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ABSTRACT 

Accurate background/foreground segmentation is a 

preliminary process essential to most visual surveillance 

applications. With the increasing use of freely moving 

cameras, strategies have been proposed to refine initial 

segmentation. In this paper, it is proposed to exploit the 

Vide-omics paradigm, and Profile Hidden Markov Models 

in particular, to create a new type of object descriptors 

relying on spatiotemporal information. Performance of the 

proposed methodology has been evaluated using a standard 

dataset of videos captured by moving cameras. Results show 

that usage of the proposed object descriptors allows better 

foreground extraction than standard approaches. 

Index Terms— Computer vision, Visual Surveillance, 

Foreground detection, Freely Moving Cameras, Vide-omics 

1. INTRODUCTION

Visual surveillance often relies on a preliminary process 

which aims at extracting foreground objects from a video. 

Then, higher level computer vision tasks can be performed 

such as object recognition, pedestrian tracking or human 

action recognition. Accurate background/foreground 

segmentation requires tackling real life conditions including 

illumination changes, presence of shadows, image noise and 

camera jitter. Hundreds of solutions have already been 

offered for scenarios involving static cameras [5]; however, 

with the widespread use of action and smartphone cameras, 

approaches are particularly needed to deal with freely 

moving cameras. Due to the complexity of the task, 

foreground object modelling has been developed as a 

strategy to refine initial foreground extraction [18]. 

In order to address some of the challenges encountered 

by visual surveillance systems, including camera motion, a 

novel video analysis paradigm, ‘vide-omics’, has recently 

been proposed [14]. Inspired by the principles of genomics, 

this paradigm interprets videos as sets of temporal 

measurements of a scene in constant evolution without 

setting any constraint in terms of camera motion, object 

behaviour or scene structure. This puts variability at the core 

of every algorithm where the interpretation of scene 

mutations corresponds to video analysis. 

Motivated by the potential of ‘vide-omics’ and its 

background/foreground segmentation implementation, it is 

proposed to enhance initial foreground extraction by 

generating foreground models using probabilistic models 

called Profile Hidden Markov Models (P-HMMs), which 

have proved extremely successful to annotate unknown 

biosequences, i.e. DNA, RNA or protein sequences [10]. 

Foreground extraction refinement methods. 

Foreground enhancement methods usually rely upon 

building foreground/background appearance models at a 

frame or video level which are then used to label pixels in a 

region of interest. Frame level methods address foreground 

refinement as an image segmentation problem, where seeds, 

often selected interactively, are exploited to either grow 

regions or initialise some graph-based energy minimisation 

techniques. GrowCut uses cellular automata to simulate the 

biological process of bacteria growth [22]. Growth occurs in 

predefined regions where pixels are labelled according to 

their neighbours’ values. Consequently, performance relies 

on accurate seed pixel labelling. To address this, [16] 

propagates initial labelling through regions with colour 

homogeneity estimated using [2]. Since initial labelling is 

sparse, long-distance label propagation may become 

challenging, thus, different sets of homogeneous regions are 

calculated, from coarse to fine, to allow labelling to 

propagate spatially and intra-level from finer to coarser 

levels. However, such propagation has limitations when 

dealing with small regions with insufficient annotations. 

Alternatively, graph-based methods operate on pixel 

networks or cliques where an energy function is minimised 

by rewarding labels matching an appearance model and 

encouraging similar labelling among neighbouring pixels. 

Markov Random Fields (MRFs) are exploited where an 

energy function is minimised using graph cuts [6]. However, 

since inference for a pixel in MRF depends on estimating 

the underlying distribution of cliques, modelling arbitrary 

pixel dependencies is difficult. This is addressed using 

Conditional Random Fields (CRFs). Since they do not rely 

on any underlying pixel distribution, any pixel dependency 

can be modelled, allowing more efficient image 

segmentation. Using fully-connected CRFs, all possible 

pairwise pixel dependencies in an image are considered 

[15]. A limitation of frame-based methods is that moving 

objects which are initially static are not identified as 

foreground. To deal with this, video-based methods were 

proposed taking advantage of information at video level. 

[17] extends the approach proposed by [16] by exploiting

appearance models estimated using Gaussian Mixture
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Models to propagate iteratively labels both in spatial and 

temporal neighbourhoods. Although producing better 

performance, interacting objects remain challenging. 

Moreover, foreground labelling may leak to background 

regions. To overcome these issues, [21] introduces a deep 

learning approach for learning a single generic appearance 

model or visual-memory module. It is represented by a 

Convolutional Gate Recurrent Unit [4], trained over a set of 

videos using a combination of features, i.e. high level scene 

representations [8] and motion likelihood maps. Enhanced 

foreground segmentation for a given frame is retrieved by 

parsing those features through the appearance model. 

Despite improved performance, this method cannot handle 

long video sequences due to encoding capacity of the visual-

memory module.  

Models for biosequence families. Similarly to the 

problem of identifying an object from some appearance 

model, one of the most important applications in genomics 

is the annotation of biosequences by comparing them to 

sequences of known functions. While there are efficient 

tools such as Blast [1] which offers fast database search by 

first finding identical fragments between two sequences and 

then extending them iteratively by allowing a variety of 

mutations maximising a similarity score, those tools lack 

sensitivity. A more powerful approach is to build sequence 

family models which are able to represent the diversity 

encountered within a family. HMMER is a database search 

method based on P-HMMs [9]. They produce sequence 

family profiles by identifying correspondences between the 

characters of all sequences of a given family. Then, each 

profile is used to define both the structure and the 

parameters of an HMM aiming at sequence alignment. 

HMMER outperforms Blast in terms of sensitivity, however 

at the cost of increased processing time. Since then, new 

versions of HMMER have been released using an 

acceleration pipeline which reduces the sequence search 

space [11]: while maintaining excellent sensitivity, speed 

dramatically improved and is now comparable to Blast’s.  

In this work, it is proposed to generate appearance 

models at video-level. Treating foreground information as 

pixel sequences and employing bioinformatics-based 

techniques allows not only the creation of rich spatio-

temporal appearance models as well as the use of well-

established techniques for sequence annotation. 

 

2. METHODOLOGY 

 

Using a foreground extraction approach tuned to produce a 

low rate of false positives (FP), the aim of a refinement 

algorithm is to increase the number of true positives while 

maintaining the FP number low. The proposed methodology 

is illustrated in Fig. 1. Following the ‘vide-omics’ paradigm, 

where images are processed at the scanline level, the initial 

foreground is divided into horizontal segments. They are 

then clustered to produce a set of models (P-HMM) 

representing different objects or object elements. Note that, 

in the rest of this paper, without loss of generality, the word 

‘object’ is used instead of ‘object or object element’. 

Finally, those models are applied to scan regions of interest 

in order to detect additional foreground segments.  

 
Fig. 1. Description of segmentation pipeline. 

 

2.1. Profile hidden Markov models 

 

In genomics, phylogenetic trees allow deducing 

evolutionary relationships among various biosequences 

which are assumed to descend from a common ancestor. 

They also make possible to infer the sequence of that 

common ancestor. By using it as a reference, all existing 

correspondences between characters from the different 

biosequences can be represented in a multiple alignment, 

highlighting the mutations that the common ancestor’s 

sequence has undergone to produce each of those 

biosequences. That multiple alignment can be used to 

produce a statistical profile modelling the biosequence 

family. In visual surveillance, the picture of an object 

captured on a given frame can be interpreted as the product 

of mutations applied to a canonical object, its common 

ancestor. As a consequence, building a phylogenetic tree of 

all available object pictures would allow the generation of a 

model of that object family. 

It is proposed to adapt the process suggested by [9] to 

generate P-HMMs to represent those object families. First, 

all foreground segments are clustered using sequence 

pairwise similarity scores to identify consistent groups of 

foreground segments. Each of them is used to generate 

object models. Note that a given object can be represented 

by several models, which may, for example, encode 

different views/configuration of that object; also segments 

may not be allocated to any group. The multiple alignment 

associated to each group corresponds to an object profile 

(Fig. 2), which provides the necessary information to 

generate the probability matrices associated to HMMs.  

   
(a) (b) (c) 

Fig. 2. Examples of object profiles. a) View of the moving 

individual in people1, b) denim jacket and c) leg profiles. 

Black pixels denote alignment gaps created by insertions. 



 

 
Fig. 3. P-HMM architecture [11], consisting of 5 match 

states. Diamonds, circles and squares represent the states of 

the HMM, while arrows indicate possible state transitions.  

 

As proposed in HMMER2 [9], the “Plan 7” profile 

HMM architecture is used (Fig. 3) to infer the hidden state 

path, π, that corresponds to the observed sequence, x. It 

consists of a finite set of states Q = {M, I, D, N, J, C, B, E, 

S, T}, a matrix of state transition probabilities and a matrix 

of emission probabilities for every match and insertion state. 

While match and insertion states (M, I), also known as 

emitting states, express the likelihood of a pixel to be 

aligned with that state, D states represent the deletion of a 

consensus state. Furthermore, special states are used to 

denote a) the start, S, or the termination, T, of π, b) the 

begin, B, and end, E, of a matching region with the profile, 

and c) non-aligned pixels with the P-HMM (N, J, C). The 

number of consensus or match states, the emission 

probabilities for each match or insertion state and the 

transition probabilities denoted with black arrows (Fig. 3) 

are defined by the profile, while the transition probabilities 

denoted with orange arrows are algorithm-dependent [10].  
 

2.2. Frame scanning 

 

Once P-HMMs are available, they are used to scan video 

frames to detect object segments. When scanning a given 

image scanline, the probability for each of its pixels to be 

aligned with an insertion or match state of a given profile is 

calculated. Consecutive pixels with high probability are 

segmented and further evaluated. Eventually, if a hit is 

confirmed, pixels aligned with match or insertion states of 

the P-HMM are classified as foreground pixels. 

In order to calculate the alignment probabilities for each 

pixel, posterior decoding is used because, unlike Viterbi, it 

allows the backward flow of information to influence the 

likelihood of each state at any position i [3]. First, each 

scanline, x, of length n is compared against each profile 

using the forward/backward algorithm [3] so that posterior 

probabilities, P(πi=k|x), are obtained for every pixel, i, and 

state, k. Forward probabilities, fk(i), encapsulate the total 

probability of observing the i first pixels of the sequence x 

being in state k. Similarly, backward probabilities, bk(i), 

capture the total probability of observing the n-i last pixels 

being in state k. Both forward and backward algorithms are 

based on dynamic programming where, for each state k, a 

matrix is filled. Each cell of the matrix can be calculated 

recursively using the formulas: 

 

𝑓𝑘(𝑖) =  𝑒𝑘(𝑥𝑖) ∑ 𝑓𝑙(𝑖 − 1)
𝑙

𝑎𝑙𝑘  (1) 

𝑏𝑘(𝑖) =  𝑒𝑘(𝑥𝑖+1) ∑ 𝑓𝑙(𝑖 + 1)
𝑙

𝑎𝑙𝑘  (2) 

 

where l, ek and alk are, respectively, a given state, the 

emission probability of state k, and the transition probability 

from state l to state k. 

Finally, after calculating p(x), i.e. the total probability 

of the observation sequence x, the posterior probabilities for 

each pixel i and state k are estimated as: 

 

𝑃(𝜋𝑖 =  𝑘|𝑥) =  
𝑓𝑘(𝑖)𝑏𝑘(𝑖)

𝑝(𝑥)
 (3) 

    

Once posterior probabilities are available for every pixel 

and state, scanlines are scanned to identify parts that match 

with the profile. Since a scanline may contain multiple 

regions matching a given profile, it is scanned sequentially 

to identify these regions. Once the beginning of a region is 

found, i.e. a pixel with match posterior probability above a 

threshold, t1, that region is extended until a pixel is found 

with an end posterior probability decreasing below another 

threshold, t2. In case pixels of a region are matched several 

times by a given profile, it is further examined using 

stochastic clustering to divide that region in non-

overlapping sub-regions [11]. Finally, each identified region 

whose forward score is positive is locally aligned with its 

matching profile: pixels corresponding to either match or 

insertion states are then labelled as foreground pixels.  

 

3. EXPERIMENTS 

 

3.1. Experimental setup 

 

The proposed method was evaluated on the Berkeley 

Motion Segmentation Dataset (BMS-26) [7], which is a 

widely used benchmark for motion segmentation. Similarly 

to [14], twelve videos with moving cameras were selected: 

people2, cars1-10 (PTZ motion) and marple10 (freely 

moving camera). The foreground outputs produced by the 

vide-omics inspired algorithm for foreground extraction [14] 

were used as reference, since that approach has a low false 

positive rate. The performance of the proposed foreground 

enhancement method was compared using the F1 score 

against the GrowCut algorithm (GC) [22], a variational 

method (Ochs) [16] and a CRF based method for image 

segmentation (CRF) [15]. 

In order to create the P-HMMs, the UPGMA algorithm 

was selected to produce the phylogenetic trees [20], where 

the inter-segment distances were calculated using pair-wise 

sequence alignment [14] and then normalised [12]. Note that 

to ensure foreground segments are discriminative enough, 

very short ones, i.e. shorter than 5% of a frame’s width, 

were not considered. Groups, the intra-group similarity of 

which were above 35% and had more than 16 members, 



were judged as being suitable to create P-HMMs. Finally, 

profiles with high gap frequency, i.e. above 50%, were 

rejected. For the tested videos, the number of profiles varied 

between 12 for car6 - 30 frames capturing a unique object 

with linear motion - and 275 for marple10 - 460 frames 

showing 3 objects with complex motions. 

During profile construction, the emission probability of 

a pixel i in the state k, 𝑒𝑘(𝑥𝑖), was modelled employing 

Kernel Density Estimation [19] using a multivariate 

Gaussian kernel K and a 3x3 bandwidth matrix, H.  

 

𝑒𝑘(𝑥𝑖) =  
2563

𝑛
∑|𝐻|−1/2𝐾 (𝐻−1/2 (𝑥𝑖 − 𝐶𝑗))

𝑛

𝑗=1

 (5) 

 

where C is an array containing the RGB pixel values of 

a match or insertion state, and n is the number of pixels in 

C. Diagonal elements of H are set to 1 as it is the integer 

maximising the F1 score within the range [1,10] in the 

people1 video [7].  

In order to reduce both scanning costs and the number 

of false positives, profiles were only applied to regions of 

interests at proximity of the initially extracted foreground. 

Regions of interests were defined for each frame as the 

initial foreground mask dilated by a disk structure element 

of size 1% of the frame’s width. During region 

identification, a value of 25% posterior probability is used 

for threshold t1 and a reduction of at least 10% of the 

posterior probability is set for t2. Those horizontal regions 

were locally aligned employing maximum expected 

accuracy (MEA) algorithm [13]. Eventually, foreground 

pixels identified by P-HMM search were added to the initial 

foreground mask. Finally, as in [14], some post-processing 

was applied: small regions (area lower than the square of 

1% of the frame’s width) were removed.  

 

3.2. Results 

 

 
Fig. 4. F1 scores calculated for all videos and methods. 

 

The proposed method has been evaluated using F1 scores on 

12 sequences and compared with 3 other refinement 

approaches (see Fig. 4). Since sequences have different 

numbers of ground truth frames, varying between 3 and 15, 

F1 scores are presented as means of both video and frame 

F1 scores (see Table 1). As expected, refinement methods 

generally outperform significantly (~+20%) the approach 

used as reference. Considering results on a video basis, both 

the proposed method and Ochs exhibit better performance 

(54.8%) than enhancements produced by either GC (53.7%) 

or CRF (52.9%). However, when performance is evaluated 

on a frame basis, the proposed method is significantly 

better, 59.1%, than all other approaches. Example of 

refinement by the proposed method is shown in Fig. 5. 

The very competitive results obtained with the proposed 

foreground enhancement method shows that appearance 

models built at a video level provide richer and more 

complete object representations. Furthermore, segment 

based models offers higher specificity. Finally, this work 

supports the value of the ‘vide-omics’ paradigm [14]. 

 

Table 1. F1 scores of foreground refinement methods. They 

are calculated as a mean of either video or frame F1 scores. 

 

 

Mean F1  

(video based) 

Mean F1  

(frame based) 

Reference 0.453 0.461 

Reference + Proposed 0.548 0.591 

Reference + GC  0.537 0.564 

Reference + Ochs 0.548 0.563 

Reference + CRF 0.529 0.409 

 

 
(a) (b) (c) (d) (e) 

 

Fig. 5. Example of foreground refinement by the proposed 

method for the video people1: a) frame, b) ground truth, c) 

initial, d) dilated mask and e) refined foregrounds. 

 

4. CONCLUSIONS 

 

This paper introduces a new method to enhance foreground 

object detection by exploiting the Vide-omics paradigm. Its 

main contribution is a pipeline for generating novel object 

descriptors and detecting associated objects within a video. 

These descriptors, which encapsulate spatiotemporal 

information, are constructed automatically by, first, creating 

object profiles based on phylogenetic and biosequence 

analysis, and, second, generating HMMs defined by those 

profiles. Evaluation performed on a standard video dataset 

comprising a variety of scenes and camera motions 

demonstrates the added value of the proposed methodology. 

Future work will be focused on using those object 

descriptors to directly detect foreground objects in unseen 

frames. Such step will require developing a statistical 

framework able to estimate the significance of matches.  
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