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A GIS-based spatial multi-index model for flood risk assessment in the 1 

Yangtze River Basin, China 2 

Abstract 3 

This paper developed a GIS-based spatial multi-index model for the large basin-4 
scale flood risk assessment. In terms of the risk definition proposed by the IPCC, the 5 
flood risk in the Yangtze River Basin (YRB) was classified into the indexes of hazard, 6 
vulnerability, and exposure. The model systematically accounts for various flood risk 7 
indicators related to the YRB economic, social and ecological environment. Based on 8 
the ArcGIS's robust data space analysis and processing capabilities, these flood risk 9 
indicators were superimposed and analyzed to generate the integrated flood risk spatial 10 
distribution map across the YRB. The modelling results were verified reasonably well 11 
using the observed YRB floods in 1998, 2008, and 2016. We found that 24.90% of the 12 
study area was found to be of very high and high risk in 1998, while these areas in the 13 
YRB fell to 15.95% and 17.61% in 2008 and 2016, respectively. We believe that the 14 
GIS-based spatial multi-index model can be applied to other areas, where the basin-15 
scale flood risk assessment is desired, and also contribute to further scientific research 16 
on flood forecasting and mitigation. 17 

Keywords: Flood risk assessment; Yangtze River Basin; GIS-based approach; Index 18 
system method 19 

1. Introduction 20 

In the context of global climate change, the increasingly extreme weather makes 21 
people face more significant challenges of adapting to and mitigating the adverse effects 22 
of climate change (Zeleňáková et al., 2019). Between 1995 and 2015, more than 90% 23 
of disasters, such as floods, droughts, hurricanes, and heatwaves, were related to 24 
extreme weather (UNISDR and CRED, 2015). Among all disasters, floods have 25 
become the most common disaster, which may have more harmful effects than other 26 
disasters such as earthquakes and typhoons (Sundermann et al., 2014). The frequent 27 
occurrence of floods in various places has caused a significant upward trend in losses 28 
and impacts (Kundzewicz et al., 2014). From 1960 to 2014, floods accounted for 34% 29 
of global natural disasters, resulting in more than $2.5 billion in annual economic losses 30 
and 1,254 deaths per year (Petit-Boix et al., 2017). China is one of the countries with 31 
frequent floods in the world, and every major flood disaster has caused substantial 32 
economic losses. For example, in 1991, 1994, 1996 and 1998, China’s flood disasters 33 
accounted for as much as 3%-4% of gross domestic product (GDP) (Figure 1). Since 34 
the 1990s, the annual average direct economic losses from floods accounted for 1.42% 35 
of the average annual GDP over the same period, which is almost 40 times higher than 36 
that of the United States (Wang et al., 2019). Floods have become commonplace in the 37 
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YRB that is the largest river basin in China. Since 1860, the YRB has experienced seven 38 
massive floods (in 1860, 1870, 1931, 1935, 1954, 1998, and 2010), causing heavy 39 
casualties, material losses and social losses (Kundzewicz et al., 2019).  40 

 41 
Fig. 1 Changes in total annual flood losses in China and their corresponding 42 

proportion in GDP of the year from 1990 to 2017 (data source: 2008, 2016, 2017 43 
Bulletin of Flood and Drought Disaster in China).   44 

It is generally believed that the factors that could cause floods are complicated and 45 
interconnected. The direct factors mainly include heavy rain, monsoon rains, tropical 46 
cyclones, snowmelt, inadequate drainage systems and structural failures of dams, brief 47 
torrential rain, tidal surge and avalanche (Halgamuge and Nirmalathas, 2017). From the 48 
definition of the causes of floods, the risk of floods should include dangerous events 49 
and trends. Besides, the prerequisites of a region (e.g., social conditions, economic 50 
conditions, and ecological conditions) could also affect the magnitude of local flood 51 
risks. The World Meteorological Organization (WMO, 1999) defines risk as “expected 52 
losses (of lives, persons injured, property damaged and economic activity disrupted) 53 
due to a particular hazard for a given area and reference period”. This definition 54 
highlights the types of losses caused by the occurrence of a particular disaster. In recent 55 
years, some new challenges brought by flood disasters have emerged due to urban 56 
expansion. Floods not only caused building submerged but also entered into 57 
underground infrastructures, such as underground metro systems which have been 58 
constructed to accommodate the rapid urbanization (Lyu et al., 2018, 2019c). The 59 
UNISDR believes that disaster risk refers to the possible physical events interacting in 60 
time and space with vulnerable exposed elements of the social system (Newton and 61 
Weichselgartner, 2014). Sometimes the risk factors are more complex and vary not only 62 
because of different socio-economic conditions between regions but also because of the 63 
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unique ecological environment of the region (Petit-Boix et al., 2017). Some researchers 64 
have tried to identify and mitigate flood risks by studying underground constructions 65 
that cause environmental and geological problems associated with long term land 66 
subsidence (Lyu et al., 2019a, 2019b) and the potential damage to groundwater or 67 
biodiversity (Brouwer and Van Ek, 2004; Kubal et al., 2009). In any case, the risks of 68 
climate-related impacts within social ecosystems have to include the hazards 69 
(hazardous events and trends), systemic vulnerability, and exposure of human and 70 
natural systems (including their adaptability) (IPCC, 2014). 71 

In the discussion of the loss and impact of flood disasters, the methods of risk 72 
assessment have received increasing attention. It is vital to evaluate flood risk and 73 
develop risk maps for a wide range of applications, such as land-use planning and 74 
infrastructure layout. To assess flood risks, traditionally, there are four primary types 75 
of approaches used for flood risk assessment including the historical disaster statistics 76 
method (Halgamuge and Nirmalathas, 2017), index system method (Christie et al., 77 
2018), scenario simulation analysis (Alfieri et al., 2015) and geographic information 78 
systems (GIS)-based approach (Gigović et al., 2017). Each method can independently 79 
assess flood risks, and their advantages and disadvantages are shown in Table 1. 80 
However, the flood risk assessment for a large scale involving multiple indicators and 81 
vast data, cannot be recognized by a single method. For effective monitoring and 82 
evaluation, the index system method should be combined with a GIS-based 83 
methodology. The index system method can consider all aspects of flood risks, while 84 
the GIS-based approach can analyze large-scale spatial data. The GIS-based research 85 
has a wide range of application in multiple assessments, such as space development 86 
(Qiao et al., 2017; Zhao et al., 2016), underground space resources evaluation (Peng 87 
and Peng, 2018a, 2018b), disaster prevention and mitigation (Cai et al., 2019). The GIS-88 
based spatial multi-index model for flood risk assessment is recognized as an effective 89 
method to identify flood risks (Abdelkarim and Gaber, 2019).  90 

91 
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Table 1 Four different types of evaluation approach with their advantages and disadvantages. 

Method Definition Advantages Disadvantages 

Historical 
disaster 
statistics 
method  

Statistical analysis and evaluation of flood disaster 
data recorded in historical documents to calculate 
the intensity and frequency of flood disasters, and 
based on this information to carry out the flood risk 
and loss assessment (Van Steenbergen et al., 2012). 

 

Provide essential information for 
assessment; Long time series; Many 
disaster databases have been categorized 
and compiled in detail. 

Requires high amounts of data; Limited by the 
availability of historical data; Differences in the 
way historical data recorded in different periods; 
Statistics collection are generally based on cities, 
and the detailed spatial variability of flood risks 
cannot be accurately reflected. 

Index 
system 
method 

Method for evaluating flood risks by selecting 
indicators, constructing an evaluation index system, 
and using appropriate mathematical models (Cao, 
2014). 

Multiple indicators of flood risks can be 
comprehensively considered; The 
contribution of each flood risk indicator can 
be accurately analyzed. 

The selection of assessment indicators for flood 
varies according to regional characteristics; Lack 
of universal indicator system. 

 

Scenario 
simulation 
analysis  

Based on the analysis and reasoning of changes in 
important future influencing factors, various 
assumptions are made by different scenarios 
constructed to predict multiple situations occur in 
the future (Hao, 2014). 

Provide simulations of flood risk results in 
different scenarios; Determine the most 
critical factors that cause flood risk changes 
by changing some input conditions 
(Gangrade et al., 2019). 

Affected by analytical tools and data, the accuracy 
of the simulation is somewhat different from the 
actual demand (Cai et al., 2019). 

GIS-based 
approach 

Using the spatial analysis function of 
geoinformatics and the geostatistics module to 
comprehensive manage and analysis of various 
geographic data and socio-economic data which are 
needed to identify the flood risks (Zhou et al., 2009). 

Can handle large amounts of spatial data; 
Visualize results; Can analysis large-scale; 
Carry out the rapid investigation. 

Cannot be used alone, it should be used with other 
evaluation methods together. 

92 
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A river basin is directly related to the sustainable socio-economic development 93 
and ecological security of a region or even a country, which has the highest proportion 94 
of flood occurrence. The cross-basin and cross-regional floods are defined as large-95 
scale flood disaster (Kang et al., 2006). Compared with small and medium scale flood 96 
disasters, large-scale flood disasters would cause more severe losses. Urbanization and 97 
economic growth of many cities within the flood plains have increased their exposure 98 
to the flood systems. (Komolafe et al., 2019). Therefore, it is necessary to develop 99 
effective and reliable flood risk assessment models for large river basins. This would 100 
be especially valuable for policymakers, scientists and other industry professionals to 101 
evaluate the potential risks and recognize the importance of flood mitigation and 102 
prevention. 103 

In this paper, we aim to use an index system method and a GIS-based approach to 104 
build up a GIS-based spatial multi-index model for flood risk assessment in the YRB. 105 
In Section 2, the study area and mechanism of flood formation in this area are briefly 106 
described. In Section 3, the method is introduced in detail. Subsequently, the flood risk 107 
assessment results in the YRB are described according to the model developed in the 108 
methodology section, and the model results are verified by using the historical YRB 109 
flooding data in 1998, 2008 and 2016 in Section 4. In the final part of the paper, 110 
conclusions and discussion are provided in Section 5. 111 

2. Study area  112 

The YRB, the largest river basin in China, has a drainage area of about 1.8 million 113 
km2 (Ministry of Water Resources of the People’s Republic of China, 1999). As one of 114 
the largest rivers in the world, the Yangtze River originates from the north of Tanggula 115 
Mountains of the Qinghai-Tibet Plateau and southwest side of the Gradan East Peak 116 
and flows through 11 provincial-level administrative regions (Qinghai, Tibet, Yunnan, 117 
Sichuan, Chongqing, Hubei, Hunan, Jiangxi, Anhui, Jiangsu, Shanghai). It spans more 118 
than 6300 km and finally flows into the East China Sea on Chongming Island in 119 
Shanghai (Chen et al., 2009). As the hundreds of tributaries can be extended to parts of 120 
the other eight provinces, it flows through 19 provincial-level administrative regions in 121 
total. The YRB accounts for 18.75% of China’s total area, but with more than one-third 122 
of China's population (Liu, 2018). The lower reaches of the YRB is densely populated 123 
and economically developed. For example, the GDP of the Yangtze River Economic 124 
Zone, the most developed area in the YRB, accounts for more than a quarter of China's 125 
GDP, and its per capita GDP is 1.4 times the national average (Liu, 2018). 126 

Topographically, the YRB is not flat, with the east low, and the west high as 127 
indicated in Figure 2. A subtropical monsoon climate dominates the YRB. Under the 128 
influence of topography and monsoon climate, the annual precipitation in the basin is 129 
unevenly distributed in time and space. Huangshan in Anhui is the area with the highest 130 
average annual precipitation (2248.39mm) in the whole river basin, while the area with 131 
the lowest annual precipitation appears in Chengduo County in the upper reaches of the 132 
Yangtze River, with only 406.95mm (Gu, 2015). The maximum and minimum average 133 
annual precipitation differ by 4.5 times. A regular feature of floods frequently occurring 134 
in the YRB is plum rain, which lasts from June to July and coincides with the maturity 135 
of plum fruit (Jiang et al., 2008). The precipitation during rainy season generally 136 
accounts for more than 50% of annual precipitation. Sometimes, the rainy season may 137 
start earlier and last longer, and the intense and continuous rainfall begins to accumulate 138 
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even in May and ends in September (Kundzewicz et al., 2019; Zhao et al., 2010). 139 
Abundant rainfall makes the YRB the highest flood-prone area, not only of entire China 140 
but also in Asia. The YRB in flood-prone areas, coupled with its developed economy 141 
and dense population, makes it a typical case for studying flood risks. 142 

 143 
Fig. 2 Location and hydrogeographic information of Yangtze River Basin. 144 

3. Methodology  145 

3.1 GIS-based spatial multi-index model 146 

This study developed a GIS-based spatial multi-index conceptual model to assess 147 
the flood risk in the YRB. Figure 3 shows the model hierarchy. The model includes two 148 
parts: (1) construction of multi-index system, and (2) analysis procedure in GIS. The 149 
multi-index system has three layers: the object layer, the index layer, and the indicator 150 
layer. The YRB flood risk (YRBFR) is the object layer; the index layer includes the 151 
hazard index (H), vulnerability index (V), and exposure index (E); the indicator layer 152 
includes 13 flood risk indicators.  153 

Data representing the 13 indicators are collected and preprocessed in the GIS 154 
environment. Then, the analytic hierarchy process (AHP) method is used to evaluate 155 
the relative importance of the various flood risk indicators. The weights of the flood 156 
risk indicators of each index layer are added together to obtain the relative importance 157 
of each index layer. The following Eq. 1 is used to redefine YRBFR. 158 

YRBFR = H ∗() + + ∗(, + - ∗(.																	(1)                               159 
YRBFR is the Yangtze River Basin flood risk;  160 

H is the hazard index;  161 



7 

 

V is the vulnerability index;  162 
E is the exposure index;  163 
WH, WE and WV are the weights of the hazard index, vulnerability index, and 164 

exposure index respectively; 165 
To facilitate the comparison between different layers, the values of various flood 166 

risk indicators need to be normalized over the range from 0 to 1 with 5 classified levels. 167 
Then, the data for each flood risk indicator are incorporated into GIS. Finally, a risk 168 
distribution map of the YRB can be generated. 169 

 170 
Fig. 3 Flood risk assessment model for the YRB. 171 

3.1.1 Multi-index system 172 

The critical step in establishing a multi-index system is to fill the indicator layer 173 
by defining the flood risk indicators. This article divides the index layer into hazard 174 
index, vulnerability index and exposure index following the IPCC's definition of risk. 175 
The selection of flood risk indicators mainly takes into consideration the principles of 176 
objectivity, operability, and easy spatialization. There are many natural and socio-177 
economic factors involved in flood risk assessment at a basin scale. It requires a detailed 178 
understanding of the risks in all parts of the basin in order to effectively divide the 179 
government responsibility for floods and conduct urban planning and disaster 180 
management. The selection of these flood risk indicators has been theoretically based 181 
on their relevance to the flood documented in the literature. Finally, the constructed 182 
YRB multi-index system is shown in Table 2. 183 
3.1.1.1 Cumulative average maximum 3-day precipitation 184 

There are many hazard factors directly related to flood risks. For different sections 185 
of YRB, the dominant factors are different. However, they are all directly related to 186 
precipitation. Since rainfall intensity is associated both with the frequency and the 187 
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amount of precipitation, it is crucial to consider both values (Ouma and Tateishi, 2014; 188 
Tehrany et al., 2014a). Rainstorms in the YRB occur mostly from May to September 189 
each year, and the duration of heavy rain is generally about 3 days (Cao, 2014). 190 
Therefore, the cumulative average maximum of 3-day precipitation in the YRB from 191 
May to September is used as the hazard indicator for flood risk analyses. 192 
3.1.1.2 Absolute elevation 193 

Absolute elevation refers to the height difference between a certain point and sea 194 
level. In China, the average value of the height change of the sea surface of the Yellow 195 
Sea at the Qingdao Tide Station is used as the reference level of absolute elevation. The 196 
terrain is closely related to the formation of floods. The low-lying areas are more 197 
vulnerable to flooding (Cai et al., 2019). The place with higher terrain is less prone to 198 
flood disasters.  199 

3.1.1.3 Relative elevation  200 

In general, the difference between the absolute height of two objects is called 201 
relative elevation. In this paper, the standard deviation of 5*5 grid elevations around a 202 
centre grid is used as a quantitative indicator of the terrain change of the grid. Areas 203 
with higher relative elevations have more significant gravitational acceleration and 204 
faster water velocity, which are more destructive. The slope affects the velocity in which 205 
the water is conveyed through the drainage channel and the watershed. Additionally, 206 
the steeper slopes can result in higher runoff. Consequently, higher peak discharges can 207 
be generated. 208 

3.1.1.4 Drainage density 209 

Drainage density refers to the ratio of the total length of the mainstream and 210 
tributary to the area of the river basin. The drainage density per unit area is the most 211 
critical basin characteristic that affects runoff. In areas with a higher density of river 212 
network, the probability of flood is higher.  213 
3.1.1.5 Runoff and vegetation cover factor  214 

Geomorphic types were significantly correlated with flood risk (Erpicum et al., 215 
2010; Horritt and Bates, 2002). Different geomorphic types have different velocity 216 
coefficients and different vegetation cover. Velocity coefficient determines the amount 217 
of runoff after the precipitation reaches the surface. The faster the runoff, the higher the 218 
risk of flooding. The lusher the vegetation, the better the interception effect, which 219 
causes the slower the flow rate and the smaller the risk of flood. 220 
3.1.1.6 Local financial revenue 221 

The local financial support capacity is more resilient to reduce the vulnerability 222 
risk of the region. Generally speaking, the financial support capacity of a region is 223 
proportional to the government fiscal revenue and inversely proportional to the 224 
administrative area, so the per capita local financial revenue is used as an indicator of 225 
vulnerability. 226 
3.1.1.7 Per capita resident savings  227 

When a flood disaster occurs, residents in the disaster-stricken areas need to seize 228 
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the opportunity to carry out self-rescue. Residents' self-rescue ability is related to their 229 
financial ability to pay. Per capita resident savings is an important indicator of residents' 230 
self-rescue ability assessment. 231 
3.1.1.8 Medical service level 232 

During the flood disaster, the timely medical rescue for the injured and trapped 233 
people is key to their lives. The number of hospitals, the quality of hospitals and the 234 
number of total beds can reflect the medical and health level. The smaller the population 235 
in a city, the more medical equipment the resident can be allocated. Therefore, the 236 
number of beds of one person is used to represent the medical service level of a city. 237 
3.1.1.9 Monitoring and early warning capability 238 

Whether there are enough hydrometeorological stations in an area to monitor 239 
rainfall and water level of rivers and lakes can greatly help to have an awareness of 240 
prevention for relevant government agencies to take appropriate preventive measures 241 
to reduce disaster losses as earlier as possible. Therefore, the hydrometeorological 242 
station density is used to represent the monitoring and early warning capability. 243 

3.1.1.10 Population density  244 

Zahran et al., (2008) pointed out that areas suffering more serious injuries and 245 
deaths were characterized by high population density and weak flood resistance. We 246 
used the population distribution with a spatial resolution of 1km×1km as an indicator 247 
to show population density. 248 
3.1.1.11 GDP per capita 249 

Floods of the same magnitude tend to cause far more damage in economically 250 
developed areas than in economically underdeveloped areas. In this study, GDP per 251 
capita with a 1km×1km resolution was selected as an indicator of exposure risk. 252 

3.1.1.12 Soil erosion degree  253 

Soil types of flood risk flood formation through a diversity of permeability and 254 
resistance to erosion (Barthès and Roose, 2002; Takar et al., 1990). A severe degree of 255 
land erosion can aggravate disaster evolution and result in a series of secondary 256 
disasters (debris flows, landslides). The land erosion classification data of 1km×1km is 257 
used to track the secondary disaster risk after the flood recedes. 258 

3.1.1.13 Site contamination risk 259 

Krüger et al., (2005) demonstrated that the flooding could redistribute existing soil 260 
pollutants, especially in urban areas. After the flood recedes, the pollutants carried by 261 
the flood would be more or less left in the soil, lakes and farmland, so the possibility of 262 
site contamination is also an important evaluation factor. 263 

3.2.1 Analysis procedure in GIS 264 

3.2.1.1 Data sources 265 

Once the weights of all flood risk indicators are defined, the next step of the 266 
assessment is to collect the appropriate data to characterize indicators. Limited by the 267 
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statistical methods of historical disaster data, most of the primary assessment units of 268 
large-scale are concentrated on an administration region. Using the administrative 269 
region can facilitate the government's flood risk management, but the statistical data 270 
obtained by the statistical yearbook is a total or average value of the statistical indicators 271 
of an area, lacking detailed information inside the administrative region, which does 272 
not reflect the spatial distribution characteristics of the flood risks (Lu and Wu, 2011). 273 
The rasterization of data can break the boundaries of administrative areas and reflect 274 
the spatial distribution of flood risks in more detail. Grid data has the advantage of 275 
matching and merging multiple data, which is especially suitable for the construction, 276 
realization and expression of the spatial model. Most of the index multi-source fusion 277 
algorithms in GIS are based on raster data distributed in space (Fan et al., 2006).  278 

In this paper, a 1km×1km resolution is used for data calculating in GIS, and the 279 
evaluation results are expressed in grid and administrative region. Therefore, the 280 
collected data types are also divided into raster data and socio-economic statistics data. 281 
The primary data sources and data formats are shown in Table 2. 282 

Table 2 Data source and data format. 283 
No. Indicators Data source Format 
1 Cumulative average 

maximum 3-day 
precipitation 

National Meteorological Information Center 
(China Surface Climate Data Day Value Data 
Set) 

TXT 

2 Absolute elevation Resource and Environment Data Cloud 
Platform 

1km×1km 
raster 

3 Relative elevation Calculated from absolute elevation data 1km×1km 
raster  

4 Drainage density Resource and Environment Data Cloud 
Platform 

1km×1km 
raster 

5 Runoff and vegetation 
cover factor  

Resource and Environment Data Cloud 
Platform 

1km×1km 
raster 

6 Local financial revenue  China City Statistical Yearbook PDF 
7 Per capita resident savings China City Statistical Yearbook PDF 
8 Medical service level  China City Statistical Yearbook PDF 
9 Monitoring and early 

warning capability 
National Meteorological Information Center's 
China Surface Climate Data Day Value Data 
Collection 

TXT 

10 Population density  Resource and Environment Data Cloud 
Platform 

1km×1km 
raster 

11 GDP per capita Resource and Environment Data Cloud 
Platform 

1km×1km 
raster 

12 Soil erosion degree  Resource and Environment Data Cloud 
Platform 

1km×1km 
raster 

13 Site contamination risk 
level 

Resource and Environment Data Cloud 
Platform 

1km×1km 
raster 

3.2.1.2 Data preprocessing 284 

The data preprocessing refers to extract the required elements from the collected 285 
real geographic data and socioeconomic data. Each indicator has been converted in the 286 
form of the spatially defined layer with a 1km×1km resolution. For different indicators, 287 
this study selected 6 different preprocessing strategies. All conversion processes and 288 
data preprocessing were completed using ArcGIS 10.6 software. 289 

In order to represent the cumulative average maximum 3-day precipitation 290 
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indicator, the coordinates of the 224 stations and cumulative rainfall data in the YRB 291 
were imported into the ArcGIS. The Kriging interpolation method was used to 292 
interpolate the point data into grid data. For the relative elevation data, the standard 293 
deviation of 25 grid elevations in the area around the centre grid was calculated as a 294 
quantitative indicator of the terrain change. The Focal Statistics tool in the ArcGIS 295 
software Spatial Analyst module was used to obtain a terrain standard difference level 296 
map. The linear density and point density calculation methods were adopted 297 
respectively to obtain the drainage density and hydrometeorological stations density 298 
distribution. In order to demonstrate the runoff and vegetation cover indicator, soil 299 
erosion degree, and site contamination risk level, this paper reclassified the 1km×1km 300 
land-use monitoring remote sensing data and soil erosion remote sensing data to 301 
redefine the value for each grid. The local financial revenue, per capita resident savings, 302 
and medical service level indicators were processed by connecting basic socio-303 
economic statistics at the city level into each 1km×1km grid. The raster data of absolute 304 
elevation, population density and GDP per capita were downloaded directly from the 305 
Resource and Environment Center of the Chinese Academy of Sciences. 306 

3.2.1.3 Weight calibration 307 

The weight of each indicator in this model is defined following the AHP, proposed 308 
by Professor T.L. Saaty in the 1970s (Saaty, 1977). As a structured technique for 309 
analyzing complex problems, the AHP involves a large number of interrelated 310 
objectives or criteria (Kazakis et al., 2015). This method is a quick-to-use method for 311 
quantifying qualitative problems. At present, the AHP has been successfully applied in 312 
the theory and practice of natural disaster risk research, and many scholars believe that 313 
the AHP in GIS environment is the most commonly used and most influential 314 
technology in producing flood risk map (Ayalew and Yamagishi, 2005; Kritikos and 315 
Davies, 2011; Lyu et al., 2019b). However, Li et al., (2013) pointed out that there are 316 
two weakness of AHP, which include the comparison matrix inconsistency and the 317 
complexity of comparison matrix pairwise construction methodology. Therefore, an 318 
improved AHP method is adopted and implemented to assess the indicators’ weights 319 
through the following steps: 320 
(1) Firstly, a hierarchical structure for the evaluation criteria factors should be 321 

established. According to the flood formation mechanism and the relationships 322 
between indicators, a hierarchical structure model is constructed for the YRB, as 323 
shown in Figure 3 (multi-index system part). From top to bottom layers, the 324 
assessment structure includes the object layer, index layer, and indicator layer.  325 

(2) Subsequently, judgment matrix [aij] in eq. 2 between the each indicator are used to 326 
determine the relative importance of factor ai to factor aj based on consulting expert 327 
opinions.  328 

345 = 6

377	378 …	37:
387	388 …	38:

⋮			⋮		⋱			⋮
3:7	3:8 …	3::

=                                        (2) 329 

The matrix should meet the following conditions: 330 

>
∑345 = 1
345 = 1/354

(i,j=1,2,…,n)                        (3) 331 
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In order to simplify the method of constructing judgment matrix and ensure the 332 
consistency of judgment matrix, an improved questionnaire (AppendixⅠ) and the 333 
method of constructing judgment matrix proposed by Li et al., (2013) were adopted in 334 
this paper. This method sort all the indicators by important and assign value to the 335 
indicators by linear interpolation. The assignment method is attached in AppendixⅡ. 336 
Nine experts from different fields were selected and fill the questionnaire. The new 337 
questionnaire have the advantages of more accurate extraction of subjective 338 
information and time savings. In this article, an indicator that can aggravate flood risk 339 
is defined as a positive indicator, while the weight is negative if the indicator has 340 
mitigation and reduction effects on flood risk. 341 

 (3) Consistency check: The consistency of judgment matrix can be validated by 342 
the value of consistency ratio (CR). It can be calculated by Eq. 4: 343 

CR =
BC

DC
	                            (4) 344 

If the consistency ratio is less than 0.1, it indicates that the test has passed; 345 
otherwise, the comparison matrix needs to be reconstructed. Details on the consistency 346 
test are provided in the literature (Lyu et al., 2019c, 2018a). 347 

The final weights defined by AHP for the YRB are shown in Table 3. 348 
Table 3 Weights of flood risk assessment indicators. 349 

Object layer Index layer Weight 
of the 
index 
layer 

Indicator layer Weight 
of the 
indicator 
layer 

Risk 
assessment 
of flood 
disasters in 
the YRB 

Hazard (U1) +0.469 Cumulative average maximum 3-day 
precipitation (U11) 

+0.469 

Vulnerability 
(U2) 

+0.322 

Absolute elevation (U21) -0.053 
Relative elevation (U22) -0.061 
Drainage density (U23) +0.039 
Runoff and vegetation cover factor (U24) +0.041 
Local financial revenue (U25) -0.028 
Per capita resident savings (U26) -0.025 
Medical service level (U27) -0.027 
Monitoring and early warning capability 
(U28) 

-0.047 

Exposure 
(U3) 

+0.209 Population density (U31)  +0.046 
GDP per capita (U32) +0.066 
Soil erosion degree (U33) +0.068 
Site contamination risk (U34) +0.030 

3.2.1.4 Normalization  350 

The flood risk indicators for the YRB are expressed in different units, which is 351 
difficult to compare. The way to reduce the scores to the same unit called normalization 352 
(Mohamed Elmoustafa, 2012). The basic normalization principle is to divide the 353 
difference between the actual parameter and the lowest value by the difference between 354 
the highest value and the lowest value (Eq. 5).  355 

E45 =
4FGHIFJK4LMN

4LFOK4LMN
					                       (5) 356 



13 

 

In the GIS environment, data normalization can be realized through the Fuzzy 357 
Membership tool in Spatial Analysis module. The membership type should choose 358 
“linear”, which can calculate membership based on the linear transformation for the 359 
input raster. The assigned member value of every indicator is 0 at the minimum and 1 360 
at the maximum. All the intermediate values will get some classification values based 361 
on a linear scale. When the normalization value is closer to 1, the flood risk is higher. 362 

3.2.1.5 Classification 363 

Determining the appropriate classification criteria for different risk levels is an 364 
essential step in data processing. The Jenks Natural Breaks Classification Method, 365 
proposed by Jenks and Caspall (1971), is a method of data clustering to determine the 366 
best arrangement of values in different classes, minimize variance within classes, and 367 
maximize the variance between classes. It can enhance the robustness of the model and 368 
make the nonlinear relationship between the flood risk indicators more moderate (Ji et 369 
al., 2013). The Jenks Natural Breaks Classification Method uses statistical formulas (Eq. 370 
4) to determine the natural clustering of attribute values, which reduces the difference 371 
in the same level and increases the difference between the levels (Mo et al., 2010). The 372 
similar features are assigned the same symbol to each member of the class, which can 373 
aggregate features into classes to spot patterns in the data more efficiently. All 374 
indicators are classified by using the “classified tool” in ArcGIS 10.6. 375 

PPQR4K5 = ∑ (A[k] −XY3ZE−[)²	
5
]^4 , (1 ≤ i < j ≤ N)         （6） 376 

A is an array (the length of the array is N), XY3Z4K5 is the average value at each 377 
level. 378 

This study used the to classify 13 indicators, 3 indexes and the integrated flood 379 
risk into 5 levels. The classification results of the indicators data are shown in Table 4.  380 

Table 4 Indicators data classification standard. 381 
Indicators D1 D2 D3 D4 D5 

Cumulative average maximum  
3-day precipitation (mm) 

<777 777-1308 1308-
1868 

1868-2522 >2523 

Absolute elevation (m) -70-
633 

633-1569 1569-
2820 

2820-4064 4064-
6444 

Relative elevation (m) 0-57 57-132 132-219 219-332 332-961 
Drainage density 0-5.4 5.4-9.8 9.8-18.0 18.0-33.7 33.7-62.7 
Runoff and vegetation cover 
factor  

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 

Local financial revenue 
(10000yuan/km2) 

<11 11-54 54-193 193-354 >354 

Per capita resident savings 
(yuan/person) 

3466-
16132 

16132-
26522 

26522-
44156 

44156-73065 73065-
162060 

Medical service level (bed 
space/person) 

<12 12-19 19-27 27-37 >37 

Monitoring and early warning 
capability 

0-1.91 1.91-4.31 4.31-5.98 5.98-8.38 8.38-
12.20 

Population density 
(person/km2)  

<308 308-328 328-637 637-5433 >5433 

GDP per capita (yuan/km²) <27 27-480 480-7836 7836-127401 >127401 
Soil erosion degree  0-0.43 0.43-0.76 0.76-1.19 1.19-1.76 1.76-2.5 
Site contamination risk  0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 
Hazard risk 0-0.17 0.17-0.32 0.32-0.48 0.48-0.67 0.67-1.0 
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Vulnerability risk 0-0.36 0.36-0.45 0.45-0.53 0.53-0.61 0.61-1.0 
Exposure risk 0-0.17 0.17-0.23 0.23-0.30 0.30-0.53 0.53-1.0 
Integrated flood risk 0-0.18 0.18-0.31 0.31-0.45 0.45-0.61 0.61-1.0 

 382 

4. Results 383 

After the procedure of the selection of indicators, we pre-processed, normalized 384 
and classified their data in the GIS environment and obtained the spatial distribution 385 
map of each flood risk indicator. The spatial distribution maps for flood risk indicators 386 
are shown in Figure 4 by taking the year 2016 as an example. The spatial distribution 387 
maps for the years of 1998 and 2008 are provided in the appendix because of the space 388 
limits. The Raster Calculator of Map Algebra tool in Spatial Analyst module is used to 389 
overlay the indicators and index layers according to their weights. Hazard, vulnerability, 390 
exposure and integrated flood risk distribution map of the YRB, as shown respectively 391 
in Figures 5, 6, 7, and 8. 392 
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 393 
Fig. 4 Spatial distribution maps for 13 indicators in the YRB: (a) Cumulative average 394 
maximum of 3-day precipitation; (b) Absolute elevation; (c) Relative elevation; (d) 395 
Drainage density; (e) Runoff and vegetation cover factor; (f) Local financial revenue; 396 
(g) Per capita resident savings; (h) Medical service level; (i) Monitoring and early 397 
warning capability; (j) Population density; (k) GDP per capita; (l) Soil erosion degree; 398 
(m) Site contamination risk level. 399 

4.1 Hazard assessment 400 

Hazard is an index layer with the most significant weight, which largely 401 
determines the flood risk evaluation results. The hazard risk mainly comes from the 402 
cumulative average maximum of 3-day precipitation. In the temporal distribution of 403 
rainfall, judging from 1998, 2008, 2016 hazard risk map (Figure 5), the interannual 404 
variation of rainfall is relatively large. It is worth noting that the severity of floods in 405 



16 

 

an area is directly related to the hazard level. Lateral comparing the risk findings in 406 
1998, 2008, and 2016, there were more high-risk areas in 1998 and less high-risk areas 407 
in 2008. The spatial distribution of precipitation in the YRB shows a trend of less in the 408 
west and more in the east, with distinct stratification and uneven spatial variations. The 409 
main high-risk and very high-risk areas are in the middle and lower reaches of the YRB, 410 
such as Anhui, Hunan, Hubei, Jiangsu, Jiangxi, and Zhejiang. In the upper reaches of 411 
the YRB, there is less rainfall and less hazard risk. 412 

 413 
Fig. 5 Spatial distribution maps of hazard levels: (a) 1998; (b) 2008; (c) 2016. 414 

4.2 Vulnerability assessment 415 

The spatial distribution maps of vulnerability in the YRB are shown in Figure 6. 416 
The areas adjacent to river and lake banks, such as in parts of the border between Hunan 417 
and Hubei, as well as Jiangxi and Anhui, were found in very-high vulnerability risk 418 
where the Dongting Lake and the Poyang Lake are in these areas. In addition, there are 419 
some very high-risk areas in the Sichuan Basin because the absolute elevation and 420 
relative elevation of the area are both low, which makes the flood difficult to discharge 421 
but easy to accumulate. In parts of Qinghai, the rescue ability of local government and 422 
residents is weak when the disaster arrives, due to low local financial revenue, per capita 423 
resident savings, and medical service level.  424 

From 1998 to 2016, the spatial vulnerability distribution changes a little, but the 425 
area with high vulnerability risk is gradually decreasing, which is conform to the actual 426 
situation of the YRB. The indicators of absolute elevation, relative elevation, and 427 
drainage density change little with the years. However, the vegetation coverage in the 428 
YRB has significantly changed in the past 20 years. Except for the decline of vegetation 429 
cover in the upper reaches of the YRB, most of the YRB tends to increase the vegetation 430 
coverage. The vegetation coverage growth can enhance the infiltration rate of 431 
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precipitation and slow down flood runoff, thereby reducing the flood vulnerability of 432 
these areas. Besides, with the rapid development of the economy in the YRB, the 433 
government and local people have more funds available for disaster relief and casualties 434 
reduction. 435 

 436 
Fig. 6 Spatial distribution maps of vulnerability levels: (a) 1998; (b) 2008; (c) 2016. 437 

4.3 Exposure assessment 438 

The spatial distribution of YRB flood risk exposure is characterized by high in the 439 
southeast and low in the northwest, increasing slightly over time, as shown in Figure 7. 440 
The highly exposed areas of the YRB are mainly distributed in the southeastern part of 441 
the YRB and the eastern coastal areas. These regions have a large population density 442 
and economic value of a unit of land. A typical example is the Yangtze River Delta 443 
region (part of Shanghai and Jiangsu and Zhejiang). Due to the dense population of the 444 
low-lying and broad valleys in the lower reaches, once the floods come, it would cause 445 
substantial economic losses in flood events (Kundzewicz et al., 2019). In most areas of 446 
Yunnan, Guizhou, Gansu and some other places, there are also many high-risk areas 447 
because of soil erosion and unique terrain. With the loss of surface water and soil, 448 
shallow landslides are easily formed in the gully slopes during rainfall, thus increasing 449 
the risk of secondary disasters, such as mudslide and landslides (Zhou, 2013). 450 
 451 
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 452 
Fig. 7 Spatial distribution maps of exposure levels: (a) 1998; (b) 2008; (c) 2016. 453 

4.4 Integrated flood risk assessment  454 

Based on the hazard, vulnerability and exposure spatial distribution map, the three 455 
layers are superimposed to obtain an integrated assessment result as shown in Figure 8.  456 

After using the raster to the point tool, the value of each 1 * 1km grid is generated, 457 
and the proportions of areas with different risk levels in the YRB can be calculated. 458 
Five categories of integrated flood risk were distinguished: very low, low, medium, 459 
high and very high in Table 5. 460 

Table 5 Integrated flood risk distribution in the YRB. 461 

Risk level 1998 2008 2016 

Very high risk 11.07% 8.65% 7.52% 

High risk 13.83% 7.30% 10.09% 

Medium risk 23.72% 19.57% 15.91% 

Low risk 27.57% 23.45% 28.70% 

Very low risk 26.81% 43.03% 40.78% 

 In 1998, 24.90% of the study area was found to be of very high and high risk, 462 
while these areas in the YRB fell to 15.95% and 17.61% in 2008 and 2016, 463 
respectively. Very low-risk zones made up 24.89% in 1998, while these areas in the 464 
YRB reached up to 66.48% and 69.48% in 2008 and 2016 respectively. The 465 
integrated risk of the YRB is closely related to the magnitude of the hazard because of 466 
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its significant weight. In the middle and lower reaches of the YRB (Anhui, southern 467 
Jiangsu, eastern Hubei), the eastern coastal areas, and the areas in Chongqing and 468 
Sichuan are found in very high-risk and high-risk flood zones. Most of the central 469 
mountainous areas of the YRB have medium flood risks, mainly due to flash floods 470 
caused by heavy rainfall in a short period. The low-risk and very low-risk areas of 471 
flood disasters in the YRB are mainly concentrated in the western part of the YRB. 472 
Due to the small impact of the typhoon in the western region, the rainfall is low, and 473 
the terrain is dominated by the plateau, which is not prone to floods. In the middle of 474 
the YRB, the integrated risk gradually decreases with years, mainly because the 475 
regional vulnerability has become less sensitive with the development of economic 476 
society.477 

 478 
Fig. 8 Integrated risk spatial distribution maps: (a) 1998; (b) 2008; (c) 2016. 479 

4.5 Validation 480 

Historical floods observed data in 1998, 2008, and 2016 of the YRB for rainfall, 481 
inundation area, and economic losses are used in this section to verify the veracity of 482 
the evaluation results. The YRB experienced severe floods in 1998 and 2016 because 483 
of the El Nino periods based on recorded data (Lyu et al., 2018b). In order to verify the 484 
model's reliability under different flood levels, the 2008 small floods in the YRB are 485 
used here as a comparison between 2016 and 2008 historical floods. 486 

A catastrophic flood in the YRB occurred in 1998, covering a wide range, lasting 487 
a long time, and causing severe economic losses, which is consistent with the 488 
assessment results. The leading causes of floods in 1998 are excessive heavy rains, 489 
reduced storage capacity of rivers and lakes, destroyed the ecological balance, low 490 
vegetation coverage, and low flood relief ability (Li, 1999; Zhao et al., 2000). In Figure 491 
5(a), the cumulative maximum 3-day precipitation in high-risk areas of the YRB 492 
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exceeded 2,500mm. Nearly half of the YRB is at medium risk, with the cumulative 493 
maximum 3-day precipitation exceeding 1,300 mm. In the hazard and vulnerability 494 
assessment, rainfall in the YRB was the highest in 1998, 2008, and 2016, and vegetation 495 
coverage was the lowest in those years. It is consistent with the real situation. In 496 
addition, the high-risk areas in the vulnerability risk map of the YRB in 1998 were 497 
higher than in 2016. Therefore, although a catastrophic flood also occurred in 2016, the 498 
proportion of economic losses in the year's GDP was much less than in 1998 as 499 
indicated in Figures 8(a) and 8(c). 500 

Compared with 1998, the high-risk areas decreased significantly in 2008. Actually, 501 
during the flood season from May to September in 2008, compared to 1998 and 2016, 502 
most parts of China experienced less continuous precipitation (State Flood Control and 503 
Drought Relief Ministry of Water Resources of the People’s Republic of China, 2008). 504 
During the 2008 flood season, there were no massive floods in the mainstream of the 505 
YRB, but the floods in some tributaries exceeded the warning level, which is consistent 506 
with the assessment results in Figure 5. In 2008, floods occurred frequently, and the 507 
loss distribution was concentrated, but it was lighter than the average for many years. 508 
The provinces of Guangdong, Guangxi, Hunan, Hubei, Zhejiang, Jiangxi, Anhui, 509 
Sichuan, Yunnan and other autonomous regions were severely affected but compared 510 
with the average for years, the flood disaster area was 363% less, the death toll was 511 
77.3% less, and the total direct economic loss was 152% less. As a result, the integrated 512 
risk for 2008 was at a low level in comparison with 1998 and 2016. 513 

In the assessment results of the flood disaster risk in the YRB in 2016, the high-514 
risk areas were significantly lower than in 1998 and 2008. In fact, in 2016, the YRB 515 
experienced the second-highest flood since 1998 (State Flood Control and Drought 516 
Relief Ministry of Water Resources of the People’s Republic of China, 2016). However, 517 
the economic losses caused by the 2016 floods as a percentage of annual GDP were 518 
much smaller than that in 1998 (Figure 1). In the 2016 vulnerability assessment, the 519 
economic losses after the flood in the middle and lower reaches of the YRB were 520 
reduced after the ability of the YRB to respond to disasters increased.  521 

In summary, the model has been proved to be reliable, and the risk evaluation 522 
results can be more accurately displayed in terms of the risk indexes of hazard, 523 
vulnerability and exposure, as well as the integrated flood risk. 524 

5. Conclusions and discussion 525 

The paper has presented an integrated approach (GIS-based spatial multi-index 526 
model) for large basin-scale flood risk mapping and assessment. In order to investigate 527 
the overall impacts (economic, social, and environment) of the flood and describe the 528 
flood risk spatial distribution as accurate as possible, an index system method and a 529 
GIS-based approach were used. Finally, the results were verified using the YRB 530 
observed floods in 1998, 2008, and 2016. The conclusions are summarized as follows:  531 

(1) The flood risk in the YRB is mainly related to precipitation. The GDP per 532 
capita, surface runoff factor, and vegetation coverage, local financial revenue, and 533 
erosion degree also play a relatively important role. 534 

(2) The northeastern part of the YRB was found in the integrated very high-risk 535 
and high-risk areas in the YRB. The hazard risks vary significantly over the years, while 536 
the vulnerability and exposure risks change relatively less with time. 537 
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(3) Results were verified using observed floods in the YRB in 1998, 2008, and 538 
2016. It has been proved as a replicable approach for large-scale flood risk assessment, 539 
especially for the assessment at a basin scale. 540 

Compared with small and medium-scale flood disasters, floods across basins and 541 
regions could result in significant losses and huge impacts. Large-scale flood risk 542 
assessment requires a detailed investigation of natural geographic information such as 543 
topographical terrain, characteristics of flood disasters, and socio-economic losses, with 544 
enormous human and financial costs (Cao, 2014). Therefore, the research often focuses 545 
on specific flood-prone areas, such as coastal area, metro systems, reservoirs; Or in the 546 
administrative area, a county, city or province. Risk assessment in a larger area is likely 547 
to result in a decrease in the assessment accuracy and more generalized indicators. 548 
However, the 1km * 1km grid is used in this risk assessment to improve the spatial 549 
resolution of prediction results. If the detailed analysis of potential flood risk indicators 550 
affecting a particular area is needed, the spatial distribution maps can be performed 551 
according to each of the provided indicators, and actual investigations are made on the 552 
advice of decision-makers.  553 

The main advantage of this approach is that it can successfully provide a 554 
comprehensive indicator selection proposal for the large-scale, especially basin-scale 555 
flood risk assessment that can be processed by a complete set of GIS tools to achieve 556 
the visualization. During the application of the risk assessment model, there are some 557 
challenges, such as data availability and quality to represent indicators including 558 
precipitation, land economy social value, or the vulnerability of the site to 559 
contamination for the specific regional context. Therefore, additional efforts are needed 560 
to produce a considerable enhancement in term of careful consideration for indicators, 561 
data availability and quality. For future research work on the large-scale flood 562 
assessment, there are two possible ways to improve. Firstly, to improve the accuracy 563 
for flood risk assessments, high precision raw data sets should be adopted, and a new 564 
sound quality weighting system for indicators should be built up. Secondly, in order to 565 
apply the conceptual model in the actual processes of flood risk mitigation and 566 
adaptation, the field research and assessment results should include policy advice. 567 

Appendix Ⅰ  568 

Using the questionnaire, an example of results are shown as follows： 569 

Elements   U1  U2  U3  570 

Sort order  (2)  (1)  (3) 571 

Appendix Ⅱ  572 

Table 1 Value assessment of sorted elements 573 
Number 

of  
element

s 

Value 
of 1st 

element 

Value 
of 2nd 

element 

Value 
of 3rd 

element 

Value 
of 4th 

element 

Value 
of 5th 

element 

Value 
of 6th 

element 

Value 
of 7th 

element 

Value 
of 8th 

element 

3 10 6 1       

4 10 7 4 1      
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5 10 8 6 3 1     

6 10 8 6 5 3 1    

7 10 9 7 6 4 3 1   

8 10 9 7 6 5 4 2 1 

Note: According to the importance arrangement, the value of the most important element is 10, and 574 
the least important one is 1. By using this table, the values of the indicators can be assigned by linear 575 
interpolation. 576 

An example of the results are shown as follows: 577 

Table 2 Sorting comparisons matrix 578 
 U1 U2 U3 

U1 1 1/4 5 

U2 4 1 9 

U3 1/5 1/9 1 
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