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Abstract

The provision of speech control for editing plain language text has existed

for a long time, but does not extend to structured content such as math-

ematics. The requirements of a user interface for a spoken mathematics

editor are explored through the lens of an intuitive natural user interface

(NUI) for speech control, the desired properties of which are based on a

combination of existing literature on NUIs and intuitive user interfaces.

An important aspect of an intuitive NUI is timely update of display of

the content in response to editing actions. This is not feasible using batch

parsing alone, and this issue will be more serious for larger documents such

as computer program code. The solution is an incremental parser designed

to work with operator precedence (OP) grammars.

The contribution to knowledge provided by this thesis is to improve the

efficiency in terms of processing time, of the OP incremental parsing algo-

rithm developed by Heeman, and extend it to handle the distfix (mixfix)

operators described by Attanayake to model brackets and mathematical

functions. This is implemented successfully for the TalkMaths system and

shows a greatly reduced response time compared with using batch scan-

ning and parsing alone. The author is not aware of any other incremental

OP parser that handles such operators. Furthermore, a proposal is made

for modifications to the data structures produced by Attanayake’s parser,

along with appropriate adjustments to the incremental parser, that will in

the future, facilitate application of OP grammar to program code or other

structured content by changing the definition of its content language.
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Chapter 1

Introduction

1.1 Background

Given the ubiquity of electronic publishing, the means of creating content via computer

should be available to anyone who wishes to or is expected to do so as part of their work,

study or leisure activity. This includes people who have a disability that prevents them

from using traditional input modalities easily, such as keyboard, mouse or touch screen.

One alternative method of controlling a computer that does not require expensive

additional hardware is via spoken commands.

Automatic speech recognition (ASR) software has been widely available for a number of

years, and ranges from digital assistants such as Apple’s Siri1, which require an Internet

connection and are designed to respond to simple commands expressed in natural

language, to dictation and Windows control software such as Dragon by Nuance2,

developed with plain language document creation and editing in mind. While such

facilities may now be commonplace, very little exists to support creation and editing

of structured content such as mathematics or computer code. The issues with spoken

computer code are well documented (Desilets, 2001; Begel, 2005; Desilets et al., 2006;

Pfluegel et al., 2011; Gordon and Luger, 2012), as are those specific to spoken mathe-

matics (Fateman, 2013; Wigmore, 2011; Attanayake, 2014).

One characteristic that is needed to support a natural-feeling interface for any content

of this type is timely feedback to the user on the result of their actions. While delay

1See https://www.apple.com/uk/siri/.

2See https://www.nuance.com/en-gb/dragon.html.

1
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due to parsing fairly short mathematical expressions might be acceptable to the user,

this will not be the case for components of program code. In the latter case, not only

will large amounts of content be built up piece by piece (necessarily broken up this

way as the user will need to pause to breathe as they dictate), but its display will

need to be updated appropriately as the user makes changes. As recognised by Ghezzi

and Mandrioli (1979; 1980), to achieve this, a fast incremental parsing algorithm is

required.

Given the nature of mathematical expressions, the most appropriate grammar to use

for their internal representation is an operator precedence (OP) grammar. Attanayake

(2014) developed a batch parser for the TalkMaths system (henceforth referred to

as TalkMaths) which builds up valid abstract syntax trees (ASTs) based on spoken

mathematics. These trees include a modelling of bracket structures and functions with

more than one operand. The aim of the work described in this thesis is to develop an

incremental OP parsing algorithm that will work with such ASTs, thus extending the

content that will be handled by previously developed OP parsing algorithms, and to

investigate its feasibility for application to any structured content but in particular,

computer program code.

1.2 Aim and Objectives

The aim of this project is to contribute to research on speech-driven user interfaces

used to edit structured content such as program code, facilitating development of tools

to enable maintenance of such content either by speech control only, or in a multimodal

fashion that includes speech. These may be used by people with relevant disabilities,

or in environments that preclude the use of input devices such as keyboards or tablets.

The objectives are as follows.

• Elicit the characteristics that a user interface should have to provide a natural

user experience when using speech control, from a large cross-domain of liter-

ature on both user experience and speech interfaces, to inform the design and

implementation of a system for creation and editing of mathematical expressions.

• Design and implement a novel incremental parsing algorithm based on manipu-

lating trees representing mathematical expressions and similar content generated

by an operator precedence parser.
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• Identify and discuss any modifications required to the parsers or data structures

in order to handle the creation and editing of spoken computer program code.

1.3 Thesis Contributions

In this thesis, three main contributions to knowledge are made.

First, a number of intuitive natural user interface principles are identified, to be applied

when designing speech controlled applications, and in particular, those appropriate for

editing mathematical expressions. This is the first time the principles for natural user

interfaces and intuitive interfaces have been combined and applied to a speech environ-

ment. An important factor in providing such a user interface is that of timely update

of displayed content in response to the user’s actions. Given that system response

time when reparsing an entire expression is unacceptably long, incremental parsing

techniques are required to achieve this behaviour.

The second main contribution of this thesis is an extension of the incremental operator

precedence parser developed by Heeman (1990) to handle unary operators and the

mixfix operators modelled by Attanayake (2014). The parsing algorithms’ efficiency is

also improved by using an alternative method to identify incomplete composite nodes,

and by redesigning the top-level operations using an iterative approach, rather than

simply converting the recursive algorithms to their iterative versions. The provision of

incremental parsing, along with performance improvements made to the implementa-

tion of the Attanayake (2014) batch parser, will enable TalkMaths to be used for longer

expressions that require multiple utterances to dictate.

Finally, an extension to the parser developed here and the Attanayake (2014) parser

are discussed, that will be required to permit them to be used for the modelling of

programming constructs, handle editing operations more flexibly, and allow constructs

and identifiers to be named by the user in a more natural way.

1.4 Structure of this Thesis

Chapter 2 is an extended version of Isaac et al. (2015), which reviews and evaluates

literature on natural user interfaces (NUIs) and intuitive interfaces, combining these to

form a list of intuitive natural user interface (INUI) principles. After a discussion on



CHAPTER 1. INTRODUCTION 4

what may be considered to feel natural in a speech interface, and discussing require-

ments specific to editing structured content such as mathematics or program code, the

INUI principles are adapted for this type of speech editing environment.

Chapter 3 reviews the literature on incremental parsing in general, and operator prece-

dence (OP) incremental parsing in particular, including the ways in which OP gram-

mars may be used to represent programming constructs. It finishes by taking a detailed

look at the algorithm developed by Heeman (1990), including suggested extensions.

After introducing the notation and terminology used in the remainder of this thesis,

Chapter 4 describes in detail the extensions to the Heeman (1990) algorithm, using the

mixfix operator model described by Attanayake (2014). The theoretical time complex-

ities of the top-level operations are derived, and compared with their equivalents as

would be performed using the Attanayake (2014) batch parser.

Chapter 5 introduces the TalkMaths parser developed by Attanayake (2014), and

describes how the algorithm developed in this thesis is implemented to work with

it. Given the difficulty of direct comparison of the theoretical time complexities of the

two parsers, the chapter finishes by presenting a comparison of practical performance

for example editing scenarios.

Chapter 6 explores the issues involved with adapting the algorithm for use on program-

ming languages rather than mathematics, and makes recommendations on how these

may be tackled to allow TalkMaths to evolve into a generalised speech-controlled struc-

tured content editor.

Chapter 7 presents conclusions and makes suggestions for future work.



Chapter 2

User Interfaces for Speech

2.1 Introduction

For many years, products such as those offered by Nuance1 have provided high function-

ality for speech control in a variety of common spoken languages. The main area that

has benefited from spoken dictation facilities is word processing; structured content

such as mathematical text or computer program code has been very much left behind

in this respect, because of its specialised formatting and punctuation. To make speech

control a viable option for editing such content, a more natural style of interaction is

required.

This chapter discusses the definitions of natural user interfaces (NUIs) and expands

on the notion of intuitivity, in order to derive a list of basic intuitive NUI properties.

These are then interpreted for user interfaces that use speech recognition and, taking

into account some of the issues encountered when designing for spoken mathematics,

principles to which a TalkMaths user interface should adhere are proposed.

TalkMaths is the product of an ongoing development programme at Kingston Univer-

sity, aimed at providing a facility for users to create and edit mathematical content

using speech control. It was originally created as a result of Wigmore, Hunter, Pfluegel,

Denholm-Price and Binelli (2009) and Wigmore (2011), and has undergone various

1See http://www.nuance.com/dragon/index.htm

5
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changes since then. Currently it consists of a RESTful web service2, based on the work

of Attanayake (2014).

This chapter is an extended version of the paper presented by Isaac et al. (2015) in

the 26th Annual Workshop of the Psychology of Programming Interest Group, PPIG

2015, and includes a section on requirements specific to speech-based language-sensitive

editors.

2.2 Literature Review

The concept of a NUI has currently been applied mainly to interfaces using touch and

gesture (Wigdor and Wixon, 2011). This section traces the concept back to its origins

and explores the related notion of intuitive interfaces.

2.2.1 Natural User Interfaces

The concept of the natural user interface was first developed by Fjeld et al. (1998; 1999)

as part of a project to develop an augmented reality system designed to aid remotely

situated users collaborating in the design of a physical artefact. The interface for such

a task would have to minimise the discontinuity between the physical actions required

to complete a task, and the user’s mental problem solving process. The theoretical

basis was that of the activity cycle which, in action regulation theory (Hacker (1994),

as cited by Fjeld et al. (1999)), consists of iterations of goal setting, action planning,

performance and evaluation. Within these steps, the user performs actions that may

be pragmatic, which bring a task physically closer to completion, or epistemic, which

aid the thought process of the user. A good illustration of these is given by Kirsh and

Maglio (1994) who describe how the most accomplished Tetris players rotated tiles

“physically” rather than try to imagine these transformations before moving a piece.

Because these epistemic tile rotations were of benefit to the subjects of the study,

the first NUI design guideline developed by Fjeld et al. (1998) was to allow users to

perform such exploratory actions. To give users the confidence to behave in this way,

the second guideline states that the negative effect of making any mistakes needs to

be minimised. The third NUI guideline of Fjeld et al. (1998) is to allow voice as well

2A RESTful web service is one that provides access to a resource using representational state transfer,

as defined by Roy Fielding in

http://www.ics.uci.edu/ fielding/pubs/dissertation/rest arch style.htm
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as any body part to be used for system interactions. Their fourth guideline suggests

monitoring of the complete user environment, including interaction with artefacts such

as visual projections (Rauterberg, 1999). Given that this is rather ambitious, it was

dropped from their updated list of design principles (Fjeld et al., 1999).

Ten years later, as touch screen and gesture-based technology matured, researchers

investigated the opportunities in User Interface (UI) design that arose from these

(Wigdor et al., 2009). The book Brave NUI World (Wigdor and Wixon, 2011) presents

a much cited practical guide for designers in these areas, suggesting ways in which many

of the ideas of Fjeld et al. (1999) may be implemented in such interfaces.

The idea of NUIs is also addressed by Jetter et al. (2014) in their Blended Interaction

framework, which attempts to predict what metaphors in user interface design will

make sense by using the ideas of conceptual blending (Fauconnier and Turner, 2008)

and image schemas (Hurtienne and Israel, 2007). Asikhia et al. (2015) also use image

schemas in their work on intuitive interaction, finding that schemas that may be formed

independently by both the user and designer are most likely to be successful.3 It may be

of interest to designers of speech UIs that language seems to be at the core of the ideas

developed for direct manipulation: the conceptual blends suggested by Jetter et al.

(2014) incorporate the metaphors involved in Hurtienne and Israel’s image schemas,

which themselves reflect the language used to describe relations between objects and

actions to be performed on them (Hurtienne and Israel, 2007).

Ghosh et al. (2017) also explore the related concept of the natural user experience, the

guidelines for which include the importance of context, (fast) response time and lack

of ambiguity, for promoting the perception of “naturalness”.

2.2.2 Intuitivity

A requirement that crops up in the original descriptions of NUIs is that the interface

should be intuitive (Fjeld et al., 1998; 1999). For brevity, this property will be referred

to as intuitivity4, and the following definitions of its basic principles will be used.

3This relationship seems to be similar to the one between user and developer mental models referred

to by Blackler and Hurtienne (2007).

4This term is already in use, and is preferable to intuition, which is commonly understood as referring

to the subconscious human thought process.
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Blackler and Hurtienne (2007) describe the concept of intuitivity as the situation where

aspects of an interface appear familiar to a user by taking advantage of their existing

knowledge; an additional condition is that the user should almost forget that they are

having to work via a UI (Naumann et al., 2007). This lack of awareness should result

in a lower cognitive load associated with use of the interface (Naumann et al., 2007),

particularly when performing low-level actions during the activity cycle. Blackler and

Hurtienne (2007) make several recommendations to help produce intuitive designs, the

most relevant of which are included in the next section.

2.3 Intuitive NUI Design Principles

The following general principles represent an attempt to blend the definitions of intu-

itivity and other work on NUIs with the ideas of Fjeld et al. (1999). The list is grouped

according to the general objectives of Fjeld et al. (1999).

Encourage epistemic actions and exploratory behaviour.

As proposed by Fjeld et al. (1998), this will help the user complete their task

efficiently, exhibiting the exploratory behaviour that will help them progress to

expertise in the application (Wigdor and Wixon, 2011; p.55).

1. Users with differing proficiency levels should feel comfortable using the soft-

ware (Wigdor and Wixon, 2011; p. 13).

2. Provide alternative ways of invoking functionality for different classes of

user, as well as employing other types of redundancy such as providing both

text and icon to describe controls. (Blackler and Hurtienne, 2007)

3. Interaction with the system should feel robust (in the sense of error handling

or recovery) to the user, so that they will have the confidence to attempt

more advanced operations as they become more skilled.

• For major changes or destructive actions, confirmation should be required

and previews should be provided where appropriate. (Wigdor and

Wixon, 2011; p. 55)

• Minimise the impact of user errors (Fjeld et al., 1998) by allowing the

user to reverse them easily (Fjeld et al., 1999).
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The user should feel that their interaction with the system is intuitive.

The following principles pertain to this area (in which there is considerable

overlap with the concepts of “naturalness”).

4. Where conventions are already established in the application area or medium

(Wigdor and Wixon, 2011; p. 13), adhere to these, otherwise use effective

metaphors (Blackler and Hurtienne, 2007).

5. Take advantage (where appropriate) of the user’s existing skills, to make

their experience feel more familiar (Wigdor and Wixon, 2011; p. 13).

6. Facilitate the planning aspect of the activity cycle by indicating software

state and available actions at all times, giving full context to the user

(Wigdor and Wixon, 2011; p. 45) and (Fjeld et al., 1999; Ghosh et al.,

2017).

7. Show the results of all user actions (Fjeld et al., 1999), with feedback

being immediate, appropriate (Blackler and Hurtienne, 2007) and informa-

tive. Non-trivial feedback (for example, system messages) should aim to

increase user understanding of the system and provide effective help where

needed (Wigdor and Wixon, 2011; p. 56).

8. Clear affordance in the design of controls will aid the user in identifying both

the function and mode of use of the controls (Fjeld et al., 1999; Blackler

and Hurtienne, 2007; Ghosh et al., 2017; Wigdor and Wixon, 2011; p. 55).

9. The interface should reflect the user’s mental model5 of the system (Blackler

and Hurtienne, 2007).

Context of use of the system should be taken into account.

The design should reflect:

10. the nature of the user’s task rather than the technology of the application

(Blackler and Hurtienne, 2007), as well as

11. the physical environment and social context in which the system is to be

used (Wigdor and Wixon, 2011; p. 19).

5A mental model is the user’s perception of the components of the software and how they interact.
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2.4 What Feels Natural in a Speech Interface?

2.4.1 Type of Language

While natural language may seem the obvious choice for casual use or novice support,

not only is it unclear how the inherent ambiguity of a language such as English could

be applied to precise editing operations, but the need to use long sentences to describe

repetitive actions is not desirable for the user. Research suggests that users prefer

brief commands to natural language for such tasks (Elepfandt and Grund, 2012), and

there is even evidence that humans opt for brevity (to the point of failing to convey

sufficient information) when speaking to machines if permitted to use their own choice

of words (Stedmon et al., 2011), because they expect the machine to be unable to

handle more complex sentences.6 This suggests that a language that provides a natural-

feeling experience would be one that contains both simple and more complex versions

of commands. Novice users should be reminded of basic commands by the interface,

while at the same time they should be made aware of the more powerful versions, which

would help them develop their mastery of the command language. This would form

part of the “scaffolding”7 described by Wigdor and Wixon (2011; p.53).

2.4.2 How Can Objects be Manipulated Using Speech?

The most well known discussion of NUIs (Wigdor and Wixon, 2011) deals with the

modalities of touch and gesture, reflecting the natural progression from using keyboard

and a pointing device to manipulate on-screen objects, to the subjective experience of

manipulating them directly. Where automated facilities are not currently provided

for certain types of content (such as mathematical expressions written in LaTeX),

ASR users commonly use human scribes. Although it would be tempting to develop

“assistants” to take the place of these people, they would not give the user any sense

of direct manipulation of the objects on screen. The question is, how may systems

provide voice commands that do this adequately?

A major challenge in this is how to select and manipulate objects when use of hands is

6As speech interfaces become more widespread and sophisticated, it would be interesting to see if such

user behaviour changes.

7This is the term used to describe the means provided by the UI for allowing the user to become more

skilled at using the software.
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treated as an optional UI mode. One promising method is to combine speech with eye

gaze to indicate the object in question (Elepfandt and Grund, 2012). Kaur et al. (2003)

and Maglio et al. (2000) find that users naturally glance towards objects they intend

to manipulate just before they do so, suggesting overall efficiency of a system might

be improved by using this hybrid modality. When gaze is used as an adjunct to other

modalities, the interface is in fact partially meeting the third original NUI guideline of

Fjeld et al. (1998) through its use of natural behaviour; Sibert and Jacob (2000) have

found that eye gaze can enable faster object selection than use of a mouse. Research in

this area is ongoing – see for example Vieira et al. (2015) – and if privacy concerns about

eye tracking can be overcome, this may become popular as the technology matures.

Before then, other means are required to refer to on-screen objects, such as the various

types of grid described by Wigmore (2011). Most grids (boxes that identify objects

that can be selected for manipulation) use numbered labels, that may cause confusion

as numbers change due to changes in objects, and increase cognitive load through

the user needing to recall label numbers. A better alternative is the semantic grid

(Wigmore, 2011) that uses meaningful labels where possible. Additionally, rather than

novice users such as children learning mathematics having to recall domain-technical

terms such as “numerator”, the labels will remind and reinforce learning of such terms.

2.5 Requirements Specific to Speech-based

Language-sensitive Editors

This section considers requirements that are specific to speech based systems, and in

particular to language-sensitive editors – that is, those where the content is written

in a formal language such as mathematics or computer program code. TalkMaths

is used to illustrate the issues involved. This is a system for entering mathematical

expressions, providing spoken commands for dictating common mathematical symbols

and operators, and including specific editing commands that work together with a GUI.

For example, the expression a+b might be dictated by saying “alpha plus bravo”. Note

that in order to spell out individual letters, most ASRs have difficulties in recognising

them correctly unless spoken spelling conventions such as the NATO phonetic alphabet

are used (Fateman, 2013). This is not expected to be a major restriction for experienced

ASR users, but may pose problems for casual use. Typed input that uses plain letters

should of course be permitted, as the system is also expected to be used multimodally

for general mathematical input.
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The issues that engender additional requirements for this type of software arise not

only from controlling the computer using spoken commands, but also the vocabulary

and structure of the content and editing commands.

These will be described in further detail in Section 2.5.3, but first some aspects of the

content being authored need to be considered.

2.5.1 Spoken Mathematics and ambiguity

Wigmore, Hunter, Pfluegel and Denholm-Price (2009) found that when speaking math-

ematics naturally to one another, people would use prosody to indicate grouping of

parts of an expression. For example,
√
a + b would be read aloud as “square root

of alpha; plus beta” while
√
a+ b would sound more like “square root of: alpha plus

beta”. This suggests that where there is scope for ambiguity, prosodic elements such as

pauses may help identify which possible parse result was intended by the user. Current

widely available ASR technology enables people to issue commands consisting of words

to the computer but does not take prosody into account. This is a limiting factor in

the naturalness with which such expressions may be spoken.

To deal with the problem of ambiguity, Attanayake et al. (2012) proposed the sugges-

tion of alternative words or phrases based on statistical language models as part of their

error correction strategy, and investigated the use of predictive models to resolve ambi-

guities as part of their statistical parsing approach. Given the prevalence of predictive

text in mobile devices, an equivalent of this may prove helpful for novice users who

are unsure of the forms a command may take: for example uttering just the first word

of a command (e.g. “fraction”) could result in a “help” area displaying the syntax of

this command, while uttering just “select” could display alternatives for the next word

that may appear in a selection command used for editing.

2.5.2 Requirements Arising from Speech Control

The requirements described in this section relate to common tasks involved in creating

and editing mathematical expressions that may be performed by users with a range

of abilities. These may be people with difficulties using a mouse and keyboard but

who are expert at mathematical representations such as equations written in LaTeX,

as well as the more casual user who would only occasionally need to create or edit

mathematical formulae but as noted by Fateman (2013), may find it easier to enter
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these using some spoken input.

For brevity, a command (or part thereof) that specifies content will be referred to in

the same way as an action command. The requirements here can be summarised as

follows.

Extensibility : The ability to extend the language by using macros with placeholders.

Concatenability : The facility to issue more than one command in a single utterance.

Cursor placement : Allowing specification of an insertion point as well as selection

of parts of content.

The requirement of extensibility refers to the ability of the user to invoke a series of

commands, or fragment of a command, saved under some “macro” name. Expert users

who may frequently need to create similar forms of expression will be able to do this

quickly, and certain wordy phrases such as “Greek mike hat” for µ̂ may be shortened

to suit the user’s taste. This choice of alternative methods to invoke functionality

conforms to intuitive speech NUI principle 2.

The utility of this requirement becomes clearer where the system is used by practi-

tioners who work in a variety of areas, with different (or even contradictory) nota-

tions. If action commands and content commands are treated as belonging to a single

language, one could add another type of macro that in effect extends the content

language by allowing placeholders. These would of course need to conform to the

grammar of the common language8. A mechanism to check that new or altered

command phrases do not already exist in the vocabulary would also be required; given

that the modality of interest is with speech input, a check for high similarity in sound

to other words may also be desirable.

Just as a user may want to use macros to allow them to reduce their speaking time,

they will frequently want to be able to issue more than one command in a single

utterance. Consider the example of an expression a+1
a+2

that should have been a+1
b+2

. For

only a reasonably experienced user, the quickest way of making the change may be to

give commands “select denominator” followed by “select alpha” in a single utterance,

before dictating the replacement, “bravo”. To force the user to pause between the

two selection commands would be undesirable as more advanced users will frequently

8Use of an operator precedence (OP) grammar makes this less of a daunting prospect via the use of

distfix operators, which are discussed in the next chapter.
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want to utter commands in a single utterance. This requirement is given the name

concatenability.

The combination of custom commands and concatenation of these of course raises

issues for language design, which will be discussed further in Section 2.5.3.

While Wigmore (2011) describes various grid mechanisms to enable selection of content

for editing or deletion, a means of specifying an insertion point is required. This corre-

sponds to the notion of a cursor in text editing environments. A means of positioning

this other than by hand control is required. It should also be possible to specify multiple

cursors (marks) that may be subsequently used as insertion points or as delimiters for

selecting a block of text.

2.5.3 Language-related Issues

Language-related issues arise from the special vocabularies used for mathematics or

computer programming, as well as operator precedence of mathematical expressions.

Requirements pertaining to these may be summarised as follows.

Context-specific vocabulary This implies that when in the context of using the

specialist software, the vocabulary needs to be restricted to words that will be

analysed lexically as appropriate words within the context of that software, either

as commands or the language of the specialised content type.

Error recovery Automatic error recovery strategies, that permit the user to modify

the parsed output into the desired form with a minimum number of subsequent

steps, should enable the system to handle erroneous inputs gracefully.

Ability to handle commands longer than a single utterance The system must

allow a command to be given using more than one utterance, to handle commands

that take longer to say in one breath.

Distinguish between a multi-utterance command and sequences of commands

The overall effect of a sequence of commands should be the same, no matter where

the user had to pause (thus producing a new utterance) while speaking them.

Handle ambiguous commands Where a command is ambiguous, the user should

be presented with alternative interpretations (based on possible parses).
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A simple example of the need to deal with context-specific vocabulary is where the

user wishes to create expression π
2
, so dictates “pi over two” (assuming “pi” is in the

vocabulary). A general purpose ASR could recognise this as the string “pie over to”,

thus providing a string that cannot be parsed.9

Although the restriction of vocabulary at least partly addresses the issue of incorrectly

chosen homophones, it does not deal with the problem of word misrecognition. There

are a number of ways in which input that does not constitute one complete and correct

command could arise. If the ASR software fails to interpret part of the user’s utterance,

the expression could be treated as incomplete. Alternatively, if it formed part of a

longer expression, it would need to contain a gap (or “hole”) that the user could fill

in later. The software will also need to deal with extra words introduced by the user

into a sentence in the command language that violate its grammar but form a valid

sentence in natural language. For example, a spoken command “edit the numerator”,

contains the extraneous word “the”. This suggests there may be a number of words

that, depending on context, should be treated in the same way as filler sounds10.

As discussed by Fateman (2013), the treatment of commands or structured input that

spans more than one utterance is not a trivial issue, and different scenarios need to

be considered.11 The next two illustrations use the example of a user who wishes to

construct the expression a+b
c+d

, which translates (using an example mathematical content

language given by Fateman (2013)) into “alpha plus bravo all over quantity Charlie

plus delta”.12

Suppose, having dictated this fragment, the user pauses after “all over”, so the remainder

of the expression is given in a second utterance. The assumption is made that as

described above, the software recognises the form of the expression, and constructs a

fraction with a missing denominator. Should the system (a) wait for a new command,

which may be one that edits the fragment, or (b) wait for the continuation of the

expression? Option (a) may be irritating to an experienced user through interrupting

their train of thought, while (b) could cause difficulty if the user deliberately broke

9The author accepts this is a very artificial example, given that a modern ASR is likely to recognise

the trigram correctly.

10Filler sounds are noises such as “um” and “er”, that humans typically use to fill in thinking time

during speech.

11If multimodal input is permitted by a system, users switching between speech and typing may make

multi-utterance commands and expressions an even more common occurrence.

12The word “quantity” is used in this language as a left delimiter of a non-trivial denominator.



CHAPTER 2. USER INTERFACES FOR SPEECH 16

off from dictating the expression. The best approach would be for the software to do

both: accept either a new command or the continuation of the input.

If the user paused instead after “alpha plus bravo”, the software would interpret this as

the complete expression a+ b, so when the user gives the remainder: “all over quantity

Charlie plus delta”, this second utterance may be interpreted as a new and incomplete

command. This imples that not only may incomplete commands (or expressions)

be missing content at the end, or have “gaps” where spoken input was not properly

recognised, but an utterance may be the continuation of a previous command or content

description.

This implies that a system using the language should be able to accept continuation of

input as well as the concatenation of the commands suggested by the concatenability

requirement. This may cause problems, as illustrated by the following scenario.

Suppose a user issues consecutive commands “alpha plus bravo”, “select alpha” and

“plus bravo” as separate utterances (using a system that will accept dictation of new

content to overwrite existing content). The sequence of commands will cause the system

to replace in the expression a+ b, the symbol a with +b, resulting in +b+ b. Alterna-

tively, issuing the commands all in one utterance, “alpha plus bravo select alpha plus

bravo”, would select the entire expression because the utterance would be interpreted

as two commands (the second one starting with “select”). This demonstrates that in

certain situations, the semantics of commands may change if they are issued in a single

utterance, compared with their meaning as two separate utterances in sequence. If one

still wants to allow for the time saving that occurs when concatenating commands, one

would have to make the command language more flexible.

To state this problem from a mathematical point of view, the translation from command

to action is not a homomorphism. That is, if operation · denotes command string

concatenation, and ◦ denotes the equivalent editing operation (that is a1 ◦ a2 means

execute action a1 followed by a2) then if f denotes the translation to internal form

then the requirement that for any editing commands s1 and s2,

f(s1 · s2) = f(s1) ◦ f(s2)

is not always met.

One solution would be to ensure that every s1, s2 is complete individually, which could

be achieved by providing a delimiter to the “select” command, making the equivalent

of the first version of the command sequence “alpha plus bravo select alpha end select
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plus bravo”. The drawback of this is that extending the “select” command by two

words may be undesirable from the user’s point of view. To overcome that, a single

utterance that contains only the opening part of such a command could be treated as

having the closing part (e.g. “end select”) at its end. That way, “end select” would

only have to be spoken if the “select” command has another command following it

in a single utterance. But then what happens if the user is genuinely spreading the

command over two utterances? An alternative would be to allow the user to issue

commands in two modes:

• interactive mode (the default), in which if there is ambiguity when the second

command is issued, the user is queried on whether the second command is a

continuation of the first, and

• dictation mode, in which it is assumed that the user is inputting a sequence of

commands that are assumed to be individually complete.

Ambiguity in dictation mode may be handled in a way that is similar to greedy regular

expressions13, in that the above scenario will result in the ambiguous utterances being

interpreted as single command “select alpha plus bravo” rather than command “select

alpha” followed by content dictation “plus bravo”.

The above paragraphs describe a mechanism to handle ambiguity that arises from the

user pausing during their interaction. The other type of ambiguity relates either to

ambiguities inherent to the language, or those introduced through erroneous input. The

way in which such ambiguities are handled, and the order in which any alternatives are

presented, needs to be considered. Attanayake et al. (2012) presented a a statistically-

based approach for predicting which form will be the most likely, implemented in the

SWIMS system, as an alternative to deriving a parse forest of all possible parses of

the sentence (implemented on an experimental version of TalkMaths). Because one

of the requirements of TalkMaths is to handle incomplete input (whether a truncated

command or one that contains gaps), taking this into account when constructing the

parse forest can result in a large number of possibilities, even when the command has

only one correct interpretation. As well as causing longer response times in practice, it

is the belief of the author that the user experience may be impaired by being presented

with a large range of choices for what they thought was a simple expression.14

13Greedy regular expressions will match as long a sequence of input as possible.

14In practice, even “alpha minus bravo” produced a two-tree parse forest: one for a− b and the other

representing the concatenation of a and −b (where the minus was unary), equivalent to a(−b).
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One method of dealing with this may be to have the behaviour controlled by a param-

eter (for example whether to use statistically-based methods to deal with ambiguity);

another may be to use the following approach.

• If the sentence can be parsed without error such that it is unambiguous, accept

it.

• If the sentence may be parsed in different ways without error (that is, it is

ambiguous, but with each interpretation correct), require the user to choose from

the interpretations found.

• If the input could not be parsed without error, list all (or maybe just some) of the

possibilities. In this case, it would be desirable to list them either in ascending

order of number of “holes” detected during the parse, or by using the statistical

prediction method proposed by Attanayake et al. (2012).

2.6 How an Editor for Spoken Mathematics may

Reflect INUI Principles for Speech

To avoid over-generalisation, given that speech interfaces may be used in a wide variety

of environments, the context of the adaptation has been restricted to content editing

environments involving a full sized screen for visual output. The assumption is made

that a product such as those offered by Nuance or Microsoft is to be used, and that

the user is not visually impaired.

Table 2.1 summarises the intuitive NUI principles described below for speech editing

environments. The structure (and numbering) follow that used in Section 2.3. A fuller

description of the principles, that are also informed by the experience of working with

earlier versions of TalkMaths, is given in the following paragraphs.

1. Users of varying proficiency should feel comfortable using the software. Command

reminders should be given to novice users, but expert or intermediate level users

may be given the option to suppress them. The reminders may take the form of a

list of most commonly used commands appropriate to the current situation, with

an option to show them all. This way, a novice user would not have to resort

frequently to use of a help system (“What can I say?”), and so the command

list could form context sensitive help. A command history pane could show
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Table 2.1: Adaptation of intuitive NUI principles for speech interfaces

Principle Application to speech interface

Encouraging epistemic actions and exploratory behaviour

1 Handle different abilities Command reminders and history.

2 Alternative routes to

functionality, and

redundancy

Interactivity and “command line”; explanatory

words; illustrative icons.

3 Robust feeling interaction Preview and confirmation; command history for

“undo”.

Intuitivity

4 Conventions and metaphors Recognise popular ASR commands, and consider

using certain physical metaphors.

5 Use existing skills Use prior knowledge of conventional interfaces.

6 Show current state and

available actions

Indicate progress on command processing, and

show only appropriate command reminders.

7 Immediate feedback for all

actions

The user must know that they have been heard,

and how much of a command has been understood.

8 Affordances Concept of sayablea in displayed words.

9 Reflect user’s mental model Application-specific.

Context

10 Reflect task rather than

technology

Permit use of the software in a way that suits the

overall task.

11 Environment Consider both physical and social environment in

design.

aThe concept of sayable is the speech controlled visual interface equivalent of “clickable” in GUIs.
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completed commands, thus allowing novice users to learn commands or parts

thereof. Experienced users who want to work more quickly should be able to

issue multiple commands in a single utterance. (See Section 2.5.2 for a fuller

description of this functionality.) Novice users may need to be shielded from the

size and complexity of the content language (just as with the command language).

To address this requirement, either only the most popular words should be shown

by default, or a visual device could be employed to make the popular ones more

noticeable (for example display order or emphasis style).

2. Allow functionality to be invoked in different ways. Because it may be challenging

for novice users to issue an entire command in a single utterance, they may want

to build up commands interactively in stages. It should be possible for experi-

enced users to customise commands, perhaps changing specific words to ones that

are less likely to be misrecognised given the computing environment, or create

commands that replace a frequently used phrase with a single word (Fateman,

2013). Where offered, the facility to create new commands is often appreciated

by users of speech interfaces. Controls should default to the display of text (with

optional pictorial icons for users who have a preference for those), given that

words are central to a speech interface. Explanatory words (that are ignored by

the parser) should be included in any command reminders. (If this approach is

taken, these “decorative” words should be indicated as being optional, so that as

the user grows more proficient, they can drop their use. Also, to help the user

learn which words truly are necessary in a command, those should be the only

ones shown in the command history.)

If Incremental Speech Recognition (ISR) is available, command sentences should

be shown building up as the user speaks. In any case, sentences should be

constructed as utterances are spoken. Where parts are missing, these could be

selected by the user and the “holes” filled in15.

3. Users should not be afraid of making mistakes. Bearing in mind the preference

for brief utterances from the user, previews should appear at the same time as

requests for confirmation. If a large or destructive change is made too frequently,

such behaviour may become irritating to the user, so as well as taking care over

the decision on whether to show such a dialogue for each change, the option to

suppress confirmations may be given to the user, perhaps on a case by case basis,

15Note, these holes would correspond to those in the templates and discussed in the literature about

incremental parsing dealing with programming languages (Petrone, 1995; Cook and Welsh, 2001).
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either via configuration or by offering the choice to suppress further confirma-

tions of this type. It should also be possible to use the command history as a

means of rolling back changes. Because the effect of change rollback using the

history may be difficult to predict, previews of major rollbacks should be offered,

or alternatively the user should be able to “undo” the rollback, suggesting the

command history display should not be cleared as soon as the changes are rolled

back. The handling of syntax errors in commands should minimise the amount of

additional user input required. In the case of input being incomplete, the facility

for a command to be spread over more than one utterance will address this issue.

4. Follow established conventions, and use appropriate metaphors. Conventions

already used by ASR software such as “scratch that” should be followed. Refer-

ence to the work of Jetter et al. (2014)16 on conceptual blends and Hurtienne and

Israel (2007) on image schemas may help in this.

5. Allow users to exercise existing skills. In addition to facilitating learning to use

the software, this may boost the confidence of the user. As well as making use of

prior knowledge of interface conventions, vocabulary customisation would allow

people to use terms specific to their area of knowledge when using the software.

6. Always indicate the current state and available actions. A status pane would

enable the user to distinguish between situations that may easily be confused, for

example providing missing information for a new command or editing a command

from history. Where state is normally indicated using the appearance of the

pointer, an alternative such as a status bar could be used. Display only relevant

command reminders as being sayable (see principle 8 below for explanation of

this term).

7. Give appropriate feedback for all user actions. To make up for the lack of haptic

feedback in a speech interface, the user needs to be notified that their input has

been detected even though there is a possible delay in its processing (Wigdor

and Wixon, 2011; p. 45). This will be particularly important if technologies are

being used that will not begin to process the token stream until the user has

completed their utterance. In these circumstances, in addition to the feedback

usually provided by ASR software, it may be helpful to indicate progress of the

processing of the input.

16For example, metaphors on two conceptual blends, even if one of the concepts involved is unfamiliar,

have a greater probability of success than those that are based on several familar concepts. (Jetter

et al., 2014)
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8. Clear affordances. This relates to both aspects of affordance: how a control

may be activated, and what its function is. As well as indicating the function

of a control without requiring the user to invoke its tooltip, adding text to it

can indicate what needs to be said to activate the control. This gives rise to the

concept of sayable – the speech controlled visual interface equivalent of “clickable”

in GUIs. The words required to invoke the command should be used as the

label of a command control, with optional extra brief information in a lighter

emphasis style, while other controls, such as those that indicate objects to be

manipulated, should have appropriately named labels. This follows the approach

already employed by ASR software for form-filling and web browsing.

9. Compatibility with the user’s mental model. The way in which objects are presented

should enable the user to understand their structure and purpose. For example,

if the user has to choose from one of several possible parses of a dictated math-

ematical expression (and not the result of probabilistic predictions of what they

have said), they should be informed that this is their origin.

10. Reflect the nature of the task rather than the technology. The software should

work with whatever combination of available modalities the user wants to employ,

for example move a pointer using the mouse, but then speak instead of click to

activate the mouse button. Because a mixture of typing and speech may be used,

the user should be able to type in a box as well as utter the words on (or click

on) command buttons.

11. Work within the environment of the user. Not only should it be possible to use the

software with a subset of the modalities provided (for example without speech

control in a noisy environment), but the social environment also needs to be

considered when choosing appearance and vocabulary. For example, professional

physicists and Economics undergraduates are unlikely to both be best served by

an identical interface.

2.7 Conclusion

Applying the general principles of intuitive natural user interfaces to the modality of

speech control, and considering language-specific issues, provides a list of principles

to be followed in designing a new interface for the TalkMaths system, and similar

speech-driven structured content editing systems.
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The rest of this thesis addresses the requirement of providing appropriate feedback in a

timely fashion (as per INUI principle 7): as mathematical expressions or other content

is created or edited, it needs to be displayed in a meaningful way without long delays.

For this, an effective incremental parsing algorithm is required.



Chapter 3

Review of Literature on

Incremental Parsing

3.1 Incremental Parsing

The original motivation for the development of incremental parsing approaches was to

enable timely feedback on syntactical correctness to be provided to programmers when

they compiled their work (Ghezzi and Mandrioli, 1979; 1980). Connected to this idea

is the concept of “laziness” – meaning that if only a portion of the output of a parse

or compilation is visible to the user then only the code related to this portion needs

to be processed (Heering et al., 1994) – which is useful in the context of programming

languages because of the formatting (such as typeface or colour) used to signify parts

of the grammar in an editor screen (Bernardy, 2009).

The usual approach to incremental parsing is in the context of LL and LR grammars1,

where it is accepted that for the change xyz to xy′z, the subtree for x may be left

unchanged, and so the goal is to identify a minimal substring of z to be reparsed. This

is unlike incremental parsing with OP grammars, in which the entire tree is subject to

change, depending on the the removal or insertion of particular operators.

The work of Yeh and Kastens (1988) is based on the idea of recording information

with every token, that can be used to reconstruct the state of an LR(1) parser at the

moment a token is going to be shifted. If the reconstructed states after parsing xy

and xy′ are the same, then z would not have to be reparsed. The method is storage

1For definitions of LL and LR grammars, see Aho (1972; p336) and Aho (1972; p372) respectively.

24
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intensive and does not seem to have been taken any further.

Earley and Caizergues (1972) proposed the use of a “skeleton” structure that records

scope information (and has some correspondence to a parse tree), that can be used

to determine what parts of source code need to be re-scanned as a result of a change.

Many types of edit operation (line insertion, deletion or change to a different type)

require the entire program to be reprocessed, so the extent to which their stated aim

– to make recompilation effort “proportional to the size of the change” – will vary

according to the structure of the program (Earley and Caizergues, 1972). Although

this method placed restrictions on grammar (for example, constructs such as loops

and if statements need to be designed as “bracket structures”), it was hoped that the

overall approach could be extended (Earley and Caizergues, 1972). However, this does

not seem to have happened.

Ghezzi and Mandrioli (1979) presented an incremental parser that is not restricted in

the kinds of modification allowed, nor does it depend on previously saved parse states

for its operation. Properties of LR(k) and RL(k)2 grammars are used to argue that

certain threading (the use of additional pointers to related nodes) in the parse tree

may be employed by the parsing algorithm to allow reuse of nodes on either side of

the modification when applied to LR ∧ RL languages. It is also suggested that this

same approach could be applied to other languages displaying similar “symmetrical”

properties (Ghezzi and Mandrioli, 1979). Given that OP languages form a subset of

their LR ∧ RL counterparts (Ghezzi and Mandrioli (1977) as cited by Ghezzi and

Mandrioli (1979)), they put forward the suggestion that the method of construction

of LR tables could be used by parsers for related grammars. Their description of

techniques to speed up parsing for LR(0) grammars (Ghezzi and Mandrioli, 1980)

removes this requirement for symmetry, and they also suggest these methods could be

modified for application to LL grammars3 (Ghezzi and Mandrioli, 1980). Barenghi

et al. (2013) put forward a parallel OP parsing algorithm that makes use of a property

of OP grammars in Fischer normal form4, which they call “local parsability” (Barenghi

et al., 2013). The main point is that an input string of a language conforming to such

a grammar may be split into substrings at arbitrary points for parallel parsing and

then recombined, but an additional suggestion made is the application of the local

parsability property for incremental parsing (Barenghi et al., 2013).

2A grammar G is RL(k) if the grammar formed by reversing the right-hand sides of G’s productions

is LR(k) (Ghezzi and Mandrioli, 1979).

3See Aho (1972; p336) for definition of LL grammars.

4Defined by Reghizzi and Mandrioli (2012).
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Larchêveque (1995) presented an approach for LALR(1) (Look Ahead LR) incremental

parsing that uses threaded concrete parse trees5. For a modified string xy′z (based

on xyz), the incremental parse begins at the node representing the last token of x,

finds the point in the tree section for y′z where an alternative left hand side of a

production is found (so the rule that was used in the original parse no longer applies),

or until the first symbol of y′z is placed on the parsing stack. At this point it parses

“exhaustively” (Larchêveque, 1995). A method is introduced to minimise the rest of

this process by considering where a node may be found that is an ancestor of both the

new subtrees being produced and the original nodes representing y (so in effect, its

parent’s right-hand side siblings may be left unaltered), and suggestions were made on

how this process may be optimised by reusing subtrees for non-terminals (Larchêveque,

1995).

Wegman (1980) suggested that the use of additional (to the parse tree) balanced trees6

of pointers to terminal nodes can speed up incremental parsing due to insertion of

strings, provided the order of appearance of terminals is not changed.

Jalili and Gallier (1982) determined what parts of a parse tree for an LR(1) grammar

are expected to change as a result of a change to a particular node n, these being either

the node m that appears directly to the right of n, or a descendant of m. Ballance et al.

(1988; 1992) developed a version of this approach that uses two levels of grammar to

describe a language and retains subtrees for reuse in order to improve efficiency, at the

cost of holding much additional information within the implementation environment.

Ferro and Dion (1994) also suggested reusing structures from the initial parse but, in

this case, using dynamic programming methods to allow recovery from earlier states

rather than parse trees. (Their parser creates chains of grammar rules rather than

parse trees, and handles ambiguities using AND/OR graphs (Ferro and Dion, 1994).)

Wagner (1997) proposed an IGLR (incremental generalised LR) parsing algorithm

that was intended to save space by making use of a parse DAG (Directed Acyclic

Graph), and to avoid unnecessary reparsing by allowing existing unmodified subtrees

to become part of the input stream to the system while applying certain rules to

decide whether or not they need to be reparsed based on whether they contain non-

deterministic sections (Wagner, 1997). This method is very much concerned with

handling of language ambiguities, as the context is incremental compilation. Wagner

5A concrete parse tree includes detail for every step in the parse derivations.

6A tree is balanced if no subtree within it is taller than another subtree at the same level by more

than one node.
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and Graham (1998) concentrated more on the parsing aspect, refining the conditions for

subtree reuse (from the input stream) to allow this to occur more frequently, and identi-

fying where “top-down reuse” (Wagner and Graham, 1998) may occur, suggesting that

a combination of these approaches will yield optimal results for efficiency. Although

system state information is used, this is only in the context of the incremental parse

(and no state information from the initial parse is held in the tree). The parsing

algorithm includes elements from the approaches of Larchêveque (1995) and Jalili and

Gallier (1982); one particularly interesting aspect is their handling of sequences of

statements, which uses a trick described by Gafter (1990) to allow the tree structure

for such a list to be non-deterministic. To reduce the height of the trees that represent

the sequences of statements in the default manner (strictly right-descending or left-

descending), rather than specify a list of statements in a strictly left or right recursive

manner (e.g. statement list ::= statement |statement list ; statement) it is given

by statement list ::= statement ; |statement list statement list (Gafter, 1990). As

part of the parse, a tree for such a repetitive structure is built as a balanced tree;

the only drawback of this approach is that it requires a modification to the original

grammar (Wagner and Graham, 1998).

Yang (1994) also based his LR(1) incremental parsing algorithm on reuse of subtrees of

concrete parse trees, but relaxes the conditions needed for a subtree to be reused (Yang,

1994). Prior to that, Yang (1993) described an incremental LL(1) parsing algorithm

that uses a “break-point table” (Yang, 1993) derived from the grammar to determine

where subtrees may be reused, along with the idea of a stack of subtrees.

More recently, Sijm (2019) built on the idea of Wagner (1997) for scannerless incre-

mental parsing. Based on the difference between the old and new token streams (where

the tokens are individual characters), nodes or subtrees of the parse trees are removed

or inserted as required. New subtrees are consolidated where possible, and existing

trees with deleted nodes are checked for validity and reparsed where necessary. This

algorithm does not, however, reuse as much of the original parse tree as the Wagner

(1997) algorithm (Sijm, 2019).

An alternative approach was suggested by Rekers and Koorn (1991) that attempts to

determine whether an expression in a small subtree containing a modification may form

a substring in the language and, if not, retries this substring parse with progressively

larger subtrees. This does result in duplication of work (Rekers, 1992).

Murching et al. (1990) proposed a method for recursive descent incremental parsing,

that works on a concrete parse tree, determining which parts of y′z (in the tree for
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altered input stream xy′z of which the original was xyz) are liable to change. The parse

tree created during the initial parse is amended during the incremental parsing process

as required. Lindén (1994) presented a version of this that allows for early completion of

the incremental parse if certain conditions are met, and attempts to improve handling

of some types of production. Kahrs (1979) also presented a top-down incremental

parser that starts reparsing at the beginning of the semantic block containing the

modified line, and stops at the same level if certain criteria are met. Rather than

go to the beginning of the block containing the change, the algorithm presented by

Shilling (1993) identifies the nodes in the tree that represent the boundaries of the

change, prepares an appropriate section of the tree and reparses the modified region

incrementally before resolving any issues caused by this parse. Although Shilling’s

idea concerning an “editing focus” (that may consist of the token next to the cursor, a

subtree or a contiguous string of tokens) is of interest (Shilling, 1993), the incremental

parsing process seems rather complex.

Li (1996) employed an augmented LL parse table7 that is used in determining whether

old and new nodes (in the y part of xyz and y′ part of xy′z) will match, indicating

opportunity for subtree reuse. This, along with variations on the reuse possibility and

a threaded concrete parse tree, is used to maximise reuse of subtrees of the z section of

the string when parsing the y′ string. Li suggested this approach is particularly suited

for languages with a preponderance of structures (blocks and lists) because of the ease

with which their trees may be reused (Li, 1996).

Schwartz et al. (1984) built on an approach introduced by Morris and Schwartz (1981)

for LL(1) grammars which involves the use of a sequence of parse trees corresponding to

adjacent sections of code, that may be joined or split as necessary.8 The techniques are

used in the context of syntax-directed editors, that use text entry9 but permit the user

to place the cursor before or at any syntax error. The parse trees are built up using the

Magpie tool (Schwartz et al., 1984) as the user creates the code, rather than enforcing

the use of templates. Degano et al. (1988) propose an editor that is syntax-directed in

what the user may do at a high level – for example they would need to specify their

7For predictions it included a “distance” (Li, 1996) – minimum number of derivations (steps required)

– from non-terminals to terminals.

8Here, “joining” does not refer the same operation as in Heeman (1990).

9This is unlike the strictly syntax-directed editors such as the one developed by Medina-Mora and

Feiler (1981) which requires the user to manipulate the tree directly through code templates, thus

obviating any need for re-parsing, or hybrids such as the Cornell Program Synthesizer (Teitelbaum

and Reps, 1981).
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wish to insert a construct such as a while loop, or substitute one construct for another

(subject to certain restrictions) – but once they are inside the construct, editing may

be performed in text mode. The claim they made is that such amendments would not

require reparsing of other parts of the code or access to an original parse stack (Degano

et al., 1988). This is achieved by using subtables (one for each construct that may be

swapped for another) additional to the LALR(1) parse table – a technique they call

“Jump-Shift-Reduce” parsing (Degano et al., 1988). Although an editor with such

restrictions is unlikely to provide an acceptable user experience, this kind of mode may

be particularly useful as an option for programming by speech, allowing the user to

switch between this and text mode as required (as is offered by the PSG system (Bahlke

and Snelting, 1986)).

Dubroy and Warth (2017) also propose using data structures created by the initial

parse, this time by maintaining the memo table used by packrat parsing (Ford, 2002),

updating it in response to the user’s edit actions. This does incur considerable cost in

space.

Petrone (1995) takes an alternative approach to incremental parsing for hybrid editing

(syntax-directed and text), in that he extends the underlying language to include

“placeholders” (Petrone, 1995), that are similar to, but not equivalent to, nonterminals

in its grammar, and could be thought of as a version of missing tree nodes (see Figure

4.1b) but representing a particular element of the language. (For example an expres-

sion in the language of such a grammar may resemble “while condition-placeholder

do statement-block-placeholder”.) Rather than use a specialised incremental parsing

algorithm, a standard LR parser for the extended language may be used to create the

subtree for the new text (y′ in xy′z), and with some extra processing (which inter-

estingly does not require state data to be recorded in the tree), the new tree may be

inserted if certain conditions are valid (Petrone, 1995). Diekmann and Tratt (2013)

presented a variant on the placeholder idea in that a token may represent any kind of

object (including a parse tree that uses a different grammar, in which case it is called a

‘language box’). Although the editor appears to be textual (from what is displayed to

the user), the text is in fact a representation of the complete (concrete) parse tree that is

updated using the incremental parser developed by Wagner and Graham (1998). They

later refined the idea to permit the user to create language boxes without specifying

the change in language, using heuristics to recognise correctly the boundaries of the

embedded language in most cases (Diekmann and Tratt, 2019). Cook and Welsh (2001)

offer a variation on the placeholder in their incremental parsing algorithm, which is
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written with error-tolerance in mind.10 In the case of an error, where a certain reduc-

tion (replacement of a sequence of tokens with a non-terminal) has been predicted,

its placeholder will be placed in the tree. Like other algorithms, it allows subtrees to

be placed on an input stack for reparsing, and completes when a matching condition

is met, but this algorithm also uses the stack for prediction of reductions and error

handling (Cook and Welsh, 2001).

Of most interest in the context of this project are approaches involving OP gram-

mars (covered by Ghezzi and Mandrioli (1979) and Barenghi et al. (2013)), and the

notion of “placeholders” similar to those described by Petrone (1995) for missing parts

of a construction (although Petrone does use them in a completely different way by

extending the grammar in question to include specific placeholder terminals).

3.2 Incremental Operator Precedence (OP) Parsing

Before describing work on incremental OP parsing, this section explores the use of OP

grammars to represent constructs not traditionally thought of as being modelled by

OP grammars.

3.2.1 Operator Precedence Grammars to Represent Program-

ming Constructs

Soiffer (1991) suggested the use of “overlays” (a kind of template for valid expressions)

to model programming constructs such as conditionals and loops as special types of

brackets. These are described in more detail in Section 3.2.4.

Aasa (1995) modelled them using “distfix” (Aasa, 1995) operators, and used their asso-

ciated precedences11 to resolve ambiguities in the programming language. For example,

construct “if E then E else E” where E stands for any expression would be modelled

by a prefix distfix operator with production E → if E then E else E, as opposed to a

10This is due to the editing environment which, by parsing incrementally between keystrokes, will

indicate an erroneous input until typing is finished.

11Note, Aasa (1995) defined operator precedence (OP) in the opposite way to others; this thesis follows

the usual convention: that for operators a and b, alb means that a yields to operator b, for example

+ l×.
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closed distfix operator that contains both opening and closing terminals12 (Aasa, 1995).

(The bracketing style behaviour of the operators is of course as required, so one could

think of the Es as being implicitly enclosed in brackets.) These operators have left

and right precedence, so that sentences generated by such a grammar may be parsed

using an OP parser (Aasa, 1995). Unlike the overlays described by Soiffer (1991), this

scheme requires that every operator be identified uniquely, so the if, then and else

operators from the above example would have different identifiers from those used in

a conditional without an else clause. This would complicate incremental parsing, as

an edit action could change an operator from one type to another without making any

change to the operator itself, thus necessitating further lexical analysis of enclosing

structures.

Danielsson and Norell (2011) relaxed the stipulation that every operator be identified

uniquely, with the consequence that the grammar becomes ambiguous. Their way of

dealing with this would be to reject ambiguous parses. An obvious drawback of having

many distinct operators (as suggested by Aasa (1995)) would be a very large OP table.

An alternative to this would be to represent relevant precedence relations only, using

DAG (with each node containing a finite set of operators), although if shared identifiers

are allowed, ambiguities would not be avoided (Danielsson and Norell, 2011). It would

seem that the cost of this simpler scheme would be that it is not as easily handled

by OP parsing as the scheme of Aasa (1995), but their ideas may be worth exploring,

particularly when one considers that a seemingly local modification to program text

parsed with Aasa’s style of grammar may result in replacement of one distfix operator

with another, that spans a large section of the original code.

The algorithm developed in this project uses the structures employed by Attanayake

(2014), known as templates. These are tree nodes that behave as the bracket or function

nodes described by LaLonde and des Rivieres (1981), but in the case of non-bracket

structures, rather than being recognised by the parser as a function name followed by

a specific number of arguments, they are recognised during lexical analysis by their

delimiters, including start and end words (Attanayake, 2014). It is these delimiters

that map onto individual operators when describing distfix operators: for example, a

template for a definite integral may be recognised by delimiters “integral from”, “to”,

“of”, “end integral”, and correspond to a distfix operator with four parts. Because

they act as purely bracketting structures, the problem of representing precedence is

12The opening and closing terminals of a distfix operator are the ones that appear on the edges of the

right-hand side of the production. For example, in E → d1 E d2 E d3 where the dn are delimiters,

d1 and d3 are the opening and closing terminals respectively.
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avoided.

3.2.2 Lalonde & des Rivieres – Separating Operator Prece-

dence Handling from the Initial Parse Process

LaLonde and des Rivieres (1981) tackled the issue of parsing languages that contain

elements of operator precedence, such as a programming language that includes math-

ematical expressions. They present a linear-time algorithm that allows parsing to be

modularised into an initial less complicated parse according to the underlying grammar

without concern for OP, followed by any necessary rearrangement of the syntax tree

according to operator precedence (LaLonde and des Rivieres, 1981).

An interesting feature of this work is that syntax trees may contain function nodes

that, as far as operator precedence is concerned, may be treated as if they were leaf

nodes. Using this approach, function nodes may be used to represent brackets as well

as other functions (LaLonde and des Rivieres, 1981). All binary operator nodes have

a left and right child, while unary operators have a left child or a right child, the

direction indicating whether it is a prefix or postfix operator.

The algorithm is run on a tree that has already been constructed without concern

for operator precedence, and rearranges it using transformations on its nodes. When

complete, the tree is correct in terms of operator precedence. Working on the assump-

tion that the tree to be transformed is either left-sided or right-sided (left-sided trees are

expanded on their left side, with leaf nodes as right children; right-sided trees are their

mirror image), the tree may be traversed in a top-down manner, with a single transfor-

mation being used to rearrange nodes that do not follow the hierarchical order specified

by the OP scheme (LaLonde and des Rivieres, 1981). If the tree to be processed is

right-sided, this transformation (called LEFT-SUBORDINATE) will rearrange adjacent

operator nodes as depicted in Figure A.2 in Appendix A. (The mirror-image of this

operation for use on left-sided trees is RIGHT-SUBORDINATE.)

3.2.3 Kaiser & Kant – Updating the Syntax Tree in Response

to Edits

Kaiser and Kant (1985) also presented an idea that obviates the need to modify the

initial parser to handle operator precedence, but this time in the context of editing
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expressions in hybrid syntax-directed or textual-based editors, and in which the tree

is updated in response to what the user typed in the linear representation of the

expression (Kaiser and Kant, 1985). Their paper concentrates on simple mathematical

expressions that conform to a strict OP grammar, but the method is intended to be

generalised to other languages.

Their trees are standard syntax trees for expressions, with special “meta” and “empty

operator” nodes used to denote missing leaves and operators respectively if the expres-

sion is incomplete (Kaiser and Kant, 1985). Unlike LaLonde and des Rivieres (1981),

complete pairs of brackets are represented by bracket nodes, but in addition to these,

single bracket nodes ( or ) may be used where only one bracket is present in the expres-

sion. All operators are binary infix (Kaiser and Kant, 1985). Operator precedence (and

hence associativity too) is defined in terms of left and right precedence (Kaiser and

Kant, 1985), rather than using operator precedence comparison relations.

Tree operations that work at the node level are presented, that respond to a number

of user actions such as insertion and deletion. In their original form13, the operations

begin at the insertion point in the tree, after which Lalonde and des Rivieres’ LEFT-

SUBORDINATE and RIGHT-SUBORDINATE operations (LaLonde and des Rivieres, 1981)

(named twiddle here) are applied upwards or downwards in the tree to rearrange it as

required.

Unmatched parentheses of appropriate type are matched during the tree rearrangement

process. Depending on circumstances, a singleton bracket encountering a matching

singleton would cause the rearrangement to halt after combination, or “steal” (Kaiser

and Kant, 1985) its counterpart from a complete bracket pair, after which rearrange-

ment continues.

Suggested extensions to their algorithm include provision for unary operators and the

handling of functions and other programmatic constructs (Kaiser and Kant, 1985).

A function would be recognised as an identifier followed immediately by parentheses,

which would hold the function’s argument. Multiple arguments would be delimited

by using a comma operator (Kaiser and Kant, 1985). Kaiser and Kant were slightly

vague in their description of possible provision for handling language keywords (special

operators, and entities similar to parentheses); a preferable approach may be to combine

the function nodes of LaLonde and des Rivieres (1981) with Kaiser and Kant’s comma

operators, to produce something like the templates used by Attanayake (2014).

13Their algorithm is optimised, and includes operations to remove excess empty/meta nodes.
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The approach of Kaiser and Kant (1985) has the advantage of handling incomplete

expressions, and offers an alternative way of handling brackets. A drawback is that

the approach is tightly integrated into the editing environment; for example, most

transformations begin at the leaf where a small incremental change has been made.

3.2.4 Soiffer – Language Constructs as “Special” Operators

Whereas Kaiser and Kant (1985) represented unmatched brackets as single bracket

operators, Soiffer (1991) extended this idea to programming language constructs, using

what he called “overlays with precedence”, in which the the words or symbols are

referred to as “delimiters”. Tree rearrangement following insertion of one of these is

similar to Kaiser and Kant’s algorithm, in that the unmatched item moves up the

tree to be matched with an appropriate unmatched delimiter, or to “steal” a matching

delimiter from a matched pair.

All of these delimiters have left or right precedence and are designated prefix, infix

or otherwise (see Soiffer (1991)) when encountered in their unmatched form. What

differentiates these delimiters from the brackets encountered so far is that they are

also given zero or more possibly matching delimiters. For example, in the case of the

if statement with allowable form if ... then ... { else ... }, if may match then

to form if-then, and if-then may match else; however, then may also match else,

giving then-else, which would be matched on its left by if. Although it appears

inside the construct (that is, it will never act as a closing delimiter), else will never

match anything on its right hand side (so in bracketing terms it is similar to a closing

bracket); similarly, because the else clause is optional, then may also be used as a

closing delimiter (Soiffer, 1991).

Soiffer (1991) stated that his approach is faster than that of Heeman (1990), partly

because he avoided the linear searches involved in matching brackets in the latter’s

algorithm. (An alternative means of addressing this issue will be presented in Chapter

4.)

It is in this way that Soiffer (1991) attempted to extend the algorithms of Kaiser and

Kant (1985) to handle a wider range of syntactical structures by identifying possible

left and right matches for language keywords (Soiffer, 1991).

He also optimised the algorithm presented by Jalili and Gallier (1982) for the OP

grammars handled by Computer Algebra Systems (Soiffer, 1991), and suggested the
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use of DAGs instead of trees to improve performance (in terms of storage), where a

sub-expression identical to another would be represented by a pointer to the first one

encountered.

3.2.5 Heeman – Tree-level Operations

Whereas the other approaches describe modifying or inserting nodes in a tree, followed

by any necessary rearrangement using node level operations, the approach of Heeman

(1990) is to define basic high level operations that act on entire trees, that may be

divided and combined to implement the effect of a change in the token stream that

the tree represents. For example, to insert a node, Heeman would split the tree at the

insertion point, merge the new node with one of the results, and then merge that with

the other part of the originally split tree.

In this context a tree (called “expression tree” (Heeman, 1990)) is similar to an abstract

syntax tree (AST) but with leaf nodes for operators (so in this way it resembles a

concrete parse tree), and is correct in terms of operator precedence (Heeman, 1990).

See Figure 3.1 for an illustration.14 All operators are binary; associativity is left or

right, and precedence is expressed as a numeric value15.

+

+a b

Figure 3.1: Tree notation of Heeman (1990): tree for a+ b

Brackets are represented using an operator that has three children (Heeman, 1990) (as

shown in Figure 3.2). A missing right or left bracket is denoted by replacing the ( or )

with a “�”. Other styles of bracketing characters are permitted, such as “[ ]”and “{}”.

()

expr( )

Figure 3.2: Representation of parentheses by Heeman (1990)

Heeman (1990) presented two operations that may be used to split and merge trees,

to model splitting and concatenation of token strings. The editor may use these top

14Unlike those presented by Heeman, the algorithms in the next chapter do not make use of this

particular tree notation.

15The higher the value, the higher the precedence of the token. Identifiers have a precedence of ∞.
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level operations to reflect whatever changes have been made by the user. The language

for the expressions is illustrated using the usual binary mathematical operators, plus

a default concatenation operator that permits trees to be merged that do not have

an appropriately placed empty node. (For example, whereas expressions “a + b” and

“×d” could be merged naturally because of the missing operand before the ×, unless

a merge of trees for expressions “a+ b” and “c× d” were to produce an error condition

(because no operator has been supplied to place between b and c), b and c have to be

concatenated to produce the tree for “a+ bc× d”.)

The basic version of the merge algorithm combines two trees from the top down,

according to operator precedence; splitting (implemented by the tear algorithm) divides

the subtree at the split node into two in a top-down fashion, then recombines each

into the appropriate parts of the main tree (Heeman, 1990). Having set up the basic

versions of these operations, Heeman modified them to deal with brackets: there is

no major change in approach in the case of tear, but when merging, the sections

of the trees representing the right substring and left substring of the left and right

trees respectively are searched for matching incomplete opening bracket nodes and

incomplete closing bracket nodes respectively. The textually innermost incomplete

brackets are combined, either to form complete brackets if they are of the same type,

or staggered, the closing bracket placed immediately below the opening one, if they are

not (for example a single ”{” and a single ”]”) (Heeman, 1990). This is potentially the

most time-consuming part of the algorithm, which is improved upon by the algorithm

presented in Chapter 4 by identifying all appropriate unmatched bracketing structures

in two passes, one for each tree to be merged.

As well as handling incomplete expressions, this approach is of interest because it works

with complete trees and would inherently be more loosely coupled with any editor. As

stated by Heeman (1990), the algorithms he presented are written for clarity rather

than efficiency; possible suggested improvements include the use of iteration rather

than recursion in the merging algorithm, and simple node manipulations that will

provide the functionality of the merges that are used in the splitting process (Heeman,

1990).

The following extensions were also suggested (Heeman, 1990):

1. Handling of operators taking numbers of arguments other than 2, including single-

argument prefix and postfix operators. Although Heeman (1990) stated that the

C ternary conditional expression operator has been implemented in the INFORM

editor, the next chapter will generalise the algorithm explicitly to handle any pre-
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defined (for the operator) number of operands.

2. Application to programming languages. Heeman (1990) suggested that his approach

would not be appropriate for constructs that are not readily regarded as expres-

sions, for example statement lists, but it is not clear why Heeman made this

assertion.

3. Handling of operators that are ambiguous in terms of arity16.

4. Handling of functions and arrays – that is, an identifier with a bracketed single

argument, which may itself have many components.

Ideas 1, 3 and 4 have been addressed by Attanayake (2014) in terms of data structures

and batch parsing, but not for incremental parsing. The idea of the function aspect

of item 4 naturally relates to the treatment of brackets by LaLonde and des Rivieres

(1981). A primary objective of this project is to build on Heeman’s work, improving

the efficiency of the search for potentially matching brackets in the merge algorithm

and investigating the degree to which extension 2 above may be achieved.

3.3 Other References to Incremental Parsing

The literature available on the type of incremental parsing treated in this thesis is

scattered fairly sparsely over a number of decades. Other work on incremental parsing

shares the motivation of the earliest work on the subject – that of providing timely

feedback on a construct as it is processed – but this time almost exclusively in the

context of natural language processing (NLP), where the term ‘incremental parsing’

refers to the updating of a parse tree in response to tokens as they are appended to the

token stream. The exception to this is the two-dimensional hand-written mathematics

recognition approach of MacLean and Labahn (2013), which also responds to deletion

of pen strokes. Most of the recent NLP ‘incremental parsing’ literature is based on

dependency parsing (Cross and Huang, 2016; Kato and Matsubara, 2015; Koehn and

Menzel, 2014; Huang, 2010), though the use of semantic roles (Konstas and Keller,

2015) and Incremental Combinatory Categorical Grammar (ICCG) (Hefny et al., 2011)

are also discussed. In the case of tree-adjoining grammar (TAG) parsers (Kato and

Matsubara, 2015; Konstas and Keller, 2015), one can see certain parallels with the

16Arity refers to the number of operands required by an operator.
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approaches described here, namely the notion of trees being treated as part of a token

stream and of an operation that may combine them in a non-trivial way.

3.4 Conclusion

This chapter has provided an overview of the literature on incremental parsing, and

focussed on the approaches of most interest in this thesis: incremental parsing of

operator precedence grammars as described by LaLonde and des Rivieres (1981), Kaiser

and Kant (1985), Soiffer (1991) and Heeman (1990).

The remainder of the thesis will build on Heeman’s tree-level operations with a view to

their application to spoken computer programming languages. The extensions to the

algorithms will have to deal with mixfix operators, and incorporate efficiency improve-

ments to the algorithms.



Chapter 4

An Extended Incremental Parsing

Algorithm Based on Tree

Operations

4.1 Introduction

This chapter presents the main technical contribution of this thesis, based on an exten-

sion of the algorithms described by Heeman (1990) in order to handle expressions

containing mixfix operators by manipulating the representation of these constructs in

the form presented by Attanayake (2014).

The chapter begins by discussing the representation of non-binary operators, before

describing the algorithms for carrying out tree operations. The method for identifying

incomplete composite nodes is presented, after which the subject of merging composite

nodes is tackled. Section 4.3 finishes by addressing the issues of brackets, composite

nodes and associativity, and avoiding violation of operator precedence.

In Section 4.4 the algorithm is evaluated from a theoretical standpoint, and its appli-

cation is compared with use of the batch parser.

This chapter discusses the algorithms in the context of mathematical expressions; their

application to computer program code is covered in Chapter 6.

39
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4.2 Notations and Terminology

4.2.1 Trees and Nodes

This thesis uses the definition of abstract syntax trees (ASTs) as described by Aho

et al. (2003; p. 287), as they contain the minimum information needed to describe the

language elements of a production of the grammar. ASTs will also be referred to using

the shorter forms, syntax tree or tree (where there is no ambiguity).

An AST may represent an empty node, a leaf node, or any node with children (that

themselves may be trees). Typically, operators appear only as non-terminal nodes in

trees, while leaf nodes denote operands. A missing operand will be represented by a

question mark “?”.1 See Figure 4.1 for examples.

Brackets (such as the ones enclosing this clause) are also referred to as parentheses.

+

a ×

b c
(a) Complete tree: a + b× c

+

a ?
(b) Tree with “missing” node:
a + ?

Figure 4.1: Example syntax trees

4.2.2 Mixfix Operators

This term describes operators (also known as distfix operators (Aasa, 1995)), in which

the “holes” between operators act on their content as if they were brackets.2 The

concept of a mixfix operator is the generalisation of operators with respect to arity. As

well as binary, prefix and postfix, it includes the concept of operators that may enclose

part of an expression – closed mixfix or closed distfix as described by Aasa (1995), for

1This is not simply an empty string – it is a placeholder node that denotes a missing part of the

expression.

2For example, in a mixfix operator taking form fraction op1 over op2 end fraction, fraction and

over would behave additionally as a pair of brackets (opening and closing) around op1 ; likewise,

over and end fraction would behave as a bracket pair.
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example a pair of brackets – and any predefined mixture of operators and operands

provided they conform to OP grammar rules.

Although programming constructs may be thought of as open as well as closed mixfix

operators, in this treatment they are restricted to the closed type, to conform to their

modelling by the templates employed by Attanayake (2014).

Where reference is made to a “delimiter”, this means any separator that forms part of

a composite node, whether it be an internal separator or have an enclosing function.

Where a distinction is to be made, they will be referred to as internal delimiters (for

separators) and enclosing delimiters, the latter including brackets.

4.3 The Novel Approach to the Algorithm

In this section, Heeman’s algorithm is extended to handle mixfix operators, as repre-

sented by the structures described by Attanayake (2014). Heeman (1990) states that

the transformations are described recursively to aid understanding, and acknowledges

that iterative versions would be more efficient. Although this can be viewed as an

implementation matter, conversion of the transformations to highly efficient iterative

versions is non-trivial, so the loops in the algorithms described here have been designed

to be iterative. As observed by Soiffer (1991), in order to improve performance, the issue

of the bracket search in the merge algorithm needs to be addressed – this being partic-

ularly pertinent when the algorithm is used for more substantial documents such as

program code for non-trivial programs or tasks. The algorithm presented here includes

a solution to this that identifies all enclosing delimiters before the merge process begins.

4.3.1 Representation of Non-binary Operators

The representation of a binary operator is well established, with a node to represent

the operator with two children, the first (left) child representing the left operand, and

the other (right) child representing the right operand. The other kinds of operators are

• unary (prefix or postfix),

• ternary (for example, the conditional operator ? : found in programming languages),

• grouping or bracketing, and
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• lists.

Given that unary operators take precedence over other types, care must be taken not

to violate operator precedence when designing the language.

It is difficult to define how the ternary operator may interact with unary or binary

operators, except that it is said to have lower precedence than anything but assignment.

Given that it is only used in programming situations, in this context the problem of

interaction with other true operators is avoided by treating it in the same way as the

grouping operators.

Grouping operators cover any special constructs such as programming constructs,

mathematical functions and any form of bracket pair. This thesis will use the term

employed by Attanayake (2014), templates, to refer to this type of construct, and

composite node or trunking node (following the concept of “trunk”3 described by

LaLonde and des Rivieres (1981)) to refer to a node that is of the template or bracket

type. A template consists of two delimiters that mark the beginning and end of the

structure, with zero or more separators inside. The number of separators for any one

particular template is fixed. The question arises on whether grouping operators have

precedence that could be used for matching. For example, suppose a simple if state-

ment were modelled as a template with delimiters if, then and endif, and a merge were

required on fragments “if a > (1” and “then B endif”. With all templates being

treated as having equal precedence, an attempt is made to match the “(” with the

“then” (because they are the leftmost and rightmost bracketting constructs respec-

tively), causing the second fragment to appear lower down in the result, within the

subtree representing the test clause of the if statement. (See Figure 4.2.)) One could

argue that it is obvious that the comparison within the first fragment is incomplete,

and that the tree representing the result should have a complete if statement at its

top, with a subtree for “a > (1” immediately beneath it. The approach is taken that

they should not, as an entire function definition may appear within a pair of round

brackets, for example as occurs in JavaScript. This is consistent with the approaches

of both Heeman (1990) and Attanayake (2014).

Lists refer to a sequence of similar items, for example program instruction statements

or the content of a set extension. They differ from the items between the opening and

closing operators in a template in that the number of items in the list is variable and

3This is significant in our context because the subtree under the trunk is not subject to being rear-

ranged internally as a result of rearrangements higher up in the tree.
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if � ? � ?

> ?

a (

1

(a) Tree for “if a > (1”

? � then � endif

? B

(b) Tree for “then B endif”

if � ? � ?

> ?

a (

then�? � endif

B1

(c) Tree for “if a > (1 then B endif”

Figure 4.2: Merging trees for “if a > (1” and “then B endif”

unknown a priori. These cannot be represented directly using an operator grammar:

for example, a set extension would have to be modelled using a curly bracket pair above

a tree of binary comma operators. The modelling of lists is discussed further in Section

6.5.

4.3.2 Tree Operations

As with Heeman (1990), changes in the AST to reflect modifications in the material

being represented are achieved using just two operations: splitting and merging.

The basic split operation, tear (Heeman, 1990), is generalised to trees that contain

unary and grouping operators as well as binary operators. The AST representation

presented by Attanayake (2014) is used, which employs a single node to represent a

composite mixfix operator, so rather than specify a tree node for the tear point, a token

must be used, that will either correspond to a single node, or part of a composite node.
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Splitting Trees

The top level operation is described by Algorithm 1. In short, it works approximately

as follows.

• Accept as input a tree and the rightmost token (in terms of the linear form of

the expression) that is to appear in the original tree after the split.

• Identify the subtree containing the token.

• Remove children to the right of the token, placing them into a new tree.

• Repeat until the root node is reached:

– Move up one level.

– Split off nodes to the right of the subtree just processed, into a new tree.

– Incorporate the split-off tree from the previous iteration into this new tree.

• Return a tuple consisting of what is left of the input tree, along with the latest

split-off tree.

Lines 7 and 21 perform actions that should have been included in the original algorithm

(Heeman, 1990), as it allowed successive tear operations to produce a tree with an

empty root node. For example, tearing a tree for expression “( a )” after the opening

bracket, and then tearing the right-hand tree of the result after the “a” would produce

a left-hand tree consisting of an empty root node which is effectively a bracket with

both sides missing and single child “a”. Figure 4.3 illustrates the situation, with 4.3c

having an empty root node that may never be removed from the AST. Because this

version of the algorithm handles templates with multiple parts, the situation here is

not as simple as with empty bracket nodes: in the same way as for the above example,

under rare circumstances a sequence of operations may produce a composite node with

more than one child but no delimiters at the top. When this arises, all the children of

such a node are merged, and the empty composite node replaced with the result of the

merge. This is valid because any empty composite node with no delimiters but with

more than one child represents the tree structure of the concatenation of the token

strings represented by its children.

In a similar way, lines 10 and 33 address the case of the default concatenation operator4

representing the split point. Because this operator is regarded as being required only

4In the context of mathematics this is the “invisible” multiplication operator between a and b in ab.
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Algorithm 1 tear(T, k)→ (TL, TR)
Split AST T into two trees TL and TR so that the rightmost token of the stream
represented by TL is k.

Require: k appears in a node in T
1: set TL to the node of T containing k
2: if TL is not the root node then
3: define p such that TL is the pth child of its parent
4: end if
5: if TL is composite then
6: remove delimiters and children of TL after k, placing them into new tree TR
7: replace any of TL, TR left with no delimiters at the top with its children
8: else if TL is binary operator then
9: remove second child of TL as TR

10: replace TL with its left child if TL is the default operator
11: else if TL is prefix operator then
12: remove only child of TL as TR
13: else // postfix operator or identifier
14: set TR to empty tree
15: end if
16: while TL is not root node do
17: set TL to its parent
18: if TL is composite then
19: remove delimiters and children of TL from position p+1 onwards, placing them

into new tree T ′

20: replace the pth child of T ′ with TR and then set TR to T ′

21: replace any of TL, TR left with no delimiters at the top with its children
22: else if TL is binary and p is 0, or TL is postfix then
23: remove first child of TL as c
24: if TL is the root node then
25: T ′ := duplicate of TL
26: set TL to c
27: else
28: detach TL from its parent as T ′

29: put c in the place previously occupied by TL
30: set TL to c
31: end if
32: place TR under T ′ in position 1 and set TR to T ′

33: replace TR with its right child if TR is the default operator
34: end if
35: if TL is not the root node then
36: define p such that TL is the pth child of its parent
37: end if
38: end while
39: return (TL, TR)
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as long as it is needed to avoid violation of the operator grammar, it is removed once

it becomes redundant.

(

�
(a) Left tree produced by splitting “( a )”
after “(”

)

a
(b) Right tree produced by splitting “( a )”
after “(”

�

a
(c) Left tree produced by splitting 4.3b
after “a”

)

�
(d) Right tree produced by splitting 4.3b
after “a”

Figure 4.3: Empty root node produced by original Heeman (1990) algorithm

The delimiters of composite nodes are numbered 1...n. For example a simple pair

of brackets would have delimiter 1 as “(” and delimiter 2 as “)”. All such nodes will

have children numbered 1, . . . , (n−1), where child 1 will be the part contained between

delimiters 1 and 2, child 2 the part between delimiters 2 and 3, and with the numbering

of the other children following the same pattern.

At lines 6 and 19, sufficient empty delimiters and children must be inserted into the

new tree before those moved from TL, so that they preserve their original meaning as

“arguments” within the template.

Combining Trees

Merging is also based on the approach of Heeman (1990), but with the searches for

unclosed or unopened composite nodes (the equivalent of incomplete brackets) using

lists of such nodes created at the beginning of the operation in a manner that is more

efficient than a linear text search. The top-level algorithm of the merge operation is

the one that involves combining composite nodes. Although the OP-only aspect of

merging can be described simply when using recursion, its non-recursive equivalent
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does require an equivalent of the “rippling up” of twiddle operations as described by

Kaiser and Kant (1985). In brief, the iterative version of merge works in a similar way

to the recursive one, except that instead of the recursive calls, “plug points” (the places

into which the bottom-most merged subtree will fit) are saved onto a stack. As the

subtrees are reassembled into a merged tree, depending on the position and arities of

the operators, the twiddle operations (Kaiser and Kant, 1985) may be required, as well

as variations of them that work with unary operators. For descriptions of the actions

of the various twiddle operations, see Appendix A.

The top-level algorithm for the merge operation is described by Algorithm 2, which

is given the name match merge, the name used by Heeman (1990). It is an extension

of the Heeman (1990) algorithm, which places children of composite nodes into the

appropriate gap rather than the single gap provided by bracket pairs. The condition at

line 21 of Algorithm 2 refers to this; the topic is discussed more fully in Section 4.3.4.

Note that the arrangement of incompatible composite nodes follows the convention

adopted explicitly by Attanayake (2014) and implicitly by Heeman (1990) – that they

are right associative. (Associativity of composite nodes is discussed more fully in

Section 4.3.5.)

The trails of unfinished and unstarted nodes provide “pointers” to incomplete composite

nodes. The way in which these are constructed is described in Section 4.3.3.

Heeman’s algorithm name, opmerge (Heeman, 1990), is also used for the operation on

trees without any unresolved incomplete composite nodes. This is given in Algorithm

3. The main loop describes the recombination of the subtrees into the result, along

with any rearrangements needed to preserve OP. It should be noted that it only deals

with unary and binary operators. (n-ary operators with n > 2 are handled using the

templates of Attanayake (2014).)

In the cases of the current left and right nodes being both prefix or both postfix,

there is potential for OP to be violated, as described in Section 4.3.6. (See Algorithm

fragments 6 and 11 in Appendix B.) It is stated in these fragments how the nodes

should be arranged, but the decision on how to deal with the OP violation is left to

the implementer. The choice made for this implementation was to enclose the child

node in brackets.

Table 4.1 lists the actions taken for the various combinations of the values taken by cL

and cR in Algorithm 3. The algorithm fragments can be found in Appendix B.

Algorithms 2 and 3, along with Table 4.1 are given on the following pages.
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Algorithm 2 match merge(TL, TR)→ T
Merge ASTs TL and TR into a single tree T , preserving validity according to operator
precedence.

1: set uL to makeTrailOfUnfinished(TL)
2: set uR to makeTrailOfUnstarted(TR)
3: while it is possible to pop lm from uL or rm from uR do
4: set wR to to 0
5: if lm was popped then
6: if lm has 2 delimiters then // simple bracketing structure
7: set wL to 1
8: else
9: if last delimiter is blank but there is an earlier kth non-blank delimiter

then
10: set wL to k
11: else // use default position
12: set wL to position of last child of lm
13: end if
14: end if
15: if rm was popped then // we want to match these nodes
16: if rm has a parent then
17: remove rm from its parent
18: else // rm is TR
19: set TR to the empty tree
20: end if
21: if lm will fit together with rm then
22: merge tokens and children of rm into those of lm
23: else // no match – make one the child of the other
24: set cA to the wLth child of lm, and replace it with an empty subtree
25: set wR to the position left of the first non-blank delimiter of rm
26: set cB to the wRth child of rm
27: replace the wRth child of rm with opmerge(cA, cB)
28: replace the wLth child of lm with rm
29: end if
30: else // no potentially matching right bracket found
31: set c to the wLth child of lm
32: replace the wLth child of lm with opmerge(c, TR)
33: return TL
34: end if
35: else if rm found then // no potentially matching left bracket found
36: set c to the child to the left of the first non-blank delimiter of rm
37: replace this child with opmerge(TL, c)
38: return TR
39: end if
40: end while
41: return opmerge(TL, TR)
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Algorithm 3 opmerge(TL, TR)→ T
Merge ASTs TL and TR into a single tree T , preserving validity according to OP

Require: No unresolved incomplete composite nodes spanning the two trees
1: if TL is the empty tree then
2: return TR
3: else if TR is the empty tree then
4: return TL
5: else
6: set P to an empty stack, cL to TL, cR to TR, workingDown to true
7: while workingDown do
8: update P and intermediate tree s according rules laid out in table 4.1
9: end while

10: while P is not empty do
11: pop (p, k) from P
12: place s under p in position k
13: if p is prefix and pm s then
14: if s is binary then
15: perform twiddlePrefixLeft on p
16: else if s is postfix then
17: perform twiddleUnaries on p
18: end if
19: else if p is postfix and pm s then
20: if s is binary then
21: perform twiddlePostfixRight on p
22: else if s is prefix then
23: perform twiddleUnaries on p
24: end if
25: else if p is binary then
26: if k = 1 then
27: if pm s then
28: if s is binary then
29: perform twiddleLeft on p
30: else if s is prefix then
31: perform twiddleLeftPrefix on p
32: end if
33: end if
34: else
35: if pm s then
36: if s is binary then
37: perform twiddleRight on p
38: else if s is postfix then
39: perform twiddleRightPostfix on p
40: end if
41: end if
42: end if
43: end if
44: set s to p
45: end while
46: return s
47: end if
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Table 4.1: Actions to take during opmerge according to operator type and precedence of the current nodes being visited in the left and
right trees by Algorithm 3

cR

prefix postfix binary id/trunking null tree

cL

prefix cLPrefix cRPrefix cLPrefix cRPostfix cLPrefix cRBinary cLPrefix cROther cLPrefix cROther

postfix cLPostfix cROther cLPostfix cRPostfix cLPostfix cRBinary cLPostfix cROther cLPostfix cROther

binary push (cL, 2) onto P ,
then set cL to decou-
pled right-hand child
of cL

cLBinary cRPostfix cLBinary cRBinary push (cL, 2) onto P ,
then set cL to decou-
pled right-hand child
of cL

set workingDown to
false, s to cL

id/
trunking

set s to a tree with
default operator as
root and children cL
and cR

cLOther cRPostfix cLOther cRBinary set s to a tree with
default operator as
root and children cL
and cR, workingDown
to false

set workingDown to
false, s to cL

null
tree

set workingDown to
false, s to cR

N/A
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4.3.3 Locating the Unmatched Composite Nodes in Prepara-

tion for match merge

The match merge algorithm published by Heeman (1990) specifies that, for each itera-

tion, incomplete composite nodes should be located in each tree that has no such nodes

in its own subtree. Although the way in which this is to be done is not specified, as

recognised by Soiffer (1991), it is an aspect that is likely to cause time performance

issues. Here, a method is used for locating such nodes before beginning the merge, the

time complexity of which is O(h) where h is the height of the tree, for each tree. The

approach is more efficient than a linear search through the yield5 of a tree because the

search only visits nodes along an outer edge. The process creates two stacks of nodes:

one of unfinished composite nodes in the left-hand tree and the other of unstarted

composite nodes in the right-hand tree. This version of the match merge algorithm

simply pops incomplete composite nodes from the stacks until one of the stacks is

empty.

The following argument explains why the unfinished node stack construction algorithm

will work for the left-hand tree. The situation will be mirrored in the right-hand tree,

albeit slightly more simply.

• Any unclosed composite node will reside on the outer right edge of the tree. If that

were not the case, there would have to be a subtree that contained somewhere

within it an unclosed composite node that would have a right sibling. So the

unclosed composite node would be in effect complete, otherwise the parse tree

could not have anything that would come logically after that node. (For example,

the tree for “(a×b+c” could not have the “+” at the top because the “(” applies

to all of the rest of the expression.)

• Because of this, we only need to traverse the right outer edge of the left-hand

tree to find unfinished composite nodes.

• The match merge algorithm only combines incomplete composite nodes that have

no incomplete composite nodes in their subtrees that are waiting to be matched.

(This is by the definition of match merge, as per Heeman (1990).)

• The match merge algorithm always combines subtrees found at the point of the

lowest incomplete composite nodes in the hierarchy, moving one of these nodes

5The yield of a parse tree is the result of “unparsing” it to linear form.
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from the left to the right tree or vice versa. Because of this bottom-up behaviour,

the trails of incomplete nodes on each tree will not be altered by the algorithm

(other than by having stack members removed).

• Because of this, the identification of incomplete composite nodes can be completed

before the main body of the algorithm.

Although the match merge algorithm does not create nodes of mixed composite types

– opening and closing parts are staggered in the same way as in the Heeman (1990)

algorithms – when it comes to identifying unfinished opening composite nodes, it turns

out that if a closing part of any kind exists underneath it, the opening composite

node needs to be treated as closed.6 The question arises of whether an unfinished

composite node could exist, directly below which there is a composite node that is

both unstarted and unfinished, below which there is an unstarted composite node with

a closing delimiter. Such a situation can in fact occur. Consider three templates A, B

and C, with delimiters da1, . . . , dak for A, db1, . . . , dbl for B and dc1, . . . , dcm for C with

k, l,m ∈ N and take, for example, expression da1 p dbv q dcm where 1 < v < l, and p, q

are complete subtrees (not having incomplete composite nodes). In effect it is a closed

expression made of three “badly matched” composite nodes. Because all templates are

right associative, the conclusion needs to be drawn that da1ldbvldcm, and so the tree

shown in Figure 4.4 is built.7

da1

dbv

p dcm

q

l

m l

l

Figure 4.4: Tree for da1 p dbv q dcm (with empty nodes and delimiters omitted)

6If not, the tree resulting from the merge would not be the same as the tree resulting from parsing

the complete expression.

7Note, this is a digression from the usual convention that states bracketing operators have precedence

=̇ (Aho, 1972). See section 4.3.5 for a longer discussion.



CHAPTER 4. AN EXTENDED INCREMENTAL PARSING ALGORITHM 53

For a concrete example, consider the following situation involving these templates.

• absolute value E end absolute value

• integral from E to E of E end integral

• log of E end log

Suppose the user has entered the expression absolute value A to B end log. As

in Figure 4.4, the tree for this expression will have an unclosed composite node for

absolute value at the top, with an unstarted and unfinished composite node for to

below that, and an unstarted composite node for end log as the right-hand child of

the node for to. (See Figure 4.5.)

absolute value

to

A end log

B

Figure 4.5: Tree for absolute value A to B end log (with empty nodes and delim-
iters omitted)

Because of such a scenario, to check whether or not a badly matched composite node

is closed, it is not sufficient to examine just its direct descendant – we have to travel

down the right-hand border of the tree to check whether there is a closing delimiter.

However, it is already the right-hand border down which we travel while searching for

more unclosed nodes, so to avoid the inefficiency of traversing the same section of tree

two or more times, the algorithm for makeTrailOfUnfinished tracks state (unlike that

for makeTrailOfUnstarted).

Algorithm 4 describes makeTrailOfUnfinished while algorithm 5 describes

makeTrailOfUnstarted . The latter is simpler because staggered composite nodes

have the unstarted node subordinate to their “matched” unfinished node. (When a

pair of badly matched composite nodes is discovered, they are merged as illustrated

in Figure 4.6. This means that when such a pair arises, the closing half will appear

as the last (non-empty) child of the opening half.) Algorithm 4 makes reference to a

variable, s, which may take values searching (searching for a potentially unfinished
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composite node), in unfinished (found a potentially unfinished composite node), and

done (finished the search process).

If an alternative approach to the matching of incomplete composite nodes were to be

adopted, for example choosing pairs that maximise the number of successful matches of

delimiters belonging to the same template, the validity of using this method to identify

incomplete composite nodes would need to be reviewed. Such an approach, while

attractive from an error-handling point of view, would necessarily lead to a requirement

to reprocess potentially large portions of the document in response to subsequent user

edits, thus losing some of the benefits of employing incremental parsing.

4.3.4 Merging Incomplete Composite Nodes

When Heeman (1990) merged expressions in brackets, the composite nodes have at

most one child which, because of the order in which the brackets are matched, will

have no unmatched composite nodes so, when brackets are successfully matched, the

resulting action is simply to execute an operator precedence merge between the single

child under the left bracket and the single child under the right. This holds for any

composite form that has only one child. For this algorithm the cases of a composite

node involved in a merge having more than one child need to be considered. (This

is because composite nodes can represent templates, which may have more than one

child.) If a child of an incomplete composite node that has been identified for matching

is on the “boundary”8 of the merge, any composite nodes below it will have already

been matched, so in this case an OP merge on the child is also appropriate.

In the case of composite forms having multiple children, the algorithm caters for all

forms with a fixed number of children.

8Here, boundary refers to the set of nodes that may interact with nodes from the other tree during

the merge.
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Algorithm 4 makeTrailOfUnfinished(t)→ r
Create stack r of unfinished composite nodes in t, having the topmost unfinished node
at the bottom
1: set r to empty stack, set c to root of t, s to searching
2: while s is not done do
3: set f to false
4: if s is searching then
5: if c is composite then
6: if last delimiter of c is present then
7: set s to done // subtree closed
8: else // we could be at top of staggered closed composite
9: empty r′ and push c onto r′

10: set s to in unfinished
11: end if
12: end if
13: if c has any children and s is not done then
14: set c to right-hand side of binary operator, or last non-empty child, or else empty

node
15: if c is now empty then
16: set f to true if s is now in unfinished
17: set s to done
18: end if
19: else // no children
20: set s to done
21: end if
22: else // s must be in unfinished
23: if c is composite then
24: if first first delimiter of c is present then
25: set f to true, s to new found
26: else
27: if last delimiter of c is present then
28: set s to done // subtree closed
29: else // we could be in continuation of a staggered closed composite
30: push c onto r′

31: end if
32: end if
33: else // c not composite, so opened composite never closed
34: set f to true, s to searching
35: end if// by now, if c not composite, s will have been set to searching
36: if s is not done then
37: if s is new found then
38: set s to searching
39: else // we need to move down tree
40: if c has any children then
41: try to move c to right-hand side of binary operator, or last non-empty child
42: set f to true, s to done if c is now empty
43: else // no children, so opened composite never closed
44: set f to true, s to done
45: end if
46: end if
47: end if
48: end if
49: push r′ onto r if f is true
50: end while
51: return r
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Algorithm 5 makeTrailOfUnstarted(t)→ r
Create stack r of unstarted composite nodes in t, having the topmost unstarted node
at the bottom

1: set r to empty stack
2: set c to root of t
3: set s to true
4: while s do
5: if c is composite then
6: if first delimiter of c is present then
7: set s to false
8: else
9: push c onto r

10: end if
11: end if
12: if c has any children then
13: if c is a binary operator then
14: set c to its left-hand child
15: else
16: set c to its first non-empty child, or empty tree if no such child
17: end if
18: if c is now empty then
19: set s to false
20: end if
21: else // no children were found
22: set s to false
23: end if
24: end while
25: return r

Testing Whether Composite Nodes Match

Before two composite nodes are combined, a determination has to be made on whether

they match. The test on whether a composite node tL fits together with composite

node tR works as follows:

1. tL and tR must represent the same template.

2. We assume that tL is missing its last delimiter and tR is missing its first. (If

this were not the case, they would not be classified as unfinished and unstarted

respectively.)

3. Let d1, d2, . . . represent the delimiters of the template, and let j > 0 be the

position of the last delimiter of tL that is present. Let ci represent a child of a

composite node, where a delimiter di separates ci from ci+1.
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4. The only child of tL permitted to be present after dj is cj+1.

5. The only children that may be present in tR are cj+1 onwards.

6. The only delimiters that may be present in tR are dj+1 onwards.

Informally stated, items 4 and 5 stipulate that nodes with overlapping sets of child

nodes are classified as non-matching, with the exception of any child that falls between

the two extant delimiter lists.9 Item 6 states that nodes with overlapping lists of delim-

iters are classified as non-matching. Item 1 states that nodes that could potentially fit

together although they represent different templates are not considered as matching.

Combining Matching Composite Nodes

The approach is as follows. Given two matching composite nodes TL and TR, delimiters

and children in TR but not in TL are moved to TL. If both TL and TR have a child that

falls between the last extant delimiter in TL and the first extant delimiter in TR, they

are merged. (Such children are those that appear on the tree boundary as described

above.)

The question needs to be addressed of into which “slot” in the template a child

should be placed when sufficient separators are missing to make the meaning of the

resulting expression ambiguous. As an illustration, suppose a template takes three

arguments, and so has separators ‖0 ‖1 ‖2 ‖3, and suppose the (incomplete) expres-

sion10 “‖0 A ‖1 b + c ‖3” is being dictated in two separate utterances “‖0 A ‖1 b”
and “+ c ‖3”. Although the “b” and the “+ c” clearly belong together, we have the

question of where to place the merged content. Given that the batch parser will place

the subtree for b+ c into the slot between delimiters ‖1 and ‖2, the incremental parser

will follow this convention.

Staggering Badly-matched Composite Nodes

A “badly matched” pair of composite nodes consists of those that failed to match each

other, but need to be placed together in the result of the merge.

9While incomplete composite nodes with more than one “overlapping” child could be regarded as

matching, there is no way in which they could be merged while preserving the yield of the resulting

tree. Because of this, they are not considered as matching.

10Note, in this example the ‖2 is omitted deliberately.
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Irrespective of the approach taken to merging composite nodes, “badly matched” nodes

will be put together as shown in Figure 4.6. The approach used here will not involve

creating more than two composite nodes at one time from a bad match: when the

two nodes are created, one will simply appear under the other in the hierarchy, as

stipulated by the right-associative convention. Note, reference is made to “unclosed”

and “unopened” rather than the “opening” and “closing” parentheses discussed by

Heeman (1990), because an internal delimiter may be either unclosed or unopened, or

both. (For an example illustration that includes two badly matched composite nodes,

see Figure 4.5.)

unclosed composite node

unopened composite node. . .

earlier children

Figure 4.6: Badly matched pair of composite nodes

Observations

This section has described a method for matching and merging composite nodes that

designates two incomplete nodes as matching only if they belong to the same template.

If this algorithm were to be applied to a programming language defined in a usable

way, the method would need to be made more flexible. The following observations will

be relevant.

1. Provided the combination of a pair of incomplete composite nodes does not

create new incomplete non-staggered composite nodes, the approach to iden-

tifying incomplete composite nodes will remain valid.

2. Any single composite node belongs to a single template.

3. Because no variable length templates exist, composite nodes will have the appro-

priate number of blanks inserted in missing delimiters by the initial (batch) parse

and any subsequent tree operations.

4. Because of (3), any composite node will have delimiters in appropriate places,

with missing delimiters denoted by blank entries.
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5. The algorithm cannot rely on the children being in the places originally intended

by the user if they have provided incomplete input.

6. If too many delimiters are missing, it may not be possible to identify a single

template without referring to the template originally recorded against the composite

node. (The approach presented in this chapter refers only to the original template;

this would have to change if fragments of distfix operators were to be combined.

See Section 6.6.3.)

The application of the algorithm to programming languages is discussed further in

Chapter 6.

4.3.5 Brackets, Composite Nodes and Associativity

In the case of incomplete expressions, the move from simple brackets to composite nodes

introduces the question of associativity. The brackets defined by Heeman (1990) are

described as having no associativity. But when brackets of different types are matched

with each other during a merge, the closing bracket is placed under the opening bracket

in the AST, suggesting right associativity, as the structure produced consists of just

an opening bracket with a single child which is a closing bracket with a single child the

merge of both of their children. (See Figure 4.7.)

opening bracket

closing bracket

merged children

Figure 4.7: Staggered unmatched brackets as per algorithm of Heeman (1990). (The
standard AST notation is used here.)

The point at which associativity of composite nodes becomes relevant is when they

have more than one child. Consider two templates (from the TalkMaths language

definition11) FRACTION and LOG BASE. The FRACTION template has delimiters “fraction”,

“over” and “end fraction”, while LOG BASE has delimiters “log base”, “of number” and

“end log base” (to enable the user to write expressions such as logab). The tree that

will be produced for expression “fraction a over b of number c end log base” where the

11The TalkMaths language definition forms part of the TalkMaths Python code, and is held in the file

MathsDefinition class.
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templates are left associative will differ from that produced if they are right associative,

as illustrated in Figure 4.8. (In this illustration, Figure 4.8a represents a
logbc

, while

Figure 4.8b represents loga
b
c.)

Attanayake (2014) treated all (closed) mixfix operators as right associative, which

happens to be consistent with Heeman (1990). This version adheres to that convention.

The convention itself is quite reasonable, but problems would arise upon encountering

the left-associative PHP ternary operator (?:) if this parser were to be applied to that

programming language. One possible solution would be to record precedences against

mixfix operator parts (in other words, against individual template delimiters), but this

would mean a precedence matrix between mixfix operators would need to be built,

creating a substantial amount of work for the author of any language definition and

requiring fundamental changes to the algorithm. It is questionable whether the cost

of introducing this extra complexity in language setup would be warranted, given the

rarity of such a mixfix operator12.

FRACTION

a LOG BASE

b c
(a) “fraction a over b of number
c end log base” with current
(right) associativity

LOG BASE

FRACTION c

a b
(b) “fraction a over b of number
c end log base” with left associa-
tivity (not used in this thesis)

Figure 4.8: Effect of associativity on composite nodes with more than one child

4.3.6 Avoiding Violation of OP by Unary Operators

According to the definition of the operator precedence relations given by Aho (1972;

p. 438), if in an expression operator a appears before operator b with a l b then b

is permitted to be binary or prefix, but not postfix, and if operator c appears before

operator d with c m d then c is permitted to be binary or postfix, but not prefix. If

a language definition contains such relations, their combination will violate the condi-

tions for it to conform to OP grammar, and so a parser will not produce well formed

parse trees under certain circumstances. The problematic relation combinations are as

follows, and are illustrated in Figure 4.9.

12The PHP ternary operator is the only example the author has encountered that has left associativity.
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• The left operand of a binary operator is a postfix operator with precedence lower

than its parent.

• The right operand of a binary operator is a prefix operator with precedence lower

than its parent.

•

◦

a

b

l

(a) Postfix incorrectly under binary

•

a ◦

b

m

(b) Prefix incorrectly under binary

Figure 4.9: Operator precedence violations that cannot be solved by twiddle operations

Provided such relations are not introduced when designing an OP language, violation

of OP may be avoided for combinations of binary and unary operators. The author

notes that the precedences assigned to mathematical operators do not cause the above

problems.

The case is not so simple when two prefix or two postfix operators are combined. For

example, consider the dictated expression “a squared factorial”. It would appear to

describe (a2)! where the factorial is applied to a2, but because ! m power, the tree for

such an interpretation would violate operator precedence. To avoid such a situation, the

batch OP parser places the power at the top of the tree, in effect creating expression

(a!)2 but this is inconsistent with what the user dictated. If a situation like this

is encountered by the incremental parser implementation, it is handled by placing a

complete bracket pair between the operators closest to the operand, creating the tree

for (a2)!. Although the encounter of such bracket pairs might seem rather surprising

to the user, this would be preferable to changing the order of the operators, and hence

their meaning.
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4.3.7 Criteria that Must be Met by the Default

“Concatenation” Operator

Whenever two ASTs are merged, there is a possibility that an extra operator will need

to be introduced to represent the concatenation of the expressions or code. For example

if the expressions “a+ b” and “c+ d” are to be concatenated, a decision must be made

on how to handle the “bc” that appears in the middle. In the case of mathematical

content, the operator in question is typically invisible multiplication. If in the context

of the application (the content being edited), no such ready-made operator is available,

one needs to be chosen that:

(a) does not cause the language to violate the operator precedence conditions, and

(b) makes sense.

In the context of a spoken programming language, a statement separator may be chosen

instead by the implementer.

4.4 Theoretical Evaluation

This section discusses the asymptotic time complexity of the algorithms for the incre-

mental parsing operations tear and merge, and compares these with the batch parser.

4.4.1 tear

Examining lines 6 and 7 in Algorithm 1, the only non-trivial actions required would

be to move delimiters and child nodes. Because the composite nodes used here have

fixed numbers of delimiters (and children), this may be treated as O(1).13 Similarly

the body of the loop starting at line 16 is also O(1). The loop itself is repeated for

each node in the chain of parent nodes from the node containing token k up the root

node. Hence, tear is O(d + 1) where d is the depth of the node containing k. If we

wish to express this in more general terms, it is O(h) where h is the height of the tree.

13If the nature of composite nodes were to be modified in order to permit a variable number of

arguments, for example to facilitate representation of lists as flat trees, the number of separators

and children in the composite node would feature in the complexity calculation.
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4.4.2 merge

The time complexity for this algorithm is less simple. We begin by defining the

following. Subscripts L and R are used to indicate the left-hand and right-hand trees

involved in the merge, respectively.

hL, hR Heights of the trees.

eL The number of operator nodes on the right boundary of TL.

eR The number of operator nodes on the left boundary of TR.

cL The number of unfinished composite nodes on the right boundary of TL.

cR The number of unstarted composite nodes on the left boundary of TR.

We also note that the number of nodes (of any type) on the boundary of either tree

cannot exceed the height of the tree itself by more than 1, and so a function involving

tree height may be treated as specifying an upper bound for a run time expressed in

terms of eL, eR, cL or cR.

The match merge algorithm consists of two phases: (1) constructing the lists of incom-

plete composite nodes, and (2) performing the merge. For (1), both list construction

procedures involve travelling once down the boundary of the tree in question until a

completed composite node is encountered, so the worst-case run time for this stage

(which would be the case where the trees contain no composite nodes) would be some

f(hL) + g(hR) with f and g linear functions.

The time for phase (2) is more difficult to predict. Depending on the content of the

boundaries of TL and TR, the process could consist merely of combining (or stag-

gering14) incomplete composite nodes (in the case of the tree boundaries having no

operator nodes) at one extreme, to being a pure operator precedence merge operation

at the other (for trees containing no incomplete composite nodes).

Within every matched pair of partial composite nodes, operations of opmerge15 will

potentially occur at every operator on the “inside boundary” of the subtrees under the

matched pair. Because matched pairs from the two sequences are nested, and opmerge

does not go inside complete (“whole”) composite nodes, the net result is that each

14See Section 4.3.4 for a description of staggering.

15Low-level opmerge operations are referred to as opmerge operations here, for brevity.
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operator on the right boundary of TL and the left boundary of TR may be involved

0 or 1 times in one of the low level opmerge operations. opmerge itself works down

once from its starting node and up once as it grafts the tree fragments back together.

Twiddle operations may occur at any time during the reassembly of the subtrees.

Boundary nodes are not processed more than once by an opmerge operation. The

reasoning is as follows. Let us consider the cases of any boundary node:

1. Operator node above all incomplete composite nodes

2. Operator node below all incomplete composite nodes

3. Operator node between incomplete composite nodes

4. Incomplete composite node above all operator nodes

5. Incomplete composite node below all operator nodes

6. Incomplete composite node between operator nodes

7. Identifier node or complete composite node

In case (1) the node will be involved in a single opmerge operation after all incomplete

composite nodes have been resolved. In case (2) the node will be involved in at most

one opmerge operation when the bottom-most incomplete composite node is combined.

In case (3), all incomplete composite nodes below it will have been resolved, and the

node itself will be involved in at most one opmerge operation when the incomplete

composite node above it is combined. In case (4), the node will not be involved in any

opmerge operation. In cases (5) and (6) the node will be involved once in any opmerge

operation for the highest operator node above it. In case (7), the node will be treated

as a leaf of the tree and so will not be actively involved in any opmerge operation.

Because boundary nodes are processed at most once, and once all the boundary nodes

on one of the two trees are “used up” the OP merge will be complete, we can express the

run time for all the opmerge elements of the merge as some function f(min(hL, hR)) +

g(min(hL, hR)) for some linear function f for the operations on the way down and up

on the nodes involved, and some linear function g to represent any twiddle operations

required. We express the function in terms of min(hL, hR) because once the opmerge

operation runs out of nodes on one of the boundaries involved in its processing, it must

stop, and min(hL, hR) + 1 ≥ min(eL, eR).
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match merge operations are performed min(cL, cR) times because one cannot match

composite nodes that do not have a counterpart. Each match merge operation involves

a check on whether the pair of incomplete nodes can be combined into one, followed by

the combination of the two nodes, either into a single composite node or into a staggered

subtree. While these operations are not trivial (they involve looping through delimiters

and children), because the number of these is fixed in the language definition, both the

check and the combination can be regarded as O(1). In both cases, the combination

step may involve a top-level opmerge operation, for which we have already accounted

above. Hence we can express the run time for the match merge aspect of the merge in

terms of some linear function m(min(hL, hR)) because min(hL, hR) + 1 ≥ min(cL, cR).

The above argues that the run time of every aspect of merge can be expressed using

linear functions of min(hL, hR), and so merge is O(min(hL, hR)).

It would be useful to verify this experimentally, but because of the time currently taken

to perform a batch parse of fresh text, it is not feasible to collect data on a sufficiently

wide range of tree heights.

4.4.3 Comparison with Batch Parser

In this section it is noted it is not feasible to make a generic comparison from a theo-

retical point of view, so comparisons are made using the two main operations tear and

merge.

The batch parser developed by Attanayake (2014) has two phases: the XGLR parsing

algorithm developed by Begel (2006), followed by consolidation of composite nodes.

Begel’s algorithm may be O(m3) for a token string of length m, while the composite

node consolidation phase is O(n) where n is the number of nodes in the parse tree

produced by the XGLR parser. O(m3) is the generally recognised worst case time

complexity for GLR parsers; the case for the XGLR parser (Begel, 2006) is compli-

cated by the fact that multiple alternative parses are spawned on encountering lexical

ambiguity. The number of nodes in the parse tree cannot exceed the length of the

token string, so the time complexity of the Attanayake batch parser could be said to

be O(m3) for a token string of length m.

Considering the tear operation on a token string of length n and discarding the portion

of the string before or after position p, the time complexity for the batch parser’s

equivalent (re-parsing one or other of the token string portions) will be O((n − p)3)
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or O(p3) respectively. The maximum height of a tree representing a token string of

length n will be n − 1 so the time complexity for the incremental tear operation will

be O(n), making it asymptotically more efficient for all but very small |n− p|.

Considering the merge operation on right and left token strings of lengths m and n,

the time complexity for the batch parser’s handling of their concatenation will be

O((m + n)3). Estimating the maximum height of a tree as before, the incremental

merge operation will have time complexity O(min(m,n)). From these considerations,

the following theorem can be deduced.

Theorem 1 The time complexity of merging two trees representing right and left token

strings of lengths m and n is O(min(m,n)), which is better than the corresponding batch

parsing complexity, which is O((m+ n)3).

An experimental comparison is made in Chapter 5, confirming that for the case of y

or y′ being longer than one token, the incremental method is significantly faster.

Difficulty of the General Case

If we were to compare time complexity of the incremental and batch approaches in

the traditional scenario of incremental parsing, we would need to begin by defining the

task to be carried out using these two methods. Using the typical incremental parsing

scenario of replacing substring y with y′ in token string xyz, we would compare the time

taken to reparse the entire replacement string xy′z with that taken by the incremental

parsing algorithm to perform the replacement using the tree operations. One way of

doing this would be (1) split between x and yz, (2) split between y and z, (3) batch

parse y′, (4) merge x and y′, and finally (5) merge xy′ and z. (Other ways would

involving changing the order of splitting and merging, e.g. split between xy and z

first.) The time complexities of the incremental parsing operations in terms of token

string length have already been established (for the very worst case), but the lengths of

y, y′ and xyz may vary independently (notwithstanding the restriction that the length

of y is less than length of xyz). Because of this, the time complexity is not amenable

to analysis (Howell, 2008).
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4.5 Conclusion

This chapter has presented a novel algorithm based on improvements and extensions

to the incremental parsing algorithms developed by Heeman (1990), that enable this

to be applied to a language that is not limited to simple operators and brackets.

The theoretical time complexities of the two operations are compared with the batch

parsed equivalent, and the incremental versions are found to be more efficient.

The next chapter deals with the application of the algorithm to spoken mathematics

and revisits the comparison of the parsing approaches from a practical standpoint.



Chapter 5

Application to Spoken Mathematics

This chapter describes the application of the algorithm to TalkMaths, and compares

practical run times for changes that will need to be made in response to some edit oper-

ations, as performed by the batch parser alone and the incremental parser combined

with the batch parser as required.

5.1 TalkMaths

TalkMaths is the product of research carried out at Kingston University on creation

and editing of mathematical content using a speech interface.

The batch parser used for the current version, originally developed by Attanayake

(2014), is implemented in Python (and so is platform independent), and has an interface

designed to be used via a RESTful web service. The spoken mathematical language is

maintained in a class called MathsDefinition, which defines operators with precedence

relations, identifiers, and the templates designed by Attanayake (2014). Operators and

templates may be modified as required by the language user, who has the responsibility

to ensure their definitions are consistent and do not violate the requirements of the

operator precedence parser. One requirement of this parser which will have significant

consequences for further development is that no single lexeme may be used in more

than one template. (For example, although it may be desirable for the user to finish the

templates for both definite and indefinite integrals with the phrase “end integral”, this

will not be permitted in the language definition.) The fact that no individual token

may appear in more than one distfix operator is consistent with Aasa (1995), who

delegates the responsibility for distinguishing between operators that share a lexeme to
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the lexer (citing binary and unary plus as an example). The Attanayake (2014) parser

can handle such ambiguities by producing multiple parse trees, in effect deferring the

decision on which meaning the user intended when they dictated the expression, but

this functionality is switched off for the purpose of performance evaluation, to minimise

the response times of the batch parser.

The ASTs produced by this parser have standard nodes for identifiers and the basic

(unary and binary) operators. For anything else, including distfix operators, functions

and brackets, the trees contain composite nodes which behave like the function nodes

described by LaLonde and des Rivieres (1981). The ASTs produced are valid according

to operator precedence, and all nodes contain the required number of children, which

may be blank (but not missing) where the user has not supplied all required informa-

tion. Where the user has omitted delimiters, these are also recorded as blank.

The language definition for TalkMaths is summarised in UML in Figure 5.1. This

consists of collections of simple operators with precedences, identifiers and templates.

Operators are identified by their tokens, which are recorded in the parse tree along with

the lexeme that matched the operator’s lexeme list at parse time. Operator placement

is either prefix, postfix or binary. Every operator will belong to an operator precedence

class, and it is these classes that are used to determine the precedence relation between

two operators, which will be either l or m. This mechanism, designed by Attanayake

(2014), reduces the size of the operator precedence table through it not having to

contain an entry for every possible combination of operators. For example, both + and

− are classified as PLUS MINUS, while all comparison operators belong to precedence

class LOGICAL OP, so only four entries are required in the operator precedence table to

cover all combinations of +, ≤ and other operators belonging to the same precedence

classes. Identifiers consist of single characters (rather than strings of characters), for

example h, or 5, that would be recorded along with token identifiers, for example

SPOKEN HOTEL and SPOKEN NUMBER, had their regular expressions matched lexemes

“hotel” and “five”. Each template consists of its identifier (for example SINE) along

with a sequence of delimiters, each of which will have one or more possible lexemes.

(In this example, “sine” or “sine of”, followed by “end sine”.) Again, both identifier

and actual matching lexeme are recorded.

Figure 5.2 shows the essential structure of the data produced by the batch parse. Apart

from the has parse tree relationship and child index attribute (both added to implement

the incremental parsing algorithm), the elements are as found in the batch parser at the

time work on the incremental parser began. The Parse Tree class represents a single
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Figure 5.1: Language definition (mathematics)

node of the parse tree, with the tree structure represented by has child and has parent.

Tokens are associated with a parse tree node via the Node class, with bracket type

indicating whether the token represents an opening or closing bracket, and identifier

being the token identifier from the language definition. The lexeme associated with the

token is held in a Symbol Table1 object, one of which is associated with each token.

Figure 5.2: Data produced by batch parse

The batch parser is implemented by classes named OperatorPrecedenceParser and

Scanner. Apart from bug fixes and a performance improvement, these classes have

been treated as black boxes. To perform a batch parse, one must create a MathsDefi-

nition object, and then use that as an argument to instantiate an operator precedence

parser object, of which the parse method must be invoked on the string representing

the recognised speech. The following fragment of Python code creates the tree for

a = sinB.

1It is thought this is evidence of an earlier intention to use a symbol table as part of the batch parser.
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mathsDefn = MathsDefinition()

batchParser = OperatorPrecedenceParser(mathsDefn.mySpokenLanguageData)

aTree = batchParser.parse("alpha equals sine of capital bravo end sine")

5.2 Implementation of Incremental OP Parsing

Algorithm for Use with TalkMaths

The algorithms have been implemented in Python 2.72 to work with these ASTs. To

facilitate this, minor modifications to the data structures produced by the batch parser

(but not to the language definition) were required.

5.2.1 Modifications to Existing Classes

As part of the implementation of the incremental parsing algorithm, a number of new

methods were required for the ParseTree and Node classes. These were to implement:

• informational functionality, for example determining whether a ParseTree object

represents a composite node;

• child retrieval, for example to return a reference to the first non-empty child of

a ParseTree object;

• adding, inserting, removing or replacing a child;

• all twiddle operations;

• operations to combine or split apart composite nodes, and

• operations to create new parse tree nodes, for example to represent the default

operator or insert brackets around an existing subtree to preserve operator prece-

dence validity (see Section 4.3.2).

2This is for compatibility with the software used to link the ASR package with TalkMaths.
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5.2.2 The Incremental Parser

The class IncrementalParser implements all major3 parts of the algorithm described

in this thesis. Once an instance of this parser has been created, the tear and merge

methods can be used to perform the top level operations. (tear and merge simply call

do tear and match merge respectively.)

The example code shown in Figure 5.3 models, for illustration purposes, the scenario of

a user who having dictated the expression a = sin(By), replaces (for their own reasons)

By with C2 + 1 to produce expression a = sin (C2 + 1). In a production environment,

the tokens at which to tear the trees would have been received via some editor, but

here we need to identify these tokens by producing the yield of the tree and locating

the tokens by lexeme. This is done using a class called TreeYield4. The final tree

is displayed using an original ParseTree method. The class that produces the LATEX

translation at the end was developed because it would be of immediate use to the

author.

The output is as follows.

alpha equals sine of capital bravo yankee end sine

alpha equals sine of capital charlie squared plus 1 end sine

OP[EQUAL](equals)

ID[SPOKEN_ALPHA](alpha)

MIXFIX_OPERATOR[SINE](sine of | end sine)

OP[BINARY_PLUS](plus)

OP[SQUARED](squared)

ID[CAPITAL_SPOKEN_CHARLIE](capital charlie)

ID[SPOKEN_NUMBER](1)

a = \sin{ C ^{2} + 1 }

The incremental parsing algorithms were tested by splitting and merging test data

obtained from the requirements and code based test cases derived from the algorithms.

The practical evaluation also formed a testing process, as the result of the incremental

parsing process was compared with that of the batch parse, and any difference flagged.

3Operations such as the twiddles are implemented in whichever class is most appropriate, for technical

reasons.

4This cannot be used as a token stream because it includes blank tokens where parts of an expression

are missing
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from OperatorPrecedenceParser import *

from MathsDefinition import *

from ParseTree import *

from IncrementalParser import *

from TreeYield import *

from LatexMaker import *

mathsDefn = MathsDefinition()

batchParser = OperatorPrecedenceParser(mathsDefn.mySpokenLanguageData)

theIncrementalParser = IncrementalParser()

startText = "alpha equals sine of capital bravo yankee end sine"

print startText

aTree = batchParser.parse(startText)

# user isolates capital bravo yankee

aYield = TreeYield(aTree)

lastLeftTreeToken = aYield.getTokenAtIndex(aYield.findLexemeIndex("sine of"))

lastIsolatedToken = aYield.getTokenAtIndex(aYield.findLexemeIndex("yankee"))

# split

[tempTree, rightTree] = theIncrementalParser.tear(aTree, lastIsolatedToken)

[leftTree, isolated] = theIncrementalParser.tear(tempTree, lastLeftTreeToken)

replacementTree = batchParser.parse("capital charlie squared plus one")

interimTree = theIncrementalParser.merge(leftTree, replacementTree)

finalTree = theIncrementalParser.merge(interimTree, rightTree)

print TreeYield(finalTree)

finalTree.printTree()

lm = LatexMaker()

print lm.translateToLatex(finalTree)

Figure 5.3: Example use of incremental parser

5.3 Evaluation: Practical Performance

In this section, the elapsed times taken to carry out some simple editing and parsing

operations are compared, using the batch parser alone and the incremental parser

together with the batch parser where required. The timings were carried out using the

version of the batch parser after the performance improvement was implemented.

Three scenarios are considered:

1. Simple concatenation, which will involve merging only.

2. Insertion of a missing part of an expression, which will involve both splits and

merges.

3. Simple deletion, which will involve splitting only.
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5.3.1 Scenario 1 – Simple Concatenation

In this scenario, an expression is split into two parts, corresponding to two utterances,

that together make up the complete expression. Expressions range from very short ones

to those that realistically would take multiple utterances to dictate. The split point

ranges from immediately after the first token to immediately before the last token.5

The scenario is very simplistic and does not model a real-life situation (which would

involve more utterances for longer expressions); its intention is to compare run times

for concatenation.

It corresponds to performing the first tear operation in the above example for lastIso-

latedToken ranging from “alpha” to “Yankee”.

5.3.2 Scenario 2 – Insertion of Missing Part of an Expression

In the second scenario, our starting point is an expression assumed to have already

been dictated by the user, but with an omission. An insertion point, and the missing

part to be inserted are provided. For simplicity, the latter consists of a single token6.

This will not affect the number of top-level operations that the incremental parser

has to perform, nor will it change the length of token string to be processed by the

batch parser. This new expression fragment is inserted into the existing expression, as

follows:

Pure batch approach The entire token string (including the inserted part) is reparsed.

(Note, the trivial operation of string concatenation is not timed.)

Incremental approach The new utterance is parsed, after which split and merge

operations are used to combine this with the existing tree to produce the required

result.

To illustrate, it is the equivalent of running the following code fragment, but for the

missing part of “alpha equals sine of capital bravo Yankee end sine” ranging from

5These split points are on tokens and not the individual words that make up a lexeme. Splits on

individual words would raise the issue of error handling, which is not evaluated.

6It is impractical to simulate every possible split of the sample expressions into three, or even produce

a large enough sample for random insertions into strings from the data set, so the simple scenario

described above is followed.
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“equals” to “Yankee” (and including the two invisible multiplication operators).

startText = "alpha sine of capital bravo yankee end sine"

missingText = "equals"

print startText

aTree = batchParser.parse(startText)

aTree.printTree()

missingNode = batchParser.parse(missingText)

aYield = TreeYield(aTree)

splitPoint = aYield.getTokenAtIndex(0)

[leftTree, rightTree] = theIncrementalParser.tear(aTree, splitPoint)

newLeftTree = theIncrementalParser.merge(leftTree, missingNode)

finalTree = theIncrementalParser.merge(newLeftTree, rightTree)

print TreeYield(finalTree)

finalTree.printTree()

The output of the code fragment is reproduced below, to illustrate the use of invisible

multiplication.

alpha sine of capital bravo yankee end sine

OP[INVISIBLE_TIMES]()

ID[SPOKEN_ALPHA](alpha)

MIXFIX_OPERATOR[SINE](sine of | end sine)

OP[INVISIBLE_TIMES]()

ID[CAPITAL_SPOKEN_BRAVO](capital bravo)

ID[SPOKEN_YANKEE](yankee)

alpha equals sine of capital bravo yankee end sine

OP[EQUAL](equals)

ID[SPOKEN_ALPHA](alpha)

MIXFIX_OPERATOR[SINE](sine of | end sine)

OP[INVISIBLE_TIMES]()

ID[CAPITAL_SPOKEN_BRAVO](capital bravo)

ID[SPOKEN_YANKEE](yankee)

5.3.3 Scenario 3 – Deletion of Part of an Expression

This exercises the split operation on its own by comparing the time taken to delete

all of an expression to the left of a split point (using the same parameters as the

concatenation scenario), or all of an expression to its right. In the case of the batch
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approach, this would consist simply of reparsing the part of the expression not to be

deleted. The incremental approach will split the AST for the expression into two ASTs,

and so the operation is the same, whichever part is to be retained.

This scenario corresponds to the last code fragment executing just the tear for split

point ranging from 0 to the index of “Yankee”.

5.3.4 Method

To evaluate performance, the elapsed time7 taken to perform an operation using the

pure batch approach is compared with elapsed time taken using the incremental approach.

If one approach takes significantly less time than the other then one can conclude the

approach that takes less time performs better than the other.

The sample data used are listed in Appendix C and include, but are not limited to, some

common equations along with expressions used in an assessment scenario (University

of Oxford Mathematical Institute, 2016). Some of the expressions are fragments, while

others, though they represent complete expressions, miss closing delimiters at the end

of the expression in its spoken form.8 The timings are performed by processing the

entire list of expressions in the same sequence 27 times9. The platform is a PC with

Intel Core i7-4790 processor and 16GB RAM running Windows 10.10

Scenario 1 – Simple Concatenation

Each sample expression is split at every gap between tokens. For the pure batch

approach, the time taken to parse the entire expression is recorded. For the incremental

approach, the starting point is a parse tree for the first part of the expression, and the

total time taken is calculated as the sum of the time taken to batch parse the second

part of the expression, and the time taken to merge the resulting tree with the original

one.

7For evaluation on a Windows platform, Python’s time.clock() is used as it provides the required

precision. The equivalent on a Mac is time.time().

8This is a nod towards realism: the batch parser’s error handling will cope with such omissions, and

the author took advantage of this fact when entering the data.

9Sample sizes were chosen to be as large as possible while allowing the process to finish overnight.

10Timings on a PC gave more consistent results from batch to batch than the same procedure when

run on a Mac.
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Scenario 2 – Insertions

As before, the batch parsing simulation consists merely of parsing the entire expression

(as all concatenations will have been made at the string representation level).

For the incremental parse, the starting point for an expression whose entirety would

be s1s2s3 would be the tree for s1s3. Inserting the missing part consists of splitting

s1s3 at the boundary between s1 and s3 (this is the tear operation), followed by the

parsing of s2, and subsequent merging of s1 with s2 and s2 with s3.

This scenario is far from ideal because the timings of the incremental approach include

the batch parsing of only a single token, resulting in timings that are overly favourable

towards the incremental approach when compared with the timings for simple concate-

nation. It is included only for completeness.

Scenario 3 – Simple Deletion

As in scenario 1, this process loops through all possible split points. For the pure batch

approach, deletion of the part of the expression will consist of extracting the substring

to be retained (not timed), and then parsing it.

For the incremental approach, the deletion consists of splitting the tree at the appro-

priate split point.

5.3.5 Results

For all three scenarios, the first sample of the 27 repetitions was discarded, as the

mean time taken for this round was noticeably shorter than for the others, using both

approaches11. (See table in Appendix D.) It was not possible to draw any conclusions

on the distributions of the timings, so they were compared using non-parametric tests.

Scenario 1 – Simple Concatenation

A Mann Whitney U test on sums of total times taken to perform the concatena-

tion, aggregated by sample, gave a test statistic representing total ranks for the batch

11The exception was the incremental parsing run time for scenario 3, that involved no step involving

batch parsing.
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approach minus total ranks for the incremental approach of 676 (withN = 26). (In fact,

the incremental approach was faster than the batch approach in all cases.) This means

that the incremental approach is faster, with a ****p-value of 4.0329 × 10−15. Based

on the sample of 26 values, the incremental approach is 1.984272 (95% CI [1.984080,

1.984464]) times faster than the batch approach.

Taking mean times for tuples of expression and split position for the merge as individual

data points, a Wilcoxon signed rank paired difference test (with sample size n = 802

and test statistic 321967) leads one to conclude that the incremental approach is faster

than the pure batch approach, with ****p-value 2.22 × 10−16. (The test statistic is

the sum of ranks of the batch approach processing time minus sum of ranks of the

incremental approach processing time.)

Scenario 2 – Insertions

A Mann Whitney U test was carried out on sums of total times taken to perform the

concatenation, aggregated by sample. The test yielded exactly the same results as that

for concatenation, as the incremental approach took less time than the batch approach

in all cases. Based on the sample of 26 values, the incremental approach is 9.034268

(95% CI [9.031699, 9.036836]) faster than the batch approach. (Recall, in this scenario,

the incremental approach is given an unfair advantage.)

Performing a Wilcoxon signed rank paired difference test with sample size 802 on the

batch approach versus the incremental approach, gives test statistic 216153, leading

one to conclude that the incremental approach is faster, with ****p-value 2.22×10−16.

Scenario 3 – Deletions

The distributions of time for deletion before and after the split point for the pure batch

approach are different, so the two sets of timings were each compared separately to the

timings for the split operation (which can be used for both deletion before and after

the split point).

A Mann Whitney U test (as before) on sums by batch of total times taken to delete the

expression left of the split point using the different approaches yielded exactly the same

results as before. This was also the case for deletion right of the split point, for the

same reason. Based on the sample of 26 values, the incremental approach is 3762.528

(95% CI [3728.921, 3796.135]) faster than the batch approach for deletion of the part
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of the expression left of the split point, and 3751.262 (95% CI [3717.684, 3784.839])

faster than the batch approach for deletion of the part of the expression right of the

split point.

Performing a Wilcoxon signed rank paired difference test with sample size 802 on the

batch approach for deletion left of the split point, versus the incremental approach,

gives test statistic 322003, leading one to conclude that the incremental approach is

faster, with ****p-value 2.22×10−16. The same test performed for deletion to the right

of the split point yields exactly the same result, given that the incremental approach

was faster in all cases.

5.3.6 Discussion

The results suggest that the incremental approach is significantly faster than the batch

approach for simple editing operations.

For concatenation, which exercised the merge operation, the incremental approach

took, on average, just over half the time required for the batch approach. This low

ratio (in comparison with the other results) could be explained by the fact that the

total time taken to perform the concatenation using the incremental approach includes

the (batch) parsing of a token string that is on average half the length of the total

expression length (in tokens). For simple deletion, the high ratios (over 3700:1) can

be explained by the fact that for the batch approach, deletion will involve reparsing

on average half of the expression, while the incremental approach requires just a single

split operation.

The question arises of how much of the extra time taken up by the pure batch parsing

approach is due to poor performance of the scanner. A fairer comparison would either

take token strings rather than text strings as starting points for the time measurement,

or involve a timing process that could determine how much of the batch parsing time

was taken up by scanning. Either of these options would require changes to the batch

parser: a task that was outside the scope of this project.
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5.4 Conclusion

The algorithms for incremental parsing have been implemented in the context of an

operator precedence parser for spoken mathematics, and evaluated for processing time

for some simple editing operations in comparison to the batch parsing approach only

being used, with results suggesting that incremental parsing is significantly faster.

The object of the programme to which the TalkMaths project belongs is to provide

similar authoring and editing facilities for any structured document including, in partic-

ular, computer program code. While response times of the batch parser for dictation

of relatively short mathematical expressions are mostly adequate, they do suggest that

the pure batch parsing approach will be unsuitable for these larger structured docu-

ments. If the OP parser is to be used in this wider context, the incremental parsing

algorithms will need to be applied to this expanded domain. The next section explores

how that may be achieved.



Chapter 6

Incremental Operator Precedence

Parsing for Spoken Programming

Languages

6.1 Introduction

The previous two chapters were concerned with the incremental parsing algorithm in

the context of spoken mathematics, which is the traditional domain of OP parsing.

This chapter presents and discusses the requirements and limitations of applying OP

parsing to other structured languages, in particular, programming languages, but does

not explore the questions of display or alternative editing modes. (See for example

Begel (2004) and Diekmann and Tratt (2013) for relevant discussion.)

The aim here is to represent any structured document using an OP grammar, so it

may initially be parsed using a batch OP parser and, when edited, updated using an

incremental OP parser. The tree structure should reflect the logical structure of the

document, to facilitate display to the user in a natural way (and perhaps, in the future,

form a source for translation). This requirement is not trivial: although it is possible

to model a language using an OP grammar, as shown by Barenghi et al. (2015), the

tree produced from parsing a program fragment is not amenable to being translated

into display format with minimal processing.

The following sections describe the issues that need to be addressed to make this

implementation of OP parsing (at both the batch and incremental stages) ready to
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handle programming languages.

6.2 Spoken Language for Programming

An obvious required extension is the enhancement of the spoken vocabulary. As well as

handling typed lexemes, the parser needs to process spoken versions of programming

constructs. The issues associated with spoken program code are well known and they

are not considered here – see for example Begel (2004; 2005) – instead the question

is raised of how lexemes from a spoken version of program code should map onto the

internal representation and the extent to which they should be retained in the data

structures.

Example

Take, for example, a scenario in which a user has set up a typical “while” loop using

template lexemes “while”, “do” and “end while”. TalkMaths would create a composite

node with appropriate delimiter tokens, plus the original lexemes. Suppose some time

later the user wants to change the loop type to a “for” loop. Using a keyboard editor

for a language that uses { and } delimiters for blocks, only the loop control part at the

beginning would need to be changed – the closing delimiter could be left untouched –

but in this scenario “end while” would have been recorded against the closing delimiter.

A decision will need to be made on whether to update the delimiter to reflect the fact

that the original utterance of “end while” is no longer appropriate, or if the spoken

lexeme should be discarded at the time the loop was first dictated, to be replaced by a

generic “end of block” delimiter. The second alternative may well be preferable; if some

equivalent of the SPEech EDitor developed by Begel (2005) were required (providing

an editing pane on the spoken version of the program code), the rendering of the code

would employ some standard output version of the delimiters rather than what the

user originally dictated.

The above paragraph covers just one example that applies to program code. One

could argue that such problems occur even more frequently in the domain of spoken

mathematics.
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6.3 Extending Identifier Length in the Language

Currently, identifiers (names of variables) in TalkMaths are limited to single characters.

While extending the length of identifier names in the language definition is no great

challenge, complications arise for the speech recognition phase. In order to pass valid

lexemes to the parser, a limited vocabulary for the ASR needs to be set up to filter out

unwanted homophones or cases of poor speech recognition. This may be implemented

using a utility such as Vocola1 (that has been successfully used in the past to specify

the restricted vocabulary used by TalkMaths (Attanayake, 2014)). For identifiers other

than single characters to be used, not only does the dictation style of these need to be

considered (see for example Begel (2005)) but also an appropriate mechanism needs to

be developed to add the relevant words to the ASR vocabulary, along with the form

in which they are to be passed to the parser. (Symbol or translation tables are not

considered here – if the ASR interface can be relied upon to pass on strings that will

be recognised as identifiers then no further work is necessary.)

6.4 Operator Precedence of Programming

Constructs

An obvious question that arises here is what precedence should be given to constructs

with which operator precedence is not normally associated, for example loops. Because

the templates described by Attanayake (2014) are being used to represent distfix oper-

ators, constructs in the language may be divided into those used in expressions (as in

our mathematical language) and those associated with control flow, such as statement

lists, loops or conditionals. As templates (which in the current parser implementation

may only represent closed distfix operators) are in effect bracketting constructs, they

do not feature in the operator precedence table, so do not need to be considered here.

Any control flow language construct modelled by a “true” operator will require an

entry in the OP table, giving rise to the question of what precedence and associativity

they should have.2 These constructs are to be treated by the parser in the same way

as templates, so given that their precedence is to impose a bracketting structure on

the content, it must be lower than “normal” operators. In the simplest case, if all such

operators can be treated as having left associativity, program control flow constructs

1See vocola.net web site for more information.

2Constructs for expressions will be treated in the usual way, having an entry in the OP table.
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could be modelled as belonging to a single precedence class m, with m l n for any

other precedence class n, and mmm.

6.5 Flat Representation of Lists

As mentioned by Wagner and Graham (1998), a drawback of using OP grammar to

model languages that contain frequent sequences (specifically statements in the context

of a programming language) is that such sequences are represented by deep one-sided

subtrees rather than flat structures. For example, as illustrated in Figure 6.1, the

sequence of statements i := 1; j:= 1; k := 1; l := 1 would be represented by a

tree of height 4, while its equivalent flat representation would require a height of only

2.

;

;

;

:=

i 1

:=

j 1

:=

k 1

:=

l 1

(a) Representation using semicolon as operator

:=

i 1

:=

j 1

:=

k 1

:=

l 1

flat template

(b) Equivalent flat representation

Figure 6.1: Alternative representations of a statement list

A possible optimisation may be to set up an additional type of template in the language

definition, which specified at least one operand, with two or more operands being

separated by instances of a specific delimiter. The language description would have to

provide start and end delimiters, along with a separator delimiter, as a replacement

for the two productions currently in the underlying grammar (one bracketing distfix
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operator to represent the main structure, plus one binary operator to separate the

elements within the structure). Although that would work for many cases, a more

elegant solution could be provided if the parsers permitted open mixfix operators to

be used, where the optimisation would be provided by a multi-ary (taking a variable

number of operands) operator to separate the items in the list. It is not clear at this

stage, whether either of these optimisations would improve performance to the extent

that the optimisation should be implemented in the batch and incremental parsers.

6.6 Removing the Unique Lexeme Restriction

By far the most challenging issue is the fact that the operator precedence parsing algo-

rithm designed by Attanayake (2014) requires all lexemes in templates to be unique.

For example, even if the two forms of integral were defined with different closing delim-

iters “end definite integral” and “end indefinite integral”, they would share internal

delimiter “with respect to”. The definite integral would also share an internal delim-

iter “to” with a summation template. One could argue that the language should be

designed to avoid such “clashes” by replacing phrase “from a to b” with some limit

definition template, and phrase “expression with respect to variable” with an integral

body template, but this would result in the definite integral template being of the

form “integral from 〈limit− definition〉〈integral − body〉 end definite integral”,

thus violating the requirements of an operator grammar.3 Expecting the user to insert

extra words into their dictation in order to make every lexeme unique would also not be

acceptable, because of both the extra cognitive load and greatly increased “wordiness”

of the dictation.

One solution would be to follow the example of Aasa (1995) by requiring the lexer to

differentiate between such lexemes (for example, determine whether a “to” belongs to

a sum, an integral, or some other construct), generating tokens that are unique to each

template or operator. This would work perfectly for a batch parser, but complicate

matters in the incremental parsing stage, as is illustrated by the following example.

3The original TalkMaths (Attanayake, 2014) language definition did not include such problematic

templates.
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6.6.1 Example: Changing the Nature of a For Loop

Suppose templates have been set up for two types of for loop4. The first one could

correspond to a loop with header of form “for item in list do . . . end for” and

have token sequence (iterate over, iterate in, iterate do, iterate end). The

second could represent a counted loop with header of form “loop for counter from

initial-value to end-value . . . end for” and have token sequence (for loop, for -

from, for to, for do, for end).

Suppose, then, that the user has dictated some code along the lines of,

“for aWord in myList do . . . end for”

and wants to change this to

“for i from 1 to length(myList) do . . . end for”.

The sequence of editing actions would consist of splitting the corresponding tree some-

where around the “do” currently represented by token iterate do (let us, for argu-

ment’s sake, say it was split after the “do”), replacing the tree fragment for

“for aWord in myList do”

to

“for i from 1 to length(myList) do”

and then merging the trees back together. The result would effectively be a bad match,

with the tree for the loop body being headed by a node containing just iterate end,

and appearing subordinate to the node now identified as a for loop composite node.

The incremental parser needs to recognise the end for working as an end delimiter for

both loop varieties.

One could argue that if the split were made before the “do”, the problem would be

averted by the loop body being enclosed by lexemes do and end for, which would

not change, but although the lexemes have remained the same, their tokens stem from

different templates. The bad match would remain, because the original iterate do

and iterate end would not match the new for loop, for from and for to at

the beginning of the loop header.

4This example does not represent a specific language – just one that that has two varieties of this

kind of loop.
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6.6.2 Avoiding Unnecessary Bad Matches

Unless a structured editor is to be used to change the nature of a composite node, an

alternative way needs to be found to resolve this issue.

Assuming the token stream has been preserved or recreated, one approach would involve

using an incremental lexer (as suggested by Aasa (1995)), but considering the potential

distance (in the token stream) between the part of the composite node being changed

and the rest of the lexemes representing its delimiters, this would be costly in terms of

performance.

The preference here would be to permit a given token to be used by multiple mixfix

operators, and for the parser to resolve the intrinsic ambiguity. Modifications to the

batch OP parser are beyond the scope of this project; here the focus is on how the

incremental parser could cope with the change.

6.6.3 Combining Composite Nodes where Unique Lexemes

are not Required

This section gives an outline of modifications required to the incremental parsing algo-

rithm in order to be able to drop the unique lexeme restriction.

The scenarios under which composite nodes may be combined (or not) are as follows.

No fit: Left and right nodes are from different templates and no template exists

containing the concatenation of their delimiters in the same order. One node

is placed subordinate to the other, as is currently done.

Perfect fit: Left node has delimiters l1, l2, . . . , lm, right node has delimiters r1, r2, . . . , rn

and there exists a template with complete delimiter list l1, l2, . . . , lm, r1, r2, . . . , rn.

This includes the familiar case of both nodes belonging to the same template.

Fit with missing delimiters: As for perfect fit, but not all delimiters are present,

either in the left node or right node or both. It is not possible to know how

large any gaps are, but some template exists containing the concatenation of

their extant delimiters, in the same order (though not necessarily consecutive).

A new composite node may be formed, using the position of the delimiters in

this template as reference. In the case of the node sequence matching more than

one template, some decision will have to be made on which template to choose
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– if the nodes do not both belong to the same template, then perhaps choose

one of the template identifiers from the nodes being joined, or alternatively, the

template that most closely fits the extant nodes, based on some edit distance

measure for the joined node delimiters and the candidate templates.

Same templates with overlap: Both nodes currently belong to the same template,

but left and right nodes have delimiters d1, d2, . . . , dk and dj, dj+1, . . . , dn respec-

tively for some j ≤ k.

Different originating templates that fit: This is the scenario that is needed to

permit the user to change, for example, using our mathematical definition language

example, a definite integral to an indefinite integral when these different struc-

tures are permitted to be described having at the end just “end integral”.

Note, if both composite nodes have the same template currently associated with them,

one could argue that an implementation could optimise the above categorisation by

assuming a fit, behaving in the same way as the current algorithm.

As far as implementation is concerned, identification of subsequences of templates is

non-trivial, because each delimiter may be represented by a number of different lexemes.

(This would constitute another reason to follow the example of Begel (2005) in using

a single “official” form for each token.) Assuming a mapping from multiple lexemes to

a single token, an algorithm to identify the template for a combined node will work as

follows.

• The language definition can be used to identify a list of templates associated with

each token. This list would best be generated during batch parser initialisation (so

it can be used by the batch parser to maximise efficiency), and remain available

to the incremental parser.

• Identify first-cut possible templates from a union of sets of possible templates

(using the list created at initialisation) for all tokens in a candidate combined

node. For example, if the tokens in the candidate combined mode were for, in

and of, the set of possible templates would consist of all templates that contain

token for, token in or token of.

• Discard those templates for which the token sequence is not a subsequence of the

template’s delimiters.
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• If more than one candidate is left, choose a template from one of the original

nodes (if either is in the resulting set), or choose the template that minimises

missing lexemes. If still more than one choice remains, then some other way of

choosing a template would have to be employed.

6.6.4 Avoiding Overlaps

Another fact to be noted is that delimiters’ lexemes do not necessarily consist of a

single word. This raises the possibility that the concatenation of the words in two

different delimiters might form a third delimiter. While it can be expected that if the

word sequence is contained in an utterance it would probably be interpreted as the

third delimiter (and so no conflict would arise), the question arises of whether a user

would expect to be able to fit two fragments together with, for example, single word

delimiters at the boundaries, and expect a new delimiter to be formed. A (somewhat

artificial) illustration could be fragments “r all s” and “x over y” having the “s”

and “x” removed and then joined together to make “r all over y”, where “all over”

appears as a single delimiter in some other template. Such an issue would be more

likely to happen if using a spoken language editor pane; while it may be worth adopting

an approach such as that described by Barenghi et al. (2015) (perhaps trying alternate

versions of the incremental parse and choosing the one that produces the best composite

node fit), the low frequency of edits like these may not warrant the effort.

6.7 Conclusion

This chapter develops extensions that can be applied to both the batch parser developed

by Attanayake (2014) and the incremental parser described in Chapter 4, in order to

handle a programming language or other structured content. This can provide an

environment in which meaningfully formatted display of such content can be updated

rapidly in response to spoken editing commands. The main idea is to describe how the

algorithm needs to be changed to handle programming languages. These modifications

could also improve the usability of the spoken mathematics language when applied to

TalkMaths.

While not implemented in the scope of this thesis, they would not present any major

problems apart form the challenge of integrating them with state-of-the-art proprietary

ASR software.



Chapter 7

Conclusions and Further Work

7.1 Thesis Summary

In summary, this thesis has contributed to the field of HCI and incremental parsing

algorithms as follows. It has identified principles to follow when designing speech

controlled editors for structured content, extended an incremental parsing algorithm to

facilitate one of these principles, and described modifications required to that algorithm

for it to be applied to typical programming languages.

Having compiled a list of INUI design principles in Chapter 2, speed of update was

identified as an important factor in providing a more natural style of interaction for

speech controlled editing of structured content. To facilitate this, in Chapter 4 the

incremental OP parsing algorithm of Heeman (1990) was improved in terms of effi-

ciency and correctness, and extended to handle the distfix operators developed by

Attanayake (2014) for modelling mathematical expressions using an OP grammar. The

chapter finished by finding that the time complexities of splitting and concatenating

expressions using the incremental parsing algorithms are better than using the batch

parser equivalents. Chapter 5 described the implementation of this algorithm as part of

the TalkMaths parser (that as part of this project was improved to give faster response

times), and in experimental tests found the incremental parser to perform significantly

better in terms of execution times than reparsing the entire content in response to

editing actions.

The application of both the batch (Attanayake, 2014) and incremental parsers to

program code was investigated, with the conclusion that use of these is feasible with

the following modifications described in Chapter 6.

90
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• The restriction that no tokens should appear in more than one distfix operator

should be lifted.

• The identification of composite nodes that may be combined should no longer be

restricted to those that represented the same distfix operator at creation time;

instead, their individual token sequences should be assessed after which they may

be combined or staggered as appropriate.

• A mechanism needs to be set up that permits identifiers longer than a single

character to be passed to the batch parser. This would be the responsibility of

the interface between the ASR software and TalkMaths.

7.2 Review of Aim and Objectives

The aim of the project was to contribute to research on facilitating speech control of

editors of structured content such as mathematics or computer program code. This

has been achieved through the following.

• Based on a literature review of natural user interfaces and intuitive interfaces,

a list of general INUI design principles was compiled, which along with issues

specific to spoken mathematics, informed a set of guidelines to follow when

designing a front end for a system such as TalkMaths. This paves the way for

usability research to test the effectiveness of such a user interface.

• An incremental parsing algorithm was designed that acts on abstract syntax trees

representing expressions built using an OP parser and modelling operators with

more than one operand using the constructs designed by Attanayake (2014). This

was implemented to work with Attanayake’s batch parser, tested for correctness,

and compared with this batch parser in terms of response time for handling

changes to mathematical expressions.

• The modifications necessary for the parsers to be used for computer program code

as well as mathematical expressions were identified, and a high-level design for

the required modifications to the incremental parsing algorithm were provided.
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7.3 Limitations and Reflections on Thesis

The HCI aspect of this thesis focussed on speech for input and visual output. It would

be of interest to explore how INUI principles could be applied to speech output, and

how this could be combined with speech input in the speech-controlled editor context.

The question of whether it is appropriate to continue modelling lists using binary sepa-

rator operators was left open, as it has not been determined whether implementation of

operators that take a variable number of operands would in fact improve performance

of such a system.

Although the incremental OP parser developed in this thesis was compared with its

batch equivalent in the context of mathematical expressions, a type of material that is

readily represented using an OP language, it is not known how well it would perform in

comparison with a more traditional incremental parser when applied to an environment

in which speech control is used to edit computer program code, such as that developed

by Begel (2005).

7.4 Suggestions for Further Work

The following are envisaged as next steps for the TalkMaths research programme.

• Design, implement and evaluate a front-end for TalkMaths that adheres to the

INUI principles for speech editors, and which makes use of both the batch and

incremental parsing facilities. This may then be tested for usability.

• Modify the batch and incremental parsers as described in this thesis to enable

them to be applied to programming languages, along with a simple speech-

controlled interface that will permit multiple character variables.

• Describe a spoken version of an existing programming language in the language

definition used by the parsers and investigate the issues involved in using this

architecture to create and edit computer program code.

The results of this study may then be used to guide production of a version of TalkMaths

that may be used as a practical program code editor, to the benefit of users whose

circumstances dictate that they may not be able to use keyboard and mouse to write

computer program code.
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Appendix A

Twiddle Operations

All operations, including the original LEFT-SUBORDINATE and RIGHT-SUBORDINATE

developed by LaLonde and des Rivieres (1981)1, are shown in Figures A.1 to A.7.

�

• c

a b

l

(a) Before RIGHT-SUBORDINATE

•

a �

b c

l

(b) After RIGHT-SUBORDINATE

Figure A.1: RIGHT-SUBORDINATE tree transformation (LaLonde and des Rivieres,
1981) a • b� c, where �m •, also known as twiddleleft (Kaiser and Kant, 1985)

There are two cases where a twiddle can not be used to correct violation of operator

precedence. The only way of rearranging the tree in Figure A.8a so that operator

precedence is preserved would change the expression to a � b •, with • applying to

the entire expression rather than just a. In Figure A.8b, rearrangement would have a

similar effect, with the expression being changed to • a� b.

1This is to save the reader the trouble of having to obtain a copy of the LaLonde and des Rivieres

(1981) paper, which is not available electronically.
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�

a •

b c

m

(a) Before LEFT-SUBORDINATE

•

� c

a b

m

(b) After LEFT-SUBORDINATE

Figure A.2: LEFT-SUBORDINATE tree transformation (LaLonde and des Rivieres, 1981)
a� b • c, where �m •, also known as twiddleright (Kaiser and Kant, 1985)

�

•

a b

m

(a) Before twiddlePrefixLeft

•

�

a

b

m

(b) After twiddlePrefixLeft

Figure A.3: twiddlePrefixLeft tree transformation for representation of �a • b where �
is a prefix operator, • is binary, and �m •

�

•

a b

m

(a) Before twiddlePostfixRight

•

a �

b

l

(b) After twiddlePostfixRight

Figure A.4: twiddlePostfixRight tree transformation for representation of a • b� where
� is a postfix operator, • is binary, and �m •
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�

•

a

b

l

(a) Before twiddleLeftPrefix

•

�

a b

l

(b) After twiddleLeftPrefix

Figure A.5: twiddleLeftPrefix tree transformation for representation of •a� b where •
is a prefix operator, � is binary, and �m •

�

a •

b

m

(a) Before twiddleRightPostfix

•

�

a b

l

(b) After twiddleRightPostfix

Figure A.6: twiddleRightPostfix tree transformation for representation of a� b• where
• is a postfix operator, � is binary, and �m •

�

•

a

m

(a) Before twiddleUnaries

•

�

a

l

(b) After twiddleUnaries

Figure A.7: twiddleUnaries tree transformation for representation of �a• where • is a
postfix operator, � is prefix (or • is prefix and � postfix), and �m •
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�

•

a

b

l

(a) a • �b, • postfix

�

a •

b

m

(b) a� •b, • prefix

Figure A.8: Situations where a twiddle cannot be made without changing the intended
meaning, where �m •



Appendix B

Fragments of opmerge Algorithm

Note, where reference is made to whether or not a node has a child, this refers to a

non-empty child.

Algorithm 6 Fragment of opmerge: cLPrefix cRPrefix

1: if cL has a child then
2: push (cL, 1) onto P
3: set cL to decoupled child of cL
4: else
5: if cR l cL then
6: cR should go under cL but deal with potential OP violation
7: else
8: place cR under cL
9: end if

10: set workingDown to false, s to cL
11: end if
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Algorithm 7 Fragment of opmerge: cLPrefix cRPostfix

1: if cR m cL then
2: if cL has a child then
3: push (cL, 1) onto P
4: set cL to decoupled child of cL
5: else
6: place cR under cL
7: set workingDown to false, s to cL
8: end if
9: else

10: if cR has a child then
11: push (cR, 1) onto P
12: set cR to decoupled child of cR
13: else
14: place cL under cR
15: set workingDown to false, s to cR
16: end if
17: end if

Algorithm 8 Fragment of opmerge: cLPrefix cRBinary

1: if cR m cL then
2: if cL has a child then
3: push (cL, 1) onto P
4: set cL to decoupled child of cL
5: else
6: place cR under cL
7: set workingDown to false, s to cL
8: end if
9: else

10: if cR has a left-hand child then
11: push (cR, 1) onto P
12: set cR to decoupled left-hand child of cR
13: else
14: make cL the left-hand child of cR
15: set workingDown to false, s to cR
16: end if
17: end if
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Algorithm 9 Fragment of opmerge: cLPrefix cROther

1: if cL has a child then
2: if cR has a child then
3: push (cL, 1) onto P
4: set cL to decoupled child of cL
5: else
6: set workingDown to false, s to cL
7: end if
8: else
9: place cR under cL

10: set workingDown to false, s to cL
11: end if

Algorithm 10 Fragment of opmerge: cLPostfix cROther

1: set workingDown to false
2: if cR is empty then
3: set s to cL
4: else
5: set s to a tree with default operator as root and children cL and cR
6: end if

Algorithm 11 Fragment of opmerge: cLPostfix cRPostfix

1: set workingDown to false
2: if cR has a child then
3: create a tree j with default operator as root and cL as its left-hand child
4: if cRl default operator then
5: remove the child of cR and make it the right-hand child of j
6: make j the child of cR
7: set s to cR
8: else
9: place cR under j as right-hand child

10: set s to j
11: end if
12: else
13: if cL l cR then
14: cL should go under cR but deal with potential OP violation
15: else
16: place cL under cR
17: end if
18: set s to cR
19: end if
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Algorithm 12 Fragment of opmerge: cLPostfix cRBinary

1: if cR has a left-hand child then
2: push (cR, 1) onto P
3: set cR to decoupled left-hand child of cR
4: else
5: place cL under cR as left-hand child
6: set workingDown to false, s to cR
7: end if

Algorithm 13 Fragment of opmerge: cLBinary cRPostfix

1: if cL l cR then
2: if cL has a right-hand child then
3: push (cL, 2) onto P
4: set cL to decoupled right-hand child of cL
5: else
6: place cR under cL as right-hand child
7: set workingDown to false, s to cL
8: end if
9: else

10: if cR has a child then
11: push (cR, 1) onto P
12: set cR to the decoupled child of cR
13: else
14: place cL under cR
15: set workingDown to false, s to cR
16: end if
17: end if

Algorithm 14 Fragment of opmerge: cLBinary cRBinary – the case dealt with by
Heeman (1990)

1: if cL l cR then
2: if cL has a right-hand child then
3: push (cL, 2) onto P
4: st cL to decoupled right-hand child of cL
5: else
6: place cR under cL as right-hand child
7: set workingDown to false, s to cL
8: end if
9: else

10: if cR has a left-hand child then
11: push (cR, 1) onto P
12: set cR to the decoupled left-hand child of cR
13: else
14: place cL under cR as left-hand child
15: set workingDown to false, s to cR
16: end if
17: end if
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Algorithm 15 Fragment of opmerge: cLOther cRPostfix

1: if cR has a child then
2: push (cR, 1) onto P
3: set cR to the decoupled child of cR
4: else
5: place cL under cR
6: set workingDown to false, s to cR
7: end if

Algorithm 16 Fragment of opmerge: cLOther cRBinary

1: if cR has a left-hand child then
2: push (cR, 1) onto P
3: set cR to the decoupled left-hand child of cR
4: else
5: place cL under cR as left-hand child
6: set workingDown to false, s to cR
7: end if
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Sample Data Used for Evaluation

Expression as string Represents

x = 4(n+1) squared - 3 x = 4(n+ 1)2 − 3

(sine (x) end sine + 1) squared greater or

equal 0

(sin (x) + 1)2 ≥ 0

cosine x end cosine squared + sine x end sine

squared equals 1

cosx2 + sinx2 = 1

g(f(A)) = fraction A to the power of 6 over

3ˆ4

g(f(A)) = A6

34

2 cosine (2x) end cosine + 2 = 2 cos (2x) + 2 =

4 - 5 x squared - 6 x cubed = (x squared +

2) squared

4− 5x2 − 6x3 = (x2 + 2)2

fraction 10 times 9 times 8 times 7 over 9

times 6 factorial

10×9×8×7
9×6!

k cubed less than k cubed + 2 k squared +

2k + 1 is less than (k+1) cubed

k3 < k3 + 2k2 + 2k + 1 < (k + 1)3
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Expression as string Represents

2k squared + 2k + 1 = 3k squared + 3k + 1 2k2 + 2k + 1 = 3k2 + 3k + 1

1 / 320 is less than absolute value f(x) - g(x)

end absolute value = 1 / 100 less than or

equal to 1/100

1/320 < |f(x)− g(x)| = 1/100 ≤ 1/100

absolute value f(x) - g(x) end absolute value

= absolute value x - (x + fraction sine (f xˆ2)

end sine over 400 end fraction) end absolute

value = absolute value fraction sine (f xˆ2)

end sine over 400 end fraction end absolute

value less than or equal to 1/400 less than or

equal to 1/320

|f(x) − g(x)| = |x − (x + sin (fx2)
400

)| =

| sin (fx2)
400
| ≤ 1/400 ≤ 1/320

g(x) = 1 + integral from 0 to x of f(t) dt end

integral = 1 + integral from 0 to x of (1 + t

+ t squared / 3 + t cubed / 6) dt

g(x) = 1 +
x∫
0

f(t)dt = 1 +

x∫
0

(1 + t+ t2/3 + t3/6)dt

= 1 + [t + t squared / 2 + t cubed / 6 +

tˆ4 / 24] superscript x subscript 0

= 1 + [t+ t2/2 + t3/6 + t4/24]x0

h(x) - f(x) = g(x) - f(x) + h(x) - g(x) h(x)− f(x) = g(x)− f(x) +h(x)− g(x)

= g(x) - f(x) + (1 + integral from 0 to x of

h(t) dt end integral ) - (1 + integral from 0

to x of f(t) dt end integral)

= g(x) − f(x) + (1 +
x∫
0

h(t)dt) − (1 +

x∫
0

f(t)dt)

= g(x) - f(x) + integral from 0 to x of (h(t)

- f(t)) dt

= g(x)− f(x) +
x∫
0

(h(t)− f(t))dt
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Expression as string Represents

integral from 0 to x (h(t) - f(t))dt end integral

less than or equal x(h(x sub 0) - f(x sub 0)

less than or equal to 1/2 (h(x sub 0) - f(x sub

0))

x(h(t)−f(t))dt∫
0

≤ x(h(x0) − f(x0) ≤

1/2(h(x0)− f(x0))

L(A) = fraction 2 pi - (pi / 2 - 1) - pi / 2

over 2 pi end fraction

L(A) = 2pi−(pi/2−1)−pi/2
2pi

= fraction greek pi + 1 over 2 greek pi = π+1
2π

alpha plus bravo a+ b

delta multiplied by 2 d× 2

{e times (c + (a , + b) ˆ d] + f {e× (c+ (a,+b)d] + f

a + b + c times d times e a+ b+ c× d× e

not fraction a + b over c times d end fraction ¬a+b
c×d

sum of cosine of greek theta end cosine end

sum factorial

∑
cos θ!

{e times (c + (a + b) ˆ d] + f {e× (c+ (a+ b)d] + f

hˆg times v ) end fraction
hg×v)

hˆg v end fraction
hgv

alpha squared plus bravo squared equals

charlie squared

a2 + b2 = c2

log xy = log x + log y lnxy = lnx+ ln y
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Expression as string Represents

fraction df over dt end fraction = limit as h

tends to 0 end limit fraction f(t+h)-f(t) over

h

df
dt

= limh→0
f(t+h)−f(t)

h

f = G times fraction m subscript 1 m

subscript 2 over r squared end fraction

f = G× m1m2

r2

india squared = -1 i2 = −1

V - E + F = 2 V − E + F = 2

capital greek phi open brackets x close

brackets = fraction 1 over square root of 2

greek pi greek rho end square root end frac-

tion e to the power of fraction (e - greek mu)

squared over 2 greek rho squared end fraction

Φ(x) = 1√
2πρ
e

(e−µ)2

2ρ2

fraction partial squared u over partial t

squared end fraction = charlie squared frac-

tion partial squared u over partial x squared

end fraction

∂2u
∂t2

= c2 ∂
2u
∂x2

f ( greek omega ) = integral from minus

infinity to infinity of foxtrot open brackets

x close brackets echo to the power of begin

minus 2 greek pi india x greek omega end dx

end integral

f(ω) =
∞∫
−∞

f(x)e−2πixωdx

greek rho (fraction partial victor over partial

t end fraction plus v dot del v) = - nabla p

+ dell dot capital tango + f

ρ(∂v
∂t

+ v · ∇v) = −∇p+∇ · T + f



APPENDIX C. SAMPLE DATA USED FOR EVALUATION 115

Expression as string Represents

nabla dot capital echo equals fraction greek

rho over greek epsilon end fraction

∇ · E = ρ
ε

nabla dot H = 0 ∇ ·H = 0

nabla times E = minus fraction 1 over e end

fraction fraction partial H over partial t end

fraction

∇× E = −1
e
∂H
∂t

nabla times H = fraction 1 over e end fraction

fraction partial E over partial t end fraction

∇×H = 1
e
∂E
∂t

dS greater than or equal 0 dS ≥ 0

india hotel fraction partial over partial t end

fraction capital greek psi equals capital hotel

capital greek psi

ih ∂
∂t

Ψ = HΨ

H = sum of p(x) log p(x) H =
∑
p(x) ln p(x)

x sub begin t+1 end = kx sub t open brackets

1 - x subscript t )

xt+1 = kxt(1− xt)

fraction 1 over 2 end fraction greek sigma

squared capital sierra squared begin fraction

partial squared V over partial S squared end

fraction + rS begin fraction partial V over

partial S end fraction + begin fraction partial

V over partial t end fraction - rV = 0

1
2
σ2S2 ∂2V

∂S2 + rS ∂V
∂S

+ ∂V
∂t
− rV = 0
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Evaluation Results

The following table shows run times for all three scenarios by repetition (sample)

number.

Mean run time (milliseconds, 2dp)

Sample Scenario

1 batch

Scenario

1 incre-

mental

Scenario

2 batch

Scenario

2 incre-

mental

Scenario

3 batch

(left)

Scenario

3 batch

(right)

Scenario

3 incre-

mental

1 638.97 319.81 412.78 50.38 330.65 334.47 0.12

2 875.30 441.00 577.89 64.11 439.79 438.95 0.12

3 873.46 440.28 576.11 63.87 437.82 436.50 0.12

4 872.75 439.86 573.29 63.50 437.71 436.42 0.12

5 873.55 440.10 573.15 63.43 438.04 436.40 0.12

6 873.07 440.00 573.21 63.44 437.94 436.43 0.12

7 872.77 439.89 573.11 63.45 437.83 436.53 0.11

8 872.85 440.07 573.22 63.47 437.95 436.53 0.12

9 872.74 439.73 573.29 63.44 438.00 436.56 0.11

10 873.37 440.32 573.17 63.47 437.98 436.58 0.11
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Mean run time (milliseconds, 2dp)

Sample Scenario

1 batch

Scenario

1 incre-

mental

Scenario

2 batch

Scenario

2 incre-

mental

Scenario

3 batch

(left)

Scenario

3 batch

(right)

Scenario

3 incre-

mental

11 873.17 439.92 573.27 63.44 438.04 437.05 0.11

12 873.26 440.10 573.30 63.45 437.81 436.53 0.12

13 873.17 440.10 573.03 63.45 437.97 436.67 0.12

14 873.08 439.84 573.40 63.52 437.56 436.32 0.12

15 873.53 440.23 573.12 63.43 437.97 436.63 0.12

16 873.35 440.25 573.75 63.45 438.09 436.97 0.12

17 873.01 440.07 573.17 63.41 437.97 436.64 0.11

18 876.54 441.84 573.19 63.42 437.96 436.54 0.12

19 875.50 441.18 573.23 63.43 437.82 436.49 0.11

20 875.51 441.30 573.23 63.41 438.22 436.76 0.11

21 875.91 441.20 573.32 63.44 437.86 436.53 0.11

22 875.67 441.33 573.28 63.42 437.92 436.90 0.12

23 875.23 441.08 573.19 63.41 437.73 436.38 0.12

24 875.34 441.13 573.40 63.45 437.89 436.61 0.12

25 875.57 441.33 573.23 63.44 438.00 436.58 0.12

26 875.62 441.24 573.57 63.46 438.05 436.57 0.12

27 875.31 440.99 573.38 63.44 437.92 436.66 0.11
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