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ABSTRACT: We studied the electrical conductance of single-molecule junctions formed from 

molecular wires with 4 anchor groups. Three tetraphenyl-aza-BODIPYs with 4 or 2 thiomethyl 

anchor groups were synthesized and their single-molecule conductance measured using break-

junction-STM. Using DFT based calculations these compounds were shown to contain a 

combination of constructive and destructive quantum interference, depending on the 

molecule’s connectivity in the junction. A scissor correction is employed to obtain the 

corrected HOMO-LUMO gaps and a tight binding model (TBM) is used to highlight the role 

of quantum interference in the tetraphenyl-aza-BODIPY central unit.    
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Introduction 

The field of single-molecule electronics contains many studies of linear pseudo- one-

dimensional molecular wires with a single anchor group at each end.1-3 Such systems have been 

crucial for the understanding and development of molecular conductance owing to their ability 

to be modified in a modular fashion. However, to incorporate greater functionality, there is a 

need to explore how electricity flows through molecular structures with multiple anchor groups. 

The challenge is that as additional anchor groups are added to a molecule, the number of 

potential conductance paths increases, thereby increasing the complexity of the analysis. An 

early study of such molecules was performed by Grunder et al., whereby a 1,4-diethynyl-2,5-

divinylbenzene motif was substituted by a combination of pyridyl and thiolate anchor groups, 

resulting in a system that could be electrochemically switched between conductive paths.4 A 

second experimental study examined the conductance of 2,11-dithia[3.3]paracyclophane, in 

which the combination of two parallel conductive paths resulted in a conductance of 9.7×10-4 

G0.
5 This increase by a factor of 2.8 compared with the conductance of the equivalent single-

path molecule, 1,4-bis[(methylthio)methyl]benzene (3.5×10-4 G0) was a consequence of 

constructive quantum interference (QI).5 

In the present study we seek to examine a significantly different system to that of Grunder et 

al.;4 in which, rather than two conductive paths sharing a common conjugated core, two 

identical conductive parallel paths are held in close proximity, but are still linked by a 

conductive bridge. To realize such a structure, the tetraphenyl-difluoroboratriaza-indacene 

(tetraphenyl-aza-BODIPY) motif was chosen as it is a flat, rigid, highly conjugated molecule 

consisting of two 3,5-diaryl-substituted pyrrolates linked by a conjugated nitrogen and a BF2
+ 

fragment (see Scheme 1). In addition to the low HOMO-LUMO energy gap, the 2,4-

substitution pattern of the pyrrole has been shown by Yang to display destructive QI, while the 

2,5-substituted analogue displayed none.6  



Since the aza-BODIPY motif was first reported by Sathyamoorthi et al. in 1993,7 these systems 

have been extensively studied due to their high near-infrared emission and biological stability,8-

11 which make them ideally suited as cellular stains. Furthermore, due to the work of O’Shea 

et al.,12-14 their synthesis has become readily accessible. This present work examines the 

electrical conductance of the aza-BODIPY substituted with para-thioanisole moieties to give 

terminal thiomethyl anchor groups. This particular moiety was chosen as its symmetry limits 

any DQI effects to the aza-BODIPY core and the thioether contacts are known to favor mid-

gap conductance.15 For this motif, the HOMO is delocalized over the entire molecule whereas 

the LUMO is localized to the aza-BODIPY core. 

 

Synthesis 

The synthesis of target compounds 11 and 12 was according to O’Shea’s procedure (see 

Scheme 1).13-14 Following the synthesis of the chalcones (1-3) from 4-

(methylthio)benzaldehyde and the corresponding ketone (acetophenone, 1-(4-

(methylthio)phenyl)ethan-1-one or 1-(4-bromophenyl)ethan-1-one) via an aldol reaction, 

nitromethane was added via Michael addition to give 4-6. The formation of the aza-DIPY’s (8 

and 9) was achieved by heating 5 and 6 with ammonium acetate in n-butanol. Although 

significant quantities of the crude precipitate were obtained, Soxhlet extractions were necessary 

to achieve sufficiently pure samples, resulting in the lower yields of 6 (8) and 37% (9). 

Conversion to their BF2-chelates, 11 and 12, was achieved by stirring BF3·OEt2 with Et3N and 

the corresponding aza-DPY (8 and 9). 

Due to solubility limitations, the synthesis of 13 deviated from the established approach of 

Bouit et al. and Bellier et al.,16-17 instead using Daddario et al.’s method,18 performing a 

Sonogashira coupling on a bromo-substituted aza-DIPY precursor. Sonogashira coupling was 



performed with 1-(4-bromophenyl)-3-(4-(methylthio)phenyl)-4-nitrobutan-1-one (6) and 4-

ethynythioanisole to give 3-(4-(methylthio)phenyl)-1-(4-((4-

(methylthio)phenyl)ethynyl)phenyl)-4-nitrobutan-1-one (7); the synthesis then followed 

O’Shea’s approach to give the corresponding aza-DIPY (10) and aza-BODIPY (13). All 

compounds were fully characterized by 1H, 13C and 19F NMR spectroscopy, high resolution 

mass-spectrometry or elemental analysis. 

 



Scheme 1. Synthesis of substituted aza-BODIPYs using i) NaOH, H2O/EtOH, ii) MeNO2, 

MeOH, Et2NH, iii), 4-ethynylthioanisole, PdCl2(PPh3)2, CuI, Et3N, THF, iv) NH4OAc, n-

butanol, v), BF3·OEt2, Et3N, DCM. 

 

Molecular Structures 

Structures of 4, 6, 11, 12, and 13 were confirmed by single-crystal X-ray diffraction and were 

consistent with the obtained spectroscopic data. The molecular structures of 11-13 are shown 

in Figure 1. The central tricyclic moieties in these compounds show surprising conformational 

versatility; while that of 11 is planar within 0.07 Å, in 12 and 13 the dihedral angles between 

the planes of the two pyrrolyls (the folding angle along B…N line of the central cycles) are 

24.3° and 22.1° respectively. Less surprising is a wide range of orientations of phenyl 

substituents, characterized by torsion angles around C(aza-BODPY)-C(Ph) bonds. In 

compounds 11-13 these angles vary from 12.6(8)° to 38.3(4)° for the distal (to the BF2) pehnyl-

group in 11 and 12 respectively. These values are in a good agreement with those found in the 

structures of 3-unsubstituted 2,4-diphenyl pyrroles (29 entries in the CSD), where distal-phenyl 

groups are inclined to be co-planar with pyrrole rings (the absolute values of corresponding 

torsion angles are below 35°). The molecule of the only known 3,5-unsubstituted 2,4-

phenylpyrrole is virtually planar.19  

The introduction of the second parallel conductive paths in the molecules 11-13 results in two 

likely contact orientations: straight (along the path) and diagonal (via the central heterocycle) 

ones. The average values of S...S distances for these two types of contacts are ca. 13.6 and 16.2 

Å for molecule 11 and 20.4 and 22.9 Å for compound 13 respectively. Similar average S...p-H 

distances in molecule 12 are 12.9 and 15.3 Å for straight and diagonal paths respectively.  



 

    

 

Figure 1. Crystal structures of 11 (A), 12 (B) and 13 (C), where the solvent molecule and 

disorder have been removed for clarity; thermal ellipsoids displayed at 50% probability. 

 

Electrochemistry 

The three new aza-BODIPYs (11-13) were characterized by cyclic and differential pulse 

voltammetry in DCM using a Fc/Fc+ internal reference. Redox potentials and frontier orbital 

(A) (B) 

(C) 



energies are given in Table 1. Each of the compounds (11-13 and tetraphenyl-aza-BODIPY) 

displayed two separate reductions, at very similar potentials for the four molecules (± 0.04 V 

for the 1st reduction and ± 0.08 V for the 2nd) suggesting little effect on the LUMO and 

LUMO+1 due to changes in distal (to the boron) phenyl group substitution. For compounds 11 

and 13, two separate oxidations were observed, while only a single oxidation was observed for 

12. Such a difference suggests that the electron donation of the thiomethyl causes 

destabilization of the HOMO. This is reflected in the series of aza-BODIPY 12 and 11; as the 

number of thiomethyl groups increases, the oxidation potential decreases. In the case of 13, 

despite the molecule containing four thiomethyl groups, the inclusion of the alkyne between 

the proximal (to the boron) phenyl group and the thioanisole stabilizes the HOMO. These 

results suggest that while modifying the molecules in this fashion will alter any conductance 

paths involving the HOMO, any LUMO dominated paths will be unchanged.  

Table 1. Electrochemical data for aza-BODIPYs 11-13  

Compound Oxidation 

Potential (VFc/Fc+) 

Reduction 

Potential (VFc/Fc+) 

HOMO 

(eV) 

LUMO 

(eV) 

LUMO+1 

(eV) 

1st  2nd  1st  2nd  

tetraphenyl-

aza-

BODIPY 20 

0.90  -0.81 -1.61    

11 0.51 0.79a -0.85 -1.53 -5.374 -4.083 -3.390 

12 0.73  -0.81 -1.58 -5.468 -4.028 -3.249 

13 0.66 0.89a -0.77 -1.43 -5.477 -4.068 -3.389 
aIrreversible  

Photochemistry 

Aza-BODIPY compounds typically absorb and emit in the red to near-infrared region of the 

spectrum. Such low energy transitions are typically very sensitive to environmental effects, 

providing a means of modulating the energies of the frontier orbitals by varying the solvent. 

As such, the absorbance and emission spectra of the aza-BODPYs (11-13) were recorded in 



solvents with different polarities, DCM (εr, 8.93), THF (εr, 7.60), EtOAc (εr, 6.02), CHCl3 (εr, 

4.81), and toluene (εr, 2.38), with solubility preventing measurements in cyclohexane and 

acetonitrile.  

Each of the complexes displayed a S0→S1 band at 600–800 nm with So→S2 transition at 519–

590 nm (see Figure 2);18 this is significantly red-shifted relative to the parent aza-BODIPY and 

the methoxy analogue (λabs max = 691 nm).21 As the S0→S1 transition is purely HOMO→LUMO 

in character, a comparison can be made with the electrochemical data, showing approximately 

the same trend ΔEechem|HOMO-LUMO| = 11<13<12 and absorbance ΔEabs|HOMO-LUMO| = 

13≤11<12. Based on the electrochemical data, this is attributed to the electron donation of the 

thiomethyl group destabilizing the HOMO, with a limited effect on the LUMO. Given the 

S0→S1 transition offers a measure of the ΔE|HOMO-LUMO|, this can be used to examine the 

effect of solvent polarity on the frontier orbital energy. Comparing the solvent range of 

DCM→CHCl3 for 11, ΔE = 97 cm-1 and for DCM→toluene, ΔE = 177 cm-1 for 12 and 117 

cm–1 for 13, demonstrating a small but significant environmental effect on the frontier orbitals, 

if conductance were to occur via a sharp resonance near the Fermi energy such a variation in 

the ΔE|HOMO-LUMO| would likely result in a large change in conductance.  In addition to 

the solvatochromic measurements, the photophysical measurements were completed with the 

determination of relative PLQYs and emission lifetimes, which were 0.32–0.71, significantly 

higher than that of similar ‘simple’ aza-BODIPYs; coupled with longer-than- usual emission 

lifetimes and red-shifted emissions (Table 2), this warrants further investigation.  

 

Table 2. Photochemical data for aza-BODPYs 11-13 

Compound Absorption, nm (ε×103, L 

mol-1 cm-1)  

S1-S0, 

eV 

Emission, 

nm 

Lifetime, 

ns 

PLQY 

Aza-

BOPY21 

468 (6.0), 647 (85)  682 0.78 0.30 



11 717 (93), 536 (25), 367 

(sh,19), 326 (28), 272 (55) 

1.618 758 2.6 0.71 

12 672 (92), 535 (sh, 21), 312 

(43), 270 (41) 

1.717 735 1.7 0.32 

13 717 (79), 552 (23), 379 (sh, 

25), 331 (59), 288 (42) 

1.633 761 2.0 0.47 

 

 

Figure 2. a) Absorption spectra of aza-BODPYs 11-13 recorded in DCM, and b) emission 

spectra of aza-BODPYs 11-13 recorded in DCM. 

Conductance 

The conductance of a series of compounds was measured using the BJ-STM technique and a 

THF/mesitylene solution (11, 12 and 13), see Figure 3. Compounds 11 and 13 both show 

conductance peaks at 4.0×10-4 Go and 2.5×10-5 Go respectively. The lower conductance of 13 

is consistent with the 0.6 nm increased length of 13. The greater length of 13 is also reflected 

in an increased break-off distance, although the latter increase is less than the difference in 

molecular lengths, suggesting that the molecules may not be fully extended in the gold-

molecule-gold junctions. This can be attributed to the stochastic nature of the junction breaking 

process, the fact that the thiomethyl group binds more weakly to gold than a thiol group and 

the degree of steric hindrance provided by the terminal methyl groups. As such, a distinction 

cannot be made between the contacts being made diagonally through the proximal and the 

distal phenyl rings and two pyrrole rings, or vertically through only the proximal and distal 



phenyl rings and a single pyrrole ring. However, no conductance peak was evident for 12, 

confirming that the conductance path does not pass through a proximal ring to the second 

proximal ring, therefore it is assumed that it cannot pass through both distal rings either. This 

is consistent with the break-off distance of both 11 and 13 being greater than the 0.7 nm S-S 

distance between either the distal or proximal pairs. Measurements were also performed in 

CHCl3:air (depositing the compounds in CHCl3 and measured in air), giving a lower hit rate 

but comparable conductance values of 2.1×10-4 G0 (11) and 2.7×10-5 G0 (13), with no 

conductance peak observed for 12. Such variations in conductance with respect to solvent are 

common.22  

 

Figure 3. Conductance histograms of compounds 11-13 recorded in THF/Mesitylene 

 

Table 3. Conductance values and break-off distances of compounds 11-13  

Molecule Conductance (G/G0) Break-Off distance (nm) 

THF/Mesitylene CHCl3/Air THF/Mesitylene CHCl3/Air 

11 4.0×10-4  2.1×10-4   1.4        1.4 



13 2.5×10-5  2.7×10-5  1.6        1.6 

 

 

Theory 

We started by modelling the binding between terminal groups and Au, and then relaxed each 

compound in the presence of fixed leads. Using the density functional (DFT) code SIESTA23, 

the optimum geometries of isolated 11, 12 and 13 were obtained by relaxing the molecules 

until all forces on the atoms were less than 0.05 eV / Å (Figure S38). We used a double-zeta 

plus polarization orbital basis set, norm-conserving pseudopotentials, the local density 

approximation (LDA) exchange correlation functional, and in order to define the real-space 

grid, an energy cut-off of 250 Rydbergs. We also computed the results using GGA and found 

that the resulting transmission functions were comparable with those obtained using LDA.24-25 

To simulate the likely contact configuration during a break-junction experiment,26-27 we 

employed leads constructed from 6 layers of Au (111), each containing 30 gold atoms, and 

further terminated with a pyramid of gold atoms in two junctions and flat leads in another 

junction (Figure 4). After relaxing each molecular junction in four different junction geometries, 

we calculated the electrical conductance using the Gollum quantum transport code.28 

We performed DFT quantum transport calculations, exploring both the thiomethyl (Au-SMe) 

contact geometry and the Au-H direct contact. Figure S39 shows that 12 does not bind to gold 

through H atoms, which explains why 12 does not form a junction in the STM-BJ 

measurements. On the other hand, binding energy calculations for 11 and 13 suggest that they 

bind preferentially through their thiomethyl groups, and π-gold interactions are not favored. 

(Figures S40 and S41). This reduction in the π-stacked binding energy can be attributed to the 

torsional angles of the phenyl groups resulting in non-planar molecules, as shown in Figure 1. 



As described in the SI (see Figure 4), four different junction geometries corresponding to 

different connectivities to gold electrodes were explored for each of 11 and 13.  The resulting 

transmission coefficients for these four geometries of 11 and 13 are shown in Figure S45.  

 

 

Figure 4. 11 in junctions, four possible geometries: 1, 2, 3 and 4 (respectively). 

It is well known that DFT frequently underestimates the HOMO-LUMO gap29-3034,35 and from 

Table S16 in the Supporting Information it is clear that the calculated gaps are less than the 

optically-measured gaps. To overcome this deficiency, a scissor correction3136 is performed by 

diagonalizing the molecular sub-matrix of the full Hamiltonian, then shifting the eigenvalues 

above the Fermi energy such that the new HOMO-LUMO gap matches the experimental value 

of the isolated molecule, (see Table S16). Finally, the diagonalized matrix is transformed back 

to the original basis to obtain the corrected full Hamiltonian (for more details see32-3336-37). 

Transmission coefficients after scissor corrections are shown in Fig. 5. 

 



 

 

 

 

 

 

Figure 5. Transmission coefficients T(E) of 11 (left) and 13 (right) for four different possible 

geometries using scissors corrections (see Figure 4).  

Figure 5 shows that connectivities 2, 3 and 4 produce constructive quantum interference (CQI) 

for both 11 and 13 (Figure 4), while geometry 1 yields destructive quantum interference (DQI), 

signified by the presence of a dip in the red curves near the middle of the HOMO-LUMO gaps 

(i.e. near E= –0.3eV). To obtain electrical conductances from these transmission curves, a value 

for the Fermi energy is needed. Literature comparisons between theory and experiment reveal 

that in the presence of nitrogen heteroatoms, DFT invariably predicts that the Fermi energy lies 

close to the LUMO resonance (as shown in Figure S45), whereas agreement with experiment 

is obtained only when the Fermi energy is chosen to be close to the middle of the HOMO-

LUMO gap.34-3829-33 In agreement with these studies,  we also find that the closest agreement 

between our theory and experiment is obtained for a Fermi energy located near the mid-gap, as 

indicated by the dashed lines in Figure 5.  The corresponding room-temperature conductances 

are shown in Table 4. For comparison with experiment, Tables 4 also shows the average value 

of these four conductances of 11 and 13 (𝐸𝐹
𝐷𝐹𝑇≈ mid gap). 

To demonstrate that DQI is present in the π system of the aza-BODIPY core for connectivity 

1, whereas CQI is present for connectivities 2-4, a simple tight binding model is presented in 



the SI, which reproduces the qualitative features of DFT transmission curves (For more detail 

see section 10 of the SI). 

Table 4. Experimental and theoretical conductance values of compounds 11-13 for the four 

geometries 1, 2, 3 and 4 shown in Figure 4.  The theoretical values shown in parentheses are 

obtained without a scissor correction. Theoretical values obtained after a scissor correction 

are not enclosed by parentheses. 

 

M Conductance (G/G0) 

Experiment  

Conductance (G/G0) for the four geometries  

Theory  (𝐸𝐹
𝐷𝐹𝑇≈ mid gap)  

THF/Mesitylene CHCl3/Air 1 2 3 4 Average 

11 4.0×10-4  2.1×10-4  (9.5×10-6) 

1.0×10-5 

(1.6×10-4) 

3.4×10-4 

(4.1×10-4) 

7.8×10-4 

(2.2×10-4) 

4.3×10-4 

(2.0×10-4) 

3.8×10-4 

13 2.5×10-5  2.7×10-5  (1.6×10-6) 

1.0×10-6 

(4.8×10-5) 

1.6×10-5 

(1.2×10-4) 

3.7×10-5 

(7.5×10-5) 

2.1×10-5 

(6.3×10-5) 

2.0×10-5 

 

CONCLUSION 

We have measured and computed the electrical conductance of three closely related 

tetraphenyl-aza-BODIPY-based molecules. Molecules 11 and 13 with four thiomethyl anchors 

form stable contacts within our BJ-STM, with conductance values of 4.10-4 G0 and 2.5.10-5 G0, 

respectively. The lower conductance of the latter correlates with the increased length of 13 

compared with 11. On the other hand, 12, having only two distal thiomethyl anchor groups, 

displayed no detectible conductance. Density functional theory-based calculations reveal that 

transport takes place through phase-coherent tunneling near the middle of the HOMO-LUMO 

gap. For each molecule, four connectivities to the thiomethyl anchors were considered, with 

three of the four exhibiting constructive quantum interference, with rather flat transmission 

functions near the gap center, and one exhibiting destructive interference, signified by a 



transmission dip near the gap center. Although the measured electrical conductance reflects an 

average of all four possible connectivities, as shown in table 4, the low-conductance 

configurations corresponding to destructive quantum interference do not make a significant 

contribution to the average. Therefore, our study reveals that while transport through these 

molecules results from a combination of both constructive (involving the aza-BODIPY core) 

and destructive quantum interference (through the proximal and distal thioanisoles attached to 

the same pyrrole), the average conductance is dominated by configurations exhibiting 

constructive quantum interference. To highlight the role of quantum interference in the 

tetraphenyl-aza-BODIPY core, a simple tight binding model (TBM) was employed.  
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