
Performance Optimization on big.LITTLE
Architectures: A Memory-latency Aware Approach

Abstract
The energy demands of modern mobile devices have driven
a trend towards heterogeneous multi-core systems which in-
clude various types of core tuned for performance or energy
efficiency, offering a rich optimization space for software. On
such systems, data coherency between cores is automatically
ensured by an interconnect between processors. On some
chip designs the performance of this interconnect, and by
extension of the entire CPU cluster, is highly dependent on
the software’s memory access characteristics and on the set
of frequencies of each CPU core. Existing frequency scaling
mechanisms in operating systems use a simple load-based
heuristic to tune CPU frequencies, and so fail to achieve a
holistically good configuration across such diverse clusters.
We propose a new adaptive governor to solve this problem,
which uses a simple trained hardware model of cache in-
terconnect characteristics, along with real-time hardware
monitors, to continually adjust core frequencies to maxi-
mize system performance. We evaluate our governor on the
Exynos5422 SoC, as used in the Samsung Galaxy S5, across a
range of standard benchmarks. This shows that our approach
achieves a speedup of up to 40%, and a 70% energy saving,
including a 30% speedup in common mobile applications
such as video decoding and web browsing.
ACM Reference Format:
. 2020. Performance Optimization on big.LITTLE Architectures: A
Memory-latency Aware Approach. In Proceedings of LCTES. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
Modern embedded platforms, such as mobile and tablet de-
vices, have become a ubiquitous part of the modern comput-
ing ecosystem. Their battery-powered design has driven a
new wave of hardware research, including the asymmetric
multiprocessor (AMP). This is a System-on-Chip which offers
one cluster of CPU cores designed to be energy efficient, and
another designed to offer high performance. This concept
has been implemented in the ARM big.LITTLE architecture
which is widely adopted in mobile platforms, including the
Samsung Galaxy range. The big.LITTLE design has an en-
ergy efficient processor (named LITTLE) with a performant
but more power-hungry processor (named big), where each
processor also offers a range of frequency settings. This de-
sign exposes a large optimization space for software to trade
performance against reduced energy consumption by choos-
ing a processor depending on energy and time constraints.

In order to simplify software development for the platform,
the hardware offers transparent data coherency between its
processor clusters. Onmany big.LITTLE platforms, this is im-
plemented via the ARM CoreLink CCI-400 interconnect [7]
which uses a bus-snooping protocol: when a data access is
issued by a processor, the interconnect will broadcast a mes-
sage to all processors to check whether the data is present
in their local cache before accessing RAM. Because the inter-
connect communicates with the processor, extra latency can
be introduced in this procedure if the processor’s clock fre-
quency is low. Our experiments show that gcc, for example,
can suffer an 80% slowdown due to this mechanism. While
newer big.LITTLE platforms include a hardware snoop filter
to mitigate these effects, the popular CCI-400 interconnect
remains in wide use across the world – a recent study by
Facebook reports that 75% of smartphones using their plat-
form have CPU designs released before 2013 [28], before any
big.LITTLE hardware snoop filters were designed.

In this paper we propose a software solution to this prob-
lem with a novel ondemand-anti-snoop governor, a new
DVFS governorwhich enhances the standard Linux ondemand
governor to consider the memory traffic between processor
units and main memory at a hardware-level. Our approach
is highly generalized, working transparently across all soft-
ware, and requires only a simple, generic, train-oncemodel of
real-time system activity to learn snoop effects in a range of
scenarios. Our evaluation shows that performance improve-
ments of up to 40% can be achieved with our new dynamic
frequency governor on real-world software.

The main contributions of our work are:
• A methodology to characterize snooping latency ef-
fects on the bus-snoop protocol interconnect fabric.

• A simple but effective model of snoop latency using
a microbenchmark; our model is trained once on this
benchmark and then applies generically to all software.

• A new DVFS governor which uses our model together
with hardware-level information to mitigate snoop-
ing latency in real-time by locating the ideal holistic
frequency configurations on the SoC.

The remainder of this paper is organized as follows. Sec-
tion 2 first presents the hardware architecture in detail on
which our study is conducted. Section 3 then presents a
model of snooping effects, considering hardware-level data,
and a new frequency scaling governor using this model to
mitigate snooping latency. In section 5 we evaluate our new
governor on a set of real-world workloads. In section 6 we
discuss related work, and conclude in section 7.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/305112571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Cortex A15 Cluster

Memory controller ports System port

Cortex A7 Cluster

GIC-400 Generic Interrupt Controller

CCI-400 Cache Coherent Interconnect

IO Coherent 
Master

A15
Core

A7
Core

Figure 1. big.LITTLE architecture implementation on our
platform. Full data coherency is assured by a bus-snooping
protocol. (Courtesy of Arm Limited.)

2 Memory architecture background
In order to understand the relative difference in execution
time for different clock frequencies, we first explain in detail
how the memory works on the platform we use.
We use an Odroid-XU3 from HardKernel [17], which im-

plements the Exynos 5422 System-on-Chip (SoC) from Sam-
sung [6]. The SoC itself is identical to that used in the Sam-
sung Galaxy S5 smartphone, though the host board is slightly
different. Figure 1 shows a block diagram of the SoC archi-
tecture, which implements two CPU clusters of 4 cores each,
for a total of 8 cores. One cluster targets energy efficiency
(named LITTLE) and uses a Cortex-A7 [5], while the other
cluster targets performance (named big) and uses a Cortex-
A15 [4]. Each CPU core has its own private L1 cache, and
shares one L2 cache within the same cluster. Both CPUs have
32 Kb instruction cache and 32 Kb for data in L1 cache. The
LITTLE cluster has a unified 512 Kb L2 last level cache, while
the big cluster has 2 Mb. Finally, CPU core clock frequency
is shared between cores within the same cluster.

In this SoC, data cache coherency between the two clusters
is managed by the ARM CoreLink CCI-400 Cache Coherent
Interconnect [3]. Using this interconnect fabric, when a CPU
core in a cluster performs a read/write memory operation
for data that is not contained in its internal cache, the inter-
connect checks if the data is present in the cache of the other
cluster, and if not, it then performs an access to off-chip main
memory (RAM). This check is performed by an operation
called snooping, for which further specification details can
be found in the relevant ARM white paper [26].
The effect of snooping on this hardware is that extra la-

tency can be introduced when a process performs several
memory accesses and when the frequency of the idle cluster

is low. This is because the interconnect fabric communi-
cates with the CPU cluster to check its cache status, and the
cache status check is performed at a speed relative to the
current clock frequency of the cluster. Effectively, therefore,
a process running on one CPU cluster can stall on memory
accesses because another cluster has a low clock frequency.
This effect interacts with the common dynamic CPU fre-

quency scaling policy (DVFS) used in Linux, and present on
the majority of Android smartphones (the popular Energy
Aware Scheduler (EAS) for Android uses a frequency gover-
nor with a very similar design to that used in standard Linux).
DVFS by default attempts to reduce the clock frequency of
a CPU whenever it is idle, to correspondingly reduce the
amount of energy consumed by that CPU. Whenever one
particular CPU cluster on a big.LITTLE chip has a lower
workload, therefore, the clock frequency of that cluster is
reduced, which can in turn cause snoop-induced stalling
on memory accesses across other clusters. Our benchmarks
show that this stalling can cause a slowdown of up to 80% for
the most memory-intensive applications – which is a very
significant impact for the wide range of smartphone models
using this hardware architecture.

Obvious solutions to this problem are (i) to always run all
CPUs at their highest clock frequency, or (ii) to try to com-
pletely power down CPUs that aren’t being heavily used (as
powering down a CPU cluster also removes snooping effects).
Both approaches are problematic: running CPU clusters at
high frequencies incurs significant energy penalties and so
will reduce battery lifetime, while powering down a CPU
cluster takes a significant amount of time to migrate tasks
and deactivate cluster-bound kernel services (our measure-
ments with hotplug show that Linux takes 300ms to power
down a low-workload cluster). A third approach for an idle
CPU with no workload is to rely on periodically putting that
CPU into sleep mode via the cpuidle framework (rather
than forcing a full power down), and periodically waking the
CPU to accommodate kernel maintenance routines. How-
ever, during all of the periods in which the CPU is awake
this incurs snooping latency.
Neither of these approaches are therefore attractive by

themselves. Instead, we develop a trained model of the hard-
ware’s snoop behavior and its interaction with clock fre-
quencies; this model is trained just once on a memory-based
microbenchmark to discover how the snoop architecture be-
haves. Using this trained model we develop a new dynamic
frequency governor which monitors the system in real-time
to continually find a balance between raising clock frequen-
cies to avoid snoop-induced stalling when needed while still
keeping them as low as possible to conserve energy. Our
governor is most effective when multiple clusters are awake
with at least some workload, but is also complementary to
periodic CPU sleep protocols used on completely idle clus-
ters during the times when that CPU wakes for maintenance
procedures.

2



(a) CPU cycles spent to perform a memory access.

 0

 50

 100

 150

 200

 250

 300

 350

 400

0
.2
-1
.4
-9
3
3

0
.3
-1
.4
-9
3
3

0
.4
-1
.4
-9
3
3

0
.5
-1
.4
-9
3
3

0
.6
-1
.4
-9
3
3

0
.7
-1
.4
-9
3
3

0
.8
-1
.4
-9
3
3

0
.9
-1
.4
-9
3
3

1
.0
-1
.4
-9
3
3

1
.1
-1
.4
-9
3
3

1
.2
-1
.4
-9
3
3

1
.3
-1
.4
-9
3
3

1
.4
-1
.4
-9
3
3

1
.5
-1
.4
-9
3
3

1
.6
-1
.4
-9
3
3

1
.7
-1
.4
-9
3
3

1
.8
-1
.4
-9
3
3

1
.9
-1
.4
-9
3
3

2
.0
-1
.4
-9
3
3

(b) CPU PMCs memory_bus_access for the process.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0
.2
-1
.4
-9
3
3

0
.3
-1
.4
-9
3
3

0
.4
-1
.4
-9
3
3

0
.5
-1
.4
-9
3
3

0
.6
-1
.4
-9
3
3

0
.7
-1
.4
-9
3
3

0
.8
-1
.4
-9
3
3

0
.9
-1
.4
-9
3
3

1
.0
-1
.4
-9
3
3

1
.1
-1
.4
-9
3
3

1
.2
-1
.4
-9
3
3

1
.3
-1
.4
-9
3
3

1
.4
-1
.4
-9
3
3

1
.5
-1
.4
-9
3
3

1
.6
-1
.4
-9
3
3

1
.7
-1
.4
-9
3
3

1
.8
-1
.4
-9
3
3

1
.9
-1
.4
-9
3
3

2
.0
-1
.4
-9
3
3

(c) CCI PMCs stall cycles per read on the big port.

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

0
.2
-1
.4
-9
3
3

0
.3
-1
.4
-9
3
3

0
.4
-1
.4
-9
3
3

0
.5
-1
.4
-9
3
3

0
.6
-1
.4
-9
3
3

0
.7
-1
.4
-9
3
3

0
.8
-1
.4
-9
3
3

0
.9
-1
.4
-9
3
3

1
.0
-1
.4
-9
3
3

1
.1
-1
.4
-9
3
3

1
.2
-1
.4
-9
3
3

1
.3
-1
.4
-9
3
3

1
.4
-1
.4
-9
3
3

1
.5
-1
.4
-9
3
3

1
.6
-1
.4
-9
3
3

1
.7
-1
.4
-9
3
3

1
.8
-1
.4
-9
3
3

1
.9
-1
.4
-9
3
3

2
.0
-1
.4
-9
3
3

Figure 2. Benchmark on the LITTLE cluster, big cluster idle

(a) CPU cycles spent to perform a memory access.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

2
.0
-0
.2
-9
3
3

2
.0
-0
.3
-9
3
3

2
.0
-0
.4
-9
3
3

2
.0
-0
.5
-9
3
3

2
.0
-0
.6
-9
3
3

2
.0
-0
.7
-9
3
3

2
.0
-0
.8
-9
3
3

2
.0
-0
.9
-9
3
3

2
.0
-1
.0
-9
3
3

2
.0
-1
.1
-9
3
3

2
.0
-1
.2
-9
3
3

2
.0
-1
.3
-9
3
3

2
.0
-1
.4
-9
3
3

(b) CPU PMCs memory_bus_access for the process.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

2
.0
-0
.2
-9
3
3

2
.0
-0
.3
-9
3
3

2
.0
-0
.4
-9
3
3

2
.0
-0
.5
-9
3
3

2
.0
-0
.6
-9
3
3

2
.0
-0
.7
-9
3
3

2
.0
-0
.8
-9
3
3

2
.0
-0
.9
-9
3
3

2
.0
-1
.0
-9
3
3

2
.0
-1
.1
-9
3
3

2
.0
-1
.2
-9
3
3

2
.0
-1
.3
-9
3
3

2
.0
-1
.4
-9
3
3

(c) CCI PMC stall cycles per read on the LITTLE port.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

2
.0
-0
.2
-9
3
3

2
.0
-0
.3
-9
3
3

2
.0
-0
.4
-9
3
3

2
.0
-0
.5
-9
3
3

2
.0
-0
.6
-9
3
3

2
.0
-0
.7
-9
3
3

2
.0
-0
.8
-9
3
3

2
.0
-0
.9
-9
3
3

2
.0
-1
.0
-9
3
3

2
.0
-1
.1
-9
3
3

2
.0
-1
.2
-9
3
3

2
.0
-1
.3
-9
3
3

2
.0
-1
.4
-9
3
3

67108864_0
67108864_1
67108864_16
33554432_0
33554432_1
33554432_16
1048576_0

1048576_1
1048576_16
160100_0
160100_1
160100_16
131072_0
131072_1

131072_16
65536_0
65536_1
65536_16

4_0
4_1
4_16

Figure 3. Benchmark on the big cluster, LITTLE cluster idle

3 Modeling snooping latency
Our first step is to develop a detailed model of the conditions
under which snooping latency occurs, and to understand
which hardware monitors we can measure to enable detec-
tion of this effect in real-time and correlate it with our model.
We do this using microbenchmarks that target a range of
different memory access patterns to study how they cause
associated memory characteristics in the hardware.

The following sub-sections first present a study of snoop
latency effects in general using our benchmark, then discuss
how we can detect these effects in real-time using perfor-
mance monitoring counters on both the CPU and CCI.

3.1 Memory latency exploration
To study snooping latency on memory operation, we use
the ccbench:cache [11] microbenchmark. This was initially
written to discover a CPU’s internal memory hierarchy, and

runs a pointer chasing loop over an array of a given size.
Values in the array represent the next index in this same
array to follow for the next iteration. The benchmark can
be configured to access the array using a range of different
patterns, including a linear access of a unit stride, a stride of
a cache line size, or a random pattern which prevents smart
CPU memory prefetchers from being effective.

We run this microbenchmark on one active cluster, keep-
ing the other cluster idle, over each possible set of cluster
frequencies and with different parameterization to cover a
large range of use cases. The parameterization comprises all
three memory pattern accesses, and multiple different array
sizes. The array size itself is chosen to either fit, or not fit, in
the different CPU internal cache sizes of both clusters, the
latter case forcing off-chip memory access.

Figure 2 presents the overall results of running the bench-
mark on the LITTLE cluster and keeping the big cluster idle,

3



while Figure 3 presents the reverse scenario. Each graph
shows all three memory access patterns with different array
sizes. The graph legend shows the size (in number of index
in the array) and pattern access for each series – where an
access pattern 0 is the random pattern, 1 a strictly sequential
pattern, and 16 is a sequential pattern with a stride of the size
of the last level cache line of the CPU (both CPU clusters use
a 64-byte cache line and array indexing via 4-byte integers).
We begin by measuring the overall total number of CPU

clock cycles spent performing a single memory access in the
benchmark (which reads the index of the next memory access
in the array); the results of this are shown in Figure 2a and
Figure 3a for the benchmarks running on the LITTLE and big
cluster respectively. The x-axes of all graphs show the CPU
and main memory frequency configuration and are present
at the bottom figures, in the format {big_freq}-{LITTLE_freq}-
{mem_freq}1, and the y axes show CPU cycles. Figure 2a and
Figure 3a show that there is an increase in the number of
cycles for any benchmark with an array of more than 131,072
elements2, or when the memory access pattern is not strictly
sequential. In both of these cases we see additional increases
in cycles when the idle cluster has its frequency set below
a certain level; in Figure 2a this occurs when the idle big
cluster drops below 0.7Ghz, while in Figure 3a it occurs when
the idle LITTLE cluster drops below 0.4Ghz.
The graphs in Figure 2b-c and Figure 3b-c then show in-

formation from the PMCs that we use to detect snooping
latency cases in real-time. These PMC readings are taken
across an identical set of frequencies and benchmarks as
those used in Figure 2a and Figure 3a. In detail, Figure 2c
shows CCI stalling cycles per read request coming from the
LITTLE cluster, while Figure 3c shows CCI stalling cycles
per read request coming from the big cluster. In both cases
we can clearly see that this PMC correlates with the snoop
filter effect: when clock frequencies are too low under cer-
tain memory access patterns, we get higher stalling cycles
recorded on this PMC. While this PMC therefore shows part
of the picture, it is only able to report all events from an entire
cluster, involving all of its cores, and all of its processes.

It also useful to be able to understand the memory profile
of a particular process for which we would like to optimize,
to understand if the snoop latency measurements are actu-
ally affecting this process. Because we want to avoid any
application-specific knowledge or static memory profiling,
we use a CPU PMC providing real-time memory bus usage
for each core. Figure 2b (and 3b) shows the mem_bus_access
PMC for the microbenchmark running on the LITTLE and

1CPU frequencies are shown in GHz, and memory in MHz. Dynamic ad-
justment of CPU frequency is available by default on the Linux kernel, and
memory bus frequency can be adjusted statically at boot time. Although
our experiments here all use the same memory bus frequency of 933MHz,
we include the actual values used in graphs for completeness.
2This threshold is a result of the L2 cache size on the LITTLE cluster, which
is 512KB (131, 072 × 4bytes ).

big cluster respectively which offers exactly this informa-
tion in real-time. Here we see that the number of memory
accesses per cycle appears to reduce across our benchmark
configurations as the CPU frequency of the other cluster is
lowered. This decrease is caused by the stalling effect itself,
such that a process has an apparently lower amount of mem-
ory access as recorded by this PMC if that process is being
affected by snoop-based stalling. This effectively reduces the
speed with which that process executes and so reduces its
apparent memory access volume per cycle.

The combined data from these PMCs indicates that we can
detect stalling for a particular process of interest by reading
the CCI PMC of its non-resident cluster, and the memory bus
access profile CPU PMC of the process on its resident cluster.
When the memory access profile exceeds a certain memory
size or has a non-sequential pattern and begins to show
lower memory accesses per cycle, and the CCI PMC of the
non-resident cluster indicates stalling, we can assume that
the clock frequency of the other cluster must be increased
to reduce stalling effects for this particular process.

In the next section we propose a formal way to use these
PMCs to dynamically determine when the snooping mecha-
nism could affect application performance.

3.2 Detection of snooping latency
As shown in section 3.1, we see a clear trend of increase in
latency for certain combinations of stalling cycles on the CCI
PMC and memory bus access via the CPU’s PMC. However,
these increases show a non-linear relationship between the
PMC values (specifically the values reported in Figure 2b
and Figure 2c relative to processes running on the LITTLE
cluster, and the values in Figure 3b and Figure 3c for pro-
cesses running on the big cluster). These non-linearities are
difficult to capture heuristically to determine the ideal lev-
els to configure the respective CPU frequencies; instead we
therefore develop an offline automatic modeling process.
There are two key questions to consider in solving this

task: 1) which CPU frequency configuration has performance
loss? and 2) what values do the relative PMCs report when
there is known snooping latency?
A rigorous test for the first question would be to detect

when the performance variation is statistically significant
and not inherent noise due to the operating system’s process
management. To determine whether there is a statistically
significant variation, we perform a Student’s t-test on each
execution trace (scanning each CPU configuration) against
the highest possible frequency of both clusters; this is a
standard statistical method to establish whether or not a
difference between two data sets is significant. In our case
we assume that there is a problematic snooping latency when
the p-value of this statistical test is higher than 0.05.

4



cci_congestion <= 0.01074
entropy = 0.89974
samples = 1995

value = [1365, 630]
class = decrease_frequency

memory_bus_access <= 4e-05
entropy = 0.54797
samples = 1430

value = [1249, 181]
class = decrease_frequency

True

memory_bus_access <= 0.00822
entropy = 0.73242
samples = 565

value = [116, 449]
class = increase_frequency

False

entropy = 0.0897
samples = 176
value = [174, 2]

class = decrease_frequency

entropy = 0.59138
samples = 1254

value = [1075, 179]
class = decrease_frequency

entropy = 0.99377
samples = 183
value = [100, 83]

class = decrease_frequency

entropy = 0.25087
samples = 382
value = [16, 366]

class = increase_frequency

(a) Decision tree used to manage frequency of the big cluster.

cci_congestion <= 0.00023
entropy = 0.73917
samples = 1365

value = [1080, 285]
class = decrease_frequency

memory_bus_access <= 0.05568
entropy = 0.40323
samples = 934
value = [859, 75]

class = decrease_frequency

True

memory_bus_access <= 0.00468
entropy = 0.99953
samples = 431

value = [221, 210]
class = decrease_frequency

False

entropy = 0.43231
samples = 845
value = [770, 75]

class = decrease_frequency

entropy = 0.0
samples = 89
value = [89, 0]

class = decrease_frequency

entropy = 0.77323
samples = 264
value = [204, 60]

class = decrease_frequency

entropy = 0.47466
samples = 167
value = [17, 150]

class = increase_frequency

(b) Decision tree used to manage frequency of the LITTLE cluster.

Figure 4. Decision trees used to find CPU frequencies that limit snooping latency.

Once we have isolated which execution has snooping la-
tency issues, we can answer the second question using a ma-
chine learning model. The goal of this step is to find thresh-
olds at which there is problematic snooping latency relative
to the hardware-level monitoring points of the CPU PMC
memory_bus_access and CCI PMC stall cycles. Since
our objective is to find a way to make a quick decision at
runtime to detect and mitigate snooping latency at any given
time, we use a decision tree to model the situation. Decision
trees are relatively simple models which are trained on a
set of example data, for which we use our benchmark exam-
ples, to determine which input values (PMC levels, in our
case) should imply which output values (increase or decrease
clock frequency). Once trained they can be automatically
converted to simple C programs of if-else statements for
rapid runtime decision-making.

As we manage both cluster frequencies independently, we
build two decision trees that consider CCI PMCs of the other
cluster. In other words, when we manage the frequency of
the LITTLE cluster, we consider stalling cycles per read
request on the channel of the big cluster, and vice versa.
Figure 4a and 4b show the trained decision trees, based

on our benchmark data, to consider while managing the
frequency of the big and LITTLE cluster respectively. In the
trees, the variable cci_conдestion corresponds to the quotient
of CCI PMCs, whilememory_access corresponds to the sum
of processes CPU PMC memory_bus_access of applications
to optimize for. At runtime, if we detect PMC values over
these thresholds, we are in problematic snooping latency
territory and may increase the frequency of the other CPU
to limit performance loss.
We next present the way in which we use our model at

runtime as part of the OS frequency management process.

4 A snoop-aware frequency governor
In this section we present our runtime algorithm for fre-
quency scaling, which uses our decision trees to make almost
instant decisions on which clock frequencies to use across
both CPU clusters based on the current memory access char-
acteristics of a process of interest, and the stalling behavior
of the inter-cluster cache interconnect.

We first present the detail of how the Linux kernel man-
ages CPU frequencies by default, then propose a refined
version which leverages runtime hardware-level informa-
tion to alleviate snooping latency.

4.1 Linux DVFS governor

Algorithm 1: Linux DVFS ondemand governor.
1 if load > up_threshold then
2 cpu_f req =max_cpu_f req
3 else
4 cpu_f req =min_cpu_f req + load ∗

(max_cpu_f req −min_cpu_f req)/100
5 end

In order to limit energy consumption of a device when
there is no CPU activity, Linux dynamically adjusts the power
and speed setting of all CPUs using Dynamic Voltage Fre-
quency Scaling (DVFS). This is implemented in the logic of
a module termed a governor.

The default governor used in many flavors of Linux is the
ondemand governor [21] which works simply by adjusting
the CPU frequency in direct proportion to the current load
of the CPU, where the load level is defined as the amount of
time for which the CPU is non-idle during the last sampling
period. Algorithm 1 shows the main body of this standard
governor 3, which is also very similar to that used with
the EAS scheduling framework (schedutil governor) on
Android.

This governor does not rely on any in-depth hardware-
level information, basing its decision-making only on process
activity levels over time. As such, the governor would choose
the lowest frequency for a cluster when it is idle. However,
as shown in the previous section, this decision may induce
snooping latency combined with certain memory behaviour
for a process running on another cluster.

3The full source code of the governor can be found at https:
//git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/
cpufreq/cpufreq_ondemand.c

5

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/cpufreq/cpufreq_ondemand.c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/cpufreq/cpufreq_ondemand.c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/cpufreq/cpufreq_ondemand.c


To avoid this issue on AMP architectures with bus-snoop
cache coherency, we design amore advanced governor which
uses our trained model with real-time hardware-level data.

4.2 DVFS ondemand-anti-snoop governor

Algorithm 2: Enhanced DVFS
ondemand-anti-snoop governor.

1 if load > up_threshold then
2 cpu_f req =max_cpu_f req
3 else
4 update_pmc_cci_conдestion()
5 update_pmc_memory_access()
6 if cci_conдestion > cci_conдestion_threshold
7 andmemory_access > memory_threshold

then
8 stall_cpu_f req = cpu_f req + cpu_f req_step
9 else
10 stall_cpu_f req = cpu_f req − cpu_f req_step
11 end
12 cpu_f req =min_cpu_f req + load ∗

(max_cpu_f req −min_cpu_f req)/100
13 cpu_f req =

clamp(max(cpu_f req, stall_cpu_f req))
14 end

Our approach to avoiding snooping latency is based on
progressively finding the right frequency where we do not
detect any latency caused by the snooping mechanism. Using
our model presented in section 3, we refine the ondemand
governor by integrating information from both CCI PMCs
and CPU PMCs of processes to avoid snooping latency when
our model indicates that it is occurring. Algorithm 2 shows
our enhanced ondemand-anti-snoop governor, which in-
tegrates our decision tree compiled out to C code as if-
statements.

This enhanced DVFS governor works as follows. We first
update the relevant PMC metrics by reading from hardware
(line 4 and 5), then consult our trained decision tree (compiled
out to C code, on lines 6 and 7) to determine whether our
model suggests increasing the CPU frequency or reducing it
for a given cluster. Following this, we calculate both (a) the
suggested CPU frequency based on the current system load,
and (b) the recommended frequency based on our model,
and set the actual frequency to whichever of (a) and (b) is
higher (line 13)4. This comparison is necessary because the
load-based frequency scaling approach may recommend a
higher frequency than our model for scenarios in which
4The clamp notation on line 13 includes a calculation of both the valid
frequency range of the CPU according to its design specifications, and its
maximum actual range advised by the thermal driver, taking into account
automated thermal protection.

CPU-intensive processes are running that incur no snooping
latency. Likewise, the load-based approach may suggest a
lower frequency for a less busy CPU cluster, when another
cluster is actually stalling due to cache snooping, in which
case our model will suggest the higher frequency.

4.3 Implementation details
We have implemented our approach directly in the Linux
kernel by modifying the task_struct to allow per-thread
CPU PMCs readings. Also, as our ondemand-anti-snoop
reads CPU PMCs for each thread that has been active over the
last period, and CCI PMCs5 from the interconnect. Because
of this additional periodic monitoring of PMCs we note that
our approach does incur a small continuous overhead; we
cover this in detail in section 5.3.
For the purposes of replication, we note that our imple-

mentation has been developed using the Linux kernel v5.3.11;
all software and benchmarks have been compiled using GCC
v8.3 and run on a Debian 10 Linux distribution. To enable our
specific experiments and results to be repeated, all source
code and the kernel patch of our implementation is made
available as open-source software6.

5 Evaluation
We evaluate the performance of our approach against three
alternatives, using a set of benchmarks discussed in the fol-
lowing section. The first alternative uses the default CPU
DVFS ondemand governor, and serves as a reference for other
comparators. The second one sets the active cluster to its
highest frequency, while forcing the idle cluster to its lowest
frequency. This setting is meant to determine the worst case
when we do not take into account snooping latency but ex-
hibits low energy usage. The third one sets both clusters at
their highest frequency, achieving the minimal time of the
workload at the expense of higher energy costs overall.

We measure both execution time and energy consumption
of each benchmark using our approach versus these com-
parison points; each benchmark is executed five times and
an average of execution time and energy is taken to nor-
malize noise. Using onboard energy sensors that measure
power consumption we take a reading every 263808 µs and
accumulate a variable representing the energy consumed
during the last sampling period. This accumulator is reset
before running a benchmark, and the first reading after the
benchmark has finished is reported as energy.

5Support for reading CCI-400 PMCs is not currently available in themainline
kernel source code; we have added support for these PMCs to our Linux
kernel and have submitted a patch to the Linux mainline maintainer which
is currently under review.
6URL:Hidden for review.

6

http://404.org


0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

c
a
c
h
e
s
-6
7
1
0
8
8
6
4
_
0
-L

c
a
c
h
e
s
-6
7
1
0
8
8
6
4
_
0
-b

c
a
c
h
e
s
-6
7
1
0
8
8
6
4
_
1
6
-L

c
a
c
h
e
s
-6
7
1
0
8
8
6
4
_
1
6
-b

c
a
c
h
e
s
-6
7
1
0
8
8
6
4
_
1
-L

c
a
c
h
e
s
-6
7
1
0
8
8
6
4
_
1
-b

c
a
c
h
e
s
-3
3
5
5
4
4
3
2
_
0
-L

c
a
c
h
e
s
-3
3
5
5
4
4
3
2
_
0
-b

c
a
c
h
e
s
-3
3
5
5
4
4
3
2
_
1
6
-L

c
a
c
h
e
s
-3
3
5
5
4
4
3
2
_
1
6
-b

c
a
c
h
e
s
-3
3
5
5
4
4
3
2
_
1
-L

c
a
c
h
e
s
-3
3
5
5
4
4
3
2
_
1
-b

c
a
c
h
e
s
-1
0
4
8
5
7
6
_
0
-L

c
a
c
h
e
s
-1
0
4
8
5
7
6
_
0
-b

c
a
c
h
e
s
-1
0
4
8
5
7
6
_
1
6
-L

c
a
c
h
e
s
-1
0
4
8
5
7
6
_
1
6
-b

c
a
c
h
e
s
-1
0
4
8
5
7
6
_
1
-L

c
a
c
h
e
s
-1
0
4
8
5
7
6
_
1
-b

c
a
c
h
e
s
-1
6
0
1
0
0
_
0
-L

c
a
c
h
e
s
-1
6
0
1
0
0
_
0
-b

c
a
c
h
e
s
-1
6
0
1
0
0
_
1
6
-L

c
a
c
h
e
s
-1
6
0
1
0
0
_
1
6
-b

c
a
c
h
e
s
-1
6
0
1
0
0
_
1
-L

c
a
c
h
e
s
-1
6
0
1
0
0
_
1
-b

c
a
c
h
e
s
-1
3
1
0
7
2
_
0
-L

c
a
c
h
e
s
-1
3
1
0
7
2
_
0
-b

c
a
c
h
e
s
-1
3
1
0
7
2
_
1
6
-L

c
a
c
h
e
s
-1
3
1
0
7
2
_
1
6
-b

c
a
c
h
e
s
-1
3
1
0
7
2
_
1
-L

c
a
c
h
e
s
-1
3
1
0
7
2
_
1
-b

c
a
c
h
e
s
-6
5
5
3
6
_
0
-L

c
a
c
h
e
s
-6
5
5
3
6
_
0
-b

c
a
c
h
e
s
-6
5
5
3
6
_
1
6
-L

c
a
c
h
e
s
-6
5
5
3
6
_
1
6
-b

c
a
c
h
e
s
-6
5
5
3
6
_
1
-L

c
a
c
h
e
s
-6
5
5
3
6
_
1
-b

c
a
c
h
e
s
-4
_
0
-L

c
a
c
h
e
s
-4
_
0
-b

c
a
c
h
e
s
-4
_
1
6
-L

c
a
c
h
e
s
-4
_
1
6
-b

c
a
c
h
e
s
-4
_
1
-L

c
a
c
h
e
s
-4
_
1
-b

s
p
e
e
d
u
p

ondemand
idle_cluster_lowest_frequency
idle_cluster_highest_frequency

ondemand-anti-snoop

Figure 5. Time results on ccbench::caches, the microbenchmark used to train the decision tree. The Linux ondemand governor
as baseline.

5.1 Benchmark selection
We evaluate our approach to performance optimization with
a set of 15 different benchmarks. This includes popular bench-
marks for CPU profiling chosen to demonstrate performance
in the best, worst, and average case for our approach; and
also benchmarks which are representative of the general use
cases of mobile devices using this CPU architecture.

For our profiling benchmarks, we select particular points
from the standard SPEC2006 benchmark suite for hardware
experimentation [18]. Our selection of specific tests is based
on existing research by Jaleel [19] which studies this bench-
mark suite in detail to characterize it in terms of CPU cache
memorymisses per 1,000 instructions, ametric termed ‘MPKI’
which interacts with the hardware features our approach is
designed to optimize. We specifically select the gcc bench-
mark with g23 input and bwaves with test input as these
benchmarks face high MPKI for both clusters. For compar-
ison, we also selected povray with train input as it face
very little MPKI, and we use h264ref with train input as
its MPKI appears below 2 Mb, causing the LITTLE cluster
to face high snoop latency while the big cluster should not
suffer much. These benchmarks are chosen to provide a clear
theoretical picture of the characteristics of our approach in
best, worst, and middle-ground scenarios. We also re-use
the ccbench:cache benchmark here, as it was used to train
our decision tree as discussed in Section 3.1, to show how it
performs at runtime when using our approach.
The particular SoC present in the platform we use, the

Exynos 5422, is mostly used on mobile devices including
smartphones and tablet computers. To reflect two of the
dominant end-user applications for these devices we use
a set of standard web-browsing benchmark suites and a
video decoding benchmark, demonstrating the effects of our
approach in a realistic end-user setting. In detail, we use
BBench [16] and Speedometer 2.0 [2] for web-browsing
benchmarks. BBench is used to test general web browsing,

which performs automatic browsing by loading and scrolling
a selected web page. Speedometer 2.0 is used to specifi-
cally test JavaScript performance in the browser to model
highly interactive websites. Both aspects of this web browser
benchmarking are performed using the Chromium browser
controlled by puppeteer [12]. All of the performance mea-
surements that we report include the launch of Chromium,
page loading, full JavaScript execution and taking a screen-
shot of the full rendered final web page. The server-side
elements of the Speedometer 2.0 benchmark are hosted on
an isolated local Apache web server serviced by a 1 Gb Ether-
net connection. For video decoding benchmarks we use the
standard Linux mplayer application with the command-line
parameters -nosound -vo null -benchmark options, us-
ing a specific video stored locally on the device and publicly
available for replication [1].

5.2 Results
The execution time results of our experiments are shown
in Figure 5 for the ccbench::caches benchmark used to
train our approach and Figure 6a for real-world benchmarks.
Figure 6b shows the energy results for real-world bench-
marks. On both graphs the x-axis labels have the format
{name}-{input}-{cluster} and show which benchmark name is
being used, its input type, and the cluster (b/L) on which the
benchmark is executed (the other cluster is kept idle). On
both graphs we report data in terms of how many times bet-
ter or worse it is than the default Linux ondemand governor
(thereby using this governor as our consistent baseline). All
results involving our dynamic governor are achieved using
real-time monitoring of each process, along with stalling
effects on the cache interconnect, to dynamically scan for
the ideal clock frequencies of both clusters.

We first consider how our new governor behaves against
ccbench::caches, the benchmark used to train our model
as described in section 3. On average, in Figure 5, we see

7



(a) Speedup.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
P
E
C
::g
c
c
-g
2
3
-L

S
P
E
C
::g
c
c
-g
2
3
-b

S
P
E
C
::b
w
a
v
e
s
-te
s
t-L

S
P
E
C
::b
w
a
v
e
s
-te
s
t-b

S
P
E
C
::h
2
6
4
re
f-tra

in
_
b
a
s
e
lin
e
-L

S
P
E
C
::h
2
6
4
re
f-tra

in
_
b
a
s
e
lin
e
-b

S
P
E
C
::p
o
v
ra
y
-tra

in
-L

S
P
E
C
::p
o
v
ra
y
-tra

in
-b

m
p
la
y
e
r-je

lly
f
s
h
-3
-m
b
p
s
-h
d
-h
2
6
4
.m
k
v
-L

m
p
la
y
e
r-je

lly
f
s
h
-3
-m
b
p
s
-h
d
-h
2
6
4
.m
k
v
-b

b
b
e
n
c
h
::a
m
a
z
o
n
-L

b
b
e
n
c
h
::a
m
a
z
o
n
-b

b
b
e
n
c
h
::b
b
c
-L

b
b
e
n
c
h
::b
b
c
-b

b
b
e
n
c
h
::c
ra
ig
lis
t-L

b
b
e
n
c
h
::c
ra
ig
lis
t-b

b
b
e
n
c
h
::e
b
a
y
-L

b
b
e
n
c
h
::e
b
a
y
-b

b
b
e
n
c
h
::g
o
o
g
le
-L

b
b
e
n
c
h
::g
o
o
g
le
-b

b
b
e
n
c
h
::m

s
n
-L

b
b
e
n
c
h
::m

s
n
-b

b
b
e
n
c
h
::s
la
s
h
d
o
t-L

b
b
e
n
c
h
::s
la
s
h
d
o
t-b

b
b
e
n
c
h
::tw

itte
r-L

b
b
e
n
c
h
::tw

itte
r-b

b
b
e
n
c
h
::y
o
u
tu
b
e
-L

b
b
e
n
c
h
::y
o
u
tu
b
e
-b

s
p
e
e
d
o
m
e
te
r-L

s
p
e
e
d
o
m
e
te
r-b

s
p
e
e
d
u
p

ondemand
idle_cluster_lowest_frequency
idle_cluster_highest_frequency

ondemand-anti-snoop

(b) Energy saving.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
P
E
C
::g
c
c
-g
2
3
-L

S
P
E
C
::g
c
c
-g
2
3
-b

S
P
E
C
::b
w
a
v
e
s
-te
s
t-L

S
P
E
C
::b
w
a
v
e
s
-te
s
t-b

S
P
E
C
::h
2
6
4
re
f-tra

in
_
b
a
s
e
lin
e
-L

S
P
E
C
::h
2
6
4
re
f-tra

in
_
b
a
s
e
lin
e
-b

S
P
E
C
::p
o
v
ra
y
-tra

in
-L

S
P
E
C
::p
o
v
ra
y
-tra

in
-b

m
p
la
y
e
r-je

lly
f
s
h
-3
-m
b
p
s
-h
d
-h
2
6
4
.m
k
v
-L

m
p
la
y
e
r-je

lly
f
s
h
-3
-m
b
p
s
-h
d
-h
2
6
4
.m
k
v
-b

b
b
e
n
c
h
::a
m
a
z
o
n
-L

b
b
e
n
c
h
::a
m
a
z
o
n
-b

b
b
e
n
c
h
::b
b
c
-L

b
b
e
n
c
h
::b
b
c
-b

b
b
e
n
c
h
::c
ra
ig
lis
t-L

b
b
e
n
c
h
::c
ra
ig
lis
t-b

b
b
e
n
c
h
::e
b
a
y
-L

b
b
e
n
c
h
::e
b
a
y
-b

b
b
e
n
c
h
::g
o
o
g
le
-L

b
b
e
n
c
h
::g
o
o
g
le
-b

b
b
e
n
c
h
::m

s
n
-L

b
b
e
n
c
h
::m

s
n
-b

b
b
e
n
c
h
::s
la
s
h
d
o
t-L

b
b
e
n
c
h
::s
la
s
h
d
o
t-b

b
b
e
n
c
h
::tw

itte
r-L

b
b
e
n
c
h
::tw

itte
r-b

b
b
e
n
c
h
::y
o
u
tu
b
e
-L

b
b
e
n
c
h
::y
o
u
tu
b
e
-b

s
p
e
e
d
o
m
e
te
r-L

s
p
e
e
d
o
m
e
te
r-b

e
n
e
rg
y
_
s
a
v
in
g

Figure 6. Results of experiments on real-world benchmarks, using the Linux ondemand governor as a baseline.

that our new governor outperforms the ondemand governor
by 1.4x. Our governor is also always at least as good as the
ondemand governor across all benchmarks, indicating that
the inherent overhead of using PMCs at runtime has limited
impact on the system compared to the benefits. The varying
performance of our governor across specific configurations
of this benchmark is simply down to the relative memory
intensity and access pattern of each particular configuration

– those which incurmore L2 cachemisses see a higher benefit
using our approach.
We next explore realistic benchmarks, including those

designed to test specific aspects of our approach and those
representative of common end-user activities. Considering
execution time first, on Figure 6a, across all results we see
that the configuration that keeps the idle cluster at its highest
frequency gains the highest performance (at the cost of high

8



energy consumption as we discuss next). Our approach con-
sistently comes second, followed by the ondemand governor.
In some cases this difference is very significant – against the
SPEC2006 benchmark our approach delivers 1.4x speedup
for the gcc test compared to the ondemand governor. The
exact level of speedup is highly dependent on the memory
usage characteristics of the benchmark, with the povray test
yeilding a very minor speedup due to its low level of main
memory usage. Examining real-world applications, we use
our web browsing benchmark against a series of different
popular web pages, gaining between 1.1x and 1.25x speedup
for page loading, while Speedometer JavaScript tests yield
up to 1.3x speedup under our approach.

Considering energy, show in Figure 6b, this graph demon-
strates the benefit of our approach to the overall perfor-
mance/energy profile of the device. As an example, we see
that SPEC2006 benchmark’s gcc test under our approach
saves 1.7x the amount of energy compared to the default
ondemand governor while also (from the previous graph)
completing the benchmark 1.4x faster. This is also useful to
compare against the configuration which runs the idle core
at its highest frequency: although this configuration com-
pletes the benchmark faster than our approach, it also uses
far more energy. Our approach therefore finds a useful bal-
ance between performance and energy. This is demonstrated
throughout almost all of the benchmarks, where our ap-
proach offers a significant energy saving over the ondemand
governor while also yielding higher performance.

The reason behind this result is that energy expenditure is
not linearly related to clock frequency and therefore execu-
tion time. The hardware specification of the CPU is such that
the clock frequencies of a CPU depend on voltage domains
which are in bands. Each voltage domain supports a range
of clock frequencies, before reaching a threshold at which a
new voltage level is needed for the next set of frequencies.
All frequencies within a given voltage level are therefore
equal in energy expenditure7; in some cases this allows our
approach to set a higher clock frequency, resulting in faster
execution time, while also gaining a low energy profile.
Finally, we note that all of these benchmarks are subject

of different dynamic activity phases over their execution life-
time and none have been seen before by our trained model.
This indicates that our approach deals well with fluctuations
of memory usage over time by dynamically adjusting fre-
quencies on a continuous basis and also that its training on
a single set of focused benchmarks around energy character-
istics generalizes very well to good performance on a broad
range of new benchmarks.

7In reality this is not quite true, as thermal increases vary the precise amount
of energy consumed [20], but is sufficiently accurate to explain these results.

5.3 Discussion
Our ondemand-anti-snoop governor aims to avoid snoop-
ing latency using dynamic hardware-level information from
PMCs, along with a simple trained model of how the CPU
clusters behave at different frequencies and with different
memory access scenarios.
We next consider the overhead of our approach, and its

broader implications. The runtime overhead of our governor
comes from the fact that we read PMCs for every individual
process (thread) to understand in real-time how the memory
accesses of a process of interest interacts with CPU perfor-
mance. From the SPEC2006 benchmark suite, which are all
single-threaded applications, our experiments report that it
took 41.82 µs on average to update CPU PMCs. For multi-
threaded applications like Chromium, the Speedometer 2.0
benchmark uses 71 threads during peak activity in our ex-
periments, and took 415.18 µs on average to update PMCs.
This shows that the number of threads in the system has an
impact on how long it takes to read process-level PMC infor-
mation. Reading the CCI PMCs, meanwhile, took 0.07 µs on
average, and is not affected by an increase in the number of
processes. This very low update time, coupled with the fact
that PMC updates and decision-making do not require any
application to stop their execution, even briefly, indicates
that the overhead of our approach is far outweighed by the
benefits it brings in overall performance and energy usage.
Our new DVFS governor succeeds in limiting snoop la-

tency with a pure-software solution; this approach is valu-
able in any heterogeneous multi-core design in which cache
coherency checks are dependent on the relative clock fre-
quencies of each different cluster. In these chip designs, we
are able to train a very simple model on memory access and
frequency interaction, and combine this with real-time mon-
itoring to configure the clock frequencies of all clusters in
a CPU to an ideal system-wide setting. While some newer
CPU designs include extra hardware support to aid with
cache coherency, in which the interconnect maintains a list
of which memory is currently in the cache of each cluster, a
large number of existing devices do not have this capability
and so will benefit from our approach. A recent study [28]
suggests that as much as 75% of today’s smartphone popula-
tion use CPU designs that was released before 2013, and rely
on a cache coherence interconnect with no hardware snoop
filter support, making our approach very widely applicable
across popular end-user devices today.

6 Related work
There are a large number of works targeting scheduling and
DVFS settings for big.LITTLE architectures. In this section
we discuss the most closely related research which uses the
same hardware platform as that used in this paper.
In a general sense, there are several approaches which

use machine learning techniques to combine software and
9



hardware feature models in order to optimize for perfor-
mance, energy, or a mixture between the two. Each of these
approaches is specific to a particular software package, how-
ever, using domain-specific features extracted from that soft-
ware. Proteus [24], for example, uses a browser extension
in Chromium to attempt to predict which core to assign
the rendering of each web page to achieve a maximum of
performance, based on an offline trained model of page fea-
tures and their correlation to the characteristics of each core.
Similarly, a range of research has explored optimization of
OpenCL-specific applications which extract features from
OpenCL code and data to predict which core to execute an
application at runtime [9, 25, 27]; similar approaches have
also been explored for OpenMP [13]. In comparison to this
kind of work, our approach operates at a lower level and as
such is far more general, directly using real-time hardware-
level information with the use of PMCs for CCI activity and
memory access characteristics, without the need for any
particular source code information or modification.
The closest research works to ours for big.LITTLE archi-

tectures are those by Donyanavard et al. [14], and Reddy et al.
[22], both of which consider PMC-based metrics at runtime.
In SPARTA [14], the authors demonstrate an approach to
task mapping and DVFS; however, the metrics considered in
this case only relate to CPU load, ignoring memory access
characteristics and snooping latency effects as considered by
our approach. Research by Reddy et al., meanwhile, consid-
ers real-time MRPI metrics to adjust the clock frequencies of
both clusters [8, 22]. MRPI is defined as Memory Reads Per
Instruction, which uses PMCs as real-time input and is de-
fined as (L2_re f ill/Instruction_retired)/CPU _cycles . The
approach attempts to construct a predictive model of MRPI
across both clusters and adjusts frequencies to reduce con-
tention and gain performance. Our research, by comparison,
pre-models the specific effects of snooping latency using
a single representative benchmark, and uses that model to
inform clock frequency decisions based on instantaneous
PMC readings without the need for online prediction.
Finally, there are multiple efforts [10, 15, 23] which pro-

pose hardware-level modeling for the simulation of the same
board used in this paper within the gem5 simulator. The goal
of these works is to support accurate power modeling of
workloads, using correlations with the real onboard hard-
ware sensors to validate the behavior of the simulator. This
principle supports the development of energy management
approaches in simulation which can then be applied to the
real-world hardware. However, we note that these simulation
models do not consider snooping latency problems relative to
the interconnect fabric. One particular simulation model in
this category [10] does provide error ranges within the sim-
ulator for uncertainty over memory access characteristics,
and suggests that one of the sources of this inaccuracy lies
in the lack of a complete CCI simulation model; the research
reported in our paper confirms this theory and provides a

compete, generalized solution to avoiding memory latency
issues in real-time on the actual hardware.

7 Conclusions
The increasing demand for performance and energy effi-
ciency has led embedded systems such as mobile and tablet
devices to employ heterogeneous multiprocessor system-
on-chips. The combination of different kinds of core types
and frequency configurations helps to fine-tune energy effi-
ciency and/or performance at runtime. Thanks to full data
coherency managed in hardware through an interconnect
fabric, the software developer can ignore data cache man-
agement as threads spread across processors. However, the
interconnect fabric on some SoC can cause significant per-
formance drops if processors are poorly configured. As this
we have shown in this paper, these performance drops can
be attributed to snooping latency which can occur when
the software has large amounts of memory traffic and CPU
frequencies are set too low aiming to save energy.

We have presented an automated characterization of this
snooping latency for any SoC that implements ARM CCI-400
as its interconnect. We build a simple model that takes into
account hardware-level information in accordance with soft-
ware memory usage to detect when snooping latency occurs
and its extent, and we use this simple model to develop a
new ondemand-anti-snoop dynamic frequency governor to
manage CPU cluster frequencies and avoid snooping latency.

Evaluation of this governor shows that a speedup of more
than 40%, with a 70% energy saving, can be achieved versus
the default Linux ondemand governor on a real-world appli-
cation. Our new governor, based on hardware-level use of
PMCs, does not depend on any particular software knowl-
edge or modification to operate and resides directly in the
operating system, fully transparent to application software.

References
[1] Jellyfish video. http://jell.yfish.us/media/jellyfish-3-mbps-hd-h264.

mkv.
[2] Apple WebKit Team. Speedometer2.0. https://browserbench.org/

Speedometer2.0/.
[3] ARM. CCI-400. https://www.arm.com/products/silicon-ip-system/

corelink-interconnect/cci-400.
[4] ARM. Cortex-A15. https://www.arm.com/products/silicon-ip-cpu/

cortex-a/cortex-a15.
[5] ARM. Cortex-A7. https://www.arm.com/products/silicon-ip-cpu/

cortex-a/cortex-a7.
[6] ARM. Exynos 5 Octa (5422). https://www.samsung.com/

semiconductor/minisite/exynos/products/mobileprocessor/
exynos-5-octa-5422/.

[7] ARM. White paper: big.little technology: The future of mobile, 2013.
[8] K. R. Basireddy, A. K. Singh, B. M. Al-Hashimi, and G. V. Merrett.

AdaMD: Adaptive Mapping and DVFS for Energy-efficient Heteroge-
neous Multi-cores. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, PP(X):1–1, 2019.

[9] C. Bolchini, S. Cherubin, G. C. Durelli, S. Libutti, A. Miele, and M. D.
Santambrogio. A runtime controller for OpenCL applications on

10

http://jell.yfish.us/media/jellyfish-3-mbps-hd-h264.mkv
http://jell.yfish.us/media/jellyfish-3-mbps-hd-h264.mkv
https://browserbench.org/Speedometer2.0/
https://browserbench.org/Speedometer2.0/
https://www.arm.com/products/silicon-ip-system/corelink-interconnect/cci-400
https://www.arm.com/products/silicon-ip-system/corelink-interconnect/cci-400
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a15
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a15
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a7
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a7
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/


heterogeneous system architectures. CEUR Workshop Proceedings,
1697(February):29–35, 2016.

[10] A. Butko, F. Bruguier, A. Gamatié, G. Sassatelli, D. Novo, L. Torres,
and M. Robert. Full-System Simulation of big.LITTLE Multicore Ar-
chitecture for Performance and Energy Exploration. Proceedings -
IEEE 10th International Symposium on Embedded Multicore/Many-Core
Systems-on-Chip, MCSoC 2016, (5422):201–208, 2016.

[11] C. Celio. Characterizing multi-core processors using micro-
benchmarks. https://github.com/ucb-bar/ccbench/wiki, 2009.

[12] Chrome DevTools Team. puppeteer. https://pptr.dev/.
[13] E. Del Sozzo, G. C. Durelli, A. Miele, E. M. G. Trainiti, M. D. Santambro-

gio, and C. Bolchini. Workload-aware Power Optimization Strategy
for Asymmetric Multiprocessors. Date ’16, pages 531–534, 2016.

[14] B. Donyanavard, T. Muck, S. Sarma, and N. Dutt. SPARTA: Runtime
task allocation for energy efficient heterogeneous manycores. 2016
International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2016, pages 0–9, 2016.

[15] F. A. Endo, D. Couroussé, and H.-p. Charles. Micro-architectural
simulation of embedded core heterogeneity with gem5 and McPAT. In
Proceedings of the 2015 Workshop on Rapid Simulation and Performance
Evaluation Methods and Tools - RAPIDO ’15, pages 1–6, New York, New
York, USA, 2015. ACM Press.

[16] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi, C. Em-
mons, and N. Paver. Full-system analysis and characterization of
interactive smartphone applications. Proceedings - 2011 IEEE Interna-
tional Symposium on Workload Characterization, IISWC - 2011, pages
81–90, 2011.

[17] HardKernel. Odroid-XU3. http://www.hardkernel.com/.
[18] J. L. Henning. SPEC CPU2006 benchmark descriptions. ACM SIGARCH

Computer Architecture News, 34(4):1–17, sep 2006.
[19] A. Jaleel. Memory characterization of workloads using

instrumentation-driven simulation. Web Copy: http://www. glue. umd.
edu/ajaleel/workload, 2010.

[20] P. Kocanda and A. Kos. Static and dynamic energy losses vs. tem-
perature in different cmos technologies. In 2015 22nd International
Conference Mixed Design of Integrated Circuits Systems (MIXDES), pages
446–449, June 2015.

[21] A. Pallipadi andA. Starikovskiy. The ondemand governor: past, present
and future. Proceedings of the Linux Symposium, pages 215–230, 2006.

[22] B. K. Reddy, G. V. Merrett, B. M. Al-Hashimi, and A. K. Singh. Online
concurrent workload classification for multi-core energy management.
Proceedings of the 2018 Design, Automation and Test in Europe Confer-
ence and Exhibition, 2018, 2018-January:621–624, 2018.

[23] B. K. Reddy, M. J. Walker, D. Balsamo, S. Diestelhorst, B. M. Al-Hashimi,
and G. V. Merrett. Empirical CPU power modelling and estimation
in the gem5 simulator. 2017 27th International Symposium on Power
and Timing Modeling, Optimization and Simulation, PATMOS 2017,
2017-Janua:1–8, 2017.

[24] J. Ren, X. Wang, J. Fang, Y. Feng, D. Zhu, Z. Luo, J. Zheng, and Z. Wang.
Proteus: Network-aware web browsing on heterogeneous mobile sys-
tems. CoNEXT 2018 - Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, pages 379–392,
2018.

[25] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and B. M. Al-
Hashimi. Energy-efficient run-time mapping and thread partitioning
of concurrent OpenCL applications on CPU-GPU MPSoCs. ACM
Transactions on Embedded Computing Systems, 16(5s), 2017.

[26] A. Stevens. Introduction to AMBA® 4 ACE™ and big.LITTLE™
Processing Technology. https://www.arm.com/files/pdf/
CacheCoherencyWhitepaper_6June2011.pdf, 2013.

[27] B. Taylor, V. S. Marco, and Z. Wang. Adaptive optimization for opencl
programs on embedded heterogeneous systems. Proceedings of the
ACM SIGPLAN Conference on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES), Part F128681:11–20, 2017.

[28] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia, et al. Machine learning at face-
book: Understanding inference at the edge. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
331–344, 2019.

11

https://github.com/ucb-bar/ccbench/wiki
https://pptr.dev/
http://www.hardkernel.com/
https://www.arm.com/files/pdf/CacheCoherencyWhitepaper_6June2011.pdf
https://www.arm.com/files/pdf/CacheCoherencyWhitepaper_6June2011.pdf

	Abstract
	1 Introduction
	2 Memory architecture background
	3 Modeling snooping latency
	3.1 Memory latency exploration
	3.2 Detection of snooping latency

	4 A snoop-aware frequency governor
	4.1 Linux DVFS governor
	4.2 DVFS ondemand-anti-snoop governor
	4.3 Implementation details

	5 Evaluation
	5.1 Benchmark selection
	5.2 Results
	5.3 Discussion

	6 Related work
	7 Conclusions
	References

