
A Reinforcement Learning Hyper-heuristic for the
Optimisation of Flight Connections

Yaroslav Pylyavskyy∗, Ahmed Kheiri∗, Leena Ahmed†
∗Lancaster University, Department of Management Science, UK

{y.pylyavskyy, a.kheiri}@lancaster.ac.uk
†Cardiff University, School of Computer Science, UK

ahmedlh@cardiff.ac.uk

Abstract—Many combinatorial computational problems have
been effectively solved by means of hyper-heuristics. In this study,
we focus on a problem proposed by Kiwi.com and solve this
problem by implementing a Reinforcement Learning (RL) hyper-
heuristic algorithm. Kiwi.com proposed a real-world NP-hard
minimisation problem associated with air travelling services. The
problem shares some characteristics with several TSP variants,
such as time-dependence and time-windows that make the problem
more complex in comparison to the classical TSP. In this work,
we evaluate our proposed RL method on kiwi.com problem
and compare its results statistically with common random-based
hyper-heuristic approaches. The empirical results show that
RL method achieves the best performance between the tested
selection hyper-heuristics. Another significant achievement of RL
is that better solutions were found compared to the best known
solutions in several problem instances.

Index Terms—Hyper-heuristics, Metaheuristics, TSP

I. INTRODUCTION

Over the last few decades, the airline industry has experi-
enced a vast growth, and air travel is considered by far the
best option for long distance journeys. Every year more than
30 million flights are scheduled worldwide, and this number
keeps increasing [1]. With such complex air network, it is
extremely hard for air travellers to find the cheapest possible
connection between two airports, and this becomes even more
challenging for a multi-city journey. As a result, several online
travel agencies have developed search engines to provide
cheap flights for travellers, such as Kiwi.com, Skyscanner.net,
and many others. Some of these agencies in an attempt
to improve their customer service have launched different
challenges and projects, which have drawn the attention of
many researchers from optimisation and computer science
fields. OpenFlights.org is an online searching tool associated
with air travel, which launched the Air-Travelling Salesman
project [2]. Similarly, Kiwi.com ran the Travelling Salesman
Challenge in 2017, which contributed to the development of
the current algorithm Kiwi.com uses, named NOMAD [3]. In
2018, Kiwi.com proposed the Travelling Salesman Challenge
2.0, which is the subject of this study. The challenge aims to
determine the cheapest connection between specific areas.

While some similarities with the ordinary TSP exist, this
problem is much more complex and essentially different. It
is time-dependent with time-windows, asymmetric and gener-
alised problem described as follows: Given a list of areas,

a list of airports for each area, the travelling costs between
the listed airports for the corresponding days, and the starting
city, the objective is to minimise the total travelling cost by
finding the cheapest possible journey that visits exactly one
city of each given area and terminates at the starting area.
Combinatorial problems, such as this, are of a great interest
for practitioners and researchers. Such problems are solved
with exact methods, heuristic algorithms or a combination
of them. Exact methods provide optimal solutions, but they
have the limitation of performing inefficiently in terms of time
complexity. This phenomena is more profound in large size
problems resulting in an unreasonably computational time [4].
Heuristics are used to improve computational time efficiency
and provide decent or near-optimal solutions [5]. Collaborative
combinations make use of both exact and heuristic algorithms.
Particularly, these methods are combined in order to exchange
information. The work in [6] refers to such combination used
to solve TSP to optimality. In this study, Kiwi.com problem
is solved by means of selection hyper-heuristics.

II. BACKGROUND

A. Travelling Salesman Problem

Travelling Salesman Problem (TSP) is a well-known NP-
hard problem and has been studied by many researchers due to
its various applications in real-world problems. It was firstly
defined by the two mathematicians William R Hamilton and
Thomas Kirkman in the 19th century, and it is until now
considered one of the most challenging problems in operations
research [7]. Over the last few decades, many variations of
TSP have been created in order to fit with more real-world
problems. Some of them are [8]:

• General: The distance or cost is arbitrarily assigned
between cities.

• Metric: The distance or cost is metric satisfying the trian-
gle inequality; ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

• Symmetric TSP (STSP): The cost of travelling from city
i to city j is the same as travelling from city j to city i.

• Asymmetric TSP (ATSP): The cost of travelling from city
i to city j is not the same as travelling from j to i.

• TSP with multiple visits (TSPM): It is allowed to visit
cities more than once.

• Multiple TSP: Multiple salesmen are allowed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/305112624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• Open tour TSP: The salesman does not have to end the
tour from the point it started.

• Time-dependent TSP (TD-TSP): The travel cost depends
on distance and the day of travel [9].

• Generalised TSP (GTSP): Cities are divided into clusters
and salesman visits exactly one city of each cluster [10].

• TSP with time-windows (TSPTW): Salesman must visit
each city within a specified time window [11].

Kiwi.com problem shares some characteristics with several
TSP variants. One can think of the Kiwi.com problem as
a generalised, asymmetric, time-dependent TSP with time-
windows, combining four variants of TSP problems, and hence
making this problem difficult enough to solve.

B. Optimisation in Air Travel

Over the last few years, more researchers became interested
in applying optimisation techniques in air travel. One of the
main reasons for this growing interest is that air travelling
nowadays, is one of the most important and affordable trans-
portation means for the majority of the global population. Air
travellers usually refer to online search engines to find the
cheapest trips. While finding the cheapest flight connection be-
tween two airports might not be difficult, finding the cheapest
possible multi-city trip is extremely complicated. Therefore,
several studies have focused on finding better quality solutions
for multi-city trips by air travel.

Kiwi.com released a challenge in 2017, called Travelling
Salesman Challenge [12]. This was a previous version of the
current Kiwi.com challenge, Travelling Salesman Challenge
2.0, which is the subject of this study. The main difference
between the two challenges, is that while in the former version
the traveller had to visit a number of cities, in the current
version cities are divided into a number of areas from which
exactly one city has to be visited. In [12], Simulated Annealing
(SA), Ant Colony Optimisation (ACO), and a hybrid algorithm
combining SA and ACO were applied to solve the problem on
large instances up to 100 cities. Additionally, they parallelised
the ACO algorithm and meta-optimised the parameters of SA
and ACO algorithms with the aid of a genetic algorithm. To
improve further the quality of their solutions, they applied a K-
opt technique to the good solutions obtained by the algorithms.
They used greedy search and backtracking as benchmarks and
compared all these algorithms. Their results showed that their
hybrid algorithm outperformed the other algorithms. The K-
opt and meta-optimisation techniques only improved solutions
of medium size instances.

The Flying Tourist Problem (FTP) [3] involves a tourist
who wants to make a multi-city flight journey with the best
possible schedule, route and set of flights. The tourist should
also spend a number of days in each city. The objective of
this problem is not only to minimise the total cost but also the
flight duration and the cost-duration combination. The study in
[3] tested three well-known algorithms on their problem: SA,
ACO and Particle Swarm Optimisation (PSO). PSO proved to
be the most effective algorithm between them. Their proposed
algorithm was compared to the current Kiwi.com algorithm

(NOMAD), and the results provided cheaper solutions in 95%
of the times. However, their proposed algorithm was only
tested for up to 20 cities in total.

The work in [9] discussed the time-dependent ATSP with
time-window and precedence constraints in air travel. How-
ever, the traveller visits countries instead of cities, where
some countries might have to be visited straightaway after
some other countries are visited. The traveller must spend
one week in each country and then travel to the next one.
The authors suggested two Local Search algorithms for the
problem: LS with Swap Operator, and LS with Insert Operator.
A modified version of the Nearest Neighbour was used as
a benchmark. Both LS algorithms performed better than the
Modified Nearest Neighbour when tested on instances of up to
20 countries. Their results suggest that LS with Insert is more
appropriate for instances with easy constraints, and LS with
Swap is better for hard constraints. This is mainly because
the Insert Operator has a greater probability of generating
an infeasible solution when applied on instances with hard
constraints. Specifically, when Insert Operator is used, all
travel dates in the solution have to change, and thus the
infeasibility chance increases.

Another interesting study is the Air-Travelling Salesman
project launched by the OpenFlights.org [2]. In this project,
they are given a list of airports to visit and the goal is
to find the best possible route that minimises the travel
distance. For some airports, a direct flight does not exist and
thus an intermediate airport might need to be visited. The
Nearest Neighbour (NN) heuristic algorithm with a 3-opt Swap
Operator was used to solve the problem. The swap operator
simply changes the visiting order of 3 airports in the solution.
The algorithm was tested on several STSP and ATSP instances
and the results showed that the algorithm performed well on
both types of instances with small number of cities. However,
the algorithm did not perform as well as expected for larger
size problems, specifically on ATSP instances.

The Travel Itinerary Problem was studied in [13], which
involves a traveller who wants to make a multi-city trip without
having any preference about the means of transportation. The
aim is to find the cheapest possible combination of itineraries
for the whole trip within the time frame specified. The authors
solved the problem via IP and an implicit enumeration algo-
rithm. In addition, the authors developed a smart travel system,
where users input their travel preferences and the optimal tour
is returned by using real online data. The algorithm was tested
on real case studies based on real-life transport data.

C. Hyper-heuristics

Many hard combinatorial computational problems have
been effectively solved by means of simple heuristics and
metaheuristic algorithms. Yet, these algorithms, such as ge-
netic algorithms, simulated annealing, and tabu search, share
the disadvantage of the need of advanced knowledge in order
to adjust them when the problem changes [14], [15]. Because
of these weaknesses, many researchers focused on building
methods which can automatically design heuristics and are



general enough to be applied in a wide range of problems
without much expertise intervention. This idea was firstly
stated in 1960s but was not implemented until 2000 [16].
Nowadays, this automated process is known as hyper-heuristic
and is widely applied to many combinatorial problems.

Hyper-heuristics are divided into two main categories; 1)
generation hyper-heuristics which generate new heuristics
and 2) selection hyper-heuristics which select a heuristic for
application from a set of low level heuristics [17]. In addition
to this, hyper-heuristics are further divided into two subcat-
egories; 1) constructive methods which construct a solution
from scratch by implementing a set of heuristics at different
phases of the construction process and 2) perturbative methods
which use a complete initial solution and apply a set of
heuristics in a perturbative way to improve this solution [18].
Selection perturbative hyper-heuristics, which are the focus of
this work, are methods that choose a heuristic from a set of
low level heuristics, and apply it to the solution in hand for
improvement. This particular method is very forceful since
certain heuristics might perform better than others at certain
stages. Hence, the sequence in which the low level heuristics
are applied is essential, as different sequences can vary in their
performances [19]. Hyper-heuristics are capable of learning
which sequences or heuristics are more effective during the
search process by using feedback mechanisms. Based on the
origin of feedback, the learning process is classified as online
or offline. In the former class, the algorithm directly learns
during the search while solving the main problem, whereas
in the latter class the algorithm learns by solving a set of
training instances which prepare the algorithm to effectively
encounter new instances [16]. Hyper-heuristics operate without
the need of any information regarding the functionality of the
low level heuristics. They only require the type of optimisation
(i.e. minimise or maximise) and the number of the low level
heuristics [20]. In return, they provide useful feedback such as
the amount of time required to apply a heuristic, the utilisation
rate of each heuristic, the change in the objective function.
These are vital information for the learning process [16].

The selection hyper-heuristic framework usually has two
sequential steps: 1) heuristic selection and 2) move acceptance
[16]. The first step is accountable for selecting a low level
heuristic from the set of low level heuristics and applying
it to the solution, whereas the second step is a decision re-
garding the acceptance or rejection of the new solution. Some
examples of heuristic selection strategies developed previously
[15]: Simple Random (SR) which uses a uniform probability
distribution to randomly select a low level heuristic at each
step. Random Descent (RD) that selects a low level heuristic
randomly and applies it repeatedly as long as an improvement
is found. Random Permutation (RP) which selects a low level
heuristic one at a time from an initial generated permutation
of the low level heuristics. Random Permutation Descent
(RPD) that forms an initial permutation of the low level
heuristics similar to RP, but applies each low level heuristic
repeatedly until no improvement is found similar to RD.
Finally, Reinforcement Learning (RL) that assigns an initial

score to each low level heuristic in the initialisation of the
algorithm. These scores are increased or decreased based on
the improvement or deterioration of the solution respectively.
RL chooses and applies the heuristic with the best score at each
stage [20]. The study in [20] highlighted a main drawback of
the RL strategy. While at early stages some heuristics might be
more effective than others, on later stages this condition might
change leading RL to repeatedly select ineffective heuristics
until their score decreases sufficiently. To overcome this issue,
the authors recommend to place any non-improving heuristics
in a tabu list, until a better solution is found. The work in
[18] proposed another way to overcome this problem, through
utilising shorter term memories. This way, the algorithm will
gradually forget any repetitive improvements performed by
certain heuristics at early stages.

Several move acceptance strategies have been developed in
previous studies [17], for example, Improving or Equal (IE)
accepts non-worsening moves; and Great Deluge (GD) accepts
all moves within a dynamic level of the objective value. The
initial level is equal to the initial objective value and is linearly
updated towards the expected objective value by using the
formula: τt = f0 + ∆F × (1 − t

T ) where τt is the threshold
level at time t, T is the time limit, ∆F is the expected range
for the maximum change in the objective value, and f0 is the
final expected objective value.

III. PROBLEM DESCRIPTION

Kiwi.com problem seeks to find the best possible flight
routes between specifically given areas in order to minimise
the travelling cost. Each area includes a set of cities from
which exactly one has to be visited everyday and the cost of
travelling between areas is different based on the direction and
day of travel. During the trip, it is not possible to arrive to a
city and then continue the trip by departing from another city
of the same area. The final destination of the trip is the starting
area but not necessarily the starting city.

Mathematically, let Area = {area1, area2, . . . , arean} be
a set of n areas, where each area r ∈ Area is composed
of a set of airports {airport1, airport2, . . . airportm}; and
let cdij be the flight cost between the departure airport i and
the arrival airport j on day d, which has two properties: cdij
is not necessarily equal to cdji; and for d1 6= d2, cd1ij is not
necessarily equal cd2ij . In some instances there are multiple
flights between the same cities for the same day with different
costs (i.e. different airline companies for the same connection).
The objective of the problem is to find the best possible flight
route that connects all the given areas and minimises the cost
within the time given, subject to:

• Trip starts from a given city.
• Exactly one city of our choice is visited in each area.
• A different area is visited on daily basis.
• The arrival city of each area is also the departure city.
• Trip terminates in any city of the starting area.
A simple problem instance consisting of 4 areas and 8

airports is presented in Figure 1. The 4 areas are; Greece, Italy,
Spain, and the UK, where each area contains two cities; Athens



Fig. 1: Simple problem instance with a possible solution

and Thessaloniki, Rome and Milan, Madrid and Barcelona,
and London and Liverpool, respectively. The trip begins from
Athens to Madrid, then continues from Madrid to London,
then from London to Rome and ends in Thessaloniki. Notice
that in this trip the starting and finishing airports are different,
but the trip is acceptable since it ends in the starting area.

Kiwi.com provided 14 instances in total, covering a range
from 10 to 300 areas1. The time limits suggested by Kiwi.com
for the instances are the following:

• 3 seconds for small instances (number of areas ≤ 20 &
number of airports < 50)

• 5 seconds for medium instances (number of areas ≤ 100
& number of airports < 200)

• 15 seconds for large instances (number of areas > 100)

IV. METHODOLOGY

Hyper-heuristics are fast and relatively easy to implement.
They exploit the search space of low level heuristics, and are
capable of learning during the search by gathering informa-
tion on the performance of the low level heuristics. These
features make hyper-heuristics an ideal candidate to solve
Kiwi.com problem and overcome the time limit challenges,
while providing good solutions. In total, six selection hyper-
heuristic algorithms with different combinations of selection
and move acceptance methods are implemented. The solu-
tion is represented as a two dimensional vector. The first
dimension Sarea = {area1, area2 . . . arean} indicates the
index of the area, and the second dimension Sairport =
{airport1, airport2 . . . airportm} indicates the airports of the
corresponding area. Each pair (area, airport)i represents the
area and the corresponding airport visited in day i. Initially,
a random solution is produced and further improved using a
local search procedure to ensure its feasibility.

1Datasets are available at https://code.kiwi.com/ and can also be down-
loaded from https://ahmedkheiri.bitbucket.io/publications/KIWI.zip

A. Low Level Heuristics

• Swap: randomly selects two areas in the solution and their
corresponding airports and swaps them.

• Insert: randomly selects an area in the solution and a
position within the solution. Then the area is inserted to
the determined position by moving all the areas between
the previous area position and the determined position to
the left or right as required.

• Reverse: randomly selects two areas in the solution and
reverses between these two areas.

• Change Airport: randomly selects an airport and replaces
it with another airport of the corresponding area.

B. Hyper-heuristics for Kiwi.com

In total, six selection hyper-heuristics are implemented: SR-
IE, SR-GD, RD-IE, RP-IE, RPD-IE, and RL. After applying
the selected low level heuristic (LLH), if the new solution is
feasible, its cost is compared with the cost of the previous
solution. The new solution is saved depending on the move
acceptance criterion. Otherwise, it is scrapped and the previous
solution is restored. In RL method, the low level heuristics
compete with each other for selection and the best one is
selected. Each low level heuristic is assigned a score, and
based on its performance is either rewarded or penalised. In
addition, any low level heuristic that produces an infeasible
solution is penalised higher as suggested in [18]. All rewards
and penalties are weighted by a factor based on the iteration
number. This idea is introduced to avoid over-rewarding the
low level heuristics in the early phase of the search process,
as mentioned in [20], and maintain a fair reward and penalty
system. However, penalties are less weighted than rewards, this
is for giving the low level heuristic a second chance. In this
method, all improving moves are accepted, and the worsening
solutions are accepted in some scenarios. The procedure of
accepting a worsening solution is controlled by a counter β,
which keeps track of the consecutive number of iterations
without improvements. β increases more when an infeasible
solution is generated. α is a parameter which represents the
tolerance number for consecutive non-improvements. When-
ever the solution is not much worse than the previous, and
β > α, a worsening solution is accepted and all scores of
LLHs are set to their default values. This idea is implemented
so as to escape local minima.

RL method is described with details in Algorithm 1. Table I
lists the values of the parameters used in RL method.

TABLE I: The algorithm parameters and the chosen values

Parameter Value

α 104

reward 0.003
penaltyf 0.000625
penaltyw 0.0005
LHHS initial values [0.5, 0.5, 0.5, 0.5]

https://code.kiwi.com/
https://ahmedkheiri.bitbucket.io/publications/KIWI.zip


Algorithm 1: Reinforcement Learning

1 Let LLH be the set of LLHs
2 Let LLHS be the scores of LLHs
3 Let j be the current iteration
4 Let β be the number of iterations without improvement
5 Let α be a tolerance number for non-improvements
6 Let reward be the factor for rewarding LLH
7 Let penaltyw, penaltyf be the factor for penalising LLH

generating worsening, or non-feasible solutions
8 Let S, Snew, Sbest be the current, new, and best solutions
9 Let f(S) be the cost of the solution S

10 Let F (S) be the feasibility of the solution S
11 S ← Initialise();
12 β ← 0;
13 repeat
14 LLHi ← SelectBestScore(LLHS);
15 Snew ← ApplyLLH(LLHi, S);
16 if F (Snew) = 0 then
17 if f(Snew) < f(S) then
18 S ← Snew;
19 LLHSi ← LLHSi + j × reward;
20 β ← 0;
21 if f(Snew) < f(Sbest) then
22 Sbest ← Snew;
23 else if β > α && f(Snew) < 4 ∗ f(S) then
24 S ← Snew;
25 LLHS ← [0.5, 0.5, 0.5, 0.5];
26 β ← 0;
27 else
28 LLHSi ← LLHSi − j × penaltyw;
29 β ← β + 1;
30 else
31 LLHSi ← LLHSi − j × penaltyf ;
32 β ← β + 10;
33 until TimeLimit;
34 return Sbest

V. EMPIRICAL RESULTS

In this section we present a performance comparison be-
tween the tested selection hyper-heuristics on a number of
selected instances, and further analyse the best method. The
experiments were performed on an Intel Core i5 at 2.3GHz
with memory of 8GB. Each method was executed for 30
runs with different random seed values and within the time
limits specified by Kiwi.com and described in Section III.
The experiments were performed on a subset of instances with
varying sizes, where instances 1, and 3 are selected to repre-
sent the small size instances, instances 4, and 6 representing
medium size instances, and instances 7, 9, 10, and 13 represent
large size instances. Our results identified the success of RL
method in most of the instances compared to the other tested
selection hyper-heuristics. In order to confirm this, Mann-
Whitney-Wilcoxon (MWW) test is conducted to identify any

TABLE II: Mann–Whitney-Wilcoxon test of RL at 5% signif-
icance level

Name SR-IE SR-GD RD-IE RP-IE RPD-IE

Instance-1 < < < < <

Instance-3 ∗ < < < <

Instance-4 < < < < <

Instance-6 ∗ < < < <

Instance-7 < < < < <

Instance-9 < < < ∗ ∗

Instance-10 < < < < <

Instance-13 < < < < <

significantly different behaviour between RL and the other
tested methods. In Table II, the results of the MWW test at
5% significance level are presented, where < symbol indicates
that RL generates statistically better results than the compared
method, and ∗ symbol indicates that no significant difference
exists. It can be observed from the table that RL generates
better results for most of the instances, and these results are
statistically significant. The only exception is instance 9, where
RL outperformed only three tested methods. SR-IE is the most
competing method to RL, and RL was still able to outperform
it in six instances out of eight. This comparison indicates
the success of RL over other randomised selection methods,
proving the efficiency of the employed reinforcement learning
technique, and the implemented rewarding and penalising
scheme.

A. An Analysis of RL Method

RL method was further tested in all fourteen instances,
where 30 runs were conducted per instance. Table III displays
these results. The first four columns of the table are the
characteristics of each instance, followed by the time limit
in seconds for performing a single run. A summary statistics
are presented in the following columns, and the last column
presents the best known cost. The results show that RL
performed well on small and medium size instances finding
better cost values than the best known, except for instance 6.
RL also succeeded in finding better cost values in instances 7
and 9 than the best known.

The following analysis is performed on the selected subset
of instances described above. In Figure 2, the cost versus time
is illustrated when the low level heuristics are applied jointly
and separately in small size instances. In addition, Figure 3
shows the utilisation rate of each low level heuristic when
combined together. The plots indicate that in Instance-1, the
best known solution is found by either combining the low
level heuristics or Swap low level heuristic individually. Insert
managed to reach close enough to the best known solution,
while Reverse had the worst performance. Change Airport is
not shown in the plot, as Instance-1 has only one airport in
each area. The utilisation rate plot shows that Swap had the
most contribution. Although, Reverse performed worse than



TABLE III: The performance of RL algorithm over 30 runs. The average, best and standard deviation of the thirty runs and
the best known cost for each instance are reported. Best values per each instance are highlighted in bold

Name areas airports airports in areas time (s) best average std. best known

Instance-1 10 10 1 (min) – 1 (max) 3 1396 1396 0 1396
Instance-2 10 15 1 (min) – 2 (max) 3 1498 1498 0 1498
Instance-3 13 38 1 (min) – 6 (max) 3 7672 7672 0 7672
Instance-4 40 99 1 (min) – 5 (max) 5 13952 14017.1 61.66 14024
Instance-5 46 138 3 (min) – 3 (max) 5 690 697.1 5.96 698
Instance-6 96 192 2 (min) – 2 (max) 5 2610 3038.8 199.42 2159
Instance-7 150 300 1 (min) – 6 (max) 15 30937 31441.2 261.35 31681
Instance-8 200 300 1 (min) – 4 (max) 15 4081 4123.4 26.96 4052
Instance-9 250 250 1 (min) – 1 (max) 15 75604 83364.5 10996.20 76372
Instance-10 300 300 1 (min) – 1 (max) 15 58304 64828.9 2881.00 21167
Instance-11 150 200 1 (min) – 4 (max) 15 59361 63679.7 2045.50 44153
Instance-12 200 250 1 (min) – 4 (max) 15 86074 91068.3 2907.99 65447
Instance-13 250 275 1 (min) – 3 (max) 15 166543 173575.0 5230.30 97859
Instance-14 300 300 1 (min) – 1 (max) 15 198787 209428.9 4784.02 118811

Insert when applied separately, it contributed more than Insert
when all low level heuristics were combined. In Instance-3,
the best known solution is reached only when all low level
heuristics are combined. Swap, Insert, and Reverse low level
heuristics show similar performance, by finding a cost value
not far from the best known solution. Change Airport did not
perform well when applied separately. The utilisation rate plot
indicates that Change Airport had the biggest contribution
among all low level heuristics in reaching the best known
solution. Reverse and Swap had almost the same contribution,
whereas Insert had the least.

In Figure 4, low level heuristics are applied jointly and
separately in the medium size instances 4 and 6. Furthermore,
Figure 5 depicts the utilisation rate of each low level heuristic.
Change Airport did not improve the solution when applied
separately. Overall, the plots show that in Instance-4, the best
solution is found by the combination of all low level heuristics.
Insert and Reverse have a similar performance, while Swap is
slightly worse unlike in the small instances. Despite the poor
performance of Change Airport individually, the utilisation
rate plot in Figure 5 reveals that it has the largest contribution
rate, followed by reverse and swap low level heuristics. In
Instance-6, the best cost is achieved through the combination
of all low level heuristics. When applied separately, Insert
and Swap stood out from the rest of the low level heuristics.
Likewise, as can be seen from Figure 5, Insert has the greatest
utilisation rate followed by Swap. Change Airport performed
poorly on this instance.

In Figure 7, the cost versus time is displayed when the
low level heuristics are applied jointly and separately. Also,
Figure 6 illustrates the utilisation rates of the low level
heuristics. The plots suggest that in a similar manner to the
medium size instances, Change Airport does not improve the
cost when applied separately. In Instance-7, Figure 7 shows
that the best solution is achieved via a combination of low
level heuristics. Insert yields the second best solution and
Reverse and Swap follow respectively. As shown in Figure 6,
Reverse contributes the most in cost reduction, followed by
Insert and Swap respectively. In Instance-9, Swap achieved a

(a)

(b)

Fig. 2: Plots of cost versus time with combined low level
heuristics and without for small size instances

better solution than the combined low level heuristics. The rest
of the low level heuristics did not contribute in decreasing the
cost when applied separately. Furthermore, Figure 6 shows that
Swap is also very successful when combined with the other
low level heuristics achieving the highest utilisation. Instance-
9 has only one airport in each area and hence, Change Airport
is not utilised. In Instance-10, Insert obtained a better solution
than combined low level heuristics as shown in Figure 7.



Instance-1 Instance-3

Swap Reverse Insert Change Airport

75%

22%

3%

60%
11%

14%

15%

Fig. 3: Utilisation rate of each low level heuristic for small
size instances

(a)

(b)

Fig. 4: Plots of cost versus time with combined low level
heuristics and without for medium size instances

Instance-4 Instance-6

Swap Reverse Insert Change Airport

13%

37%
27%

23% 25%

9%

50%

16%

Fig. 5: Utilisation rate of each low level heuristic for medium
size instances

The third best solution was achieved by Swap. A similar
behaviour is noticed in Figure 6, where Swap and Insert are the
main contributors when all low level heuristics are combined.
Reverse contributes by only 1%. Instance-10 has only one
airport in each area and Change Airport is therefore not
utilised. In Instance-13, Figures 6 and 7 show the successful
application of Swap individually, achieving better cost than
combining the low level heuristics, and collectively with the
other low level heuristics achieving the highest utilisation.
Change Airport contributes successfully in this instance with
24% utilisation rate.

VI. CONCLUSION

In this work, we solved Kiwi.com problem by the means of
selection hyper-heuristics. Six selection hyper-heuristics were
tested on a dataset of fourteen instances of varying sizes pro-
vided by Kiwi.com. The developed selection hyper-heuristics
controlled a set of four low level heuristics (Swap, Insert,
Change Airport, and Reverse). A Reinforcement Learning
hyper-heuristic (RL) is proposed in this work with specif-
ically designed set of parameters to escape local minima,
and compared with the other implemented selection hyper-
heuristics. The empirical results showed the success of RL
method, achieving the best performance with a statistical sig-
nificance for most of the instances. RL method also proved its
efficiency in comparison to the best known solutions, where it
successfully found better solutions than the best known in four
instances. The proposed RL method can be further investigated
in future research in other problem domains to prove its
generality. Moreover, Kiwi.com problem can be extended by
adding further constraints such as allowing multiple internal
trips to different cities within one area before moving to the
next area.

Instance-7 Instance-9

Instance-10 Instance-13

Swap Reverse Insert Change Airport

35%

40%

25%
8%

20%

72%

49% 50%

1%

24%

70%

6%

Fig. 6: Utilisation rate of each low level heuristic for large
size instances



(a) (b)

(c) (d)

Fig. 7: Plots of cost versus time with combined low level heuristics and without for large size instances

REFERENCES

[1] M. C. D., “Computational complexity of air travel planning,” 2003,
public Notes on Computational Complexity. Retrieved June, 14, 2019
from http://www.demarcken.org/carl/papers/.

[2] OpenFlights, “The air-traveling salesman,” 2015, retrieved June,13,2019
from https://sites.google.com/site/travellingcudasalesman/.

[3] R. Marques, L. Russo, and N. Roma, “Flying tourist problem: Flight
time and cost minimization in complex routes,” Expert Systems with
Applications, vol. 130, pp. 172–187, 2019.

[4] M. Muneeb Abid and M. Iqbal, “Heuristic approaches to solve traveling
salesman problem,” TELKOMNIKA Indonesian Journal of Electrical
Engineering, vol. 15, pp. 390–396, 2015.

[5] I. Dumitrescu and T. Stützle, “Combinations of local search and exact
algorithms,” in Applications of Evolutionary Computing, S. Cagnoni,
C. G. Johnson, J. J. R. Cardalda, E. Marchiori, D. W. Corne, J.-A. Meyer,
J. Gottlieb, M. Middendorf, A. Guillot, G. R. Raidl, and E. Hart, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 211–223.

[6] J. Puchinger and G. R. Raidl, “Combining Metaheuristics and Exact Al-
gorithms in Combinatorial Optimization: A Survey and Classification,”
in First International Work-Conference on the Interplay Between Natural
and Artificial Computation, IWINAC 2005, J. R. Á. José Mira, Ed., vol.
3562. Springer-Verlag, 2005, pp. 41–53.

[7] G. Laporte, “The traveling salesman problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research,
vol. 59, no. 2, pp. 231–247, 1992.

[8] R. Rasmussen, “TSP in spreadsheets - a guided tour,” International
Review of Economics Education, vol. 10, no. 1, pp. 94–116, 2011.

[9] T. Saradatta and P. Pongchairerks, “A time-dependent atsp with time
window and precedence constraints in air travel,” Journal of Telecom-
munication, Electronic and Computer Engineering, vol. 9, no. 2-3, pp.
149–153, 2017.

[10] P. C. Pop and S. Iordache, “A hybrid heuristic approach for solving
the generalized traveling salesman problem,” in Proceedings of the

13th Annual Conference on Genetic and Evolutionary Computation, ser.
GECCO ’11. ACM, 2011, pp. 481–488.

[11] Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon, “An optimal
algorithm for the traveling salesman problem with time windows,”
Operations Research, vol. 43, no. 2, pp. 367–371, 1995.

[12] D. Duque, J. A. Cruz, H. L. Cardoso, and E. Oliveira, “Optimizing meta-
heuristics for the time-dependent tsp applied to air travels,” in Intelligent
Data Engineering and Automated Learning – IDEAL 2018, H. Yin,
D. Camacho, P. Novais, and A. J. Tallón-Ballesteros, Eds. Springer
International Publishing, 2018, pp. 730–739.

[13] X. Li, J. Zhou, and X. Zhao, “Travel itinerary problem,” Transportation
Research Part B: Methodological, vol. 91, pp. 332–343, 2016.

[14] A. Kheiri, “Heuristic sequence selection for inventory routing problem,”
Transportation Science, vol. 54, no. 2, pp. 302–312, 2020.

[15] L. Ahmed, C. Mumford, and A. Kheiri, “Solving urban transit route
design problem using selection hyper-heuristics,” European Journal of
Operational Research, vol. 274, no. 2, pp. 545–559, 2019.

[16] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, “Recent advances in
selection hyper-heuristics,” European Journal of Operational Research,
in press.

[17] A. Kheiri and E. Keedwell, “A hidden Markov model approach to the
problem of heuristic selection in hyper-heuristics with a case study in
high school timetabling problems,” Evolutionary Computation, vol. 25,
no. 3, pp. 473–501, 2017.

[18] R. Bai, J. Blazewicz, E. K. Burke, G. Kendall, and B. McCollum, “A
simulated annealing hyper-heuristic methodology for flexible decision
support,” 4OR, vol. 10, pp. 43–66, 2012.

[19] A. Kheiri and E. Keedwell, “A sequence-based selection hyper-heuristic
utilising a hidden markov model,” in Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’15.
Association for Computing Machinery, 2015, pp. 417–424.

[20] K. Chakhlevitch and P. Cowling, Hyperheuristics: Recent Developments.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 3–29.

http://www.demarcken.org/carl/papers/
https://sites.google.com/site/ travellingcudasalesman/

