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Abstract
Transfer of heat and mass and thermodynamic irreversibilities are investigated in a porous, parallel-plate microreactor in 
which the working fluid is non-Newtonian. The investigated microreactor features thick flat walls with uneven thicknesses, 
which can be subject to different thermal loads. The dimensionless governing equations of the resultant asymmetric problem 
are first derived theoretically and then solved numerically by using a finite volume technique. This results in two-dimensional 
solutions for the velocity, temperature and concentration fields as well as the distributions of Nusselt number and local and 
total entropy generations. The results clearly demonstrate the significance of the numerical value of the power-law index 
and departure from Newtonian behavior of the fluid. In particular, it is shown that by increasing the value of power-law 
index the Nusselt number on the wall decreases. This leads to the intensification of the temperature gradients in the system 
and therefore magnifies the local and total entropy generations. Also, it is shown that the wall thickness and thermal asym-
metry can majorly affect the heat transfer process and thermodynamic irreversibility of the microreactor. It is noted that the 
current work is the first comprehensive study of heat transfer and entropy generation in porous micro-chemical reactor with 
non-Newtonian, power-law fluid.

Keywords  Porous microchannel · Microreactor · Non-equilibrium thermodynamics · Entropy generation · Power-law fluid · 
Forced convection

List of symbols
asf	� Interfacial area per unit volume of porous media 

(m−1)
Bi	� Biot number
C	� Mass species concentration (kg m−3)
C0	� Inlet concentration (kg m−3)
Cp	� Specific heat capacity (J K−1 kg−1)
D	� Mass diffusion coefficient (m−2 s−1)
Da	� Darcy number
DT	� Coefficient of thermal mass diffusion, 

(m (K kg s)−1)

h1	� Half-thickness of the microchannel (m)
h2	� Half-height of microchannel (m)
hsf	� Interstitial heat transfer coefficient (W K−1 m−2)
Hw	� Wall heat transfer coefficient (W K−1 m−2)
k	� Effective thermal conductivity ratio of the fluid and 

the porous solid
k1	� Thermal conductivity of wall 1 (W K−1 m−2)
k2	� Thermal conductivity of wall 2 (W K−1 m−2)
ke1	� Ratio of thermal conductivity of wall 1 and thermal 

conductivity of the porous solid
ke2	� Ratio of thermal conductivity of wall 2 and thermal 

conductivity of the porous solid
kef	� Effective thermal conductivity of the fluid phase 

(W K−1 m−2)
kes	� Effective thermal conductivity of the solid phase of 

the porous medium (W K−1 m−2)
kR	� Reaction rate constant on the walls (m s−1)
L	� Length of the microchannel (m)
m	� Power law consistency index
n	� Power law index
NDI	� Dimensionless diffusive irreversibility
NFF	� Dimensionless fluid friction irreversibility
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Nint	� Dimensionless interstitial heat transfer 
irreversibility

Nf	� Dimensionless fluid and interstitial irreversibility
Nf,ht	� Dimensionless fluid heat transfer irreversibility
Ns	� Dimensionless porous solid and interstitial 

irreversibility
Ns,ht	� Dimensionless heat transfer irreversibility
Nw1	� Dimensionless lower wall irreversibility
Nw2	� Dimensionless upper wall irreversibility
Npm	� Dimensionless total porous medium irreversibility
NTot	� Dimensionless total entropy
Nu	� Nusselt number
p	� Pressure (Pa)
Pe	� Peclet number
X	� Dimensionless axial coordinate
Pr	� Prandtl number
Q	� Wall heat flux ratio
q′′
1
	� Lower wall heat flux (W m−2)

q′′
2
	� Upper wall heat flux (W m−2)

Re	� Reynolds number on the basis of channel height
R	� Specific gas constant (J K−1 kg−1)
S	� Shape factor of the porous medium
Ṡ′′′
DI

	� Volumetric entropy generation due to mass diffu-
sion (W K−1 m−3)

Ṡ′′′
f

	� Volumetric entropy generation in the fluid 
(W K−1 m−3)

Ṡ′′′
s

	� Volumetric entropy generation in the porous solid 
(W K−1 m−3)

Ṡ′
w1

	� Volumetric entropy generation rate from lower wall 
(W K−1 m−3)

Ṡ′
w2

	� Volumetric entropy generation rate from upper wall 
(W K−1 m−3)

Sr	� Soret number
T	� Temperature (K)
u	� Fluid velocity (m s−1)
ū	� Average velocity over cross-section (m s−1)
Y	� Dimensionless transverse coordinate
X	� Dimensionless axial coordinate
y	� Dimensional transverse coordinate
x	� Dimensional axial coordinate

Greek symbols
μ	� Dynamic viscosity (N s m−2)
κ	� Permeability (m2)
ρ	� Density (kg m−3)
θ	� Dimensionless temperature
ϕ	� Dimensionless concentration
ξ	� Aspect ratio of the microchannel
ɛ	� Porosity of the porous medium
γ	� Damköhler number
ω	� Dimensionless heat flux
φ	� Irreversibility distribution ratio

Subscripts
w1	� Of the lower wall surface
w2	� Of the upper wall surface
f	� Of fluid
s	� Of porous solid
1	� Of lower wall
2	� Of upper wall

Introduction

Catalytic porous microchannels, where catalytic channels of 
small sizes filled with porous media, have received increased 
interest in traditional and advanced chemical and energy 
technologies in the last decade. Featuring high surface-to-
volume ratios, catalytic porous microchannels can readily 
achieve the desired performance on transport and chemi-
cal reactions [1–3]. Therefore, extensive studies have been 
reported in recent years on applications of catalytic porous 
microchannels [4–7]. However, due to the relatively complex 
natures in catalytic porous microchannels, our understand-
ing of relevant fundamental mechanisms is still far from 
satisfactory and there are considerable voids for efficient 
utilization of catalytic porous microchannels. Thus, accu-
rately quantifying the inherent characteristics in catalytic 
porous microchannels is the prerequisite for their subsequent 
efficient utilization and optimization. Among the massive 
aspects that require in-depth investigation for catalytic 
porous microchannels, transport processes and entropy gen-
eration are of vital importance as they are directly related to 
the overall performance of a catalytic porous microchannel.

Owing to the coupled complexities of multi-physics 
and geometrical topology in a typical catalytic porous 
microchannel, a comprehensive investigation of intrinsic 
characteristics and engineering principles through experi-
ments may be too expensive [8–10]. Additionally, accurate 
measurements at the small spatiotemporal scales in cata-
lytic porous microchannels pose great challenges to current 
measuring techniques [11, 12]. Considering the dramatical 
increase in computational power and rapid development of 
theoretical models, numerical modeling has played greater 
roles in scientific research and engineering optimization 
for catalytic porous microchannels. Although the general 
transport [13–15] and entropy generation [16–18] charac-
teristics of microreactors have been investigated to some 
extent, their behavior under non-Newtonian fluids is still 
largely unknown. As a matter of fact, there is still a sig-
nificant knowledge gap in understating convective heat and 
mass transfer in porous media and microchannels with non-
Newtonian fluid flow [19–21]. In the following, some of the 
recent studies in these areas are briefly discussed.

Neffah et al. [22] conducted a numerical study of heat and 
mass transfer in a non-Newtonian fluid in a parallel-plate 
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channel partly filled with an anisotropic porous medium. 
They investigated the effects of various parameters perti-
nent to the porous medium, the non-Newtonian fluid and the 
chemical reaction on the velocity, temperature and concen-
tration distributions, as well as mean Nusselt and Sherwood 
numbers. Neffah et al. [22] showed that compared with the 
isotropic case, the anisotropy of a porous medium can lead 
to significant improvements in heat and mass transfer. The 
shear-thickening fluids exhibit the highest values of mean 
Nusselt and Sherwood numbers at large Darcy number val-
ues. The work of Neffah et al. [22] clarified that an incre-
ment in the chemical reaction parameters mitigates heat and 
mass transfer rates.

In a recent numerical work, Wang et al. [23] investigated 
entropy generation in thermal natural convection with dif-
ferentially discrete heat boundary conditions at various Ray-
leigh numbers. This study showed that the thermal, viscous 
and total entropy generation increase with the increase in 
Rayleigh number. It also confirmed that the system’s avail-
ability improves in the presence of effective heat source at 
the bottom of the boundary.

Saeed et al. [24] analyzed the methods of biofuel pro-
cessing in diesel engines to evaluate non-Newtonian biofuel 
flow in a magnetic microreactor. It was shown that varia-
tions in the magnetic field strength and the thermo-physical 
properties of the fluid could cause considerable temperature 
differences. It was also observed that the alterations in the 
properties of Casson fluid as well as the change in the mag-
nitude and angle of the magnetic field could affect Nusselt 
number. It was further found that the extent of the variations 
is strongly dependent on the wall thickness.

Gholamalizadeh et al. [25] performed a two-dimensional 
numerical study of a convective flow in a nanofluid water/
FMWCNT-coated microchannel. The slip velocity boundary 
condition was applied for the solid walls. The results showed 
that as compared to Reynolds number, Darcy number has 
a more pronounced effect upon the velocity profile. It was 
also found that increasing porosity did not affect the velocity 
profile growth in any way.

It has been already reported that working fluids have 
significant impact on the overall performance of a catalytic 
porous microchannel [1, 2, 7]. In a numerical study, Maleki 
et al. [26] investigated flow and heat transfer in non-Newto-
nian nanofluids over porous surfaces. They investigated the 
effects of parameters, such as power-law index, volume frac-
tion of nanoparticles, nanoparticles type and permeability 
parameter on the flow and heat transfer of the desired nano-
fluid. The study found that the hydro-thermal properties of 
non-Newtonian nanofluid flows exhibited different behaviors 
as compared with the common working fluids. For instant, 
the injections and permeability in the plate showed higher 
heat transfer performance for non-Newtonian nanofluids in 
comparison with Newtonian nanofluids.

In their numerical work, Animasaun and Pop [27] con-
sidered the geometry and position of the surface for the 
study of the desired fluid flow in order to evaluate the flow 
performance on the target parameters. The results showed 
that the non-Newtonian fluid temperature distribution was 
higher than that of the Newtonian fluid. It was also found 
that by applying the non-Newtonian fluid, the rate of local 
heat transfer decreases more rapidly. The apparent disagree-
ment of this finding with that reported by Maleki et al. [26] 
is a clear indication that the field of heat convection in non-
Newtonian fluids has not settled yet.

Al-Rashed et al. [28] conducted a study to evaluate the 
thermal and entropic properties of a non-Newtonian nano-
fluid containing CuO particles in the substrate (MCHS). 
This article discusses the effects of concentration of nan-
oparticles, the Reynolds number as well as the geometric 
size intended for MCHS based on the first and second laws 
of thermodynamics. The results showed that increasing 
Reynolds number improves the performance of MCHS by 
increasing the fluid convection heat transfer coefficient of the 
working fluid, which in turn results in uniform temperature 
of the substrate. They further revealed that the use of non-
Newtonian nanofluid instead of the base ordinary fluid leads 
to an increase in heat transfer efficiency against increasing 
the pressure drop. Also, by using non-Newtonian nanofluid, 
the least amount of entropy generation in the system can be 
achieved.

So far, most studies and applications of catalytic porous 
microchannels have used Newtonian fluids, while effects 
of non-Newtonian fluids on thermal transport and entropy 
generation have been seldomly touched [29, 30]. However, 
non-Newtonian fluids are more common in practice and our 
knowledge of their influences on performance of catalytic 
porous microchannels should be advanced. To partially close 
the gap of clarifying the effects of non-Newtonian fluids, 
a catalytic porous microchannel with power-law fluids has 
been studied in this study. The reasons to choose power-
law fluids in this work are twofold. First, the mathematical 
description of power-law fluids is relatively simple, which 
can greatly benefit the formulation of conservation equations 
for modeling of thermal transport and entropy generation 
in porous microchannels. Second, as a widely encountered 
type of non-Newtonian fluids, power-law fluids are rather 
representative in the engineering.

In this work, numerical analysis of thermal transport and 
entropy generation of a typical catalytic porous microchan-
nel filled with power-law fluids has been conducted. To 
focus on the effects of power-law fluids, catalytic reactions 
only happen at the sidewalls of channels and Soret effect is 
taken into consideration. In the following, governing equa-
tions of the studied system are described and discussed. 
Then, analytical solutions of relevant governing equations 
are derived and solved numerically. After validating the 



2148	 M. Javidi Sarafan et al.

1 3

developed theoretical solution, the differences of thermal 
transport and entropy generation between Newtonian and 
power-law fluids are compared and discussed. Finally, a 
comprehensive parametric analysis was conducted to study 
the effects of physical properties of power-law fluids.

Theoretical and numerical methods

Assumptions

The assumptions considered in this study are presented as 
the following.

•	 The flow is laminar, steady and hydrodynamically fully 
developed.

•	 The fluid is non-Newtonian power law.
•	 The flow regime is assumed to be continuous with Knud-

sen number lower than 0.3.
•	 All chemical reactions on the catalyst are assumed to be 

of zeroth order.
•	 The effect of temperature on the surface reactions is 

neglected.
•	 The porous medium is isotropic, homogeneous, saturated 

with fluid and under thermally non-equilibrium condi-
tions (LTNE).

Governing equations and boundary conditions

The rheological equation for an isotropic, incompressible 
flow of a power-law fluid is [31]

where m, u, y and n are the power-law consistency index, 
fluid velocity, dimensional transverse coordinate and power-
law behavior index, respectively.

The Darcy–Brinkman equation for the momentum equa-
tion [2, 32, 33] is considered as the follows:

The following equations represent the energy transfer in 
the solid and fluid phases:

(1)� = m
||||
�u

�y

||||
n−1

,

(2)−
𝜕p

𝜕x
+ 𝜇eff

𝜕u2

𝜕y2
−

𝜇

𝜅
u = 0 − h1 ≤ y < h1.

(3a)k2
𝜕

𝜕y

[
𝜕T2

𝜕y

]
= 0, h1 < y ≤ h2

(3b)

kef
𝜕2Tf

𝜕y2
+ hsfasf

(
Ts − Tf

)
= 𝜌fCp,fu

𝜕Tf

𝜕x
, −h1 ≤ y < h1

The mass transfer involves the effect of thermal diffusion 
(Sorter effects) on the Fickian diffusion in the advective–dif-
fusive system, as follows [1]:

In Eqs. (2)–(4), p is thepressure, x is the dimensional 
axial coordinate, � and �eff are the viscosity of the fluid and 
the effective viscosity of the porous medium, respectively, � 
is the permeability of the porous insert, h1 and h2, refer to the 
half-thickness and half-height of the microchannel. Further, 
kef and kes are the effective thermal conductivity of the fluid 
phase and solid phase of the porous medium, k1 and k2 are 
the thermal conductivity of wall 1 and wall 2 (see Fig. 1), hsf 
and asf  are the interstitial heat transfer coefficient and inter-
facial area per unit volume of porous media. Furthermore, 

(3c)kes
𝜕2Ts

𝜕y2
− hsfasf

(
Ts − Tf

)
= 0, −h1 ≤ y < h1

(3d)k1
𝜕

𝜕y

[
𝜕T1

𝜕y

]
= 0 − h2 ≤ y < −h1.

(4)u
𝜕C

𝜕x
= D

𝜕2C

𝜕y2
− DT

𝜕2Tf

𝜕y2
− h1 ≤ y < h1.

(a)

(b)

Flow in

Flow out

Catalytic internal
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q
2

q
1

h1 h2

–h1 –h2

Fig. 1   Schematic a isometric and b side view of the porous micro-
channel under investigation
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Ts , Tf , T1 and T2 denote the temperature of solid phase, fluid 
phase, lower and upper wall, respectively. Also, �f and Cp,f 
show the density and specific heat capacity of the fluid, C 
is the mass species concentration, D denotes the effective 
mass diffusion coefficient and DT represents the coefficient 
of thermal mass diffusion.

Although most solutes feature positive coefficients of 
thermal mass diffusion representing that the mass can be 
moved down the thermal gradient, the other have the nega-
tive coefficients and are able to be diffused up the thermal 
gradient. Therefore, the negative or positive sign of the last 
term in Eq. (4) is acceptable.

For energy and momentum equations, the boundary con-
ditions are

The concentration boundary conditions are expressed as 
follows:

Next, the dimensionless parameters for better physical 
analysis are stated in Table 1.

(5a)y = h2 ∶ k2
�T2

�y

||||y=h2
= q��

2
,

(5b)

y = h1 ∶ uf = 0, T2 = Tf = Ts = Tw2, q
��
2
= kef

�Tf

�y

||||y=h1
+ kes

�Ts

�y

||||y=h1

(5c)y = 0 ∶
duf

dy
= 0

(5d)

y = −h1 ∶ uf = 0, T2 = Tf = Ts = Tw1,

q��
1
= −kef

�Tf

�y

||||y=−h1
− kes

�Ts

�y

||||y=−h1

(5e)y = −h2 ∶ k1
�T1

�y

||||y=−h2
= q��

1

(6a)y = −h1 ∶ C = C0

(6b)y = 0 ∶ D
�C

�y
= DT

�Tf

�y
.

The dimensionless temperature follows the given chain, 
i = 1, 2,s, f.

In Table 1, q′′
1
 and q′′

1
 are the lower and upper wall heat 

flux, � is the dimensionless temperature, kR is the reaction rate 
constant on the walls, X and Y are the dimensionless axial and 
transverse coordinates, Da, Bi , � , Sr, Pr, Re and Pe are the 
Darcy, Biot, Damköhler, Soret, Prandtl, Reynolds and Peclet 
numbers, respectively. Also, Q represents the wall heat flux 
ratio, S is the shape factor of the porous medium, � shows 
the aspect ratio of the microchannel, � is the porosity of the 
porous medium, � and U denote the dimensionless concentra-
tion and fluid velocity, respectively. Further, ke1 is the ratio of 
thermal conductivity of wall 1 and thermal conductivity of the 
porous solid, ke2 is the ratio of thermal conductivity of wall 2 
and thermal conductivity of the porous solid and k refers to 
the effective thermal conductivity ratio of the fluid and the 
porous solid.

Analytical derivation of the dimensionless 
governing equations

Given the dimensionless equations defined in Table 1, Eq. (2) 
can be expressed as

Similarly, no-slip boundary conditions and axial symmetry 
conditions at Y = 0 can be expressed as follows:

Solution of Eq. (7) can be expressed with

Using Eq. (8), the average dimensionless velocity across 
the channel equals

(7)n
d2U

dY2
−

U

Da
+ 1 = 0 − Y1 ≤ Y < Y1.

(8a)U
(
±Y1

)
= 0,

(8b)U�(0) = 0.

(9)U = Da

(
1 −

Cosh(SY)

Cosh(SY1)

)
− Y1 ≤ Y < Y1.

(10)ū = Da

(
1 −

tanh(SY1)

SY1

)
.

Table 1   Dimensionless 
parameters Bi =

hsfasfh
2
2

kes
Sr =

(q��1 +q
��
2 )h1DT

2C0kfD
Pr =

Cp,f .m

kef

(
ū

h2

)n−1
Re =

𝜌ū2−n(2h2)
n

m
Pe =

ūh2

D

Da =
�

h2
2

� =
kRh1

D
S =

1√
n⋅Da

�i =
2(Ti−Tw,in)kes
(q��1 +q

��
1 )h2

Q =
(

q��
2

q��
1
+q��

2

)

Y =
y

h2
Y1 =

h1

h2

X =
x

L � =
h2

L
U =

u

ur

ke1 =
k1

kes
ke2 =

k2

kes
k =

kef

kes
=

�kf

(1−�)ks
� =

C

C0
ur = −

h2
2

�f

�pf

�x
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By combining Eqs. (9) and (10), the following ratio of abso-
lute and mean is defined in Eq. (11):

Assuming the flow to be fully developed, as given the 
assumptions in Section “Assumptions”, the conditions stated 
are [1, 32]

Subsequently, the temperature equation is [1]

In Eq. (13), the function fi(y) is obtained by solving Eq. (3a) 
with the resultant equation from combination of Eq. (3b) and 
(3c). By placing the heat flux boundary conditions in Eq. (5b) 
and (5d), we have

Substituting the velocity from Eq. (11) into Eq. (14) and 
using the dimensionless parameters defined in Table 1, the 
following equation is taken:

where the average non-Newtonian fluid temperature is given 
as follows:

Using the dimensionless parameters of Table 1 and rear-
ranging Eqs. (11) to (15), the dimensionless form of Eq. (3a) 
to (3d) is obtained.

Algebraic manipulating Eq. (17b) and (17c) gives

(11)u∕ū = U
/
Ū =

SY1
(
Cosh

(
SY1

)
− Cosh(SY)

)

SY1Cosh
(
SY1

)
− Sinh(SY1)

.

(12)

𝜕Tf

𝜕x
=

𝜕T̄f

𝜕x
=

𝜕Ts

𝜕x
=

𝜕T̄s

𝜕x
=

𝜕Tw1

𝜕x
=

𝜕Tw2

𝜕x
= 𝛺 = Constant.

(13)Ti(x, y) = fi(y) +�x i = 1, 2, s, f .

(14)q��
1
+ q��

2
= �fCp,f

h1

∫
−h1

u
�Tf

�x
dy.

(15)
𝜕T̄f

𝜕x
=

1

2𝜌fCp,fūh1h2

[
h1q

��
1
+ h2q

��
2

]
= 𝛺,

(16)T̄f =
1

2ūh1

h1

∫
−h1

uTfdy.

(17a)ke2𝜃
��
2
= 0, Y1 < Y ≤ 1

(17b)
k𝜃��

f
+ Bi

(
𝜃s − 𝜃f

)
+ D3Cosh(SY) + D4 = 0,−Y1 ≤ Y < Y1

(17c)𝜃��
s
− Bi

(
𝜃s − 𝜃f

)
= 0,−Y1 ≤ Y < Y1

(17d)ke1𝜃
��
1
= 0. − 1 ≤ Y < −Y1

The boundary conditions of Eq. (17a–17d) and Eq. (18a) 
and (18b) are expressed by the following relations.

By applying Eq. (19a) to (19h), it is possible to solve 
analytically the dimensionless cross-sectional temperature 
profiles using Eqs. (17a), (17b) and (18a), as the following:

where alpha equals

By placing dimensionless cross-sectional temperature 
profiles of Eq. (20) inside Eq. (13), the final dimensionless 
temperature profiles are expressed by

(18a)

k𝜃����
f

− Bi(1 + k)𝜃����
f

+
(
S
2 − Bi

)
D3Cosh(SY) − BiD4 = 0,

− Y1 ≤ Y < Y1

(18b)
k𝜃����

s
− Bi(1 + k)𝜃��

s
− Bi(D3Cosh(SY) + D4) = 0 − Y1 ≤ Y < Y1.

(19a)�f
(
−Y1

)
= �s

(
−Y1

)
= 0, �f

(
−Y1

)
= �s

(
−Y1

)
= �w2

(19b)���
s

(
−Y1

)
= ���

s

(
Y1
)
= 0,

(19c,d)���
f

(
−Y1

)
= ���

f

(
Y1
)
= −

1

k

(
D3Cosh(SY) + D4

)
,

(19e,f)�1
(
−Y1

)
= 0, ke1�1�(1) = 2(1 − Q),

(19g,h)�2
(
Y1
)
= �w2, ke2�

�
2
(1) = 2Q,

(20a)𝜃2(Y) = E1 + E2Y , Y1 < Y ≤ 1,

(20b)

𝜃f(Y) = E4Cosh(SY) + E5Cosh(𝛼Y) + E6Y
2

+ E7Y + E8,−Y1 < Y ≤ Y1

(20c)

𝜃s(Y) = E10Cosh(SY) + E11Cosh(𝛼Y) + E6Y
2

+ E7Y + E12,−Y1 < Y ≤ Y1

(20d)𝜃1(Y) = E13 + E14Y . − 1 ≤ Y < −Y1

(21)� =
√
Bi(1 + k−1).

(22a)𝜃2(X, Y) =
2X

RePr kY1𝜉
+ E1 + E2Y , Y1 < Y ≤ 1

(22b)

𝜃f(X, Y) =
2X

Re Pr kY1𝜉
+ E4Cosh(SY) + E5Cosh(𝛼Y)

+ E6Y
2 + E8 + E7Y ,−Y1 ≤ Y < Y1
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The following equation is developed by applying Leibniz’s 
rule [34] on Eq. (4):

The velocity profile along the microchannel is symmetri-
cal, and therefore half of the channel is considered. The aver-
age velocity in half of the microchannel is given by

The average flow velocity is defined as

By setting C0 as the initial concentration, the following 
equation is revealed.

Using the dimensionless parameters defined in Table 1, 
the concentration distribution yields

Replacing Eq. (26) into Eq. (4), the distribution of dimen-
sionless concentration function is given as

Applying the dimensionless parameters of Table 1 and 
the ratio of velocity in Eq. (11), the dimensionless form of 
Eq. (4) is derived. That is

Since the second derivative of the non-Newtonian, non-
dimensional fluid temperature is determined from the form 
of Eq.  (20b), only the dimensionless form of boundary 

(22c)

𝜃s(X, Y) =
2X

Re Pr kY1𝜉
+ E10Cosh(SY) + E11Cosh(𝛼Y)

+ E6Y
2 + E12 + E7Y ,−Y1 ≤ Y < Y1

(22d)𝜃1(X, Y) =
2X

Re Pr kY1𝜉
+ E13 + E14Y . − 1 ≤ Y < Y1

(23)

⎡⎢⎢⎣

h1

∫
0

u ⋅ C ⋅ dy

⎤⎥⎥⎦
+ KRdx −

⎡⎢⎢⎣

h1

∫
0

u ⋅ C ⋅ dy +
�

�x

⎛⎜⎜⎝

h1

∫
0

u ⋅ C ⋅ dy

⎞⎟⎟⎠
dx

⎤⎥⎥⎦
= 0.

(24)

h1

∫
0

u ⋅
�C

�x
⋅ dy = KR.

(25)ū =
1

h1

h1

∫
0

u.dy.

(26)
𝜕C

𝜕x
=

KR

h1ū
.

(27)C(x) =
KRx

h1ū
.

(28)�(x) =
�X

PeY1�
.

(29)
uKR

h1ū
= D

𝜕2C

𝜕y2
− DT

𝜕2Tf

𝜕y2
.

conditions of Eq. (6a) and (6b) is required to solve Eq. (29). 
These are as follows:

By applying parts (a) and (b) of Eq. (30), it is possible to 
determine analytically the second derivative of dimension-
less concentration profiles on the cross section, which is

Finally, substituting Eq. (28) into Eq. (26), the dimension-
less concentration equation, containing two transverse and 
axial cross sections, can be expressed as follows:

Nusselt number

The heat convection coefficient on the upper and lower walls 
of the channel can be expressed by

Considering dimensionless parameters presented in 
Table 1, the Nusselt number is taken by

The non-Newtonian fluid average temperature is obtained 
by the dimensionless form of Eq. (16) along the channel. 
That is

(30a)���(0) =
Sr.k

Y1.�
��
f
(0),

(30b)�
(
−Y1

)
= 1.

(31)���(Y) =
Sr.k

Y1.�
���
f
(Y) +

�D1

(
Cosh

(
SY1

)
− Cosh(SY)

)

Y2
1

.

(32)

�(Y) = F1 + F2Y + F3Y
2 + F4Cosh(2SY)

+ F5Cosh(SY) + F6Cosh(�Y)

(33)

�(X, Y) =
�X

PeY1�
+ F1 + F2Y + F3Y

2 + F4Cosh(2SY)

+ F5Cosh(SY) + F6Cosh(�Y)

(34a)Hw1 =
q��
1

Tw1 − T̄f
,

(34b)Hw2 =
q��
2

Tw2 − T̄f

(35a)Nuw1 =
2Hw1h1

kef
=

4(Q − 1)Y1

k𝜃̄f
,

(35b)Nuw2 =
2Hw2h1

kef
=

4QY1

k
(
𝜃w2 − 𝜃̄f

) .
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Entropy generation

The entropy generation in the current system raises from 
various irreversible sources. The contribution of heat and 
mass transfer and friction between the fluid and solid surface 
to exergy destruction cause lower energy quality and weaker 
hydrothermal performance of the current system.

The potential sources of entropy generation in the typical 
microchannel are presented as the following:

The dimensionless results of Eq. (37a–37f) are

(36)𝜃̄f =
D1

2Y1

Y1

∫
−Y1

𝜃f
[
Cosh

(
SY1

)
− Cos(SY)

]
dY .

(37a)Ṡ���
w2

=
k2

T2
2

[(
𝜕T2

𝜕x

)2

+

(
𝜕T2

𝜕y

)2
]
,

(37b)Ṡ���
S

=
kes

T2
S

[(
𝜕Ts

𝜕x

)2

+

(
𝜕Ts

𝜕y

)2
]
−

hsfasf
(
TS − Tf

)
TS

,

(37c)Ṡ���
f

=
kef

T2
f

[(
𝜕Tf

𝜕x

)2

+

(
𝜕Tf

𝜕y

)2
]
+

hsfasf
(
TS − Tf

)
Tf

,

(37d)Ṡ���
FF

=
𝜇f

𝜅Tf
u2 +

𝜇eff

Tf

(
du

dy

)2

,

(37e)

Ṡ
���
DI

=
RD

C

[(
𝜕C

𝜕x

)2

+

(
𝜕C

𝜕y

)2
]

+
RD

Tf

[(
𝜕C

𝜕x

)(𝜕Tf

𝜕x

)
+

(
𝜕C

𝜕y

)(
𝜕Tf

𝜕y

)]
,

(37f)Ṡ���
w1

=
k1

T2
1

[(
𝜕T1

𝜕x

)2

+

(
𝜕T1

𝜕y

)2
]
.

(38)Ni =
Ṡ���
i
h2
2

kes
, i = w1, s, f ,DI,w2

(39)� =

(
q��
1
+ q��

2

)
h2

2kesTw,in
,

(40)� =
RDC0

kes
,

in which Ṡ′′′
w1

 and Ṡ′′′
w2

 are the volumetric entropy genera-
tion rate from the lower and upper walls. Further, Ṡ′′′

s
 , Ṡ′′′

f
 

and Ṡ′′′
DI

 are the volumetric entropy generation in the porous 
solid, fluid and due to mass transfer, respectively. Further, R 
denotes the specific gas constant, N refers to the dimension-
less irreversibility, � is the dimensionless heat flux and � is 
the irreversibility distribution ratio.

In order to provide a simple substrate for investigating the 
entropy generation and evaluating its distribution for differ-
ent irreversible sources, the equations for the solid and fluid 
phases in the porous medium are described as follows:

By adding Eqs. (41b) and (42c), the volumetric entropy 
generation expressions are defined as follows:

(41a)

Nw1 =
ke1𝜔

2

(
𝜔𝜃1 + 1

)2
[(

𝜕𝜃1

𝜕X

)2

+

(
𝜕𝜃1

𝜕Y

)2
]
,−1 ≤ Y < −Y1

(41b)

Ns =
𝜔2

(
𝜔𝜃s + 1

)2
[
𝜉2
(
𝜕𝜃s

𝜕X

)2

+

(
𝜕𝜃s

𝜕Y

)2
]

−
Bi.𝜔

(
𝜃s − 𝜃f

)
(
𝜔𝜃s + 1

) ,−Y1 ≤ Y < −Y1

(41c)

Nf =
k𝜔2

(
𝜔𝜃f + 1

)2
[
𝜉2
(
𝜕𝜃f

𝜕X

)2

+

(
𝜕𝜃f

𝜕Y

)2
]

+
Bi.𝜔

(
𝜃s − 𝜃f

)
(
𝜔𝜃f + 1

) ,−Y1 ≤ Y < −Y1

(41d)

NDI =
𝜑

𝜙

[
𝜉2
(
𝜕𝜙

𝜕X

)2

+

(
𝜕𝜙

𝜕Y

)2
]

+
𝜑.𝜔(

𝜔𝜃f + 1
)
[
𝜉2
(
𝜕𝜙

𝜕X

)(
𝜕𝜃f

𝜕X

)
+

(
𝜕𝜙

𝜕Y

)(
𝜕𝜃f

𝜕Y
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,

− Y1 ≤ Y < −Y1

(41e)

Nw2 =
ke2𝜔

2

(
𝜔𝜃2 + 1

)2
[(

𝜕𝜃2

𝜕X

)2

+

(
𝜕𝜃2

𝜕Y

)2
]
.Y1 ≤ Y < 1

(42a)Nf, ht =
�2

(
��s + 1

)2
[
�2
(
��s

�X

)2

+

(
��s

�Y

)2
]
,

(42b)Nf, ht =
k�2

(
��f + 1

)2
[
�2
(
��f

�X

)2

+

(
��f

�Y

)2
]
.
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The volumetric entropy generation in the porous media is 
equal to the sum of the equations applicable to the porous 
media.

The total entropy generation defines the entropy produced 
by the heat transfer, viscous dissipative and concentration gra-
dient for each point in the X and Y directions. That is

The total entropy generation on the whole microchannel is 
obtained by sweeping two-segmental integration on the physi-
cal domain, which equals

(43)Nint =
Bi.�2

(
�f − �s

)2
(
��s + 1

)(
��f + 1

) .

(44)Npm = Ns,ht + Nf, ht + Nint + NDI.

(45)NTot =

1

∫
−1

1

∫
0

NpmdXdY .

Numerical simulation and validation

The equations derived analytically in Section “Theoretical 
and numerical methods” provide the general solution of the 
dimensionless governing equations. Although it is possible 
to derive fully analytical solutions for the current problem, 
the non-Newtonian nature of the considered fluid makes 
such solution immensely complicated and therefore of little 
use. Hence, to evaluate the unknown coefficients and find the 
particular solutions, a numerical approach was taken. The 
details of numerical methodology along with the specifica-
tion of the system configuration are given in this section.

Description of the system configuration

Figure 1 shows a schematic of the geometry considered 
in the current study. The microchannel is fully filled with 
porous materials, with two thick walls, subjected to constant 
but non-equal heat fluxes with a catalytic layer on the inner 
microchannel surface. A non-Newtonian, power-law fluid 
flow enters the left side of the microchannel and, after pass-
ing through the porous media, leaves from the right side of 
the system.

The problem outlined in Section  “Theoretical and 
numerical methods” was solved using various non-dimen-
sional and dimensional parameters that are presented for 
quantitative analysis by the default values in Tables 2 and 
3, respectively. It is noted that the values of parameters in 
Table 2 were chosen in a way that the results become com-
parable with the existing data in the literature for Newto-
nian fluids [1, 3].

Grid independency and validation

The non-dimensionalized governing equations derived in 
Section “Theoretical and numerical methods” (Eqs. (7), 
(17a), (17b), (18a) and (18b) and (31) along with boundary 

Table 2   Default values of the dimensionless parameters

Dimensionless 
parameter

Default value Dimensionless 
parameter

Default value

Bi 1.0 k 0.05
Da 0.1 ke1 0.5
n 1.3 ke2 0.5
Pe 10 ɛ 0.95
Pr 5.0 γ 0.95
Re 150 ω 0.001
Sr 0.7 φ 0.01
Q 0.75 X0 0.1
Y1 0.8 ξ 0.05

Table 3   Default values of the 
dimensional parameters

Dimensional parameter Default value Dimensional parameter Default value

h1 400 μm k2 53.661WK−1 m−2

h2 400 μm kes 40WK−1 m−2

L 0.1 m kef 0.604675WK−1 m−2

κ 6.25 × 10−5 m2 ks 53.661WK−1 m−2

q′′
1

150W m−2 D 2.91 × 10−4 m2 s−1

q′′
2

50Wm−2 ū 0.1455 m s−1

C0 5 kgm−3 DT 0.16212
(
m (Kkg s)−1

)
Tw,in 314.231K μf 8.94 × 10−4 (N sm−2)

k1 53.661WK−1 m−2 Cp 4179 (J kg−1 K−1)
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conditions of Eq. (19)) were solved numerically through 
using a finite volume technique. Four mesh densities 
including 20 × 300, 30 × 400, 40 × 500 and 45 × 550 
grids were tested. It was observed that the mesh sizes of 
40 × 500 and 45 × 550 are perfectly consistent and have a 
relative error of 1.35% for Nusselt number. Thus, in the 
current study a mesh containing 40 × 500 cells was used 
(Fig. 2).

The present numerical data are compared with the 
closed-form analytical results of Hunt et al. [1] for Nus-
selt number and entropy generation (Figs. 3 and 4) in the 
limit case that power-law fluid approaches a Newtonian 
fluid at different values of wall thickness (Y1). Evidently, 
the two data sets exhibit very good agreement and thus the 
analytical solutions are deemed to be valid.

Results and discussion

In this section, an emphasis is put on the influences of non-
Newtonian fluid characteristics upon the thermal behavior 
of the micro-system. In the interest of brevity, other effects 
are not discussed.

Detailed comparison of transport phenomena 
and entropy generation between Newtonian 
and power‑law fluids

Figure 5 shows the dimensionless temperature contours 
drawn for the solid and fluid phases of the porous medium 
for different values of power index. It should be noted that 
the dimensionless temperature in this figure can take nega-
tive or positive values. The temperature contours in Fig. 5 
indicate that with increasing power index, as the fluid tends 
to thicken and increase the viscosity and thus increase the 
shear stress, the heat transfer rate decreases. This can be 
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Fig. 2   Grid independency test
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Fig. 3   Comparison of Nusselt number between the present work and 
the results of Hunt et al. [1] in three different values of wall thickness, 
(Y1)
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Fig. 5   Contours of dimension-
less temperature for varying 
values of the power-law index 
(n) at ( Y1 = 0.7), a solid phase 
n = 0.5 , b fluid phase n = 0.5 , 
c solid phase n = 1.0 , d fluid 
phase n = 1.0 , e solid phase 
n = 1.5 , f fluid phase n = 1.5
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deduced from the fact that the fluid temperature takes larger 
values of dimensionless temperature at higher values of 
power index. Since the dimensionless temperature expresses 
the difference between the temperature of fluid and that of 
the wall, higher values of dimensionless temperature imply 
larger difference between fluid and wall temperature. For 
the current iso-flux problem, this means weakened convec-
tive heat transfer. This argument will be later supported by 
calculation of Nusselt number.

Figures 6 and 7 show the contours related to the local 
entropy generation inside the fluid phase of the microchan-
nel. It is important to note that entropy generation is only 
calculated for the fluid phase and porous media and the solid 
wall are excluded from the analyses of local entropy genera-
tion. Also, as depicted by Eq. (41d) the mass transfer irre-
versibilities are included in the current analysis.

Figure 6 shows the total entropy variations for the two 
power-law indices with two different Damköhler numbers 
for the fluid phase. It is clarified that the value of Dam-
köhler number influences the rate of mass transfer and thus 
can affect the irreversibility. As can be seen in this figure, 
for a value of Damköhler number less than one, an incre-
ment in the value of the power-law index intensifies the 
generation of entropy. This is due to the enhancement of 
friction irreversibilities at higher values of power-law index. 
More importantly, as shown earlier, the rate of heat transfer 
decreases at higher values of power-law index, which in turn 
strengthens the temperature gradients and thus increases the 
generation of entropy. Interestingly, this behavior is inversed 
at higher value of Damköhler number. This is because of 

Fig. 6   Contours of local 
entropy generation for the fluid 
phase for varying Damköhler 
number, � , a n = 1.0, � = 0.8 , 
b n = 1.3, � = 0.8 , c 
n = 1.0, � = 1.2 , d 
n = 1.3, � = 1.2.
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the dominance of mass transfer in entropy generation in the 
current problem [1, 35, 36], which can overrule other effects.

Figure 7 illustrates the influences of changes in Soret 
number upon the local entropy generation in the fluid phase. 
This has been done for two different values of the power-law 
index corresponding to Newtonian and non-Newtonian flu-
ids. Figure 7 indicates that for a constant power-law index, in 
either of Newtonian and non-Newtonian fluids, Soret num-
ber growth causes a reduction in the local irreversibility. 
This can be explained by noting that in the current problem 
irreversibility is dominated by that of mass transfer [34–36]. 
Magnifying the value of Soret number enhances the process 
of mass transfer and hence reduces the irreversibility asso-
ciated with the transport of mass. Thus, the local entropy 

generation drops. Further, Fig. 7 shows that increasing the 
value of power-law index at a fixed Soret number leads to 
a slight intensification of the local entropy generation. As 
already discussed, this is mostly due to the magnification 
of thermal irreversibilities following the fluid temperature 
gradient strengthening.

According to Fig.  8, increasing the power-law index 
results in the reduction in Nusselt number. This reduc-
tion can be quite significant such that by increasing the 
power-law index from 0.4 to 1.8, a drop of around 50% is 
observed in Nusselt number for all the investigated cases. 
This is an important result and shows that deviation from 
the state of Newtonian fluid can majorly affect the rate 
of heat transfer. Hence, close attention should be paid to 

Fig. 7   Contours of local 
entropy generation for the 
fluid phase for varying Soret 
number, Sr , a Sr = 0.5, n = 1.0 , 
b Sr = 0.7, n = 1.3 , c 
Sr = 0.5, n = 1.0 , d 
Sr = 0.7, n = 1.3
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possible non-Newtonian behaviors of the working fluids in 
microchannels and microreactors. Figure 8 further shows 
the pronounced effects of the wall thickness upon Nusselt 
number. In keeping with the results reported in the literature 

[33, 34], it is shown that thicker walls act as thermal resist-
ance and thus tend to reduce the Nusselt number. This figure 
clearly shows that alteration of wall thickness by around 30% 
can change the value of Nusselt number by more than 40%. 
Thus, wall thickness is an essential parameter dominating 
the rate of heat transfer in microchannels.

Figure 9 illustrates the effects of power-law index on 
the total generation of entropy. Clearly, variations in the 
power-law index strongly affect the total entropy generation. 
According to this figure, an increase in the power-law index 
from 0.4 to 1.8 can boost the total entropy by more than 
50%. As already discussed, decreasing Y1 (thickening the 
walls) also contributes to this increase. Once again, impedi-
ment of heat convection process by increases in the value 
of power-law index (as already discussed) is responsible for 
this trend.

Parametric studies on the effects of physical 
properties of power‑law fluids

In Fig. 10, temperature contours for non-Newtonian flu-
ids for two different values of Y1 are depicted. The right-
hand side contours correspond to the solid phase, and the 
left-hand side contours correspond to the fluid phase. It is 
observed that by increasingY1, that is by making the wall 
thinner, the deflection of temperature contours increases. 
Thus, at any cross section in the microchannel, the transver-
sal temperature variation increases. As shown previously 
[1, 34, 35] and also further supported in the later sections, 
this causes an increase in the overall heat transfer rate of 
the system.

Figure 11 shows the distribution of dimensionless fluid 
temperature inside the porous microchannel for different 
values of Reynolds number and the power-law index. This 
figure essentially compares the case of Newtonian fluid to 
that of non-Newtonian fluid. Evidently, regardless of the 
value of Reynolds number, the axial temperature increase 
along the microchannel for the non-Newtonian fluid is 
larger than that of the Newtonian fluid. For the current 
constant heat flux problem, this implies smaller convection 
coefficient for the non-Newtonian fluid flow. This finding 
will be later verified by calculating the Nusselt number 
for the two types of fluid. Further, the increase in Nusselt 
number has resulted in a general drop of the dimensionless 
temperature at any given point inside the microchannel. 
This is to be expected, as in general, increases in Reynolds 
number (on the basis of the microchannel height) lead to 
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improved heat convection coefficient and thus result in 
lower temperatures.

Figure 12a shows the effect of variation in the wall heat 
flux on the Nusselt number. As can be seen by increasing 
the value of wall heat flux ratio, Q, performed by strength-
ening the thermal asymmetry of the problem, the Nusselt 
number increases. This increment in Nusselt number is a 
consequence of changes in the shape of temperature contours 
and resultant modification of temperature gradient on the 
surface of the wall [33–36]. The effects of Darcy number on 
the Nusselt number are demonstrated in Fig. 12b.

As can be seen, the smaller the Darcy number, mean-
ing the lower the permeability, the rate of heat transfer is 

increased. This is a well-known behavior of the Nusselt 
number [1, 5, 11, 15] and shows the consistency of the cur-
rent Non-Newtonian simulations with those conducted ear-
lier on Newtonian fluids. In Fig. 12c, the effect of variations 
in the conductivity coefficient of the solid part of the porous 
media ( ks ) is presented. This graph shows that with augmen-
tation of ks the value of Nusselt number increases. This can 
be attributed to the increase in heat transfer between the fluid 
and the solid part of the porous medium, which is enhanced 
by boosting the conductivity of the porous solid [37, 38].

Figure 13 shows the influences of power-law index upon 
the values of Nusselt number and total entropy generation 
against the Reynolds number. As a general trend, both Nusselt 

Fig. 10   Contours of dimension-
less temperature at n = 0.5 
for varying values of the wall 
thickness, Y1, a solid phase 
Y1 = 0.6 , b fluid, Y1 = 0.6 , c 
solid phase, Y1 = 0.9 , d fluid 
phase, Y1 = 0.9
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number and total entropy generation increase monotonically 
with Reynolds number. It is to be expected that Nusselt num-
ber in forced convection is often strongly correlated with 
flow Reynolds number. However, the growth of total entropy 

generation with Reynolds number may sound counterintuitive. 
This is because Nusselt number rising relaxes the internal 
temperature gradients inside the microchannel, and this results 
in the thermal irreversibility reduction. These apparently 

Fig. 11   Contours of dimen-
sionless temperature for the 
fluid phase for varying Soret 
number, Sr , a Re = 50, n = 1.0 , 
b Re = 50, n = 1.3 , c Re 
= 100, n = 1.0 , d Re = 100, 
n = 1.3 , e Re = 150, n = 1.0 f 
Re = 160, n = 1.3
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contradicting observations can be justified by noting that the 
entropy generation in the current problem is dominated by 
flow friction and not heat transfer. Switching to non-Newto-
nian fluid intensifies the flow friction and thus magnifies the 
total generation of entropy [39]. Evidently, for all Reynolds 
numbers, the application of non-Newtonian fluid (n = 1.3) 

leads to a smaller value of Nusselt number (see Fig. 13a). 
The reduction in heat transfer and the resultant increase in the 
internal temperature gradient, as well as increases in the fric-
tional losses of the flow due to non-Newtonian effects, are the 
reasons for augmentation of entropy generation in comparison 
with that of Newtonian fluid [40, 41].
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Fig. 12   Nusselt number versus the lower wall thickness, Y1, a on the upper wall for different values of Q, b on the lower wall for different values 
of Darcy number, c on the upper wall for different values of thermal conductivity of the porous medium, ks (W m−1 K−1)
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Conclusions

Transport of heat and mass and thermodynamic irrevers-
ibilities in a parallel-plate microreactor filled by a homog-
enous porous medium and with a non-Newtonian working 
fluid were investigated. The considered configuration was 
assumed to be geometrically and thermally asymmetric. 
The power-law behavior was assumed for the fluid, and 
the porous medium was set under local thermal non-equi-
librium. A set of governing equations were first derived 
theoretically. The resultant nonlinear system of partial dif-
ferential equations was then solved numerically through 
using a finite volume solver. This led to the development 
of two-dimensional solutions for the temperature concen-
tration and local entropy generation fields and evaluation 

of Nusselt number and total entropy generation. The 
numerical results were validated against the existing fully 
analytical solutions for the Newtonian fluids. It was shown 
that increases in the value of power-law index reduce the 
rate of heat transfer and thus drop the value of Nusselt 
number. Hence, the local and total generations of entropy 
are both strongly affected by the value of power-law index 
in which increases in this parameter highly enhance the 
local and total irreversibilities. The other qualitative char-
acteristics of the investigated system were found to remain 
consistent with those reported for the Newtonian fluids.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Hunt G, Karimi N, Torabi M. Two-dimensional analytical inves-
tigation of coupled heat and mass transfer and entropy genera-
tion in a porous, catalytic microreactor. Int J Heat Mass Transf. 
2018;119:372–91.

	 2.	 Saeed A, Karimi N, Hunt G, Torabi M. On the influences of sur-
face heat release and thermal radiation upon transport in cata-
lytic porous microreactors—a novel porous-solid interface model. 
Chem Eng Process. 2019;143:107602. https​://doi.org/10.1016/j.
cep.2019.10760​2.

	 3.	 Hunt G, Karimi N, Yadollahi B, Torabi M. The effects of exother-
mic catalytic reactions upon combined transport of heat and mass 
in porous microreactors. Int J Heat Mass Transf. 2019;134:1227–
49. https​://doi.org/10.1016/j.ijhea​tmass​trans​fer.2019.02.015.

	 4.	 Alizadeh R, Karimi N, Mehdizadeh A, Nourbakhsh A. Analysis 
of transport from cylindrical surfaces subject to catalytic reac-
tions and non-uniform impinging flows in porous media- A non-
equilibrium thermodynamics approach. J Therm Anal Calorim. 
2019;138:659–78. https​://doi.org/10.1007/s1097​3-019-08120​-z.

	 5.	 Torabi M, Karimi N, Peterson GP, Yee S. Challenges and progress 
on the modelling of entropy generation in porous media: a review. 
Int J Heat Mass Transf. 2017;114:31–46. https​://doi.org/10.1016/j.
ijhea​tmass​trans​fer.2017.06.021.

	 6.	 SacitHerdem M, Mundhwa M, Farhad S, Hamdullahpur F. Cata-
lyst layer design and arrangement to improve the performance 
of a microchannel methanol steam reformer. Energy Convers 
Manage. 2019;180:149–61.

	 7.	 Hunt G, Torabi M, Govone L, Karimi N, Mehdizadeh A. 
Two-dimensional heat and mass transfer and thermodynamic 
analyses of porous microreactors with Soret and thermal radia-
tion effects—an analytical approach. Chem Eng Process Pro-
cess Intensif. 2018;126:190–205. https​://doi.org/10.1016/j.
cep.2018.02.025.

24(a)

(b)

20

16

12

8

50 60 70 80 90 100

Re

110 120 130 140 150

50 60 70 80 90 100

Re

110 120 130 140 150

4

0

N
u

n = 1
n = 1.3

n = 1
n = 1.3

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

N
to

t

Fig. 13   a Nusselt number and b Total entropy generation versus 
the Reynolds number for different values of non-Newtonian fluid 
(n = 1.3) and Newtonian fluid (n = 0.5) indices

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cep.2019.107602
https://doi.org/10.1016/j.cep.2019.107602
https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.015
https://doi.org/10.1007/s10973-019-08120-z
https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.021
https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.021
https://doi.org/10.1016/j.cep.2018.02.025
https://doi.org/10.1016/j.cep.2018.02.025


2163Heat and mass transfer and thermodynamic analysis of power‑law fluid flow in a porous…

1 3

	 8.	 Mottaghi M, Kuhn S. Numerical investigation of well-structured 
porous media in a milli-scale tubular reactor. Chem Eng Sci. 
2019;208:115146. https​://doi.org/10.1016/j.ces.2019.08.004.

	 9.	 Liu Y, Zhou W, Chen L, Lin Y, Xuyang C, Zheng T, Wan S. 
Optimal design and fabrication of surface microchannels on 
copper foam catalyst support in a methanol steam reform-
ing microreactor. Fuel. 2019;253:1545–55. https​://doi.
org/10.1016/j.fuel.2019.05.099.

	10.	 Ambrosetti M, Bracconi M, Maestri M, Groppi G, Tronconi 
E. Packed foams for the intensification of catalytic processes: 
assessment of packing efficiency and pressure drop using a com-
bined and numerical approach. Chem Eng J. 2020;382:122801. 
https​://doi.org/10.1016/j.cej.2019.12280​1.

	11.	 Lee D, SeokKim B, Moon H, Lee N, Shin S, HeeCho H. Enhanced 
boiling heat transfer on nanowire-forested surfaces under subcool-
ing conditions. Int J Heat Mass Transf. 2018;120:1020–30. https​
://doi.org/10.1016/j.ijhea​tmass​trans​fer.2017.12.100.

	12.	 Li Y, Zhao M, Li C, Ge W. Concentration fluctuation due to reac-
tion-diffusion coupling near an isolated active site on catalyst sur-
faces. Chem Eng J. 2019;373:744–54. https​://doi.org/10.1016/j.
cej.2019.05.052.

	13.	 Li J, An H, Sasmito AP, Mujumdar AS, Ling X. Performance 
evaluation of mass transport enhancement in novel dual-channel 
design of micro-reactors. Heat Mass Transf. 2019;56:559–74.

	14.	 Rossetti I. Continuous flow (micro-) reactors for heterogeneously 
catalyzed reactions: main design and modelling issues. Catal 
Today. 2018;308:20–31.

	15.	 Roychowdhury S, Sundararajan T, Das SK. Conjugate heat trans-
fer studies on steam reforming of ethanol in micro-channel sys-
tems. Int J Heat Mass Transf. 2019;139:660–74.

	16.	 Hosseini SR, Ghasemian M, Sheikholeslami M, Shafee A, Li 
Z. Entropy analysis of nanofluid convection in a heated porous 
microchannel under MHD field considering solid heat generation. 
Powder Technol. 2019;344:914–25.

	17.	 Gireesha BJ, Srinivasa CT, Shashikumar NS, Macha M, Singh 
JK, Mahanthesh B. Entropy generation and heat transport anal-
ysis of Casson fluid flow with viscous and Joule heating in an 
inclined porous microchannel. Proc IME E J Process Mech Eng. 
2019;233:1173–84.

	18.	 Ranjit NK, Shit GC. Entropy generation on electromagnetohydro-
dynamic flow through a porous asymmetric micro-channel. Eur J 
Mech B Fluids. 2019;77:135–47.

	19.	 Mahmoudi Y, Hooman K, Vafai K. Convective heat transfer in 
porous media. .https​://doi.org/10.1201/97804​29020​261 .2019  ‏

	20.	 Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat 
transfer of non-Newtonian nanofluid in a microtube considering 
slip velocity and temperature jump boundary conditions. Eur J 
Mech B Fluids. 2017;61:25–32.

	21.	 Fu T, Wei L, Zhu C, Ma Y. Flow patterns of liquid–liquid two-
phase flow in non-Newtonian fluids in rectangular microchan-
nels. Chem Eng Process. 2015;91:114–20.

	22.	 Neffah Z, Kahalerras H, Fersadou B. Heat and mass transfer of a 
non-newtonian fluid flow in an anisotropic porous channel with 
chemical surface reaction. FDMP. 2018;14:39–56. https​://doi.
org/10.3970/fdmp.2018.014.039.

	23.	 Wang Z, Wei Y, Qian Y. Numerical study on entropy generation 
in thermal convection with differentially discrete heat bound-
ary conditions. Entropy. 2018;20:351. https​://doi.org/10.3390/
e2005​0351.

	24.	 Saeed A, Karimi N, Hunt G, Torabi M, Mehdizadeh A. Double-
diffusive transport and thermodynamic analysis of a magnetic 
microreactor with non-Newtonian biofuel flow. J Therm Anal 
Calorim. 2019. https​://doi.org/10.1007/s1097​3-019-08629​-3.

	25.	 Gholamalizadeh E, Pahlevanzadeh F, Ghani K, Karimipour A, 
Nguyen TK, Safaei. Simulation of water/FMWCNT nanofluid 
forced convection in a microchannel filled with porous mate-
rial under slip velocity and temperature jump boundary Condi-
tions. Int J Numer Methods Heat Fluid Flow. 2019. https​://doi.
org/10.1108/HFF-01-2019-0030.

	26.	 Maleki H, Safaei MR, Alrashed AA, Kasaeian A. Flow and 
heat transfer in non-Newtonian nanofluids over porous Sur-
faces. J Therm Anal Calorim. 2019;135:1655–66. https​://doi.
org/10.1007/s1097​3-018-7277-9.

	27.	 Animasaun IL, Pop I. Numerical exploration of a non-Newto-
nian Carreau fluid flow driven by catalytic surface reactions 
on an upper horizontal surface of a paraboloid of revolution, 
buoyancy and stretching at the free stream. Alexandria Eng J. 
2017;56:647–58. https​://doi.org/10.1016/j.aej.2017.07.005.

	28.	 Al-Rashed AA, Shahsavar A, Entezari S, Moghimi MA, Adio 
SA, Nguyen TK. Numerical investigation of non-Newtonian 
water-CMC/CuO nanofluid flow in an offset strip-fin micro-
channel heat sink: thermal performance and thermodynamic 
considerations. Appl Therm Eng. 2019;155:247–58. https​://doi.
org/10.1016/j.applt​herma​leng.2019.04.009.

	29.	 Kiyasatfar M. Convective heat transfer and entropy gen-
eration analysis of non-Newtonian power-law fluid flows in 
parallel-plate and circular microchannels under slip bound-
ary conditions. Int J Therm Sci. 2018;128:15–27. https​://doi.
org/10.1016/j.ijthe​rmals​ci.2018.02.013.

	30.	 Gheynani AR, Akbari OA, Zarringhalam M, Shabani GAS, 
Alnaqi AA, Goodarzi M, Toghraie D. Investigating the effect 
of nanoparticles diameter on turbulent flow and heat transfer 
properties of non-Newtonian carboxymethyl cellulose/CuO fluid 
in a microtube. Int J Numer Methods Heat Fluid Flow. 2018. 
https​://doi.org/10.1108/HFF-07-2018-0368.

	31.	 Mukherjee S, Prayag B, Suman C, Sunando D. Effects of vis-
cous dissipation during forced convection of power-law fluids in 
microchannels. Int Commun Heat Mass Transf. 2017;89:83–90.

	32.	 Torabi M, Elliott A, Karimi N. Thermodynamics analyses of 
porous microchannels with asymmetric thick walls and exother-
micity: an entropic model of micro-reactors. J Therm Sci Eng. 
2017;9:041013. https​://doi.org/10.1115/1.40368​02.

	33.	 Torabi M, Torabi M, Peterson GP. Entropy generation of double 
diffusive forced convection in porous channels with thick walls 
and Soret effect. Entropy. 2017;19:171. https​://doi.org/10.3390/
e1904​0171.

	34.	 Elliott A, Torabi M, Karimi N. Thermodynamics analyses of 
porous microchannels with asymmetric thick walls and exother-
micity: an entropic model of microreactors. J Therm Sci Eng 
2017;9:041013.https​://doi.org/10.1115/1.40368​02.

	35.	 Karimi N, Agbo D, Khan AT, Younger PL. On the effects 
of exothermicity and endothermicity upon the temperature 
fields in a partially-filled porous channel. Int J Therm Sci. 
2015;96:128–48.

	36.	 Guthrie DGP, Torabi M, Karimi N. Combined heat and mass 
transfer analyses in catalytic microreactors partially filled with 
porous material-The influences of nanofluid and different porous-
fluid interface models. Int J Thermal Sci. 2019;140:96–113. https​
://doi.org/10.1016/j.ijthe​rmals​ci.2019.02.037.

	37.	 Athar K, Doranehgard MH, Eghbali S, Dehghanpour H. Meas-
uring diffusion coefficients of gaseous propane in heavy oil at 
elevated temperatures. J Therm Anal Calorim. 2020;139:2633–45.

	38.	 Saffarian MR, Moravej M, Doranehgard MH. Heat transfer 
enhancement in a flat plate solar collector with different flow path 
shapes using nanofluid. Renew Energy. 2020;146:2316–29.

https://doi.org/10.1016/j.ces.2019.08.004
https://doi.org/10.1016/j.fuel.2019.05.099
https://doi.org/10.1016/j.fuel.2019.05.099
https://doi.org/10.1016/j.cej.2019.122801
https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.100
https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.100
https://doi.org/10.1016/j.cej.2019.05.052
https://doi.org/10.1016/j.cej.2019.05.052
https://doi.org/10.1201/9780429020261
https://doi.org/10.3970/fdmp.2018.014.039
https://doi.org/10.3970/fdmp.2018.014.039
https://doi.org/10.3390/e20050351
https://doi.org/10.3390/e20050351
https://doi.org/10.1007/s10973-019-08629-3
https://doi.org/10.1108/HFF-01-2019-0030
https://doi.org/10.1108/HFF-01-2019-0030
https://doi.org/10.1007/s10973-018-7277-9
https://doi.org/10.1007/s10973-018-7277-9
https://doi.org/10.1016/j.aej.2017.07.005
https://doi.org/10.1016/j.applthermaleng.2019.04.009
https://doi.org/10.1016/j.applthermaleng.2019.04.009
https://doi.org/10.1016/j.ijthermalsci.2018.02.013
https://doi.org/10.1016/j.ijthermalsci.2018.02.013
https://doi.org/10.1108/HFF-07-2018-0368
https://doi.org/10.1115/1.4036802
https://doi.org/10.3390/e19040171
https://doi.org/10.3390/e19040171
https://doi.org/10.1115/1.4036802
https://doi.org/10.1016/j.ijthermalsci.2019.02.037
https://doi.org/10.1016/j.ijthermalsci.2019.02.037


2164	 M. Javidi Sarafan et al.

1 3

	39.	 Bozorg MV, Doranehgard MH, Hong K, Xiong Q, Li LK. A 
numerical study on discrete combustion of polydisperse magne-
sium aero-suspensions. Energy. 2020;194:116872.

	40.	 Nabipour N, Daneshfar R, Rezvanjou O, Mohammadi-Khana-
poshtani M, Baghban A, Xiong Q, Doranehgard MH. Estimating 
biofuel density via a soft computing approach based on intermo-
lecular interactions. Renew Energy. 2020;152:1086–98.

	41.	 Habib R, Karimi N, Yadollahi B, Doranehgard MH, Li LK. A 
pore-scale assessment of the dynamic response of forced convec-
tion in porous media to inlet flow modulations. Int J Heat Mass 
Transf. 2020;153:119657.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Heat and mass transfer and thermodynamic analysis of power-law fluid flow in a porous microchannel
	Abstract
	Introduction
	Theoretical and numerical methods
	Assumptions
	Governing equations and boundary conditions
	Analytical derivation of the dimensionless governing equations
	Nusselt number
	Entropy generation

	Numerical simulation and validation
	Description of the system configuration
	Grid independency and validation

	Results and discussion
	Detailed comparison of transport phenomena and entropy generation between Newtonian and power-law fluids
	Parametric studies on the effects of physical properties of power-law fluids

	Conclusions
	References




