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Abstract
The proposed doctoral work investigates a new approach to
implement, deploy andmanage honeypots for Industrial Con-
trol Systems (ICS). Our goal is to address unique challenges
of ICS security in terms of interactivity, resource utilization,
timeliness of detection and uninterrupted operation, which
are muchh stricter compared to traditional systems, making
the existing approaches inefficient. Our proposal combines
different levels of interactivity and coupling of the honey-
pots with the ICS network to satisfy trade-offs of detection
accuracy and risk, and integrates the honeypot detection
feeds with an SDN framework to enable autonomic recon-
figuration.

1 Introduction
The increasing adoption of an Internet of Everything (IoE),
encapsulates industrial technologies categorised under the
umbrella term of Industrial Control Systems (ICS) [5]. Com-
munication over IP for ICSs promises to improve functional-
ity, manageability and ease of access. However, these systems
were not designed with Internet connectivity in mind [1],
made evident by the lack of security features in their associ-
ated network protocols [16]. These systems are often imple-
mented as part of a nations critical infrastructure (e.g. water
and electricity distribution [10]). Therefore, the security of
ICS devices is paramount to the safety and economic prosper-
ity of a nation. Althoughmanufacturers are provided patches
for known vulnerabilities, implementation times can be sig-
nificantly higher when compared with traditional IT system,
leaving them exposed for an extended period [8, 14]. The
main reason for delayed patching can be traced to require-
ments aligned to continued operation (i.e. limited downtime).
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The three principle of safety, reliability, and availability, are
historically favoured when compared to security [12], mean-
ing ICS operators may prefer to leave systems unpatched
than undergo downtime. However, where vulnerabilities ex-
ist, their exploitation has the potential to cause impact across
the aforementioned principles. Moreover, when security fea-
tures are available for ICS specific protocols, they are usually
’bolt-on’ and can include vulnerabilities of their own [6].

The severity of operating unpatched ICS devices over the
Internet is amplified by a growing number of known vul-
nerabilities, publicly available exploits, and their increasing
level of sophistication [15]. In response to this, new meth-
ods to detect and mitigate attacks targeting ICSs need to
be developed. It is no longer sufficient to trust traditional
firewalls and anti-virus software, as they require updates in
order to detect and block new forms of malicious traffic [4].
Consequently, zero-day exploits, which are not known to
traditional security systems, are able to penetrate the net-
work and infect systems. Through the introduction of “bring
your own device” practices, and the prevalence of social-
engineering [7], conventional perimeter defences my fail to
adequately prevent initial access into a system [23].

2 Proposed System
Our proposed system aims to address the shortcomings of
current industrial honeypot implementations, by combin-
ing a network of honeypots distributed across the Internet,
with honeypots situated within the ICS network. Distributed
honeypots are used to gather threat intelligence on com-
monly applied offensive security tactics and techniques, and
their source. Together with blacklists, the data captured by
these honeypots is used to calibrate firewalls and IDSs, and
to ensure no malicious data captured by the honeypots can
propagate inside the network. The internal honeypots are
divided between two zones, an independent honeypot net-
work, and the core operational network. The independent
honeypot network hosts several high-interaction honeypots,
including ICS devices (e.g. PLCs, HMIs, etc.) and conven-
tional IT systems (e.g. domain controllers, web and email
servers, and clients). These honeypots are designed to lure
attackers, acting as a deception technique to divert attention
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away from operational systems [21], and should therefore be
configured in a realistic manner. Data gathered from these
honeypots provides intelligence on current forms of mal-
ware and exploitation techniques [20]. Honeypots residing
within the core operational network (i.e. in parallel to opera-
tional systems), will be used to capture live threats, affording
administrators with the ability to not only respond accord-
ing, but gain valuable insight into security deficiencies. We
suggest these honeypots to be low-interaction to limit risks
introduced through their use, since high-interaction honey-
pots can be taken over by malicious attackers and used to
target operational systems [22]. The collected data will be
automatically fed to a analytical server for further analy-
sis using state-of-the-art machine learning techniques [24].
Finally, the analysed data can then be fed into an SDN con-
troller to inform/reconfigure internal network structures to
mitigate identified risk in an autonomic manner.

3 Work to be done
We are currently conducting research into the efficiency of
honeypots to mimic ICS devices, and their ability to cap-
ture relevant threat intelligence. We have identified several
honeypots that could be implemented in our framework,
including Conpot and Dionaea. Conpot honeypots would
be leveraged to gain intelligence on attacks that specifically
target ICSs. Dionaea honeypots are designed to capture mal-
ware, supporting our aim to gather information on zero-day
exploits and malware in the wild. As previously noted, we
also implement high-interaction honeypots in order to gain
a better understanding of attacker tactics and techniques.
The implementation of high-interactive honeypots will not
be limited to the honeypots themselves, but will also include
a broader network for attackers to traverse, and allow for an
enhanced level of interaction.

Data sets captured through the implementation of these hon-
eypots will be used as inputs in amachine learning algorithm,
designed to analyse and identify malicious behaviour. The
machine learning algorithm will be trained with a compre-
hensive data set to achieve a low rate of false positives. The
output of this algorithm will be used in conjunction with
software-defined networking to automatically reconfigure
internal operational networks to actively mitigate identi-
fied threats. Because of this, false positives could result in
legitimate data being prohibited and interfere with opera-
tional processes, and due to the nature of ICS environments
could lead to safety incidents. A balance must therefore be
established between defensive actions and operational re-
quirements.

Key challenges within this work include the appropriate de-
ployment and configuration of the honeypots, making them
a more attractive target compared to live operational sys-
tems. We must determine where in our network and on the

internet can the most relevant data be captured. For exam-
ple, what benefits are drawn through the use of company
owned IP address-space over the address space of a third
party. Furthermore identifying a ML algorithm that can de-
liver accurate outputs, with minimal false positives, is key.
Related to this, we will be required to establish fundamen-
tal data types to feed into our selected algorithm from the
honeypots. As the output of this algorithm will be fed into
SDN to restructure network properties proportional to the
risk posed, one approach that we will analyse is the use of
intent-based networking.

4 Related Work
Several academic and research efforts have focused on net-
work intrusion detection using honeypots [13, 18] However,
most of these efforts usually rely on simulations, synthetic
datasets, or non-industrial deployments, with little to no
industry stakeholder based evaluations, and consequently,
their traction within ICS has been limited. While there ex-
ist commercial security services for ICS deployments, such
as Kapersky’s Industrial CyberSecurity [9], these services
have the risk of providing access to sensitive infrastructure
and data to third parties, which may introduce additional
vulnerabilities and contradict best practices on privacy and
confidentiality. In addition, there have been concerns sur-
rounding the use of such companies due to their ties with
foreign governments [17].

Alata et al. [2] compared the malicious traffic attracted by
a high-interaction honeypot to the traffic observed across
distributed low-interaction honeypots. They found comple-
mentarity between these honeypot types suggesting their
parallel use as the best security strategy. Serbanescu et al [19]
analyzed traffic received in an ICS-specific honeypot in corre-
lation with the honeypot visibility in the Shodan IP scanner.
The volume of attacks increased considerably when the hon-
eypot got indexed by Shodan, allowing to identify attackers
targeting generic ICS devices. Internet traffic classification
approaches have been evaluated by Kim et al. [11]. Notable
results lie in the performance of supervised machine learning
algorithms. SVM achieved an overall accuracy of 94.2% over
ten traces, however where single-trace trained was applied,
it achieved an accuracy of only 49.8% - 83.4%.

The closest work to ours is by Antonioli et al. [3], who pro-
posed a high-interaction virtual ICS honeypot to satisfy the
unique requirements of ICS honeypots compared to tradi-
tional networks, namely maintainability, low cost, timely
detection and determinism. Their honeypot is connected to
an SDN controller to enhance data analytics and detection.
The performance of the honeypot was evaluated by six red
teams during a Capture-The-Flag (CTF) competition. We
plan to employ a similar evaluation to conduct a realistic
assessment of the performance of our system.
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