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ABSTRACT 

Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease, including chronic 

traumatic encephalopathy (CTE). Preliminary consensus criteria define the pathognomonic 

lesion of CTE as patchy tau pathology within neurons and astrocytes at the depths of cortical 

sulci. However, the specific tau isoform composition and post-translational modifications in 

CTE remain largely unexplored. Using immunohistochemistry, we performed tau 

phenotyping of CTE neuropathologies and compared this to a range of tau pathologies, 

including Alzheimer’s disease, primary age-related tauopathy (PART), aging-related tau 

astrogliopathy (ARTAG) and multiple subtypes of frontotemporal lobar degeneration with tau 

inclusions (FTLD-Tau). Cases satisfying preliminary consensus diagnostic criteria for CTE 

neuropathologic change (CTE-NC) were identified (athletes, n=10; long-term survivors of 

moderate or severe TBI, n=4) from the Glasgow TBI Archive and Penn Neurodegenerative 

Disease Brain Bank. In addition, material from a range of autopsy-proven aging-associated 

and primary tauopathies in which there was no known history of exposure to TBI was 

selected as non-injured controls (n=32). Each case was then stained with a panel of tau 

antibodies specific for phosphoepitopes (PHF1, CP13, AT100, pS262), microtubule-binding 

repeat domains (3R, 4R), truncation (Tau-C3) or conformation (GT-7, GT-38) and the extent 

and distribution of staining assessed. Cell types were confirmed with double 

immunofluorescent labeling. Results demonstrate that astroglial tau pathology in CTE is 

comprised of 4R-immunoreactive thorn-shaped astrocytes, echoing the morphology and 

immunophenotype of astrocytes encountered in ARTAG. In contrast, neurofibrillary tangles 

of CTE contain both 3R and 4R tau, with post-translational modifications and conformations 

consistent with Alzheimer’s disease and PART. Our observations establish that the astroglial 

and neurofibrillary tau pathologies of CTE are phenotypically distinct from each other and 

recapitulate the tau immunophenotypes encountered in aging and Alzheimer’s disease. As 

such, the immunohistochemical distinction of CTE neuropathology from other mixed 3R/4R 

tauopathies of AD and aging may rest solely on the pattern and distribution of pathology. 
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INTRODUCTION 

 

There is increasing recognition of the association between exposure to traumatic brain injury 

(TBI) and risk of subsequent neurodegenerative disease, in particular chronic traumatic 

encephalopathy (CTE).  First described as the “punch drunk syndrome” in 1928 (Martland, 

1928) and later “dementia pugilistica” (DP) (Millspaugh, 1937), progressive 

neurodegeneration in the context of TBI was historically considered a consequence of 

participation in boxing. However, more recent descriptions of the neurodegenerative 

pathology of DP, now recognized as CTE, in non-boxer athletes exposed to repetitive mild 

TBI (Corsellis et al., 1973; Geddes et al., 1999; Omalu et al., 2011; Saing et al., 2012; 

McKee et al., 2013; Smith et al., 2013; McKee et al., 2016; Stewart et al., 2016; Johnson et 

al., 2017; Mez et al., 2017; Wilson et al., 2017; Lee et al., 2019; Smith et al., 2019) and late 

survivors of a single moderate or severe TBI (Johnson et al., 2012; Kenney et al., 2018; 

Zanier et al., 2018) have brought the potential lifelong consequences of TBI exposure to 

wider attention. Nevertheless, the current consensus criteria for CTE neuropathological 

assessment remain preliminary and there are few detailed accounts of its similarities and 

differences with other tauopathies. 

 

While intraneuronal tau aggregates in the form of neurofibrillary tangles (NFTs) have long 

been described in DP/CTE, more recent studies also note the presence of pathological 

astroglial tau accumulation in the form of thorn-shaped astrocytes (TSA) (Ikeda et al., 1995; 

Ikeda et al., 1998; Schmidt et al., 2001; McKee et al., 2009; Saing et al., 2012; McKee et al., 

2013; Kanaan et al., 2016; Mez et al., 2017). Indeed, the importance of this mixed neuronal 

and astroglial pathology in CTE is reflected in preliminary consensus diagnostic criteria for 

the disease, which propose the pathognomonic lesion as “phosphorylated-tau aggregates in 

neurons, astrocytes, and cell processes around small vessels in an irregular pattern at the 

depths of the cortical sulci” (McKee et al., 2016). This sulcal lesion is suggested as 

sufficiently unique to distinguish CTE from other tau associated neurodegenerative diseases 

including Alzheimer disease (AD), frontotemporal lobar degeneration characterized by tau 

inclusions (FTLD-tau) - including progressive supranuclear palsy (PSP), corticobasal 

degeneration (CBD) and Pick’s disease (PiD) (Cairns et al., 2007; Montine et al., 2012; 

Kovacs, 2015), as well as the pathologies of primary age-related tauopathy (PART) and 

aging-related tau astrogliopathy (ARTAG) (Crary et al., 2014; Kovacs et al., 2016).  



 

However, there remains debate regarding whether tau found at sulcal depths is solely found in 

individuals with a history of head impacts, or if it can occur in individuals with no contact 

sport or TBI history (Iverson et al., 2019).  

 

Beyond the potentially unique distribution of tau pathologies in CTE, little is known 

regarding tau composition and post-translational modifications. Of the six tau isoforms 

containing either 3 or 4 microtubule-binding repeat domains (3R vs 4R tau) (Goode et al., 

2000), NFTs in AD and PART contain both 3R and 4R tau (Espinoza et al., 2008; Santa-

Maria et al., 2012; Crary et al., 2014). In contrast, while the Pick bodies and ramified 

astrocytes of PiD contain primarily 3R tau (Irwin et al., 2016), the astrocytic tau pathologies 

of PSP, CBD and ARTAG are comprised of 4R tau (Cairns et al., 2007; Ferrer et al., 2014).  

Regarding CTE pathology, biochemical analysis of material from two former boxers with 

DP/CTE reported NFTs comprising both 3R and 4R tau, similar to AD (Schmidt et al., 2001; 

McKee et al., 2013).  A further case series indicates that tau in CTE displays conformations 

and phosphoepitopes comparable to those observed early in NFT maturation in AD (Kanaan 

et al., 2016). Nonetheless, comprehensive assessment of the phosphorylation, truncation and 

conformation of both glial and neuronal tau pathologies in CTE has not previously been 

assessed, particularly within the context of other established tauopathies (Ferrer et al., 2014; 

Kovacs, 2015; Irwin et al., 2016).  

 

Here, we report immunohistochemical observations on extensive tau phenotypic analysis of 

autopsy-derived material from individuals with known CTE neuropathologies and histories of 

exposure to either repetitive sport-related mild TBI, or moderate/severe TBI, when compared 

to aging-associated and primary neurodegenerative tauopathies. Specifically, applying 

antibodies specific for tau isoform, multiple phosphoepitopes, caspase-mediated truncation, 

and novel monoclonal antibodies capable of differentiating 3R/4R tau in AD from the 

conformationally-distinct FTLD-tau (Gibbons et al., 2018; Gibbons et al., 2019), we 

demonstrate that while the NFTs and astroglial tau pathologies of CTE differ 

immunohistochemically from each other, they recapitulate features of AD/PART and 

ARTAG, respectively.



 

 

MATERIALS AND METHODS 

Cohort Demographics 

All cases were obtained from the Glasgow TBI Archive, Department of Neuropathology, 

Queen Elizabeth University Hospital, Glasgow, UK or the University of Pennsylvania Center 

for Neurodegenerative Disease Research (CNDR) Brain Bank, Philadelphia, PA, USA. Brain 

tissue was acquired by means of planned donation or at routine diagnostic autopsy. Ethical 

approval for use of tissue in this study was provided by the West of Scotland Research Ethics 

Committee (Project ID 225271); and the Greater Glasgow and Clyde Biorepository 

(Application Number 340), as well as the institutional review board of the University of 

Pennsylvania.  

 

Cases were selected with a history of participation in contact sports: American football (n=4), 

rugby (n=3), soccer (n=2), or boxing (n=1), or a remote history of single moderate or severe 

TBI caused by assault (n=1), motor vehicle collision (n=1) or fall (n=1). One additional case 

sustained one mild and one moderate TBI caused by falls (n=1). Cases were selected with 

previously confirmed CTE neuropathologic change (CTE-NC) (Lee et al., 2019) based on the 

preliminary consensus criteria for the neuropathological evaluation of CTE (McKee et al., 

2016).  Notably, in addition to CTE neuropathology, multiple cases also displayed co-morbid 

neuropathologies (n=8) as has previously been reported (Lee et al., 2019). Clinical, 

demographic and neuropathologic information, including integrated clinicopathologic 

diagnoses (Lee, 2018) for all cases is presented in Table 1.   

 

To permit comparisons of CTE tau pathologies with those of established neurodegenerative 

disease, material from patients without documented history of TBI or participation in contact 

sport was selected that met neuropathological criteria for the diagnosis of AD (Braak Stage V 

or VI; n=6) or FTLD-tau as Pick’s disease (PiD) (n=6), PSP (n=6), or CBD (n=6). In 

addition, non-demented controls without history of TBI and with known aging-related tau 

pathologies were selected including; PART (n=1), ARTAG and PART (n=3) and ARTAG 

with low AD neuropathologic change (n=4) (Cairns et al., 2007; Montine et al., 2012; Crary 

et al., 2014; Kovacs et al., 2016; McKee et al., 2016) (Table 1).  

 

Brain Tissue Handling 



 

Whole brains from the Glasgow TBI Archive were fixed in 10% formol saline at autopsy for 

a minimum of two weeks prior to dissection. Standardized anatomical sampling, tissue 

processing and paraffin embedding were performed as previously described (Graham et al., 

1995). From the University of Pennsylvania CNDR Brain Bank, tissue blocks cut from fresh 

brains were fixed overnight in 70% ethanol and 150mMol sodium chloride or 10% neutral 

buffered formalin and processed to paraffin as previously described (Toledo et al., 2014).  

From each case, 8µm tissue sections were prepared from regions with stereotypical CTE 

neuropathology at the depths of cortical sulci. For comparison, regions displaying hallmark, 

disease-specific pathologies were selected from non-trauma control cases of AD (NFTs), 

PART (NFTs), PiD (Pick bodies and ramified astrocytes), PSP (tufted astrocytes), CBD 

(astrocytic plaques) and ARTAG (TSA) (Cairns et al., 2007; Montine et al., 2012; Crary et 

al., 2014; Kovacs et al., 2016). 

 

Single Immunohistochemical Labeling 

Serial tissue sections for all cases were subjected to deparaffinization and rehydration to H2O 

before being immersed in 3% aqueous H2O2 (15 minutes) to quench endogenous peroxidase 

activity. Antigen retrieval was performed via microwave pressure cooker in either Tris/EDTA 

or citrate buffer, with or without formic acid pre-treatment, as optimized for each antibody 

(Table 2). Sections were blocked using normal horse serum (Vector Labs) in Optimax buffer 

(BioGenex) for 30 minutes followed by incubation in the primary antibody overnight at 4°C. 

Specifically, a panel of tau antibodies (Table 2) was applied targeting multiple 

phosphoepitopes including S202 (CP13) (Jicha et al., 1999), S396/S404 (PHF1) (Greenberg 

et al., 1992; Otvos et al., 1994), S212/T214 (AT100) (Hoffmann et al., 1997; Zheng-

Fischhofer et al., 1998) and S262; 3 or 4 microtubule-binding domain repeats (RD3 & RD4) 

(de Silva et al., 2003); caspase-cleaved tau at Asp421 (Tau-C3) (Gamblin et al., 2003). In 

addition we applied the recently characterized antibodies GT-7 & GT-38 (Gibbons et al., 

2018; Gibbons et al., 2019). Evidence from co-immunofluorescence studies in human tissue 

with FTLD-tau and AD-tau suggest that GT-38 requires the presence of both 3R and 4R tau. 

Moreover, it was demonstrated that GT-38 binding requires a pathological conformation of 

AD-tau since chemical denaturation leads to a reduction of GT-38 binding (Gibbons, G. S. et 

al. 2018 J Neuropathol Exp Neurol 77, 216-228).	 

 

After rinsing, sections were incubated in a biotinylated universal secondary antibody (Vector 

Labs) for 30 minutes, followed by the avidin-biotin complex for 30 minutes (Vector Labs). 



 

Visualization was achieved using the DAB peroxidase substrate kit (Vector Labs). Sections 

were counterstained with hematoxylin, followed by rinsing, dehydration, and coverslipping 

using cytoseal 60.  Tissue sections from a case with neuropathologically confirmed AD were 

included as a positive control in all staining procedures. Omission of the primary antibody 

using the same AD case was performed in parallel to control for non-specific binding. 

Notably, 3 cases (Table 3: Cases 9 (CTE neuropathology), 11 (CTE neuropathology) and 15 

(ARTAG/PART)) failed to demonstrate immunoreactivity to antibodies specific for 3R and 

4R tau due to fixation sensitivity, as has been reported previously with these antibodies 

(Espinoza et al., 2008; Ferrer et al., 2014).  

 

Double Immunofluorescent Labeling  

Serial tissue sections from a subset of cases (CTE n=5, ARTAG n=2, AD n=2) were selected 

for double labeling immunofluorescence to confirm and validate morphological identification 

of cell types (astrocytes versus neurons) as identified by both PHF1 and GT-38. Specifically, 

sections were labelled with combinations of tau antibodies (PHF1 or GT-38) and cell-type 

specific markers, namely MAP2 for neurons and GFAP for astrocytes using established 

protocols (Johnson et al., 2016). Briefly, following deparaffinization and rehydration, antigen 

retrieval was performed as described above and tissue blocked in the relevant species-specific 

serum (1%) (Vector Labs). Primary antibodies were applied serially for 20 hours (4oC) 

specific for PHF1 (1:100) or GT-38 (1:100), followed by glial fibrillary acidic protein 

(GFAP) (Abcam, Cambridge, MA; 1:200) or the microtubule-associated protein 2 (MAP2) 

(Abcam, Cambridge, MA; 1:200). After rising, the corresponding Alexa Fluor (Invitrogen, 

Carlsbad, CA) secondary antibody was applied at 1:500 in a 2% species-specific blocking 

solution for 2 hours at room temperature. Serial sections of positive control tissue (AD) were 

subjected to the entire procedure with omission of subsets of primary antibodies to control for 

non-specific immunofluorescence. Following rinsing, all double fluorescent-immunolabeled 

sections were incubated in TrueView autofluorescence quenching reagent (Vector Labs) for 5 

minutes at room temperature before being rinsed and coverslipped using Vectashield 

mounting medium (Vector Labs). 

 

Analysis of Immunohistochemical Findings 

Using a standardized approach, the extent of immunoreactivity for each antibody was scored 

relative to that observed using an index antibody in each individual case, as has been 

described previously (Ferrer et al., 2014). Specifically, a semi-quantitative score was used to 



 

denote the extent of immunoreactivity relative to that of PHF1 as: absent or nearly absent 

(<5% concordance with the extent of PHF1 immunoreactivity): minimal (5-30% 

concordance); moderate (30-70% concordance); or extensive (>70% concordance). PHF1 was 

selected as the index antibody given its widely reported use for the identification of tau 

pathologies across neurodegenerative diseases and recommended use for the identification of 

CTE pathology in preliminary consensus criteria (McKee et al., 2016). Under this protocol, 

scoring does not reflect the number of positive cells or permit comparisons of the extent of 

pathology between cases, but rather reflects the relative extent to which a particular antibody 

recognizes the burden of tau pathology as identified via PHF1 in each field of interest. Glial 

versus neuronal pathologies were distinguished based on characteristic cellular morphologies. 

A subset of sections was reviewed and scored independently by two observers (JDA & VEJ), 

with good interrater reliability (Cohen’s Kappa 0.71). Where there was a discrepancy in 

scoring, cases were jointly reviewed and a consensus score reached. 

 

RESULTS 

 

Consistent with prior descriptions of CTE neuropathology (McKee et al., 2016), each TBI 

case displayed PHF1 positive neurons and astrocytes in a patchy and perivascular distribution 

concentrated at the depths of cortical sulci (Fig 1). Astrocytes typically displayed thorn-

shaped morphologies, with short, thickened processes (Ikeda et al., 1995; Kovacs et al., 2016; 

Kovacs et al., 2017a), frequently in the immediate subpial region at the sulcal depth, in 

addition to being observed in a patchy and perivascular distribution within deeper layers of 

cortex. Neuronal tau pathology at the depths of cortical sulci in cases with CTE 

neuropathology displayed the morphology of NFTs, consistent with historical and 

contemporary descriptions (Corsellis et al., 1973; Geddes et al., 1996; Geddes et al., 1999; 

Omalu et al., 2005; McKee et al., 2009; McKee et al., 2013; McKee et al., 2016). The 

distinctive cellular morphologies of CTE astrocytes and neurons were confirmed via double 

immunofluorescence labeling on a subset of cases as described. Specifically, NFTs identified 

via PHF1 co-localized with MAP2, but not GFAP. Conversely, thorn-shaped astrocytes 

(TSA) were observed to co-localize with GFAP but not MAP2, consistent with findings in 

AD and ARTAG (Figs 7, S1, S2).  

 

As expected, neurodegenerative disease controls displayed the hallmark and cell-specific tau 

pathologies characteristic for each diagnosis as identified by PHF1. Specifically, FTLD-tau 



 

controls demonstrated Pick bodies and, in some cases, ramified astrocytes in PiD, tufted 

astrocytes in PSP and astrocytic plaques in CBD.  AD cases had NFTs in a bilaminar cortical 

distribution in addition to diffuse neuritic threads. Controls with aging related pathologies 

displayed limited cortical NFT pathology consistent with PART or low AD neuropathological 

change, as well as TSA consistent with ARTAG in white matter, perivascular, gray matter, 

subpial, or subependymal distributions.  

 

Astroglial pathology of CTE contains 4R tau only, whereas neurofibrillary tangles are 

comprised of both 3R and 4R tau 

Tau positive astrocytes within regions of CTE neuropathology were composed of 4R tau only 

in virtually all cases (Figs 2 & 3; Table 3). Specifically, in cases demonstrating adequate 

immunoreactivity, robust and consistent immunoreactivity to RD4 was observed in astrocytes 

within the subpial region, as well as those extending to deeper cortical layers. In contrast, 

astrocytic immunoreactivity to the RD3 antibody was absent in all but two cases where just 

minimal staining was observed. Notably, TSA of CTE were morphologically 

indistinguishable from those within non-injured control cases with ARTAG, which were also 

comprised almost entirely of 4R tau, consistent with previous reports (Lopez-Gonzalez et al., 

2013; Ferrer et al., 2018) (Fig 3). Several cases with CTE neuropathology displayed TSA 

elsewhere in the tissue sections examined, including within subcortical white matter, 

subependymal, and subpial regions, in keeping with descriptions of ARTAG. These 

astrocytes were morphologically indistinguishable from those in the sulcal depths associated 

with stereotypical CTE neuropathology and displayed the same pattern of selective 4R tau 

immunoreactivity.  

In contrast, ramified astrocytes of Pick’s disease were comprised of 3R tau, with a subset of 

cells in just one of the six cases also displaying 4R immunoreactivity, as has been reported 

previously in a subset of cases (Arai et al., 2001; Ferrer et al., 2014; Irwin et al., 2016). The 

tufted astrocytes in PSP and astrocytic plaques in CBD controls displayed immunoreactivity 

for 4R tau only (Fig 3). 

 

While astrocytes in CTE were typically 4R tau-immunoreactive / 3R tau-negative, NFTs in 

these regions were immunoreactive for both 3R and 4R tau isoforms, similar to those of AD 

and PART (Fig 2; Table 3) and distinct from Pick bodies (3R positive only) (Fig 2).  

 



 

Post-translational modification of tau in CTE neuropathology is consistent with ARTAG 

and AD 

The post-translational modifications of tau within astrocytes and NFTs of CTE were observed 

to recapitulate those of ARTAG and AD with respect to all antibodies assessed. Specifically, 

tau immunoreactive astrocytes in CTE exhibited phosphorylation at residues S202 (CP13), 

S212/T214 (AT100), S262, and S396/S404 (PHF1) (Fig 4, Table 4). Typically, CP13, 

AT100, and PHF1 displayed dense cytoplasmic staining throughout the cell body.  In 

contrast, pS262 immunoreactivity displayed both robust and confluent immunoreactivity (Fig 

4), as well as a more dot-like pattern of immunoreactivity in a subset of cases/cells that was 

often concentrated in the peripheral processes of the astrocyte (Fig S3).  Caspase-mediated 

truncation at D421 (Tau-C3), however, was virtually never seen in astrocytes in CTE, with 

just minimal cells observed in a single case. Again, all findings were consistent across TSA in 

subpial and deeper cortical astrocytes within the sulcal depth. This profile of staining was 

also indistinguishable from that observed in non-injured, ARTAG control cases (Fig 4). In 

contrast with the astroglial pathologies of CTE, ARTAG, PiD and CBD, which did not 

typically demonstrate immunoreactivity to Tau-C3, subsets of tufted astrocytes in two PSP 

cases demonstrated Tau-C3 immunoreactivity, consistent with previous reports (Fig 4) 

(Ferrer et al., 2014).  

 

Notably, NFTs in CTE also displayed robust cytoplasmic immunoreactivity for all tau 

phosphoepitopes including S202 (CP13), S212/T214 (AT100), S262 and S396/S404 (PHF1) 

(Fig 5). Moreover, a sub-population of NFTs in CTE demonstrated evidence of caspase-

mediated truncation of tau at D421 (Tau-C3) (Fig 5), consistent with that observed previously 

(Kanaan et al., 2016), and in AD here and in prior reports (Gamblin et al., 2003). 

 

FTLD-tau controls were consistent with prior characterizations performed using these 

antibodies (Buee and Delacourte, 1999; Guillozet-Bongaarts et al., 2007; Ferrer et al., 2014), 

and displayed immunoreactivity for antibodies recognizing phosphorylation at residues S202 

(CP13), S212/T214 (AT100), S262 (p262), and S396/S404 (PHF1). Notably, in one case of 

PiD, Picks bodies appeared weakly immunoreactive for p262 (Fig 5). In contrast, neurons 

were otherwise negative for tau p262 in all other five PiD cases. Notably, previous work has 

demonstrated conflicting results with regard to pS262 immunoreactivity in PiD (Probst et al., 

1996; Delacourte et al., 1998; Ferrer et al., 2002; Zhukareva et al., 2002; Irwin et al., 2016; 

Falcon et al., 2018). However, greater immunoreactivity has been reported in ethanol versus 



 

formalin fixed tissue (Irwin et al., 2016), consistent with our observations. Moreover, the 

intensity of pS262 immunoreactivity was reported as greater in cases with 4R tau inclusions 

(Zhukareva et al., 2002). 

 

Neurofibrillary tangles, but not astrocytes, in CTE show a similar conformational profile to 

those in AD  

Recently developed conformation-selective antibodies, GT-7 and GT-38, have been shown to 

detect a conformation dependent epitope present in tau within the inclusions of AD requiring 

both 3R and 4R tau, but not the 3R or 4R tau-only inclusions of other primary tauopathies, 

with both antibodies labeling AD-tau in a phosphorylation-independent manner (Gibbons et 

al., 2018; Gibbons et al., 2019). In CTE neuropathology, both GT-7 and GT-38 showed 

moderate to strong labelling of NFTs at the depths of sulci, consistent with AD (Fig 6, Table 

3). However, in contrast with NFTs, astrocytes within CTE were negative for GT-7 or GT-38 

in all but four cases in which there was very occasional and minimal positivity to one or the 

other antibody (Table 3). These cells did not differ in their morphology, and no notable 

differences in fixation, clinical history or anatomic distribution distinguished them from the 

rest of the cohort. Double immunofluorescence labeling in a subset of cases confirmed 

neuron-specific colocalization of GT-38 with MAP-2, and an absence of co-localization with 

GFAP (Fig 7, S2).  

As anticipated, NFTs in non-injured AD and PART cases demonstrated robust 

immunoreactivity for both antibodies (Fig 6, Table 3), while Pick bodies and the glial 

profiles of ARTAG, CBD and PSP were negative for both GT-7 and GT-38 (Fig 6). Notably, 

the ramified astrocytes within the single PiD case that were immunoreactive for both 3R and 

4R tau, were not immunoreactive for GT-7 or GT-38. Among TBI cases with co-morbid 

diagnoses of FTLD-tau, both GT-7 and GT-38 antibodies stained the characteristic NFTs of 

CTE but not the adjacent FTLD-tau disease-associated pathologies within the same tissue 

section.  

 

DISCUSSION 

 

Here, we performed immunohistochemical characterization of tau phenotypes within the 

cellular constituents of CTE in patients with known exposure to repetitive mild TBI or 

moderate/severe TBI.  Intriguingly, it was found that the tau species within NFTs and 

immediately adjacent astrocytes in CTE are phenotypically distinct. Specifically, the NFTs of 



 

CTE displayed an immunophenotype that mirrored that seen in AD or PART, including being 

both 3R and 4R immunoreactive and positive for antibodies previously shown to bind to a 

conformation dependent epitope present within the tau inclusions of AD. In contrast, the 

astroglial component of CTE was solely 4R immunoreactive and without evidence of AD 

conformation, which was indistinguishable from ARTAG. Notably, while the neuronal and 

glial pathologies of CTE showed similarity with those of AD, PART and ARTAG, they were 

distinct from those of the primary FTLD tauopathies of PiD, CBD and PSP. As such, our data 

suggest that while pattern and distribution of involvement might be distinct, the tau 

pathologies of CTE show considerable overlap with the immunoreactivity profiles of both 

aging-related tau pathologies and AD.  

 

Typically, we observed tau immunoreactive astrocytes within CTE to have the characteristic 

morphology of TSA, in keeping with those encountered in ARTAG, in both the non-injured 

control material studied here and in multiple other reports (Lopez-Gonzalez et al., 2013; 

Kovacs et al., 2016; Kovacs et al., 2017a; Kovacs et al., 2018a). Notably, TSA have long 

been described in material from patients with and without concomitant neurodegenerative 

disease. In particular, their appearance in association with increased age led to the recognition 

of the specific entity recently defined as ARTAG, wherein TSA are described in subpial, 

subependymal and perivascular distributions (Ikeda et al., 1995; Ikeda, 1996; Ikeda et al., 

1998; Schultz et al., 2004; Lace et al., 2012; Kovacs et al., 2013; Kovacs et al., 2016). While 

the clinical significance of ARTAG has yet to be fully explored (Kovacs et al., 2017b), the 

morphological resemblance between astrocytes immunoreactive for phosphorylated tau in 

both CTE and ARTAG raises the possibility that these entities share common pathogenic 

mechanisms (Kovacs et al., 2016; Liu et al., 2016; Kovacs et al., 2017b; Goldfinger et al., 

2018; Kovacs et al., 2018a; Forrest et al., 2019). Our data demonstrate that the astrocytes of 

CTE and ARTAG not only share similar morphologies, but display indistinguishable tau 

immunophenotypes with respect to the panel of antibodies applied. Specifically, consistent 

with previous reports characterizing ARTAG (Kovacs et al., 2016; Ferrer et al., 2018) and 

one limited description in CTE (McKee et al., 2013), TSAs in CTE were typically 4R tau-

immunoreactive/3R tau-negative, with only very occasional cells displaying 

immunoreactivity for 3R tau in a subset of cases. Further, astrocytes in CTE demonstrated a 

profile of immunoreactivity for multiple phospho-epitopes of tau consistent with descriptions 

of ARTAG here and previously (Lopez-Gonzalez et al., 2013; Ferrer et al., 2018).  

 



 

Beyond this astroglial pathology, the regionally co-existing NFTs in CTE appeared 

morphologically and phenotypically consistent with those of AD and PART, comprised of 

both 3R and 4R tau, and immunoreactive for tau hyperphosphorylated at multiple phospho-

epitopes, including S202, S212/T214, S262, and S396/S404. Notably, characterization by 

others has highlighted additional shared features of tau including phosphatase-activating 

domain exposed conformation (TNT1 antibody), tau oligomers (TOC1), and truncation at 

D421 (Tau-C3) (Kanaan et al., 2016). Here we demonstrate that a subset of NFTs in AD, 

PART and CTE demonstrate caspase-mediated truncation at D421. Interestingly, Tau-C3 

positivity has previously been reported as relatively sparse in CTE neuropathology when 

compared with AD (Kanaan et al., 2016). However, the diminished total burden of Tau-C3 

immunoreactivity may reflect a virtual absence of immunoreactivity in TSA, as observed 

here. Truncation of tau at D421 has been reported as an early event in the evolution of NFTs 

in AD (Gamblin et al., 2003; Rissman et al., 2004; Cotman et al., 2005), although it may not 

be essential for filament formation (Delobel et al., 2008). Moreover, experimental data 

indicates caspase-mediated truncation may promote polymerization and seeding of full length 

tau (Abraha et al., 2000; Berry et al., 2003; Gamblin et al., 2003; Rissman et al., 2004), as 

well as contribute to neurotoxicity via apoptosis (Fasulo et al., 2000; Chung et al., 2001; 

Fasulo et al., 2005). As such, the relative absence of Tau-C3 immunoreactivity in TSA of 

CTE may have implications as to the potential pathological nature of tau immunoreactive 

TSA in CTE. 

 

The astrocytic tau pathologies of both CTE and ARTAG also failed to display 

immunoreactivity for the recently developed tau antibodies, GT-7 and GT-38, previously 

demonstrated to detect  a conformation-dependent epitope of tau in AD in a phosphorylation-

independent manner (Gibbons et al., 2018; Gibbons et al., 2019). Furthermore, these 

antibodies failed to label pathologies comprised of tau with either 3R or 4R isoforms only 

(Gibbons et al., 2018; Gibbons et al., 2019).  Thus, the observation that both GT-7 and GT-38 

bind to NFTs in CTE, but not sulcal TSA, further supports the observation that astrocytic tau 

is 4R only and differs from that of the adjacent NFTs. Indeed, while the characteristic 

pathologies of FTLD-tau were not immunoreactive for either GT-7 or GT-38, as previously 

characterized in detail (Gibbons et al., 2018; Gibbons et al., 2019), the NFTs of CTE, AD and 

PART were consistently immunoreactive for both. 

 



 

The panel of antibodies examined herein were selected for their previous extensive 

characterization and reported differences across a range of neurodegenerative diseases.  As no 

immunolabel examined thus far can morphologically or phenotypically differentiate 

individual cells in CTE from those of other established tauopathies, the distinguishing 

features of this pathology remain dependent on the overall pattern and distribution of 

pathology when using immunohistochemistry (McKee et al., 2016). Notably, this panel is not 

exhaustive, and the use of immunohistochemistry to explore additional, and potentially 

distinguishing tau phenotypes, including ubiquitination and acetylation, will be important. 

Notably, a recent study based on cryo-electron microscopy (cryo-EM) analysis of temporal 

lobe tissue from 3 cases of known CTE suggests that the tau filament structure of CTE is 

distinct from that of AD (Falcon et al., 2019). However, it is noteworthy that all three cases 

demonstrated clinical or neuropathological evidence of other neurodegenerative disease, 

including Parkinson’s disease, FTLD and/or motor neuron disease, in one instance associated 

with C9orf72 mutation (Falcon et al., 2019). Given the diversity and heterogeneity of co-

morbid pathologies reported with CTE here and elsewhere (Mez et al., 2017; Lee et al., 

2019), it will be important to extend cryo-EM studies to a wider range of trauma-associated 

cases. Nonetheless, these data suggest that while tau in CTE might differ from that of other 

established neurodegenerative disease, in particular AD, this may only be detectable by 

means beyond established immunohistochemical or biochemical approaches.  

 

There is increasing recognition that mixed, often multiple pathologies might co-exist in 

patients with neurodegenerative disease, including in those with TBI-related 

neurodegeneration where CTE might serve as the primary pathology driving disease or as a 

co-morbidity in context of an alternate diagnosis (Lee et al., 2019).  Consistent with this, 

most cases with CTE examined here also met criteria for other tauopathies, including AD, 

PSP, and CBD, as previously reported (Lee et al., 2019). Notably, the morphologies and 

immunophenotype of CTE were highly consistent across cases, regardless of the presence or 

extent of co-morbid disease. Moreover, CTE was consistent in phenotype, regardless of the 

nature of TBI exposure, including in three cases with a remote history of single moderate or 

severe TBI. These cases add to the limited number of described cases of single TBI 

associated with CTE neuropathologies, supporting the assertion that it is exposure to TBI 

rather than severity or number of injuries that serves as the primary risk factor for CTE 

(Smith et al., 2013; Maroon et al., 2015; Smith et al., 2019). 

 



 

Collectively, these data indicate the co-existence of distinct tau phenotypes within neurons 

and astrocytes contributing to CTE neuropathology. Moreover, immunohistochemical 

observations were notably consistent across all cases examined, comprised of diverse TBI 

exposure histories. While criteria for delineating the extent or stage of disease in CTE have 

yet to be adequately defined, future explorations of tau immunophenotype in association with 

disease progression will be of importance to examine. 

While the mechanisms driving tau pathology following TBI exposure remain poorly 

understood, it is possible that the differential neuronal and astrocytic components reflect 

mechanistically independent pathological processes. Curiously, TSA in both ARTAG and 

CTE are frequently observed at brain parenchyma-fluid interfaces, including subpial, 

subependymal and perivascular regions (Ikeda et al., 1995; Geddes et al., 1996; Geddes et al., 

1999; Kovacs et al., 2016; McKee et al., 2016; Kovacs et al., 2018a). Moreover, regional 

correlation of ARTAG with astrocytic expression of connexin-43 and aquaporin 4 has led to 

speculation that blood brain barrier (BBB) dysfunction may be of pathologic significance to 

the development of this pathology (Kovacs et al., 2018b). While BBB dysfunction is 

increasingly recognized as an important acute pathology of TBI, even following concussion 

(Weissberg et al., 2014; Johnson et al., 2018), recent data indicates BBB permeability may 

persist chronically in some individuals after severe TBI (Hay et al., 2015) and has also been 

described in cases of CTE (Doherty et al., 2016). However, a potential mechanistic 

relationship between BBB dysfunction and pathological astrocytic tau accumulation remains 

unexplored.  

 

Here we provide new insights into the nature of tau in CTE neuropathologic change directly 

within the context of other neurodegenerative pathologies. Moreover, these data highlight the 

potential challenges in distinguishing trauma-associated tau pathologies from those of other 

diseases at the individual cell level using immunohistochemistry alone. Nonetheless, 

morphological and phenotypic similarities between tau in CTE and those of ARTAG suggests 

the intriguing possibility of shared pathogenic mechanisms. 
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FIGURE LEGEND 

Figure 1. Sulcal depth astrocytic and neuronal tau pathologies in CTE. (a,b) PHF1 

immunohistochemistry reveals neurofibrillary tangle and thorn-shaped astrocyte pathology 

concentrated at the depths of cortical sulci of a former American football player (Case 3) and 

(c,d) chronic survivor of a single severe TBI (Case 11). (b,d) High magnification images 

from the same sulci showing perivascular pathology comprised of mixed neuronal and 

astrocytic populations consistent with the preliminary diagnostic criteria for CTE. All scale 

bars 100 µm.  

 

Figure 2. 3R versus 4R tau immunoreactivity in CTE, AD, PART and PiD. (a) Sulcal 

depth CTE neuropathology with prominent subpial thorn-shaped astrocytes in addition to 

patchy and perivascular thorn-shaped astrocytes and neurofibrillary tangles within the deeper 

layers of cortex (Case 10; PHF1 staining). (b) Higher magnification of box in (a) displaying 

perivascular astrocytic and neuronal tau pathologies. (c) Immunoreactivity specific for 3R tau 

in the same region as (b) showing perivascular neurofibrillary tangles, but an absence of 

immunoreactivity within astrocytes. (d) In contrast, immunohistochemistry specific for 4R 

tau identified cells with both neuronal and astrocytic morphologies in the same region. (e) 

Consistent with previous descriptions, cases meeting diagnostic criteria for AD (Case 25) and 

PART (Case 15) displayed neurofibrillary tangles in the cortex that were immunoreactive for 

3R and 4R tau. In contrast, Pick bodies of PiD within the dentate granule cells of Case 29 

were composed of only 3R tau. Scale bars a-d 100 µm, e 50 µm. 

 

Figure 3. 3R versus 4R tau immunoreactivity within the astrocytic pathologies of CTE, 

ARTAG, PSP, CBD and PiD. Representative examples of serial sections showing 



 

immunoreactivity specific for 4R tau, but not 3R tau, in the thorn-shaped astrocytes in cases 

of both CTE (Case 6) and ARTAG (Case 21), tufted astrocytes in a case with PSP (Case 35) 

and astrocytic plaques within a case of CBD (Case 41). The ramified astrocytes observed in 

just one case of PiD (case 29) were immunoreactive for 3R and 4R tau. Scale bars 50 µm. 

 

Figure 4. Post-translational modifications of tau within astrocytes in CTE, AD, PART, 

ARTAG, PSP, CBD and PiD. Representative examples of serial sections showing the thorn-

shaped astrocytes of CTE (Case 3) and ARTAG (Case 22),  astrocytic plaques of CBD (Case 

41) and ramified astrocytes in a case of PiD (Case 29)  all displayed robust immunoreactivity 

to phosphoepitope antibodies PHF1, CP13, AT100 and pS262, but not Tau-C3 (truncation at 

D421). In contrast with all other astrocytic tau pathologies examined, the tufted astrocytes of 

PSP in a subset of cases (Case 35 pictured here) were labeled with Tau-C3, indicative of 

truncation as described. Scale bars 50 µm.  

 

Figure 5. Post-translational modifications of tau within neurons in CTE, AD, PART and 

PiD. Representative examples of serial sections showing the neurofibrillary tangles of CTE 

(Case 5), AD (Case 28) and PART (Case 15) with immunoreactivity to the phosphoepitope 

antibodies PHF1, CP13, AT100 and pS262, as well as Tau-C3 indicating truncation at D421. 

In addition, while Pick bodies (Case 29) also demonstrated the same post-translational 

modifications, immunoreactivity to p262 and Tau-C3 was noted in just one case as shown 

here within the dentate granule cells, where immunoreactivity was notably less robust. Scale 

bars 50 µm 

 

Figure 6. Neurofibrillary tangles, but not astrocytes, are immunoreactive for antibodies 

that detect a conformation-dependent epitope of tau in AD. PHF1 immunohistochemistry 

revealed sulcal depth astrocytic and neuronal tau pathology in CTE (Case 8), including 

prominent clusters of perivascular and subpial thorn-shaped astrocytes (top left; black 

arrows). However, GT-7 and GT-38 antibodies labeled neurofibrillary tangles in CTE, but not 

thorn-shaped astrocytes, on serial tissue sections (top middle and top right). GT-7 and GT-38 

reliably detected neurofibrillary tangles in AD (Case 28), but failed to label the characteristic 

pathologies of ARTAG (Case 19), PiD (Case 29), PSP (Case 35) or CBD (Case 41).  

 Scale bars: CTE (low power) 100 µm; CTE (high power), AD, PiD, ARTAG, PSP and CBD 

50 µm. 

 



 

Figure 7. Double label immunofluorescence confirms cell-type specific patterns of 

immunoreactivity for GT-38 in CTE. (a-c) PHF1 and GFAP immunoreactivity showing a 

cluster of thorn-shaped astrocytes (arrow heads) that co-localize with GFAP. Adjacent 

neurons (arrows) do not co-localize with GFAP. (d-f) From the same region, a serial tissue 

section shows PHF1 immunoreactive neurons (arrows) that co-localize with MAP2 and 

nearby thorn-shaped astrocyte (arrow head) lacking MAP2 immunoreactivity. (g-l) While 

GT-38 positive cells fail to co-localize with GFAP, they demonstrate co-localization with 

MAP2, confirming their neuronal identity. Scale bars 50 µm. 

 

Figure S1. Double label immunofluorescence confirms perivascular astrocytes in a case 

of CTE. (a-c) PHF1 and GFAP immunoreactivity showing a cluster of thorn-shaped 

astrocytes that co-localize with GFAP positive cells. Cells with the morphological appearance 

of neurons fail to display any co-localization with GFAP immunoreactivity.  Scale bars 100 

µm. 

 

Figure S2. Double label immunofluorescence labelling in cases of ARTAG and AD. A 

case with ARTAG and low ADNC displaying (a-c) PHF1 immunoreactivity showing a 

cluster of TSA that fail to co-localize with MAP2. Note the single MAP2 positive / PHF1 

negative neuron within in the same field. (d-f) TSAs which are PHF1 immunoreactive and 

that co-localize with GFAP. (g-i) GFAP immunoreactive astrocytes in a region observed to 

have extensive PHF1 positive TSA on serial section, but without immunoreactivity to GT-38.  

Tissue from AD cases showing (j-l) PHF1 immunoreactive NFTs that do not co-localize with 

GFAP. (m-o) PHF1 positive neuron that co-localizes with MAP2. (p-r) GT-38 positive 

neuron that fails to co-localize with GFAP and, (s-u) a GT-38 positive neuron that co-

localizes with MAP2. Scale bars 50 µm. 

 

Figure S3. Dot-like immunoreactivity pattern in astrocytes stained for pS262 tau. (a-c) 

A subset of astrocytes showing less confluent and more punctate immunoreactivity for pS262 

in CTE, often observed in astrocytic processes. (a) Case 6 (b) Case 10 (c) Case 8.  Scale bars 

50 µm. 

 

 

 



 

 
Table 1. Demographic and Clinical Summary of Cases   
Case Group Age Sex Sport / TBI 

Exposure  
Integrated 

Clinicopathologic 
Diagnosis  

PMI Source Anatomical 
Region  

Examined 
1 CTE-NC 40s M Football CBD 7 hr Penn-CNDR Frontal 
2 CTE-NC 60s M Football CBD 3 hr Penn-CNDR Frontal 
3 CTE-NC  70s M Football DLB 18 hr Penn-CNDR Frontal 
4 CTE-NC 80s M Football FTLD-TDP 7 hr Penn-CNDR Frontal 
5 CTE-NC 60s M Boxing CTE 24 hr GTBIA Temporal 
6 CTE-NC  70s M Rugby CTE 12 hr GTBIA Insular 
7 CTE-NC 70s M Rugby AD 48 hr GTBIA Frontal 
8 CTE-NC 70s M Rugby Mixed AD/VaD 48 hr GTBIA Frontal 
9 CTE-NC  50s M Soccer CTE Unknown GTBIA Insular 

10 CTE-NC  80s M Soccer AD 24 hr GTBIA Frontal 
11 CTE-NC 50s M sTBI Remote TBI - No NDD 108 hr GTBIA Frontal 
12 CTE-NC 60s M sTBI Remote TBI - No NDD 24 hr GTBIA Temporal 
13 CTE-NC  70s M sTBI CTE 24 hr GTBIA Temporal 
14 CTE-NC 70s M Mild and 

Moderate TBI 
PDD 7.5 hr Penn-CNDR Angular 

   
15 ARTAG, PART 50s M No No NDD 80.5 hr GTBIA Frontal 
16 ARTAG, PART 80s M No PART 19 hr Penn-CNDR Temporal 
17 ARTAG, PART 70s M No No NDD 17hr Penn-CNDR Temporal 
18 PART 60s M No No NDD 11 hr Penn-CNDR Temporal 
19  ARTAG, Low ADNC 70s F No No NDD 18 hr Penn-CNDR Amygdala 
20 ARTAG, Low ADNC 70s F No No NDD 19 hr Penn-CNDR Amygdala 
21 ARTAG, Low ADNC 70s F No No NDD 18 hr Penn-CNDR Temporal 
22 ARTAG, Low ADNC 80s M No No NDD; CVD 7 hr Penn-CNDR Amygdala 

   
23 AD 60s M No AD 13.5 hr Penn-CNDR Angular 
24 AD 60s M No AD 5 hr Penn-CNDR Frontal 
25 AD 70s M No AD 4 hr Penn-CNDR Angular 
26 AD 70s M No AD 8.5 hr Penn-CNDR Angular 
27 AD 70s F No AD 11 hr Penn-CNDR Temporal 
28 AD 80s F No AD 6 hr GTBIA Cingulate 

   
29 FTLD-Tau 50s M No PiD 11 hr Penn-CNDR Temporal 
30 FTLD-Tau 60s M No PiD Unknown Penn-CNDR Temporal 
31 FTLD-Tau 70s M No PiD 22 hr Penn-CNDR Frontal 
32 FTLD-Tau 70s M No PiD 4 hr Penn-CNDR Angular 
33 FTLD-Tau 80s F No PiD 24 hr Penn-CNDR Frontal 
34 FTLD-Tau 50s M No PiD 10 hr Penn-CNDR Frontal 
35 FTLD-Tau 70s M No PSP 14 hr Penn-CNDR Frontal 
36 FTLD-Tau 80s M No PSP 23 hr Penn-CNDR Angular 
37 FTLD-Tau 70s M No PSP 23 hr Penn-CNDR Frontal 
38 FTLD-Tau 60s M No PSP 13 hr Penn-CNDR Angular 
39 FTLD-Tau 70s M No PSP 17 hr Penn-CNDR Temporal 
40 FTLD-Tau 70s M No PSP 19 hr Penn-CNDR Frontal 
41 FTLD-Tau 60s F No CBD 16 hr Penn-CNDR Temporal 
42 FTLD-Tau 70s M No CBD 11 hr Penn-CNDR Angular 
43 FTLD-Tau 50s M No CBD 41 hr Penn-CNDR Frontal 
44 FTLD-Tau 70s M No CBD 7.5 hr Penn-CNDR Temporal 
45 FTLD-Tau 80s M No CBD 11 hr Penn-CNDR Frontal 
46 FTLD-Tau 70s M No CBD 5 hr Penn-CNDR Frontal 



 

Key: PMI: Post-mortem interval; CTE-NC: Chronic traumatic encephalopathy neuropathologic change; CBD: Corticobasal degeneration; DLB: 
Dementia with Lewy bodies; FTLD-TDP: Frontotemporal lobar degeneration with TDP-43 inclusions; AD: Alzheimer’s Disease; VaD: Vascular 
dementia; TBI: Traumatic brain injury; NDD: Neurodegenerative disease; PDD: Parkinson Disease Dementia; ARTAG: Aging-related tau 
astrogliopathy; PART: Primary age-related tauopathy; ADNC: Alzheimer’s Disease neuropathologic change; CVD: Cerebrovascular disease; PiD: 
Pick’s Disease; PSP: Progressive supranuclear palsy; sTBI: Single moderate or severe TBI; GTBIA: Glasgow TBI Archive; Penn-CNDR: University 
of Pennsylvania Center for Neurodegenerative Disease Research 

 

Table 2. Antibody Details 
Antibody Antigen Monoclonal / 

Polyclonal 
(Species) 

Antigen 
Retrieval 

Dilution Source 

RD3 Three microtubule 
binding domain 
repeat (3R) tau 

Monoclonal (Ms) FA & Citrate 
Buffer (pH 6.0) 

DAB: 1:12000 
(Penn-CNDR) 
1:6000 
(GTBIA) 

Millipore Sigma 
(Burlington, MA) 

RD4 Four microtubule 
binding domain 
repeat (4R) tau 

Monoclonal (Ms) FA & Citrate 
Buffer (pH 6.0) 

DAB: 1:400 Millipore Sigma 
(Burlington, MA) 

PHF1 Tau pS396 and 
pS404 

Monoclonal (Ms) Tris-EDTA 
Buffer (pH 8.0) 

DAB: 1:1000 
IF: 1:100 

Dr. Peter Davies (Albert 
Einstein College of 
Medicine, NY) 

CP13 Tau pS202 Monoclonal (Ms) Tris-EDTA 
Buffer (pH 8.0) 

DAB: 1:1000 Dr. Peter Davies (Albert 
Einstein College of 
Medicine, NY) 

Tau pS262 Tau pS262 Polyclonal (Rb) Citrate Buffer 
(pH 6.0) 

DAB: 1:1000 Millipore Sigma 
(Burlington, MA) 

AT100 Tau pS212 and 
pT214 

Monoclonal (Ms) Tris-EDTA 
Buffer (pH 8.0) 

DAB: 1:1000 ThermoFisher 
(Waltham, MA) 

Tau-C3 Caspase-cleaved tau, 
truncated at Asp421 

Monoclonal (Ms) Citrate Buffer 
(pH 6.0) 

DAB: 1:1000 Millipore Sigma 
(Burlington, MA) 

GT-7 Conformation 
dependent tau 

Monoclonal (Ms) FA & Citrate 
Buffer (pH 6.0) 

DAB: 1:1000 Penn CNDR 
(Philadelphia, PA) 

GT-38 Conformation 
dependent tau 

Monoclonal (Ms) FA & Citrate 
Buffer (pH 6.0) 

DAB: 1:1000 
IF: 1: 1:100 

Penn CNDR 
(Philadelphia, PA) 

MAP2 Microtubule-
associated protein 2 

Polyclonal (Ck) Tris-EDTA 
Buffer (pH 8.0) 

IF: 1:200 Abcam (Cambridge, 
UK) 

GFAP Glial fibrillary acid 
protein, astrocyte-
specific 

Monoclonal (Rb) Tris-EDTA 
Buffer (pH 8.0) 

IF: 1:200 Abcam (Cambridge, 
UK) 

FA denotes 5 minutes of formic acid pre-treatment; Citrate versus Tris-EDTA buffer denotes pretreatment with 
heat/pressure submerged in respective buffer. DAB: 3,3′-Diaminobenzidine visualization protocol;  IF: 
immunofluorescence protocol; Rb: rabbit; Ms: mouse; Ck: Chicken. 

 



 

Table 3. Tau Phenotype Semi-Quantitative Scores – 3R, 4R and Conformation 
3R 4R GT-7 GT-38 Case TSA NFT TSA NFT TSA NFT TSA NFT 

1 – CTE-NC - ++ +++ +++ - ++ - ++ 
2 - CTE-NC - ++ +++ +++ - ++ - ++ 
3 - CTE-NC - +++ +++ +++ - +++ - +++ 
4 - CTE-NC + ++ +++ +++ - ++ + ++ 
5 - CTE-NC - +++ +++ +++ - +++ - +++ 
6 - CTE-NC  - +++ +++ +++ - +++ - +++ 
7 - CTE-NC + +++ +++ +++ - +++ - +++ 
8 - CTE-NC - +++ +++ +++ + +++ + +++ 
9 - CTE-NC x x x x x x x x 
10 - CTE-NC - +++ +++ +++ - +++ - +++ 
11 - CTE-NC x x x x - +++ - +++ 
12 - CTE-NC - ++ ++ ++ - ++ - ++ 
13 - CTE-NC - +++ ++ ++ + +++ + +++ 
14 - CTE-NC - +++ +++ +++ + ++ - ++ 
 
 TSA NFT TSA NFT TSA NFT TSA NFT 
15 - ARTAG, PART x x x x - +++ - +++ 
16- ARTAG, PART - + +++ +++ - +++ - +++ 
17- ARTAG, PART - +++ +++ +++ - +++ - +++ 
18 - PART N/A ++ N/A ++ N/A ++ N/A ++ 
19 - ARTAG, Low AD-
NC 

- +++ +++ +++ - ++ - +++ 

20 - ARTAG, Low AD-
NC 

+ ++ +++ +++ + +++ + +++ 

21 - ARTAG, Low AD-
NC 

- +++ +++ +++ - +++ - +++ 

22 - ARTAG, Low AD-
NC 

- +++ +++ +++ - +++ - +++ 

 
 NFT NFT NFT NFT 
23 - AD +++ +++ +++ +++ 
24 - AD +++ +++ +++ +++ 
25 - AD +++ +++ +++ +++ 
26 - AD +++ +++ +++ +++ 
27 - AD +++ +++ +++ +++ 
28 - AD ++ ++ +++ +++ 
 
 Pick 

Bodies 
Ramified 

Astro 
Pick 

Bodies 
Ramified 

Astro 
Pick 

Bodies 
Ramified 

Astro 
Pick 

Bodies 
Ramified 

Astro 
29 - PiD +++ +++ - ++ - - - - 
30 - PiD +++ N/A - N/A - N/A - N/A 
31 - PiD +++ +++ - - - - - - 
32 - PiD +++ N/A - N/A - N/A - N/A 
33 - PiD +++ N/A - N/A - N/A - N/A 
34 - PiD +++ +++ - - - - - - 
 Tufted Astrocytes Tufted Astrocytes Tufted Astrocytes Tufted Astrocytes 
35 - PSP - +++ - - 
36 - PSP - +++ - - 
37 - PSP - ++ - - 
38 - PSP - +++ - - 
39 - PSP - ++ - - 
40 - PSP - +++ - - 
 Astrocytic Plaques Astrocytic Plaques Astrocytic Plaques Astrocytic Plaques 
41 - CBD - +++ - - 
42 - CBD - +++ - - 
43 - CBD - +++ - - 
44 - CBD - +++ - - 
45 - CBD - +++ - - 
46 - CBD - +++ - - 
Semi-quantitative Scoring: - absent, or nearly absent (≤5% concordance with extent of PHF1); + minimal (5-30% concordance); ++ 
moderate (30-70% concordance); +++ extensive (>70% concordance); X: No immunoreactivity   
CTE-NC: Chronic traumatic encephalopathy neuropathologic change; TSA: thorn-shaped astrocytes; NFT: neurofibrillary tangles; 
ARTAG: Aging-related tau astrogliopathy; PART: Primary age-related tauopathy; AD-NC: Alzheimer’s Disease neuropathologic 
change; AD: Alzheimer’s Disease; FTLD-Tau: Frontotemporal lobar degeneration tauopathies; N/A: not applicable. 



 

 

Table 4. Tau Phenotype Semi-Quantitative Scores – Post-Translational Modifications 
PHF-1 CP13 AT100 pS262 Tau-C3 Case TSA NFT TSA NFT TSA NFT TSA NFT TSA NFT 

1 - CTE-NC +++ +++ +++ +++ + +++ +++ +++ - + 
2 - CTE-NC +++ +++ +++ +++ +++ +++ +++ +++ - + 
3 - CTE-NC +++ +++ +++ +++ +++ +++ +++ +++ - - 
4 - CTE-NC +++ +++ +++ +++ ++ ++ +++ +++ - ++ 
5 - CTE-NC +++ +++ +++ +++ +++ +++ + +++ - + 
6 - CTE-NC +++ +++ +++ +++ +++ +++ ++ +++ - + 
7 - CTE-NC +++ +++ +++ +++ +++ +++ + +++ - + 
8 - CTE-NC +++ +++ +++ +++ +++ +++ ++ +++ - + 
9 - CTE-NC +++ +++ +++ +++ +++ +++ - + x x 
10 - CTE-NC +++ +++ +++ +++ +++ +++ ++ +++ + ++ 
11 - CTE-NC +++ +++ +++ +++ +++ +++ - +++ - + 
12 - CTE-NC +++ +++ +++ +++ ++ +++ - +++ - + 
13 - CTE-NC +++ +++ +++ +++ +++ +++ ++ +++ - ++ 
14 - CTE-NC +++ +++ +++ +++ +++ +++ +++ +++ - + 
 
 TSA NFT TSA NFT TSA NFT TSA NFT TSA NFT 
15 - ARTAG, PART +++ +++ +++ +++ +++ +++ + ++ + ++ 
16.- ARTAG, PART +++ +++ +++ +++ +++ +++ ++ +++ - +++ 
17.- ARTAG, PART +++ +++ +++ +++ +++ +++ + +++ - + 
18 - PART N/A +++ N/A +++ N/A ++ N/A ++ N/A - 
19 - ARTAG, Low AD-NC +++ +++ +++ +++ +++ +++ +++ +++ - + 
20 - ARTAG, Low AD-NC +++ +++ +++ +++ +++ +++ +++ +++ - ++ 
21 - ARTAG, Low AD-NC +++ +++ +++ +++ +++ +++ ++ +++ - - 
22 - ARTAG, Low AD-NC +++ +++ +++ +++ +++ +++ +++ +++ - - 
 
 NFT NFT NFT NFT NFT 
23 - AD +++ +++ ++ +++ ++ 
24 - AD +++ +++ +++ +++ ++ 
25 - AD +++ +++ +++ +++ + 
26 - AD +++ +++ +++ +++ + 
27 - AD +++ +++ +++ +++ ++ 
28 - AD +++ +++ +++ +++ +++ 
 
 Pick 

Bodies 
Ramified 

Astro 
Pick 

Bodies 
Ramified 

Astro 
Pick 

Bodies 
Ramified 

Astro 
Pick 

Bodies 
Ramified 

Astro 
Pick 

Bodies 
Ramified 

Astro 
29 - PiD +++ +++ +++ +++ +++ +++ ++ + ++ - 
30 - PiD +++ N/A +++ N/A +++ N/A - N/A ++ N/A 
31 - PiD +++ +++ +++ +++ +++ +++ - - - - 
32 - PiD +++ N/A +++ N/A +++ N/A - N/A - N/A 
33 - PiD +++ N/A +++ N/A +++ N/A - N/A - N/A 
34 - PiD +++ +++ +++ +++ +++ +++ - - - - 
 Tufted   

Astrocytes 
Tufted   

Astrocytes 
Tufted Astrocytes Tufted Astrocytes Tufted Astrocytes 

35 - PSP +++ +++ ++ ++ + 
36 - PSP +++ +++ +++ + +++ 
37 - PSP +++ +++ +++ + - 
38 - PSP +++ +++ +++ + - 
39 - PSP +++ +++ ++ - - 
40 - PSP +++ +++ +++ ++ - 
 Astrocytic 

Plaques 
Astrocytic Plaques Astrocytic 

Plaques 
Astrocytic 

Plaques 
Astrocytic 

Plaques 
41 - CBD +++ +++ + + - 
42 - CBD +++ +++ +++ - - 
43 - CBD +++ +++ ++ - - 
44 - CBD +++ +++ ++ ++ - 
45 - CBD +++ +++ +++ + - 
46 - CBD +++ +++ +++ +++ - 
Semi-quantitative Scoring: - absent, or nearly absent (≤5% concordance with extent of PHF1); + minimal (5-30% concordance); ++ moderate 
(30-70% concordance); +++ extensive (>70% concordance); X: No immunoreactivity   
CTE-NC: Chronic traumatic encephalopathy neuropathologic change; TSA: thorn-shaped astrocytes; NFT: neurofibrillary tangles; ARTAG: 
Aging-related tau astrogliopathy; PART: Primary age-related tauopathy; AD-NC: Alzheimer’s Disease neuropathologic change; AD: 
Alzheimer’s Disease; FTLD-Tau: Frontotemporal lobar degeneration tauopathies. 
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