
A Constructive Heuristic Approach for Single
Airport Slot Allocation Problems

Sha Wang∗, John H. Drake†, Jamie Fairbrother‡, John R. Woodward∗
∗School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS

†School of Informatics, University of Leicester, Leicester, LE1 7RH
‡Management School, Lancaster University, Lancaster, LA1 4YW

Email: sha.wang@qmul.ac.uk

Abstract—With growth in air transportation expected to con-
tinue, the mitigation of operational inefficiency and consequent
delays is becoming increasingly important. Slot allocation, as
a means of demand management at congested airports, has a
significant impact on wider airport operations. This requires
sophisticated approaches, to intelligently allocate scarce airport
resources to unevenly distributed traffic demand for the use of
airport facilities. This paper presents a novel heuristic approach
to solve the single airport slot allocation problem. The approach
has been tested on real-world data from three medium-sized
airports. We introduce a constructive heuristic framework which
is able to generate feasible solutions to the model. Within this
framework, a number of ordering heuristics are developed to
order slot requests to be scheduled, and an allocation algorithm
is developed to allocate slots to a request determined by the
ordering heuristic. Experimental results suggest that the order
in which slot requests are scheduled has a significant impact on
the solution quality.

Keywords—Airport slot allocation; Airport demand manage-
ment; Constructive heuristics

I. INTRODUCTION

According to [1], in 2040, air traffic in Europe is expected
to grow to 16 million flights. This is a total growth of 53%
compared to 2017. However, the expansion of airport capacity
is restricted by a series of political, environmental, physical
and other factors. The severe imbalance between demand and
capacity, added to the difficulty of increasing airport capacity
in the short term, make it increasingly hard to access airport
facilities.

In order to allocate scarce airport resources more efficiently,
slot allocation was introduced by the International Air Trans-
port Association (IATA) to manage runway capacity. A slot
corresponds to the right of a flight to use the airport facilities
for landing or take-off on a specific date and time interval. It
is currently practised at 175 ‘slot coordinated airports’ (also
known as ‘level 3’ airports), serving over 1.5 billion passengers
each year [2], including many of the most busy airports around
the world outside of the United States.

This study focuses on strategic-level slot allocation, which
is carried out under the regulations of the Worldwide Slot
Guidelines (WSG) twice a year for the summer and winter
coordination seasons [3]. About five months before each
season, airlines provide initial slot requests to the appointed
airport slot coordinators. Less than one month after receiving

the requests, airport slot coordinators must provide an initial
slot allocation solution to all airlines, in a ‘neutral, transparent
and non-discriminatory’ way and apply the following priorities
[3]: Historic requests (a request for a series of slots, which
were operated by the same airline in the last equivalent season
at least 80% of the time, will be given first priority, also known
as historic precedence or the grandfather right, of holding
the same slots for the next equivalent season), Changes to
historic requests (any Historic request that plans to operate
with a different time, aircraft, terminal etc., from the previous
equivalent season should have lower priority than Historic
request) and New entrants requests (if a carrier requests no
more than four slots on any day at the airport, the airline’s
requested slots will be granted New entrant status). Half of
the remaining available slots, after Historic and Change-to-
historic slots have been allocated, must be allocated to New
entrants to the extent that such requests are outstanding. Slot
requests that do not fall into above three priority categories
are considered as other requests with no priority. They can
only be scheduled once all requests with priorities have been
allocated. The initial slot allocation plan will then be discussed
at the Slot Conference. Adjustments and negotiations are made
during the conference to resolve conflicts stemming from slot
allocation decisions made at multiple airports, and disputes
among airlines competing for the same slots [3].

II. PREVIOUS RELATED WORK

Slot allocation problems have been studied in the context of
both single airport [4]–[9] and airport network level [10]–[12],
and solved using both exact and heuristic approaches. Only the
work that considers single airport slot allocation problems is
reviewed here. For a survey paper, see [13].

A. Models

Single airport slot allocation problems have been modelled
as single objective, bi-objective or multi-objective Integer
Linear Programming (ILP) problems in the existing literature.
Zografos et al. [4] first formulated the single airport slot
allocation problem as a single objective ILP model. The
optimisation objective of this model was to minimise the
total schedule displacement (i.e., sum of time difference,
measured by number of slots, between the allocated time and
the requested time of all slot requests). In order to take into

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/305112523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

account the request priority classes, the model was applied
hierarchically for historic, new entrants and other requests.
This model was later extended to incorporate other objectives
such as fairness [6], [9], maximum displacement and number
of requests scheduled within an acceptable time window [14].
More recently this model formed the basis of a mechanism to
incorporate airline preferences for which of its requests should
be displaced [9].

Ribeiro et al. [7] proposed an alternative multi-objective
formulation which they call the Priority-based Slot Allocation
Model (PSAM). The model adopted a weighted-based objec-
tive function, which considered four objectives: the number
of slots rejected, maximum individual displacement (i.e., dis-
placement imposed on any slot), total schedule displacement
and the number of slots displaced. Each component of the
objective function was weighted according to its relative
importance. This approach therefore largely relies on stake-
holder’s preferences. Recently, Ribeiro et al. [8] extended
their model to a new model, PSAM-ATR, which incorporates
apron and terminal capacity. The PSAM-ATR model employs
a weighted-based bi-objective function which prioritises the
minimisation of the maximum individual displacement over
the total schedule displacement.

B. Solution approaches

Solution approaches to single airport slot allocation prob-
lems can be broadly classified into two categories: exact
approaches and heuristic approaches. Zografos et al. [4] de-
veloped an ILP-based algorithm which dynamically added
capacity constraints to the model as they are needed. They
tested their model on real-world data from three medium-sized
airports. Results showed that the algorithm can effectively
solve small-scale slot allocation problems and find the optimal
solution within a few seconds. It was more difficult to solve
the last priority class of a moderate size problem (optimality
gap of 1.58% after a few minutes). The PSAM model [7]
was solved by direct application of the CPLEX solver. It was
applied to real-world instances of two medium-sized airports,
Madeira and Porto, and could be solved to optimality within
a few minutes.

Ribeiro et al. [8] solved the PSAM-ATR model at three
airports with two methods: CPLEX and a ‘matheuristic’ ap-
proach. CPLEX found the optimal solution for two medium-
sized airports in a few minutes or hours. However, it remains
intractable for a large airport with over 200,000 movements
a year (optimality gap of 2-5% after 7 days). The proposed
matheuristic approach combines a constructive heuristic and an
improvement heuristic based on the large-scale neighbourhood
search algorithm. Request series of each priority class were
sorted by decreasing order of the number of days. The con-
structive heuristic then divided requests into a certain number
of groups, and solved the PSAM-ATR model for each group
using CPLEX, in order to obtain an initial feasible solution.
Starting from this solution, the improvement heuristic imple-
mented a ‘destroy and repair’ process to iteratively improve
the quality of the solution. Results showed that a trade-off

between the number of groups and the solution quality exists,
and may vary for different problem sizes and features (e.g.,
demand-capacity imbalances). For the same large airport, a
near-optimal solution with optimality gap of 2-5% could be
found in 30 minutes and a solution with optimality gap of
0-0.03% was found in 10 hours.

Considering the decision horizon in which the initial slot
allocation plan needs to be made (less than one month in prac-
tice) [3], more effective and computationally efficient solution
approaches are required to solve large-scale single airport
slot allocation problems. As for large-scale slot allocation
exact methods are too slow and computationally infeasible.
Motivated by this, the aim of this paper is to develop heuristic
approaches to scale better to larger instances than exact
methods do, but not to tackle large-scale problems due to a
lack of data availability. Not only will these enable the fast
construction of efficient schedules, but these could also be used
to speed-up exact methods by providing warm-start solutions.
In addition, the order in which slot requests are processed
during construction of the initial solution is only considered
in one existing paper [8], where requests were simply ordered
by number of operational days the slot is desired. To address
this issue, this paper develops more request ordering methods
and a different constructive heuristic approach.

III. SLOT ALLOCATION MODEL

A. Problem statement

About five months before each coordination season, airlines
make requests for pairs of arrival and departure slots to the
airport coordinators using a standardised format. Each of these
requests specify, inter alia, arrival and departure times, the
dates for which the request applies, and the priority category
of the request. For a more detailed description of the input
request data, see [7].

If the request applies for five or more weeks, then the slots
should be allocated in series, that is, the slots allocated for
each arrival and departure of the request is for the same time.
Requests which fall below this threshold may be scheduled
independently on different days. In order to allow an arriving
aircraft to prepare for a subsequent departure, the arrivals
and departures of a request must be scheduled with sufficient
turnaround time. Runway constraints limit the number of
arrivals, departures or total number of movements that can be
scheduled in a given period. These typically take the form of
rolling capacity constraints which limit runway movements for
a given duration rather than a specific interval. Finally, requests
should be scheduled according to the priority classes described
in the Introduction above. That is, historic requests should be
scheduled first, followed by change to historic requests and so
on.

The quality of a feasible solution is usually measured in
terms of displacement, which is the absolute time difference
between requested and allocated slots. The aim of the slot
allocation problem is to allocate slots to as many requests as
possible, in a way which minimises some aggregate measure of

displacement, while respecting all of the constraints described
above.

B. Model Formulations

The model formulation used for this slot allocation problem
is based mainly on the model presented in [4]. Unlike the pre-
vious model, the model we use here considers two additional
cases. In our model it is possible for one or more requests to
be rejected, i.e. the request is not allocated a slot. Additionally
we consider the case of ‘split days’ requests, where there the
departure occurs the day after the arrival. Both arrival and
departure flights are only allowed to be scheduled on the
requested operational days. For a detailed description of the
model used, see Appendix A.

IV. SOLUTION APPROACH

The proposed constructive heuristic approach aims to build
a feasible solution incrementally from an empty solution,
with the aim of minimising the total schedule displacement.
Specifically, the solution construction process relies on a
number of ordering heuristics and an allocation algorithm.
The ordering heuristics aim to order the requests that have not
been scheduled according to the difficulty of allocating them
to feasible slots. The allocation algorithm then decides which
slots to assign each request to, given the current solution.

A. Solution construction procedure

The framework of the constructive heuristic approach is
described in Algorithm 1. The constructive heuristic starts
with an empty solution, and processes requests one by one to
gradually build a complete solution. Firstly, Algorithm 1 takes
a list of request series to be scheduled as input. Secondly,
a static ordering heuristic (line 2) or a dynamic ordering
heuristic (line 4) is employed to sort the list according to
one or multiple criteria of each request. Next, the algorithm
schedules requests in the list iteratively until all requests have
been considered. Specifically, for each iteration, the algorithm
selects the first request on the list (determined by the current
ordering heuristic) and removes it from the list. An allocation
algorithm is then employed to schedule or reject the request
under consideration.

Algorithm 1 Framework of the constructive heuristic
Input: a list of slot requests, airport parameters
Output: slot allocation solution

1: initialising an empty solution
2: sort the list according a static ordering heuristic
3: while request list is not empty do
4: sort the list according to a dynamic ordering heuristic
5: select the first request series m in the list
6: remove m from the list
7: call the allocating algorithm
8: end while

B. Ordering heuristics

The rationale of the ordering heuristics is that requests
which are more difficult to schedule should be allocated first,
with the hope that the easier requests can fit around the difficult
ones while maintaining feasibility [15]. Based on this ratio-
nale, we developed a number of static and dynamic ordering
heuristics to order slot requests to be scheduled. The difference
between a static and dynamic ordering heuristic is that, the
former orders requests based on immutable information (e.g.,
flight type or the number of operation days), thus generating a
fixed order. The latter orders requests according to the problem
state at that time, thus the order changes dynamically as the
solution is constructed. It is worth noting that, in order to
respect priority classes, requests are first ordered according to
priorities, and then within each class, requests are ordered by
one of the ordering heuristics.

1) Static deterministic ordering heuristics:
• Most days first (MD): requests are ordered, in a non-

increasing order, in terms of the number of operation days
requested.

2) Dynamic deterministic ordering heuristics:
• Most conflicts first (MC): requests are firstly ordered,

in a non-increasing order, in terms of the number of
operation days, and secondly ordered, in a non-increasing
order, in terms of the number of conflicts that they have
with the solution at that time. Specifically, the number of
conflicts is determined as the number of flights that have
already been scheduled at the requested time periods or
the feasible time periods with minimum displacement.
For example, a departure request for the 55th time period
on a number of days needs to be scheduled next. If its
paired arrival flight has been scheduled at the 60th time
period, and the required minimum turnaround time for
this flight is 4 time intervals, then the number of conflicts
of this departure request is the total number of flights that
have already been scheduled at the 64th time period on
corresponding days.

• Least residual degree first (LR): requests are firstly or-
dered, in a non-increasing manner, in terms of the number
of operation days, and secondly, in non-decreasing order,
in terms of the remaining capacity left in the requested
time periods or the feasible time periods with minimum
displacement.

• Largest displacement cost first (LDC): requests are or-
dered, in a non-increasing order, by the cost of scheduling
them into the current solution. If the requested slots of
a request are currently feasible, there is no scheduling
cost of this request. Otherwise, the cost of this request
is the minimum schedule displacement multiples the
corresponding number of days.

3) Dynamic stochastic ordering heuristics:
• Random ordering based on number of days (ROD):

requests are firstly ordered, in a non-increasing order, by
the number of operation days, and then requests with
same number of days are scheduled randomly.

TABLE I
SUMMARY OF SLOT REQUESTS

Airport Total Historic Change to
historic

New en-
trants

Others

1 14,956 4,266 2,966 466 7,080
2 33,904 5,460 8,448 2,668 17,328
3 46,900 10,448 11,522 4,080 20,850

• Random ordering (RO): requests that have not been
scheduled, are ordered randomly at each step of the
solution construction.

C. Allocation algorithm

The allocation algorithm described in Algorithm 2 aims to
find a feasible slot time closest to the requested slot time for a
selected request series m. The allocation algorithm first checks
the feasibility of scheduling m at tm with respect to turnaround
time and the declared runway capacity constraints. If all of the
constraints remain satisfied, the algorithm directly allocates
request m slots at time tm and updates the solution and
capacity state. If any of the constraints are violated, the current
request may be scheduled earlier or later than its requested
slot time, or may be rejected (not scheduled at any time)
if no feasible slots can be found. Specifically, the allocation
algorithm firstly searches for feasible slots that are later than
the requested slot time tm (line 5-11), before searching for
feasible slots earlier than tm (line 12-18). After searching in
both directions, if no feasible slots can be found, the current
request and its paired request will be rejected at the same time
and removed from the request list to be scheduled and the
solution. Otherwise, feasible slots with smaller displacement
will be assigned to the current request.

V. DATA AND EXPERIMENTAL RESULTS

The constructive heuristic approach was applied to solve
real-world slot allocation problems from three airports. Table I
summarises the number of slots requested for each airport and
the distribution of slot priority categories.

The minimum turnaround time, denoted by `p, depends on
the aircraft, airline policy and airport facilities. Due to a lack
of explicit data on minimum turnaround time we set it using
the following rule. If the requested turnaround time for a pair
of flights is less than one hour, then `m1m2

takes the value
of the actual requested turnaround time, that is (Tvm1m2

+
tm2
− tm1

); otherwise, it equals the number of time periods
equivalent to one hour.

In addition to the total schedule displacement, we employed
three other metrics to measure the schedule efficiency (see
Table II). Note that these metrics are observation metrics and
are not objectives that have been optimised. The first metric (1)
is the maximum displacement imposed on any scheduled slot
(also known as the maximum individual displacement), which
is motivated by literature [7], [8], [14]. It is calculated as the
absolute value of the difference between the allocated time t
and the requested time tm. Since a request series is scheduled
at the same time, the displacement of each individual request

Algorithm 2 Framework of the allocating algorithm
Input: request series m
Output: allocated slot time t for m

1: if all constraints are met when xtmm = 1 then
2: t← tm
3: update the solution and capacity state
4: else
5: for i = tm + 1; i ≤ T ; i++ do
6: if all constraints are met then
7: forward← i− tm
8: feasible slots found
9: break

10: end if
11: end for
12: for i = tm − 1; i ≥ 0; i−− do
13: if all constraints are met then
14: backward← i− tm
15: feasible slots found
16: break
17: end if
18: end for
19: if no feasible slot found then
20: reject request m and its paired request
21: update the solution and capacity state
22: else if |forward| < |backward| then
23: t← tm + forward
24: update the solution and capacity state
25: else
26: t← tm + backward
27: update the solution and capacity state
28: end if
29: end if

in the series is the same. The second metric (2) reflects the
total number of slots rejected due to infeasibility. This metric
has been considered in previous works [7], [8], [10], [12].
The last metric (3) reflects the total number of slots which are
displaced. This metric has been only considered previously by
Ribeiro et al. [8].

TABLE II
SLOT ALLOCATION EFFICIENCY METRICS

max
m∈M

∑
t∈T

|t− tm|xtm,∀m ∈M (1)∑
m∈M

|Dm|rm (2)∑
m∈M

|Dm| :
∑
t∈T

|t− tm|xtm > 0 (3)

Here we investigate the performance of different ordering
heuristic on the quality of the initial feasible solution obtained.
This helps us to better understand the features of each ordering

TABLE III
PERFORMANCE OF DIFFERENT ORDERING HEURISTICS ON THE SCHEDULE

EFFICIENCY

Ordering
heuristics

Rejected
slots

Max Disp.
(slot)

Total Disp.
(slot)

Displaced
slots

Airport 1
MD 80 28 17,753 3,882
MC* 0 50 21,487 4,005
LR* 0 29 23,587 4,180
LDC* 80 28 17,753 3,882
ROD**
(median)

0 52 22,413 3,897

(s.d.) 5.8 6.9 2,004.6 90.3
RO**
(median)

0 66 39,772 4,230

(s.d.) 0.0 7.7 6,238.0 209.4
Airport 2

MD 0 15 17,733 6,089
MC* 56 20 17,976 5,668
LR* 0 18 17,155 5,901
LDC* 0 15 17,558 6,108
ROD**
(median)

56 23 19,160 5,439

(s.d.) 27.9 3.6 677.1 213.3
RO**
(median)

10 32 39,315 7,142

(s.d.) 47.8 14.9 7,609.4 389.8
Airport 3

MD 0 95 141,170 13,495
MC* 0 94 144,346 14,702
LR* 0 94 142,995 15,011
LDC* 0 86 138,530 15,169
ROD**
(median)

0 204 147,908 13,548

(s.d.) 0.0 22.9 8,710.2 309.8
RO**
(median)

0 195 310,390 13,898

(s.d.) 0.0 13.3 45,611.0 350.7
Note: static/dynamic/stochastic ordering heuristic(/*/**)

heuristic and the relationships between schedule efficiency
metrics. All six ordering heuristics were tested on each of the
three airports. For stochastic heuristics (ROD and RO), 101
runs with distinct seeds were carried out, and the median and
standard deviation of each metric are presented in Table III
for Airport 1, 2 and 3.

When slot requests in each priority class are scheduled in a
random order (RO heuristic is applied), the obtained solutions
were much worse than the solutions achieved by using other
ordering heuristics. This indicates the existence of a ‘best
order’ of requests to be scheduled, which may lead to optimal
or near-optimal solutions. For the small Airport 1, both MD
and LDC achieved a solution with the smallest total sched-
ule displacement, maximum individual displacement and the
number of displaced slots. However, two request series (cor-
responding to 80 out of 14,956 requested slots) were rejected.
When considering randomness upon MD, the result of ROD
shows that no requests were rejected and the total displaced
slots remained low, but the total schedule displacement and
maximum individual displacement increased by 28% and 96%
respectively. The MC heuristic shows competitive performance
as it allocated all slot requests, and it outperforms LR with
respect to the total schedule displacement and the number of

Fig. 1. Comparison of ordering heuristics

(a) Airport 1

(b) Airport 2

(c) Airport 3

displaced slots, but the maximum individual displacement of
MC is more than 1.78 times that obtained by LR. For Airport
2, results also suggest that deterministic ordering heuristics
perform much better than the stochastic ordering heuristics. LR
performs best in terms of the total schedule displacement and
number of slots displaced. MD and LDC lead to solutions with
smallest maximum individual displacement. The number of
displaced slots tend to be reduced by using MC and ROD, even
when rejected slots are counted. For Airport 3, no requests
were rejected in every algorithm execution. LDC achieved a
solution with the smallest total schedule displacement and
maximum individual displacement. However, the total dis-

Fig. 2. Relationship between schedule efficiency metrics among solutions
obtained by using stochastic ordering heuristics, Airport 1

(a) Total displacement vs.
Maximum displacement,
ρ = 0.488(ROD),
ρ = 0.219(RO)

(b) Total displacement vs. Dis-
placed slots, ρ = 0.151(ROD),
ρ = 0.011(RO)

(c) Maximum displacement
vs. Displaced slots,
ρ = −0.104(ROD),
ρ = −0.201(RO)

placed slots is 12.4% more than the smallest value achieved
by the MD heuristic.

We may then conclude from the above results that: (i) the
existence of rejected slots depends on the order of requests to
be scheduled; (ii) stochastic ordering heuristics (RO and ROD)
perform significantly worse than the deterministic ordering
heuristics (MD, LR, MC, LDC), which demonstrates that the
order of requests to be scheduled has a significant impact
on the solution quality; (iii) in general, slot requests with
the most operation days should be scheduled first in order
to achieve better solutions; (iv) by using LDC, the total
schedule displacement and the maximum schedule individual
displacement are more likely to be reduced. The reason is that
when calculating the potential minimum displacement cost of
each request, feasibility of slots in adjacent time periods of
the requested slots are also considered. In contrast, MD does
not consider the dynamic solution state, and MC tends to make
shortsighted decisions because it does not consider the number
of flights that have already been scheduled in the adjacent time
periods of the requested slots; (v) by using ROD, the number
of displaced slots is more likely to be reduced.

The observations above provide the motivation to investi-
gate the correlation between the different schedule efficiency
metrics. Figure 2, Figure 3 and Figure 4 show a number
of scatter plots, illustrating the relationships between the

Fig. 3. Relationship between schedule efficiency metrics among solutions
obtained by using stochastic ordering heuristics, Airport 2

(a) Total displacement vs.
Maximum displacement,
ρ = 0.343(ROD),
ρ = 0.609(RO)

(b) Total displacement vs. Dis-
placed slots, ρ = 0.424(ROD),
ρ = 0.141(RO)

(c) Maximum displacement
vs. Displaced slots,
ρ = 0.194(ROD),
ρ = 0.005(RO)

schedule efficiency metrics of the three airports respectively.
Each green or blue dot represent a solution obtained when
RO or ROD was applied. The red and purple dots represent
there are slots rejected in the corresponding solution. Plots
(a), (b) and (c) show the relationship between two of the
three schedule efficiency metrics: total schedule displacement,
maximum individual displacement and number of slots dis-
placed. The corresponding correlation coefficients is given
below each plot. We can clearly see from the plots (a) and (b)
for all airports that the green dots are distributed in a distinct
region to the blue dots, which means that by using ROD,
the total schedule displacement of the initial solutions can be
significantly reduced compared to RO. In addition, we found
that there is a positive correlation between the total schedule
displacement and the maximum individual displacement (the
Spearman correlation coefficient ρ ranged from 0.343 to 0.488
of the three airports) when ROD is applied. Also, a positive
correlation was found between the total schedule displacement
and displaced slots in Airport 2. No significant correlation was
found between the maximum individual displacement and the
displaced slots.

VI. CONCLUSION

In this paper, we have proposed and investigated a construc-
tive heuristic approach which is able to generate initial feasible

Fig. 4. Relationship between schedule efficiency metrics among solutions
obtained by using stochastic ordering heuristics, Airport 3

(a) Total displacement vs.
Maximum displacement,
ρ = 0.369(ROD),
ρ = 0.177(RO)

(b) Total displacement vs. Dis-
placed slots, ρ = 0.100(ROD),
ρ = 0.048(RO)

(c) Maximum displacement
vs. Displaced slots,
ρ = −0.161(ROD),
ρ = −0.010(RO)

solutions to a single airport slot allocation problem. In our
constructive heuristic framework, six static or dynamic request
ordering heuristics were employed, and the approach was
tested on real-world data from three airports. We investigated
the impact of the order of requests to be scheduled on the
quality of the initial feasible solution. Our hypothesis that
the requests which are more difficult to schedule should
be allocated first is experimentally supported. Experimental
results indicate that requests with most number of operation
days should be scheduled first. In addition, results show that
by using the Largest minimum displacement cost first ordering
heuristic, the total schedule displacement can be reduced by
1% and 1.87% (for Airport 2 and 3 respectively) compared to
the Most number of days first. We also found that there is a
positive correlation between the total schedule displacement
and the maximum individual displacement of a solution.
No significant correlation was found between the maximum
individual displacement and the displaced slots.

In practice, the declared capacity is not fixed and can vary at
different times such as peak hours, weekends or holidays [8].
Future work will extend our to incorporate dynamic declared
capacity profiles. It might also be interesting to extend the
current constructive heuristic framework to solve a network-
level airport slot allocation problem.

ACKNOWLEDGMENT

The work reported in this paper has been supported by
the Engineering and Physical Sciences Research Council
(EPSRC) through Programme Grant EP/M020258/1 ‘Math-
ematical Models and Algorithms for Allocating Scarce
Airport Resources (OR-MASTER)’ and Programme Grant
EP/N029496/1 ‘TRANSIT: Towards a Robust Airport De-
cision Support System for Intelligent Taxiing’. The views
expressed in this paper are the authors’ own opinions.

REFERENCES

[1] EUROCONTROL, “European aviation in 2040: Challenges of growth,”
https://www.eurocontrol.int/sites/default/files/content/documents/
official-documents/reports/challenges-of-growth-2018.pdf, 2018.

[2] IATA, “Worldwide airport slots,” https://www.iata.org/policy/slots/
Pages/index.aspx, 2019.

[3] WSG, “Wsg edition 9 - english version (pdf) official version,” https:
//www.iata.org/policy/slots/Documents/wsg-edition-9-english-version.
pdf, 2019.

[4] K. G. Zografos, Y. Salouras, and M. A. Madas, “Dealing with the
efficient allocation of scarce resources at congested airports,” Trans-
portation Research Part C: Emerging Technologies, vol. 21, no. 1, pp.
244 – 256, 2012.

[5] K. Zografos and Y. Jiang, “Modelling and solving the airport slot
scheduling problem with efficiency, fairness, and accessibility consid-
erations,” in TRISTAN SYMPOSIUM 2016, 6 2016.

[6] K. G. Zografos and Y. Jiang, “A bi-objective efficiency-fairness model
for scheduling slots at congested airports,” Transportation Research Part
C: Emerging Technologies, vol. 102, pp. 336 – 350, 2019.

[7] N. A. Ribeiro, A. Jacquillat, A. P. Antunes, A. R. Odoni, and J. P.
Pita, “An optimization approach for airport slot allocation under iata
guidelines,” Transportation Research Part B: Methodological, vol. 112,
pp. 132–156, 2018.

[8] N. A. Ribeiro, A. Jacquillat, and A. P. Antunes, “A large-scale
neighborhood search approach to airport slot allocation,” Unpublished,
2019. [Online]. Available: https://ajacquil.heinz.cmu.edu/wp-content/
uploads/sites/26/2018/09/Manuscript Ribeiro2018.pdf

[9] J. Fairbrother, K. G. Zografos, and K. Glazebrook, “A slot scheduling
mechanism at congested airports which incorporates efficiency, fairness
and airline preferences,” Transportation Science, 2019, accepted for
publication.

[10] U. Benlic, “Heuristic search for allocation of slots at network level,”
Transportation Research Part C: Emerging Technologies, vol. 86, pp.
488–509, 2018.

[11] P. Pellegrini, L. Castelli, and R. Pesenti, “Metaheuristic algorithms for
the simultaneous slot allocation problem,” IET Intelligent Transport
Systems, vol. 6, no. 4, pp. 453–462, 2012.

[12] P. Pellegrini, T. Bolić, L. Castelli, and R. Pesenti, “Sosta: An effective
model for the simultaneous optimisation of airport slot allocation,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 99, pp. 34–53, 2017.

[13] K. G. Zografos, M. A. Madas, and K. N. Androutsopoulos, “Increasing
airport capacity utilisation through optimum slot scheduling: review of
current developments and identification of future needs,” Journal of
Scheduling, vol. 20, no. 1, pp. 3–24, Feb 2017.

[14] K. G. Zografos, K. N. Androutsopoulos, and M. A. Madas, “Minding
the gap: Optimizing airport schedule displacement and acceptability,”
Transportation Research Part A: Policy and Practice, vol. 114, pp. 203
– 221, 2018.

[15] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu,
“A graph-based hyper-heuristic for educational timetabling problems,”
European Journal of Operational Research, vol. 176, no. 1, pp. 177–192,
2007.

APPENDIX A
MODEL FORMULATION

A. Model inputs and parameters
Table I gives the inputs and parameters of the proposed

model. Each day in the scheduling season is segmented into

T intervals of equal length (also known as the coordination
time interval), indexed by the set T = {0, . . . , T − 1}. For
example, if the length of the coordination time interval is 15
minutes then there are 24h ∗ 60min/15min = 96 intervals in
a day. The set D consists the set of days of a slot allocation
season. Each slot corresponds to an interval t ∈ T and a day
d ∈ D.

We use M to denote the request for a series of slots, and
for each m ∈ M we denote by tm ∈ T the time of the
requested slots. By Dm ⊆ D we denote the set of days to
which request m ∈ M applies, and the binary parameter bdm
specifies whether or not a request series m ∈ M applies to
day d ∈ D. By Marr ⊂ M and Mdep ⊂ M to represent
respectively the set of arrival and departure requests.

The set P ⊂ Marr ×Mdep consists of the pairs of arrival
and departure request series which must be scheduled with
appropriate turnaround time. The minimum turnaround time
for the request pair p ∈ P is denoted by `p. For some
request pairs, the departure following an arrival occurs the
next day. This is often the case if the arrival requests a slot
near midnight. The binary parameter vp specifies whether this
is the case for request pair p ∈ P .

The set C indexes the time scales corresponding of the
runway capacities and the number of time periods for which
a constraint is checked is denoted by Lc. The parameters
Carr

tdc, Cdep
tdc, C tot

tdc specify respectively the maximum number of
arrivals, departures, and total number of movements that can
be scheduled on day d ∈ D over time intervals [t, t+Lc− 1].

TABLE I
MODEL INPUTS AND PARAMETERS

T = {0, ..., T − 1} set of coordination time periods
D set of coordination days
M set of requests for slot series

Dm ⊆ D set of days to which request series m ∈M
applies

Marr(Mdep) ⊂M set of arrival (departure) request series
P ⊂Marr ×Mdep set of arrival-departure request pairs

`p minimum turnaround time for request pair
p ∈ P

bdm bdm = 1, if m is requested for day d;
otherwise, bdm = 0

vp vp=1, if the departure occurs the next day
of the arrival for request pair p; otherwise,
vp=0

C set of capacity time scales, indexed by c
Lc length of time scale c, measured by the

number of time periods
Carr

tdc arrival capacity at time period t, day d and
time scale c

Cdep
tdc

departure capacity at time period t, day d
and time scale c

Ctotal
tdc total capacity at time period t, day d and

time scale c

B. Decision variables

The decision variables xtm are binary indicators which
specify whether or not request series m ∈ M is allocated
slots at time t ∈ T on days d ∈ Dm. Sometimes due to limited
capacity, slots cannot be allocated to a request series, and in

this case we say that the request is rejected. The decision
variable rtm is a binary indicator which specifies whether or
not request series m ∈M is rejected.

TABLE II
DECISION VARIABLES

xtm xtm = 1, if request series m is allocated to
time period t; otherwise, xtm = 0

rm rtm = 1, if request series m is rejected;
otherwise rm = 0

C. Constraints

Constraint (A.1) ensures that every request series m is
allocated slots for one time interval or is rejected. Constraints
(A.2) to (A.4) ensure that the runway capacity constraints
for arrival, departure and all types of flights are satisfied.
Constraint (A.5) ensures that each request pair is scheduled
with sufficient turnaround time. Constraint (A.6) ensures the
decision variables can only take a value of 0 or 1.

D. Objective

The objective function (A.7) is concerned with minimising
the total displacement across all slot requests. Note that
rejected request series are not considered in the calculation
of the objective function.

TABLE III
MODEL FORMULATIONS

∑
t∈T

xtm + rm = 1, ∀m ∈M

(A.1)∑
m∈Marr

t+Lc−1∑
s=t

bdmx
s
m ≤ Carr

tdc, ∀t = 0, . . . , T − Lc + 1, d ∈ D, c ∈ C

(A.2)∑
m∈Mdep

t+Lc−1∑
s=t

bdmx
s
m ≤ C

dep
tdc
, ∀t = 0, . . . , T − Lc + 1, d ∈ D, c ∈ C

(A.3)∑
m∈M

t+Lc−1∑
s=t

bdmx
s
m ≤ C total

tdc , ∀t = 0, . . . , T − Lc + 1, d ∈ D, c ∈ C

(A.4)∑
t∈T

(Tvm1m2 + t)xtm2
−
∑
t∈T

txtm1
≥ `m1m2 (1− rm2), ∀(m1,m2) ∈ P

(A.5)

xtm, rm ∈ {0, 1}, ∀m ∈M, t ∈ T
(A.6)

minimise
∑
m∈M

∑
t∈T

|Dm||t− tm|xtm

(A.7)

