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Abstract

The issue of fairness has received attention from researchers in
many fields, including combinatorial optimisation. One way to drive
the solution toward fairness is to use a modified objective function that
involves so-called `p-norms. If done in a naive way, this approach leads
to large and symmetric mixed-integer nonlinear programs (MINLPs),
that may be difficult to solve. We show that, for some problems, one
can obtain alternative MINLP formulations that are much smaller, do
not suffer from symmetry, and have a reasonably tight continuous re-
laxation. We give encouraging computational results for certain vehicle
routing, facility location and network design problems.

Keywords: Fairness, mixed-integer nonlinear programming, vehicle
routing, facility location, network design.

1 Introduction

The issue of fairness has received considerable attention from researchers
in many fields, including, for example, computer science [28], economics
[42, 48, 51], marketing [52], operational research [11, 33], philosophy [49],
psychology [29] and recreational mathematics [18]. As one might expect, it
has also received attention from the combinatorial optimisation community
(see, e.g., [2, 5, 11,19,20,31,32,34,38–41,43,44,46,47,53]).

As noted in [20], many combinatorial optimisation problems (COPs) of
interest can be modelled as follows. We have a set of workers and a set
of tasks. Each task must be assigned to one worker, and the total cost
depends on the allocation of tasks to workers. The issue of fairness then
arises immediately, since, if one worker has a significantly higher workload
than another, the solution may be perceived to be unfair.
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A variety of approaches have been proposed to avoid unfair solutions,
without incurring a significant increase in cost. (We survey these in Sub-
section 2.2.) In this paper, we focus on an approach suggested in [34], that
uses a modified objective function involving so-called `p-norms. We make
the following specific contributions:

• We give an intuitive explanation for why the `p-norm approach tends
to lead to fairer solutions.

• We present a generic formulation for `p-norm problems as convex
mixed-integer nonlinear programs (MINLPs).

• For some specific COPs, we present alternative convex MINLP formu-
lations that are much smaller, do not suffer from symmetry, and have
a reasonably tight continuous relaxation.

• We give some encouraging computational results for some simple ve-
hicle routing, facility location and network design problems.

The paper has a simple structure. The literature is reviewed in Section 2.
The intuitive explanation and generic formulation are presented in Section 3.
The specialised formulations are described in Section 4. The computational
results are given in Section 5, and some concluding remarks are made in
Section 6.

2 Literature Review

We now review the relevant literature. Subsection 2.1 covers fairness in
general, and Subsection 2.2 covers fairness in combinatorial optimisation.

2.1 Fairness in general

As mentioned in the introduction, the literature on fairness is vast. For
brevity, we mention here seven key works, each of which studies fairness in a
quantitative manner. Throughout, we assume that there are n people and,
for i = 1, . . . , n, we let xi denote the wealth allocated to the ith person. (The
vector x ∈ Rn

+ goes by various names, such as the payoff, wealth allocation
or resource allocation vector.) The seven works in question, in chronological
order, are as follows.

1. Gini [22] proposed to measure the unfairness of a given vector x ∈ Rn
+

by computing the following “index”:∑
1≤i≤j≤n |xi − xj |

(n− 1)
∑n

i=1 xi
.
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It takes the value 1 when the one person has all of the resource and the
rest have none, and it takes the value 0 when the resource is shared
equally between all people.

2. Nash [42] considered the following simple game. There are two players.
A bounded and convex set C ⊂ R2

+ of possible payoff vectors is given.
The players have to agree to select a single vector x ∈ C. For i = 1, 2,
the utility function of player i is concave and is denoted by U i. Nash
showed that a vector is both fair and stable if and only if it is the
(unique) vector in C that maximises U(x1)U(x2).

3. Rawls [49] considered a political problem in which one must simul-
taneously decide how to produce goods and how to distribute them
among the people. He argued that a solution is “fair” if and only if
it maximises the wealth of the worst-off person in the society. In our
notation, the solution must maximise min1≤i≤n{xi}. (In other words,
Rawls was effectively arguing for the use of a “max-min” objective
function.)

4. Weymark [51] proposed a different way to measure the wealth of a
society. Let x̃1, . . . , x̃n denote the components of x, but sorted in
non-increasing order. Also let λ1, . . . , λn be non-negative and non-
decreasing “weights”. Weymark proposed to use the index

n∑
i=1

λix̃i.

For example, if we set all weights to 1/n, we obtain the mean wealth;
and if we set λn to 1 and all other weights to 0, we obtain the minimum
wealth.

5. Jain et al. [28] proposed to measure the fairness of a given vector
x ∈ Rn

+ by computing the following index:

(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

.

It takes the value 1/n when the one customer has all of the resource
and the rest have none, and it takes the value 1 when the resource is
shared equally between all customers.

6. Bertsekas and Galleger [9] considered a problem in which we must
determine the wealth allocation vector x, subject to the constraint
that x lies in some given bounded and convex subset C ⊂ Rn

+. They
propose to maximise the minimum payoff, then maximise the second
smallest, and so on, in lexicographic fashion.
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7. Kelly [33] considered the same problem. He calls a vector x ∈ C
“proportionally fair” if, for all other vectors x′ ∈ C, we have:

n∑
i=1

x′i − xi
xi

≤ 0.

He then shows that a proportionally fair vector can be found by solving
a convex optimisation problem.

We remark that all of these works concentrate on the case in which profits,
rather than costs, must be shared. Oddly enough, most of the works on fair-
ness in combinatorial optimisation concentrate on costs rather than profits.
This will become apparent in the next subsection.

2.2 Fairness in combinatorial optimisation

There is by now a considerable literature on fairness in combinatorial op-
timisation. Two application areas that have received particular attention
are facility location and vehicle routing; see, e.g., [5,44,46] for good surveys
on the former and Matl et al. [40] for a good survey on the latter. Other
application areas that have received attention include, e.g., resource alloca-
tion [13,38], machine scheduling [2], air traffic flow management [10], nurse
rostering [39], examination timetabling [41] and flows in telecommunications
networks [9, 53].

As noted in [32, 34], many of the COPs addressed in the literature fall
into the following general framework. We have a set W of workers and a
set T of tasks. Each task must be assigned to exactly one worker. If worker
w is assigned a set S ⊆ T of tasks, then a cost cw(S) is incurred. (If it is
impossible to assign all of the tasks in S to worker w, then cw(S) is infinity.)
We seek an assignment of tasks to workers that minimises the total cost.
That is, we wish to solve:

min

{ ∑
w∈W

cw(Sw) :
⋃

w∈W
Sw = T, Si ∩ Sj = ∅ ({i, j} ⊆W )

}
,

where Sw is the set of tasks assigned to worker w.
Let us call cw(Sw) the “workload” of worker w. If, in a given feasible

solution, one worker has a significantly higher workload than another, then
the solution may be perceived as unfair. Ways to address this issue include
the following:

• minimise the maximum workload (e.g., [1, 4, 15,37]);

• minimise a convex combination of the mean and maximum workloads
[26].

• minimise the sum of the k largest workloads [20,25,50];
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• minimise the maximum workload, then the second highest, and so on,
in lexicographic fashion [38];

• minimise a convex combination of the mean workload and the differ-
ence between the maximum and minimum workloads [30];

• impose an upper bound on the workloads [36];

• impose both lower and upper bounds on the workloads [8, 53],

• minimise the sum of the squared workloads [31,39];

• minimise the `p-norm of the workload vector for some p > 1 [13, 34],
i.e., the quantity (∑

w∈W
cw(Sw)p

)1/p

.

Unfortunately, most of these approaches require significant computa-
tional effort, and some of them can lead to solutions that have undesirable
properties (see, e.g., [8, 27, 45, 46]). In this paper, we follow the last strat-
egy which, as we will see, is computationally viable and usually leads to
“acceptable” solutions.

Another popular approach is similar to the approach of Weymark [51],
mentioned in the previous subsection, but adapted to the minimisation case.
Let n be the number of workers. For a given feasible solution, let c̃1, . . . , c̃n
denote the workloads sorted in non-increasing order. Also let λ1, . . . , λn be
non-negative and non-increasing weights. Then we minimise

n∑
w=1

λw c̃w.

One can check that this approach includes as special cases the first four
approaches mentioned above. It is often called the ordered weighted average
(OWA) approach (e.g., [5, 14,19,32,34,44]).

We remark that the `p-norm has some desirable properties (e.g., non-
negativity, symmetry, strict monotonicity and strict quasi-convexity), and
so does the OWA when all weights are positive; see [5, 32,34] for details.

3 General Remarks on the `p-Norm Approach

In this section, we make some general remarks on the `p-norm approach.
In Subsection 3.1, we try to explain why unfair solutions arise in the first
place, and why the approach can help. In Subsections 3.2 and 3.3, we present
generic MINLP and 0-1 LP formulations for COPs with `p-norm objective.

From now on, we say that the workers are identical if cw(S) = cw′(S)
for all pairs of workers w,w′ and all sets S ⊆ T . In this case, we write c(S)
instead of cw(S).
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3.1 Why the `p-norm approach can help

In our preliminary experiments, we found that using the traditional “min-
sum” objective frequently leads to very unfair solutions. We do not have a
full explanation for this phenomenon, but the following proposition provides
some insight.

Proposition 1 Suppose that the workers are identical, and that there exists

a vector v ∈ Q|T |+ , a positive integer s, and a strictly concave increasing
function f : R+ → R+ such that the following holds for all S ⊆ T :

c(S) = f

(∑
t∈S

vt

)
(if |S| ≤ s)

= ∞ (otherwise).

Then, in the optimal min-sum solution to the COP, all workers will be either
idle or as busy as possible, with the possible exception of a single worker.

Proof. Consider a feasible solution to the COP. Suppose that there exists
a pair of workers w,w′, each of which has been assigned between 1 and s−1
tasks. Without loss of generality, suppose that

∑
t∈Sw

vt ≥
∑

t∈Sw′
vt. Let

t be a task that is currently assigned to worker w′. Since f(·) is increasing
and strictly concave, if we take the task t and assign it to worker w instead,
the total cost will decrease. Repeating this process, if necessary, leads to a
solution with the stated property. �

Of course, for most COPs arising in practice, the conditions in the propo-
sition are unlikely to hold. On the other hand, in some COPs, it may well
be that the functions cw(S), viewed as set functions, have some property
analogous to concavity, such as subadditivity or submodularity.

The above proposition also provides some insight into the potential ben-
efit of the `p-norm approach. Even if the function f(·) is strictly concave,
there may well exist a small rational p > 1 such that f(·)p is strictly convex.
(For example, if f(r) =

√
r, then setting p to 2 + ε will suffice.) Minimising

this strictly convex function in place of the original will lead to solutions
where c(Sw) takes a similar value for each worker.

3.2 A generic MINLP formulation

We now define a broad family of COPs, in which, for any worker w and
set of tasks S, the cost cw(S) can be computed by solving an integer linear
program (ILP). (We remark that a similar family of COPs was presented
in [12], in the context of cooperative game theory.)

Definition 1 A COP with worker set W and task set T will be called “ILP-
representable” if, for any given worker w, there exist
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• positive integers pw and qw, both bounded by a polynomial in |W | and
|T |,

• vectors cw ∈ Z|T | and dw ∈ Zq,

• matrices Aw ∈ Zpw×|T | and Ew ∈ Zpw×qw ,

• and a right-hand side vector bw ∈ Zpw ,

such that, for each set S ⊆ T , the cost cw(S) is equal to the solution value
of the following ILP:

Min. cw · y + dw · z
s.t. Awy + Ewz ≥ bw

yt = 1 (t ∈ S) (1)

yt = 0 (t ∈ T \ S) (2)

z ∈ Zqw
+ .

(If this ILP is infeasible for some S, we set cw(S) to infinity for all w.)

To illustrate this concept, consider the following simple COP. We have
a set W of workers and a set T of tasks. Each task must be assigned to
one worker. If worker w does task t, it costs ctw and takes qtw units of
time. Worker is contracted to work for Qw time units. However, workers
are willing to work overtime, at a cost of d per time unit. The task is to
minimise the total cost. This COP is ILP-representable because, for each
worker w and set S, the cost cw(S) is equal to:

Min.
∑

t∈T ctwyt + dz

s.t.
∑

t∈T qtwyt ≤ Qw + z

(1), (2)

z ∈ Z+.

Given an ILP-representable COP and a constant p > 1, the problem of
finding a solution that minimises the `p-norm can be formulated as follows.
For w ∈ W , let λw be a non-negative continuous variable, representing the
workload of worker w; also let ỹw and z̃w be “copies” of y and z, respectively.
Then:

Min.
∑

w∈W λpw

s.t.
∑

w∈W ỹwt = 1 (t ∈ T ) (3)

λw ≥ cw · ỹw + dw · z̃w (w ∈W )

Awỹw + Ewz̃w ≥ bw (w ∈W )

λ ∈ R|W |+

ỹw ∈ {0, 1}|T | (w ∈W )

z̃w ∈ Zqw
+ (w ∈W ).
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Note that the objective function is convex and the constraints are all linear.
So, in principle, this problem can be tackled using any algorithm for convex
MINLP, such as the ones surveyed in [16]. (In fact, if p is rational, then the
problem can be converted into a mixed-integer second-order cone (SOC)
program; see, e.g., Subsection 2.3 of [3].)

3.3 A generic 0-1 LP formulation

Unfortunately, the generic MINLP formulation has two big drawbacks. The
first is its size, which grows with the number of workers. The second is the
fact that, when workers are identical, it suffers from symmetry. (That is,
given any feasible solution, one can obtain many other solutions of the same
cost by permuting the worker indices.)

As explained in [6], one way to deal with these drawbacks is to apply
Dantzig-Wolfe decomposition [17]. Specifically, we keep the constraints (3)
in the master, and move the other constraints to the pricing subproblem.

For the case of identical workers, the resulting formulation is as follows.
Let Ω ⊆ 2T be the set of all feasible sets of tasks that can be handled by
one worker. For each S ∈ Ω, let µS be a binary variable, taking the value 1
if and only if a worker is assigned the tasks in S. Then we have:

Min.
∑

S∈Ω c(S)pµS

s.t.
∑

S∈Ω µS = |W |∑
S∈Ω:t∈S µS = 1 (t ∈ T )

µS ∈ {0, 1} (S ∈ Ω).

This is a pure 0-1 LP, but it has an exponentially large number of columns,
meaning that one must use branch-and-price [6]. Moreover, the presence of
the parameter p in the objective function means that the pricing subproblem
is itself a nonlinear (though convex) ILP, which could be hard to solve in
some cases.

When workers are not identical, a more complicated formulation is needed,
with a separate set of columns for each worker. We omit details for brevity.

4 Compact Formulations for Specific Problems

It turns out that, for certain specific COPs, one can obtain alternative
MINLP formulations that are both small and free from symmetry. In Subsec-
tions 4.1 to 4.3, we show this for the multiple TSP, the capacitated minimum
spanning tree problem, and the k-median problem. Then, in Subsection 4.4,
we discuss how to strengthen the continuous relaxations of the formulations.
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4.1 The multiple travelling salesman problem

The multiple travelling salesman problem or m-TSP is a generalisation of
the standard TSP (see, e.g., [7]). We have a complete directed graph G
with vertex set V = {0, . . . , n} and arc set A. Node 0 represents a depot
and the other nodes represent customers. For each arc (i, j) ∈ A, the cost
of travel from i to j is cij . We are also given an integer m ≥ 2, which
represents the number of vehicles. The problem calls for a minimum-cost
set of m vehicle routes, each starting and ending at the depot, such that
each non-depot node is visited by exactly one vehicle. Here, we view the
vehicles as (identical) workers, and the non-depot nodes as the tasks. That
is, |W | = m and |T | = n.

One can check that, if we formulate the `p-norm version of the m-TSP
using the generic approach described in Subsection 3.2, the resulting MINLP
has at least m(n+ |A|+ 1) variables. Here is a more compact formulation.
For all (i, j) ∈ A, let xij be a binary variable taking the value 1 if and only if
a vehicle travels from i to j. Also, for all arcs (i, j), let zij be a non-negative
continuous variable with the following interpretation: if xij = 1, then zij
represents the distance travelled so far by the vehicle when it arrives at
j. Otherwise zij takes the value 0. Finally, let M be any integer that is
guaranteed to be larger than the cost of the most expensive vehicle route.
We then have:

Min.
∑n

i=1 z
p
i0 (4)

s.t.
∑n

i=1 xi0 = m (5)∑
j 6=i xij = 1 (i = 1, . . . , n) (6)∑
j 6=i xji = 1 (i = 1, . . . , n) (7)∑

j 6=i zij =
∑

j 6=i zji +
∑

j 6=i cijxij (i = 1, . . . , n) (8)

z0i = c0ix0i (i = 1, . . . , n) (9)

zij ≤Mxij ((i, j) ∈ A) (10)

xij ∈ {0, 1} ((i, j) ∈ A) (11)

zij ≥ 0 ((i, j) ∈ A). (12)

The objective function (4) exploits the fact that, if a vehicle traverses the
arc (i, 0), then zi0 must equal the total distance travelled by the vehicle.
Constraint (5) simply states that m vehicles must be used. Constraints (6)
and (7) are the standard degree equations. Constraints (8)-(10) ensure that
the z variables take the correct values. The remaining constraints are just
binary and non-negativity conditions.

The formulation (4)-(12) has only O(n2) variables and constraints, and
it does not suffer from symmetry. The objective function (4) is convex and
the constraints (5)-(10) are linear.
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4.2 The capacitated minimum spanning tree problem

The capacitated minimum spanning tree problem (CMSTP) arises in telecom-
munications (see, e.g., [23]). We are given a complete directed graph G =
(V,A) with V = {0, . . . , n}, and arc costs cij , exactly as in the m-TSP. (How-
ever, node 0 is now called the root.) We are also given a positive integer Q.
The problem calls for a minimum-cost directed spanning tree (sometimes
called an arborescence), formed by a union of rooted sub-trees, such that
the number of non-root nodes in each sub-tree does not exceed Q.

To fit the CMSTP into our framework, we assume that we are also given
an integer m ≥ 2, and require exactly m rooted sub-trees. We can then
view the sub-trees as (identical) workers and the non-root nodes as the
tasks. That is, |W | = m and |T | = n, as before.

As in the case of the m-TSP, if we use the generic approach in Subsection
3.2, the resulting MINLP will have O(n2m) variables and constraints. Here
is a more compact formulation. Let V0 = V \ {0} and V ′ = V0 ∪ {d} where
d is a dummy node that is connected all nodes in V0 with zero cost. For all
(i, j) ∈ A, let xij be a binary variable taking the value 1 if and only if the tree
contains an arc from i to j. Also, for all arcs (i, j), let zij be a non-negative
continuous variable with the following interpretation: if xij = 1, then zij
represents the cost of the part of the sub-tree that enters node j. Otherwise
zij takes the value 0. An auxiliary non-negative variable gij , defined for
each arc (i, j) ∈ A, is used to ‘count’ the number of non-root nodes in each
sub-tree using constraints that model the flow of a single-commodity. The
variable gij is bounded by Q − 1 if the arc (i, j) is not connected to the
root node, and is bounded by Q if connected to the root node. Finally, let
M be any integer that is guaranteed to be larger than the cost of the most
expensive sub-tree. We then have:

Min.
∑

i∈V0
zp0i

s.t.
∑

i∈V0,i 6=j xij = 1 (j ∈ V0)∑
i∈V0

x0i = m∑
i∈V ′,i 6=j xji ≥ 1 (j ∈ V0)∑

i∈V,i 6=j gij −
∑

i∈V0,i 6=j gji = 1 (j ∈ V0)

xij ≤ gij ≤ (Q− 1)xij (i, j ∈ V, i 6= j)

xi0 ≤ gi0 ≤ Qxi0 (i ∈ V0)

zjd = 0 (j ∈ V0)∑
j∈V,j 6=i zji −

∑
j∈V ′,j 6=i zij =

∑
j∈V ′,j 6=i cjixji (i ∈ V0)

cijxij ≤ zij ≤Mxij (i, j ∈ V0, i 6= j)

z0j ≤Mx0j (j ∈ V0)

zjd ≤Mxjd (j ∈ V0)
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xij ∈ {0, 1} (i, j ∈ V ∪ {d}, i 6= j)

zij , gij ≥ 0 (i, j ∈ V ∪ {d}, i 6= j).

For brevity, we do not give a detailed explanation of this formulation. The
key point is that it has only O(n2) variables and constraints, and does not
suffer from symmetry.

4.3 The k-median problem

In the k-median problem [35], we have n potential locations for facilities, m
clients, and a positive integer k < n. For each location i and client j, the
cost of serving client j from a facility at location i is cij . The task is to open
k facilities, and assign each client to one open facility, in order to minimise
the total cost. As in [1], we view the k facilities as workers, and the clients
as tasks. That is, |W | = k and |T | = m. Note that, in this case, the workers
are not identical.

One can check that, if we use the generic approach in Subsection 3.2,
the resulting MINLP will have O(mnk) variables and constraints. Here is
a more compact formulation. For i = 1, . . . , n, let yi be a binary variable
indicating whether facility i is opened. Also let λi be a continuous variable
which takes the value zero if yi is zero, but otherwise represents the total
workload of the open facility. Then, for i = 1, . . . , n and j = 1, . . . ,m, let xij
be a binary variable which indicates whether client j is assigned to facility
i. Then:

Min.
∑n

i=1 λ
p
i

s.t.
∑n

i=1 yi = k∑n
i=1 xij = 1 (j = 1, . . . ,m)

xij ≤ yi (i = 1, . . . , n; j = 1, . . . ,m)

λi ≥
∑m

j=1 cijxij (i = 1, . . . , n)

λ ∈ Rn
+

y ∈ {0, 1}n

x ∈ {0, 1}n×m.

This formulation is more or less self-explanatory. It has only O(mn) vari-
ables and constraints, and it does not suffer from symmetry.

4.4 Strengthening the compact formulations

A disadvantage with the compact formulations presented above is the pres-
ence of “big M” constraints, such as (10), which lead to fairly weak contin-
uous relaxations. We use the approach in [21, 24] to strengthen the relax-
ations. Consider, for example, the m-TSP. For i = 1, . . . , n, we replace the
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term zpi0 in the objective function (4) with a new variable, say ti, and then
add the constraint

ti ≥ x1−p
i0 zpi0. (13)

The (convex) function on the right of (13) is called a perspective function.
By convention, it takes the value 0 when xi0 = zi0 = 0.

To see why this reformulation leads to a tighter relaxation, note that
x1−p
i0 > 1 when p > 1 and xi0 is fractional. Thus, if any of the xi0 variables

are fractional, the lower bound will increase.
Provided that p is rational, the constraint (13) can be modelled using

SOC constraints (see again [3]). In practice, however, mixed-integer SOC
solvers are rather slow. So, we also considered using another approach from
[21, 24], which approximates perspective functions with linear inequalities
called perspective cuts. In our context, this means replacing the nonlinear
constraints (13) with a collection of linear inequalities of the form:

ti ≥ pz̄p−1zi0 + (z̄p − pz̄p)xi0 (z̄ ∈ (0,M ]).

One can then solve the approximated problem with a standard MILP solver.
As we will see in the next section, just ten perspective cuts for each i is
already sufficient to give a pretty good (under-)approximation of the per-
spective function.

The same approach can be used for the CMSTP. The application to the
k-median problem is similar, except that the perspective functions take the
form y1−p

i λpi .

5 Computational Results

In this section, we present computational results for the m-TSP, CMSTP
and k-median problem, for varying values of p. All MILP and MINLP for-
mulations were solved to optimality using the mixed-integer LP and SOCP
solvers of CPLEX1 12.7, using default settings. The experiments were run
on a MacBook Pro with a 2.3GHz Intel Core i5 processor and with 8GB
memory. A time limit of 3600 seconds was imposed on each instance.

We remark that preliminary experiments, using both CPLEX and SCIP2,
indicated that the generic formulation presented in Subsection 3.2 and those
in 4.1–4.3, as stated in their original form, are of no use at all computation-
ally. In particular, for most instances, not even a feasible solution was found
within the time limit. For that reason, we present results only for the for-
mulations presented in Section 4.4.

1https://www.ibm.com/products/ilog-cplex-optimization-studio
2https://scip.zib.de
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5.1 The multiple traveling salesman problem

We began by taking TSP instances from TSPLIB3, and converting them to
m-TSP instances with values m = 2, 3, 4. For each instance, we considered
three values of p: p = 1 (minimise the sum of the route lengths, or “Min-
Sum”); p = 2 (minimise the sum of squares, or “Min-SoS”), and p → ∞
(minimise the maximum route length, or “Min-Max”). Note that Min-SoS
can be viewed as a compromise between Min-Sum and Min-Max.

For each instance and each value of p, we imposed a time limit of one
hour. For instances that CPLEX was unable to solve within the time limit, we
computed the “relative optimality gap”, calculated as (vI − vO)/vI , where
vI is the value of the best integer solution found and vO is the lower bound
at termination.

Table 1 presents the results. For each instance and each value of m,
there are six rows. The line titled “Min-SoS” shows results for p = 2 after
perspective reformulation has been applied (see Subsection 4.4). The three
lines that follow are also for p = 2, but produced by MILP formulations that
under-approximate the perspective functions with perspective cuts. There,
|B| is the number of cuts used for each worker.

The columns of the table show the following: the total length of all routes
(column Total), the length of the longest and shortest routes (columns Max
and Min, respectively), the ratio between Max and Min, the Gini index [22],
and the index proposed in [28], that we denote by JCH (where the latter
three are rounded to two decimal places). Note that the Gini index decreases
to zero as the solution becomes more fair, whereas the JCH index approaches
one. The column Time/Gap shows either the total time required to identify
an optimal solution to the corresponding instance, or the relative optimality
gap if the time limit was exceeded. The final column (titled CoF) measures
the “cost of fairness”, expressed as the percentage increase in the Min-Sum
solution values to achieve the solutions identified by the Min-SoS and Min-
Max formulations.

The results indicate that Min-Sum solutions can be computed quickly,
but tend to be extremely unfair. Our Min-SoS formulation requires signifi-
cantly more solution time, but it almost always yields much fairer solutions
with only a small increase in cost. Using perspective cuts instead usually
leads to a substantial saving in computing time, yet with little or no loss of
quality. We also observe that the effect of |B| on solution quality and com-
puting time is not predictable. Finally, the Min-Max solutions are even more
fair, as one would expect, but this gain comes at the expense of significantly
increased solution times and, usually, significantly higher cost.

All things considered, we believe that p = 2 represents a good compro-
mise between cost, fairness and computing time. Of course, one could also
experiment with other values of p.

3http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
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Instance m Total Max Min Ratio Gini JCH Time/Gap CoF

ftv33 2 Min-Sum 1302 1195 107 11.17 0.84 0.59 0.87
Min-SoS 1389 696 693 1 0.00 1 211.90 6.68
|B| = 10 1389 696 693 1 0.00 1 148.92 6.68
|B| = 15 1389 696 693 1 0.00 1 118.81 6.68
|B| = 20 1389 696 693 1 0.00 1 116.47 6.68

Min-Max 1389 696 693 1.00 0.00 1 777.07 6.68

ftv33 3 Min-Sum 1328 1195 26 45.96 0.88 0.41 0.99
Min-SoS 1424 529 402 1.32 0.09 0.99 0.14∗ 7.23
|B| = 10 1424 555 399 1.39 0.11 0.98 631.22 7.23
|B| = 15 1424 555 399 1.39 0.11 0.98 302.27 7.23
|B| = 20 1424 555 399 1.39 0.11 0.98 186.59 7.23

Min-Max 1458 498 470 1.06 0.02 1 0.04∗ 9.79

ftv33 4 Min-Sum 1367 1142 26 43.92 0.82 0.35 0.72
Min-SoS 1539 460 253 1.82 0.14 0.96 0.18∗ 12.58
|B| = 10 1539 460 253 1.82 0.14 0.96 0.07∗ 12.58
|B| = 15 1539 460 253 1.82 0.14 0.96 0.07∗ 12.58
|B| = 20 1539 460 253 1.82 0.14 0.96 0.09∗ 12.58

Min-Max 1592 411 383 1.07 0.02 1 0.11∗ 16.46

ftv35 2 Min-Sum 1489 1463 26 56.27 0.97 0.52 1.82
Min-SoS 1491 829 662 1.25 0.11 0.97 598.39 0.13
|B| = 10 1491 829 662 1.25 0.11 0.99 5.2 0.13
|B| = 15 1491 829 662 1.25 0.11 0.99 5.36 0.13
|B| = 20 1491 829 662 1.25 0.11 0.99 1.89 0.13

Min-Max 1542 780 762 1.02 0.01 1 0.01∗ 3.56

ftv35 3 Min-Sum 1511 1393 26 53.58 0.90 0.39 1.6
Min-SoS 1586 611 423 1.44 0.12 0.98 0.09∗ 4.96
|B| = 10 1608 552 514 1.07 0.02 1 808.77 6.42
|B| = 15 1586 611 423 1.44 0.12 0.98 214.36 4.96
|B| = 20 1586 611 423 1.44 0.12 0.98 362.88 4.96

Min-Max 1633 550 541 1.02 0.01 1 0.03∗ 8.07

ftv35 4 Min-Sum 1551 1357 26 52.19 0.86 0.32 1.05
Min-SoS 1712 472 377 1.25 0.06 0.99 0.17∗ 10.38

4 |B| = 10 1712 472 377 1.25 0.06 0.99 0.03∗ 10.38
|B| = 15 1712 472 377 1.25 0.06 0.99 0.08∗ 10.38
|B| = 20 1712 472 377 1.25 0.06 0.99 0.07∗ 10.38

Min-Max 1746 459 415 1.11 0.03 1 0.24∗ 12.57

ftv38 2 Min-Sum 1546 1439 107 13.45 0.86 0.57 2.1
Min-SoS 1548 829 719 1.15 0.07 0.99 989.04 0.13
|B| = 10 1548 829 719 1.15 0.07 0.99 6.62 0.13
|B| = 15 1548 829 719 1.15 0.07 0.99 11.98 0.13
|B| = 20 1548 829 719 1.15 0.07 0.99 6.14 0.13

Min-Max 1569 795 774 1.03 0.01 1 433.42 1.49

ftv38 3 Min-Sum 1569 1467 26 56.42 0.92 0.38 1.25
Min-SoS 1629 611 487 1.25 0.08 0.99 230.82 3.82
|B| = 10 1629 611 487 1.25 0.08 0.99 90.42 3.82
|B| = 15 1617 671 472 1.42 0.12 0.97 80.76 3.06
|B| = 20 1629 611 487 1.25 0.08 0.99 43.99 3.82

Min-Max 1669 568 544 1.04 0.01 1 0.05∗ 6.37

ftv38 4 Min-Sum 1608 1414 26 54.38 0.87 0.32 1.8
Min-SoS 1744 514 333 1.54 0.11 0.98 0.16∗ 8.46
|B| = 10 1729 523 333 1.57 0.12 0.97 3285.57 7.52
|B| = 15 1746 474 377 1.26 0.06 0.99 0.02∗ 8.58
|B| = 20 1729 523 333 1.57 0.12 0.97 1572.6 7.52

Min-Max 1797 460 437 1.05 0.02 1 0.11∗ 11.75

*Optimality gap upon termination of the optimisation after 3600 seconds.

Table 1: Computational results for TSPLIB instances with m = 2, 3, 4
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5.2 The capacitated minimum spanning tree problem

Next, we looked at the CMSTP. We took ten of the ‘tc/te’ benchmark
instances4 with 41 nodes (including the root), and set the sub-tree capacities
to either Q = 5 or Q = 10. We also considered the uncapacitated case
(equivalently, Q ≥ n.) For each instance, we set the number of workers m
to the degree of the root node in the optimal Min-Sum solution. (This is to
ensure that the number of sub-trees in the Min-Sum, Min-SoS and Min-Max
solutions are the same.) The results for the three values of Q are shown in
Tables 2 to 4.

Unfortunately, we found that the Min-Max version of the CMSTP was
extremely hard to solve, regardless of the MILP model used. Indeed, CPLEX
was unable to obtain meaningful bounds for any instance within an hour.
For this reason, we do not present statistics for the Min-Max version in the
tables. Another issue is that, for some of the uncapacitated instances, the
Min-Sum solution contained only one sub-tree. Since the issue of fairness
does not arise when |W | = 1, we omit those instances from Table 4.

On the whole, the effect is not as dramatic as in the case of the m-TSP.
For some instances (e.g., tc40-1 with Q = 10), the Min-Sum and Min-SoS
solutions are identical. For some other instances (e.g., te40-2 with Q = 5),
the solutions are distinct, but differ little in terms of fairness. There are
however some instances (e.g., tc40-1 and tc40-2, either uncapacitated or
with Q = 5) for which the Min-SoS solution is dramatically more fair than
the Min-Sum one, regardless of whether one considers the Ratio, the Gini
index or the JCH index.

Of course, the increase in fairness comes at the expense of increased
computing times. On the other hand, in almost all cases, the CoF is very
small. In fact, for some instances, the CoF is zero, meaning that there exist
several alternative optimal Min-Sum solutions, some of which are much fairer
than others.

5.3 The k-median problem

Next, we considered ten instances of the k-median problem5 with n = 100
or n = 200, and where k ranges from 5 to 67.

The results are shown in Table 5. Note that the ratios are missing for
instances pmed05, pmed09 and pmed10. For these instances, the minimum
workloads in the Min-Sum and Min-SoS solutions were zero. (This is caused
by the existence of a self-assigned client node, i.e., a client is the only node
assigned to the facility opened at the same node.)

It is clear that, for all instances, the Min-Sum solutions are very unfair,
with ratios ranging from 2 to 75.44. For all apart from three instances, using

4Available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/capmstinfo.html
5Available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
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Instance Total Max Min m Ratio Gini JCH Time/Gap CoF

tc40-1 Min-Sum 586 86 10 9 8.6 0.17 0.91 7.53
Min-SoS 596 70 60 9 1.17 0.03 1 381.85 1.71
|B| = 10 596 70 60 9 1.17 0.03 1 18.61 1.71
|B| = 15 596 70 60 9 1.17 0.03 1 15.08 1.71
|B| = 20 596 70 60 9 1.17 0.03 1 21.39 1.71

tc40-2 Min-Sum 578 85 10 9 8.5 0.18 0.9 3.32
Min-SoS 579 78 42 9 1.86 0.12 0.97 75.23 0.17
|B| = 10 579 78 42 9 1.86 0.12 0.97 7.92 0.17
|B| = 15 579 78 42 9 1.86 0.12 0.97 31.19 0.17
|B| = 20 579 78 42 9 1.86 0.12 0.97 5.87 0.17

tc40-3 Min-Sum 577 89 20 9 4.45 0.16 0.92 7.65
Min-SoS 577 78 45 9 1.73 0.09 0.98 26.88 0.00
|B| = 10 577 78 45 9 1.73 0.09 0.98 5.04 0.00
|B| = 15 577 78 45 9 1.73 0.09 0.98 28.52 0.00
|B| = 20 577 78 45 9 1.73 0.09 0.98 6.39 0.00

tc40-4 Min-Sum 617 91 30 9 3.03 0.17 0.93 8.78
Min-SoS 621 90 56 9 1.61 0.09 0.98 127.12 0.65
|B| = 10 621 90 56 9 1.61 0.09 0.98 12.62 0.65
|B| = 15 621 90 56 9 1.61 0.09 0.98 16.52 0.65
|B| = 20 621 90 56 9 1.61 0.09 0.98 19.31 0.65

tc40-5 Min-Sum 600 87 60 8 1.45 0.07 0.99 10.34
Min-SoS 600 87 60 8 1.45 0.07 0.99 639.02 0.00
|B| = 10 600 87 60 8 1.45 0.07 0.99 48.81 0.00
|B| = 15 600 87 60 8 1.45 0.07 0.99 115.18 0.00
|B| = 20 600 87 60 8 1.45 0.07 0.99 136.69 0.00

te40-1 Min-Sum 830 136 66 8 2.06 0.14 0.95 36.88
Min-SoS 835 136 79 8 1.72 0.12 0.97 0.03∗ 0.60
|B| = 10 835 136 79 8 1.72 0.12 0.97 1734.08 0.60
|B| = 15 835 136 79 8 1.72 0.12 0.97 0.02∗ 0.60
|B| = 20 835 136 79 8 1.72 0.12 0.97 0.01∗ 0.60

te40-2 Min-Sum 792 141 66 8 2.14 0.14 0.95 14.31
Min-SoS 792 141 66 8 2.14 0.14 0.95 0.03∗ 0.00
|B| = 10 793 138 70 8 1.97 0.13 0.96 1399.32 0.13
|B| = 15 793 138 70 8 1.97 0.13 0.96 1310.64 0.13
|B| = 20 793 138 70 8 1.97 0.13 0.96 1800.41 0.13

te40-3 Min-Sum 797 139 50 8 2.78 0.16 0.94 18.03
Min-SoS 801 131 62 8 2.11 0.14 0.95 0.05∗ 0.50
|B| = 10 799 131 62 8 2.11 0.14 0.95 0.03∗ 0.25
|B| = 15 799 131 62 8 2.11 0.14 0.95 0.03∗ 0.25
|B| = 20 799 131 62 8 2.11 0.14 0.95 0.02∗ 0.25

te40-4 Min-Sum 814 134 58 8 2.31 0.15 0.95 9.77
Min-SoS 815 134 58 8 2.31 0.15 0.95 0.04∗ 0.12
|B| = 10 815 134 58 8 2.31 0.15 0.95 0.03∗ 0.12
|B| = 15 815 134 58 8 2.31 0.15 0.95 0.03∗ 0.12
|B| = 20 815 134 58 8 2.31 0.15 0.95 0.03∗ 0.12

te40-5 Min-Sum 784 128 74 8 1.73 0.12 0.97 29.42
Min-SoS 784 128 74 8 1.73 0.12 0.97 0.03∗ 0.00
|B| = 10 784 128 74 8 1.73 0.12 0.97 1447.96 0.00
|B| = 15 784 128 74 8 1.73 0.12 0.97 1451.14 0.00
|B| = 20 784 128 74 8 1.73 0.12 0.97 1686.49 0.00

Optimality gap upon termination of the optimisation after 3600 seconds.

Table 2: Computational results for CMSTP instances with Q = 5
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Instance Total Max Min m Ratio Gini JCH Time/Gap CoF

tc40-1 Min-Sum 498 116 74 5 1.57 0.11 0.98 0.96
Min-SoS 498 116 74 5 1.57 0.11 0.98 16.91 0.00
|B| = 10 498 116 74 5 1.57 0.11 0.98 1.89 0.00
|B| = 15 498 116 74 5 1.57 0.11 0.98 3.85 0.00
|B| = 20 498 116 74 5 1.57 0.11 0.98 3.59 0.00

tc40-2 Min-Sum 490 134 116 4 1.16 0.04 1 1.09
Min-SoS 490 134 116 4 1.16 0.04 1 16.41 0.00
|B| = 10 490 134 116 4 1.16 0.04 1 21.69 0.00
|B| = 15 490 134 116 4 1.16 0.04 1 11.03 0.00
|B| = 20 490 134 116 4 1.16 0.04 1 2.19 0.00

tc40-3 Min-Sum 500 132 112 4 1.18 0.04 1 0.60
Min-SoS 500 132 112 4 1.18 0.04 1 16.59 0.00
|B| = 10 500 132 112 4 1.18 0.04 1 41.19 0.00
|B| = 15 500 132 112 4 1.18 0.04 1 1.60 0.00
|B| = 20 500 132 112 4 1.18 0.04 1 10.38 0.00

tc40-4 Min-Sum 512 116 90 5 1.29 0.07 0.99 1.23
Min-SoS 512 116 90 5 1.29 0.07 0.99 10.76 0.00
|B| = 10 512 116 90 5 1.29 0.07 0.99 2.60 0.00
|B| = 15 512 116 90 5 1.29 0.07 0.99 3.14 0.00
|B| = 20 512 116 90 5 1.29 0.07 0.99 2.91 0.00

tc40-5 Min-Sum 504 122 80 5 1.52 0.11 0.97 1.38
Min-SoS 504 122 84 5 1.45 0.09 0.98 14.96 0.00
|B| = 10 504 122 84 5 1.45 0.09 0.98 1.79 0.00
|B| = 15 504 122 84 5 1.45 0.09 0.98 2.01 0.00
|B| = 20 504 122 84 5 1.45 0.09 0.98 1.99 0.00

te40-1 Min-Sum 596 172 120 4 1.43 0.1 0.98 84.33
Min-SoS 602 164 124 4 1.32 0.07 0.99 0.05∗ 1.01
|B| = 10 601 162 142 4 1.14 0.04 1 869.94 0.84
|B| = 15 604 166 138 4 1.2 0.05 1 0.06∗ 1.34
|B| = 20 596 172 120 4 1.43 0.1 0.98 0.05∗ 0.00

te40-2 Min-Sum 573 154 135 4 1.14 0.04 1 2.17
Min-SoS 573 154 135 4 1.14 0.04 1 33.54 0.00
|B| = 10 573 154 135 4 1.14 0.04 1 89.77 0.00
|B| = 15 573 154 135 4 1.14 0.04 1 72.08 0.00
|B| = 20 573 154 135 4 1.14 0.04 1 120.07 0.00

te40-3 Min-Sum 568 160 104 4 1.54 0.1 0.98 149.97
Min-SoS 571 147 140 4 1.05 0.01 1 0.02∗ 0.53
|B| = 10 568 160 108 4 1.48 0.1 0.98 0.05∗ 0.00
|B| = 15 570 151 139 4 1.09 0.02 1 0.04∗ 0.35
|B| = 20 568 160 108 4 1.48 0.1 0.98 0.06∗ 0.00

te40-4 Min-Sum 596 178 112 4 1.59 0.12 0.97 21.57
Min-SoS 598 160 140 4 1.14 0.03 1 332.13 0.34
|B| = 10 598 160 140 4 1.14 0.03 1 351.31 0.34
|B| = 15 598 160 140 4 1.14 0.03 1 191.43 0.34
|B| = 20 598 160 140 4 1.14 0.03 1 190.91 0.34

te40-5 Min-Sum 572 158 128 4 1.23 0.06 0.99 16.89
Min-SoS 572 152 130 4 1.17 0.04 1 538.32 0.00
|B| = 10 572 152 130 4 1.17 0.04 1 167.87 0.00
|B| = 15 572 152 130 4 1.17 0.04 1 1309.82 0.00
|B| = 20 572 152 130 4 1.17 0.04 1 52.69 0.00

Optimality gap upon termination of the optimisation after 3600 seconds.

Table 3: Computational results for CMSTP instances with Q = 10
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Instance Total Max Min m Ratio Gini JCH Time/Gap CoF

tc40-1 Min-Sum 476 436 10 3 43.6 0.89 0.4 0.46
Min-SoS 490 166 160 3 1.04 0.01 1 19.52 2.94
|B| = 10 490 166 160 3 1.04 0.01 1 1.62 2.94
|B| = 15 490 166 160 3 1.04 0.01 1 1.31 2.94
|B| = 20 490 166 160 3 1.04 0.01 1 1.58 2.94

tc40-2 Min-Sum 460 346 114 2 3.04 0.5 0.8 0.41
Min-SoS 460 264 196 2 1.35 0.15 0.98 5.09 0.00
|B| = 10 460 264 196 2 1.35 0.15 0.98 1.30 0.00
|B| = 15 460 264 196 2 1.35 0.15 0.98 1.21 0.00
|B| = 20 460 264 196 2 1.35 0.15 0.98 1.10 0.00

tc40-4 Min-Sum 480 282 198 2 1.42 0.17 0.97 0.56
Min-SoS 480 282 198 2 1.42 0.17 0.97 0.03∗ 0.00
|B| = 10 480 282 198 2 1.42 0.17 0.97 1.27 0.00
|B| = 15 480 282 198 2 1.42 0.18 0.97 1.70 0.00
|B| = 20 480 282 198 2 1.42 0.18 0.97 1.43 0.00

tc40-5 Min-Sum 478 196 104 3 1.88 0.19 0.94 0.48
Min-SoS 490 174 144 3 1.21 0.06 0.99 2.95 2.51
|B| = 10 490 174 144 3 1.21 0.06 0.99 1.17 2.51
|B| = 15 490 174 144 3 1.21 0.06 0.99 1.18 2.51
|B| = 20 490 174 144 3 1.21 0.06 0.99 1.26 2.51

te40-1 Min-Sum 496 380 116 2 3.28 0.53 0.78 0.53
Min-SoS 504 270 234 2 1.15 0.07 0.99 10.70 1.61
|B| = 10 504 270 234 2 1.15 0.07 0.99 0.77 1.61
|B| = 15 504 270 234 2 1.15 0.07 0.99 0.79 1.61
|B| = 20 504 270 234 2 1.15 0.07 0.99 0.93 1.61

Optimality gap upon termination of the optimisation after 3600 seconds.

Table 4: Computational results for uncapacitated MSTP instances
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Instance Total Max Min Ratio Gini JCH Time/Gap CoF

pmed01 Min-Sum 5819 2147 241 8.91 0.41 0.75 0.27
Min-SoS 5935 1321 1073 1.23 0.05 0.99 119.78 1.99
|B| = 10 5932 1321 1073 1.23 0.06 0.99 3.20 1.94
|B| = 15 5945 1268 1133 1.12 0.03 1 2.06 2.17
|B| = 20 5935 1321 1073 1.23 0.05 0.99 2.81 1.99

pmed02 Min-Sum 4093 1358 18 75.44 0.52 0.54 0.48
Min-SoS 4258 532 336 1.58 0.09 0.98 37.26 4.03
|B| = 10 4258 532 336 1.58 0.09 0.98 2.16 4.03
|B| = 15 4265 532 336 1.58 0.09 0.98 2.87 4.2
|B| = 20 4258 532 336 1.58 0.09 0.98 1.60 4.03

pmed03 Min-Sum 4250 736 100 7.36 0.24 0.87 0.45
Min-SoS 4345 496 361 1.37 0.08 0.99 100.85 2.24
|B| = 10 4345 496 361 1.37 0.08 0.99 4.14 2.24
|B| = 15 4345 496 361 1.37 0.08 0.99 2.93 2.24
|B| = 20 4345 496 361 1.37 0.08 0.99 3.60 2.24

pmed04 Min-Sum 3034 591 10 59.1 0.48 0.54 0.20
Min-SoS 3173 244 83 2.94 0.16 0.93 42.38 4.58
|B| = 10 3186 244 83 2.94 0.15 0.94 4.86 5.01
|B| = 15 3156 244 83 2.94 0.17 0.92 4.24 4.02
|B| = 20 3173 244 83 2.94 0.16 0.93 4.70 4.58

pmed05 Min-Sum 1355 187 0 - 0.69 0.36 0.20
Min-SoS 1521 96 0 - 0.36 0.72 34.66 12.25
|B| = 10 1532 94 0 - 0.35 0.73 11.40 13.06
|B| = 15 1521 96 0 - 0.36 0.72 12.46 12.25
|B| = 20 1521 96 0 - 0.36 0.72 13.81 12.25

pmed06 Min-Sum 7824 2263 1129 2 0.16 0.94 4.99
Min-SoS 7845 2195 1280 1.71 0.12 0.96 0.05∗ 0.27
|B| = 10 7844 1636 1418 1.15 0.03 1 26.96 0.26
|B| = 15 7849 1669 1542 1.08 0.02 1 24.99 0.32
|B| = 20 7848 1609 1488 1.08 0.02 1 22.75 0.31

pmed07 Min-Sum 5631 1158 252 4.6 0.27 0.83 1.82
Min-SoS 5728 702 488 1.44 0.07 0.99 2212.55 1.72
|B| = 10 5734 702 476 1.47 0.06 0.99 17.56 1.83
|B| = 15 5728 702 488 1.44 0.07 0.99 16.86 1.72
|B| = 20 5728 702 488 1.44 0.07 0.99 14.55 1.72

pmed08 Min-Sum 4445 660 31 21.29 0.41 0.65 1.47
Min-SoS 4638 331 130 2.55 0.12 0.96 560.73 4.34
|B| = 10 4647 331 130 2.55 0.11 0.96 26.67 4.54
|B| = 15 4644 303 130 2.33 0.11 0.96 30.21 4.48
|B| = 20 4638 331 130 2.55 0.12 0.96 28.92 4.34

pmed09 Min-Sum 2734 227 0 - 0.48 0.59 1.32
Min-SoS 2869 109 0 - 0.18 0.9 3172.35 4.94
|B| = 10 2869 109 0 - 0.18 0.9 159.02 4.94
|B| = 15 2869 109 0 - 0.18 0.9 147.12 4.94
|B| = 20 2869 109 0 - 0.18 0.9 143.02 4.94

pmed10 Min-Sum 1255 106 0 - 0.66 0.37 1.22
Min-SoS 1383 45 0 - 0.39 0.69 645.34 10.2
|B| = 10 1383 45 0 - 0.39 0.69 88.19 10.2
|B| = 15 1383 45 0 - 0.39 0.69 60.70 10.2
|B| = 20 1383 45 0 - 0.39 0.69 72.45 10.2

*Optimality gap upon termination of the optimisation after 3600 seconds.

Table 5: Computational results for the ORLIB k-median instances
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p

1 1.25 1.5 1.75 2 2.25 2.5

pmed01 8.91 1.51 1.31 1.31 1.23 1.23 1.23
0.27 3.06 1.60 2.01 3.48 3.37 3.12

pmed02 75.44 3.38 3.34 1.58 1.58 1.58 1.58
0.48 1.54 3.10 1.66 2.00 3.33 3.08

pmed03 7.36 2.32 2.15 2.07 1.37 1.37 1.37
0.45 1.96 3.42 3.01 4.09 4.99 4.84

pmed04 59.10 4.04 3.05 3.05 2.94 2.94 2.94
0.20 1.34 1.98 2.44 4.35 14.93 15.74

pmed05 [0,187] [0,139] [0,113] [0,96] [0,94] [0,94] [0,80]
0.20 1.27 2.24 6.23 10.78 16.50 17.46

pmed06 2.00 1.31 1.23 1.15 1.15 1.15 1.15
4.99 58.24 49.60 22.78 26.65 20.03 27.42

pmed07 4.60 2.72 1.78 1.63 1.47 1.47 1.47
1.82 18.94 25.74 13.73 18.52 24.47 52.90

pmed08 21.29 13.65 3.32 3.18 2.55 2.55 2.33
1.47 12.35 21.16 25.72 27.14 91.33 277.14

pmed09 [0,227] [0,131] [0,125] [0,109] [0,109] [28,107] [28,106]
1.32 10.26 71.95 75.77 149.89 153.72 169.81

pmed10 [0,106] [0,60] [0,56] [0,53] [0,45] [0,45] [0,44]
1.22 8.96 15.58 38.41 89.31 99.54 133.80

Table 6: Sensitivity to the value of p on the k-median instances

the Min-SoS objective leads to a dramatic improvement in fairness, often at
little extra cost. Moreover, when perspective cuts are used to approximate
the Min-SoS objective, the computing times are very reasonable.

5.4 Sensitivity to p

Finally, we investigate the sensitivity of the fairness ratio to the value of p,
using instances of the k-median problem solved using ten perspective cuts
per worker.

The results are shown in Table 6 for values of p varying from 1 to 2.5
in increments of 0.25, where the first line shows the fairness ratio for each
instance and the second line shows the computing times in seconds. For
instances where the minimum workload is zero, we instead provide the range
[Min, Max] of workloads in the corresponding solutions.

The results reveal a dramatic increase in fairness as p goes from 1 to 1.5,
and only a moderate increase after that. For most instances, the computing
time does not increase much as p increases. Exceptions are pmed04 and
pmed08–pmed10, for which there is a substantial slowdown for larger values
of p. Overall, the Min-SoS objective (p = 2) works well in most cases.
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6 Discussion

Fairness has received a great deal of attention in many disciplines. To achieve
fairness in combinatorial optimisation, we recommend using the `p-norm ap-
proach. We have shown that, for certain network optimisation problems, it
is possible to derive compact and convex MINLP formulations of the `p

variants, that do not suffer from symmetry. We have also shown that outer-
approximating the MINLP, using a relatively small number of perspective
cuts, often enables one to obtain results of acceptable quality using a stan-
dard MILP solver.

There are several possibilities for future research. One is to derive com-
pact formulations for the `p version of other important combinatorial opti-
misation problems. Another is to develop guidelines on the suitable value
for p for a given problem or a given instance. A third is to design effective
heuristics, perhaps based on local search, for finding solutions to large-scale
instances that give an acceptable trade-off between cost and fairness. Fi-
nally, one should consider how to achieve fairness when the objective is to
maximise profit rather than to minimise cost.
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