514)
Age (years) n % n (%) < 0.005
<2 28 (22) 185 (37)
3-5 35 (28) 209 (40)
6-8 61 (49) 120 (23)
Gender 0.38
Male 61 (49) 204 (51)
Female 64  (51) 278  (49)

Variable selection reduced the 97 initial variables to 14 (Table 2.2,
Supplementary Material 2.3). The 125 cases and 514 controls were reduced to

122 and 507, respectively, due to missing data in the final variable set. Out of
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the 14 final variables selected in the model, 8 were directly related to water
exposures.

Logistic regression identified several significant risk factors for typhoid
in children (Table 2.2). Factors suggestion environmental exposure included
cooking and cleaning with river water (OR 4.6 [CI:1.7-12.5]) and water from an
open dug well (OR 2.4 [CI:1.1-5.1]), having more than one drinking water source
(OR 3.2 [CI:1.6-6.2]), and being from a household growing crops (OR 1.8 [CIL:1.1-
3.0]). Conversely, availability of soap to wash hands after the toilet (OR 0.6
[CI:0.4-0.98]), was protective. Risk factors suggesting the importance of social
interaction patterns were identified, including spending the day at school or in
child care (OR 2.7 [CI:1.4-5.3]) and having one or more household members
admitted to the hospital with febrile illness in the last four weeks (OR 8.9
[CI:1.9-41.2]. Seeking care for severe illness at QECH was selected for in the
model, adjusting for differential case-ascertainment through the hospital
between cases and controls. Estimates of attributable risk are summarized in
Table 2.2. The highest attributable risk percentage was spending the day at
school or daycare (51.3%), followed by growing crops by the household (17.4%).
Attributable risk percentages were lower, and similar, for cooking and cleaning
with river water (10.3%) and water from an open dug well (8.3%).

There was no significant spatial correlation of residuals from the analysis
(Supplementary Material 2.3), indicating that the variables in the questionnaire
and/or spatially matching on residential ward sufficiently accounted for

unexplained spatial variation in risk.
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Table 2.2 Estimated odds ratios for univariate models and selected multivariate model. Numeric variables are scaled for

presentation of estimates; thus odds ratios are presented as increased risk per 1 standard deviation increase in the value.

Variable Cases (122) Controls (507) Unadjusted OR p value M”Mh:vﬁm.-w OR p value W“”Wﬂ%r_a N.Mh..“.v”wm OR
Seeking care at QECH if child is severely ill, no. (%) 118 (97) 370 (73) 10.9(4.0,30.2)  <0.001 14.1(4.7,41.8)  <0.001 - —
One or more household members admitted to hospital for febrile illness in last four weeks, no. (%) 9(7) 7(1) 5.7(2.1.15.6) <0.001 8.9(1.9,41.2) 0.006 - —_—
Cooking and cleaning with river water in the previous three weeks, no. (%) 15(12) 16 (3) 43(2.1,9.0)  <0.001 4.6(1.7,12.5) 0.002 10.3 —
More than one drinking water sources used last three weeks, no. (%) 28(23) 38(7) 3.7(22,03) <0.001 3.2(l.6,602) <0.001 15.4 —
Child spends the day at school, preschool, nursery or any other daycare, no. (%) 99 (81) 312 (62) 2.7(1.7,4.4)  <0.001 2.7(1.4,5.3) 0.005 51.3 —
Cooking and cleaning using water from an open dug well in the previous three weeks, no. (%) 20(16) 35(7) 26(1.5,4.8) 0.001 2.4(1.1,5.1) 0.020 8.3 —_—
Family grows crops, no. (%) 47 (38) 137 (27) 1.7(1.1,26)  0.127 1.8(1.1,3.00 0027 174 —
Age (years), median (range) 5(0-8) 3(0-8) 1.7(14,21)  <0.001 1.4(10,18) 0053 - ——
Distance to from household to primary water source (meters), median (range) 78 (1-738) 52 (0— 748) 12(1.0,15) 0013 1.2(1.0,1.6) 0118 - ——
Number of days water is stored, median (range) 2(1-7) 2 (1-20) 0.74 (0.6, 0.96) 0.024 0.8 (0.6, 1.0) 0.054 - —
Experienced water shortage in the house or surrounding area in the past two weeks, no. (%) 38(31) 172 (31) 1.0(0.7,1.6) 0.897 0.6 (0.3, 1.0) 0.056 - —
Soap available to wash hands after the toilet in the previous three weeks, no. (%) 70 (57) 360 (71) 0.5(0.4,0.8) 0002  0.6(0.4,0 98) 0.042 - —l
Stores drinking water in drum, no. (%) 0(0) 20 (4) 2.6 e—07 (0, inf) 0977 12e-7(0,inf) 0.984 -
Used stream or river water for drinking in the last three weeks, no. (%) 0(0) 4(1) 72e-07 (0, inf) 0984 1.1e-8(0,inf) 0992 -
:._mm 1 _,o m_:

v’
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2.4 Discussion

This study provides detailed insight into the risk factors for pediatric typhoid
in an urban African setting. Our findings point to complex and varied risks for
typhoid in Blantyre, including water sources, household indicators of sanitation
and hygiene, and social interaction patterns such as school attendance.

In multivariate analysis, cooking and cleaning with river water was the
principal environmental exposure identified in the study. Cooking and cleaning
with water from an open dug well was additionally identified as a risk factor.
No sources of drinking water were associated with typhoid, contrasting with
other studies that implicate drinking water sources as risk factors [79,81,82,84].
Potential explanations include that communities are aware of the risks
associated with drinking unclean water, but less aware of the risks of indirect
exposure, such as through pans or other items that may come into contact with
food. Alternatively, people may prioritize safe water for drinking, but cannot
afford to purchase or transport the volume of safe water needed for use in other
household tasks. It is estimated that less than 5% of the population is connected
to the sewage network, with the majority of the population utilizing pit latrines
[44]. Open dug wells and nearby rivers used for cooking and cleaning water may
become contaminated with runoff from pit latrines, particularly during rain
events, providing a plausible epidemiological link.

Our findings indicate that individuals are at a higher risk for typhoid
when using multiple drinking water sources. Previous work examining water
access in urban Malawi identified limited access hours, tariffs, low water
pressure, and too few water kiosks as structural barriers to adequate potable
water for household activities [90]. These water access challenges are likely to

influence the number and type of water sources used, and may necessitate the
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use of unsafe sources. In other studies, distance, access, and behavioral factors
have been found to influence decisions around accessing potable water [91-93].

We also identify risk factors where exposure could occur through either
interaction with contaminated environments, infected individuals, or both.
Having household members hospitalized for febrile illness was identified as a risk
factor; as was attending school or other day care. In the context of schools,
however, it is uncertain whether the key exposure is direct contact with a
contaminated environment [94], food handlers contaminating meals [94,95], or
transmission routes such as contact with infectious children. The presence of
soap in the household was found to be protective, consistent with findings in
other locations [78,82,83,85,86], further supporting a tool that interrupts
exposure.

Coming from a household that grows crops is a risk factor for typhoid in
Blantyre, consistent with the experience in Santiago, Chile, where irrigation of
crops with wastewater was a driver of typhoid transmission [19]. Neither
irrigation with human nor animal waste was found to be a significant risk,
however fecal contamination of food crops still may be possible in Blantyre
through runoff from latrines, or irrigation with fecally contaminated river water.

Calculation of attributable risk has enabled us to estimate frequency of
exposure to these risk factors in the population. Spending the day in school or
day-care was associated with the highest attributable risk, highlighting the
importance of this common exposure among children in our study and associated
challenges with WASH in schools [96]. A small percentage of cases and controls
reported cooking and cleaning with river water/water from an open dug and
thus these factors were associated with lower estimated attributable risks,
however such behaviours are commonly described in qualitative and

observational research in Malawi [97,98]. There is therefore a possibility of
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under-reporting these types of exposures, and further research on quantifying
these patterns would be useful. The study has some limitations; the extended
incubation period of typhoid necessitated a 2-3 week window for assessing
potential exposures, and recall bias cannot be excluded. Controls were recruited
throughout the study period, and not matched over time, limiting our ability to
control for seasonality. We focused on young children with the goal of capturing
household-related risk factors, assuming younger children move around the city
less than adults and are therefore less likely to become exposed outside of the
household. Regardless, the potential for differential risk factors for older children
and adults may limit the generalizability of these findings to older age groups.
We assessed WASH risk factors through a questionnaire, rather than by direct
observation in or transect walks around participant households. Lastly, by
basing our study on sentinel surveillance of patients presenting to QECH, we
have selected for more severe disease, and have not captured minimally
symptomatic or sub-clinical typhoid, which may be associated with differential
risk factors.

We provide new insights into risk factors for typhoid in an urban African
context, challenging the dogma that transmission of S. Typhi can be interrupted
solely by the provision of safe drinking water. Instead, we highlight the
importance of usage of water for purposes other than drinking, of hand hygiene,
and of preschool/daycare attendance in the transmission of typhoid in this
setting. Future work should confirm our findings by direct assessment of S.
Typhi in the environment. Developing novel tools for the identification of S.
Typhi in the environment will help to identify transmission routes rapidly, and

without in-depth risk factor analyses for each epidemic or endemic location.
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Abstract

A sharp increase in cases of multidrug resistant typhoid fever in Blantyre,
Malawi was observed in 2011. Transmission continues today, but the key
environmental niches and dominant transmission routes remain unknown. This

poses a challenge for targeting water and sanitation interventions.

Between March 2015 and January 2017, 549 patients presenting to
Queen’s Hospital, Blantyre, with blood culture confirmed typhoid fever were
recruited to a cohort. For a subset of these patients, households were geo-
located, and S. Typhi isolates were whole genome sequenced (WGS). Pairwise
SNP distances were converted into informative variables using multidimensional

scaling and incorporated into a geostatistical modelling framework.

Spatial risk analyses revealed a heterogenous distribution of Salmonella
Typhi isolates across the city. Pairwise SNP distance and physical household
distances were significantly correlated. We evaluated the ability of river
catchment to explain the spatial patterns of genomics observed, and found that
river catchment significantly improved the fit of the model. We also found small
scale spatial correlation of the genetic signatures amongst households living up

to 50 meters apart.

Our findings support epidemiological evidence that river systems play a
key role in the transmission of S. Typhi in Blantyre. These findings will help
inform targeted environmental surveillance, to confirm the presence of S. Typhi
in rivers and understand heterogeneity in exposure. We present compelling
evidence of the value of integrating complex data to understand the transmission
of environmentally dependent pathogens, which in this case can be used to

inform the deployment of control measures.
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3.1 Introduction

Typhoid fever remains a major cause of morbidity and mortality in developing
countries, with an estimated 11 million cases occurring annually [99]. In March
2018, the typhoid conjugate vaccine (TCV) was recommended by WHO for
control of typhoid fever, providing momentum for global initiatives to combat
this disease [76]. Although this vaccine offers a high level of clinical protection,
it is less certain whether it will prevent shedding of the disease [15]. Therefore,
interventions using TCVs alone may not be sufficient for control in endemic
locations. Multi-faceted initiatives pairing vaccine with water, sanitation and

hygiene (WASH) interventions may be necessary.

Prioritizing WASH interventions for typhoid is challenging, as
transmission routes do not appear to be consistent across locations [19,24]. Risk
factor investigations are useful for identifying specific exposures, however
achieving a broad understanding of the pathways of transmission for the
purposes of intervention remains a challenge. This is further complicated due to
the difficulty of detecting Salmonella Typhi from the environment [41]. This
limits our understanding of where best to intervene to interrupt transmission in

settings with inadequate water, sanitation and hygiene infrastructure.

Spatial and genomic data may offer insight into transmission patterns of
typhoid fever. Geo-locating cases as a part of routine surveillance has become
increasingly common. Spatially informed disease control interventions and
investigations are being developed and utilized, such as for the targeting Polio
vaccines [100], and investigating hot-spots and transmission routes of Ebola
[101]. Geospatial analyses for typhoid fever to-date have revealed the spatially
heterogenous nature of the disease at both municipal and national scales

[50,102], but consistent spatial predictors of disease have yet to be identified [3].
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As costs have declined, whole genome sequencing (WGS) has become a
valuable component of infectious disease research, and WGS of bacterial
genomes offers the potential to type bacteria with high discrimination and
reproducibility [103,104]. Individuals closely linked along a transmission chain
have closely related genomes, so WGS offers the resolution to confirm or refute
the existence of a transmission chain. WGS data can inform and enhance spatial
analyses, providing further insight into pathogen transmission. For example, a
genomic investigation of typhoid in rural Cambodia revealed that genetic groups

of S. Typhi are distinctly spatially clustered [49].

Blantyre, Malawi experienced rapid emergence of multi-drug resistant
(MDR) typhoid fever beginning in 2011 [46]. Despite ongoing transmission, the
dominant transmission pathways remain unknown. A case-control study
revealed complex risk factors related to both WASH (i.e. river water usage) and
social exposures (i.e. school/ daycare attendance) [105]. In this study, we explore
the spatial and genomic patterns of typhoid transmission in Blantyre through a
cohort study, in order to further characterize incidence patterns, and disentangle

transmission occurring in the city.

3.2 Methods

3.2.1 Setting and case ascertainment

Any patient diagnosed with culture-confirmed typhoid fever presenting to
QECH, Blantyre, Malawi was recruited to the prospective observational cohort
between April 2015 and January 2017. Informed written consent was sought
from adult participants and from the legal guardians of children. Questionnaires
were used to record age, residential area, HIV status, in- vs outpatient

treatment, clinical presentation, complications and outcome using Open Data

Kit (https://opendatakit.org/). Residential location and location of any
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household water source used within three weeks prior to diagnosis was recorded
for children under the age of 9 beginning in April 2015, and for all cases
beginning in August 2015. Garmin Etrex GPS devices were used for geo-location
of households of cases that were enrolled in the nested case-control study [105],
while the electronic PArticipant Locator application (ePAL) was used to geo-

locate the households for the remainder of the cohort [106].

3.2.2 Incidence mapping

We aimed to describe the incidence of culture confirmed typhoid fever associated
with presentation to QECH. The denominator was derived from a 2016 census
of Blantyre and surrounding areas [107], dividing the urban catchment area of
the ePAL system into 275 enumeration areas (EAs). This census included
population structure by age band, and number of households, along with
shapefiles for each EA. There are now numerous approaches to adjusting
incidence of typhoid fever based on sensitivity of diagnostic and health care
utilization [3,108], however as none are standardized, no adjustment has been

used in this study.

All statistical analyses were conducted using R statistical software,
version 3.5.1 [89]. In order to model incidence across the city, a Poisson log-
linear model with a spatial random effect was fitted using the PrevMap package
[12]. Rates were estimated for each EA and age band, with estimated population
size in each age band as an offset. Covariate effects were explored, including
distance from the centroid of each EA to QECH, average household size,
population density per square kilometer, elevation at the centroid, ascertained
from digital elevation model (DEM) data [110], and hydrological catchment,
extracted using ArcGIS (Supplementary Material 3.1). The statistical model is

further described in Supplementary Material 3.2.
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3.2.3 Sequencing & Phylogenetic analysis

In order to investigate the genetic patterns of S. Typhi in this study, isolates of
MDR S. Typhi were whole genome sequenced on Illumina HiSeq2500 machines
generating 150 bp paired-end reads. Reads were mapped against the high-quality
reference genome of S. Typhi 1036491 isolated in Blantyre, Malawi in 2012. An
alignment was generated selecting only sites containing ACGT (no gaps or Ns)
using snp_ sites [111]. A pairwise SNP matrix was generated from this alignment
and was used for spatial modelling. For further phylogenetic analyses,
recombinant sites and mobile elements were removed following analysis of the

mapping-based alignment and phage characterization.

The phylogeny was reconstructed using iq-tree [112] under the general
time-reversible model. Ascertainment correction was done for the SNP-only
alignment, and support was assessed using 1000 bootstrap replicates. The
resulting tree was assessed for phylogenetic signal using tempest (v1.5.1;[113])
and root-to-tip correlation was calculated. The phylogenetic tree was
reconstructed into a joint ancestral tree, and rPinecone [114] was used to further
group the isolates based on this tree, using 2 and 4 as relevant SNP cutoffs for
minor and major clusters, respectively. Detailed protocols for genomic analyses

are found in Supplementary Material 3.3.

3.2.4 Spatio-genetic modelling

Firstly, we tested for correlation between SNP distance and spatial distance by
comparing the correlation coefficient calculated from the data with those
calculated after random permutations of the household locations. Next, the
pairwise distance matrix of all absolute differences of SNPs was mapped to two
dimensions using multidimensional scaling (MDS), with the principal coordinate

values henceforth referred to as genetic scores. We used a linear model with a
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spatial random effect to predict genetic score across the city. Finally, based on
results of a risk factor study from a subset of this cohort that points to river
water as a potential exposure [105], we explored the ability of river catchment
to predict genetic score. Analyses were conducted using R statistical software,

version 3.5.1 [89] and the PrevMap package [12] (Supplementary Material 3.4).

3.3 Results

3.3.1 Characteristics of cohort

S. Typhi was isolated from 658 blood cultures between March 28, 2015 and
January 12, 2017 (Figure 3.1), with an additional 2 isolates obtained from
cerebrospinal fluid. 641/660 (97%) of all isolates were multidrug-resistant to
ampicillin, chloramphenicol and cotrimoxazole. 12 isolates (1.8%) were
susceptible to all tested drugs. 542 cases were recruited to the cohort study, of
whom 314 cases consented to provide their household locations, and 256 MDR

isolates were whole genome sequenced (Figure 3.1).

658 routine blood cultures positive for
Salmonella Typhi

l

549 recruited to cohort study

|

314 provided household locations

l

256 isolates whole genome sequenced

Figure 3.1 Consort chart showing individuals recruited to study.
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The characteristics of the cohort are summarized in Table 3.1. The median age
was 11 years (IQR: 6-19), and the HIV seropositivity rate was 10.7% (37/346).
391/542 (73%) patients were hospitalized, and hospital records were retrieved
for 326. The most frequently reported modes of presentation were fever and
gastrointestinal complaint (abdominal pain and/or diarrhea and vomiting) in
45%, and non-focal febrile illness in 43%. The fatality rate of the cohort was

1.5% (8/520).

Table 3.1 Characteristics of the recruited cohort.

Characteristic Value

Age, median years (range) 11 (6-19)
Female, n (%) 256/542 (47.2)
HIV reactive or exposed, n (%) 37/346 (10.7)
Malaria test positive, n (%) 7/533 (1.3)
Living in urban Blantyre, n (%) 484 /542 (89)
Death, n (%) 8/520 (1.5)
Admitted, n (%) 391/542 (72.1)
Length of hospital stay, median (IQR) 4 (3-7)

3.3.2 Incidence mapping

314 cases provided household locations, with 17 cases occurred outside of
enumeration area bounds. This resulted in 297 of the 658 blood-culture
confirmed cases recruited to the cohort being included in the geostatistical

incidence model. The sensitivity of blood culture as a diagnostic test is known
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to be approximately 60% [5], therefore our modeled estimates represented
estimated minimum incidence rates only. Total predicted incidence in each
enumeration area is plotted in Figure 3.2. The model predicts the highest risk
in the <5 age band, followed by the 5-14 age band (Table 3.2). Of the evaluated
covariates, average household size was a significant predictor of incidence (Table
3.2), while other measured covariates did not significantly improve the model
(Supplementary Material 3.2). Distance from hospital was not a significant
predictor of incidence, suggesting that distance from care may not affect health-

seeking behavior across the city for these severe cases.

Annual incidence ./

per 100,000
<5
5-9
10-14 —
Okm 1km 2km
15-19
Queen Elizabeth 4
. 20-25 ®  Central Hospital )
. 25-29 ‘ Undeveloped land
- 30+ ‘ Non-censused residential "
: or industrial VAP

Figure 3.2 Estimated incidence rate for enumeration areas in Blantyre.
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Incidence across Blantyre is geographically heterogenous, with an overall
estimated incidence rate of 14.7 per 100,000 per year, reflecting a likely lower
bound on incidence in the region. High incidence regions exist within the city,
with 11 enumeration areas predicted to have an incidence greater than 30 per
100,000 whilst 4 enumeration areas have an incidence rate of less than 5 per
100,000. Small-scale spatial correlation is estimated to occur in the region, with
the estimated range of spatial correlation (phi) at 528 meters (Table 3.2). This
indicates a practical range of spatial correlation (>5% correlation) reaching
approximately 1600 meters. Areas of higher or lower risk that expected given

their covariate values are identified (Supplementary Material 3.2).

Table 3.2 Parameter estimates for geostatistical incidence model.

Parameter Estimate  Standard error P-value
Intercept -5.25 0.560 <0.001
Average household size -0.829 0.129 <0.001
Age 5-14 1.108 0.076 <0.001
Age <5 1.168 0.075 <0.001
log(sigma?) -1.797 0.243 -
log(phi) 6.269 0.331 -
log(tau?) -0.251 0.510 -

3.3.3 Genomic epidemiology
MDR isolates of 256 patients were whole-genome sequenced and all were H58
haplotype. Root-to-tip correlation (0.07) indicated insufficient temporal signal

to allow a temporal analysis (Supplementary Material 3.3). Whilst no visual
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association with river catchment can be observed, six distinct genomic clusters

of isolates were identified (Fig 3.3A).

Significant correlation between SNP distance of isolates and physical
distance of household locations was observed in the data (p = 0.001)
(Supplementary Material 3.4). The first two principal coordinates (PCs)
resulting from the multivariate analysis account for 38% of the variation in the
SNP matrix (Figure 3.3B). Scores along primary axis (PC 1) are similar for the
majority of the cohort, with the exception of 11 isolates whose genetic score is
approximately -15, suggesting a distinct genetic group. These individuals were
also observed to be clade 6 in the tree (Figure 3.3A). Although genetically
distinct, these 11 individuals do not appear to form a distinct spatial or temporal
cluster compared to the rest of the cohort (Supplementary Material 3.4), so it

is unclear how they are related.

PC 1 shows no evidence of spatial correlation (Supplementary Material
3.4), indicating that, although this axis reflects an aspect of genetic relatedness,
it may not be relevant to the spatial component of the genetics we are aiming
to observe. Genetic scores are more evenly distributed along the secondary axis
(Figure 3.3B). Further, there appears to be spatial correlation of these scores
approaching 2500 meters, as seen from the empirical variogram (Figure 3.3C),
and confirmed by statistical test (Supplementary Material 3.4). We therefore fit

the linear geostatistical model to PC 2.

Blantyre has complex river network (Figure 3.4A), and we have
previously identified use of river water in the household as a risk factor for
typhoid [105]. Using river catchment as a categorical predictor in the linear
model significantly improves the model’s fit to the genomic patterns observed

compared to an intercept-only model (LL -301.9 vs. -289.4, p = 0.003).
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Parameter estimates indicate similar genetic scores for individuals in catchments
2 and 8 (Table 3.3), distinct from the rest of the catchments. To confirm this
observation, we conducted a contrast test to compare the mean coefficient values
between catchments 2 and 8, and the rest of the river catchments. The difference

was significantly different from zero as evaluated using a t-test (p<0.001).
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Figure 3.3 A. Tree showing major clades, B. Decomposition of SNP matrix
into the first two 2 principal coordinates of the multidimensional scale, points
colored by membership of major clades corresponding to the tree C. Empirical

variogram of PC 2 of SNP distance matrix.

Estimates of spatial correlation of the geostatistical model highlight the multiple
scales of spatio-genetic clustering. The range parameter, phi, indicates that the
practical range of spatial correlation (the distance at which the spatial

correlation decays to 0.05) is approximately 192 meters, indicating the model’s
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spatial random effect is capturing small geographic-scale spatial correlation.
Though the city’s geographical range spans approximately 20 kilometers,
households in the cohort are clustered, with 59% of the cohort having another
cohort member within a distance of 192 meters. We conducted a sensitivity
analysis using geo-located water sources instead of household locations. As the
majority of individuals lived within close proximity of their water sources, the
results were consistent with the findings using household location

(Supplementary Material 3.4).

Table 3.3 Estimated parameters for geostatistical genetic model.

Catchment Genomic score 95% CI1

1 0.091 —

2 —1.240 —_—

3 1.301 —_

4 0.308 —

5 0.496 _

6 0.353 e

7 1.084 —_

8 —1.092 ——

9 0.807 e

10 0.640 —

3 E) 3

Parameter Description Estimate Std. error

sigma’ spatially correlated variance ~ 4.116 1.106
phi range of spatial correlation ~ 40.496 1.119
tau nugget (nonspatial) variance ~ 0.165 1.859
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3.4 Discussion

We describe a multi-faceted epidemiological investigation, enhanced by high
resolution genotyping and geostatistical modelling. Mapping the cohort first
enabled us to explore spatial patterns of incidence. The results reveal
unexpected heterogeneity in incidence of typhoid fever in the context of a
generalized epidemic across the city of Blantyre. A single incidence estimate for
Blantyre would mask areas of both high and low incidence rates within
enumeration areas across the city. This is relevant for considerations of control
with the conjugate vaccine: in the case of limited resources for vaccination, these
high-incidence regions can be prioritized. Additionally, the cost-efficiency of the

vaccine decreases with lower incidence rates [115], and providing data indicating



Chapter 3: Spatial and genomic analyses 50

higher incidence regions within city may help motivate policy-makers to support

a vaccination strategy.

Useful and generalizable incidence covariates are not commonly known
for typhoid [3]. Out of the covariates tested in our study, only average household
size was significantly predictive of risk. This contrasts with other studies that
have found increased risk in lower elevation areas [51]. We do not have evidence
of decreasing incidence with distance to the hospital (within the city), which is
consistent with the severity of the cases captured in this cohort of individuals
presenting to the hospital. The increased incidence with decreasing household
size, after accounting for population density and controlling for differential age
distributions of EAs, may be a consequence of younger families living in greater
socioeconomic precarity. Further work into exposure-related factors that would

be associated with household composition is needed.

It is important to note the incidence rates presented are a lower-bound
of the underlying burden for a number of reasons. Case ascertainment for
typhoid is highly dependent on the surveillance framework: Our hospital-based
surveillance is likely only capturing the most severe of cases, while an active
surveillance framework would be more efficient in detecting mild or sub-clinical
illness in the community, leading to higher estimates [116]. Further, we do not
adjust rates by the sensitivity of blood culture, which is approximately 60%,
but varies based on blood culture volume [5]. Data on sample volumes were not
available in this study. Finally, the differential time periods for mapping the
recruited cohort vs. cases under the age of 9 is leading to an under-estimate of

incidence rates, however is not likely to affect the spatial patterns observed.

While reconstruction of phylogeny was successful in identifying discrete

clades of S. Typhi, much information is masked by reducing the genetic data to
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categories in this way. Instead, we incorporated the full spectrum of genetic
variation by starting with all-against-all SNP distance followed by
multidimensional scaling, which created a continuous variable for further
analysis. Modelling the principal coordinates extracted from the SNP- matrix
enabled us to view a continuous representation of genetic relatedness spatially,
as well as test the predictive power of spatial covariates. Results from the spatio-
genetic modelling show a high correlation of spatial distance with genetic
relatedness. This contrasts with data from Kathmandu, Nepal, where haplotypes
were not distinctly clustered [62]. However, SNP-typing, not WGS, was
performed in this previous analysis, possibly masking more subtle clustering at

non-sequenced locations in the genome.

The spatial-genomic clustering identified in the current study supports
the results from a recent case-control analysis in Blantyre, which evaluated risk
factors from a subset of the current cohort [105], and identified cooking and
cleaning with river water as a potential exposure pathway. This case control
study provided the empiric evidence for our current analysis, in which adding
river catchment to our spatial-genomic model resulted in a significantly
improved fit. This offers evidence that transmission within hydrological
catchments may be occurring, and is consistent with emerging data from Fiji,

showing heterogeneity of disease between hydrological catchments [117].

However, small-scale spatial correlation existed in the model even
accounting for river catchment, which reflects the complexity of typhoid
transmission. This may relate to social exposure factors such as attendance at
school or daycare, additionally identified in the risk factor study in Blantyre

[105], but the data needed to test this hypothesis do not currently exist.
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There are limitations to the spatial-genomic analyses. Our single tested
spatial covariate in the spatial-genomic analysis was hydrological catchment.
Although our hypothesis that these were critical to transmission was grounded
in previous work [105], we are missing predictors reflecting broader social
interactions such as school attendance or food market, which might also have
explained the spatial clustering seen, and should be investigated in future
studies. The modelling of ‘genetic score,” extracted through principal coordinates
analysis, has allowed a flexible framework to explore the spatial patterns of
genomics. However, some of the genetic signals present may be missed through
this analysis due to the reduction of the genetic data to a two-dimensional space.
We are additionally only sequencing a subset of the most severe cases; to add
further granularity to our data and greater depth to our understanding of
typhoid transmission, we would need representative geo-located isolates from
mild cases and asymptomatic carriers, as well as data from environmental

surveillance.

Currently, typhoid conjugate vaccines are being introduced in areas with
known typhoid transmission, including Blantyre. However, additional
interventions are likely to be necessary for sustained control, and identifying
precise intervention points for water and sanitation interventions is often a
challenge without detailed risk factor studies. Pairing spatial and genomic data
has helped to identify that the rivers of Blantyre play a role in typhoid
transmission, and this finding can help inform targeted inventions for typhoid
control in this setting. The development of methods for rapid detection of S.
Typhi in the environment will be critical to support the planning of public

health interventions to interrupt transmission in the future.
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Abstract

Typhoid fever is a major cause of febrile illness in developing countries. The
final stage of transmission is via the fecal-oral route, however intermediate
environmental pathways are poorly understood. The interaction between
weather events such as rainfall and typhoid fever may offer insight into these
roles. We investigate this relationship in Blantyre, Malawi, where multi-drug

resistant typhoid fever has been transmitting since 2011.

We examined cross-correlations of rainfall and detrended typhoid fever,
and utilized a quasi-Poisson generalized linear modelling framework to explore
the predictive power of rainfall anomalies on typhoid fever. We found that the
peak in rainfall precedes the peak in typhoid fever by approximately 15 weeks,
a lag that does not indicate a direct biological link. However, when exploring
anomalies in rainfall (either more or less rain than expected), we found a
significant protective effect of anomalous rainfall on typhoid fever, at a two-

week lag.

The extended lag between rainfall and typhoid fever, far exceeding the
incubation period of the infection, indicates the existence of an unknown
intermediate step in the transmission pathway. The significant protective effect
of rainfall anomalies at a two-week lag suggests inordinate rainfall may cleanse
the environment, while less than usual rainfall may prevent fecal material from
washing into either environmental systems such as rivers, or directly into

households.

In summary, rainfall anomalies may be protective in Blantyre. However,
this relationship may change from location-to-location depending on the sewage

infrastructure and drinking water quality. These results can help to better
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understand the environmental mediation of typhoid transmission, and offer

insights for future water and sanitation intervention strategies.

4.1 Introduction

Typhoid fever, caused by the bacterium Salmonella Typhi is a major cause of
febrile illness in developing countries, with 10-20 million cases occurring
annually [4]. Individuals can be exposed through direct interaction with infected
individuals, via food handling or contamination of other fomites. Additionally,
exposure to S. Typhi can be mediated by the environment, i.e. contaminated
drinking or household water, sewage, or food. Although Salmonella enterica
serovar Typhi is a human restricted pathogen, its behavior in the environment

after fecal excretion remains obscure.

In many locations with ongoing transmission of S. Typhi, the specific
mechanisms of environmentally mediated, or ‘long-cycle,” transmission are
unknown. In Chile, irrigation of crops with wastewater was identified as risk
factor for typhoid. After this practice was banned, typhoid incidence declined
to near-elimination levels [19]. In Nepal, transmission through drinking water
was posited, and further bolstered by environmental sampling [24].
Understanding these pathways is important for designing non-vaccine control

measures.

As climate is a key determinant of environmental conditions, the impact
of weather events, such as rainfall on typhoid, could help to identify the
environmental drivers of transmission in endemic locations. Further, if a link to
a weather pattern is established, this may help to predict fluctuations in disease
incidence. Currently, however, we do not understand the impact of rainfall on
typhoid. Flooding or extreme rainfall events may overwhelm pit latrines or other

forms of waste management, whilst drought conditions may offer opportunities
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for contamination of drinking water through negative pressure facilitating leaks

into water pipes.

Because many diseases exhibit seasonal dynamics, cross-correlation of
disease incidence and weather variables is frequently assumed regardless of
whether a mechanistic link occurs, thus establishing a causal or mechanistic link
is challenging. Typhoid is known to be seasonal [70], therefore it is unsurprising
that seasonal rainfall is also correlated with disease incidence. In Dhaka, a 3-5
week lag in rainfall was associated with an increase in typhoid cases [50]. In a
multi-site investigation, it was observed that rainfall often precedes the disease,
and a positive association with temperature is frequent [70], however this was

not a universal finding across the evaluated study sites.

Where cross-correlation is a given, time series analysis can be helpful in
establishing causality, in particular by considering the relationship between
disease and weather anomalies. Because weather anomalies are not predictable
in an annual/ seasonal way, this removes the issue of an expected cross-
correlation, as long as the extreme events are identified effectively and well
characterized. For example, more or less rainfall than expected in a given season
predicting more or fewer cases than expected may be more convincing than a
seasonal lag, when establishing a causal link. This approach has been used in
establishing a link between rainfall events and diarrhea [69]. Methods of
identifying these extreme events and incorporating them into a model vary, but
can include exceedance of a pre-specified threshold, or by extracting residuals

from a smoothed (de-seasonalized) model.

There is a distinction between (a) association between rainfall and
incidence and (b) association between rainfall and incidence anomalies. For

incidence and rainfall associations, we are attempting to explain the entire
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seasonal pattern of cases with rainfall. For weather anomalies, we are only
attempting to explain more or less than expected cases beyond an expected
seasonal pattern, with the precise driver of the seasonal component left
unknown. These different association types could lead to differing hypotheses

regarding the impact of rainfall on transmission of the disease.

Since 1998, Queen Elizabeth Central Hospital in Blantyre, Malawi has
conducted blood culture surveillance for typhoid fever. A sharp increase in
reported cases occurred in 2011, the majority of which were multi-drug resistant
[46]. Despite ongoing transmission, the mechanisms of transmission remain
unknown. A risk factor study conducted in 2015 suggested complex interactions
between environmental and common social exposures, including using river
water for cooking and cleaning [105]. 59.6% of the population in Blantyre use
non-flushing latrines, and it has been noted that the rocky soil in Blantyre often
prevents the digging of pit latrines deeper than three meters [45], providing a
hypothesis for a mechanistic link between rainfall events and subsequent
contamination of river water or the surrounding environment. The goals of this
study were twofold. First, we aimed to characterize the seasonality of typhoid
with respect to rainfall. Second, in order to identify a possible causal pathway,

we explored whether typhoid incidence could be predicted by rainfall.

4.2 Methods

4.2.1 Data and cleaning

Data was available between 1998-2017 from laboratory records from Queen
Elizabeth Central Hospital. Anyone blood culture positive for S. Typhi,
collected through routine hospital-based surveillance on both inpatients and
outpatients, was recorded. We obtained weather data from the Malawi

Meteorological Service, which included daily measurements of rainfall (mm).
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Due to reporting and laboratory time lags based on the day of the week, we
summarized the data into weekly counts of cases and weekly average rainfall.
All data processing and subsequent analyses were conducted in R version 3.5.1
[89]. As there were limited cases of typhoid prior to 2012, to characterize the
effect of rainfall on endemic transmission, analyses used information beginning

January 1, 2012.

4.2.2 Modelling typhoid cases

We first modelled the time series of typhoid cases. Because we know typhoid
cases are seasonal, and exhibited a large increase in 2011, we needed to
incorporate both a seasonal term and a smooth time-trend. We did not attempt
to explore any predictive drivers of the increase in 2011, as this has been
explored previously through a dynamic modelling framework. That study
attributed the rise in cases to an increase in shedding duration, possibly caused
by multi-drug resistance [47]. We used a quasi-Poisson log-linear model
[equation 4.1], which allows us to model typhoid case-counts over time while
accounting for over-dispersion. We use the penalized regression spline (the
default in mgcv package for the R statistical programming language) and an

annual seasonal harmonic [equation 4.1].

E(Yt): llt; Va’r(Yt) = d”lt

2
52

u,=exp (0(—1—,81 COS%—}-[BQ sin t—i—spline(t)) [4.1]

4.2.3 Modelling weather and defining anomalies

In order to define weather anomalies, we needed to be able to predict an
‘expected’ amount of rainfall throughout our study period. We utilized a joint
model with two components. First, we modeled the amount of rain on days with
rainfall using a log-linear model with annual and six-month harmonic terms to

describe the seasonal effect [equation 4.2].
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m(t)= log(mm) oH—,Glcos —1—/328111 —f-,BJCOS —|—,84sm S [4.2]

The six-month harmonic terms in [4.2] were needed to capture the shape of the
seasonal variation. Next, we modeled the probability of rainfall in any given
week using logistic regression, including the same annual and six-month

harmonic terms [equation 4.3].

f)= log )—oH—Blcos +/3281n —{—,BJC s ~|—B4 — [4.3]
The expectation of total rainfall on any given day is therefore:

02
E[rain()]=1) exp(m(t)+ ?) [4.4]

With o? estimated from the fitted rainfall model [equation 4.2]. A rainfall
anomaly was then defined, for each week in the study period, as the observed

rainfall minus the expected rainfall.

4.2.4 Describing seasonal patterns

We examined cross-correlations of average weekly rainfall and typhoid fever
cases, in order to characterize seasonal trends in relation to weather events in
the raw data. Cross-correlations were generated between de-trended case counts,

retaining the seasonal component, and average weekly rainfall, for lags spanning

0-24 weeks.

We then aimed to estimate the lag between the seasonal peaks of case
incidence and rainfall. We generated 1000 realizations of model parameters using
the multivariate normal sampling distribution of the parameter estimates for
the fitted typhoid [equation 4.1], and rainfall [equation 4.2, 4.3] models. We then
extracted the timing of the seasonal peaks for cases and rainfall from model

predictions using these parameters. Finally, we took the difference in seasonal
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peaks for each set of realizations to estimate the lag between cases and rainfall.

We summarized the lag in terms of mean and 95% confidence intervals.

4.2.5 Predictive model

To explore the possibility of a causal relationship between rainfall and typhoid
anomalies, similar to the case series, we used a quasi-Poisson log-linear model

[equation 4.5].

E(Y)= n, Var(Y,) = ou,

n,=(Offset,)* exp(o+ B wy1 4By wyo+ By wes+ By Wes), [4.5]
where w; is the rainfall anomaly for week s.

This model accounted for the overall trend in cases by using the fitted
values from the model described in equation 4.1, which includes both seasonal
and time-trend components, as an offset term. Using this offset, we are only

predicting case ‘anomalies.’

We included terms for rainfall anomalies, as defined above, at lagged
weeks 1 to 4. This range of lags was based on the known incubation period of
typhoid [118], and allowing for potential delay in healthcare seeking and case
identification. We explored potential relationships between rainfall anomalies
and case anomalies using the model [equation 4.5], in which the rainfall anomaly
effects are log-linear, and the following extension that allows anomaly effects to

be log-quadratic [equation 4.6].
Yt~Poisson( u t)

OH_ﬁl wt-1+:82 wt-2+:83 wt-3+54 wt-4+>
B w1 4 By Wea”+ B Wi s>+ By Wya”

n=(Offset)* exp< [4.6]
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We evaluated the overall contribution of the rainfall to the incidence model
using a Wald test [119], which provides an indication of whether the included

model parameters are estimated to be significantly different from zero.

4.3 Results

4.3.1 Case series model

The case series model [equation 4.1] with and without seasonal components is
shown in Figure 4.1A. The de-trended seasonal case-counts are shown Figure
4.1B, and the de-trended, de-seasonalized residuals are shown in Figure 4.1C,
representing typhoid anomalies with and without the seasonal component,
respectively. The fit to our joint model for the occurrence and amount of
expected weekly rain is shown in Figure 4.2A. We used this model to generate

the rainfall anomaly sequence as observed minus expected weekly rain (Figure

4.2B).

4.3.2 Seasonal comparisons

Correlations between detrended case counts (Figure 4.1B) and rainfall were
calculated, and are shown in Figure 4.3A. Visually, it is apparent that rainfall
is highly correlated with case counts at lags between approximately 10 and 20
weeks (Figure 4.3A). We can additionally observe the lag with the fitted rainfall
and case model predictions over a single year (Figure 4.3B). The estimated lag

between the peak rainfall and cases was 15.46 weeks [95% CI 13.28, 17.65].
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Figure 4.1 A. time series of case-counts (black), with long term trend (blue)
and long term plus seasonal trend (red). B. Residuals from long-term trend

model. C. Residuals from long term plus seasonal trend model.
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Figure 4.3 A. Cross-correlation of detrended cases and rainfall, B. Best-fit
seasonal amplitude for cases (black line) and rainfall (blue line), C. Histogram
of the calculated seasonal lags generated from 1000 realizations of the

multivariate normal distribution parameterized by model covariates.

4.3.3 Predictive model results

Although model covariates for lagged rainfall anomalies were not found to be
significantly different from zero assuming a log-linear relationship between
rainfall and cases according to the Wald test [p = 0.178], marginal significance

was found assuming a log-quadratic relationship [p=0.0524]. After investigating
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the log-quadratic model [equation 4.6] further, observed that the lag of two

weeks was highly significant [Table 4.1].

Table 4.1 Summary of estimates from log-quadratic model with all lags

included.
Coefficient Value Std. err P-value
Intercept 0.023 0.027 0.402
1-week lag rainfall anomaly 0.004 0.006 0.445
2-week lag rainfall anomaly 0.008 0.006 0.170
3-week lag rainfall anomaly 0.004 0.005 0.497
4-week lag rainfall anomaly -0.002 0.005 0.727
1-week lag rainfall anomaly? 0.0002 0.0005 0.622
2-week lag rainfall anomaly? -0.002 0.0006 0.006
3-week lag rainfall anomaly? -0.0003 0.0005 0.472
4-week lag rainfall anomaly? 0.001 0.0005 0.144

We therefore re-ran the model including only the 2 week-lagged linear and

quadratic coefficients, which resulted in a significantly improved fit of the model

to the data compared to the null model, as assessed by the likelihood ratio test

(scaled deviance =11.46, df=2, p = 0.003, Table 4.2). The negative coefficient

of the quadratic effect indicates a concave effect, with low and high anomaly

values being protective compared to medium (close to zero) anomaly values.

The effect of rainfall anomaly on incidence rate predictions is visualized in

Figure 4.4.
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Table 4.2 Summary 2-week lagged quadratic rainfall anomaly model.

Coefficient Value Std. err P-value
Intercept 0.039 0.025 0.123
2-week lag rainfall anomaly 0.007 0.005 0.165
2-week lag rainfall anomaly?® -0.001 0.0005 0.005
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Figure 4.4 A. Predicted effect of 2-week lagged rainfall anomaly on case

incidence, B. Model predictions with (red) and without (blue) rainfall anomaly

included, and total cases in light grey.
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4.4 Discussion

The pathway between shedding of S. Typhi and subsequent ingestion by an
exposed individual is poorly understood. The primary reservoir of S. Typhi is
humans, however it must survive in the environment long enough to permit
transmission to the next human host. Therefore, rainfall may act as a mediator
in this process. In this study, we aimed to explore the relationship between

rainfall and typhoid in Blantyre, Malawi.

Both rainfall and typhoid cases exhibit seasonal patterns in Blantyre,
and we found that the peak in rainfall precedes the peak in cases by
approximately 15 weeks. Given that the incubation period of typhoid fever is
typically between 1 and 4 weeks [21,118], this does not suggest that rainfall is a
primary driver of typhoid incidence without an intermediate step, which is yet
to be identified. We still aimed to explore the ability of rainfall anomalies to
predict typhoid cases at biologically plausible lags of 1-4 weeks. We found a
significant association between quadratic rainfall anomaly and typhoid cases,
with the negative coefficient indicating that a larger or smaller rainfall anomaly

than expected is protective.

It is biologically plausible that weeks with either more or less rainfall
than expected are protective against typhoid transmission in different ways. If
rainfall is a mechanism that disseminates S. Typhi and thus facilitates exposure
to susceptible humans, for example through flooding of pit latrines, or runoff of
sewage into rivers, it is plausible in this context that a dry period could be
protective. Conversely, more rainfall than expected may have a cleansing effect
on the environment, in that any pathogens present may exist in low, non-
infectious concentrations. This protective effect of heavy rainfall has been

reported for other enteric diseases, for example diarrheal disease following wet
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periods in Ecuador [69]. A high infectious dose of S. Typhi is required to cause
infection, so after a rainfall event, even if the environment isn’t completely clean
of the bacteria, individuals may be at a lower risk of developing typhoid fever

29,118].

Rainfall anomalies, however, are distinct from the potential effects of
total overall rainfall, which was not correlated with typhoid cases within
biologically plausible lags, and was therefore not included in a predictive model.
For example, an “expected” amount of rain during any given week of the rainy
season would not be counted as an anomaly in this model, only if there was
more rain than expected according to the seasonal predictions. The mechanistic
differences between total rainfall and rainfall anomaly are not well defined with
regards to transmission of typhoid, thus it is plausible that the consistent and
predictable seasonal cycles of rainfall are acting as a consistent mediator despite
overall precipitation amounts, with anomalous weather events leading to
protection through deviation from this consistent pattern. In contrast to our
findings, the recent global burden estimates for typhoid found the proportion of
the population living in the monsoon belt was a significant predictor of
incidence, indicating these extreme events may put individuals at higher risk of
typhoid fever [4]. However, these data are based on large-scale global models,

and do not include the granular weekly predictions of our current model.

There are some limitations to this study. First, the time series of typhoid
cases reflects the date of blood culture diagnosis of a patient, however the time
at which an individual is infected precedes this by the incubation period, and
to a lesser extent by individual variations in treatment seeking. We know that
both of these factors are likely heterogenous: a large range of incubation periods
have been found in challenge studies [118], additionally the geographic span of

Blantyre (approximately 20 km), may indicate differential propensities to seek
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care based on distance to the hospital. Therefore, our time series may not be
representative of the date of infection. Further, we do not know what proportion
of §. Typhi transmission is accounted for by short-cycle transmission
(independent of the environment) and this may dampen the signal from
rainfall /environmental interactions. It is important to highlight the dual
approaches for seasonality exploration used in this paper. When two processes
are seasonal, a significant correlation is almost always a given between them.
When incorporating weather events as predictive processes, constraining lagged

effects by known biological processes is critical for interpretation.

Overall, this study describes an extended lag between the seasonal
patterns of typhoid fever and rainfall in Blantyre, Malawi. Although the study
does not provide evidence of a directly causal linkage between total rainfall and
typhoid fever, we do find evidence that rainfall anomalies (either more or less
than expected) are protective. Improved data can help strengthen these
observations, including prioritizing the detection of typhoid cases closer to their
time of exposure, through active surveillance, and optimized environmental
sampling and detection to understand the distribution of S. Typhi in the
environment and over time. Further work to explore these relationships in other
locations, and better understand the ecological niches of S. Typhi, will help
advance our understanding of the link between weather patterns and typhoid

transmission.
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Abstract

Typhoid fever remains a major source of morbidity and mortality in low-
income settings. Its most feared complication is intestinal perforation.
However, due to the paucity of diagnostic facilities in typhoid-endemic
settings, including microbiology, histopathology and radiology, the aetiology of
intestinal perforation is frequently assumed, but rarely confirmed. This poses a

challenge for accurately estimating burden of disease.

We recruited a prospective cohort of patients with confirmed intestinal
perforation in 2016 and performed enhanced microbiological investigations
(blood and tissue culture, plus tissue Polymerase Chain Reaction (PCR) for
Salmonella Typhi [S. Typhi]). In addition, we used a Poisson generalized
linear model to estimate excess perforations attributed to the typhoid
epidemic, using temporal trends in S. Typhi bloodstream infection and
perforated abdominal viscus at Queen Elizabeth Central Hospital (QECH)

from 2008-2017.

We recruited 23 patients with intraoperative findings consistent with
intestinal perforation. 50% (11/22) of the patients recruited were culture- or
PCR-positive for S. Typhi. Case fatality rate from typhoid-associated
intestinal perforation was substantial at 18% (2/11). Our statistical model
estimates that culture-confirmed cases of typhoid fever lead to an excess of
0.046 perforations per clinical typhoid fever case [95% CI: 0.03-0.06]. We
therefore estimate that typhoid fever accounts for 43% of all bowel perforation

during the period of enhanced surveillance.

The morbidity and mortality associated with typhoid abdominal

perforations are high. By placing clinical outcome data from a cohort in the
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context of longitudinal surgical registers and bacteremia data, we describe a

valuable approach to adjusting estimates of the burden of typhoid fever.

5.1 Introduction

Typhoid remains a major public health problem in many low- and lower-middle-
income countries (LMIC), with 10.9 to 17.8 million cases estimated to occur
each year [3,4]. Whilst most cases present with non-focal sepsis [120], typhoid
can be complicated by intestinal perforation [121]. Surgical complications of
typhoid fever are well described and typically occur in the third or fourth week
after onset of fever and typically arise from necrosis of Peyer s patches in the
terminal ileum [122]. Estimates of the case fatality rates of typhoid perforation
remain high at 15.4% globally and a case fatality rate estimate of 20% for sub-
Saharan Africa [123], with important regional differences ranging widely

between 5% and 80% [124].

In cases of perforated abdominal viscus presenting in typhoid-endemic
settings, the aetiological agent is often assumed to be Salmonella Typhi (S.
Typhi), however this is rarely confirmed because there are few diagnostic
microbiology facilities in LMIC [125]. Furthermore, publicly available datasets
describing longitudinal trends in abdominal perforations in LMIC are rare
[121,126-128]). Consequently, data describing “surgical typhoid” are not
currently incorporated into global burden of disease (GBD) estimates of typhoid
[129]. In the absence of these data, global burden estimates will underestimate

the true morbidity and mortality of typhoid.

Routine, quality assured diagnostic blood culture facilities have been
available at Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi, since
1998. Until 2010, S. Typhi was an uncommon cause of bloodstream infection

(BSI). Since 2011, however, there has been a substantial increase in the number
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of culture-confirmed cases of typhoid at QECH, increasing from an average of
14 cases per year between 1998 and 2010, to 843 cases in 2013 [46]. Although
QECH does not have the capacity to routinely identify the aetiological agent
responsible for perforated abdominal viscus, the Department of Surgery has
systematically recorded the occurrence of macroscopic perforations identified at

laparotomy since 2008.

To identify the microbial cause, and to describe morbidity and mortality
of perforated abdominal viscus associated with typhoid fever in this setting, we
recruited a prospective cohort of patients undergoing laparotomy for suspected
intestinal perforation at QECH. Further, we placed these cases in the context

of longitudinal BSI and perforation surveillance data.

5.2 Materials and Methods

We prospectively recruited an observational cohort of patients presenting with
perforated abdominal viscus to the QECH, the largest hospital in Malawi, which
serves the city and district of Blantyre and acts as a referral hospital to 13
districts in the Southern Region of Malawi. Patients undergoing laparotomy for
suspected typhoid perforation or with intraoperative findings deemed by the
operating surgeon to be consistent with possible typhoid perforation between
February 2016 and February 2017 were eligible for inclusion. Blood cultures
were taken either on admission or in theatre and intraoperatively debrided tissue
(debridement of perforated bowel edges, resected bowel, pus, lymph nodes) was
retained for culture and DNA extraction. In critically ill patients unable to give

consent at presentation, consent was sought postoperatively.

Microbiological samples were tested at the diagnostic microbiology
laboratory of the Malawi- Liverpool-Wellcome Trust Clinical Research

programme (MLW). Blood samples were incubated in an aerobic BacT/Alert
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bottle (bioMérieux, Marcy 1’ Etoile, France) on an automated system and
suspected Salmonellae were identified by biochemistry and antisera processed

as previously described [88].

Tissue from intraoperative debridement was enriched in 9 ml of buffered
peptone water and cultured overnight at 37° C in air. On Day 2, 2 mls of this
broth was subcultured in sodium biselenite and again cultured overnight at
37°C in air. On Day 3, a 10ul loop was taken from the top of the broth and
inoculated onto Xylose Lysine Deoxycholate (XLD) agar plates and cultured
overnight at 37°C in air. Suspected Salmonella colonies were identified by
biochemistry using API 20E tests and serotyped according to the White-
Kauffmann-Le Minor scheme by the following antisera: polyvalent O and H, O4,
09, Hd, Hg, Hi, Hm and Vi antisera (Pro-Lab Diagnostics). A further 2 mls
were taken from the top of the selenite broth and stored at -20°C for DNA

extraction.

DNA extraction was performed from tissue Selenite supernatants using
the QIAamp® Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany), pathogen
detection protocol. Elution was done using 30 ul elution buffer instead of 200
pl. Multiplex real-time polymerase chain reaction (PCR) tests were performed
in a CFX96 thermal cycler (Bio-Rad, CA, US) using the Quantifast Pathogen
PCR + IC Kit® (Qiagen, Hilden , Germany), targeting the pan-Salmonella
invasion A gene, the S. Typhi fimbriae gene [130], and the kit “s internal control.
The pan-Salmonella, S. Typhi and internal control probes were labelled with
FAM, Texas Red and VIC, respectively. A 5 min Taq activation step at 95°C
was followed by 40 cycles of annealing/extension (30 sec, 60°C) and
denaturation (15 sec, 95°C). PCR signals were analyzed using the CFX Manager
3.1. Software with default threshold settings. Valid PCRs required the cycle

threshold signal of the internal control to range from 29-31. A cycle threshold
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< 40 was considered positive in the presence of a typical exponential
amplification curve. Detection of §. Typhi required both pan-Salmonella and

typhoid-specific signal to be positive.

Demographic and clinical data, intraoperative findings and outcomes

were captured using OpenDataKit (https://opendatakit.org) at time of

recruitment and at time of discharge or death. Data analysis for quantitative

data was performed using STATA/SE14.1 version.

Retrospective data summarizing monthly counts of surgically reported
intestinal perforations from January 2008 to May 2017 were collected by the
department of surgery at QECH. In brief, all patients taken to theatre are
recorded in a log book, which is transcribed into an electronic database. Cases
clearly not attributable to typhoid, i.e., appendicitis, trauma and perforated
peptic ulcer, were excluded. Monthly counts of patients presenting to QECH
with typhoid fever diagnosed through routine blood culture surveillance were
available for the same time period [88]. We generated a generalized linear model
with Poisson error distribution and an identity link to estimate excess
perforations attributed to typhoid fever (Supplementary Material 5.1). We used
the fitted values of a smoothed seasonal model of monthly typhoid cases through
the study period as the predictor variable. Results from this model were then
used to estimate the proportion of intestinal perforations attributed to the

typhoid epidemic. This analysis was implemented using R, version 3.5.1 [89].

The study was approved by the Malawi College of Medicine Research and

Ethics committee (COMREC P.08/14/1617).
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5.3 Results

5.3.1 Patients

Between March 2016 and February 2017, 24 patients undergoing laparotomy
were recruited. No eligible patient declined to participate. One patient had an
intraoperative finding of a gallbladder perforation and was not included in the
subsequent analysis. The median age of patients was 15 years (range 6-46 years)
and 18 patients (78%) were male. Fever was recorded for 20 participants. 19 of
20 (95%) reported fever prior to admission, which began a median duration of

two weeks prior to admission (range 2-30 days).

All patients had a history of abdominal pain (median duration seven
days, range 2-30 days). Vomiting, constipation or diarrhea were reported by
43%, 43% and 35%, respectively. Three patients (14%) reported both
constipation and diarrhea. Three patients (14%) presented with symptoms
suggestive of gastrointestinal bleed. T'wo patients (9%) presented with reduced
conscious level. On examination, most patients had a tender abdomen and frank
peritoneal signs denoted as generalized abdominal guarding were present in 80%

(Table 1).

Abdominal and/or chest radiograph was performed for 22 patients before
undergoing surgery (in 18 patients both investigations were done) and 13 of 22
(59%) were reported as having evidence of free gas under the diaphragm. The
median time between admission and operating theatre was one day (range 0-32

days).

5.3.2 Antibiotic treatment

All patients were treated with ceftriaxone from admission for a median of nine

days (range 3-48 days) and metronidazole (median nine days, range 3-69 days),
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whilst 14 patients received an additional course of ciprofloxacin (median 10

days, range 4-28 days).

Table 5.1 Demographics and clinical features of cohort.

Characteristic Value
Demographic
Age, median years (range) 15 (6 - 46)

Male, n (%)

18/23 (78%)

Clinical symptoms or signs

Fever prior to admission, n (%)

Duration of fever prior to admission, median days (IQR)
Abdominal pain, n (%)

Duration of abdominal pain, median days (IQR)
Vomiting, n (%)

Constipation, n (%)

Diarrhea, n (%)

Symptoms of gastrointestinal bleed, n (%)
Jaundice, n (%)

Abdominal tenderness, n (%)

Generalized abdominal guarding, n (%)

Reduced level of consciousness, n (%)

19/20 (95%)
14 (14 - 21)
23/23 (100%)
7 (4-14)
10/21 (48%)
10/23 (43%)
8/22 (36%)
3/20 (15%)
1/20 (5%)
22/22 (100%)
16/20 (30%)
2/22 (9%)

5.3.3 Intraoperative findings and surgical treatment

Small bowel perforations with a single pin hole were identified in 16 patients,

whilst five patients had multiple perforations and two patients had no visible

perforation. Intestinal perforations were all located in the ileum (summarized in
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Figure 5.1). In one case, the ileum was found to be inflamed without a visible
perforation, there was a pelvic fluid collection and fibrinous deposits in all
quadrants. This patient underwent an abdominal washout. One patient
presented with a frozen abdomen with no visible intestinal injury and underwent

primary adhesiolysis.
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Figure 5.1 Confirmation of S. Typhi, relating to intraoperative findings,
procedures and postoperative deaths. A: adhesiolysis; BA: bowel resection and
anastomosis; CS: colostomy; D/O: debridement /oversew; IS: ileostomy;
IS/BR: ileostomy with bowel resection; W: washout; S. Typhi: 4+ confirmed by
blood culture and/or tissue PCR, - not confirmed; {: patient died.
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Primary debridement and oversewing of the perforation was performed
in 14 of 16 (87.5%) patients with single ileal perforations. In one of these patients
there was the coincidental finding of a tumor mass, prompting the fashioning of
an ileocolonic anastomosis in addition to the perforation repair. One patient had
a primary ileostomy done, and one patient underwent bowel resection and end
to end anastomosis. The five patients with multiple perforations underwent
primary ileostomy and bowel resection in four cases, with an additional separate
debridement and oversew in one case. One patient underwent bowel resection
and end to end anastomosis.

Nine patients (39%) required re-laparotomy two to 12 days after the
initial operation (median four days). Secondary perforations—all located in the
ileum—were seen in five patients. Three of these had more than one secondary
perforation. Bowel anastomotic leaks were seen in seven (77%) of the nine re-
laparotomies. In one case, there was an isolated pus collection. Four patients
underwent a third operation. Two patients underwent a total of five operations
due to recurrent ileal perforations, anastomotic breakdowns, fluid collections

and adhesions.

5.3.4 Microbiological and molecular confirmation of S.
Typhi

Blood cultures were taken from 14 patients on admission or on the hospital
wards and S. Typhi was isolated from four, with two yielding contaminants and
eight no bacterial growth. Eleven patients had intraoperative blood cultures
taken. Intraoperative tissue samples were taken from 19 patients. S. Typhi was
not isolated from any of the intraoperative blood or tissue samples, however
other Enterobacteriaceae were identified in 16 tissue samples.

Twenty-two intraoperative tissue samples from 19 patients were analyzed

by multiplex PCR. S. Typhi DNA was detected in 10 tested samples from nine
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of 19 patients (47%). An additional three tissue samples were positive for the
pan-Salmonella invasin A gene. Overall, 11 of 22 patients (50%) had a diagnosis

of typhoid fever made by either blood culture, tissue PCR or both tests.

5.3.5 Mortality and postoperative complications

Three of the 23 patients (13%) died. A 17-year-old male died from sepsis two
days post initial laparotomy. A 43-year-old male, who additionally had
disseminated malignancy, died post second laparotomy. These two patients had
confirmed typhoid infection, representing a case fatality rate of 18% in patients
with confirmed typhoid. A 17-year-old male had multiple recurrences of
perforations and died after his fifth laparotomy, six weeks after initial admission
to the hospital. This patient had a negative admission blood culture, and no
intraoperative tissue was submitted in this case.

There were four cases of post-operative pneumonia and a further three of
severe sepsis. Seven patients required admission to the intensive care unit for
respiratory support. Four patients had a Bogota bag fashioned for abdominal
closure either after initial or after secondary surgeries. Twelve patients
developed wound infection, 10 of which developed wound dehiscence. Nine
patients developed malnutrition despite nutritional support and 7 were
discharged on nutritional supplements. The median duration of hospital stay

was 21 days (range 4-74 days).
5.3.6 Correlation of S. Typhi bloodstream infections and

the intestinal perforation register in QECH

Monthly counts of typhoid fever and intestinal perforations at QECH from
January 2008 to December 2017 are shown in Figure 5.2A. Results from the
generalized linear model indicate that monthly case counts of S. Typhi are
predictive of monthly intestinal perforations (p<0.001, Table 5.2). The intercept

estimate of 1.5 indicates that 1.5 [95% CI: 1.16 - 1.85] intestinal perforations
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occur each month, independent of typhoid cases. The model estimates that for
every culture confirmed case of typhoid, 0.046 [95% CI: 0.033 - 0.058]
perforations occur; approximately 1 perforation for every 20 culture confirmed
cases of typhoid fever presenting to QECH. Predicted intestinal perforations
and their attributed causes are shown in Figure 5.2B. The proportion of surgical
perforations predicted by typhoid fever cases is heterogeneous over time. During
the recruitment period of the cohort, March 2016 to February 2017, the model
independently estimates that 43% of intestinal perforations were due to typhoid

fever.

Table 5.2 Intercept and coefficient estimates from the generalized linear
model, predicting intestinal perforations from monthly typhoid cases over the

study period.

Variable Estimate Standard P-value
error

Intercept 1.505 0.17474 <0.001

Smoothed monthly typhoid 0.046 0.00649 <0.001

cases
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Figure 5.2 A. Monthly counts of intestinal perforations and typhoid cases
between January 2008 and June 2015. B. Model predicted surgical
perforations, colored by whether the predicted perforation is typhoid
independent or typhoid-associated, along with monthly reported surgical

perforations.

5.4 Discussion

Accurate estimates of disease burden are critical to prioritize public health
interventions; however, this is difficult for typhoid fever, which requires
advanced diagnostics. This is particularly true of “surgical” typhoid as surgical
teams do not routinely have the capacity to send blood or tissue for culture in

LMICs. Furthermore, longitudinal data from surgical teams based in LMICs are
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rarely systematically recorded. Even when blood or tissue culture are performed,
prior antibiotic therapy and limited sensitivity frequently compromise the
sensitivity of culture-based assays. As a consequence, data describing the most
feared complication of typhoid fever are not represented in GBD estimates,
which will lead to important underestimation of the burden of morbidity and
mortality associated with typhoid fever.

In this study we have attempted to confirm infection with S. Typhi in
cases of perforated abdominal viscus by culturing both peripheral blood and
intraoperative samples, and using PCR on tissue. None of the tissue samples
analyzed in our study were culture-positive for S. Typhi by conventional
microbiology. There are several possible reasons for this. S. Typhi might simply
have been outcompeted in the media by other enteric pathogens, unlike in blood
which is a normally sterile site. Alternatively, as perforation is a late
complication, it is possible that patients had taken antibiotics prior to
presentation, rendering the samples culture-negative. It has also been
hypothesized that typhoid intestinal perforation may be the result of an
exaggerated host response at the Peyer’s patches—the predilected site of
typhoid intestinal perforation—resulting in microvascular changes, rather than
a direct result of high bacterial burden [131]. We identified S. Typhi DNA by
multiplex PCR in nearly half of the tested tissue samples. These results highlight
a potential role for PCR in diagnosing surgical typhoid.

Correlation of the longitudinal surveillance of S. Typhi BSI and the
register of intestinal perforations at QECH showed convincing evidence that the
recent surge in intestinal perforation cases coincided with the typhoid epidemic
in Southern Malawi. The model estimated that, although there is a baseline
monthly rate of non-typhoid attributed intestinal perforation, for every typhoid

case 0.046 perforations occur. Results from the generalized linear model were
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consistent with observed data from the cohort; while 50% of the 22 patients
recruited to the cohort were culture- or PCR-positive for S. Typhi, for the same
period the model predicts that 43% of intestinal perforations were due to typhoid
fever.

These results highlight the potential contribution of non-microbiological
methods to understand the aetiology of intestinal perforations. The long-term
surveillance capacity for both surgical perforations and routine blood cultures,
an unusual resource in this setting, has enabled this exploration. Further, the
microbiological testing of surgical cases contributed an independent validation
of this methodology, and indicates moderate agreement.

The mortality in our cohort was substantial, with three deaths among 23
patients and two in 11 patients with confirmed infection with S. Typhi. Given
our modeled estimates that approximately one in 20 cases of culture-confirmed
typhoid will predict a case of intestinal perforation, and that our observed case
fatality rate was 18% (consistent with other series from sub-Saharan Africa
[123]), we estimate that capturing mortality due to typhoid intestinal
perforation will increase the case fatality estimates of typhoid fever by 1.0% in
our setting. Recent case fatality estimates for typhoid fever were 0.95%, but do
not factor in intestinal perforation [4]. If our findings are replicated at other
sites, the inclusion of this data into GBD estimates may double mortality burden
estimates for typhoid fever. The postoperative morbidity was also substantial.
Nine of 23 patients required one or more repeated laparotomies during their
illness, and several more had wound infections, pneumonia or malnutrition.
These data are also lost to GBD estimates.

Some limitations exist. This was a single center study, however as QECH
is the only government hospital with surgical facilities in Blantyre, our data are

likely to be representative of the city, although we will not have captured out
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of hospital deaths from perforation or patients seeking private care. We did not
record antibiotic use prior to admission, and therefore cannot estimate the
contribution to missed microbiological diagnosis. We did not have access to
histopathology or tuberculosis culture. We did not perform a systematic long-
term follow-up after hospital discharge and may, therefore, have underestimated
morbidity and mortality.

We reveal an expected, but hitherto undescribed burden of surgical
typhoid in Blantyre, and report the associated high morbidity and mortality in
the context of a general African epidemic. The systematic capture of these data
may lead us to double estimates of mortality attributable to typhoid. Further
data from studies of severe and complicated typhoid fever are critical to inform
GBD estimates as they will support the case for widespread roll-out of typhoid

conjugate vaccination.
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6 Discussion

6.1 Chapter overviews

This thesis explored the spatial, genomic, temporal characteristics of typhoid
fever in Blantyre, Malawi, and contributed to insights regarding the mechanisms
of transmission in this location for more effective control and targeted
surveillance. The morbidity, carriage, and genomic epidemiology of typhoid
(MCET) project was designed, and commenced recruitment, prior to the start
of my PhD research. As part of my thesis, I have worked with the data collected
through this study to answer pre-specified objectives, including analysis of the
case-control and cohort datasets. In addition, [ have expanded beyond the initial
objectives of the MCET study to ask new questions of existing datasets, leading

to the inclusion of the time series and spatial-genomic analyses.

Chapter 2 analyzed data from a detailed case-control study of typhoid
fever in children, where risk factors and demographic characteristics were
surveyed, in an attempt to shed light on possible transmission pathways across
the city. Using a variable selection process, which reduced the large risk factor
survey containing 97 variables to 14, a number of significant risk factors were
found, reflecting the complexity of transmission of typhoid in this setting.
Among water-related factors, river water used for cooking and cleaning was
identified as a risk factor. No sources of drinking water were identified as risk
factors. Distinguishing drinking from household water as possible risk factors is
uncommon in case control-studies for typhoid (see review of risk factors in
Chapter 2.1), and the finding of a significant non-drinking water exposure as a
risk factor highlights the importance of distinguishing these in future studies.
The study also found risk-factors related to social interactions, including

attendance at school or daycare, indicating that common exposures in these
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settings may play a role in transmission. Spatial correlation of the residuals from
this model was tested for, as geolocations for the households of cases and controls
were available, but no significant correlation was found. However, spatial
matching occurred within residential wards, which would essentially correct for
any spatial correlation between these residential wards on a larger scale

(residential wards span approximately 5 kilometers).

Next, Chapter 3 utilized a cohort recruited from Queen Elizabeth Central
Hospital (QECH), within which the spatial case-control dataset was nested. The
aim was to understand the spatial distribution of incidence, and to assess spatial
patterns of genomic data, gathered from whole genome sequencing of isolates.
The spatial incidence mapping found incidence was heterogenous across the city.
By employing a geostatistical modelling framework, a number of areas of
unexpectedly high or low incidence were additionally identified. Although
available covariates were incorporated, the remaining unexplained spatial
heterogeneity indicates one or more processes are acting on the population that
were not captured by the current study. A map in the supplementary material
of this chapter (Figure S3.2.3) was included that can be studied further, for
example to generate hypotheses about the unmeasured processes that may be
acting in these locations. The mapped cohort is likely only a subset of the overall
cases occurring across Blantyre, an observation bolstered by the lack of
predictive power of the covariate for distance to hospital (an interpretation of
this may be that the most severely ill will travel to care regardless of distance).
Future work to capture less severe cases across the city through enhanced
surveillance and diagnostics would be useful to provide a more accurate estimate

of the overall incidence rate.

Chapter 3 additionally included an analysis of whole genome sequences

(WGS) from a subset of the cohort. The finding of a correlation between spatial
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distance and genetic relatedness even within a small geographic region, offers a
promising approach to improving our understanding of the epidemiology of
typhoid fever. It demonstrated that small-scale spatial resolution is possible
using Salmonella enterica serovar Typhi WGS data, despite the clonal nature

of these organisms.

Further, it was found that hydrological river catchment was able to
predict some of the observed patterns of genetic relatedness across the city. This
indicated that genetic relatedness of the isolated S. Typhi is greater within
individuals living in the same river catchment than those living in different
catchments, and suggests transmission may occur on these scales. Accounting
for the ecological context of typhoid fever transmission, including hydrology,
has been proposed in Fiji [117]. These findings further highlight the need to

study the environmental context of typhoid endemic areas.

Chapter 4 explored the relationship between rainfall and typhoid fever
in a time series analysis. It was found that the peak of typhoid fever incidence
occurs approximately 15 weeks after the peak of rainfall, a lag that does not
present a biologically plausible link, in the context of known incubation periods
and survival of S. Typhi in the environment. However, the predictive ability of
rainfall anomalies was further explored, and it found that a significant log-
quadratic relationship exists between rainfall and case anomalies. The coefficient
estimates indicated that either more or less rainfall than expected given the time
of year, is protective. This suggests potential ‘washing’ effects of rainfall on the
environment during extreme rain events, as well as, during times of less than
expected rain, a lack of flushing of S. Typhi from open defecated feces or pit

latrines into the exposure pathway.
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Chapter 5 is methodologically linked to the time series analyses of Chapter
4, and focused on intestinal perforation, one of the most serious complications
of typhoid fever. In the absence of routine microbiological confirmation, the
attribution to typhoid fever is frequently assumed, but rarely confirmed. The
contribution to this chapter was the development of a modelling framework to
help determine the aetiology of intestinal perforations. A model was fitted to
the seasonal and long-term trends of the case series, which then was used to
predict the time series of surgically reported perforations. It was found that,
although not all surgical perforations are predicted by typhoid fever case counts,
a large proportion of them are. The modeled rates were consistent with what
was observed through a small surgical cohort, where microbiological testing was
done. This offers a useful framework for understanding intestinal perforation
rates without direct culture of surgical tissues, which is not routinely performed

in these settings.

6.2 Implications for typhoid fever transmission

This thesis provides evidence that typhoid transmission may be facilitated, at
least in part, by exposure through domestic non-drinking river water. Chapters
2-4 suggest this through independent analyses and datasets: first, as an
identified risk factor in the case-control study, second, through the ability of
river catchment to predict genomic patterns, and finally, by proposing a
mechanism of contamination into the rivers, from the finding of protective

effects of extreme rain events.

However, given other findings of small-scale spatial correlation, alternative
risk factors, and the extreme lag between typhoid and rainfall seasonality,
transmission is likely very complex in this setting. Although rivers were

suggested as an environmental reservoir, both through the case-control and
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spatial-genomic analyses, the case-control study identified a number of other
risk factors relating to common social exposures including daycare and school
attendance. Further, the spatial-genomic analysis revealed small-scale spatial
correlation that may also be predicted by social exposures or small communities;
however, this resolution of exposure data was not collected for this cohort.
Finally, although rainfall anomalies were predictive of case anomalies, the 15-
week lag between the seasonal components of cases and rainfall does not indicate
that rainfall is the primary driver of typhoid incidence, given our current

knowledge of biological mechanisms of survival and persistence.

6.3 Novel contribution of the work

Chapter 2 is one of the few case-control studies of typhoid fever conducted in
Africa to-date, and is wunique outside of an outbreak-control context.
Additionally, it was the first of these studies to identify non-drinking water
usage as a risk factor [132-134]. It is often the case that the typhoid research
community place a singular focus on drinking water as the primary exposure
source. This tends to be justified through reference to historic data from the
United States relating the decline in typhoid to chlorination of drinking water
[135], without considering all the other societal improvements that would have
been occurring at the same time, for example in sanitation. The singular focus
on drinking water was never likely to be realistic given what was already known
about typhoid transmission, and this study provides critical evidence that the
research and public health community should cast the net wider than simply

drinking water when considering long cycle transmission routes of S. Typhi.

Chapter 3 is the first city-level investigation to integrate WGS and
geostatistical models for typhoid fever. So far, publications investigating genetic

patterns on the city-scale have not utilized WGS of S. Typhi [64], and those
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that have utilized WGS have been primarily global or regional studies [9,49].
The findings of a significant correlation between genetic relatedness and physical
proximity within a city is important, in that analysis of S. Typhi sequences may
be able to reflect small-scale transmission patterns. The ability to predict these
genetic markers with spatial covariates is additionally unique for typhoid fever
research, and this work may encourage the use of WGS for exploration of
transmission insights within this research community. These findings are
consistent with the view that WGS can enhance genetic analyses beyond what
is possible through SNP-typing, and supports the continuation of sequencing of
S. Typhi isolates when studying typhoid fever at a city-level scale. There is an
opportunity to expand beyond descriptive studies and utilize WGS alongside

on-the-ground epidemiology and control.

The fourth chapter highlighted an aspect of analysis of weather and disease
patterns that is often overlooked or ignored, that is, the essential cross-
correlation of two seasonal patterns. Expanding analyses beyond cross-
correlation by identifying extreme events is less frequently conducted, and has
not been previously explored for typhoid fever [50,69,70]. A publication that
incorporates both types of analyses can offer a useful framework for these
exploratory studies and may encourage more caution when interpreting models

comparing seasonal patterns of weather and disease.

Finally, the ability to attribute intestinal perforation to typhoid fever has
been thus far dependent on enhanced microbiological testing. The final chapter
of this thesis proposes a modelling framework to determine the aetiology of
intestinal perforations independent of this process. To-date, mortality due to
typhoid intestinal perforation is not reliably included in case-fatality estimates
[6], or entered into global estimates of mortality [4]. This study may enable the

future admission of intestinal perforations into mortality estimates, expanding
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the underlying mortality estimates of typhoid fever and advocacy as a global

health problem.

6.4 Limitations and challenges of the data and

approaches utilized

Geo-locating individuals in their household may be one spatial aspect of
exposure, but individuals move between school, work, and other locations
throughout a day. Some studies attempt to overcome this by focusing on young
children who may not move as far from the home [51]. However, children are
not the only individuals at risk, and additionally may attend school or daycare
in other regions of the city. Geo-locating places of work, school, or food markets
may be a useful way of exploring differing exposure locations and how they may
compare with household location. Although drinking water sources of
individuals were geo-located, individuals lived within close proximity of their
drinking water source, and therefore the patterns of spatial correlation were very
similar to that of household location. Instead of geo-locating water source
locations, mapping networks of water sources (linking the water sources among
individuals) and categorizing the type of source, may provide more insight. This

may include the location of access to rivers, for those that use them.

Case-control studies are useful for identifying risk factors, but inherently
limited in their ability to determine the source of contamination of the risk
factor, when the risk factor is not the source itself. For example, ice cream could
be contaminated by the water used to make it, or by an infectious individual
through food handling. This case-control study additionally only focused on
children under the age of 9, and therefore these exposures may not represent all
potential pathways of transmission in this setting, if exposures differ among

cases, older children, and adults.
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Despite the finding of spatial patterns of genetic relatedness in the spatio-
genomic analysis, there were some limitations. Multidimensional scaling of the
SNP matrix reduced this complex relational dataset to two representative axes.
Because of this reduction in dimensional space, some of the more subtle aspects
of genetic relatedness are likely being missed. Further, the majority of analyses
were conducted on the second of the principal coordinates, due to the first
principal coordinate being dominated by a small number of highly related
individuals. Although they did not appear to be related in space or time, further
work to understand the reason behind the distinct genetic patterns of these
individuals would be valuable, as they could represent infections from a chronic

carrier, or distinct transmission route.

Throughout this thesis, only hospitalized cases who have sought care at
QECH were studied. Sub-clinical and mild infections of typhoid are known to
exist [118], and identifying more of these cases would not only benefit this
research by increasing the study size, but provide data that is more
representative of all typhoid infections. Lower-dose infections are known to
result in more sub-clinical illness [118], so distinct risk factors may exist for
individuals who are not seeking care at a hospital. As an example, if drinking
water exposures are associated with a lower infectious dose, these may not be

as easily identified through a hospital-based case-control study.

We additionally did not combine spatio-temporal analyses in the incidence
mapping or genomic analyses. This decision was based on both the small number
of geo-located cases for these analyses, as well as the research questions that
were proposed, which aimed to provide insights into transmission during the
study period. However, future dynamic modelling work incorporating the time
and spatial observations of the datasets may be useful. A model could explore

whether linking these cases by hypothesized transmission routes (common river
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catchment or close proximity) within time periods that reflect the biological
processes are able to recreate the spatio-temporal trends observed. This could
also incorporate variation in force of infection over time due to seasonality or

epidemic processes such as immunity after the sharp increase of cases in 2011.

6.5 Future work

Typhoid conjugate vaccines are a promising new tool for the control of typhoid
fever, however it is yet to be determined whether the clinical protection observed
in challenge models will translate to a reduction in shedding of the disease and
subsequent herd protection [15]. Therefore, to achieve elimination of typhoid
fever as a public health problem, a major unresolved research gap is how to
rapidly assess transmission routes for the planning of water and sanitation

intervention methods.

Although microbiological sampling of the environment, including
potential exposure pathways, would ideally elucidate intervention points, at the
start of this project these methods were not reliable for S. Typhi. Culture of
environmental samples has historically not yielded high sensitivity for the
detection of S. Typhi, even when placed in the sewage discharge of known
shedders [37]. Additionally, identifying DNA through PCR is subject to
specificity issues, given the large array of pathogens likely present in a single
environmental sample [41]. Further, identifying specifically what components of
the environment are important for sampling is challenging without any prior
hypotheses. Since this study was conducted, improvements in culture media and
PCR primer identification have been made, making environmental sampling a

technically viable method for future work.

This thesis identified potential transmission routes. Microbiological

confirmation of these routes through environmental sampling would greatly
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strengthen the current evidence base and, critically, provide data that local
policy makers could not ignore. For example, when the results of the case control
study were presented to the Blantyre district health officer, investigators were
advised to come back when they had confirmation of their findings [personal
communication N. Feasey]. To address the hypothesis of exposure to S. Typhi
through rivers, confirming the presence of S. Typhi in river water would be a
first step. Ideally this would include whole genome sequencing, so strains found
in acute cases presenting to the hospital, sub-clinical community cases, or
chronic carriers could be compared with sequences found in environmental
samples. The optimal methods for environmental sampling Salmonella Typhi in
this or any setting are yet to be determined, so a proposed a pilot study based
on the findings of this thesis was developed to help address this in river systems
in Blantyre. Specific components of the pilot included a cross-section of
measurements throughout a day to explore the importance of diurnal variation
in rivers (an observed phenomenon in sewage systems [136]), sampling over a
period representing a cross-section of the variation in rainfall, and comparing
multiple points along a river to assess whether detection rates increase as
sampling moves downstream (accumulation of material), or decrease (die-off of
the bacteria over time). Because of the continued geo-location of cases, maps of
cumulative downstream case counts can be generated (Figure 6.1). These will
help prioritize sampling junctions for the initial pilots, which aim to prioritize
areas with the highest numbers of cases for an increased chance of detection,

given sensitivity challenges.
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Figure 6.1 Cumulative downstream case-counts (‘weights’) for each river, as a

proposed method of sampling prioritization.

In order to better disentangle contaminating sources of risk factors, future work
could include linking environmental sampling with a case-control study, where
the food and drinking water of cases and controls at home, school, and work
were sampled to understand which exposures are the most important for
transmission. If WGS was available, this additionally provides an opportunity
to link these samples with the sequenced river or other environmental samples

from a range of households.

However, understanding the link between shedding and exposure is still
poorly understood, and will likely limit the interpretation of the above findings.
Linking in sociological research to map out cooking, cleaning and water usage
practices, agricultural research to understand how and where produce is
irrigated or washed, as well as infrastructure and ecological work to understand

sewage, pit latrine runoff, and river catchments are very much needed. Such
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work will be important to describe the structural barriers to engaging with
optimal WASH practice, and enable individuals to protect themselves from
unsafe environmental exposures. While this may be a slow process, it will be
valuable to have a single, in-depth study site where the complexities and societal
drivers of typhoid transmission can be explored and described, in order to more

efficiently make public health decisions interventions in new locations.

At a minimum, continuing the current hospital-based surveillance at
QECH would be valuable. Each year, more observations add to the evidence
base for observations such as the protective effects of rainfall anomalies, and the
attribution of intestinal perforations. This surveillance can additionally provide
a monitoring system in the case of introduction of new strains, such as XDR
typhoid [11]. It would additionally be valuable to continue to geo-locate the
homes of these cases. Currently, the surveillance in Blantyre is expanding: active
surveillance has been initiated through clinics in two neighborhoods within
Blantyre, in order to observe cases that may not typically present to QECH.
Repeating the analyses contained in this thesis using data from these new sites
is a necessary next step to understand whether milder or sub-clinical cases
exhibit different epidemiological characteristics, and what role these cases play

in typhoid transmission.

Finally, although potential routes of transmission were identified in this
thesis, their relative importance to the overall transmission of typhoid fever was
not precisely defined. It would be useful to incorporate these hypothesized
transmission frameworks (households, schools, river catchments) into a
mathematical model, and test whether the relative importance of these
transmission routes can be resolved using the current data available. Although

more cases may be needed to fit this model with enough confidence to
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distinguish these transmission routes, exploring the possibility of this approach

would be a useful exercise.

6.6 Conclusions

In conclusion, this thesis outlined multiple methodological approaches to better
understand typhoid fever transmission in Blantyre, Malawi. As part of the
MCET study, some of these analyses were pre-specified and designed before the
commencement of my research. However, this thesis additionally harnessed
routinely collected blood culture surveillance data from Blantyre, as well as
spatial data, to expand on the initial aims of the project and provide hypothesis-
generating results for future studies. Transmission of the disease remains
difficult to disentangle in endemic settings. However, this work has illustrated
the potential roles of spatial, genomic, and time series data, and highlighted the
importance of better understanding the ecological context of typhoid fever. A
need still exists for rapid assessment of transmission in endemic settings,
however the increased ease of geo-location of cases, falling costs of sequencing,
and advances in environmental sampling will certainly aid in this process in the
future. This work further highlights the value of interdisciplinary collaboration
between statistical modelers, epidemiologists, clinicians, bioinformaticians and
WASH experts. These combinations allowed for unique and innovative data
collection, methodological approaches atypical to the field, and interpretations

that consider the ecological context as well as the epidemiological.
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Included for the purposes of completeness, but not written or contributed to by

JSKG.

Samples were cultured for 24 hours at 37° C in air in buffered peptone water
(BPW), then sub-cultured onto MacConkey agar for 24 hours. 2 mls of BPW
were subsequently added into 8 ml of Selenite and incubated for 24 hours. DNA
extraction was performed from Selenite supernatants using the QIAamp® Fast
DNA Stool Mini Kit (Qiagen, Hilden, Germany) pathogen detection protocol.
Multiplex PCRs were performed in a Biorad CFX96 thermal cycler using the
Quantifast Pathogen PCR+IC Kit®, targeting the pan Salmonella invasion A
gene, the Salmonella Typhi fimbriae gene, and the kit “s internal control. A 5
minute Taq activation step at 95°C was followed by 40 cycles of
annealing/extension (30 sec, 60°C) and denaturation (15 sec, 95°C). PCR signals
were analyzed using the CFX Manager 3.1. Software (Biorad). Valid PCRs
required the cycle threshold signal to range from 29-31 for the internal control.
A cycle threshold <40 was considered positive in the presence of a typical
exponential amplification curve. Detection of Salmonella Typhi required both

pan Salmonella and typhoid-specific signal to be positive.
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Drafted by PJD and edited/ implemented by JSKG.

S2.2.1 Notation

N = population size; n = number of cases; m = number of controls, assumed to

be sampled at random from non-cases.

Denote the following quantities for each person 7 in the population (suppressing

the subscript ¢ =1, ..., N temporarily):

P(sampled) = o, P(sampled|case) = 1, P(sampled|non-case) = m/(N — n) = f,

P(case) = p, P(case|sampled) = p*

S2.2.2 Derivation

Laws of probability now give:

a = P(case and sampled) + P(non-case and sampled)

= pxl+(1-p)xf ($2.2.1]
and

p = P(sampled and case ) + P(not sampled and case)

= axp+(1-a)x0 [S2.2.2]

Combining [S2.2.1] and [S2.2.2] gives

p+ (1—p)f=0p/p,

hence

p=pf{1-p(1-f} [52.2.3]
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S2.2.3 Application

Now extend the notation to p(x, vi): ¢ = 1, ..., N where y; is the value of the
exposure of interest for person ¢ and x; are the values of their other covariates.
Similarly, write pj(x,», yi), noting that its value is hypothetical for a person ¢ who
is neither a case nor a control. Then, writing z = (2, ..., zv) and y = (y, ...,
yn), equation S2.2.3 gives the hypothetical expected number of cases in the total

population as:

N N
w(x,y) =D p (@i, w) f/H{L — p* (@i, u) (1 — HY =D al@i, vi), [S2.2.4]
i=1 i=1
If we now label 7 =1, ..., n as the cases and ¢ = n + 1, ..., n + m as the

controls, then we can estimate [S2.2.4] by:

n N —n n—+m
playy) =) qlesw) + > alwis i) 52.2.5]
=1 t=n-+1

because the controls are a random sample of the non-cases.

Hence, the change in the expected number of cases if the actual sets of covariates
z and exposures y change to hypothetical sets ' and ¢ is i (z, y) — & (¢, ¥).
For our application, we set #' = x and y' = 0. Finally, note that as a reality

check, we should get [i (z, y) = n. The attributable risk can be calculated as {Ji

(z, y) =B (2, ¥ )}/ ] (2, y).



Supplementary Material 2.3:

Written by JSKG.

S2.3.1

Variable selection

114

We present the log likelihoods and p-values from the likelihood ratio tests for

each iteration of the variable selection below.

Table S2.3.1 Results of the variable selection for each iteration.

Iteration Variable log likelihood p-value

0 Residential ward -310.84 -

1 Seeking care at QECH if child is severely ill -287.5 8.28e-12

2 Age (years) -273.8  1.73e-07

3 Number of drinking water sources used last -263.6 5.96e-06
three weeks

4 Stores drinking water in drum -259.9 0.0066

5 Number of household members admitted to -255.6 0.0034
hospital for febrile illness in last four weeks

6 Distance to from household to primary -251.7 0.016
water source (meters)

7 Number of days water is stored -248.72  0.029

8 Family grows crops -246.1 0.023

9 Cooking and cleaning with river water in -243.9 0.034
the previous three weeks

10 Used stream or river water for drinking in -240.2 0.0069
the last three weeks

11 Child spends the day at school, preschool, -237.7 0.025

nursery or any other daycare
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12 Cooking and cleaning using water from an -235.5 0.033
open dug well in the previous three weeks

13 Experienced water shortage in the house or -231.8 0.031
surrounding area in the past two weeks

14 Soap available to wash hands after the -229.7 0.040

toilet in the previous three weeks

S2.3.2 Spatial dependency

Because this study recorded GPS coordinates of participants’ households, we
were able to test for spatial correlation of the residuals from the fitted multiple
logistic regression model. We extracted Pearson residuals, r, from the output
of the fitted model, i.e. r = (y - p)/V{p(1-p)} where, for each participant, y=
0/1 indicates control/case, respectively and p is the fitted probability that the

participant is a case.

In order to test for spatial correlation, we randomly permuted the
household locations of each individual. This was repeated 500 times, and a
variogram of the residuals was calculated for each permutation up to 3
kilometers. This distance was chosen from the mean square-root of the area
(2679m) of the residential wards, approximating an average length of each
enumeration area, since spatial correlation on any larger scale was controlled for
by matching on the residential ward. Next for each distance bin up to 5km, we
calculate 90% tolerance envelope of the variogram as the interval from the 25%
to the 475" of the 500 ordered values of the corresponding variogram ordinates.
The calculated 95% tolerance envelope fully contains the whole of the empirical
variogram from the final model (Figure S2.3.1), consistent with the absence of

residual spatial correlation.
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Figure S2.3.1 Variogram of Pearson residuals from the final multivariate
model ( + ), with the shaded area indicating the 95% tolerance envelope under

the assumption of spatial independence.

We further define a test statistic to evaluate the variogram of the residuals from
the final model against the null distribution generated by the randomly
permutated household locations. This is generated for each permutation i, given

in the equation S2.3.1 below:

o=t [52.3.1]

Where K is the number of variogram bins, Vj is the calculated variogram
ordinate in permutation ¢ and bin j. T/] is the weighted average of the variogram
ordinates in bin j for N permutations:

N
Z =1 sz nzj

N
=1 Tbij

Y [S2.3.2]

T/j:
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We then compare the test statistic of the variogram from our final model, ¢,
with the calculated values from the permutated locations (Figure S2.3.2). The

p-value of the test is

N

1
p==Y I[T(h)>t]
N hz_; 52.3.3]

Where I [a > b] = 1 if a > b and 0 otherwise. From this, we calculate the p-

value to be 0.464, which is again consistent with the absence of residual spatial

correlation.
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Figure S2.3.1 Histogram of the test statistics calculated from the 500
permutations, with the final model’s calculated test statistic value marked by

the red line.
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A digital elevation map (DEM) was downloaded from the United States
Geological Survey (USGS). Two tiles spanning the Blantyre area were available,
with data from the Shuttle Radar Thematic Mapper (SRTM) Version 3,

recorded in 1 arc-second resolution (approximately 30 meters) [1].

All hydrological calculations used ArcGis Version 10.7 and ArcHydro
tools 2.0. The DEM was reconditioned for consistency with a river map obtained
from the Blantyre City Council. Flow direction was calculated, and estimated
accumulation was visually compared to the known rivers, confirming agreement
of the DEM with local maps (Figure S3.1.1). Pour-points were selected at the
city limits, and along with the flow direction layer was used with ArcHydro’s

Watershed tool to estimate hydrological catchments for major rivers.

Figure S3.1.1 Map output from ArcMap showing estimated streams by flow

accumulation (white), and known rivers (red).
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Figure S3.1.2 Pour points (green), and hydrological catchments displayed in

multi-colored polygons.

1. USGS. SRTM Topography. SRTM Doc. 2009;
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S3.2.1 Non-spatial Poisson log-linear model

A Poisson log-linear model was used to model incidence across the city, initially
with the assumption of no spatial dependence. We utilized available covariates
for each enumeration area (EA): distance to QECH, elevation and river
catchment at the centroid of the EA, and average household size and population
density per square km across the enumeration area. For each enumeration area,
we have age-stratified data of the population sizes in age bins of <5, 5-14, and
15+ years of age, and therefore can explore incidence rates in each enumeration
area (i) and age band (j), where d;8 represent enumeration area-specific
predictors, a;are age-band specific intercepts, and Ny are age-band and

enumeration area-specific offsets.

Yl-j’“Poz'sson(u ) [S3.2.1]

i
Hy =Nj; emp(aj+déﬁ)

Results from the model are shown in Table S3.2.1; estimated coefficients are
relative to the 15+ age band. Average household size and age band were found
to be significant predictors of incidence in the multivariate model. River

catchment 6 was marginally predictive of an elevated incidence.
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Table S3.2.1 Estimated parameters from non-spatial Poisson log-linear

incidence model.

Parameter Estimate Standard P-value
error
Intercept -3.18E4-00 1.77E+00 7.30E-02
Distance to QECH -3.97E-05 6.52E-05 5.43E-01
Elevation -3.78E-04 1.33E-03 7.76E-01
Average household size -1.05E+00 2.65E-01 7.06E-05
Density -1.06E-05 7.28E-06 1.45E-01
Age 5-14 1.29E+00 1.32E-01 1.40E-22
Age <5 1.04E+00 1.68E-01 5.21E-10
Catchment 1 1.69E-01 2.43E-01 4.87E-01
Catchment 2 -1.25E-01 4.62E-01 7.86E-01
Catchment 3 8.69E-02 3.55E-01 8.07E-01
Catchment 4 2.41E-01 4.93E-01 6.24E-01
Catchment 5 -2.65E-01 3.98E-01 5.05E-01
Catchment 6 6.45E-01 3.42E-01 5.93E-02
Catchment 7 -1.00E-01 2.26E-01 6.58E-01
Catchment 8 -2.57E-01 7.23E-01 7.23E-01
Catchment 9 -1.50E-01 2.94E-01 6.10E-01
Catchment 10 4.78E-02 3.51E-01 8.92E-01

Covariates of average household size and age band were retained as the base
model for further analyses. We explored the addition of any of the other four
variables, but we found no significant (p<0.05) improvement in model fit with

the addition of any of these variables (Table S3.2.2). Therefore, we use average
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household size as predictor of incidence in each age band across the city for

further analyses (Table S3.2.3).

Table S3.2.2 Summary of the contribution of added variables to the model,

evaluated using the likelihood ratio test.

Model LL P-value
Base model -596.66 -

Base model + elevation -596.20 0.334
Base model + density -595.68 0.161
Base model + hospital distance -596.11 0.294
Base model + river catchment -590.91 0.320

Table S3.2.3 Summary of final model coefficients.

Parameter Estimate Standard P-value
error

Intercept -4.61 0.941 <0.001

Average household size -0.90 0.132 <0.001

Age 5-14 1.29 0.168 <0.001

Age <5 1.04 0.222 <0.001

S3.2.2 Assessing spatial dependence

We explore whether spatial dependence of the residuals exists in the non-spatial
model. We calculate the standardized Pearson residuals at the centroid of each

enumeration area, i, by combining the expected counts ﬁij and observations y;

for age band j:
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3 3~
j=1 yij_ j=1 M

/ 18 [S3.2.2]

To test for spatial dependence, we randomly permutated the centroid locations

=

s=500 times. We then constructed an empirical variogram for each permutation
up to 10,000 meters, approximately half the linear dimensions of the study area.

We calculated values for the empirical variogram as:

_ 1 )
V(U):mz (Th, = %)
[93.2.3]

Where, for each value of j, |K(j)| is the number of pairs in distance bin j and
the summation is over all pairs h and k corresponding to pairs of locations whose
distance apart falls within distance bin j. We calculated a 95% tolerance
envelope of the variogram as the interval from the 13" to the 487" of the 500
ordered values of the corresponding variogram ordinates for each distance bin.
The lower limit of the tolerance envelope lies substantially above 1 at all plotted
distances, suggesting over-dispersion relative to the Poisson distribution. Also,
the 95% tolerance envelope does not contain all points in the empirical
variogram (Figure S3.2.1), suggesting the presence of some residual spatial

correlation.
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Figure S3.2.1 Empirical variogram of the residuals from the non-spatial
generalized linear model, with the 95% tolerance envelope under the assumption

of spatial randomness.

To test this formally, we define a test statistic to evaluate the variogram of the
residuals from the final model against the null distribution generated by the
randomly permutated centroid locations. This is generated for each permutation

i, given in the equation below:

K

TSt(Iti: Z ’I’Llj( {/Z_T/] )2
= 53.2.4]

Where K is the number of variogram bins, Vj; is the calculated variogram
ordinate in permutation ¢ and bin j. T/] is the weighted average of the variogram

ordintes in bin j over N permutations:

& > U

We then compare the test statistic of the variogram from our final model, ¢,

with the calculated values from the permutated locations (Figure S3.2.2).
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Figure S3.2.2 Histogram of the calculated test statistics from 500

permutations, with the empirical test statistic shown in red.

The p-value of the test is:

N

|
— = 1[T()>t]
g N; [53.2.6]

Where I [a > b = 1 if a > b and 0 otherwise. From this, we calculate the p-
value to be 0.054. Based on this statistic and the above visualization, there
appears to be marginal evidence of spatial dependence in the data, meriting

further analyses using an extended model that includes a spatial random effect.

S3.2.3 Geostatistical model

Next, we extend our model to allow for over-dispersion and spatial dependence:

Yi~Poisson (uij)
39 :Nijexp(ozj—I—dé/H—Zi + S(x)) [S3.2.7]

Where S(z) is a spatial random effect with a Matérn correlation function and
kappa = 0.5 [54]. The model was fit using Monte-Carlo maximum likelihood

(MCML), with 20,000 simulations, a burn-in of 10%, and a thinning parameter
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of 10. Initial values for the regression coefficients were taken from the fitted
parameters of the non-spatial model, while the spatial covariance parameters
(c?, 12, @, representing the variance of S(x), variance of Z;, and the range of the
spatial correlation, respectively) were estimated from a least-squares fit of the
empirical variogram. MCML was repeated three more times, updating the initial
values with estimates from the previous iteration. Diagnostics for the final
iteration are shown for a randomly selected enumeration area in Table S3.2.4,
with code used from PrevMap [52]. These diagnostics show little correlation
between runs in thinned samples, visually apparent from the first and second
columns, as well as a similar distribution of values in the first 900 and second

900 thinned samples, indicating stability in estimates over the iterations and

convergence of the algorithm.

Estimated parameters for the non-spatial and spatial models are
summarized in Table S3.2.5, and in the manuscript. Coefficient estimates appear
similar to the nonspatial model estimates, though with reduced standard error.
The covariance parameter estimates show that much of the variance in the
model is captured in the nugget (1?) relative to the sill (o?), consistent with the
over-dispersion observed in Figure S3.2.1, while the value phi indicates the

practical range of spatial correlation (>5%) reaches approximately 1600 meters.
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Table S3.2.4 MCMC diagnostic plots for the geostatistical model indicating

convergence.
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Table S3.2.5 Parameter estimates for incidence model with and without spatial

random effect.

Nonspatial model

Spatial model

Parameter Est. Standard P- Est. Standard P-value
error value error

Intercept -4.62  0.94 <0.001 -5.25 0.560 <0.001

Average -0.90 0.22 <0.001 -0.829 0.129 <0.001

household

size

Age 5-14 1.29  0.13 <0.001 1.108 0.076 <0.001

Age <5 1.04 0.16 <0.001 1.168 0.075 <0.001

log(c?) - - - -1.797  0.243 -

log(o) - - - 6.269 0.331 -

log(t ?) - - - -0.251  0.510 -

Predictions of incidence at each centroid are calculated in PrevMap, again with

20,000 simulations, a burn-in of 10%, and a thinning parameter of 10. We

additionally calculate the rates attributed to the covariate, as well as the rates

attributed to the spatial signal. These estimates can be separated into two

components (colored in red and blue below, respectively):

Y,~Poisson (uij)

= exp(aj—kd;[ﬁ) *exp(S(x))* N

[53.2.8]
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We want to estimate these across all age bins j and for individual enumeration
areas 7. Using the additive properties of Poisson rates, we can combine estimated

H,; ACTOSS all 3 age bands:

= B(ny iy i) [$3.2.9]

u, = exp(S(z))* lexp(ci+diB) * Ny + exp(aiptdif)* Nip+ exp(cigtdifs) * Nyg)

We calculate the contribution of the estimated covariates to the incidence

directly, using estimated coefficients as
Ci= exp(o+diB)* N+ exp(ciotdiB)* Np+ exp(azt+diB)* Ny [S3.2.10]

and the contribution of the spatial random effect as:

exp(S(z)) = $3.2.11]

Hi
c;

Each component is plotted in Figure S3.2.3. Some of the high incidence
regions that appear in the model (Figure S3.2.3B) were attributed to the
model covariate (Figure S3.2.3C), but others are not explained by measured
covariates, and instead are captured by the spatial random effect (Figure
S3.2.3A), indicating that there may be unmeasured processes contributing to

these hot-spots.

1. Matérn, B.: Spatial Variation. 2nd Ed., Springer-Verlag, Berlin,

Heidelberg, New York, London, Paris, Tokyo 1986;

2. Giorgi E, Diggle PJ. PrevMap : An R Package for Prevalence Mapping.

J Stat Softw 2017;
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Supplementary Material 3.3

Included for the purposes of completeness, but not written or contributed to by

JG.

S. Typhi from consenting participants were isolated, DNA extracted with the
Qiagen Universal Biorobot® (Limburg, Netherlands) using Qiagen All-for-one®
extraction kits, and subjected to whole genome sequencing on Illumina
HiSeq2500 machines (Illumina, San Diego, CA, USA) generating 150 bp paired-
end reads. For the pan-genome analysis, annotated assemblies were produced
using the pipeline described in [1]. For each sample, sequence reads were used
to create multiple assemblies using VelvetOptimiser v2.2.5 (Velvet Optimiser:
For automatically optimising the primary parameter options for the Velvet de
novo sequence assembler. Gladman, S & Seemann, T, Victorian Bioinformatics
Consortium, 2008.
http://bioinformatics.net.au/software.velvetoptimiser.shtml) and Velvet v1.2
[2]. An assembly improvement step was applied to the assembly with the best
N50 and contigs were scaffolded using SSPACE [3] and sequence gaps filled
using GapFiller [4]. Automated annotation was performed using PROKKA v1.5

[5] and a genus specific database from RefSeq [6].

All of the software developed by Pathogen Informatics at the WSI is
freely available for download from GitHub (Pathogen Informatics, WSI,
https://github.com/sanger-pathogens/vr-codebase; Bio-Assembly-
Improvement: Improvement of genome assemblies by scaffolding and gapfilling,
Pathogen Informatics, WSI, https://github.com/sanger-
pathogens/assembly improvement) under an open source license, GNU GPL 3.

The improvement step of the pipeline is also available as a standalone Perl
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module from CPAN (http://search.cpan.org/~ajpage/). The core- and pan-

genome were analyzed using roary [7] for gene-based comparisons.

S3.3.1 Single nucleotide polymorphisms (SNPs)

Reads were mapped against the high-quality reference genome of S. Typhi
1036491 isolated in Blantyre, Malawi 2012 (GCA__001367555.3). All bases were
filtered to remove those with uncertainty in the base call. The bcftools variant
quality score was required to be greater than 50 (quality < 50) and mapping
quality greater than 30 (map_quality < 30). If not all reads gave the same base
call, the allele frequency, as calculated by bcftools, was required to be either 0
for bases called the same as the reference, or 1 for bases called as a SNP (afl <
0.95). The majority base call was required to be present in at least 75% of reads
mapping at the base, (ratio < 0.75), and the minimum mapping depth required
was 4 reads, at least two of which had to map to each strand (depth < 4,
depth_strand < 2). Finally, strand_bias was required to be less than 0.001,
map bias less than 0.001 and tail bias less than 0.001. If any of these filters
were not met, the base was called as uncertain. An alignment was constructed
by substituting the base call at each site (variant and non-variant) in the BCF
file into the reference genome and any site called as uncertain was substituted

with an N for each respective isolate.

S3.3.2 Phylogenetic analyses

A pairwise SNP distance matrix of this alignment was generated selecting only
sites containing ACGT (no gaps or Ns) using snp_sites [8], resulting in 436
informative sites for the pairwise comparison, used for further geo-spatial
modelling. Recombinant sites and mobile elements were removed following
analysis of the mapping-based alignment with gubbins v2.3.4 [10] as well as

phage characterization using PHASTER [11] and manually curating the output.
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Informative sites were then extracted from this alignment using snp_ sites [8];
only sites containing ACGT (no gaps or Ns) were used for the final analysis,
resulting in 409 informative SNPs in the final alignment. For the phylogenetic
analyses, the informative SNP alignment was used as input for ig-tree [12] for
phylogenetic tree reconstruction under the general time-reversible (GTR) model,
ascertainment (ASC) correction for a SNP-only alignment and under Gamma
distribution (-m GTR4G+ASC), support was assessed using 1000 bootstrap
replicates. The resulting tree was assessed for phylogenetic signal using tempest
(v1.5.1) and the isolate collection days as recorded by QEH, however the root-
to-tip correlation (0.07) indicated not enough temporal signal to allow a
temporal analysis (supplement). The phylogenetic tree was reconstructed into a
joint ancestral tree using pyjar, and rPinecone [13] was used to further group
the isolates based on this tree, using 2 and 4 as relevant SNP cutoffs for minor
and major clusters, respectively. Pairwise tip-to-tip distances were calculated
using the adephylo package for R with the command distTips from the

alignment before recalculation with pyjar.

1. Page AJ, De Silva N, Hunt M, et al. Robust high-throughput prokaryote
de novo assembly and improvement pipeline for Illumina data. Microb

Genomics 2016;

2. Zerbino DR, Birney E. Velvet: Algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res 2008;

3. Boetzer M, Henkel C V., Jansen HJ, Butler D, Pirovano W. Scaffolding

pre-assembled contigs using SSPACE. Bioinformatics 2011;

4. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller.

Genome Biol 2012;
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10.

11.

12.

13.

Seemann T. Prokka: Rapid prokaryotic genome annotation.

Bioinformatics 2014;

Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference
Sequences (RefSeq): Current status, new features and genome annotation

policy. Nucleic Acids Res 2012;

Page AJ, Cummins CA, Hunt M, et al. Roary: Rapid large-scale

prokaryote pan genome analysis. Bioinformatics 2015;

Page AJ, Harris SR, Seemann T, et al. SNP-sites: rapid efficient
extraction of SNPs from multi-FASTA alignments. Microb Genomics

2016;

Wong VK, Baker S, Connor TR, et al. An extended genotyping
framework for Salmonella enterica serovar Typhi, the cause of human

typhoid. Nat Commun 2016;

Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of
large samples of recombinant bacterial whole genome sequences using

Gubbins. Nucleic Acids Res 2015;

Arndt D, Grant JR, Marcu A, et al. PHASTER: a better, faster version

of the PHAST phage search tool. Nucleic Acids Res 2016;

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast
and effective stochastic algorithm for estimating maximum-likelihood

phylogenies. Mol Biol Evol 2015;

Wailan AM, Coll F, Heinz E, et al. rPinecone: Define sub-lineages of a

clonal expansion via a phylogenetic tree. Microb Genomics 2019;
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Written by JG.

S3.4.1 Motivation for spatial analysis: Correlation

Though it is commonly assumed that epidemiologically-linked individuals tend
to have genetically related isolates, due to differences in transmission patterns
between diseases, it is less established that spatially-close individuals are
genetically linked. Therefore prior to geostatistical modelling of genetic data, we
explored the correlation between spatial and genetic distances in our dataset.
The SNP data is represented as a nxn matrix of genetic distances. Using
the household location of the patients, we then generated spatial distances
between all patients. Next, the correlation between physical distance and SNP
distance for all combinations of isolates was calculated, resulting in a value of

0.071.

In order to test the significance of this value, we randomly permuted the
location labels of the individuals included in the genetic distance matrix, and
calculated the correlation between SNP distance and physical distance. This

process was repeated 1000 times.

We then compared our empirical correlation statistic, t, with those

generated from the randomized values, C(h), using the calculated p-value:

N
1 [S3.4.1]
p=——) I[C(h)>t]+1
=))

Where N is the number of permutations, [[a>b]=1 if a>b and 0 otherwise. The

distribution of the permuted test statistics is shown in Figure S3.4.1, with the
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empirical test statistic shown in red. The resulting p-value is <0.001, indicating

that there is evidence of spatial-genetic correlation in our dataset.
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Figure S3.4.1 Histogram of calculated test statistics from 1000 permutations,

with the empirical test statistic shown in red.

S3.4.2 Exploration of multidimensional scale: PC1

The variogram in Figure S3.4.2 does not suggest that PC 1 of the

multidimensional scale has any spatial correlation up to 5 km.
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Figure S3.4.2 Empirical variogram of the genetic score for PC 1.



Supplementary material 3.4 137

Regardless, there were 11 individuals with a genetic score of approximately -30
on PC 1 of our multidimensional scale of the pairwise SNP distance matrix.
Available covariates to investigate these individuals were age, time of infection,
and household location (Figure S3.4.3). No significant difference in average age
exists between these individuals and the rest of the cohort (13.8 vs. 15.7,

p=0.67).

Figure S3.4.3 Spatial distribution of cases (left), and cumulative proportion of
cases over the study period (right), with the investigated individuals highlighted

in red.

To evaluate spatial clustering of these individuals versus the rest of the cohort,
we generated K-functions across the study region up to 5000 meters (Figure
S3.4.4), and used a statistical test for point process clustering [1]. The test
statistic is evaluated as the difference between K-functions (Figure S3.4.4),
divided by the standard error of these differences, across the study region:

s
. Z Ko(9)-Kx(s) [S3.4.2]

- SE(s)
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Randomly permutating the labels for K¢ and Kx, and repeating 500 times to
create a null distribution, we generate a p-value of 0.072 indicating weak
evidence of spatial clustering compared to the rest of the cohort. Given the small
number of individuals in the evaluated group, there is little evidence to

contribute to further conclusions regarding these individuals.
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Figure S3.4.4 K(s) at evaluated distances for entire cohort (black) and
evaluated individuals (red) (left), and the difference in K-function estimate for
the evaluated individuals compared to the rest of the cohort with dashed lines
indicating 2 +/- the standard error (right).

A similar approach was used to evaluate clustering over the study period, with
the position in space (in two dimensions) replaced by one-dimensional position
in time. The p-value for clustering over time was calculated as 0.5. Therefore,
although this group shows distinct differences in genetic scores of PC1 in relation
to the rest of the cohort, these individuals do not appear to be related in time

or space, and do not show unique characteristics regarding age at infection.

S3.4.3 Exploration of multidimensional scale: PC2

The variogram of PC 2 shows visual evidence of spatial correlation (Figure

3.3C), therefore we conducted a statistical test to observe whether this pattern
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is significant. To test for spatial dependence, we randomly permuted the labels
for household locations of each isolate 500 times. We then constructed a
variogram for each permutation up to 5000 meters, approximately 1/4 the range
of the study area. We calculated 95% tolerance envelope of the variogram as
the interval from the 13" to the 487" of the 500 ordered values of the
corresponding variogram ordinates for each distance bin. The 95% tolerance

envelope does not contain all points in the empirical variogram (Figure S3.4.5).
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Figure S3.4.5 Empirical variogram values of PC 2 (points), with 95%

tolerance envelope in shaded band.

We further define a test statistic to evaluate the variogram of the residuals from
the final model against the null distribution generated by the randomly
permutated household locations. This is generated for each permutation 7, given

in the equation below:

i ) [53.4.3]

=1
Where K is the number of variogram bins, Vj is the calculated variogram

ordinate in permutation ¢ and bin j. T/] is the weighted average of the variogram

ordinates in bin j for N permutations:
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— X Vyny [S3.4.4]
Vie v —

it T

We then compare the test statistic of the variogram from our final model, ¢,

with the calculated values from the permutated locations (Figure S3.4.6). The

p-value of the test is

v [93.4.5]
p= NZ [[T(h)>1]
h=1
Where I [a > b] = 1 if a > b and 0 otherwise. From this, we calculate the p-
value to be < 0.002 (none of the random statistics were greater than the
empirical statistic), visualized in Figure S3.4.6. Based on this and the above
visualization, there appears to be strong evidence of spatial dependence in PC

2 of the multidimensional scale.
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Figure S3.4.6 Histogram of randomly permuted test statistics, with the

calculated value in red.

S3.4.4  Geostatistical modelling process

We first utilized an intercept-only linear model with a spatial random effect:
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S(x) is a spatial random effect with covariance parameters o’ ¢, and 12,
estimated from the data, with shape parameter of the Matérn function x = 1.5
fixed, after evaluating the log likelihoods of the model at x values at 0.5, 1, 1.5

and 2.
We can extend the above model to include river catchment:

Where ¢(i) is the catchment associated with location a; for each location 7, and
B:1=0. Parameter estimates for both models S3.4.6 and S3.4.7 are summarized

in Table S3.4.1. Catchment effects are relative to catchment 1.

Predicted genetic score across the city boundaries are shown in Figure S3.4.7 B,
with the individual contributions from the covariate (Figure S3.4.7 A) and

spatial random effects (Figure S3.4.7 C) shown.
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Table S3.4.1 Covariance parameters and coefficient estimates from the

geostatistical model with and without river catchment as a predictor.

Intercept-only model Intercept + river catchment

Parameter Estimate Standard P- Estimate Standard P-
error value error value

sigma? 4.75 1.107 - 4.116 1.106 -
phi 50.49 1.175 - 40.496 1.119 -
tau? 0.185 1.857 - 0.165 1.859 -
intercept 0.066 0.161 0.683 0.091 0.34 0.79
Catchment 2 - - - -1.33 0.63 0.04
Catchment 3 - - - 1.21 0.92 0.19
Catchment 4 - - - 0.22 0.52 0.68
Catchment 5 - - - 0.40 0.81 0.62
Catchment 6 - - - 0.26 0.51 0.61
Catchment 7 - - - 0.99 0.75 0.19
Catchment 8 - - - -1.18 0.48 0.01
Catchment 9 - - - 0.72 0.59 0.22
Catchment 10 - - - 0.55 0.57 0.33
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Figure S3.4.7 Predictions from the intercept + river catchment model, A. Genetic score attributed to river catchment

B. Total genetic score predictions across the city C. Estimated contribution of the spatial random effect
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S3.4.5 Sensitivity analyses with household water

source location

Individuals tended to live near their water source locations, with a median
distance of 65 meters (IQR 26-112). Therefore, we do not expect using water
source location instead of household location to change the predictive ability of

the river catchment variable, which varies on a much larger spatial scale

(>1km).

Regardless, we conducted a sensitivity analysis to compare results when using
a geostatistical model using water source coordinates instead of household
location. Although the small-scale spatial correlation changes, river catchment
still significantly improves the fit of the model to the spatial-genomic patterns
seen, although less significantly (LL -313.39 vs. -304.58, D= 17.623, p = 0.040).
Coefficients for river catchments 2 and 8 remain distinct from the other

catchments (Table S3.4.2).
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Table S3.4.2 Covariance parameters and coefficient estimates from

geostatistical model using GPS coordinates of water source instead of household.

Parameter Estimate Standard P-value
error
sigma’ 4.43 1.098 -
phi 22.46 1.330 -
tau? 0.048 3.374 -
intercept 0.21 0.32 0.52
Catchment 2 -1.41 0.60 0.02
Catchment 3 0.55 1.00 0.58
Catchment 4 0.20 0.50 0.69
Catchment 5 -0.34 0.76 0.65
Catchment 6 0.32 0.50 0.53
Catchment 7 0.52 0.71 0.47
Catchment 8 -1.32 0.47 0.005
Catchment 9 0.21 0.55 0.71
Catchment 10 0.39 0.57 0.49

1. Diggle PJ, Tawn JA, Moyeed RA. Model-based geostatistics. J R Stat
Soc Ser C (Applied Stat 2002; 47:299-350. Available at:
http://doi.wiley.com/10.1111/1467-9876.00113.
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Written by JG.

The goal of this study is to estimate typhoid-attributed perforations, since
surgical patients presenting with intestinal perforations are not routinely tested
for S. Typhi. Monthly typhoid fever counts, and surgical perforations were

collected between 2008 and 2017 (Figure S5.1.1).
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Figure S5.1.1 Monthly typhoid fever counts from QECH (black) and surgical

perforations (red).

We first fit a model to the typhoid case counts over the study period. This is
implemented using a Poisson log-linear generalized additive model using the
mgcv package in R [89]. In addition to the non-linear time-trend that is
apparent in Figure S5.1.1, a smoothed periodogram of the typhoid fever case
counts shows peaks at 12 month and 6 month frequencies. We therefore specified

the model as follows:

Yt~Poisson( u t)
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2t . 2mt dnt | . 4mt
u,=exp (o<+8(t)+(:osl—z+sml—z —l—cosl—z+sml—z ) [S5.1.1]

p,=typhoid case counts at month ¢

In equation S5.1.1, ¢ denotes numeric month, beginning January 2008, u, is the
expected number of typhoid cases in month ¢, and the trend term s(¢) is a
penalized regression spline with the default setting for the degree of smoothing,
as implemented in the R package mgcv. The fit of the smoothed model to the

expected monthly numbers of typhoid fever cases is shown in Figure S5.1.2.

80 100
l

80

40

20
I

1 1
0 100

o - M
T T T T
0 20 40 60 8

Figure S5.1.2 Fit of the model to estimated monthly typhoid fever case counts.

Next, we estimate excess perforations attributed to the typhoid epidemic. We
use the fitted values, d;, of the expected monthly numbers of typhoid cases
[equation S5.1.1 and Figure S5.1.2, blue curve] as a predictor variable in a
Poisson generalized linear model for the monthly numbers, Y, of intestinal
perforations, with an identity link for interpretability of the covariate effects,

hence
Y~ Poisson (o + Bd; ) [S5.1.2]

Results from the model [equation 8.2] are shown in Table S5.1.1. Monthly

typhoid fever case counts are predictive of monthly intestinal perforations
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(p<0.001). The intercept estimate of 1.5 indicates that 1.5 intestinal
perforations occur each month, independent of typhoid cases. The model also

estimates that for every typhoid case, 0.046 perforations occur.

Table S5.1.1 Estimates from perforation model. Standard error is reported to

5 decimal places for comparison with the model incorporating uncertainty in the

predictor.
Variable Estimate Standard error P
Intercept 1.503 0.17386 <0.001
B 0.046 0.00641 <0.001

We now extend the above approach to include uncertainty in the fitted values
d, used in our estimation of perforations attributed to typhoid fever. We extract
the covariance matrix of the regression parameter estimates from equation
S5.1.1, generate 1000 realizations of the parameters from their multivariate
Normal sampling distribution and use these to reconstruct the corresponding

expected monthly numbers of typhoid cases (Figure S5.1.3).
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Figure S5.1.3 1000 realizations of the smoothed model from equation S5.1.1
estimating monthly typhoid fever case-counts, drawn from the multivariate

Normal sampling distribution of the model parameter estimates.

We then re-estimate the parameters of model [S5.1.2] using each of these
smoothed curves as inputs d,. The resulting estimated values of B for each
realization can be represented as Bi: k= 1, ..,1000, with associated squared

values of the reported standard errors as v k£ =1, ...,1000.

We denote the sample mean of B by B, the sample variance of B; by s%,

and the sample mean of v; by v, and make use of the following theorem:
Let U and Y be any two random variables:
(a) E[Y] = Ev[Ev[Y | U]]
(b) Var{Y} = Varv {Ey [Y | U]} + Ev [Vary {Y | U}]

Using (a), our point estimate of 8 is B. Using (b), our estimate of the variance
of this estimate is: Var{B} ~ s} + ¥
Figure S5.1.4 shows the distribution of the individual estimates B

generated from the 1000 realizations. The distribution is tightly concentrated
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around the original point estimate of 0.046 (Table S5.1.1). Consequently, the
standard error of the point estimate B is only slightly larger than that of the

original estimate (Table S5.1.2).
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Figure S5.1.4 Histogram of estimates of By incorporating uncertainty of the

smoothed predictor.

Table S5.1.2 Estimates from perforation model, incorporating uncertainty of

the smoothed predictor.

Variable Estimate Standard error P-value
Intercept 1.505 0.17474 <0.001

B 0.046 0.00649 <0.001

1. Team RC. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. http://wwwR-

project.org/ 2013;



