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The principal differences between non-relativistic and relativistic quantum me-
chanics are: the existence of negative energy states, and the natural emergence of
spin within a relativistic framework. We consider both these effects in the creation
and evolution of superoscillating wavepackets.

Superoscillations are a phenomena in which a function can oscillate faster than
it’s fastest Fourier component. As a trade-off they suffer by being exponentially
smaller than conventional oscillations. Previous studies of superoscillations within
the construct of the Schrödinger equation have identified two key features: disap-
pearance after a time, td, and an asymmetrical evolution either side of a line in space
(the wall effect).

In this thesis, we expand this work into a relativistic framework by applying it
to the Klein-Gordon and Dirac equations, to do this we require a thorough exami-
nation of 1 + 1 dimensional relativistic propagators. Although initially derived in
terms of Bessel functions, these have two key limits which allow for simpler calcu-
lation: the light-cone limit (x→ x0 + ct) and the WKB limit (ℏ → 0).

Positive and negative energy superoscillations are best described in the WKB
limit. Through application of asymptotic integration, we find that both positive
and negative energy superoscillations possess a disappearance time and wall effect.
For both Klein Gordon and Dirac equations, td is equal. This implies, in terms of
disappearance spin has no effect on the evolution of a superoscillatory, relativistic
wavefunction of positive or negative energy. However, relativistic superoscillations
disappear faster than non-relativistic superoscillations. and in each case, the disap-
pearance time tends to a finite value as a superoscillatory parameter is increased.
For non-relativistic superoscillations td → 1/2 compared to td → 0.3715 for the rela-
tivistic case.

The wall effect is also noticeably different in relativistic and non-relativistic con-
texts. The walls appear at different points in space and, despite the relativistic wall
effect being evident from t = 0, within the Schrödinger equation, it doesn’t appear
until a time of t = 1/32. This contrast in the wall effects of both cases is the leading
cause of the inequality of the disappearance times.

The asymmetries between the wall effects are caused by differences in the be-
haviour of saddles (complex momenta) found when evaluating the wavefunction
as an integral over the propagator. Again, there is no disparity between the walls of
the Klein-Gordon or Dirac equation; spin does not affect the evolution of positive or
negative energy superoscillations.

Where positive and negative energy wavefunctions appear as ℏ → 0, mixed en-
ergy superoscillations appear at the light-cone. Mixed energy superoscillations do
not exhibit the wall effect and neither do they exist in a non-relativistic descrip-
tion. However, they do have a disappearance time. In contrast to the positive and
negative energy states, td → 0 as a superoscillatory parameter is increased. It is
within a mixed energy construct that the effect of spin on the evolution of relativis-
tic superoscillations appears; one of the components of the Dirac equation does not
superoscillate. This is caused by this term existing at the WKB limit as opposed to
the light-cone.
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Chapter 1

Introduction

Is it possible for a band-limited function to oscillate faster than its fastest Fourier

component? Initially, one may tempted to say it is not; some could go as far to

declare it a paradox1. However, in the late 1980s and early 90s [27], [6], [8] it was

shown that it was not the paradox it first seemed as the uncertainty relation between

the variances of a function and its Fourier transform is obeyed[9]. This phenomena

was given the title ’Superoscillation’ [13].

Superoscillations were first realised following Yakir Aharonov’s re-formulation

of quantum mechanics as a time-symmetric theory [4] that produced the concept of

the weak value [3]. It was shown that by taking careful selections from the quantum

state both before and after measurement, quantities such as the spin eigenvalue of

a spin half particle could attain values far larger than conventionally expected. Su-

peroscillation was found when taking a weak measurement of the frequency of an

oscillating wavefunction. Despite their classification in the 1900s, the observation of

superoscillation and antenna-superdirectivity being a dual phenomenon [113], su-

peroscillations can be traced back as far back as 1956 [52].

Following from discussions with Aharonov, Berry defined a large class of super-

oscillating functions [27]. Mathematical superoscillations have since been of interest

to physicists and mathematicians studying their properties [2], [64], [38] and rela-

tionships to other functions [15], [24], [7].

1How can a function, built from a series of oscillating contributary functions oscillate faster than
any of its constituent components?
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It has been shown that superoscillations can be formed naturally, as a conse-

quence of near-perfect destructive interference in random wave fields [45]. In fact,

the probability of a region of such a field being superoscillatory is remarkably high;

for a monochromatic super-position of waves with random direction in two dimen-

sions, the probability was found to be 1/3 [44].

Superoscillatory waves gained the attention of experimentalists when, in 2006,

Michael Berry and Sandu Popescu showed that an initial superoscillatory wave is

a solution to the free-particle Schrödinger equation and hence, the paraxial wave

equation [30]. By passing such a wave through a complex diffraction grating, it was

shown that superoscillations produce sub-wavelength detail that remained at a con-

siderable distance from that grating. From this, it was concluded that superoscilla-

tion could hold the key for far-field imaging beyond the diffraction limit. Since this,

there have been significant advancements in developing optical superoscillations

from nano-hole arrays [121] [120], superoscillatory lenses [90] [91] and antenna ar-

rays [111] [112].

In this introductory chapter, we aim to explain some of the key features of super-

oscillation mentioned in a little more detail, such that the reader has an appreciation

for the subject as a whole. We then consider the specific aims of this thesis and

discuss its structure.

1.1 Mathematical Superoscillations

1.1.1 Superoscillations in A Fourier Series

As superoscillations are defined in terms of their Fourier spectrum, an instructive

place to begin a mathematical description is by observing how they can occur in a

simple Fourier series [120]:

f(x) =
5∑

n=0

an cos(2πnx) (1.1)
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FIGURE 1.1: (1.1) in the range −0.02 ≤ x ≤ 0.02

where:

a0 = 1, a1 = 13295000, a2 = −30802818, a3 = 26581909, (1.2)

a4 = −10836909, a5 = 1762818

In (1.1), the fastest Fourier component corresponds to n = 5 and therefore it would

be expected that the function would oscillate with a frequency no larger than 2
5
π.

Figure 1.1 shows (1.1) oscillating with a frequency far larger than the fastest Fourier

component and shows that, in this region, f(x) is superoscillating.

This example highlights a key feature of superoscillation; superoscillations are

caused by almost-perfect destructive interference[44]. We shall now explain how

this occurs. Studying figure 1.1, it is clear that the superoscillation attains its highest

magnitude at x = 0. Evaluating (1.1) at this point, all the terms of the series cancel

except for n = 0. Given that the other five terms in the series are many orders of

magnitude larger than this (outside the region shown in figure 1.1) the function, at

x ≈ 0, is approximately zero, this is shown in figure 1.2. Superoscillation in (1.1) is

caused as the other ’conventionally oscillating’ terms enter in at x ≈ 0. The super-

oscillations are quickly destroyed as the larger terms begin to dominate.

Clearly, superoscillation comes at a price: superoscillations are considerably smaller
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FIGURE 1.2: (1.1) in the range −π/4 ≤ x ≤ π/4

than their function’s conventional oscillations and exist in a far smaller space. How-

ever, (1.1) can only allude to those facts, in order to quantify the relative sizes of

superoscillations and the regions in which they exist, a different example function

is required.

1.1.2 Superoscillatory Asymptotics

To understand more about the cost of superoscillations we follow an example given

in Michael Berry’s much celebrated paper Faster Than Fourier[27] which, begins with

the function:

f(x,A, δ) =
1

δ
√
2π

∫ ∞

−∞
eik(u)e−

1
2δ2

(u−iA)2du, (1.3)

where k(u) is even, k(0) = k and |k(u)| ≤ k for real u, A is real and positive and δ is

real and small. In order to have (1.3) superoscillating, the spectrum of the function’s

frequencies must be band-limited (in this case we will take |k| ≤ 1) such that, con-

ventionally, we would not expect oscillations with frequencies larger than cos(x). To

achieve this, k(u) must be specified so that the requirements, previously mentioned

are satisfied, examples are:

k1 =
1

1 + 1
2
u2
, k2 = sech(u), k3 exp

[
− 1

2
u2

]
, k4 = cos(u) (1.4)
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Before moving onto to analysing the integral in (1.3) in detail, we will look at the

features that cause it to superoscillate. By taking δ to be small, the second integral

acts as a complex-delta function:

e−
1

2δ2
(u−iA)2 → δ(iA)|δ→0, (1.5)

this will project the value of the first exponential in (1.3) at u = iA. Therefore, under

integration, the argument of (1.5) is projected onto the first exponential giving:

f(x,A, δ) =
1

δ
√
2π
eik(iA) (1.6)

When substituting k4 into (1.6), the resultant function will be oscillating with a

wavenumber much larger than k = 1, it’s fastest Fourier component; (1.3) is there-

fore a superoscillatory function.

We now wish to look at how the function (1.3) behaves in the superoscillatory

region as opposed to the space where it oscillates conventionally. This allows us to

study what happens to the conventional oscillations as the superoscillatory region

is increased. A condition of (1.3) is that δ is small, to highlight this, we make the

substitution:

ξ = xδ2 (1.7)

giving:

f
( ξ
δ2
, A, δ

)
=

∫ ∞

−∞
exp

[
− 1

δ2
Φ(u, ξ, A)du

]
, (1.8)

where:

Φ ≡ 1

2
(u− iA)2 − iξk(u). (1.9)

As δ → 0, the prefactor in front of Φ in the exponential tends to infinity. This allows

the integral in (1.8) to be evaluated by the saddle point method[43]. This method is
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described in detail in appendix B but, in essence, an integral of the form:

I =

∫ ∞

−∞
g(z)eνw(z)dz (1.10)

where ν ≫ 1 is solved through contributions from saddles in the phase w(z), giving

solutions:

I =
∑
j

√
−2π

νw′′(zj)
g(zj)e

νw(zj) (1.11)

where zj are the saddles of w(zj).

Therefore, to solve (1.8) , the saddles of (1.9) must be determined:

dΦ

du
= 0 (1.12)

⇒ ∂

∂u

[
1

2
(u− iA)2 − iξk′(u)

]
= 0 (1.13)

∴ us = i(ξk′(u) + A) (1.14)

From (1.14) and (1.10) the asymptotic approximation to (1.8) is:

f(x,A, δ) =
exp[ 1

2δ2
(us − iA2)− ixk(us)]√
1− ixδ2k′′(us)

(1.15)

To understand how (1.15) behaves in the superoscillatory region, we take ξ ≫ 1 i.e.

x≫ δ−2. In this limit, us → iA, which gives (1.15) as:

f(x,A, δ) ≈ exp[−ixk(iA)] (1.16)

This is the same form found when discussing the superoscillatory region and hence,

the saddle point approximation retains the superoscillatory nature of (1.8).

We now take ξ ≫ 1, in this limit, the saddle point approximation to the integral
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gives:

f(x,A, δ) ≈ 1

δ
√
xk′′(0)

ei(x+
1
4
π)e

A2

2δ2 (1.17)

This is the regime of conventional oscillations. The function (1.17) is O(exp[ A
2

2δ2
]) and

hence the region of conventional oscillation is exponentially amplified relative to

the superoscillatory space (this behaviour is proved explicitly in [64]). Similarly, if

we wish to see a large number of superoscillations, the range of x through which the

function is superoscillatory must be increased. As a trade-off, to allow x to be larger

and the function to still superoscillate, δ must be smaller such that the limit ξ ≫ 1 is

still stipulated. However, from (1.17), as δ becomes smaller the conventional oscil-

lations become exponentially larger.

The superoscillatory function presented here is quite general and one can create a

wide variety of superoscillatory functions from it [86]. However, clearly these come

at a cost; a function’s superoscillations are exponentially smaller than its conven-

tional oscillations. It is therefore quite difficult to spot when a band-limited function

is superoscillating. An easy way to see when a function is superoscillatory is to look

at the local wavenumber [29], [55] given by:

q(ξ) = −ℑm

[
∂Φ(us(ξ), ξ, A)

∂ξ

]
= ℜe[k(us)] (1.18)

To see how this works we use a different k(u) from those shown in (1.4), instead we

take:

k5(u) = 1− 1

2
u2 (1.19)

From (1.18) we can plot the local wavenumber alongside the fastest Fourier compo-

nent (|k| = 1). As we see from figure 1.3, for small ξ, the local wavenumber, q(ξ) is

larger than the fastest Fourier component. As ξ increases, the local wavenumber de-

creases such that it becomes smaller than the faster Fourier component. This is not

a surprising result considering that the local wavenumber gives information about

the wavelength as a function of position. In fact, we can define superoscillations in
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FIGURE 1.3: q(ξ) caluclated from (1.18) and (1.19) for A = 2 (blue line)
and the fastest Fourier component of the superoscillatory function (1.3)

with (1.18) (orange line).

terms of the local wavenumber: A function is superoscillatory at a point in space

ξ if the function’s local wavenumber is larger in magnitude that it’s fastest Fourier

component. This definition, although very similar to the one previously used, is a

more rigorous statement as it compares two quantifiable properties of the function.

1.2 Weak Values

Weak values emerged following a re-formulation of quantum mechanics by Aharonov,

Alber and Vaidmen [3] which determined quantum measurements through pre-

and post-selection[66]. Traditionally, up to 1964 [10], quantum measurements were

taken entirely through pre-selection; a system |Ψ⟩ is prepared, it is operated upon

and measurements are taken. In classical mechanics, this is a very straightforward

procedure; provided the initial conditions and dynamics (e.g. the Hamiltonian) of

the system are known beforehand, all the information of the system for all time is

available [51]. However, in a quantum mechanical system, this is not the case. Even

if the entire initial wavefunction i.e. (t = t0) of a system is determined alongside its

Hamiltonian (for all time), one can only calculate the probability of a specific mea-

surement being taken at a later time (t = t1) [76].



Chapter 1. Introduction 9

In Aharonov’s re-formulation, it was found that if one were to take a subsequent

measurement, it would not only have implications for what happens at times t > t1

but also for time t < t1. To show this, an ensemble of particles is prepared in the

initial state, |Ψ⟩. A measurement is then taken on each particle at an intermediate

time between t0 and t1, a final measurement is then taken of the system at t1. Fol-

lowing the result of the final measurement, the original ensemble is then split into

sub-ensembles accordingly. The statistical distribution of results from the interme-

diate measurement is different for each post- and pre-selected sub-ensemble and

also different from the statistical distribution over the whole initial ensemble, which

was only subject to pre-selection. Therefore, in the time-symmetric formulation of

quantum mechanics, the results of a measurement at a time t depend not only on

what happened before the measurement was taken but also on what happens after

the measurement is taken [105].

It is from the time-symmetric formalism of quantum mechanics that weak values

emerge [12]. A typical quantum measurement is that of the expectation value:

⟨A⟩ = ⟨ψpre|Â|ψpre⟩ (1.20)

If all eigenvalues of the operator, Â, are in the range Amin ≤ An ≤ Amax, in the

familiar asymmetric formalism of quantum mechanics, ⟨A⟩ can never lie outside

this range. However, in the symmetric formalism, where a different state, ψpost is

post-selected, the expectation value gives the weak value [108]:

Aweak =
⟨ψpost|Â|ψpre⟩
⟨ψpost|ψpre⟩

≡ A+ iA′ (1.21)

The result of this weak measurement is often a complex value, the consequences of

this are discussed in the following articles [100], [42], [78]. However, if the initial

wave function is real, the resulting expectation value is replaced by ℜe[Aweak] . In

fact, ℜe[Aweak] can lie outside the range Amin ≤ An ≤ Amax (such values are called
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superweak) [98] [53].

1.2.1 Superoscillations as Weak Values

Superoscillations can emerge from the study of weak values by looking at the case of

a spin-1
2

wavefunction [3]. We pre-select a spin-half particle with the x-component

of spin pointing up (its eigenvalue, σx = 1) and post select states which correspond

to the y-component of spin pointing up (σy = 1). To investigate weak values we

then take the measurement of the spin at an angle of 45o to the x−y which gives our

operator spin-operator as:

σx−y = cos(45◦)σ̂x + sin(45◦)σ̂y =
σ̂x + σ̂y√

2
=

√
2 (1.22)

This can be achieved through a weak measurement of the system in which the

interaction between the measuring device and the ensemble of particles weakens

and produces unexpected results akin to those of the weak values previously dis-

cussed[104]. This result of
√
2 is unexpected as it lies outside the range of eigenval-

ues for a spin-half particle −1
2
≤ An ≤ 1

2
.

By performing this weak measurement on an ensemble of N spins it is shown in

[107] that the final result of the weak measurement is given as:

|Φfinal⟩ = ⟨↑y | ↑x⟩
(
cos
(λQmd

N

)
− iAweak sin

(λQmd

N

))N
|Φinitial⟩, (1.23)

in which Qmd is an observable of the measuring device (e.g. the position of pointer).

As both ⟨↑y | ↑x⟩ and |Φinitial⟩ are trivial, the important part of (1.23) is:

ψ =

(
cos
(λQmd

N

)
− iAweak sin

(λQmd

N

))N

(1.24)
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Using the exponential forms of sin and cos, (1.24) becomes:

ψ =

[
1

2
(1 + Aweak)e

i
λQmd

N +
1

2
(1− Aweak)e

−i
λQmd

N

]N
(1.25)

Through a binomial expansion of (1.25), we get ψ as a Fourier series:

ψ =
N∑

m=0

cm exp
[
i
λκmQmd

N

]
(1.26)

where

cm =
(1 + Aweak)

m(1− Aweak)
N−m

2Nm!(N −m)!
, κm = 1− 2m−N

N
(1.27)

As seen in (1.25), ψ is band-limited (|κm| ≤ 1). By taking a small Qmd approximation

to (1.24), one gets:

ψ ≈
(
1− iAweak

λQmd

N

)N
(1.28)

= exp
[
N log

(
(1− iAweak

λQmd

N

)]
≈ exp

[
iAweak

λQmd

N

]
(1.29)

As we have seen, taking the weak value for a spin-1
2

particle (when the measurement

is taken at a 45o angle to the x− y plane) is Aweak =
√
2. Clearly then, the frequency

with which is dependent on the weak value Aweak. As this can exceed the fastest

Fourier component in (1.26), ψ can superoscillate; its degree of superoscillation is

proportional to its weak value [25].

As will be seen later, (1.24) is a very important equation in the context of super-

oscillations; it is referred to by Berry and Fishman as ’the standard superoscillatory

function’ [21].

1.3 Quantum Superoscillations

The study of the weak value of an ensemble of spin-1
2

particles is an example of

one of many cases of the theory of superoscillations coalescing with the theory of
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quantum mechanics. In this section, we will discuss some of the key discoveries in

this area [11] [2].

Qmd represents the position of the measuring device (e.g. the position in a Sern-

Gerlach experiment) replacing this with x (also, a spatial variable) in (1.26), one is

left with a superposition of plane-waves:

ψ =
N∑

m=0

cm exp
[
i
λκmx

N

]
. (1.30)

This superposition, or one very similar to it, was used by Berry and Popescu to de-

scribe how a superoscillatory function would evolve according to the free-particle

Schrödinger equation [30]. It was found that, using the ’standard superoscillatory

function’ as the initial wavefunction, the superoscillations persist for a far longer

time than expected - noticeably longer than exponentially decaying evanescent waves

and depend on a superoscillatory parameter, akin to the weak value in (1.25). This

behaviour was explained through the interaction of contributions to the wavefunc-

tion appearing as complex momenta in the phase.

It is this persistence of superoscillations that has been of most interest in the area

of quantum superoscillations with the case of the harmonic oscillator [37], [36], a

uniform magnetic field [41] and a uniform electric field [5] all being studied.

In the case of the harmonic oscillator another control parameter, the frequency

of the harmonic potential, is added to the evolution of the superoscillations; a ’criti-

cal harmonic frequency’ exists for which superoscillations can only be found if their

harmonic frequency is less than than the critical value. The strength of superoscil-

lations gets larger as the harmonic frequency gets smaller suggesting that the free-

particle is somehow ’maximally superoscillating’. It is also found that for the case

of the harmonic oscillator, the superoscillations disappear much in the same way as

they do for the free particle but reform periodically.

For the case of the electric field, it is found that the superoscillations disappear on

a time scale identical to that of the free-particle. However, in this interpretation and
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others [9], [7], a more general case of the Hamiltonian was used and, consequently,

it was found that the time in which superoscillations exist for is dependent on N

(1.30) as well as the superoscillatory parameter and such, as N → ∞ so will the time

in which superoscillations persist. A method for creating non-singular Schrödinger

potentials in which the corresponding ground-state wavefunction is a superoscillat-

ing wavefunction have been developed [40].

It has also been show that superoscillations can exist in a quantum-mechanical,

non-commucative phase space through the study of Wigner and Husimi functions

[23]. This is of particular interest as quantum superoscillations are often explained

in terms of their complex-momenta. However, the way superoscillations evolve in

phase space is yet to be considered.

1.4 Natural Superoscillations

Up to this point, superoscillations have so far been treated as a fairly exotic phe-

nomenon which only belong to a certain group of functions [9]. In this section, we

discuss some of the research that has been undertaken that suggests superoscillation

is not restricted to functions in which the superoscillatory properties have been pre-

fabricated but can occur as the result of destructive interference in a superposition

of random waves. This also highlights the relationship between superoscillations

and vortices in random waves [20].

As discussed previously, superoscillations within a function can be detected by

analysing the local wave number (phase gradient) of the function; superoscillations

occur at points at which the local wavenumber is larger than the fastest Fourier com-

ponent. It is through this method that Dennis, Hamilton and Courtial explained

how superoscillations occur in optical speckle patterns [44]. By setting up a super-

position of waves, in a two-dimensional plane, in which the direction and phase

are uniformly distributed random variables, the regions of superoscillation can be
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FIGURE 1.4: c.f. Fig.2 in [44]. A random superposition of 100 two di-
mensional plane-waves each with the same wavenumber. (a) phase
pattern; (b) intensity pattern. The white contour denotes the line in
which the local wavenumber is equal to the fastest Fourier component
(|q(x, y)| = kmax). In (a) the region of conventional oscillation is shaded,
several phase singularities are seen. In (b) the dashed-cyan contour en-

closes the lowest 1/3 of the intensity. The area plotted is (4π/k)2

determined through:

|q(x, y)|2 − k2max > 0, (1.31)

in which q(x) is the local wavenumber and kmax is the fastest Fourier component.

For this situation, the question can then be asked: given a point r = (x, y) what is

the probability that the superposition of random waves is superoscillating at this

point? Surprisingly, it is found that, for a superposition in which all the contribut-

ing waves have the same wavenumber, the fraction of the overall function that is

superoscillatory is 1/3. This is shown in figure 1.4 in which the regions where (1.31)

is valid are highlighted in (a). (b) shows the intensity as a function of x and y for

the superposition, the points at which the intensity falls within the lowest 1/3 of the

whole wave are enclosed by the cyan line. It is clear that there is significant overlap

between the superoscillatory regions and regions of low intensity. This is expected

from our previous discussion of superoscillations in which we showed that super-

oscillations are formed from almost-perfect destructive interference. It is also shown

that the superoscillations in these regions have a far smaller local wave number than
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FIGURE 1.5: c.f. Figure 3 in [19]. Probability distributions PD as a func-
tion of the local wavenumber k and scaled by the free space wavenum-

ber k0 for indicated values of dimension D.

those created from the standard superoscillatory function; natural superoscillations

are far less extreme than the tailor made examples seen previously.

Another interesting feature of figure 1.4 is that all of the phase singularities

(points of zero intensity) are contained within the superoscillatory regions. These

phase singularities can be thought of as the extremes of superoscillation [18].

The case where all the wavenumbers in the random superposition are equal will

give the most amount of superoscillation; a monochromatic superposition would

’wash out’ most of the almost perfect destructive interference. It is shown in [44]

that, for a disk-spectrum, the probability of superoscillation is 1/5.

The concept of natural superoscillation has also been developed into other di-

mensions than just the two spatial ones discussed here [19], [45], where it was shown

that the the probability of superoscillation increases from 0.293 to 0.394 as the num-

ber of dimensions, D, increases from 1 to ∞. It is also shown that, in the case D = 1,

that the probability, as a function of the local wavenumber, behaves in a peculiar

fashion relative to the cases D > 1.
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1.5 Numerical Superoscillations

As with any novel physical phenomenon, as many questions will asked about its

application as well as its nature. Superoscillations are no different in this respect

and, by 1994 [27], Michael Berry had already selected them as a possible candidate

for optical superresolution.

We look at a method of creating superoscillations, not through the Fourier based

methods previously discussed but by taking a series of band-limited signals and

imposing upon them specific values in the superoscillatory window. In an imaging

context, this means making the signal, f(ξ), coincide with a target image which con-

tains details smaller than that of the wavelength of the interrogating signal [80], [35],

[83]. This gives an example of how superoscillations may be numerically generated

as well as how they hold up as a candidate for superresolution [77]

In general, consider a wave, Ψ(x), constructed from a series of plane-waves,

ψm(x):

Ψ(x) =
N∑

m=1

cmψm(x) (1.32)

To recreate an image (F (x)), we specify that at certain points, xi :

Ψ(xi) =
N∑

m=1

cmψm(xi) = F (xi) (1.33)

where i is found in the range: 1 ≤ i ≤ I2. This is then a matrix eigenvalue problem:

Ψ(xi) =
N∑

m=1

Mm,icm (1.34)

2I represents the number of points in space for which we require our wave, Ψ(x) to coincide with
the target image F (x), their distribution of can then be determined accordingly. Making I very large
will increase the accuracy of the image within the sampled space however, this comes at the cost of
computational expense.



Chapter 1. Introduction 17

In which Mm,i is an I ×N matrix. (1.34) can be inverted to give the coefficients, cm:

cm =
I∑

i=1

(Mi,m)
−1F (xi) (1.35)

The recreated image can the be determined by substituting the results of (1.35) into

(1.32). In order to ensure that the resultant wave function is superoscillatory, the

interpolation points, xi, are chosen so that the two furthest points lie within one

wavelength of each other. Therefore, the function has to display superoscillatory

properties. The connection with this superoscillatory rendering of an image and

oversampling has been discussed [50].

To demonstrate how this works, we show an example from Berry [16] through

which this concept was applied to a beam in which the details are reproduced peri-

odically in the far field [82]3.

In his paper, Berry attempted to recreate a target image (a double Gaussian)

which contained detail on the scale of λ/20 of the interrogating wave:

As seen in figure 1.6, as the distance from the sampled interval increases, the

function Ψ(x) diverges rapidly from the target image; it is 40 magnitudes larger in

some points. This is not a surprising result considering previous discussions and

has consequences for the energy of the system [49]. However, in the context of cre-

ating superoscillations, there is another major issue; the conditioning of the matrix.

The eigenvalues, cm are very small and hence the matrix, Mi,x is ill-conditioned.

This is problematic as the solution becomes numerically unstable, in order to pro-

duce the results in figure 1.6, computations with an accuracy of > 50 digits were

required. The ill-conditioned matrix in (1.35) gives a superoscillatory wave an in-

herent susceptibility to noise. This is discussed in [29] where it was shown that

superoscillations can be suppressed by random phases with small rms strengths,

3The optical effect here is not the Talbot effect [22] but the Montgommery effect. Relationships
between the two are well understood [79]; the reason for not using the Talbot effect is that it blurs de-
tails far larger than the sub-wavelength structure [88]. This is why it was found in [30] that although
the wave passing through the diffraction grating exhibited the Talbot effect, the superoscillatory data
was lost upon repetition.
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Position

FIGURE 1.6: Top left: showing the target image (black line) the recre-
ated image (blue line) and the interpolation points (red circles). In the
other three diagrams the distance from the interpolation window is in-
creased showing how the function becomes orders of magnitude larger

outside the sampled interval.

very close to the strength of the superoscillations.

Here we have described just one way of numerically generating superoscilla-

tions; many more exist. Lee and Ferrieria devised a method, similar to the one de-

scribed here in which values were prescribed onto a grid (which is not necessarily

uniform) arbitrarily finer than the reference grid. Therefore, as the grid to which the

beam is interloped becomes finer, the degree of superoscillation becomes greater

[71]. Recently, a new method has been developed which creates superoscillations

multiplicatively [40]. By multiplying functions whose zeros lie closer together than

their respective wavelengths, an overall superoscillatory wave is created, this al-

lows for computation of superoscillations that have both arbitrarily long duration

and high frequency.
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1.6 Optimising Superoscillations

In the previous section, it was shown that superoscillations are capable of construct-

ing images with sub-wavelength detail. However, due to the exponential disparity

between the superoscillatory region and conventional oscillations, any superoscil-

latory beam will have to be carefully managed in order to make it a viable tool for

imaging. In this section, we show how this is handled; successful research in this

area would greatly improve the chances of using superoscillation as a tool for imag-

ing below the diffraction limit.

It is known that the creation of a superoscillatory beam comes at the expense

of the energy of the region outside the sample interval. Therefore, it is intuitive to

design a minimum energy superoscillatory wave [50]. Such minimum energy so-

lutions are beneficial as they come at a low energy cost and and have the smallest

overall amplitude. However, such signals are very dependent on cancellation which

gives rise to the ill-conditioned matrix problem seen earlier. A recent development

on this method drops the concept of determining the minimum energy superoscil-

lations. Instead it constructs superoscillations through orthonormal functions that

would have previously created an ill-condition matrix but now recover the identity

matrix [73]. It has also been shown that by placing constraints upon the amplitude

and the derivative of the superoscillatory wave and manipulating the combinations

of the constraints, the minimum energy required for the superoscillatory signal can

change by as much as an order of magnitude [72].

Optimisation of the yield of superoscillations has provided a potentially viable

method of augmenting superoscillations [63]. By yield we refer to the ratio:

Y =

∫ a

−a
f 2(x)dx∫∞

−∞ f 2(x)dx
, (1.36)

in which f(x) is a function that is superoscillatory in the region −a ≤ x ≤ a. A

constrained optimisation approach to this leads to an eigenvalue problem which is

solved numerically. This method creates superoscillations which have a trade-off of
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superoscillatory yield and signal quality. The susceptibility of noise to this method

has been considered [97]; it was found that the deviation from the yield to its max-

imum value in the presence of random errors in the Fourier coefficients was not

considerable if an absolute minimum error could be established. The deviation in-

creased upon only being able to determine a relative minimum error. Furthermore,

by varying the ’strictness’ of the interpolation requirement (how many of the pre-

scribed points pass through the superoscillatory region) it was found that, although

high machine precision was still required, storing and using yield-optimised super-

oscillations does not pose a technical problem [62].

1.7 Optical Superoscillation

In recent years, interest in optical superoscillation has grown considerably due to

the potential of superoscillations as a way of probing details below the diffraction

limit. We have discussed how superoscillation can be generated numerically and

how the initially troubling high-magnitude side-bands can be controlled so that the

superoscillations are more prominent. In this section, we examine how superoscil-

lations can be created optically and how optical superoscillations can be used in

superresolution.

Optical superoscillations, in a controlled fashion4, were first created in 2007 by

attempting to focus light through a quasi crystal nano-hole array (QNA) in the far-

field [59]. The resultant diffraction pattern created optical hotspots (high intensity

regions) less than half a wavelength in diameter, these were attributed to super-

oscillations. A quasi-periodic mask, such as this, is a good candidate for optical

superoscillation as it has a continuous Fourier spectrum and can create complex

field patterns [74] [75].

The schematic shown in figure 1.7 shows how a nano-hole array superoscillatory

lens can create point to point imaging as well as the focusing mentioned previously.
4From earlier discussion, as any speckle pattern could create superoscillations which dates their

creation (in an uncontroled way) back to the 1940s.
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FIGURE 1.7: c.f. figure 11 in [48] adapted from figure 1 in [58]. Top:
A schematic of quasi-crystalline imaging. Bottom: Showing movement

as the sources moves by upto 600nm.

In figure 1.7, a point light source is created by a scanning near-field optical micro-

scope (SNOM) by emitting light of wavelength 635nm. The array is then used as a

superoscillatory lens to image the point light source on the other side. As the source

is moved in one direction, its image moves in the opposite direction as is normal for

a glass lens. It is shown in [121] that multiple images of the same image are created

in the same focal plane. Despite its low throughput efficiency, complex objects con-

taining multiple points can be imaged using this method [61].

Building from the work on quasi-crystal nanohole arrays , a number of binary

superoscillatory lenses have been considered. The lens in figure 1.8 (a) is created

by projecting a 27-dimensional hypercubic lattice onto a plane. A well defined

centre of rotation can then be determined by requiring that the projection plane

passes through a specific point on the hypercubic lattice [68]. This creates the op-

tical axis upon which focal spots are formed. By randomly placing holes on spiral

arms around a central point, the lens in figure 1.8 (b) is created, with the number of

arms determining the the order of rotational symmetry. In [94] the 40 fold symmetric

example is created and superfocusing (focsing beyond the conventional diffraction

limit [117]) is observed.

As seen in figure 1.8, the lens which creates the most pronounced hotspot is the

optimised binary ring mask shown in (c), which generates a far larger throughput

efficiency than the the other two examples. These ring masks are optimised through
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FIGURE 1.8: c.f. figure 12 in [48] Examples of superoscillatory lenses
and their respective focal spots. (a) A 27-fold symmetric QNA forming
a 048λ focal spot. (b) A semi-random spiral hole array forming a 0.39λ
focal spot. (c) A ring mask superoscillatory lens forming a 0.23λ spot

in immersion oil.

an algorithm called binary particle swarm optimisation (BPSO) which is described

in [65], [89] and [60] and a schematic is given in figure 13 in [48]. An example

of a lens created using this method is given in [90], where it was employed using

a modification to a conventional microscope, and produced resolution better than

λ/6. Using the principles of BPSO, superoscillatory lenses in which it is possible to

focus light of different colours into the same hotspot have been developed [118]. As

is shown in figure 1.9, slits of width > λ/6 were imaged using a scanning electron

microscope (SEM), a superoscillatory lens (SOL) and, for two-slits a conventional

lens of numerical aperture 1.4. The key difference between the SOL and a conven-

tional lens is seen when comparing the images of two slits; only the SOL picks up

the presence of both slits whereas the conventional lens renders them as a single

object.

Dynamic SOLs have been created using spatial light modulators (SLMs) and a

conventional microscope objective that focuses a beam whose interference pattern is

designed by careful selection of the amplitude and phase profile. This builds upon

work on superfocusing with pupil filters first discussed in 1957 [52] and has since
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FIGURE 1.9: c.f. figure 1 in [90]. Subwavelength imaging with a su-
peroscillatory lens (SOL). (a) A scanning electron microscope image of
the SOL. (b) Calculated energy distribution of the SOL at 10.4µm from
the lens. (c) The actual focal point for λ = 640nm. (d) SEM image of a
112nm slit, (e) the SOL image of the slit, (f) a double slit, separated by
137 nm, (g) the SOL image of the double slit and (h) the image of the

double slit using a conventional lens of NA = 1.4.

been developed [57], [93]. In order to create a dynamic SOL, the desired focal spot

is created by determining the amplitude and phase incident on the objective. This

has been shown to be well suited to the optical eigenmode method, described in

[81] and [85]. In essence, this method works through the probing of the lenses, free-

space and microscope objective between the SLM and the focal plane. This gives the

spot size matrix operators from which, the eigenvectors give the eigenmodes of the

system and the eigenvalues give the respective spot size of the system. This method

has been deployed in [14] in which a spot of 0.35λ was generated and [69] in which

resolution was achieved 1.3 times that of the system’s theoretical limit.

It is clear from figures 1.8 and 1.9 that high amplitude side bands are intrinsic

to the fields generated by a SOL5. A class of SOL has since been developed which

pushes these far away from the optical axis. This is done by focusing the light into

a subwavelength needle as opposed to a spot. These optical needle superoscillatory

5This is not a suprising result considering many, if not all, of the superoscillatory waves so far
discussed have contained similar high amplitude regions.
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FIGURE 1.10: c.f. Figure 1 [91]. The difference between a SOL and an
ONSOL: The SOL produces a complex pattern of subwavelength spots
and high amplitude sidebands. The diffraction pattern created by the
ONSOL is far simpler with a subwavelength needle and sidebands far

from the axis.

lenses (ONSOLs)[91] are created in much the same way as the SOLs previously dis-

cussed except that the centre of is always opaque, this blocks any incident light to

this region and the needle is created in the resulting ’shadow region’. The ONSOL

has a very long focal length with lengths of 11λ [91], 15λ [116] and 300λ [39].

Optical superoscillations have been created by building upon the well known

work on antenna pattern synthesis[95] and the relationship between superoscilla-

tion and antenna superdirectivity [113] , [112], [111]. From this method a way of

handling the sidebands is proposed in which the side bands are removed by a cavity

[114]. A new type of superoscillatory wave is also created which contains a diffrac-

tion limited spot surrounded by superoscillatory ripples which does not suffer as

greatly from the trade-off between resolution, viewing area and the sensitivity of

the device [47].
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Material presented in this introduction represents but a fraction of what is now

a very rich field of scientific interest. In order to gain further understanding of su-

peroscillations and their surrounding phenomena (principally weak values and su-

perresolution), the reader is directed to the following review articles:

• The Mathematics of Superoscillations [2]. Discusses mathematical and quantum

superoscillations with an emphasis on their relationship to weak values.

• Mathematical Concepts of Superresolution [77]. Discusses the theory of superres-

olution as a whole, with a section on superoscillations.

• Optical Superoscillations: Sub-Wavelength Light Focusing and Superresolution Imag-

ing [48]. Discusses the development of optical superoscillations and their im-

plementation into sub-wavelength imaging.

1.8 Overview of the Thesis

As we have seen, despite quantum mechanics being the first area in which super-

oscillations were studied in earnest, they are still of much interest today with their

behaviour being investigated in many different quantum systems [41], [5]. This the-

sis hopes to build upon this work by considering free-particle quantum superoscil-

lation in relativistic space; where time and space must be treated on an equal foot-

ing. Superoscillations in a relativistic setting have been considered [21], [17], their

existence being attributed to a superluminal group velocity. However a rigorous

description of their nature in relativistic quantum mechanics is yet to be provided.

We consider superoscillations in 1 + 1 dimensions and study how the initial super-

oscillatory function evolves according to both the Klein-Gordon and Dirac equation

in their first-quantised configurations.

In order to evaluate the evolution free-particle quantum superoscillations, it has

been shown in [30], that an eigenfunction expansion of the initial wavefunction (as

shown in 1.30) does not provide a clear enough description of the wavefunction to
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analyse a phenomena as subtle as superoscillation. To explain quantum superoscil-

lation, the integral over a propagator formulation of the wavefunction is required.

In chapter 2, we derive the relativistic propagators and study their behaviours near

the light cone and at the ℏ → 0 (WKB) limit.

In chapter 3, we review Michael Berry and Sandu Popescu’s paper Evolution of

Quantum Superoscillations and Optical Superresolution Without Evanescent Waves [30].

This paper forms the basis of how we investigate superoscillations in the relativistic

limit. As it is written in terms of the Schrödinger equation, it allows us to scrutinise

any calculations used in the relativistic quantum wave equations as they should all

produce the results of Berry’s paper as c→ ∞.

In chapter 4, we begin our work on quantum superoscillations in earnest. Con-

sidered first is the free-particle Klein-Gordon equation: the description of a spin-

zero relativistic quantum wavefunction. We first produce an eigenvalue solution

to the Klein-Gordon equation with an initial superoscillatory wavepacket: this pro-

vides a good way of making sure any approximations subsequently made still pre-

serve the essential structure of the superoscillatory evolution. Using the propaga-

tors derived in chapter 2, we then analyse the way in which the initial wavefunction

evolves according to the Klein-Gordon equation and compare the results with the

Schrödinger superoscillations seen in the previous chapter.

Using the Klein-Gordon equation, we get results for a spin-zero relativistic wave-

function. In order to analyse how an initial superoscillatory wavefunction of spin-

half evolves in the relativistic limit, we use the Dirac equation. To begin chapter 5,

we discuss the results of [33] in which a method of producing spin-half wavefunci-

tons by starting with one of spin-zero. We then apply this to the results of chapter

4 and compare the two, showing whether or not spin affects the evolution of a rela-

tivistic free-particle superoscillatory wavefunction.

Lastly, we conclude the findings of each chapter and discuss where this research

can go in the future.
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Chapter 2

The Dynamics of a Klein-Gordon Free

Particle in 1+1 Dimensions

As discussed in the introductory chapter, superoscillatory waves are the product

of almost perfect destructive interference between contributing plane waves. It has

been shown that investigation of the evolution of these waves requires subtle math-

ematical analysis [30] [36]. In this situation, the standard method of studying the

time dependence of a quantum wavefunction; evaluation of the interference be-

tween eigenfunctions does not give much insight for a superoscillatory wavefunc-

tion.

In this chapter, we discuss the tools required to calculate free particle, time de-

pendent, spin-zero, massive, relativistic quantum wavefunctions1. Such tools (time

evolution operators and propagators) are well known for non-relativistic quantum

wavefunctions and have been used in the study of superoscillations [30], [37]. It is

therefore the relativistic nature of these methods which will be of most importance

to the problems we wish to solve in this thesis.

Beginning with standard plane-wave solutions then moving onto creating wave-

packets for an arbitrary initial wavefunction, features of relativistic quantum evolu-

tion, such as causality and the occurrence of negative energy states, are considered.

The main emphasis of this chapter is the derivation and limits of the free-particle

1The case for a spin-half wavefunction is considered in chapter 5
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Klein-Gordon propagator, which allows us to analyse superoscillatory wavefunc-

tions. Derivations for propagators of positive, negative and mixed energy are pre-

sented as well as their ’light-cone’ and WKB limits. Lastly, example calculations are

provided.

2.1 The Free Particle Klein-Gordon Equation

The free particle Klein-Gordon equation is given, in 1+1 dimensions, as:

(
∂2

∂x2
− 1

c2
∂2

∂t2
− m2c2

ℏ2

)
Ψ(x, t) = 0 (2.1)

Solving (2.1) directly obtains the following plane wave solution:

ψ±(x, t) =
1√
V

exp

[
i

(
kx∓ W (k)

ℏ
t

)]
, (2.2)

where the ratio 1√
V

is a normalisation constant. (2.2) has energy eigenvalues,

W (k) =
√
ℏ2c2k2 +m2c4 (2.3)

In this section we look at the properties of these solutions before showing how arbi-

trary wave-packet solutions can be created.

2.1.1 Positive/Negative Energy Eigenstates

A notable feature of (2.2) is the presence of the ∓ sign in front of the energy,W (k). In

relativistic quantum mechanics, eigenfunctions can have either positive or negative

energy. These emerge from the fact that to ensure the energy-momentum relation-

ship is scalar, it must be quadratic in both energy and momentum. Hence, when

taking the square root of W (k)2, both positive and negative energy solutions are
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present.

Such negative energies are intrinsically related to anti-particles. When formulat-

ing his eponymous equation in 1930, Paul Dirac theorized that a vacuum is a state

in which all negative energy levels are filled and all positive levels, empty[46]. From

this theory (entitled the ’Dirac Sea’) anti-particles emerge when one of the negative

energy states in the Dirac Sea is unfilled.

The time dependence of negative energy states can be viewed as a wavefunction

of positive energy moving backwards in time[102]. This can be seen quite clearly

from (2.2) where, taking an initial positive energy state and, making the transforma-

tion t → −t, a negative energy state is produced. We show this in figure 2.1 where,

as t is increased, the two waves move in opposite directions.

2.1.2 Wave-Packet Solutions

Through application of Fourier’s theorem to (2.2), any arbitrary wave packet can be

created using the following equation:

Ψ(x, t) =

∫ ∞

−∞
ϕ(k) exp

[
i

(
kx∓ W (k)

ℏ
t

)]
dk (2.4)

where:

ϕ(k) =
1

2π

∫ ∞

−∞
Ψ(x, 0)eikxdx. (2.5)

in which, Ψ(x, 0) is the initial wave packet. (2.4) allows one to study how any initial

wave packet evolves according to the Klein-Gordon equation.

2.2 Klein-Gordon Wave Packets and Causality

Given these basic features of Klein-Gordon wave packets, we consider a fundamen-

tal property in relativity: causality and how this plays a part in their creation. We

also consider what effect negative energy states have in these calculations.
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FIGURE 2.1: Time evolution of ℜe(Ψ(x, t)) (2.2) positive energy states
(blue lines) and negative energy states (orange circled lines) for (a) t =
0, (b) t = π/4, (c) t = π/2 and (d) t = π. In all diagrams −2π ≤ x ≤ 2π,
m = c = k = ℏ = 1. As t increases, the two wavefunctions move in

opposite directions.

2.2.1 Causality

In essence, causality relates a cause to its effect; it states that cause must precede

the effect. Take the point, in 1 + 1 dimensional space-time, r(x0, t0). In relativistic

theory, causality requires that no event taking place at a distance further away (in

either direction) than x0 + ct0 can affect r(x0, t0); event A can cause event B if A lies

in B’s past light cone.

Using this definition of relativistic causality, we construct a one-dimensional

light-cone with boundaries at x+ ct and x− ct. If a path between two events r(x, t)

and r′(x′, t′) has an angle (with respect to the x-axis) smaller than that of the light-

cone, it is an acausal path. This is shown, for x > 0, in figure 2.2.
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FIGURE 2.2: Showing two space-time paths (world-lines). The blue
world-line (x1) is causal as its angle with respect to the x-axis is larger
than that of the light-cone. Where as the red world line (x2) is acausal

as the angle is smaller than that of the light-cone.

2.2.2 Causal Wave Packets

Causality plays an important role in the calculation of Klein-Gordon wave-packets2.

To illustrate this, a ’frequency representation’ of equations (2.4) and (2.5) is used. We

create this by rearranging (2.3) for k and substituting this into (2.4) and (2.5).

k(ω) =
1

c

√
ω2 − m2c4

ℏ2
(2.6)

Ψ(x, t) =

∫
C

σ(ω) exp

[
i

(
x

c

√
ω2 − m2c4

ℏ2
− ωt

)]
dω (2.7)

σ(ω) =
1

2π

∫ ∞

0

Ψ(0, t)eiωtdt (2.8)

The limits of the integral in (2.8) are taken as 0 to ∞ because we are only interested

in the effects caused by the event at t = 0, x = 0 and nothing that precedes it. We

2We will show later in the chapter that, in specific cases, causality isn’t always conserved in Klein-
Gordon wave packets
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ℑm(ω)

mc2−mc2
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FIGURE 2.3: Complex plane of the frequency, ω, in (2.7). Indicating the
branch cut (red) and contours (blue).

have also omitted the range of integration in (2.7) and replaced it with a contour, C,

which will now be explained.

Figure 2.3 shows the complex plane through which we integrate in (2.7). Along

the real axis, we have a branch cut running from −mc2 ≤ ω ≤ mc2 which em-

anates from the branch points of the square root. (2.8) shows that σ(ω) is analytic

for ℑm(ω) > 0, which implies that the contour, C, must run from −∞ to ∞ above

the branch cut.

This is not the only possible configuration of the complex frequency plane. It

could be set up with a branch structure in which there are two cuts: one running

from mc2 ≤ ω < ∞ and the other from −∞ < ω ≤ −mc2. The branch structure

shown in figure 2.3 is chosen as, for positive real ω, the resultant momentum is pos-

itive and hence the waves are travelling forward. Similarly, for negative real ω, the

momentum is positive.

We now look at the argument of the exponential in (2.7) in the limit ω → ∞ and

find:
x

c

√
ω2 − m2c4

ℏ2
− ωt→ ω(x/c− t) (2.9)

Therefore, for x > ct we can deform our contour C in the upper half of the plane to

infinity viaC1 in figure 2.3. As it doesn’t come into contact with the branch cut along
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the real axis and, providing σ(ω) doesn’t include any singularities in this region of

the plane, the result of the integral along C1 is zero:

Ψ(x, t) = 0 (x > ct) (2.10)

Through inspection of the analyticity of our Klein-Gordon wave packet, we have

estabilished causality [26], [106], [99], [34]; if an analytic signal enters the half-space

at t = 0 and x = x0, we can extrapolate (2.10) in the following way:

Ψ(x+ x0, t) = 0 (x+ x0 > ct). (2.11)

This states that the time taken for the signal to travel from x0 to x+x0 cannot be less

than t = (x+x0)
c

as it is a requirement of such signals to be zero for any times less than

this. This boundary is the light-cone meaning that any analytic signal cannot cross

the light-cone and is causal, therefore.

2.2.3 Negative Energy States

To further our understanding of (2.7), we now discuss the negative frequency (en-

ergy) states. As, for convergence, we take the Contour C in figure 2.3 from −∞ to

∞ along the real axis, these frequencies are intrinsic to the calculation of our causal

wave-packet3. The energies −mc2

ℏ ≤ ω ≤ 0 (which, due to the how we treated the

branch cut in figure 2.3, are not included in previous discussion of equation (2.7))

correspond to evanescent waves; waves that decrease exponentially with x in the

half-space. Therefore, the negative energies which will be present for all time are

those in the range −∞ ≤ ω ≤ −mc2

ℏ .

Therefore, causal wave-packets are created through superposition of frequencies

in the spectrum:

|ω| ≥ mc2

ℏ
(2.12)

3Note that in our original wave-packet integral (2.4), we do not include both positive and negative
energies and can hence use this method to create entirely positive or negative energy wave-packets
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We have so far only touched upon the fact that we can create acausal wave-packets.

This will be considered in the next section in which we create an integral represen-

tation of the free Klein-Gordon by using our integral over the momentum k (2.4).

2.3 The Free Particle Klein-Gordon Propagator

2.3.1 Building A Propagator

Consider an initial wave-packet, ψ(x, 0). We have shown the time-evolution of the

wave-packet can be analysed by taking the Fourier transform of ψ(x, 0). Although

a very useful tool, this is not always feasible as we may not be able to evaluate the

Fourier transform of our initial wave-packet. We therefore look for another way to

allow us to calculate the evolution of our wave-packet.

We begin by considering how our initial wave-packet will evolve from one point

in space-time, (x′, 0). To do this we define the dimensionless function S(x− x′, t):

Ψ(x− x′, t) = S(x− x′; t)ψ(x′, 0) (2.13)

Which propagates the initial wavefunction, ψ(x′, 0) through space-time, returning

the result: Ψ(x − x′, t). In order to find the wavefunction as a function of x (as op-

posed to x−x′) and t, the result of (2.13) is integrated over all x′. To demonstrate why

this is necessary, we show an example in which our initial wavefunction evolves in

a discrete space:

Consider the one dimensional space, x′, as made of 2n + 1 points, each sepa-

rated by a distance δ. To propagate our initial wave-packet we use ∆(x − xi, t) at

each point in the discrete space, xi, where xi plays the role of x′ in (2.13). This cre-

ates 2n+ 1 wavefunctions, the superposition of which will give the time-dependent
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wavefunction Ψ(x, t):

Ψ(x, t) =
n∑

i=−n

Ψ(xi, 0)S(x− xi, t) (2.14)

In order to get a complete wavefunction from (2.14), an infinite number of waves

emanating from an infinite number of points must be summed. To achieve this, the

limit δ → 0 is taken :

Ψ(x, t) =

∫ ∞

−∞
Ψ(x′, 0)∆(x− x′, t)dx′, (2.15)

where ∆(x− x′; t) plays the same role of S(x− x′; t) but has units of m−1. Equation

(2.15) is the well known ’integral over a propagator’ formalism of a time-dependent

wavefunction, in which the propagator is denoted as ∆(x− x′, t).

To begin our understanding of ∆(x−x′, t), we consider its general case for t = 0.

As can be discerned from the previous discussion, the product:

P = Ψ(α)S(x− α; t), (2.16)

in which we have replaced x′ with the arbitrary spatial constant, α. To begin the

derivation, we consider the evolution from α = 0 therefore, at t = 0, the propagator

must take the form [26]:

∆(x, 0) = δ(x) (2.17)

For t > 0, we begin with the general description of a time-dependent, free particle

wave-packet as an integral over momentum, k :

∆(x, t) =

∫ ∞

−∞
ϕ(k)ψ(x, k) exp

[
i
W (k)

ℏ
t

]
dk (2.18)
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In which, ψ(x, k) are the free particle eigenfunctions and its eigenvalues, W (k), are

given by (2.3). Using (2.5) and (2.17) we get:

ϕ(k) =
1

2π

∫ ∞

−∞
δ(x)eikxdx =

1

2π
(2.19)

⇒ ∆(x, t) =
1

2π

∫ ∞

−∞
exp

[
i

(
kx− W (k)

ℏ
t

)]
dk (2.20)

(2.20) gives a closed-form representation of a propagator for a free-particle wave-

function with energy eigenvalues W (k). We now use this integral to produce the

free-particle Klein-Gordon propagators.

2.3.2 Positive/Negative Energy Free Particle Klein-Gordon Propa-

gator

When discussing Klein-Gordon propagators (or any relativistic propagator), the en-

ergy of the wave-packet we wish to propagate, whether it is positive or negative,

must be considered. Positive and negative energy eigenfunctions evolve differently

and it would therefore be expected that their respective propagators accommodate

this. We know the eigenvalues for the free Klein-Gordon Hamiltonian:

W (k) = ±
√
ℏ2c2k2 +m2c4 (2.21)

and the eigenfunctions:

ψ(x, k) =
1√
V
eikx (2.22)

Substituting these into (2.20) gives:

∆±(x, t) =
1

2π

∫ ∞

−∞
e
i

(
kx∓

√
ℏ2c2k2+m2c4

ℏ t

)
dk (2.23)
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We already see that the result of the integral over k is going to depend on the sign

of W (k). In its present form, (2.23) cannot be solved. Multiplying the integrand by
W (k)
W (k)

gives:

∆±(x, t) =
1

2π

∫ ∞

−∞

W (k)

W (k)
e
i

(
kx∓

√
ℏ2c2k2+m2c4

ℏ

)
dk. (2.24)

This may at first seem a fairly arbitrary step but we notice that:

∂

∂t

[
e
i

(
kx∓

√
ℏ2c2k2+m2c4

ℏ t

)]
= ∓i

√
ℏ2c2k2 +m2c4

ℏ
e
i

(
kx∓

√
ℏ2c2k2+m2c4

ℏ t±

)
. (2.25)

Using this relation in (2.24):

∆±(x, t) =
±iℏ
2π

∂

∂t

[∫ ∞

−∞

1

W
e
i

(
kz∓

√
ℏ2c2k2+m2c4

ℏ t

)
dk

]
(2.26)

(2.26) is still not in an integrable form. Separating eikx into its real and imaginary

parts,

∆±(x, t) =
±iℏ
2π

∂

∂t

[∫ ∞

−∞

exp
[
− i

√
ℏ2c2k2+m2c4

ℏ t
]

√
ℏ2c2k2 +m2c4

(
cos(kx) + i sin(kx)

)
dk

]
(2.27)

gives an integral that can be split in to two parts, one including the term cos(kx) and

the other, i sin(kx). The integrand in the second integral is odd and hence, when

integrated from −∞ to ∞, the result is zero, leaving:

∆±(x, t) =
±iℏ
2π

∂

∂t

[∫ ∞

−∞

exp
[
∓ i

√
ℏ2c2k2+m2c4

ℏ t
]

√
ℏ2c2k2 +m2c4

cos(kx)dk

]
(2.28)

Using 3.961.2 in [54]:

∫ ∞

−∞

exp
[
− β

√
γ2 + x2

]
√
γ2 + x2

cos(ax)dx = 2K0

(
γ
√
a2 + β2

)
(2.29)
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(where K0(x) is the modified Bessel function of the second kind) with the following

substitutions:

β = ±ict±, γ =
mc

ℏ
, a = x, x = k (2.30)

gives:

∫ ∞

−∞

exp
[
∓ i

√
ℏ2c2k2+m2c4

ℏ t±

]
√
ℏ2c2k2 +m2c4

cos(kx)dk = K0

(
mc

ℏ

√
x2 − c2t2±

)
. (2.31)

(2.29) is only convergent for ℜe(β) > 0 and ℜe(γ) > 0. Clearly from (2.30), γ is

always real and positive. In order to ensure the real part of β is greater than zero,

we add a small imaginary term to t such that t → t± = t ∓ iϵ. Substitution of (2.31)

into (2.28) gives:

∆±(x, t±) =
±i
πc

∂

∂t

[
K0

(
mc

ℏ

√
x2 − c2t2±

)]
(2.32)

Lastly, we differentiate the Bessel function with respect to time to give our propaga-

tor, this is done using the recurrence relation from 10.29.4 in [1].

d

dx

[
Kν(x)

xν

]
= −Kν+1(x)

xν
(2.33)

∴ ∆±(x, t±) = ∓im
πℏ
c2t±

K1

(
mc
ℏ

√
x2 − c2t2±

)
√
x2 − c2t2±

(2.34)

Taking the limit ϵ→ 0 and off-setting x by x′ gives:

∆±(x− x′, t) = ∓im
πℏ
c2t
K1

(
mc
ℏ

√
((x− x′)2 − c2t2

)
√
(x− x′)2 − c2t2

(2.35)

(2.35) is the closed form of our free Klein-Gordon propagator for positive/negative

energy states. Making the substitution t → −t, in the case of the positive energy

propagator, gives its negative energy counterpart. This further affirms the statement
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made earlier that negative energy wavefunctions are positive energy wavefunctions

moving backwards in time.

2.3.2.1 Causal and Acausal Regions of the Positive/Negative Energy Propagator

Moving from the causal region (x′ < x + ct) to the acausal region (x′ > x + ct) in

(2.35) the square root goes from being imaginary to real, with the sign determined

by the sign of the energy. This allows us to write (2.35) in the following way:

∆±(x− x′, t) = ∓im
πℏ
c2t
K1

(
± im

ℏ c
2t
√
1− (x−x′)2

c2t2

)
ict
√
1− (x−x′)2

c2t2

(c2t2 > (x− x′)2) (2.36)

(2.36) gives a form of the positive/negative energy Klein-Gordon propagator inside

the light-cone. As mentioned previously, the square root is real outside the light-

cone so the form of the propagator doesn’t change from that shown in (2.35), in

this instance. To see how the propagator behaves inside the light-cone we use the

following relations given by 10.27.8 in [1]:

Kν

(
e

1
2
iπz

)
= −1

2
πie−

1
2
νπiH(2)

ν (z)

(
− 1

2
π ≤ phz ≤ π

)
(2.37)

Kν

(
e−

1
2
iπz

)
=

1

2
πie

1
2
νπiH(1)

ν (z)

(
− π ≤ phz ≤ 1

2
π

)
, (2.38)

where H(1,2)
ν (z) are the Hankel functions of the first and the second kind and ph z

represents the phase of z. For a positive energy propagator, the pre-factor in (2.36)

is positive if x′ < x+ ct and negative if x′ > x− ct. Using (2.37) and (2.38) for these

situations in (2.36):

∆+(x− x′, t) =
m

2ℏ
c2t

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−H
(2)
1

(
mc
ℏ

√
c2t2−(x−x′)2

)
√

c2t2−(x−x′)2
(x+ ct > x′)

2i
π

K1(
mc
ℏ

√
((x−x′)2−c2t2))√

(x−x′)2−c2t2
(|x|+ ct < |x′|)

H
(1)
1

(
mc
ℏ

√
c2t2−(x−x′)2

)
√

c2t2−(x−x′)2
(x− ct < x′)

(2.39)



Chapter 2. The Dynamics of a Klein-Gordon Free Particle in 1+1 Dimensions 40

Outside the lightcone (|x| + ct < |x′|), the propagator is non-zero. Therefore, the

propagator for a positive/negative energy Klein-Gordon free particle propagator

does allow for acausal contributions to the wavefunction. These will be discussed

later on in the chapter. We now do the same for a negative energy propagator:

∆−(x− x′, t) = −im
πℏ
c2t
K1

(
− im

ℏ c
2t
√
1− (x−x′)2

c2t2

)
ict
√
1− (x−x′)2

c2t2

(c2t2 > (x− x′)2) (2.40)

Note that whereas we factored out ±ict from the square root for the positive ener-

gies, we now factor out ∓ict for negative energies. Applying (2.37) and (2.38) to

(2.40) gives :

∆−(x− x′, t) = −m

2ℏ
c2t

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H
(1)
1

(
mc
ℏ

√
c2t2−(x−x′)2

)
√

c2t2−(x−x′)2
(x+ ct > x′)

2i
π

K1(
mc
ℏ

√
((x−x′)2−c2t2)√

(x−x′)2−c2t2
(|x|+ ct < |x′|)

−H
(2)
1

(
mc
ℏ

√
c2t2−(x−x′)2

)
√

c2t2−(x−x′)2
(x− ct < x′)

(2.41)

2.3.2.2 Approaching the Light-Cone

For (2.39) to be valid, all the cases must be equal as x′ → x ± ct. As x′ reaches this

limit, the arguments of the Bessel and Hankel functions become very small and tend

to zero. Using this, we now take limiting forms of the three cases in (2.39) and show

that they are all equal as x′ → x ± ct. This is shown only for the positive energy

propagator; proofs for the negative energy propagator follow trivially [87].

We begin with the case where 0 ≤ x′ < x+ ct; the first case in (2.39). From 10.7.7

in [1], the limiting form for a Hankel function of the second kind is:

H(2)
ν (z) ∼ i

π
Γ(ν)

(
1

2
z

)−ν

(z → 0) (2.42)
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Substituting z for the argument of the Hankel function of the second kind in (2.41):

∴ H
(2)
1

(
mc

ℏ
√
c2t2 − z2

)
∼ 2i

π

(
mc

ℏ
√
c2t2 − z2

)−1

(ct→ z) (2.43)

We can now replace the Hankel function of the second kind in (2.41) with the ap-

proximation (2.43).

⇒ ∆(z, t) ∼ − i

π
ct(c2t2 − z2)−1 (ct→ z) (2.44)

Next, we look at the region outside of the lightcone; the second case in (2.39). We

have from 10.30.2 in [1]:

Kν(z) ∼
1

2
Γ(ν)

(
1

2
z

)−ν

(z → 0) (2.45)

(2.46) is identical to (2.42) apart from the pre-factors in front of the gamma functions.

(2.42) is multiplied by i
π

and (2.46) has the pre-factor 1
2
. We now replace z in (2.46)

with the argument of the modified Bessel function in (2.41):

K1

(
mc

ℏ
√
z2 − c2t2

)
∼ ℏ
mc

√
z2 − c2t2

(z → ct) (2.46)

Substituting this approximation into (2.41):

∴ ∆+(z, t) ∼
i

π
ct(z2 − c2t2)−1 (z → ct) (2.47)

∆+(z, t) ∼ − i

π
ct(c2t2 − z2)−1 (z → ct) (2.48)

Lastly, we have the region x− ct > x′ ≤ 0. We have from 10.7.7 in [1]:

H(1)
ν (z) ∼ − i

π
Γ(ν)

(
1

2
z

)−ν

(z → 0) (2.49)
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In which this approximation to the Hankel function of the first kind differs from the

corresponding approximation to the Hankel function of the second kind given in

(2.42) only by sign. The proceeding steps follow in the same way as the previous

approximations:

H
(1)
1

(
mc

ℏ
√
c2t2 − z2

)
∼ −2i

π

(
mc

ℏ
√
c2t2 − z2

)−1

(ct→ z) (2.50)

⇒ ∆−(z, t) ∼
i

π
ct(c2t2 − z2)−1 (−ct→ z) (2.51)

As x’ approaches the light-cone, the three cases in (2.39) are all equal. Furthermore,

the propagator behaves as a simple pole at the light-cone. Lastly, as t → 0 and

x− x′ → 0 the initial condition for a propagator (2.17) (that the propagator is a delta

function for t = 0) is recovered.

2.3.2.3 The WKB Limit of the Positive/Negative Energy Klein-Gordon Propaga-

tor

The WKB (Wentzel-Kramers-Brillouin) limit in quantum mechanics, provides a use-

ful approximation in the limit ℏ → 0. Mathematically, WKB solutions are approxi-

mations to differential equations of the form [56]:

∂2w

∂w2
+ γ2q(z, h)w = 0 (2.52)

in which the WKB limit is found by taking the parameter, γ, to be very large 4. We

can compare (2.52) to the Klein-Gordon equation (2.1) and see that the two are of the

same form.

The Klein-Gordon equation is solvable by WKB methods:

(
∂2

∂x2
− 1

c2
∂2

∂t2
− m2c2

ℏ2

)
Ψ(x, t) = 0 (2.53)

4Further information about the WKB method can be found in appendix A.
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In the limit, ℏ → 0, the term m2c2

ℏ2 tends to infinity and hence, plays the role of γ

in (2.52) 5. This causes the argument of the propagator (2.35) to become very large.

Therefore, an approximation to the modified Bessel function in which the argument

becomes very large is required. This is given by 10.25.3 in [1]. Applying this to the

Bessel function in (2.35) gives:

K1

(
mc

ℏ
√

(x− x′)2 − c2t2

)
∼
√

π
2mc
ℏ

√
(x− x′)2 − c2t2

exp

[
− mc

ℏ
√

(x− x′)2 − c2t2

]
(2.54)

Giving the propagator[87]:

∆WKB,±(x− x′, t) = ±ict
√

mc

2πℏ
√
(x− x′)2 − c2t2

exp
[
− mc

ℏ

√
(x− x′)2 − c2t2

]√
(x− x′)2 − c2t2

(2.55)

Unlike the light-cone approximation, the WKB limit does not become δ(x′) in the

limit (x − x′, t) → 0. The Klein-Gordon propagator shares this disagreement be-

tween the light-cone (small argument) limit and the WKB limit with some curved

space propagators [96].

If neither m, c or ℏ are particularly large (or small for the case of ℏ) this is still

a valid approximation for x − x ≫ ct. Therefore, the WKB approximation can pro-

vide insight into the acausal contributions of the Klein-Gordon propagator. Figure

2.6 shows how effective the different approximations (light-cone and WKB) to our

propagator are in different regions of space and different times. For large t, the WKB

approximation becomes very accurate in the causal region of x despite stating that

the WKB approximation was valid well in the acausal region of x. Similar accuracies

are also found in the large c limit of the propagator.

5c,m → ∞ can also be taken. m → ∞ follows trivially from what follows. c → ∞ is discussed
later in the chapter.
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FIGURE 2.4: Exact positive energy Klein-Gordon propagator (2.35)
(blue line), light-cone approximation (2.48) (yellow circles) and WKB
approximation (2.55) (orange circles). For (a) t = 0.001 and −0.0015 ≤
x ≤ 0.0015, (b) t = π/8 and π/4 ≤ x ≤ π, (c) t = π/2 and
−π/3 ≤ x ≤ π/3 and (d) t = 5π and −π ≤ x ≤ π. ℏ = c = m = 1

is used throughout.

2.3.2.4 The Intermediate Case

Contributions from the light-cone approximation arise from the residues of the poles

in (2.47) and contributions from the WKB approximation (2.55) often come from

saddles of the phase of the exponential. Situations can occur in which these two

contributions approach one another and start to coalesce [43], [30], [115].

This is problematic as the approximations are not equal at the pole; the WKB

approximation has a singularity at this point whereas the light-cone approximation

has a simple pole. Figure 2.6 shows that the light-cone approximation gives the best

fit to the exact propagator at the pole. Whereas, moving away from the pole, the
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WKB approximation is the most accurate. Therefore a propagator that, as x′ → x±ct.

behaves as a simple pole and, as x′ ≫ x± ct, decays exponentially is needed. To do

this, the following Mellin-Barnes type representation of the modified Bessel function

10.32.14[1] is used:

Kν(z) =
1

2π2i

(
π

2z

) 1
2

e−z cos(νπ)

∫ i∞

−i∞
Γ(τ)Γ

(
1

2
−τ−ν

)
Γ

(
1

2
−τ+ν

)
(2z)τdτ (2.56)

⇒ K1

(mc
ℏ
√

(x− x′)2 − c2t2
)
=

−1

2π2i

(
πℏ

2mc
√
(x− x′)2 − c2t2

) 1
2

e−
mc
ℏ

√
(x−x′)2−c2t2×. . .

· · · ×
∫ i∞

−i∞
Γ(τ)Γ

(
1

2
− τ − ν

)
Γ

(
1

2
− τ + ν

)(
2
mc

ℏ
√

(x− x′)2 − c2t2

)τ

dτ (2.57)

Substituting into (2.36):

∆±(x− x′; t) =
∓m
2π3ℏ

c2t

(
πℏ

2mc
√
(x− x′)2 − c2t2

) 1
2
e−

mc
ℏ

√
(x−x′)2−c2t2√

(x− x′)2 − c2t2
× . . .

· · · ×
∫ i∞

−i∞
Γ(τ)Γ

(
1

2
− τ − ν

)
Γ

(
1

2
− τ + ν

)(
2
mc

ℏ
√

(x− x′)2 − c2t2

)τ

dτ (2.58)

We see that the pre-factor in front of the integral in (2.58) looks very similar to the

WKB approximation. Therefore, in order to have this as an approximation in which

the light-cone and WKB approximations coalesce, we solve the integral in the light-

cone approximation. Rearranging (2.57) gives:

∫ i∞

−i∞
Γ(τ)Γ

(
1

2
− τ − ν

)
Γ

(
1

2
− τ + ν

)(
2
mc

ℏ
√

(x− x′)2 − c2t2

)τ

dτ =
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−2π2iK1

(mc
ℏ
√

(x− x′)2 − c2t2
)( πℏ

2mc
√

(x− x′)2 − c2t2

)− 1
2

e
mc
ℏ

√
(x−x′)2−c2t2 (2.59)

Using (2.46) to get the approximation for the modified Bessel function in (2.59) gives

the same result as in the case of approaching the light-cone. In this limit, the argu-

ment of the exponential tends to zero and we can therefore approximate it to unity.

∫ i∞

−i∞
Γ(τ)Γ

(
1

2
− τ − ν

)
Γ

(
1

2
− τ + ν

)(
2
mc

ℏ
√

(x− x′)2 − c2t2

)τ

dτ ≈

−2π2i

(
πℏ

2mc
√

(x− x′)2 − c2t2

)− 1
2 ℏ
mc
√
(x− x′)2 − c2t2

(2.60)

Substituting (2.60) into (2.58):

∆(x− x′; t) =
∓i
π
ct

1

(x− x′)2 − c2t2
e−

mc
ℏ

√
(x−x′)2−c2t2 (2.61)

This is the propagator for when the light-cone approximation and the WKB approx-

imation coalesce. As we take the light-cone limit, (2.61) behaves as a simple pole

whereas, moving away from this into the WKB regime, the exponential takes over.

It also gives a delta function as x− x′, t→ 0.

2.3.2.5 The Non-Relativisitic Limit of the Klein-Gordon Propagator

Taking the non-relativistic limit of our Klein-Gordon propagator provides us with

a useful way to check the validity of our calculations. We wish to show that as

c→ ∞, the free-particle Klein-Gordon propagator takes the form of the free particle

Schrödinger propagator given by:

∆(x− x′; t) =

(
m

2iπℏt

) 1
2

e−
m(x−x′)2

2iℏt (2.62)
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FIGURE 2.5: (a) Showing the light-cone approximation (2.47) (blue line)
and our pole-WKB propagator (2.61) (orange circles) for t = 0.001 and
−0.0015 ≤ x ≤ 0.0015. (b) The WKB approximation (2.55) (blue line)
and the pole-WKB propagator (orange line) for t = π/8 and π/4 ≤ x ≤

π.

The derivation of the Schrödinger propagator employing the methods used previ-

ously in the chapter is found in Appendix C. As negative energy states do not exist in

non-relativistic quantum mechanics, we only consider the positive energy propaga-

tor in this derivation. As c gets large, we can use the large argument approximation

to our Bessel function again. The starting point is the WKB approximation (2.55).

With c large, we make a further approximation to the square root:

√
(x− x′)2 − c2t2 ≈ ict

(
1− (x− x′)2

2c2t2

)
(2.63)

such that the WKB approximation now becomes:

K1

(
mc

ℏ
√
(x− x′)2 − c2t2

)
≈
√

πℏ
2imc2t

(
1− (x−x′)2

2c2t2

) exp [− imc2t

ℏ
(
1− (x− x′)2

2c2t2
)]

(2.64)

Multiplying out the denominator of the square root gives two terms: 2imc2t and
m(x−x′)2

it
. The first term is of O(c2) whereas the second term is of O(1). Hence, as c
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gets large, the first term dominates and the second becomes negligible. This gives:

∆+(x− x′, t) ≈

(
m

2iπℏt

) 1
2

e
−m(x−x′)2

2iℏt e
−imc2t

ℏ (2.65)

Which is the same the Schrödinger propagator (2.62) with a rest-mass term in the

phase of the second exponential. We can now use our Klein-Gordon propagator

confidently knowing that it reproduces the non-relativistic limit as c→ ∞.

2.3.3 Mixed-State Klein-Gordon Propagator

By a ’mixed state propagator’, we mean a propagator composed, of both posi-

tive and negative energy contributions. From the previous discussion of causal

wave packets, in which the wavepackets were composed of both positive and neg-

ative energies (frequencies), it might be expected that such a propagator would be

causal[67]. We now present two derivations of such propagators. The first which

follows on directly from the positive and negative energy propagators derived pre-

viously and the second that is constructed in a similar way to the causal wave-packet

(2.7).

2.3.3.1 Mixed-State Propagator: Position Representation

We compose the mixed-state propagator using equal amounts of positive and nega-

tive energy:

∆(x− x′; t) =
1

2

(
∆+(x− x′; t) + ∆−(x− x′; t)

)
(2.66)

Using the representations (2.39) and (2.41) allows us to see how the propagator be-

haves in the causal and acausal regions. For the case ct > x− x′;

∆(x− x′; t) =
m

4ℏ
c2t

(
H

(2)
1

(
mc
ℏ

√
c2t2 − (x− x′)2

)√
c2t2 − (x− x′)2

+
H

(1)
1

(
mc
ℏ

√
c2t2 − (x− x′)2

)√
c2t2 − (x− x′)2

)
(2.67)
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Using the following relation from 10.4.4 in [1]

Jν(z) =
1

2

(
H(1)

ν (z) +H(2)
ν (z)

)
, (2.68)

where Jν(z) are Bessel functions of the first type. We get:

∆(x− x′; t) =
m

2ℏ
c2t
J1
(
mc
ℏ

√
c2t2 − (x− x′)2

)√
c2t2 − (x− x′)2

(ct > x− x′). (2.69)

Moving onto ct < x′ − x:

∆(x− x′; t) = −m

4ℏ
c2t

(
H

(2)
1

(
mc
ℏ

√
c2t2 − (x− x′)2

)√
c2t2 − (x− x′)2

+
H

(1)
1

(
mc
ℏ

√
c2t2 − (x− x′)2

)√
c2t2 − (x− x′)2

)
(2.70)

= −m

2ℏ
c2t
J1
(
mc
ℏ

√
c2t2 − (x− x′)2

)√
c2t2 − (x− x′)2

(ct < x′ − x), (2.71)

lastly for ct < |x− x′|:

∆(x− x′; t) =
im

πℏ
c2t

(
K1

(
mc
ℏ

√
(x− x′)2 − c2t2)√

(x− x′)2 − c2t2
−
K1

(
mc
ℏ

√
(x− x′)2 − c2t2)√

(x− x′)2 − c2t2

)
= 0

(2.72)

Which gives our full mixed-state propagator:

∆(x− x′; t) =
m

2ℏ
c2t

⎧⎪⎪⎨⎪⎪⎩
J1

(
mc
ℏ

√
c2t2−(x−x′)2

)
√

c2t2−(x−x′)2
(c|t| > |x− x′|)

0 (c|t| < |x− x′|)
(2.73)

As predicted, our mixed state propagator is causal as it is zero for c|t| > |x − x′|;

outside the light-cone. As with the positive/negative energy propagators, the next

step is to derive expressions for the limiting forms of (2.73).
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2.3.3.2 Light-Cone Approximation of the Mixed-State Propagator

As the propagator approaches the light-cone, the argument of the Bessel function

gets very small. We can therefore use the following approximation:

Jν(z) ∼
zν

2νΓ(ν + 1)
(2.74)

giving the Bessel function in (2.73) as:

J1

(
mc

ℏ
√

(c2t2 − x− x′)2

)
∼ mc

2ℏ
√
c2t2 − (x− x′)2. (2.75)

Substituting this approximation back into (2.73), we get the propagator:

∆(x− x′; t) ∼ m2c3t

4ℏ2
θ(|ct| − |x− x′|) (x′ → x± ct) (2.76)

where θ is the Heaviside step function. Clearly, unlike the positive/negative energy

light-cone limit, the condition ∆(x− x′; 0) = δ(x− x′) is not met in (2.76). However,

by using (2.66) with the light-cone approximations for the positive and negative

energy propagators, we can retrieve the delta function at t = 0.

∆(x− x′; t) ∼ i

π

(
ct

(x− x′)2 − c2t2
− ct

(x− x′)2 − c2t2

)
= δ(x− x′ ± ct) (2.77)

Therefore our full light-cone approximation to the mixed-state propagator is:

∆(x− x′; t) ∼ δ(x− x′ ± ct) +
m2c3t

4ℏ2
θ(|ct| − |x− x′|) (x′ → x± ct) (2.78)

Clearly, for t = 0, we get the initial propagator requirement (2.17).

2.3.3.3 The WKB Approximation of the Mixed State Propagator

In the WKB limit, the positive and negative energy propagators take the form of

2.55. It is quite clear that when using (2.55) in (2.66) to get a WKB approximation to
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FIGURE 2.6: Showing |∆(x − x′; t)|; the WKB approximation (2.79) for
the mixed-state propagator (2.73) for t = 0.25 and (a) ℏ = 1), (b) ℏ =

1/20, (c) ℏ = 1/200 and (d) ℏ = 1/2000.

the mixed-state propagator, the result is zero. However, this does not mean that the

resulting wavefunction in the WKB limit for a mixed-state is zero. We mentioned

earlier that approximation (2.55) fails at the light-cone because it doesn’t produce a

delta function for t = 0. Therefore, as ℏ → 0, the only non-zero approximation to

the mixed state propagator is the light-cone approximation:

∆WKB(x− x′; t) ∼ δ(x− x′ ± ct) +
m2c3t

4ℏ2
θ(|ct| − |x− x′|) (ℏ → 0) (2.79)

We see in figure 2.6, how as we take smaller values of ℏ, the mixed-state propagator

(2.73) starts to resemble the delta function: δ((x− x′)2 − c2t2).
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2.3.3.4 Mixed-State Propagator: Time Representation

We now derive the mixed-state (causal) propagator by beginning with the causal

wave-packets discussed earlier. Unlike the previous mixed-state propagator (2.73),

this will be given in terms of a time variable t′ as opposed to the position variable,

x′. Recalling (2.7) and (2.8):

Ψ(x, t) =

∫
C

σ(ω) exp

[
i

(
x

c

√
ω2 − m2c4

ℏ2
− ωt

)]
dω (2.80)

σ(ω) =
1

2π

∫ ∞

0

Ψ(0, t)eiωtdt (2.81)

Taking Ψ(0, t) = δ(t− t′) gives:

σ(ω) =
1

2π
(2.82)

Which gives the propagator as:

∆(t− t′;x) =
1

2π

∫
C

exp

[
i

(
x

c

√
ω2 − m2c4

ℏ2
− ω(t− t′)

)]
dω, (2.83)

note that as this propagates in time, the units of ∆(t− t′;x) are s−1. We now wish to

separate out the large ω behaviour in (2.83). From our discussion in section 2.2.2 we

know that as ω → ∞ the argument of the square root becomes:

x

c

√
ω2 − m2c4

ℏ2
− ωt→ ω(x/c− t) (2.84)

Separating this out from the exponential in (2.83):

∆(t− t′;x) =
1

2π

∫
C

(
ei

x
c

√
ω2−m2c4

ℏ2 + ei
ωx
c − ei

ωx
c

)
e−i

ω(t−t′)
ℏ dω (2.85)
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Which can then be split into two separate integrals:

∆(t− t′;x) =
1

2π

∫
C

e−iω(t−t′)

(
ei

x
c

√
ω2−m2c4

ℏ2 − ei
ωx
c

)
dω +

1

2π

∫
C

eiω(
x
c
−(t−t′))dω (2.86)

Beginning with the second integral in (2.86), we see that there are no singularities

anywhere in the complex plane and can therefore have our contour running from

−∞ to ∞ along the real axis:

1

2π

∫ ∞

−∞
eiω(

x
c
−(t−t′))dω = δ

(
x

c
− (t− t′)

)
(2.87)

Clearly, this part of the integral accounts for the light-cone limit of our mixed-state

propagator. Moving onto the integral:

I(t− t′;x) =

∫
C

e−iω(t−t′)

(
ei

x
c

√
ω2−m2c4 − ei

ωx
c

)
dω (2.88)

From the discussion of the general case for the causal wave-packet, it is known that

for x > c(t − t′) (which is the case when we deform C into the upper half of the

complex plane) the result of the integral is zero. Therefore, we deform C into the

lower half of the complex plane. Doing this allows the integral to converge for

the (causal) case, x < c(t − t′). The fact that the upper-half of the plane doesn’t

contribute means we multiply the result of the integral in the lower half of the plane

by the Heaviside step function θ(x
c
− t). In contrast to when we deformed C into the

upper half of the plane (which was entirely regular), we encounter two singularities

at ω = ±mc2; the result of (2.88) will be non-zero. Writing the integrand of (2.88) as:

f(ω) = eiω(
x
c
−(t−t′))

(
exp

[
i
x

c

(√
ω2 − m2c4

ℏ2
− ω

)]
− 1

)
dω (2.89)

(2.89) shows that as ω → −i∞ and x
c
> t−t′, the integrand tends to zero. As there are

no other singularities in the complex plane aside from the branch cut, we can deform
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FIGURE 2.7: Complex plane of frequency, ω, for the integral (2.88). We
can deform the contour C into C2 only if x < c(t − t′). The branch cut

running from −mc2 to mc2 is marked by the red line.
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mc2−mc2

C2

iδ

FIGURE 2.8: Complex plane of frequency, ω, for the integral over (2.89).
We can further deform the contour C2 shown in figure 2.7 so that it

fully surrounds the branch cut shown by the red line.

C2 in figure 2.7 such that it is closed to completely surround the branch-cut. Refer-

ring back to equation (2.88), the term ei
ωx
ℏc contains no singularities, and therefore

does not contribute to the integral. Contributions arise from the term ei
x
c

√
ω2−m2c4 .

Figure 2.8 shows how we deform C2 to surround the branch cut. It runs a value

iδ (where δ is small and has units of energy) above and below the branch cut. As

δ becomes smaller, the vertical contributions either side of the branch cut become

negligible, allowing us to write (2.88) as:

I(t− t′;x) =

∫ mc2

−mc2
f(p+ iδ)dp−

∫ mc2

−mc2
f(p− iδ)dp (2.90)
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where p = ℜe(ω). When C2 runs above the branch cut, it goes from left to right and

gives the square root in (2.89) a phase (the angle of the contour with respect to the

x-axis of 0). Whereas, when it runs below the branch cut, it goes from the right to

left and has as phase of π. Denoting the square root as µ(ω)

Above the cut:

µ(ω) = ei0
√
p2 − m2c4

ℏ2
= i

√
m2c4

ℏ2
− p2 (2.91)

Below the cut:

µ(ω) = eiπ
√
p2 − m2c4

ℏ2
= −i

√
m2c4

ℏ2
− p2 (2.92)

Writing (2.88) as:

I(t− t′;x) =

∫ mc2

ℏ

−mc2

ℏ

e−ip(t−t′)

(
e−

x
c

√
p2−m2c4

ℏ2 − e
x
c

√
p2−m2c4

ℏ2

)
dp (2.93)

using the identity:

2 sinh(x) = ex − e−x (2.94)

we get:

I(t− t′;x) =
1

2π

∫ mc2

ℏ

−mc2

ℏ

e−ip(t−t′) sinh
(x
c

√
m2c4

ℏ2
− p2

)
dp (2.95)

To further evaluate (2.95) substitute:

p =
mc2

ℏ2
sin(θ) (2.96)

I(t− t′;x) = −mc
2

πℏ

∫ 1
2
π

− 1
2
π

e−i
mc2 sin(θ)

ℏ (t−t′) sinh
( x
ℏc

√
m2c4 −m2c4 sin2(θ)

)
cos(θ)dθ

(2.97)

= −mc
2

πℏ

∫ 1
2
π

− 1
2
π

e−i
mc2 sin(θ)

ℏ (t−t′) sinh
(mc

ℏ
x cos(θ)

)
cos(θ)dθ (2.98)



Chapter 2. The Dynamics of a Klein-Gordon Free Particle in 1+1 Dimensions 56

Next, we separate the integral into it’s real and imaginary components:

I(t− t′, x) = −mc
2

πℏ

∫ π/2

−π/2

cos

(
mc2(t− t′)

ℏ
sin(θ)

)
sinh

(
mcx

ℏ
cos(θ)

)
cos(θ)dθ + . . .

i
mc2

πℏ

∫ π/2

−π/2

sin

(
mc2(t− t′)

ℏ
sin(θ)

)
sinh

(
mcx

ℏ
cos(θ)

)
cos(θ)dθ. (2.99)

The second term in (2.99) is an odd function and will integrate to zero in the range

−1
2
π ≤ θ ≤ 1

2
π, leaving:

I(t− t′, x) = −mc
2

πℏ

∫ π/2

−π/2

cos

(
mc2(t− t′)

ℏ
sin(θ)

)
sinh

(
mcx

ℏ
cos(θ)

)
cos(θ)dθ

(2.100)

As we are integrating over one period of the integrand, we can change the limits to

0 ≤ θ ≤ π:

I(t−t′, x) = −mc
2

πℏ

∫ π

0

cos

(
mc2(t− t′)

ℏ
sin(θ)

)
sinh

(
mcx

ℏ
cos(θ)

)
cos(θ)dθ. (2.101)

To solve this we use the following integral representation of the Bessel function of

the first type from 10.9.13 in [1]

(
z + ζ

z − ζ

) ν
2

Jν
((
z2 − ζ2

) 1
2
)
=

1

π

∫ π

0

eζ cos(θ) cos(z sin(θ)− νθ)dθ . . .

· · · − sin(νπ)

π

∫ ∞

0

e−ζ cosh(t)−z sinh(t)−νtdt (2.102)

Making the substitutions: z = mc2

ℏ (t− t′), ζ = mc
ℏ x, ν = 1:

(
mc2

ℏ (t− t′) + mcx
ℏ

mc2

ℏ (t− t′)− mcx
ℏ

) 1
2

J1

(mc
ℏ
√
c2(t− t′)2 − x2

)
=

1

π

∫ π

0

e
mc
ℏ x cos(θ) cos

(mc2
ℏ

(t− t′) sin(θ)− θ
)
dθ (2.103)
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Doing the same but instead substituting ζ = −mc
ℏ x:

(
c(t− t′)− x

c(t− t′) + x

) 1
2

J1

(mc
ℏ
√
c2(t− t′)2 − x2

)
=

1

π

∫ π

0

e−
mc
ℏ x cos(θ) cos

(mc2
ℏ

(t− t′) sin(θ)− θ
)
dθ (2.104)

Subtracting (2.104) from (2.103):

((
c(t− t′) + x

c(t− t′)− x

) 1
2

−

(
c(t− t′)− x

c(t− t′) + x

) 1
2
)
J1

(mc
ℏ
√
c2(t− t′)2 − x2

)
=

2

π

∫ π

0

cos
(mc2

ℏ
(t− t′) sin(θ)− θ

)
sinh

(mc
ℏ
x cos(θ)

)
dθ (2.105)

Using the well known trigonometric identity, expand the cos term in (2.105) to give

the following two integrals:

2

π

∫ π

0

cos
(mc2

ℏ
(t− t′) sin(θ)

)
cos(θ) sinh

(mc
ℏ
x cos(θ)

)
dθ + . . .

2

π

∫ π

0

sin
(mc2

ℏ
(t− t′) sin(θ)

)
sin(θ) sinh

(mc
ℏ
x cos(θ)

)
dθ (2.106)

By symmetry, the second integral is zero:

2

π

∫ π

0

cos
(mc2

ℏ
(t−t′) sin(θ)

)
cos(θ) sinh

(mc
ℏ
x cos(θ)

)
dθ = 2x

J1(
mc
ℏ

√
c2(t− t′)2 − x2)√

c2(t− t′)2 − x2

(2.107)

From (2.95):

I(t− t;x) = −mc
2

ℏ
x
J1(

mc
ℏ

√
c2(t− t′)2 − x2)√

c2(t− t′)2 − x2
(2.108)
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And, finally, from (2.85) and (2.86) we have the propagator:

∆(t− t′;x) = δ

(
x

c
− (t− t′)

)
− mc2

ℏ
x
J1(

mc
ℏ

√
c2(t− t′)2 − x2)√

c2(t− t′)2 − x2
(2.109)

2.3.4 Example Calculations

Now we have derived our propagators, we use them in some example calcula-

tions. This gives us two insights: A check to see if the results produced are the

same as those directly from the Klein-Gordon equation and a method of produc-

ing time-dependent relativistic wavefunctions. We will present three calculations:

First, reproducing (2.2) using the positive energy propagator. Secondly, using our

light-cone, WKB and light-cone/WKB approximations to the positive energy prop-

agator to produce a plane-wave. Lastly, we perform a numerical calculation with

the time-representation of our mixed-state propagator to produce a wave-function

for a Gaussian signal.

2.3.4.1 Example 1: Plane Wave

We begin with our initial wavefunction (2.14):

ψ+(x, 0) =
1√
V
eiκx (2.110)

Using (2.15) and (2.35) - the positive energy propagator, gives the integral:

ψ(x, t) =
i

π

mc2

ℏ
t

1√
V

∫ ∞

−∞

K1(
mc
ℏ

√
(x− x′)2 − c2t2√

(x− x′)2 − c2t2
eiκx

′
dx′ (2.111)

In its current form, (2.111) cannot be solved. Replacing the closed form of the prop-

agator with the integral representation (2.23) gives:

ψ(x, t) =
1

2π

1√
V

∫ ∞

−∞

∫ ∞

−∞
exp

[
i

(
k(x− x′)−

√
c2k2 +m2c4

ℏ
t

)]
eiκx

′
dx′dk (2.112)
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=
1

2π

1√
V

∫ ∞

−∞
eikxe−i

√
c2k2−m2c4

ℏ t

∫ ∞

−∞
e−i(k−κ)x′

dx′dk (2.113)

For the second integral we have the solution:

∫ ∞

−∞
e−i(k−κ)x′

dx′ = 2πδ(k − κ) (2.114)

Giving:

ψ(x, t) =
1√
V

∫ ∞

−∞
eikxe−i

W (k)
ℏ tδ(k − κ)dk (2.115)

=
1√
V
ei(κx−

W (κ)
ℏ t) (2.116)

Which is the same wavefunction as that shown in (2.2); we have shown that the

Klein-Gordon propagator reproduces the exact result for a plane wave. However,

to do this we didn’t use the closed form of our propagator (2.35). This highlights a

significant challenge with using these propagators: often the integral that needs to

be solved is too complex to be evaluated analytically. However, the approximations

previously derived do not possess this problem.

2.3.4.2 Example 2: Plane Wave Approximations

We start with a same initial wavefunction as the previous section:

ψ+(x, 0) =
1√
V
eiqx (2.117)

Using the light-cone approximation to the Klein-Gordon propagator, the integral

we need to solve is:

ψ(x, t) =
i

π
√
V
ct

∫ ∞

−∞

eiκx
′

(x− x′)2 − c2t2
dx′ (2.118)

(2.118) contains poles at x′ = x± ct. We deform our contour away from the real axis
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ℑm(x′)
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C

FIGURE 2.9: Showing the deformed contour C for x′ plane in (2.118).
Poles are shown by red circles.

such that it encloses the two poles. In figure 2.8 the contour is closed in the upper

half of the plane. This is done because, as (2.118) shows, it is only in this half of the

plane that the integral converges. To solve (2.118), takeR → ∞. The integral around

C is zero and the integrals around C ′ and C ′′ are the sum of their respective residues

multiplied by iπ. Simple application of the residue theorem produces:

Res(x+ ct) = − 1

2ct
eiκ(x+ct) (2.119)

Res(x− ct) =
1

2ct
eiκ(x−ct) (2.120)

Which gives the wavefunction as:

ψ(x, t) =
eiκx

2
√
V

(
eiκct − e−iκct

)
(2.121)

= i
eiκx

2
√
V

sin(κct) (2.122)

We see from (2.122) that the light-cone approximation produces a sum of two plane

waves, one moving forwards in time and the other moving back. This shows that,
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despite only using a positive energy propagator, some negative energy states (posi-

tive energy states moving backwards in time) are still produced. By comparing the

result to the known result (2.116), we see that the light cone approximation is only

valid if W (κ) = κc
ℏ , i.e. for a particle with no mass. Therefore, this approximation is

not the most useful for a free-particle of purely positive/negative energy.

For the WKB approximation, the integral we wish to solve is:

ψ(x, t) = it

√
mc3

πℏV

∫ ∞

−∞

(
(x− x′)2 − c2t2

)− 3
4 e(ikx

′−mc
ℏ

√
(x−x′)2−c2t2)dx′ (2.123)

In which we have factored out 1
ℏ in the phase of the exponential. Initially, (2.123)

seems quite tricky to solve. However, we are helped by the fact we have a large

parameter 1
ℏ . This allows us to use the saddle-point method to solve the integral.

Full details of the saddle point method are shown in appendix B but in essence, the

saddle point method states that for highly oscillatory integrals of the form:

∫
C

eνw(z)ϕ(z)dz (ν → ∞) (2.124)

solutions arise from the saddles of w(z). Allowing our contour, C, to pass through

these saddle points gives us the result of the integral. Solutions are of the form:

∫
C

eνw(z)ϕ(z)dz = ϕ(z0)

√
−2π

νw′′(z0)
eνw(z0) (ν → ∞) (2.125)

Where z0 are the saddles ofw(z). In order to solve (2.123) we need to find the saddles

of:

w = ikx′ − mc

ℏ
√

(x− x′)2 − c2t2 (2.126)

Saddles occur at points where the differential of (2.126) is equal to zero. Such points

are given by the relationship:

x±(x, t) = x∓
√

1

1 + k2
ct, (2.127)
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ℜe(x′)

ℑm(x′)

x− ct x+ ctx+ x−

C

FIGURE 2.10: Showing the deformed contour, C, (blue line) for the in-
tegral (2.123). Branch cuts (red lines) occur at the branch points (red
circles) x′ = x± ct. Saddles of (2.126) are marked by orange squares.

where k = mc
ℏκ . We see that both of these saddles are causal. This is because the term√

1
1+k2

cannot be greater than one and only reaches unity when m = 0 in which our

light-cone approximation is valid. It would seem that again, we still have contri-

butions from positive energy states moving backwards in time (x−(x, t) in 2.127).

Therefore in order to get a purely positive energy wavefunction we allow our con-

tour to only pass through the saddle x+.

In the complex plane, we have two branch points at x± ct both arising from the

term
(
(x − x′)2 − c2t2

)− 3
4 . In order to ensure that the contour does not cross the re-

sulting cuts we have the cuts extending out to ±∞ respectively. Figure 2.10 shows

how we deform our contour so that it doesn’t pass through any branch cuts and that

the only contributing saddle is one moving forwards in time. Using (2.125) we can

solve (2.123). Denoting (2.126) as w(x+(x, t), x, t)we have the solution:

ψ(x, t) = −ct
√

mc

2V w′′(x+, x, t)

(
(x− x+)

2 − c2t2
)− 3

4 ew(x+(x,t),x,t) (2.128)

where

w′′(x′, x, t) =
∂2w(x, t)

∂x′2
=

mc(x− x′)2

ℏ((x− x′)2 − c2t2)
3
2

− mc

ℏ
√
(x− x′)2 − c2t2

(2.129)
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FIGURE 2.11: Full lines: real (orange) and imaginary (blue) WKB ap-
proximation to the initial plane-wave (2.128). Circles: real (blue) and
imaginary (green) parts to the direct solution for the free-particle Klein-
Gordon equation (2.23). (a) t = 0.001, (b) t = π/8, (c) t = π/2 and (d)

t = 5π. m = c = k = ℏ used throughout.

We now take these results and compare them to the known solution (2.23).

Figure 2.11 shows that there is excellent agreement between the WKB approx-

imation to a plane wave (2.128) and the eigenfunction solution to the free particle

Klein-Gordon equation (2.23). Furthermore, note that in all the graphs, we have

taken ℏ = 1. This shows that not only is the WKB approximation very accurate for

any value of time, it is also very accurate for any value of ℏ6. This is an initially

interesting result as the WKB approximation is only valid for ℏ → 0. However,

such accuracy is found in this case due to the fact that the eigenfunction solutions

to the free particle Klein-Gordon equation are of the same form as the eigenfunction

6Computations have also been done for much larger values of ℏ, results of the same accuracy with
respect to the eigenvalues were found.
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solutions to the free-particle Schrödinger equation; an asymptotic form of the Klein-

Gordon equation. Therefore, if the asymptotic results are the same to the standard

results, performing an asymptotic approximation there will be very accurate.

It is possible, as κ → ∞, that the saddles in (2.127) get very close to the pole at

x′ = x− ct. In this instance, we can use the pole-WKB propagator (2.61)7. To get the

wavefunction in this case we calculate the integral:

ψ(x, t) = − i

π
√
V
ct

∫ ∞

−∞

(
(x− x′)2 − c2t2

)−1

eκ
(
ix′−mc

ℏκ

√
(x−x′)2−c2t2

)
dx′ (2.130)

We can further simplify this by splitting the pole contribution in (2.130) into partial

fractions:
1

(x− x′)2 − c2t2
=

1

2ct

(
1

x− x′ − ct
− 1

x− x′ + ct

)
(2.131)

As we are only interested in the region where the saddle coalesces with the pole, we

can therefore simplify (2.130) by only taking into account the pole at x′ = x− ct:

ψ(x, t) = − i

2π
√
V

∫ ∞

−∞

(
x− x′ − ct

)−1
eκ
(
ix′−mc

ℏκ

√
(x−x′)2−c2t2

)
dx′ (2.132)

When making asymptotic approximations, the integral is mapped to a comparison

integral with a similar structure of saddle points. In the case of the saddle-point

method, the integral is mapped to the Gaussian integral which has a saddle at the

origin. However, this mapping would not work for (2.130) as it does not take the

pole into account. The comparison integral we use is [26] [115] (c.f. 7.7.2 and 7.2.3

of [[1]): ∫ ∞

−∞

e−u2

u− z
du = iπe−z2erfc(−iz) (2.133)

7The WKB approximation gives a very accurate result for this case. The saddle-pole approxima-
tion is included here to show how wavefunctions can be created using it.
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In which erfc(−iz) is the complementary error function. The first step in mapping

(2.130) to (2.131) is to ensure that the saddles coincide. This can be done by setting:

u2 = f(x′;x, t)− f(x+;x, t) (2.134)

In which κf(x′;x, t) is the argument of the exponential in (2.130). This implies that

when x′ = x+, u = 0 and hence the saddles occur at the same place. From this we

get the Jacobian:

∂u

∂x′
=

∂

∂x′
[√

f(x′;x, t)− f(x+;x, t)
]
=

f ′(x′;x, t)

2
√
f(x′;x, t)− f(x+;x, t)

(2.135)

Lastly, we now get the position of the pole at x′ = x− ct in the u plane:

z =
√
f(x− ct;x, t)− f(x+;x, t) (2.136)

Using these substitutions in (2.132) gives:

ψ(x, t) = − i

2π
√
V
eκf(x+;x,t)

∫ ∞

−∞
g(u)e−κu2

du (2.137)

in which,

g(u) =
2u

f ′(x′;x, t)(x− x′ − ct)
(2.138)

To proceed further, we need to simplify g(u). This is done using the following rep-

resentation:

g(u) =
A

u− z
+B + u(u− z)h(u) (2.139)

This is chosen so that we can isolate certain features of g(u). The term A
u−z

incorpo-

rates the pole, B gives the value of g(u) as u → 0 (approaches the saddle) and the

final term vanishes at both the pole and the saddle with h(u) containing information

about the higher order asymptotic properties of g(u), which will not be considered
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in this simple treatment. Calculating A is akin to calculating the residue of g(u):

A = lim
u→z

(u− z)g(u) = lim
x′→x−ct

2u

f ′(x′;x, t)(x− x′ − ct)
(2.140)

= Res

(
1

x− x′ − ct

⏐⏐⏐
x′=x−ct

)
= − 1

2ct
(2.141)

For B we take the limit u → 0 and subtract by A
u−z

to eliminate contributions from

the pole:

B = lim
u→0

g(u)− A

u− z
= lim

x′→x+

2u(u− z)

f ′(x′;x, t)(x− x′ − ct)
+
A

z
(2.142)

To get a more transparent representation of B, we expand f(x′;x, t) around the sad-

dle:

f(x′;x, t)|x′→x+ ≈ f(x+;x, t) +
1

2
(x′ − x+)

2 (2.143)

This allows us to get an expression for f ′(x′;x, t) in the neighbourhood of x+:

f ′(x′;x, t)|x′→x+ ≈
√
f(x′;x, t)− f(x+;x, t)

√
−2f ′′(x+;x, t) (2.144)

Which gives B as:

B =
1

x− x+ − ct

√
2

f ′′(x+;x, t)
− 1

2
√
f(x− ct;x, t)− f(x+;x, t)

(2.145)

As mentioned previously, we ignore the third term in (2.139).

g(u) ≈ − 1

2ct(u− z)
+

1

x− x+ − ct

√
2

f ′′(x+;x, t)
− 1

2
√
f(x− ct;x, t)− f(x+;x, t)

(2.146)

This gives the integral in (2.137) as:

∫ ∞

−∞
g(u)e−κu2

du ≈
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∫ ∞

−∞

(
− 1

2ct(u− z)
+

√
2

(x− x+ − ct)2f ′′(x+;x, t)
− 1

2z

)
e−κu2

du (2.147)

Splitting (2.147) into two integrals:

I1 = − 1

2ct

∫ ∞

−∞

1

u− z
e−κu2

du (2.148)

I2 =

(√
2

(x− x+ − ct)2f ′′(x+;x, t)
− 1

2z

)∫ ∞

−∞
e−κu2

du (2.149)

To solve (2.148) we use the comparison integral (2.133) and to solve (2.149) we use

the Gaussian integral. Denoting (2.147) as I we have:

I = −iπ
2
e−κ(f(x−ct;x,t)−f(x+;x,t))erfc(−i

√
κ(f(x− ct;x, t)− f(x+;x, t)) + . . .

√
π

κ

(√
2

(x− x+ − ct)2f ′′(x+;x, t)
− 1

2
√

(f(x− ct;x, t)− f(x+;x, t)

)
(2.150)

Which gives the wavefunction as:

ψ(x, t) = − i

2π
√
V
eκf(x+;x,t)

(
π

2ict
e−κz2erfc(−i

√
κz) + . . .

√
π

κ

(√
2

(x− x+ − ct)2f ′′(x+;x, t)
− 1

2z

))
(2.151)

Figure 2.12 compares the saddle-pole approximation to the exact solution (2.116).

We see that for very small times, the approximation is fairly accurate. However, as

t increases, the approximation gets smaller whereas the exact solution retains the

same amplitude. This is due to the fact that as t increases the saddle moves further

away from the pole. As this happens, the saddle and pole no longer coalesce and

this method becomes redundant.
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FIGURE 2.12: Showing the real parts of the wavefunction (2.116) (blue
lines) and the real parts of the saddle-pole wavefunction (2.151) (orange
lines). (a) t = 0.0002, (b) t = 0.002, (c) t = 0.02 and (d) t = 0.2. −π/2 ≤

x ≤ π/2, m = c = ℏ = 1 and κ = 20 is used throughout.

Another reason for the failure is that the uniform approximation is useful for

cases in which the contribution from a pole is initially dominant and is then over-

taken by the contribution from the saddle or vice-versa. ’Classical’ methods for

calculating the integral fail at the point where one contribution takes over from the

other; the uniform approximation is used here. As we have shown, the WKB ap-

proximation is valid throughout the evolution and hence the need to capture the

transition from saddle to pole is not necessary.
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FIGURE 2.13: (a) ℜe(ψ(x, t)) and (b) |ψ(x, t)|2 from (2.153). m = c =
ℏ = 1, 0 ≤ x ≤ 30 and 0 ≤ t ≤ 30.

2.3.4.3 Example 3: Numerical Calculation of a Causal Gaussian Signal

Propagators need not only be solved analytically. Numerical evaluation of the inte-

gral over the propagator can provide good insight into the evolution of a quantum

system. This can often be followed up by approximated analysis of the wavefunc-

tion using (2.4). This is done in [26] for a plane-wave with complex frequency. Here

we will numerically evaluate a Gaussian signal injected in to the half-space (x ≥ 0)

at x = 0 using our causal propagator (2.109). The initial wavefunction is:

ψ(0, t) = Ae−ω2t2 (2.152)

which gives our wavefunction as:

ψ(x, t) = Ae−ω2(t−x/c)2 − A

π

∫ x+ct

0

J1(
mc
ℏ

√
c2(t− t′)2 − x2√

c2(t− t′)2 − x2
e−k2t′2dt′ (2.153)

Figure 2.13 shows the numerically calculated time evolution of the wavefunction

(2.153) and its probability density. We see that some of the interference patterns in

figure 2.13 exceed an angle of 45o with respect to the t axis. This means that these

parts of the wavefunction are super-luminal. They are not however, acausal. This

simply reflects that the phase velocity for these parts of the wavefunction is larger

than c. This is caused by features of the waveform trying to catch up with the causal

part of the wavefunction; near the light-cone. We also see that as these parts of the
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wavefunction approach the light cone, they fade out and propagate causally.

Along with discussion of the initially surprising features of relativistic quantum

dynamics, in this chapter we have provided a thorough derivation of the Klein-

Gordon free particle propagators in 1+1 dimension. Due to the complicated mathe-

matical nature of these propagators, it was crucial to also derive their limiting forms.

We looked at the ℏ → 0 (WKB) limit which provides a form of the propagator that

lends itself to be solved by the saddle point method. We also derived the light-cone

limit (x − x′ → ct). This is best solved through contour integration. It was found

that the WKB approximation provided the most accurate for any particle of m > 0.

It is also possible that these two limits could occur in the same region of space,

it is necessary to consider the approximation to the propagator in this case. This

method did not provide an accurate representation in the example calculations.

However, this approximation is there for the case when the WKB limit exchanges

dominance with the light-cone limit which, in our example, did not happen.

We have omitted higher dimensions, there are good accounts of their derivation

in the literature [106], [109], [119]. These are written in terms of the Dirac equation

but all begin with the formula (2.20).

In relativistic quantum theory, propagators are mostly used in a second-quantised

language; the propagators derived here are built within a first-quantised frame-

work. Using a first-quantised relativistic system is problematic for high-energy rel-

ativistic calculations in which particle creation/annihilation is intrinsic [92], [84].

However, the first quantised propagators, as shown, still highlight interesting fea-

tures of the relativistic dynamics of a quantum free particle.
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Chapter 3

Non-Relativistic Free Particle

Superoscillations

We now begin the study of free-particle quantum superoscillations in 1 + 1 dimen-

sions. Our starting point is the non-relativistic case; observing how an initially su-

peroscillatory wavefunction evolves according to the Schrödinger equation.

Up to this point (as mentioned in the introduction), there has been a reasonable

amount of work in the field of quantum superoscillations. Beginning with the link

between superoscillations and weak values [3]. Superoscillations have been investi-

gated in many non-relativistic quantum systems including, the harmonic oscillator

[37], and with an applied electric or magnetic field [5], [41]. In this chapter we fo-

cus on the paper Evolution of Quantum Superoscillations and Optical Superresolution

Without Evanescent Waves, which describes a quantum free-particle wavefunction,

initially exhibiting superoscillations evolves according to the Scr ödinger equation.

We begin with an analysis of the superoscillatory function presented in the in-

troductory chapter:

f(x) = (cos(κx) + ia sin(κx))Nρ (a > 1, N ≫ 1). (3.1)

This involves looking at key features such as its Fourier series representation (plane-

wave expansion), local momentum and the region in which it superoscillates.

Having an understanding of the initial superoscillatory function, we take the
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plane-wave expansion and demonstrate how it evolves in a non-relativistic quan-

tum mechanical system. This representation presents us with the features of its evo-

lution we wish to understand. However, an expansion of plane waves is too opaque

a representation to analyse the evolution of the exponentially small superoscilla-

tions. We therefore use propagator methods, as discussed in the previous chapter,

to uncover the features of the superoscillatory wavefunction’s evolution before un-

covering the underlying physics.

3.1 Superoscillatory Initial State

We begin with the superoscillatory function (3.1), where κ is a wavenumber of order

unity. In the case of quantum mechanics N is equivalent to the ratio m
ℏ and hence,

has dimensions m−2s. In order to achieve a dimensionless power in (3.1), ρ has di-

mensions m2s−1, its physical interpretation will become apparent in chapter 4.

It is important that the asymptotic parameter, Nρ, is dimensionless as this allows

us to compare the relative influence of each term in the power of (3.1). In this case,

we are considering a system in which the energy scale is comparable to N however,

with the requirement N ≫ 1, the energy scale therefore large in comparison to ℏ.

Figure 3.1 shows the superoscillatory function, (3.1). Superoscillations are con-

centrated around x = 0 and they are a number of orders of magnitude smaller

than the conventional oscillations. The fact that in (a) the wavefunction appears

flat where f(x) is superoscillating demonstrates this. We now look at some of the

properties of (3.1).

By setting a = 1, (3.1) becomes a plane wave travelling from the left to right.

However, if a > 1, the oscillation around x = 0 becomes faster. Using small-x ap-

proximations to the sin and cos in (3.1), we can further understand the behaviour of

the function in the region where it appears to be superoscillating:

f(x) ≈ (1 + iaκx)Nρ = exp[ln(1 + iaκx)Nρ] = exp[Nρ ln(1 + iaκx)] (3.2)
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FIGURE 3.1: (a) f(x) and (b) ℜe(log(ℜe(f(x))) from (3.1) for N = 20,
a = 4, κ = ρ = 1, −π ≤ x ≤ π. In (b), vertical lines represent points
at which the function passes through the origin. The double arrow
represents the shortest period in the Fourier series (corresponding to

π/N ).

From this we can approximate the logarithm:

ln(1 + iaκx) ≈ (iaκx) (3.3)

⇒ f(x) ≈ exp[iaNρκx] (3.4)

(3.4) shows that the frequency of (3.1) increases exponentially with a around x = 0.

In order to confirm (3.1) as a superoscillatory function, a Fourier series repre-

sentation must be determined. We begin with representing the sin and cos in their
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exponential configurations:

f(x) = (cos(κx) + ia sin(κx))Nρ =
1

2Nρ
(eiκx(1 + a) + e−iκx(1− a))Nρ (3.5)

Using a binomial expansion to expand (3.5) gives:

(eiκx(1 + a) + e−iκx(1− a))Nρ =

Nρ∑
m=0

(Nρ)!

m!(Nρ−m)!
(1− a)Nρ−m(1 + a)meimκxe−i(Nρ−m)κx. (3.6)

Using the substitution

km = 1− 2m

Nρ
, (3.7)

(3.5) becomes:

⇒ f(x) =
1

2Nρ

Nρ∑
m=0

(Nρ)!

m!(Nρ−m)!
(1− a)Nρ−m(1 + a)m exp[iNρkmκx], (3.8)

and can be written as the sum:

f(x) =

Nρ∑
m=0

cm exp[iNρkmκx], (3.9)

in which the coefficients, cm, are given as:

cm =
(Nρ)!

2Nρ
(−1)m

(a2 − 1)
1
2
Nρ[(a− 1)/(a+ 1)]

1
2
Nρkm

[1
2
Nρ(1 + km)]![

1
2
Nρ(1− km)]!

. (3.10)

(3.7) gives the Fourier components for the superoscillatory function; it is clear

that they are band-limited: |km| ≤ 1. From the small-x approximation (3.4), around

x = 0 the frequency is governed by the superoscillatory parameter, a; it is a require-

ment that a > 1.
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The superoscillatory nature of (3.1) can also be observed through representation

in terms of it’s local momentum :

k(x) =
1

Nρ
ℑm

(
d

dx
[ln(f(x))]

)
(3.11)

We begin with a conversion to polar coordinates:

r = |x+ y| =
√
rr∗ =

√
f(x)f ∗(x) (3.12)

θ = arctan

[
ℑm(f(x))

ℜe(f(x))

]
(3.13)

Substituting (3.1) into (3.12)

r =
√
f(x)f ∗(x) = (cos2(κx) + a2 sin2(κx))

1
2
Nρ (3.14)

and hence:

cos(κx) + ia sin(κx) = f1(x) =
√
f(x)f ∗(x)eiθ = reiθ (3.15)

⇒ f(x) = fN
1 (x) = rNρeiNρθ. (3.16)

We can then define θ in terms of the superoscillatory parameter, a.

θ = arctan(a tan(κx)) (3.17)

To get the local wavenumber (3.11) the logarithm of f(x) is taken and differentiated

with respect to x.

d

dx
[ln(f(x)] =

Nρκ((a2 − 1) sin(κx) cos(κx) + ia)

cos2(κx) + a2 sin2(κx)
(3.18)
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FIGURE 3.2: Local momentum (3.20) of the superoscillatory function
(3.1), blue line and the fastest Fourier component, km = 1, orange line.

κ = 1 and a = 4, −π/2 ≤ x ≤ π/2.

splitting this into it’s real and imaginary parts,

d

dx
[ln(f(x))] =

Nρκ((a2 − 1) sin(κx) cos(κx))

cos2(κx) + a2 sin2(κx)
+ i

Nρκa

cos2(κx) + a2 sin2(κx)
. (3.19)

Which gives the local momentum:

k(x) =
1

Nρ
ℑm

(
d

dx
[ln(f(x))]

)
=

κa

cos2(κx) + a2 sin2(κx)
(3.20)

Figure 3.2 shows the local momentum of the superoscillatory function, (3.20)

and the fastest Fourier component. Around x = 0, the local momentum is greater in

magnitude than the fastest Fourier component and therefore, in this region (which

shall later be quantified) the function is superoscillatory.

The local momentum has been determined. We now look to use it in order to

create a new representation of f(x):

r = (cos2(κx) + a2 sin2(κx))
1
2
Nρ =

(
aκ

k(x)

) 1
2
Nρ

(3.21)
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Consider the integral:

I =

∫ x

0

k(x′)dx =

∫ x

0

aκ

cos2(κx′) + a2 sin2(κx′)
dx′ (3.22)

To solve (3.22) we use 2.562.1 in [54]:

For
b

a
> −1,

∫
1

a+ b sin2(x)
dx =

1√
a(a+ b)

arctan

(√
a+ b

a
tan(x)

)
(3.23)

⇒ I = arctan(a tan(κx)) (3.24)

From (3.16), (3.17), (3.21) & (3.24), we get a representation of f(x) in terms of the

local momentum:

f(x) =

(
aκ

k(x)

) 1
2
Nρ

exp
[
iNρ

∫ x

0

k(x′)dx′
]

(3.25)

Before looking at how f(x) evolves according to the Schrödinger equation, we

wish to evaluate the region in which f(x) is superoscillatory. As superoscillations

are found where |k(x)| > 1, we can use this property to determine the superoscilla-

tory region:

aκ

cos2(κx) + a2 sin2(κx)
=

aκ

1− (a2 − a) sin2(κx)
> 1. (3.26)

Which gives the following two conditions:

1

a+ 1
> sin2(κx), cos2(κx) >

a

a+ 1
(3.27)

⇒ 1√
a+ 1

> sin(κx),

√
a

a+ 1
> cos(κx) (3.28)
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∴
cos(κx)

sin(κx)
>

√
a

a+1√
1

a+1

(3.29)

(3.29) can then be solved to give the superoscillatory region:

|x| < xs = arccot(
√
a) (3.30)

where xs represents the superoscillatory boundary. (3.30) shows that |xs| increases

with a and therefore a not only determines the degree to which f(x) superoscillates

but also the size of the superoscillatory region.

We can now determine the number of superoscillations through:

nosc =
Nρ

2π

∫ arccot(
√
a)

− arccot(
√
a)

k(x)dx. (3.31)

Substituting the local momentum (3.20) into (3.31) gives:

∫ arccot(√a)

−arccot(√a)

k(x)dx =
[
arctan(a tan(κx))

]arccot(√a)

− arccot(
√
a)

(3.32)

= arctan(a tan(arccot(
√
a))))− arctan(a tan(− arccot(

√
a))) (3.33)

Using the fact that tan is an odd function:

∫ arccot(
√
a)

− arccot(
√
a)

k(x)dx = 2arctan(a tan(arccot(
√
a))) (3.34)

∴ nosc =
Nρ

π
arctan(a tan(arccot(

√
a))) (3.35)

=
Nρ

π
arctan(

√
a) (3.36)
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The number of superoscillations in the window is directly proportional to N . This

is not a surprising result as N represents the number of plane waves present in the

function’s Fourier series.

This concludes the analysis of the superoscillatory function, f(x). The most im-

portant features are the way in which the parameters a and N affect the superoscil-

lations.

We began by stipulating that a must be greater than 1 however; a more precise

statement would be to say that it must be larger than the fastest Fourier component.

If this is not the case, a plane wave is produced.

Not only does N determine the number of plane waves, it is also directly pro-

portional to the number of oscillations in the superoscillatory region. Therefore, in

order to get an interesting form of f(x), N must be considerably greater than 1. As it

is found in the exponential of the local momentum, it is referred to as an asymptotic

parameter.

3.2 Eigenfunction Expansion

As the eigenfunction expansion of the superoscillatory function (3.9) is a series of

plane waves, it is a solution to the time-dependent Schrödinger equation:

Ψ(x, 0) =
A√
L

Nρ∑
m=0

cm exp[iNρkmκx], (3.37)

where A is a dimensionless normalisation constant and L, a normalisation length.

The time-dependent wavefunction can then be determined through multiplication

by the Schrödinger time-evolution operator:

Ψ(x, t) =

Nρ∑
m=0

Ψ(x, 0)e−
1
2
iNρk2mωt. (3.38)
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FIGURE 3.3: −ℜe(log(ℜe(Ψ(x, t)))) from (3.39). N = 20, a = 4, ρ = κ =
1 and −π/2 ≤ x ≤ π/2, 0 ≤ t ≤ π/2 Yellow lines correspond to points
where ℜ(Ψ(x, t)) is equal to zero. The white double arrow represents

the minimum possible spacing for a conventional oscillation.

Therefore the time-dependent superoscillatory wavefunction, in it’s eigenfunction

expansion is:

Ψ(x, t) =
A√
L

Nρ∑
m=0

cm exp

[
iNρ

(
kmκx−

1

2
k2mωt

)]
, (3.39)

where cm is given by (3.10).

Figures 3.3 and 3.4 show how equation (3.39) evolves. There are two key fea-

tures: the asymmetrical evolution (with respect to a line located x = 0) and the

disappearance of superoscillations.

The asymmetrical evolution can be seen at small t where there is a higher con-

centration of yellow lines (which correspond to vertical lines in figure 3.4) on the

left side compared to the right of figure 3.3. This phenomenon is given the term ’the

wall effect’[30] as the function evolves differently either side of a line, or ’wall’, at

x > 0.
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FIGURE 3.4: −ℜe(log(ℜe(Ψ(x, t)))) from (3.39). N = 20, a = 4, ρ =
κ = 1 and −π/2 ≤ x ≤ π/2 for times: (a) t = 0; (b) t = 0.015π; (c)
t = 0.08π; (d) t = (3 +

√
7)/8; (e) t = 0.5π; (f) t = π. The logarithm

has been taken because every time the wavefunction crosses 0 (i.e. it
oscillates) the logarithm gives negative infinity. Oscillations can then
be easily seen as vertical lines. Double arrows represent the shortest

period of the Fourier series.

The disappearance of the superoscillations corresponds to the fact that as t in-

creases, the distance between the vertical lines in figure 3.4 become larger and more
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regular and hence any superoscillations, observed as high concentrations of lines,

have disappeared.

Despite providing useful insight into the features of the initial superoscillatory

function’s evolution, the eigenfunction expansion is not a suitable representation

with which to gain understanding. As the superoscillations are created by almost

perfect destructive interference, finding the cause of the wall effect and disappear-

ance using the component plane waves will not be a profitable exercise.

3.3 Evaluation of the Propagator

To understand the wall effect and disappearance of superoscillations, we represent

the time-dependent wavefunction as an integral over a propagator.

Ψ(x, t) =

∫ ∞

−∞
∆(x− x′; t)ψ(x′)dx′, (3.40)

where ψ(x) = Ψ(x, 0). Such representations were seen, in a relativistic context, in

chapter 2. The non-relativistic propagator was derived as the limit of the Klein-

Gordon propagator and was found to be (ignoring the rest mass term):

∆(x− x′; t) =

√
N

2πit
e−

N(x−x′)2
2it , (3.41)

such that the integral to be solved to get the time-dependent superoscillatory wave-

function is:

Ψ(x, t) =

√
NA2

2πLit

∫ ∞

−∞

(
cos(κx′) + ia sin(κx′)

)Nρ

e−
N(x−x′)2

2it dx′. (3.42)

3.3.1 Representation in Terms of the Complex Momentum

In order to solve the integral in (3.42), a different representation of the initial wave-

function is required. We choose one similar to that of (3.25) but instead of using the
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local momentum, we use the complex (local) momentum, this is given as:

q(x) = − i

Nρ

∂

∂x

[
log(

√
L

A
ψ(x))

]
, (3.43)

where the local momentum is defined as k(x) = ℜe(q(x)). Substituting ψ(x) into

(3.43) gives:

q(x) = κ
a cos(κx) + i sin(κx)

cos(κx) + ia sin(κx)
. (3.44)

From this, the initial wavefunction can be represented as:

ψ(x) =
A√
L
exp

[
iNρ

∫ x

0

q(x′)dx′

]
. (3.45)

Substituting this representation into the integral over the propagator:

Ψ(x, t) =

√
NA2

2iπLt

∫ ∞

−∞
exp

[
iN

(
ρ

∫ x′

0

q(x′′)dx′′ +
(x− x′)2

2t

)]
dx′ (3.46)

This now gives the propagator representation of Ψ(x, t) in a form which can be

solved by the saddle point method, which produces solutions to integrals of the

form:

I =

∫ ∞

−∞
g(z)eνw(z)dz (3.47)

in which ν ≫ 1, general solutions are found to be:

I =
∑
j

√
−2π

νw′′(zj)
g(zj)e

νw(zj) (3.48)

where zj are the saddle points of the phase of the exponentialw(zj), a general deriva-

tion of (3.48) is given in appendix ??.

Therefore, in order to solve (3.46), the saddle points of the phase of the exponen-

tial must be found.

ϕ(x′;x, t) = i

(
ρ

∫ x′

0

q(x′′)dx′′ +
(x− x′)2

2t

)
, (3.49)



Chapter 3. Non-Relativistic Free Particle Superoscillations 84

is the phase of the exponential. Saddle points occur when:

∂

∂x′

[
ϕ(x′;x, t)

]
= i

∂

∂x′

[
ρ

∫ x′

0

q(x′′)dx′′ +
(x− x′)2

2t

]
= 0 (3.50)

giving the saddle point condition:

q(xj) =
x− xj
ρt

, (3.51)

where xj are the saddles of (3.49). Now we have an equation for the contributing

saddles of the integral (3.46), by comparing this and the general saddle point solu-

tion (3.48) we get:

ν = N, w = ϕ(x′;x, t), g =

√
N

2πit
(3.52)

w′′ =
∂2

∂x′2

[
ρ

∫ x′

0

q(x′′)dx′′ +
(x− x′)2

2t

]
= i

∂

∂x′

[
ρq(x′)− x− x′

t

]
(3.53)

= i

(
ρq′(x′) +

1

t

)
. (3.54)

We then have the saddle point solution to the integral over the propagator:

Ψ(x, t) ≈
∑
j

√
−A2

2πL(ρq′(xj)t+ 1)
exp

[
iN

(
ρ

∫ xj

0

q(x′′)dx′′ +
(x− xj)

2

2t

)]
. (3.55)

3.3.2 Analytic Solutions

To obtain an analytic solution to the saddle point condition (3.51), small x and t

approximations to the initial superoscillatory function and hence, it’s complex mo-

mentum, are required. Before doing this however, we check to see whether these

approximations retain the features of interest in the evolution of the superoscilla-

tory wave.
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We begin with approximations to cos and sin in the initial superoscillatory func-

tion:

cos(κx) ≈ 1, sin(κx) ≈ κx (3.56)

which gives:

ψ(x) =
A√
L

(
cos(κx) + ia sin(κx)

)Nρ ≈ A√
L
(1 + iaκx)Nρ (3.57)

and therefore the complex momentum:

q(x) = − i

Nρ

∂

∂x
[ln(ψ(x))] =

aκ

1 + iaκx
. (3.58)

To simplify further calculations, we introduce the superoscillatory variables:

ξ = ax, τ = a2t (3.59)

giving:

Ψ(ξ, τ) =

√
NA2

2πLiτ

∫ ∞

−∞
exp

[
iN

(
(ξ − ξ′)2

2τ
+ ρ

∫ ξ

0

q(ξ′′)dξ′′

)]
dξ′. (3.60)

We know the exponential of the integral over the complex momentum:

iNρ

∫ ξ′

0

q(ξ
′′)dξ′′ = iNρ

∫ ξ′

0

κ

1 + iκξ′
dξ′ = Nρ ln(1 + iκξ). (3.61)

Substituting (3.61) into (3.60) gives:

Ψ(ξ, τ) =

√
NA2

2πLiτ

∫ ∞

−∞
(1 + iκξ′)Nρ exp

[
iN

(ξ − ξ′)2

2τ

]
dξ′. (3.62)

By making the substitution:

y =

√
iN

2τ
(ξ − ξ′), (3.63)
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transforms (3.62):

Ψ(ξ, τ) =
A

π
√
L

∫ ∞

−∞

(
1 + iκξ − iκ

√
2τi

N
y

)Nρ

e−y2dy (3.64)

The subsequent substitution:

z =
κ

1 + iκξ

√
2τi

N
, (3.65)

gives:

Ψ(ξ, τ) =
A√
πL

(1 + iκξ)Nρ

∫ ∞

−∞
(1− zy)Nρe−y2dy (3.66)

By using a binomial expansion on (1− zy)Nρ, we get:

(1− zy)Nρ =

Nρ∑
m=0

(Nρ)!

m!(Nρ−m)!
(−1)mzmym. (3.67)

⇒ Ψ(ξ, τ) =
A(Nρ)!√

πL
(1 + iκξ)Nρ

Nρ∑
m=0

(−1)m

m!(Nρ−m)!
zm
∫ ∞

−∞
ymey

2

dy (3.68)

Note that, due to the power of ym in (3.68), for odd values of m, Ψ(ξ, τ) is equal to

zero. For even powers values of m, we replace m with 2m and sum to values of 1
2
N

to get a standard integral:

Ψ(ξ, τ) =
A(Nρ)!√

πL
(1 + iκξ)Nρ

int( 1
2
Nρ)∑

m=0

(−1)2m

(2m)!(Nρ− 2m)!
z2m

∫ ∞

−∞
y2mey

2

dy, (3.69)

∫ ∞

−∞
y2me−y2dy =

(2m)!

22mm!

√
π, (3.70)

∴ Ψ(ξ, τ) =
A√
L
(Nρ)!(1 + iκξ)Nρ

int( 1
2
Nρ)∑

m=0

1

m!(Nρ− 2m)!

(
1

2
z

)2m

, (3.71)
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FIGURE 3.5: (a) The small ξ and τ approximation to the time-dependent
superoscillatory wavefunction, ℜe(log(ℜe(Ψ(ξ, τ)))) from (3.72) for
−2 ≤ ξ ≤ 2 and 0 ≤ τ ≤ 15. (b) the eigenfunction expansion
ℜe(log(ℜe(Ψ(x, t)))) (3.39) for −0.5 ≤ x ≤ 0.5 and 0 ≤ t ≤ 15

16 .
N = 20, a = 4 and κ = ρ = 1 in both.

and finally, re-substitution for z gives the small ξ and τ approximation to the super-

oscillatory wavefunction:

Ψ(ξ, τ) =
A√
L
(Nρ)!(1 + iκξ)Nρ

int( 1
2
Nρ)∑

m=0

1

m!(Nρ− 2m)

(
−2iκ2τ

N(1 + iκξ)2

)m

(3.72)

In figure 3.5, the small ξ and τ approximation is compared to the Fourier series

representation, in regions where the approximation is valid, there is very strong

agreement between the two.

This therefore allows us to pursue a saddle-point method solution using these

approximations in the hope that it might provide a clear enough description of the

wavefunction to allow us to understand the wall effect and the disappearance of

superoscillations.

We begin by deriving the saddle-point condition (3.51) in terms of the superoscil-

latory variables ξ and τ :
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The phase of the exponential is:

Φ(ξ′; ξ, τ) = i

(
(ξ − ξ′)2

2τ
+ ρ

∫ ξ

0

q(ξ′′)dξ′′

)
, (3.73)

saddles are found by differentiating with respect to ξ′, setting the result to zero and

solving for ξ′.
∂

∂ξ′
[Φ(ξ′; ξ, τ)] = 0. (3.74)

Recalling (3.61): ∫ ξ′

0

κ

1 + iκξ′
dξ′ = −i ln(1 + iκξ), (3.75)

(3.76) becomes:

Φ(ξ′; ξ, τ) = i

(
(ξ − ξ′)2

2τ
− iρ ln(1 + iκξ)

)
. (3.76)

Through differentiation, this becomes:

∂

∂ξ′
[Φ(ξ′; ξ, τ)] =

ξ − ξ′

τ
− ρκ

1 + iκξ′
. (3.77)

At points ξ′ = ξj,
∂Φ(ξ′;ξ,τ)

∂ξ′
= 0:

⇒ ξ − ξj
τ

− ρκ

1 + iκξj
= 0 (3.78)

∴ (ξ − ξj)(1 + iκξj) = κτρ, (3.79)

which gives the quadratic equation:

iκξ2j + (1− iκξ)ξj + κτρ− ξ = 0 (3.80)

which gives the saddle points in the small ξ, τ limit as:

ξj = ξ± =
1

2κ

(
(i+ κξ)± i

√
1− κ2ξ2 + 2κi(2ρκτ − ξ)

)
(3.81)
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FIGURE 3.6: ℜe(log(ℜe(Ψ(ξ, τ)))) from (3.83). (a) −2 ≤ ξ ≤ 2, τ = 0.25;
(b) −2 ≤ ξ ≤ 2, τ = 0.5; (c) −0.9 ≤ ξ ≤ 1.1, τ = 0.5; (d) −2 ≤ ξ ≤ 2,

τ = 0.75. N = 20 for all graphs.

Therefore, two saddles contribute to the integral:

Ψ(ξ, τ) =

√
NA2

2πLiτ

∫ ∞

−∞
exp

[
iN

(
(ξ − ξ′)2

2τ
+ ρ

∫ ξ

0

q(ξ′′)dξ′′

)]
dξ′. (3.82)

We can use (3.55) to get the saddle-point approximation to (3.82):

Ψ(ξ, τ) ≈
∑
±

√
−A2

2πL(ρτq′(ξ±) + 1)
exp

[
iN

(
ρ

∫ ξ±

0

q(ξ′′)dx′′ +
(ξ − ξ±)

2

2τ

)]
. (3.83)

Figure 3.6 shows the evolution of (3.83). It is clear that the wall effect is captured by

this representation, it also shows that for a certain point (ξ, τ ), there is a discontinu-

ity, seen in (c), at which the method fails.
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3.4 Analysis

By evaluating the integral over the propagator using small ξ and τ approximations

and then applying the saddle-point method, we have created a representation of the

superoscillatory wavefunction through which we can explain the wall effect and the

disappearance of superoscillations.

In this method, contributions to the integral over the propagator arise from sad-

dles, which can be viewed as complex momenta. We now consider how they affect

the evolution of the superoscillatory wavefunction by observing how the two sad-

dles exchange dominance in the (ξ, τ) plane.

To observe how the saddles exchange dominance we calculate their Stokes and

anti-Stokes lines[28] [101]. In order to do this, recall the phase of the exponential in

(3.82):

Φ±(ξ±; ξ, τ) =
(ξ − ξ±)

2

2τ
+ ρ

∫ ξ±

0

q(ξ′′)dξ′′. (3.84)

The two saddles result in two contributing phases which, due to N being an asymp-

totic parameter, are the primary cause of the evolution of the wavefunction. It is

from these phases that the Stokes and anti-Stokes lines are calculated:

anti-Stokes line: ℑm(Φ+(ξ±; ξ, τ)− Φ−(ξ±; ξ, τ)) = 0 (3.85)

Stokes line: ℜe(Φ+(ξ±; ξ, τ)− Φ−(ξ±; ξ, τ)) = 0 (3.86)

Stokes lines are created at the points in which absolute values of the two phases,

Φ+ and Φ−, are maximally different. At these points, a sub-dominant saddle (the

one of smallest amplitude) can either disappear behind or, emerge from, a domi-

nant saddle (the saddle of largest amplitude).

Anti-Stokes lines occur at points in which the absolute values of the two phases

are equal. Across these lines, the respective dominance of any contributing saddles

changes; a dominant saddle becomes sub-dominant and vice-versa.
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FIGURE 3.7: The (x, t) plane as calculated from the saddle point equa-
tion. Red curves: Stokes lines; blue curves: anti-Stokes lines; green line:
branch cut; black dot: saddle coalescence. The two saddles are repre-
sented by + and −, the dominant saddle is encircled. These lines were

calculated numerically.

Alongside Stokes and anti-Stokes lines, branch cuts also affect the relative dom-

inance of the saddles. If a branch cut is crossed, the two saddles swap. This is

not to be confused with the exchange of dominance that occurs when crossing and

anti-Stokes line; if only one (dominant) saddle were contributing and it crossed an

anti-Stokes line, it would become sub-dominant with no dominant partner. How-

ever, if it were to cross a branch cut, the saddle would turn into its previously non-

contributory partner, which would now be dominant.

3.4.1 The Wall Effect

The Stokes and anti-Stokes lines are shown in figure 3.7. The most striking feature

of their construction occurs at τ = 0.5 and ξ = 1 where the saddles coalesce and the

absolute value of the phase is zero. Such points are vital to the composition of Stokes

and anti-Stokes lines as it from these that they emerge. It is at this point where the

discontinuity is observed in figure 3.6
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To understand how the saddles exchange dominance we describe figure 3.7 start-

ing from the bottom right corner and moving clockwise. We are therefore first con-

fronted with the − saddle, which is currently sub-dominant but has no dominant

companion. In fact, − is contributing exclusively along the bottom of the figure.

It is not until − has crossed an anti-Stokes line, making it dominant but still

companion-less, that it encounters another Stokes line. Upon crossing the + saddle

emerges; sub-dominant.

This situation continues as we move up along the left-hand side of figure 3.7. We

then cross the anti-Stokes line that occurs for ξ = 1, τ > 0.5. It is at this point that the

− and the + saddles swap dominance. This event is crucial to the wall effect as the

majority of the superoscillatory information is contained within the − saddle. Upon

crossing this anti-Stokes line the conventionally oscillatory saddle, + is dominant

on one side where the superoscillatory − is dominant on the other. Therefore, the

superoscillations persist for longer on the left-side of the anti-Stokes line as opposed

to the right.

A Stokes line is then crossed, causing − to disappear, − then re-emerges once the

branch cut (where the argument of the square root in (3.81) is real and negative) is

navigated and the two saddles swap. Finally, another Stokes line is crossed and −

is unaccompanied and sub-dominant.

3.4.2 Disappearance Time

The anti-Stokes line at ξ = 1, τ > 0.5 does not only explain the wall effect. By

looking at how the local momentum changes either side of it we can uncover how

the superoscillations disappear. We begin by deriving the local momentum in the

small ξ, τ approximation:

k± = ℜe(q±(ξ±(1, τ), 1, τ)) = ℜe

(
κ

1 + iκξ±(1, τ)

)
, (3.87)
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= κℜe

(
1− iκξ∗±(1, τ)

(1 + iκξ±(1, τ))(1− iκξ∗±(1, τ))

)
, (3.88)

in which we have also set κ = ρ = 1. Evaluating the saddles (3.81) at ξ = 1 gives:

ξ± =
1

2
(1 + i)(1±2

√
2τ − 1) (3.89)

∴ ξ∗± =
1

2
(1− i)(1±2

√
2τ − 1)∗ (3.90)

For τ > 0.5, the argument of the square root in (3.89) and (3.90) is real and positive,

giving the local momentum:

k± =
1∓

√
2τ − 1

2τ
(3.91)

We first notice that, at τ = 0.5, k+ = k− = 1 which, from taking into account the

scaling in (3.59) corresponds to the superoscillatory value of k. As τ increases, both

local momenta decrease in value, with k+ decreasing faster and hence retaining any

superoscillatory information for a shorter amount of time. It is for this reason that

+ was previously referred to as ’the conventionally oscillatory saddle’; it is from +’s

contributions that conventional oscillations are first seen in the superoscillatory re-

gion. For τ > 1, k+ becomes negative which implies it is travelling from left to right.

Therefore, superoscillations persist longest for τ > 1
2

and − dominates. There-

fore, when k− < 1
a
, which is the value of the fastest Fourier component in the scaled

units (3.59), along the line ξ = 1, the superoscillations disappear.

k−(1, τd) =
1∓

√
2τd − 1

2τd
=

1

a
(3.92)

⇒ τd =
a2

4

(
1 +

2

a
+

√
1 +

4

a
− 4

a2

)
→
a≫1

a2

2
(3.93)
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FIGURE 3.8: td (3.94) as a function of a for 4 ≤ a ≤ 1000.

(3.93) gives the disappearance time in the superoscillatory units, in the original vari-

ables used in this chapter, it is:

td =
1

4

(
1 +

2

a
+

√
1 +

4

a
− 4

a2

)
→
a≫1

1

2
(3.94)

(3.94) shows that, of the initial superoscillatory parameters a and N , the disappear-

ance time is only dependent on a and the dependence is weak, as a → ∞, it limits

to td = 1
2
. Figure 3.8 shows how td changes as a function of a.

3.5 Conclusion

The evolution of an initial superoscillatory wavefunction in the free-particle one-

dimensional Schrödinger equation has a very interesting structure. Expressing the

initial wavefunction as a sum of its eigenfunctions first illustrated the structure.

This showed two important features: an asymmetry in the way the wavefunction

evolved (the wall effect) and, the disappearance of the superoscillations. However,

the presentation of the superoscillatory wavefunction as a series of eigenfunctions
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provided a description too impenetrable to describe a phenomenon as subtle as su-

peroscillation.

To provide a more accessible description of the wavefunction, its representation

as an integral over the propagator was employed. It was demonstrated that this was

solvable using the saddle point method and that, using approximations for small x

and t, an analytic solution was possible; contributions to the integral arose from two

saddles which could be viewed as complex momenta. From this the wall effect and

disappearance of the superoscillations could be explained.

Crucial to both phenomena is an anti-Stokes line at ξ = 1 and τ > 1
2
. It is across

this line that the two contributory saddles exchange dominance. As the superoscil-

latory information disappears quicker on the right-hand side of the line as opposed

to the left, an asymmetrical evolution is observed. The superoscillations then dis-

appear as the local wavenumber of the left hand saddle decreases to a value lower

than the fastest Fourier component. The resultant disappearance time was found

to be weakly dependent on a but independent of N . However, recent research into

non-relativistic quantum superoscillations has shown that, by using a more general

Hamiltonian, the disappearance time becomes directly proportional toN , becoming

infinite as N → ∞ [5] [41].

This chapter also provides a base as we move forward into investigating free-

particle relativistic quantum superoscillations. All relativistic calculations should

recover their non-relativistic analogues as c→ ∞. Therefore, in the following chap-

ters, where necessary, non-relativistic limits shall be taken and compared to the re-

sults of this chapter. As the same initial wavefunction will be used, direct compar-

isons between relativistic and non-relativistic quantum superoscillations will also

be made.
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Chapter 4

Relativistic Free Particle

Superoscillations for a

Spin-Zero Wavefunction

Discussion of quantum free-particle superoscillations in which the Schrödinger equa-

tion is used does not paint the entire picture of their nature. In this representation,

space and time are treated as separate from one another when it is known that, as a

body approaches the speed of light space and time must be treated on an equal foot-

ing. To do this, the wave equations of relativistic quantum mechanics are employed

in the treatment of the initial superoscillatory function. Unlike in the previous chap-

ter, where there had been a lot of work done in the area of non-relativistic quantum

superoscillations, very little has been done in a relativistic regime.

This chapter concerns descriptions of relativistic, free particle, quantum super-

oscillations using the Klein-Gordon equation which describes a spin-zero wavefunc-

tion. The general dynamics of such superoscillations have been described in chapter

3, in which it was shown that their evolution is affected by whether the energy of

the wavefunction is positive or negative.

This chapter employs a similar format to chapter 3. Beginning with the eigen-

function expansion of the positive energy wavefunction, the way in which the initial

superoscillatory function evolves will be shown and compared to the non-relativistic
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evolution. Again, we are presented with interesting results but further work is re-

quired to gain understanding.

The integral over the positive energy Klein-Gordon propagator for the initial su-

peroscillatory function will be solved and the results analysed. Further problems

are posed in the relativistic regime namely, which of the limits of the Klein-Gordon

propagator discussed in chapter 2 is most applicable this case. Finally, the case

of mixed energy superoscillations will be discussed with results and analysis pre-

sented in much the same way.

4.1 Lorenz Boosted Superoscillations

Before considering superoscillations in the Klein-Gordon equation, we first consider

a simpler case; a Lorenz boost of the initial superoscillatory function:

f(x) =
(
cos(x) + ia sin(x)

)N
(4.1)

Two key phenomena are observed under a Lorenz boost; time dilation and length

contraction. To see how this effects (4.2) we make the transformation:

x′ = γ(x− vt), (4.2)

where:

γ =

(
1− v2

c2

)− 1
2

. (4.3)

In this transformation, the primed reference frame is observed as moving at a ve-

locity v from the un-primed reference frame along the x axis. The Lorenz boosted

wave is then:

f(x′) =
(
cos(γ(x− vt)) + ia sin(γ(x− vt))

)N
(4.4)

Figure 4.1 shows the effect of Lorentz boosting on the initial superoscillatory func-

tion for different values of v relative to c. The two notable features are the effect of
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FIGURE 4.1: Density plot for (4.4) for a = 4, N = 20, −π/2 ≤ x ≤ π/2,
0 ≤ t ≤ π/2, (a) v = 0.6c, (b) v = 0.8c, (c) v = 0.9c and (d) v = 0.99c.

length contraction, this is seen as the period of the function decrease as v increases.

As v increases, the function evolves closer to light-cone; it is travelling closer to the

speed of light. This is hardly a surprising result as this is exactly what we are doing

as we increase v.

4.2 Positive Energy Spin-Zero Superoscillations

As negative energy states do not occur in non-relativistic quantum mechanics, pos-

itive energy, relativistic wavefunctions are the most comparable to those discussed

in the previous chapter. It is from a positive energy, relativistic wavefunction the

non-relativistic limit is found as c → ∞. This is demonstrated for the case of the

positive energy propagator in chapter 2.

To get a full comparison between relativistic and non-relativistic free particle,

quantum superoscillations, the same initial wavefunction is used:

Ψ(x, 0) =
A√
L

(
cos(κx) + ia sin(κx)

)Ncs

(4.5)
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The difference between (4.15) and (3.1) is in the power; ρ, which has units m2s−1, is

now composed of two constants: c, the speed of light and s, a spatial constant of

magnitude 1/c. Despite, as mentioned in the previous chapter, it is crucial for the

power of (4.5) to be dimensionless, ascribing physical quantities to the individual

terms is necessary for correct dimensional analysis further on in the chapter.

4.2.1 Eigenfunction Expansion

As in the previous chapter, (4.5) can be represented as a series of plane waves, in this

case, corresponding to eigenfunctions of the free-particle Klein-Gordon equation:

Ψ(x, 0) =
A√
L

Ncs∑
m=0

cme
iNcsκkmx (4.6)

where cm and km are given by (3.10) and (3.7). The time-dependence of (4.6) can be

found by multiplying by e−iW (κ)t where, in terms of N and s:

W (κ) = Nc2
√
1 + s2κ2k2m, (4.7)

giving the time-dependent wavefunction:

Ψ(x, t) =
A√
L

Ncs∑
m=0

cme
i(Ncsκkmx−W (κ)t) (4.8)

Figure 4.2 shows the evolution of the wavefunction (4.8) according to the free-

particle Klein-Gordon equation. Initially, the evolution of (4.5) looks very differ-

ent to that of (3.39); the solution to the Schrödinger equation. The wall effect and

the disappearance of the superoscillations are still apparent; the wall has seemed to

have shifted.

To ensure that the results of the previous chapter are recovered in the non-

relativistic limit, c → ∞ is taken. Through (visual) comparison to figure 3.3, figure
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FIGURE 4.2: Density plot for ℜe(log(ℜe(Ψ(x, t)))) in equation (4.8).
Left: for a = 4, N = 20, c = s = κ = A = L = 1 and −π/4 ≤ x ≤ π/4,
0 ≤ t ≤ π/4. Right: c = 100, s = 1/100 otherwise the same as be-
fore. The wavefunction is also multiplied by e−iNc2t to eliminate the
rest-mass term that arises from taking the non-relativistic limit. White
horizontal lines represent the spacing of the fastest conventional oscil-

lations.

4.2 shows this. Figure 4.3 shows the wavefunction as a whole. As expected the dif-

ferences in magnitude between the superoscillatory and conventional regions are

very large. Although not providing much insight into the evolution of superoscil-

lations, diagrams of the wave-function as opposed to its natural logarithm are very

important for assessing the entire applicability of any further approximations to

(4.8).

It is vital to understand the relative length and time scales of the relativistic and

non-relativistic superoscillations. To do this, we can look at the Compton wave-

length and time:

λC =
1

Nc
, (4.9)

τC =
1

Nc2
. (4.10)

From (4.9)) and (4.10) we see that for constant N (which is set to m
ℏ ),the length is

equal to 1/Nc and time to 1/Nc2; we would expect the relative length and time scales

to be significantly smaller for relativistic superoscillations than non-relativistic.
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FIGURE 4.3: Showing the wave function Ψ(x, t) in equation (4.8), the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

To understand the difference between the two regimes, we look at how ℏ and c

are related. This is through the fine-structure constant:

α =
e2

4πϵ0ℏc
≡ 1

137
. (4.11)

As α must always be equal to 1
137

, to change ℏ and c, would require a change in the

charge, e. Although it is clear that the length and time scales in a relativistic super-

oscillatory system will be considerably smaller, it is not possible to define generally

by how much as the charge of the wave will have to change with N and/or c.
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4.2.2 Evaluation of the Propagator

Due to the subtlety of the interference between each contributing wave, evaluation

of the eigenfunction expansion provides little insight into the workings of the wave-

function’s evolution. To gain further understanding, the propagator representation

is used.

Ψ(x, t) =

∫ ∞

−∞
Ψ(x′, 0)∆+(x− x′; t)dx′ (4.12)

in which ∆+(x − x′; t), the free particle, Klein-Gordon, positive energy propagator,

is given by (2.35):

∆+(x− x′, t) =
i

π
Nc2t

K1

(
Nc
√
((x− x′)2 − c2t2

)
√

(x− x′)2 − c2t2
. (4.13)

Therefore, (4.8) can be written as:

Ψ(x, t) =
iA

π
√
L
Nc2t

∫ ∞

−∞

K1

(
Nc
√
((x− x′)2 − c2t2

)
√
(x− x′)2 − c2t2

(
cos(κx′) + ia sin(κx′)

)Ncs

dx′.

(4.14)

This is not an integral that can be solved directly; the limiting forms, discussed in

chapter 2, of the propagator must be used. These approximations arise from two

limits: the light-cone (poles) and the WKB (saddles).

4.2.2.1 Pole Contributions

To begin with, the light-cone approximation to the propagator is taken (2.47) giving

the wavefunction at the light-cone:

Ψ(x, t) ≈ iA

π
√
L
ct

∫ ∞

−∞

(
cos(κx′) + ia sin(κx′)

)Ncs(
(x− x′)2 − c2t2

) dx′. (4.15)

As discussed when evaluating a plane wave in this limit the resultant integral con-

tains two poles: one moving forwards in time, the other backwards. In order to get

an entirely positive energy wavefunction, only the poles moving forwards in time
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ℜe(x′)

ℑm(x′)

C ′
+

C+

C ′
−

C−

FIGURE 4.4: Showing how the sign of km in (4.18) affects how the con-
tour is deformed around the pole (red circle) at x′ = x + ct in the x′

plane. If km > 0, the contour is deformed into C+, if km < 0, the con-
tour is deformed into C−.

must be considered. A partial fractions representation of (4.15) allows this:

Ψ(x, t) ≈ iA

2π
√
L

∫ ∞

−∞

(
cos(κx′) + ia sin(κx′)

)Ncs
(

1

x− x′ − ct
− 1

x− x′ + ct

)
dx′,

(4.16)

taking only positive t into account:

Ψ(x, t) ≈ − iA

2π
√
L

∫ ∞

−∞

(
cos(κx′) + ia sin(κx′)

)Ncs(
x− x′ + ct

) dx′. (4.17)

(4.17) can be solved using the residue theorem. However, care must be taken when

deforming the contour. Representing the initial wavefunction as a sum of it’s eigen-

functions(4.6) and substituting into (4.17) gives:

Ψ(x, t) ≈ − iA

2π
√
L

Ncs∑
m=0

cm

∫ ∞

−∞

eiNcsκkmx′(
x− x′ + ct

)dx′. (4.18)

For positive km, the integrand diverges as x′ → −i∞ and, for negative km, the inte-

grand diverges as x′ → i∞. When km = 0, the integrand is entirely convergent so the

choice of contour is not important. Figure 4.4 shows how the contour is deformed
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with respect to the sign of km, giving the integrals:

Ψ(x, t) ≈ − iA

2π
√
L

( 1
2
Ncs−1∑
m=0

cm

∫
C−

eiNcskmx′(
x− x′ + ct

)dx′+ Ncs∑
m= 1

2
Ncs

cm

∫
C+

eiNcskmx′(
x− x′ + ct

)dx′).
(4.19)

The residue theorem can now be applied. A trivial calculation of the residue at

x′ = x+ ct gives Res(x+ ct) = exp[iNcskm(x+ ct)] resulting in the wavefunction:

Ψ(x, t) ≈ A√
L

Ncs∑
m=0

cme
iNcskm(x+ct) (4.20)

=
A√
L

(
cos(κ(x+ ct)) + ia sin(κ(x+ ct))

)Ncs

(4.21)

Figure 4.5 shows the evolution of the wavefunction at the light-cone compared to

the eigenvalue-function expansion. The differences are quite similar to that of the

plane wave discussed in chapter 2. That is, the results are only accurate for t = 0.

This is because the light-cone approximation propagates the initial wavefunction

along the line x − ct whereas, the eigenfunction evolution is an interference of N

number of plane waves all travelling at different speeds.

Figure 4.6 shows the full wavefunction according to the light-cone approxima-

tion. Comparing this to figure 4.3, it is clear that for small t (when the superoscilla-

tions are in existence) the pole contributions do not give an accurate approximation

to the conventional oscillations. However, as t increases, this approximation be-

comes quite accurate for the region of conventional oscillation.

The result for the light-cone approximation bear a significant resemblance to

the Lorenz-boosted superoscillations previously discussed. Figure 4.1 (d) shows a

Lorenz-boosted wavefunction at v = 0.99c. The evolution is almost identical to that

of our light-cone approximation aside from the effect of length contraction shown

in the Lorenz boost.
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FIGURE 4.5: ℜe(log(ℜe(Ψ(x, t)))) for the complete wavefunction (4.8)
(orange lines) and for the pole approximation (4.20) (blue line), for (a)
t = 0.000001, (b) t = π/8, (c) t = π/4 and (d) t = π/2 for all graphs,

−π/4 ≤ x ≤ π/4 and a = 4, N = 20, c = s = A = L = 1.

4.2.2.2 Saddle Contributions

The WKB approximation to the positive energy free-particle Klein-Gordon prop-

agator (2.55) often results in an integral which can be solved by the saddle point

method. This provides very accurate approximations for both plane-wave and non-

relativistic superoscillations.

The WKB approximation to the positive energy free-particle Klein-Gordon prop-

agator is given by (2.55). In order to get a wavefunction that is solvable through the

saddle point method, the following representation of (4.5) is used:

Ψ(x, 0) =
A√
L
exp

[
iNcs

∫ x′

0

q(x′′)dx′′

]
, (4.22)
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FIGURE 4.6: Showing the wave function Ψ(x, t) in equation (4.21) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

in which q(x) is given in (3.58). The wavefunction, in the WKB approximation, is

therefore:

Ψ(x, t) ≈ ct

√
Nc

2π

∫ ∞

−∞

exp
[
Nc(is

∫ x′

0
q(x′′)dx′′ −

√
(x− x′)2 − c2t2)

]
((x− x′)2 − c2t2)

3
4

dx′ (4.23)

A requirement of the saddle point method is that there is an asymptotic parameter

multiplying the phase of the exponential. This is achieved as, in order for (4.5) to

be superoscillatory, N must be large. Saddles are located using the derivative of the

phase of the exponential which shall be denoted ϕ(x′;x, t):

ϕ(x′;x, t) = is

∫ x′

0

q(x′′)dx′′ −
√
(x− x′)2 − c2t2 (4.24)
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Differentiating (4.24) with respect to x′ and setting it to zero gives the saddle point

condition:

q(xj) =
i(x− xj)

s
√
(x− xj)2 − c2t2

, (4.25)

where x′ = xj at points in which (4.25) is valid. Saddle points occur at values of x′

in which the complex momenta is equal to the derivative of the space-time interval,

multiplied by i
s

1.

As with the non-relativistic case, to solve (4.23), small x approximations must be

made to the initial wavefunction:

Ψ(x, 0) ≈ A√
L
(1 + iaκx)Ncs (4.26)

⇒ q(x) ≈ iaκ

1 + iaκx
(4.27)

Substituting (4.27) into (4.25) and rearranging gives the quartic equation:

a2κ2x4j + 2iaκ(iaκx− 1)x3j + (4iaκx+ a2k2x2 − s2a2κ2 − 1)x2j+

(2x− 2iaκx2 + 2s2a2κ2x)xj + s2a2κ2c2t2 − (1 + s2a2κ2)x2 = 0 (4.28)

Although an analytical solution to (4.28) may well exist, the result would be un-

wieldy. Instead, it is solved using the roots routine in MATLAB and then sorted

by the magnitude of the real parts of the roots 2. Figure 4.7 shows the real parts of

the four solutions to the quartic saddle point equation.

Figure 4.7 also shows that the solutions to the quartic equation are symmetric;

there are two sets of solutions, one moving forwards in time the second moving

1This is not specific to a superoscillatory wavefunction but is true for all free-particle Klein-
Gordon wavefunctions in the WKB limit.

2Although as figure 4.7 shows, ordering through magnitude gives the correct sorting, it is only
valid for restricted values of x: up to a value of t = π/2 the sorting works in the range −π/4 ≤ x ≤
π/4.
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FIGURE 4.7: Real parts of the four solutions to (4.28) for (a) t =
0.000001, (b) t = π/8, (c) t = π/4 and (d) t = π/2 for all graphs,
−π/4 ≤ x ≤ π/4 and a = 4, c = s = 1. When referred to, these so-
lutions will be denoted: x1 (blue line), x2 (orange line), x3 (yellow line)

and x4 (purple line).

backwards. Similar behaviour was observed when analysing the evolution of a

plane-wave using the Kein-Gordon propagator. We are able to understand this up

to an order of 1
c2

:

Begin by looking at the square root in the phase, ϕ(x′;x, t) (4.24):

σ =
√

(x− x′)2 − c2t2 (4.29)

Provided c2t2 ≥ (x− x′)2, it is equal to the following:

√
(x− x′)2 − c2t2 = ±ict

√
1− (x− x′)2

2c2t2
. (4.30)
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FIGURE 4.8: The complex plane in which the integration contour, C, is
deformed through the saddles x2 and x4. The branch cut, emanating

from the branch points at x± ct is shown in red.

In the semi-relativistic limit, the approximation can be made to the square root:

±ct
√

1− (x− x′)2

c2t2
≈ ±ict

(
1− (x− x′)2

2c2t2

)
(4.31)

Using the approximation (4.31) as a substitution for the square root in (4.24) will

give two quadratic saddle point conditions: one moving forwards in time; the other

moving backwards in time.

For the case of the superoscillatory wavefunction the two sets of solutions are

[x1, x3] and [x2, x4]. Although not shown here, the same symmetry is found in the

imaginary parts of the saddles shown in figure 4.7.

In order to get a wavefunction of purely positive energy, only the solutions which

correspond to t moving forwards are considered. Therefore, only two of the four

saddles contribute to the wavefunction. Figure 4.8 shows how the contour is de-

formed so that it passes through the two contributing saddles. It is found numeri-

cally that the set [x2, x4] contributes; propagating the wavefunction forwards in time.

Now that the saddles and the contour which passes through them have been de-

termined, the saddle point method can be employed to get an approximation to

(4.23). The form solutions derived from the saddle point method take is shown in

chapter 2. Taking the asymptotic parameter as Nc, the solution to (4.23) as N → ∞
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FIGURE 4.9: log(ℜe(Ψ(x, t))) for left: the WKB approximation (4.32)
and right: the eigenfunction expansion (4.75). For a = 4, N = 20,
−π/4 ≤ x ≤ π/4 and 0.00001 ≤ t ≤ π/4. Yellow lines correspond to

zeros of the wavefunction.

is:

Ψ(x, t) ≈ ict
∑
j

√
−A2

Lϕ′′(xj;x, t)

exp[Ncϕ(xj;x, t)]

((x− xj)2 − c2t2)
3
4

(4.32)

where xj are the contributing saddle points [x2, x4] and ϕ(xj;x, y) is given by (4.24)

with its second derivative:

∂2ϕ(x′;x, y)

∂x′2
= − ia2κ2s

(1 + iaκx′)2
+

(x− x′)2

((x− x′)2 − c2t2)
3
2

− 1√
(x− x′)2 − c2t2

(4.33)

Figure 4.9 compares the saddle-point approximation (4.32) to the eigenfunction ex-

pansion (4.8). The WKB approximation to the superoscillatory initial wavefunc-

tion clearly gives a better representation of the superoscillatory wavefunction than

the light-cone approximation. Despite not being completely accurate, the essential

features of the evolution of the positive energy free-particle superoscillatory Klein-

Gordon wavefunction are apparent: the wall effect and the disappearance of the

superoscillations, are all present.
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FIGURE 4.10: Showing the wave function Ψ(x, t) in equation (4.32) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

Figure 4.10 shows that, despite providing a good representation of the wavefunc-

tion in the superoscillatory region, as far as conventional oscillations are concerned,

the saddle-point representation is a poor one. Numerical investigation shows that,

at t = 0, the points at which the wavefunctions in 4.10 start to diverge are x = −0.383

and x = 0.354. Therefore, the range in which the approximation is valid is: −0.382 ≤

x ≤ 0.345 which corresponds to the range in which Ψ(x, t) is superoscillatory. This is

hardly surprising given the constraints on x and t being small and the conventional

oscillations appearing at larger values of x than the superoscillations.
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4.2.2.3 Saddle-Pole Contributions

The saddle-point method applied to the WKB approximation of the propagator

gives a better representation of the evolution of the superoscillatory method than

that of the residue theorem. It now must be checked to see if the pole and saddle

coalescing affects the evolution in anyway. To do this, the approximation to the

propagator in which the saddle and pole coalesce (2.61) is used.

∆(x− x′; t) =
∓i
π
ct

1

(x− x′)2 − c2t2
e−

mc
ℏ

√
(x−x′)2−c2t2 , (4.34)

giving the wavefunction:

Ψ(x, t) = − iA

π
√
L
ct

∫ ∞

−∞

exp[Ncϕ(x′;x, t)]

(x− x′)2 − c2t2
dx′ (4.35)

It is shown in figure 4.8 that the saddle, x2, is in the neighbourhood of the pole at

x′ = x + ct. Therefore, by splitting the denominator in (4.35) into partial fractions

and selecting the pole at x′ = x+ ct, the wavefunction becomes:

Ψ(x, t) = − iA

π
√
L

∫ ∞

−∞

exp[Ncϕ(x′;x, t)]

x− x′ + ct
dx′ (4.36)

To solve this the integrand is mapped to the comparison integral:

∫ ∞

−∞

e−u2

u− z
du = iπe−z2erfc(−iz) (4.37)

Making the substitution,

u2 = ϕ(x′;x, t)− ϕ(x2;x, t), (4.38)

with the Jacobian:

∂u

∂x′
=

∂

∂x′
[√

ϕ(x′;x, t)− ϕ(x2;x, t)
]
=

ϕ′(x′;x, t)

2
√
ϕ(x′;x, t)− ϕ(x2;x, t)

. (4.39)
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Substituting (4.38) and (4.39) into (4.36) gives:

Ψ(x, t) = − iA

π
√
L
eNcϕ(x2;x,t)

∫ ∞

−∞
g(u)e−Ncu2

du (4.40)

where

g(u) =
2u

ϕ′(x′;x, t)(x− x′ + ct)
. (4.41)

In the u-plane, the pole is located at:

z2 = ϕ(x+ ct;x, t)− ϕ(x2;x, t). (4.42)

To further progress with solving the integral (4.36), it is necessary to split g(u) into

three parts; separating the pole, saddles and higher-order asymptotic contributions:

g(u) =
A

u− z
+B + u(u− z)h(u) (4.43)

in which A incorporates the pole at u = z (x′ = x + ct), B gives the value of g(u) as

it approaches the saddle at u = 0 (x′ = x2) and h(u) accounts for the higher-order

asymptotics. The term involving h(u) disappears at the saddle and the pole and is

therefore not of interest in this first-order approximation.

A = lim
u→z

(u− z)g(u) = lim
x′→x+ct

2u(u− z)

ϕ′(x′;x, t)(x− x′ + ct)
(4.44)

= Res

(
1

x− x′ + ct

⏐⏐⏐
x′=x+ct

)
=

1

2ct
(4.45)

In calculating B, the limit u → 0 is taken and A
u−z

is subtracted from the result so as

to eliminate the effects of the pole.

B = lim
u→0

(
g(u)− A

u− z

)
= lim

x′→x2

2u

ϕ′(x′;x, t)(x− x′ + ct)
+
A

z
(4.46)
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To further understand B, a Taylor expansion of ϕ(x′;x, t) is taken:

ϕ(x′;x, t)|x′→x2 ≈ ϕ(x2;x, t) +
1

2
(x′ − x2)

2∂
2ϕ(x′;x, t)

∂x′2
, (4.47)

giving the approximation to the first derivative of ϕ(x′;x, t) as x′ → x2:

ϕ′(x′;x, t)|x′→x2 ≈
√
ϕ(x′;x, t)− ϕ(x2;x, t)

√
−2ϕ′′(x2;x, t), (4.48)

which, in turn, gives B as:

B =
1

x− x2 + ct

√
2

ϕ′′(x2;x, t)
− 1

2
√
ϕ(x+ ct;x, t)− ϕ(x2;x, t)

(4.49)

and, hence the approximation to g(u):

g(u) ≈ 1

2(u− z)
+

1

x− x2 + ct

√
2

ϕ′′(x2;x, t)
+

1

2
√
ϕ(x+ ct;x, t)− ϕ(x2;x, t)

. (4.50)

This can now be substituted into (4.40) to give the wavefunction:

Ψ(x, t) = − iA

π
√
L
eNcϕ(x2;x,t)

∫ ∞

−∞

(
1

2(u− z)
+

1

x− x2 + ct

√
2

ϕ′′(x2;x, t)
+ . . .

1

2
√
ϕ(x+ ct;x, t)− ϕ(x2;x, t)

)
e−Ncu2

du (4.51)

(4.51) can now be solved, this is done by separating the integral in two:

I1 =
1

2

∫ ∞

−∞

1

u− z
e−Ncu2

du (4.52)

I2 =

(
1

x− x2 + ct

√
2

ϕ′′(x2;x, t)
+

1

2
√
ϕ(x+ ct;x, t)− ϕ(x2;x, t)

)∫ ∞

−∞
e−Ncu2

du,

(4.53)
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such that the integral in (4.51), which can be denoted as I , is the sum of the integrals

I1 and I2. I1 can be solved using the comparison integral (4.37) and I2 is solved by

the Gaussian integral, giving the saddle-pole contribution to the wavefunction as:

Ψ(x, t) = − iA

π
√
L
eNcϕ(x2;x,t)

(
iπeNcz2erfc(−i

√
Ncz) + . . .

√
π

Nc

(√
2

(x− x2 + ct)2ϕ′′(x2;x, t)
+

1

2z

))
(4.54)

To get the full wavefunction (4.54) must be added to saddle point integral involving

x4 which still contributes but doesn’t interact with the pole.

Figure 4.11 compares the saddle-pole approximation to that of the WKB approx-

imation solved by the saddle-point method. For small t, the the results are very

similar. However, this ceases further on as the saddle and pole become separate

and the approximation breaks down. The WKB approximation clearly provides the

most accurate solution when analysing the evolution of the Klein-Gordon free par-

ticle superoscillations.

In a similar manor to the saddle-point approximation figure 4.12 shows that the

saddle-pole approximation fails in the conventional region. In fact, it is even worse

than the saddle-point approximation due as can be seen by the orders of magni-

tude of the conventional oscillations. Where the eigenfunction expansion reaches a

magnitude of ×1012, the saddle-pole reaches ×1018.

4.2.2.4 The Non-Relativistic Limit

The last check to make before moving onto analysing the superoscillations is to

make sure that, in the limit c → ∞ the integral over the propagator gives the same

results as those in the previous chapter. Using the Melin-Barnes representation of
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x
t

FIGURE 4.11: log(ℜe(Ψ(x, t))) for left: the saddle-pole approximation
(4.54) and right: the eigenfunction expansion (4.32). For a = 4, N = 20,
−π/4 ≤ x ≤ π/4 and 0.00001 ≤ t ≤ π/4. Yellow lines correspond to

zeros of the wavefunction.

the positive energy propagator (2.58), the integral over the propagator is:

∆+(x− x′; t) =
Nc2t

2π3

(
π

Nc
√
(x− x′)2 − c2t2

) 1
2
e−Nc

√
(x−x′)2−c2t2√

(x− x′)2 − c2t2
× . . .

∫ i∞

−i∞
Γ(τ)Γ

(
− 1

2
− τ

)
Γ

(
3

2
− τ

)(
2Nc

√
(x− x′)2 − c2t2

)τ

dτ (4.55)

⇒ Ψ(x, t) =
ANc2t

2π3
√
L

∫ i∞

−i∞
Γ(τ)Γ

(
− 1

2
− τ

)
Γ

(
3

2
− τ

)
· · · ×

∫ ∞

−∞

(
π

Nc
√

(x− x′)2 − c2t2

) 1
2
(2Nc

√
(x− x′)2 − c2t2)τ√

(x− x′)2 − c2t2
× . . .

exp

[
iNc

(
is

∫ x′

0

q(x′′)dx′′)−
√

(x− x′)2 − c2t2

)]
dx′dτ (4.56)

Denoting the integral over x′ in (4.56) as Ix′ :
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FIGURE 4.12: Showing the wave function Ψ(x, t) in equation (4.54) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

Ix′ =

∫ ∞

−∞

(
π

Nc
√

(x− x′)2 − c2t2

) 1
2
(2Nc

√
(x− x′)2 − c2t2)τ√

(x− x′)2 − c2t2
× . . .

exp

[
iNc

(
is

∫ x′

0

q(x′′)dx′′ −
√
(x− x′)2 − c2t2

)]
dx′. (4.57)

To get the non-relativistic limit, the square root is manipulated such that it is in the

form
√
1 + δ ≈ 1 + 1

2
δ, in which δ is small.

√
(x− x′)2 − c2t2 = ict

√
1− (x− x′)2

c2t2
≈ ict

(
1 +

(x− x′)2

2c2t2

)
(4.58)

giving Ix′ as, also reverting back to using ρ instead of cs:
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Ix′ =

∫ ∞

−∞

(
π

iNc2t(1− (x−x′)2

2c2t2

) 1
2 (2iNc2t(1− (x−x′)2

2c2t2
))τ

ict(1− (x−x′)2

2c2t2
)

× . . .

exp

[
iN

(
ρ

∫ x′

0

q(x′′)dx′′ − ic2t

(
1− (x− x′)2

2c2t2

))]
dx′ (4.59)

Ix′ is now in a form in which it can be solved by the saddle point method, saddles

arise from the zeros of the derivative of the phase (ϕ(x′;x, t)):

ϕ(x′;x, t) = iρ

∫ x′

0

q(x′′)dx′′ − ic2t

(
1− (x− x′)2

2c2t2

)
(4.60)

Differentiating (4.60) and setting the result to zero gives the following saddle point

condition:

q(xj) =
x− xj
ρt

(4.61)

This is the same saddle-point condition as for the Schrödinger superoscillations in

the previous chapter. Therefore, in the limit c → ∞, the saddles are the identical to

those obtained by using the Schrödinger propagator.

Now that it has been shown that the contributions to the integral over the prop-

agator in the non-relativistic limit are the same as those in the previous chapter, the

final step is to show that the wavefunction takes the same form. Solving (4.59) using

the saddle-point method gives:

Ix′ =

√
−2π

Nϕ′′(xj;x, t)

(
π

iNc2t(1− (x−xj)2)

2c2t2
)

) 1
2 (2iNc2t(1− (x−xj)

2

2c2t2
))τ

ict(1− (x−xj)2

2c2t2
)

eiNϕ(xj ;x,t) (4.62)

Where ϕ(x′;x, t) is given by (4.60) and its second derivative is:

ϕ′′(x′;x, t) =
∂2ϕ(x′;x, t)

∂x′2
= ρ

∂q(x′)

∂x′
+

1

t
(4.63)
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Substituting (4.63) into (4.56) gives an integral over τ :

Iτ =

∫ i∞

−i∞
Γ(τ)Γ

(
− 1

2
− τ

)
Γ

(
3

2
− τ

)(
2iNc2t

(
1− (x− xj)

2

2c2t2

))τ

dτ (4.64)

This can be solved using 10.32.14 in [1] (2.56) to give:

Iτ = 2π2i

(
π

iNc2t(1− (x−xj)2

2c2t2
)

)− 1
2

e
−iNc2t

(
1−

(x−xj)

2c2t2

)
K1

(
iNc2t

(
1− (x− xj)

2

2c2t2

))
,

(4.65)

giving Ψ(x, t) as:

Ψ(x, t) =
iA

π
√
L
Nc2t

√
−2π

Nϕ′′(xj;x, t)
exp

[
iNρ

∫ xj

0

q(x′′)dx′′

]
K1(iNc

2t(1− (x−xj)
2

2c2t2
))

ict(1− (x−xj)2

2c2t2
)
(4.66)

Using the approximation to the modified Bessel function for large arguments; 10.25.3

in [1] gives:

K1

(
iNc2t(1− (x− xj)

2

2c2t2

))
≈
√

π

2iNc2t(1− (x−xj)2

2c2t2
)
exp

[
− iNc2t

(
1− (x− xj)

2

2c2t2

)]
(4.67)

In both denominators of (4.66) and (4.67), the approximation (1− (x−xj)
2

2c2t2
) ≈ 1 can be

made:

Ψ(x, t) =
A

π
√
L
Nc

√
−2π

Nϕ′′(xj;x, t)
exp

[
iN

(
ρ

∫ x′

0

q(x′′)dx′′ +
(x− xj)

2

2c2t2

)]
e−iNc2t

(4.68)

=

√
NA2

2iLπt

√
−2π

Nϕ′′(xj;x, t)
exp

[
iN

(
ρ

∫ x′

0

q(x′′)dx′′ +
(x− xj)

2

2c2t2

)]
e−iNc2t (4.69)

This has the same from as the Schrödinger solution with the addition of a rest mass

term in the second exponential; a feature of all non-relativistic limit calculations.
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4.2.3 Analysis

In deriving an asymptotic approximation to the evolution of a Klein-Gordon free-

particle superoscillatory function, it is found that the dominant contributions arise

from saddles in the WKB regime (N → ∞) of the propagator. This isn’t a surpris-

ing result as a requirement of the initial superoscillatory function is that N is very

large. The contributions from the poles (the propagator approaching the light-cone)

are relevant but only when one of the saddles is in the same neighbourhood. As the

saddle moves away from the pole, the contribution becomes negligible.

As with the Schrödinger superoscillations, the analysis concerns itself with two

features of evolution: the wall effect (asymmetrical time evolution in which the

wavefunction evolves differently either side of a line on the x axis) and the disap-

pearance of superoscillations. Both phenomena are principally explained through

the change in dominance of saddles.

4.2.3.1 The Wall Effect

To understand how the two contributing saddles, [x2, x4], exchange dominance;

Stokes and anti-Stokes lines are computed:

Stokes Line: ℜe(ϕ(x2;x.t)− ϕ(x4;x, t)) = 0

anti-Stokes Line: ℑm(ϕ(x2;x.t)− ϕ(x4;x, t)) = 0
(4.70)

where ϕ(xj;x, t) is given by (4.24). Along a Stokes line, the phase is purely imagi-

nary. Such lines represent points in the (x, t) plane in which the contribution from

one saddle over another is maximal. On crossing a Stokes line, the sub-dominant

saddle either disappears behind the dominant saddle or, if it is not contributing,

reappears. Along an anti-Stokes line, the difference between the two phases is

purely real, crossing an anti-Stokes line causes the dominant saddle to become sub

dominant and the sub dominant saddle to become dominant, provided they are

both contributing.
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FIGURE 4.13: Anti-Stokes line (blue) for the x, t plane to the WKB ap-
proximation for c = 1, s = 1, κ = 1 and a = 4. Dominant saddles are in

bold.

With respect to the wall effect, most important are the anti-Stokes lines; a change

in dominance of saddles will have a much greater effect on the overall evolution of

the wavefunction than the disappearance or re-emergence of a sub dominant sad-

dle.

Figure 4.13 shows the anti-Stokes line for the phases in the WKB superoscilla-

tory wavefunction (4.32), giving a clear indication of how the wall effect is caused.

On crossing the anti-Stokes line, going from right to left, the dominance changes

from x2 being dominant (with x4 sub dominant) to x4 being dominant (with x2 sub

dominant). Superimposing the anti-Stokes line over the WKB approximation to the

wavefunction gives a better picture of how this happens:

Figure 4.14 shows that most of the superoscillation occurs when x4 is the dom-

inant saddle. It would therefore not be surprising to suggest that it is the saddle

responsible for the superoscillations. This, however, is not the case. Figure 4.15

shows how either saddle contributes to the overall wavefunction for specific times.

Clearly, x2 is responsible for the superoscillations; it’s wavefunction evolves in

a very similar manor to that of the light-cone approximation. Despite crossing the

anti-Stokes line and x4 being dominant, the superoscillatory saddle’s contribution
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FIGURE 4.14: log(ℜe(Ψ(x, t))) for the WKB approximation (4.32). For
a = 4, N = 20, −π/4 ≤ x ≤ π/4 and 0.00001 ≤ t ≤ π/4. Yellow lines
correspond to zeros of the wavefunction. The anti-Stokes line in figure

4.13 is superimposed as the white line.

is far from negligible for early times. This causes the superoscillations to persist de-

spite x2 being sub dominant. As t gets larger, x2’s contribution reduces severely after

crossing the anti-Stokes line. This causes the superoscillations to decay far quicker

when x4 is dominant as opposed to when x2 is dominant, giving the wall effect. Sim-

ilar behaviour is found when looking at effect the saddle has on the phase. (4.24).

For small t, the values of ℜe(ϕ(x2;x, t)) and ℜe(ϕ(x4;x, t)) are very similar de-

spite x4 being dominant. However, this is not the case for large t. In fact, as t is

increased, one would expect Stokes lines to appear either side of the the anti-Stokes

line. This is illustrated in figure 4.16.

An interesting feature of figure 4.13 is the lack of Stokes lines and hence, the

lack of a singularity (a point at which the Stokes and ant-Stokes lines coalesce). It

is the missing singularity which is of most interest as this was a key feature of the

Stokes/anti-Stokes plane for the non-relativistic superoscillations.

As all Stokes and anti-Stokes lines emerge from singularities, one will certainly

exist somewhere in the (x, t) plane but it does not affect the disappearance of the su-

peroscillations or the wall effect. A singularity, as shown in chapter 3, can be found

as c→ ∞. However, the units used in this chapter cause the singularity to be out of

reach of the approximations required to solve the wavefunction.
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FIGURE 4.15: Cross-sections of figure 4.15 log(ℜe(ψ2,4(x, t))) saddle
point contributions; blue line: (ψ2) contribution from x2; orange line:
contribution from x4. For a = 4, N = 20, −π/4 ≤ x ≤ π/4 and
0.00001 ≤ t ≤ π/4.(a): t = 0.000001; (b): t = π/16; (c): t = π/8; (d):

t = π/4.

4.2.3.2 Disappearance Time

Now that the wall effect has been understood, the original question of this section,

concerning the disappearance of the superoscillations, can be answered. The disap-

pearance corresponds to the time t in which the local wave number of the superoscil-

latory saddle, x2, along the anti-Stokes line decreases to the value corresponding to

the fastest Fourier component. As the anti-Stokes line was computed numerically, a

fit must be made. The function:

xa−s =
(0.2168− t

0.31

) 4
3
, (4.71)
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FIGURE 4.16: blue line ℜe(ϕ(x2;x, t)); orange line: ℜe(ϕ(x4;x, t)) for
a = 4 −π/4 ≤ x ≤ π/4 . (a): t = 0.000001; (b): t = π/16; (c): t = π/8;

(d): t = π/4.

is found to be a satisfactory approximation to the anti-Stokes line. Due to the fact

that the saddle-points have been numerically computed, an analytical expression

for the disappearance time, td, cannot be obtained. However, it can be evaluated

numerically.

Using the approximation to the anti-Stokes line (4.71), the disappearance time is

determined by looking at the times at which the local momentum of the saddle x2

decreases to a value of 1 (the fastest Fourier component) along the line (4.71). Figure

4.17 shows how the disappearance time, td changes as the superoscillatory param-

eter, a, is increased. It shows that, in the relativistic case (blue line), for large a, the

disappearance time converges to td = 0.3715. This is different to the non-relativistic
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FIGURE 4.17: Disappearance times as a function of a. Blue line: Klein
Gordon superoscillations; orange line: Schrödinger superoscillations in

the range 4 ≤ a ≤ 1000.

case which approaches a disappearance time of td = 0.5 as a becomes large. How-

ever, both the non-relativistic and relativistic disappearance times decay in a similar

manner. One possible explanation for this disparity between relativistic and non-

relativistic disappearance times is the that, for small t, only one saddle contributes

in the non-relativistic evolution. However, the time for which this is the case is

t = 1/32 which does not account for a difference in disappearance times of ∼ 1.3.

The main reason is to do with the side of the wall that the superoscillations persist

for the longest. In the non-relativistic case, the superoscillations persist longest on

the left-hand side of the wall, as the wall is located at x = 0.25, there is more space

for the superoscillatory contribution to be dominant than if it were located on the

right-hand side of the wall. However, the relativistic superoscillations are located on

the right hand side of the wall. Again, the anti-Stokes line is found in the half-space

x > 0 and therefore, the superoscillations will disappear more quickly.

4.3 Mixed State Spin-Zero Superoscillations

The presence of negative energies in relativistic quantum mechanics gives rise to

another type of relativistic wavefunction: the mixed state wavefunction, composed
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of both positive and negative energies. In this section, the mixed state solution to the

initial superoscillatory state (4.5) is derived and, in much the same way as before, the

integral over the propagator is solved (approximately) and the results are analysed.

4.3.1 Eigenfunction Expansion

For simplicity, the mixed state solution discussed will be composed of equal amounts

of positive and negative energy:

Ψ(x, t) = Ψ+(x, t) + Ψ−(x, t). (4.72)

Using the same initial wavefunction as previously:

Ψ(x, 0) =
A√
L

(
cos(κx) + ia sin(κx)

)Ncs

(4.73)

and using the representation of a sum over its eigenfunctions:

Ψ(x, 0) =
A√
L

Ncs∑
m=0

cme
iNcsκkmx, (4.74)

the energy can be either positive or negative:

W±(κ) = ±Nc2
√

1 + s2κ2k2m. (4.75)

The positive/negative energy wavefunction is then given by:

Ψ∓(x, t) =
A√
L

Ncs∑
m=0

cme
i(Ncsκkmx∓W (κ)t). (4.76)

Using (4.77) and (4.72), the mixed state eigenfunction expansion is:

Ψ(x, t) =
A

2
√
L

Ncs∑
m=0

cme
iNcsκkmx cos(W (κ)t) (4.77)
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FIGURE 4.18: log(ℜe(Ψ(x, t))) for the mixed state eigenfunction expan-
sion (4.77). For a = 4, N = 20, −π/4 ≤ x ≤ π/4 and 0.00001 ≤ t ≤ π/4.

Yellow lines correspond to zeros of the wavefunction.

The mixed state wavefunction is shown in figure 4.18. This is considerably different

from the positive energy case, most notably; the evolution is no longer asymmetric.

However, the superoscillations still disappear.

The eigenfunction representation does not provide a useful way of explaining

why the wall effect disappears and how the superoscillations disappear. Once again,

the integral over the propagator is used.

4.3.2 Evaluation of the Propagator

Recalling the mixed-state propagator from chapter 2:

∆(x− x′; t) =
1

2
Nc2t sgn(t)

⎧⎪⎪⎨⎪⎪⎩
J1

(
Nc
√

c2t2−(x−x′)2
)

√
c2t2−(x−x′)2

(c|t| > |x− x′|)

0 (c|t| < |x− x′|)
(4.78)

the integral over a propagator representation of a mixed state free particle super-

oscillatory function is therefore given by:

Ψ(x, t) =
A

2
√
L
Nc2t

∫ x+ct

x−ct

J1
(
Nc
√
c2t2 − (x− x′)2

)√
c2t2 − (x− x′)2

(
cos(κx′) + ia sin(κx′)

)Ncs
dx′.

(4.79)
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FIGURE 4.19: Showing the wave function Ψ(x, t) in equation (4.77) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

As with the positive energy wavefunction, this is not an integral that can be solved

directly.

4.3.2.1 Light-Cone/WKB Approximation

In chapter 2, it was shown that the light-cone and the WKB approximations to the

mixed-state propagator were identical; the exponential contributions from the WKB

approximations cancel out, which leaves the light-cone as the only limit in which an

approximation is found:

∆(x− x′; t) ∼ δ((x− x′)2 − c2t2), (4.80)
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FIGURE 4.20: Above: log(ℜe(Ψ(x, t))) for the mixed state propagator,
light-cone approximation(4.82). For a = 4, N = 20, −π/4 ≤ x ≤ π/4
and 0.00001 ≤ t ≤ π/4. Yellow lines correspond to zeros of the wave-
function. Below: Figure 4.19 (eigenfunction expansion) for comparison

with the light-cone approximation.

Only the first term of the light-cone approximation will be considered. The integral

(4.79) therefore becomes:

Ψ(x, t) =
A

2
√
L

∫ x+ct

x−ct

δ((x− x′)2 − c2t2)
(
cos(κx′) + ia sin(κx′)

)Ncs
dx′, (4.81)

giving the wavefunction:

Ψ(x, t) ∼ A

2
√
L

((
cos(κ(x+ct))+ia sin(κ(x+ct))

)Ncs
+
(
cos(κ(x−ct))+ia sin(κ(x−ct))

)Ncs
)

(4.82)

Comparing figures 4.18 and 4.20, the light-cone/WKB approximation clearly gives

a very accurate result and captures the essential features of the evolution of a mixed

state free-particle, relativistic Klein-Gordon wavefunction. Figure 4.21 show the full
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FIGURE 4.21: Showing the wave function Ψ(x, t) in equation (4.82) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

wavefunction (4.82) for various times. Comparing this to figure 4.19, there are sim-

ilarities in the evolution of the conventional oscillations in the eigenvalue solution

and the pole approximation however, the orders of magnitude in the pole approxi-

mation are far larger than the eigenvalue solution.

4.3.3 Analysis

The mixed-state wavefunction can be approximated as the sum of the initial wave-

function being propagated along either side of the light-cone. This accounts for the

lack of a wall effect in this energy set up; the two waves exchange dominance along

the line x = 0 but, as the two waves are identical except for the fact that they are

propagating in different directions along the x axis, there is no asymmetry in the
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FIGURE 4.22: Blue line: log(ℜe(Ψ+(x, t))); orange line:
log(ℜe(Ψ−(x, t))). For a = 4, N = 20, −π/4 ≤ x ≤ π/4 (a):

t = 0.000001; (b): t = π/16; (c): t = π/8; (d): t = π/4.

evolution. This is shown in figure 4.22 in which the transition point and symmetry

are clearly shown.

4.3.3.1 Disappearance Time

In the case of the mixed state, the disappearance time corresponds to the time in

which the local momentum of either contribution is equal to the fastest Fourier com-

ponent along the line x = 0. The choice of contribution is not important as they are

equal along x = 0. Figure 4.22 shows how the disappearance time changes with the

superoscillatory parameter, a: it shows that as a increases, the disappearance time

decays to 0. This can be understood by looking at (4.82). As a tends to ∞, the cos

term becomes negligible. As superoscillations in the function (4.5) are caused by

the almost perfect destructive interference between the cos and sin term. If one term
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FIGURE 4.23: Disappearance times as a function of afor the mixed state
wavefunction in the range 4 ≤ a ≤ 1000.

were to drop out due to the other becoming significantly dominant, the superoscil-

lations would cease.

4.4 Conclusion

The relativistic and non-relativistic positive energy free particle superoscillations

initially seem to evolve in very different fashions. However, by closely examining

the factors responsible for the evolution, similarities are found. This is principally

due to the fact that non-relativistic superoscillations are an asymptotic limit of the

relativistic superoscillations.

Studying the limiting forms of the positive energy, free particle Klein-Gordon

propagator; it was found that the WKB approximation, giving contributions in the

form of saddles, gave the best representation of the evolution of the initial super-

oscillatory function. The contribution from the light cone, appearing as the residue

of a simple pole, gave a poor representation. Coalescence between the saddles and

the poles was also investigated; it was found that, although a the saddle and pole

do coalesce, this effect was not substantial enough to provide a better representation

than the WKB method.
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Both the evolution of relativistic and non-relativistic superoscillations can be ex-

plained through the exchanging of dominance between the two contributing sad-

dles. Where the phase of the non-relativistic superoscillations has a complex struc-

ture, in the relativistic case there exists only one anti-Stokes line in the superoscil-

latory region. The result initially seems incorrect as no singularity through which

Stokes and anti-Stokes lines emerge is present. However, the singularity is found as

t→ ∞.

Two features of the evolution of the relativistic, free-particle, superoscillatory

wavefunction are of interest: the wall effect and the disappearance of the super-

oscillations. The anti-Stokes line, found in the relativistic phase, is responsible for

the wall effect, a phenomena that both relativistic and non-relativistic superoscilla-

tions share, although not at the same location. This is mirrored in the phase structure

of the two wavefunctions in which the anti-Stokes line in which dominance is ex-

changed between saddles 3 occurs in different places.

The anti-Stokes line responsible for the wall effect in both the relativistic and

non-relativistic case is also responsible for the disappearance of the superoscilla-

tions. The disappearance occurs at the point on the anti-Stokes line at which the

local momentum of the superoscillatory saddle decreases to the value correspond-

ing to the fastest Fourier component. As the units used in the relativistic calculations

are much smaller than those used in the non-relativistic calculations, it is not sur-

prising that the superoscillations decay far quicker in the relativistic framework: for

a = 4 the relativistic superoscillations decay after a time of td = 0.414 whereas the

non-relativistic superoscillations decay after a time of td = 0.7057. This is due to the

fact that, the anti-Stokes line responsible for the change in dominance of saddles is

not present for the initial part of the evolution of the non-relativistic wavefunction;

the saddle responsible for the decay of superoscillations either doesn’t appear or is

3For both the non-relativistic and relativistic case, there exists only one anti-Stokes line in which
both saddle are present.
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sub dominant. Lastly, both disappearance times depend on the superoscillatory pa-

rameter, a. As a is increased, both decay to a finite value. This is found analytically

to be td = 0.5 for the non-relativistic superoscillations however, due to the numer-

ical nature of the saddle points an analytic value was not achievable. Numerically,

it was found that the relativistic superoscillations decay to a disappearance time of

td = 0.3715 as a→ ∞.

The final superoscillatory wavefunction discussed in this chapter was that of

mixed energy. Unlike the positive energy wavefunction, the mixed state has no non-

relativistic counterpart. This is due to the presence of negative energy states. Such

states are also responsible for the disappearance of the wall effect with primary con-

tributions coming from either side of the light cone. This is shown by using the

light-cone approximation to the propagator; the results found were very accurate.

Like the positive energy wavefunction, the mixed state superoscillations also dis-

appear after a certain time and decay as a is increased. However, they do not reach

a finite value but instead converge to td = 0. This is because as a → ∞, the cos term

in the superoscillatory function drops out and the interference between the cos and

sin terms responsible for superoscillations ceases.

In [30], a comparison to optical superoscillations was made by remarking on the

similarities between the Schrödinger equation and the paraxial wave equation. Al-

though here we do not work the problem through as done by Berry and Popescu

however, we do note the resemblance between the Klein-Gordon equation and the

wave equation:

∂2

∂x2

[
Ψ(x, t)

]
−N2c2Ψ(x, t) =

1

c2
∂2

∂t2
Ψ(x, t) (4.83)

∂2

∂x2

[
Ψ(x, t)

]
=

1

c2
∂2

∂t2
Ψ(x, t) (4.84)

Where the Klein-Gordon euqation (4.83) and the wave equation (4.84) differ only

by the extra term and parameter, N , in the Klein-Gordon equation. Therefore, an
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interesting next step in this research would be to consider the m → 0 limit of the

results presented here.
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Chapter 5

Relativistic Free Particle

Superoscillations for a

Spin-Half Wavefunction

Up to this point, a superoscillatory wavefunction has only been described, in a rela-

tivistic context, for a spin-zero free particle. In this chapter, the case of a superoscil-

latory spin-half relativistic free particle wavefunction will be studied. To account for

the change in spin, a different equation is used to calculate the wavefunction: the

Dirac equation.

The aim of this chapter is therefore to compare the spin-half wavefunction to

its spin-zero counterpart. To do this, a way creating a spin-half wavefunction is

used that takes an initial spin-zero wavefunction and manipulates to produce a four

component wavefunction that is a solution to the Dirac equation. The method which

achieves this is called the KG→ D procedure.

In chapter 4, it was shown that the key features of the evolution of a superoscil-

latory quantum free particle; the wall effect and the disappearance of the super-

oscillations, are found in both the non-relativistic and relativistic (positive/negative

energy) frameworks. However, when studied using spin-zero relativistic quantum

mechanics, other types of wavefunctions arise; negative energy and mixed-states.

The negative energy case is analogous to that of the postive energy but a mixed-

state (which defined here means a state of equal parts positive and negative energy)
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possesses different properties to those seen in other superoscillatory wavefunctions.

Therefore, in this chapter, positive energy and mixed-state free-particle super-

oscillatory wavefunctions are created by taking the wavefunctions derived in chap-

ter 4 and applying the KG → D procedure. When this is achieved the differences

and similarities between them and their spin-zero counterparts seen in the previous

chapter will be discussed.

5.1 The KG→ D Procedure

In chapter 2, we derived propagators exclusively for a relativistic, free particle of

spin zero. However, these are not valid for spin-half particles which obey the Dirac

equation:

(iγ(µ)∂µ −Nc)Ψ(r, t) = 0, (5.1)

there are standard expressions for the γ(µ) matrices but these are not the ones to be

used here. Instead, we use the Weyl (chiral) [32] representation. Such a format of

the Dirac equation is usually used in the case of particle accelerators; the results

apply for particles in which the energy is much larger than the mass. However, this

representation also provides an interesting link between a spin-zero and a spin-half

relativistic wavefunction.

γ(0) =

⎡⎢⎣0 I

I 0

⎤⎥⎦ , γ(i) =

⎡⎢⎣ 0 −σi

σi 0

⎤⎥⎦ , (5.2)

Although propagators which obey (5.1) have been derived [106], [109], the pro-

cess of constructing a spin-half wavefunction is greatly simplified by starting with a

solution to the Klein-Gordon equation [33], [26]; a spin-zero wavefunciton. This can

be achieved through the KG→ D procedure, described in [33].

To demonstrate how this is possible, we begin by substituting the matrices in
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(5.2) into (5.1):

(
γ(0)

1

c

∂

∂t
− γ(1)

∂

∂x
− γ(2)

∂

∂y
− γ(3)

∂

∂z
− iNc

)
Ψ(r, t) = 0, (5.3)

and expand it giving the following equations:

1

c

∂

∂t

[
Ψ3(r, t)

]
+

∂

∂x

[
Ψ4(r, t)

]
− i

∂

∂y

[
Ψ4(r, t)

]
+

∂

∂z

[
Ψ3(r, t)

]
− iNcΨ1(r, t) = 0, (5.4)

1

c

∂

∂t

[
Ψ4(r, t)

]
+

∂

∂x

[
Ψ3(r, t)

]
+ i

∂

∂y

[
Ψ3(r, t)

]
− ∂

∂z

[
Ψ4(r, t)

]
− iNcΨ2(r, t) = 0, (5.5)

1

c

∂

∂t

[
Ψ1(r, t)

]
− ∂

∂x

[
Ψ2(r, t)

]
+ i

∂

∂y

[
Ψ2(r, t)

]
− ∂

∂z

[
Ψ1(r, t)

]
− iNcΨ3(r, t) = 0, (5.6)

1

c

∂

∂t

[
Ψ2(r, t)

]
− ∂

∂x

[
Ψ1(r, t)

]
− i

∂

∂y

[
Ψ1(r, t)

]
+

∂

∂z

[
Ψ2(r, t)

]
− iNcΨ4(r, t) = 0. (5.7)

These can be rearranged in the following way:

Ψ1(r, t) = − i

Nc

((
1

c

∂

∂t
+

∂

∂z

)
Ψ3(r, t) +

(
∂

∂x
− i

∂

∂y

)
Ψ4(r, t)

)
, (5.8)

Ψ2(r, t) = − i

Nc

((
1

c

∂

∂t
− ∂

∂z

)
Ψ4(r, t) +

(
∂

∂x
+ i

∂

∂y

)
Ψ3(r, t)

)
, (5.9)

Ψ3(r, t) = − i

Nc

((
1

c

∂

∂t
− ∂

∂z

)
Ψ1(r, t)−

(
∂

∂x
− i

∂

∂y

)
Ψ2(r, t)

)
, (5.10)
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Ψ4(r, t) = − i

Nc

((
1

c

∂

∂t
+

∂

∂z

)
Ψ2(r, t)−

(
∂

∂x
+ i

∂

∂y

)
Ψ1(r, t)

)
. (5.11)

Equations (5.8)-(5.11), can then be expressed through the matrix equations (it is for

this reason that the less common matrices were used in (5.2)):

⎡⎢⎣Ψ1(r, t)

Ψ2(r, t)

⎤⎥⎦ = − i

Nc

⎡⎢⎣1
c
∂
∂t
+ ∂

∂z
∂
∂x

− i ∂
∂y

∂
∂x

+ i ∂
∂y

1
c
∂
∂t
− ∂

∂z

⎤⎥⎦
⎡⎢⎣Ψ3(r, t)

Ψ4(r, t)

⎤⎥⎦ , (5.12)

⎡⎢⎣Ψ3(r, t)

Ψ4(r, t)

⎤⎥⎦ = − i

Nc

⎡⎢⎣ 1
c
∂
∂t
− ∂

∂z
− ∂

∂x
+ i ∂

∂y

− ∂
∂x

− i ∂
∂y

1
c
∂
∂t
+ ∂

∂z

⎤⎥⎦
⎡⎢⎣Ψ1(r, t)

Ψ2(r, t)

⎤⎥⎦ . (5.13)

Our aim is to have Ψ1(r, t) as a solution to the Klein-Gordon equation. To achieve

this, we set Ψ2(r, t), this means that the results will not be the most general. Substi-

tuting Ψ2(r, t) = 0 into (5.8)-(5.11) gives:

Ψ1(r, t) = − i

Nc

((
1

c

∂

∂t
+

∂

∂z

)
Ψ3(r, t) +

(
∂

∂x
− i

∂

∂y

)
Ψ4(r, t)

)
, (5.14)

Ψ3(r, t) = − i

Nc

(
1

c

∂

∂t
− ∂

∂z

)
Ψ1(r, t), (5.15)

Ψ4(r, t) =
i

Nc

(
∂

∂x
+ i

∂

∂y

)
Ψ1(r, t). (5.16)

Substituting (5.15) and (5.16) into (5.14):

(
1

c

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂

∂z2

)
Ψ1(r, t) +N2c2Ψ1(r, t) = 0. (5.17)
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This is the three dimensional Klein-Gordon equation and hence, if Ψ1(r, t) is a solu-

tion to the Klein-Gordon equation then,

Ψ(r, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ψ1(r, t)

0

Ψ3(r, t)

Ψ4(r, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣ϕ(r, t)
χ(r, t)

⎤⎥⎦ (5.18)

is a solution to the Dirac equation (5.1). ϕ(r, t) and χ(r, t) are the two-component

spinors:

ϕ(r, t) =

⎡⎢⎣Ψ1(r, t)

0

⎤⎥⎦ , χ(r, t) =

⎡⎢⎣Ψ3(r, t)

Ψ4(r, t)

⎤⎥⎦ (5.19)

In order to differentiate between the two, we shall refer to ϕ(r, t) as the ’Klein-

Gordon’ spinor and χ(r, t) as the ’Dirac’ spinor from now on.

With one component being set to 0, (5.18) is a very specific wavefunction. How-

ever, this step is crucial to the KG→D procedure. This does not mean that that

Ψ2(r, t) = 0 is not a pre-requisite to observe superoscillations in a relativistic, spin-

half wavefunction. Superoscillations can be created from the ’standard’ Dirac equa-

tion but, doing so doesn’t provide as direct a comparison between Klein-Gordon

and Dirac superoscillations as wavefunctions created from the KG→D procedure

do.

5.2 Positive Energy Spin-Half Superoscillations

We have derived a method which allows us to get from a spin-zero wavefunction to

a spin-half wavefunction. Now we are in a position where we can create spin-half

wavefunctions using the results of the previous chapter. We begin by examining

superoscillations in a positive energy wavefunction.
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5.2.1 Eigenfunction Expansion

We start with the two-component spinor, ϕ(x, t), created by using a solution to the

Klein-Gordon equation. For this we use the eigenfunction expansion for a super-

oscillating free-particle, positive energy Klein-Gordon wavefunction given as:

ψ(x, t) =
A√
L

Ncs∑
m=0

cme
i(Ncsκkmx−W (κ)t), (5.20)

with

W (κ) = Nc2
√

1 + s2κ2k2m. (5.21)

From this the Klein - Gordon spinor is trivial. To get the final two components of the

spin-half wavefunction, we use the matrix operator given in (5.12) which results in:

χ(x, t) = − i

Nc

⎡⎢⎣ 1
c
∂tψ(x, t)

−∂xψ(x, t)

⎤⎥⎦ =

⎡⎢⎣χ1(x, t)

χ2(x, t)

⎤⎥⎦ (5.22)

The first component of (5.22) is:

χ1(x, t) = − i

Nc2
A√
L

Ncs∑
m=0

cm
∂

∂t

[
ei(Ncsκkmx−W (κ)t)

]
(5.23)

= − 1

Nc2
A√
L

Ncs∑
m=0

W (κ)cme
i(Ncsκkmx−W (κ)t). (5.24)

The second component is then:

χ2(x, t) =
i

Nc

A√
L

Ncs∑
m=0

cm
∂

∂x

[
ei(Ncsκkmx−W (κ)t)

]
(5.25)

= −sκ A√
L

Ncs∑
m=0

kmcme
i(Ncsκkmx−W (κ)t), (5.26)
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giving the two-component spinor:

χ(x, t) = − A√
L

Ncs∑
m=0

cme
i(Ncsκkmx−W (κ)t)

⎡⎢⎣ W (κ)
Nc2

skmκ

⎤⎥⎦ , (5.27)

and finally:

Ψ(x, t) =

⎡⎢⎣ϕ(x, t)
χ(x, t)

⎤⎥⎦ =
A√
L

Ncs∑
m=0

cme
i(Ncsκkmx−W (κ)t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0

−W (κ)
Nc2

−skmκ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.28)

Figure 5.1 shows the non-zero components of the four component wavefunction

(5.28), all three of which are initially superoscillating. The differences between them

are clear but they all evolve in a similar manner. As with the spin-zero wavefunc-

tion, the subtlety of the superoscillations does not allow the eigenfunction expansion

to give a clear enough description of their evolution. We now move on to using the

KG→ D procedure on propagator representation.

Figures 5.2 and 5.3 show the full wavefunction, giving insight into the conven-

tional oscillations and differences between the two components of χ(x, t). Both

χ1(x, t) and χ2(x, t) evolve in a very similar manner; χ2(x, t) is simply χ1(x, t) re-

flected along the x-axis. However, they do differ in magnitude with χ2(x, t) being a

factor of 10 larger than χ1. This is due to the factor of N in the denominator of the

third component in (5.28).

5.2.2 Evaluation of the Propagator

To get a propagator representation of a spin-half wavefunction, explicit Dirac-propagators

have been developed [106] [109]. However, the propagator used in this treatment is

derived through use of the KG→ D procedure on the propagator representation of
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FIGURE 5.1: log(ℜe(Ψ(x, t))) for the eigenfunction expansion to the
superoscillatory spin-half free-particle obtained through use of the
KG→ D procedure. (a): the spin-zero solution ψ(x, t); (b): χ1(x, t); (c):
χ2(x, t). For a = 4, c = 1, N = 20 k = A = L = s = 1, π/4 ≤ x ≤ π/4,

0 ≤ t ≤ π/4.

a spin-zero wavefunction:

ψ(x, t) =

∫ ∞

−∞
ψ(x′, 0)∆(x− x′; t)dx′. (5.29)

The first spinor used to create the bi-spinor Ψ(x, t) is therefore:

ϕ(x, t) =

⎡⎢⎣∫∞
−∞ ψ(x′, 0)∆(x− x′; t)dx′

0

⎤⎥⎦ (5.30)
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FIGURE 5.2: Showing the wave function χ1(x, t) in equation (4.8) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

To get the second spinor, (5.30) is operated on by the matrix:

χ(x, t) = − i

Nc

⎡⎢⎣ 1
c
∂t − ∂z −∂x + i∂y

−∂x − i∂y
1
c
∂t + ∂z

⎤⎥⎦
⎡⎢⎣∫∞

−∞ ψ(x′, 0)∆(x− x′; t)dx′

0

⎤⎥⎦ (5.31)

= − i

Nc

⎡⎢⎣ 1
c

∫∞
−∞ ψ(x′, 0) ∂

∂t

[
∆(x− x′; t)

]
dx′

−
∫∞
−∞ ψ(x′, 0) ∂

∂x

[
∆(x− x′; t)

]
dx′.

⎤⎥⎦ (5.32)
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FIGURE 5.3: Showing the wave function χ2(x, t) in equation (4.8) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

It follows that the propagator representation of the four-component, spin-half wave-

function is:

Ψ(x, t) = − i

Nc

⎡⎢⎢⎢⎢⎢⎢⎢⎣

iNc
∫∞
−∞ ψ(x′, 0)∆(x− x′; t)dx′

0

1
c

∫∞
−∞ ψ(x′, 0) ∂

∂t

[
∆(x− x′; t)

]
dx′

−
∫∞
−∞ ψ(x′, 0) ∂

∂x

[
∆(x− x′; t)

]
dx′.

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.33)

Evaluation of the first component in (5.33) has been dealt with in the previous chap-

ter; it is the spin-zero wavefunction. This chapter concerns itself with the third and

fourth components in (5.33). Expressions in terms of the explicit Klein-Gordon prop-

agator will be derived for each of these components before moving onto analysis.
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Recalling the positive energy, free-particle, Klein-Gordon propagator (2.35):

∆(x− x′; t) =
i

π
Nc2t

K1(Nc
√
(x− x′)2 − c2t2)√

(x− x′)2 − c2t2
(5.34)

The two components; χ1(x, t) and χ2(x, t) are:

χ1(x, t) =
1

π

∫ ∞

−∞
ψ(x′, 0)

∂

∂t

[
t
K1(Nc

√
(x− x′)2 − c2t2)√

(x− x′)2 − c2t2

]
dx′ (5.35)

χ2(x, t) =
1

π
ct

∫ ∞

−∞
ψ(x′, 0)

∂

∂x

[
K1(Nc

√
(x− x′)2 − c2t2)√

(x− x′)2 − c2t2

]
dx′ (5.36)

Using the relation:
d

dx

[
Kν(x)

x

]
= −Kν+1(x)

x
(5.37)

gives:

χ1(x, t) = − 1

π

∫ ∞

−∞
ψ(x′, 0)

(
Nc3t2

K2(Nc
√
(x− x′)2 − c2t2)

(x− x′)2 − c2t2
. . .

−
K1(Nc

√
(x− x′)2 − c2t2)√

(x− x′)2 − c2t2

)
dx′ (5.38)

χ2(x, t) =
1

π
Nc2t

∫ ∞

−∞
ψ(x′, 0)(x− x′)

K2(Nc
√
(x− x′)2 − c2t2)

(x− x′)2 − c2t2
dx′ (5.39)

The rest of this section is now concerned with solving (5.38) and (5.39) in the positive

energy configuration for the various limits of the propagator (5.34).

5.2.2.1 The ’Dirac’ Spinor, χ(x, t), in the light-cone approximation

The light-cone approximation is valid when x′ ≈ x ± ct; x′ is in the neighbourhood

of the light-cone. In this limit, the argument of the Bessel function in both (5.38) and

(5.39) becomes very small and the approximation for small arguments can be used:

Kν(z) ≈
1

2
Γ(ν)

(
1

2
z

)−ν

(z → 0) (5.40)
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Applying this to (5.38) and (5.39) gives:

χ1(x, t) = − 1

π

∫ ∞

−∞
ψ(x′, 0)

(
2ct2

N((x− x′)2 − c2t2)2
− 1

Nc((x− x′)2 − c2t2)

)
dx′ (5.41)

χ2(x, t) =
2t

Nπ

∫ ∞

−∞

ψ(x′, 0)(x− x′)(
(x− x′)2 − c2t2

)2dx′ (5.42)

As with the case for the spin-zero wavefunction in this limit, the integrand is dom-

inated by poles at the light cone x ± ct. However, where we previously saw simple

poles, the spin-half wavefunction also contains second order poles. Both integrals

are of O( 1
N
), this is different from the spin-zero wavefunction in which, at the light-

cone, the integral is of order unity.

It is important, at this point, to check whether the propagator condition, ∆χ1(x−

x′; 0) = δ(x−x′), is maintained. It is crucial that, in the light-cone limit, this condition

is met. It was shown, in chapter 2, that this is the approximation to the propagator

that preserves this feature. Extracting the propagator from (5.41) gives:

∆χ1(x− x′; t) = − 1

π

(
2ct2

N((x− x′)2 − c2t2)2
− 1

Nc((x− x′)2 − c2t2)

)
(5.43)

By taking the limit t = 0 in (5.43), it is clear that the second term does not produce

a delta function as required. This is therefore a ’non-propagator’ term and will not

be included in further calculations of the light-cone approximation 1. It can be seen

in (5.42) that no such terms will be present in the second component of the Dirac

spinor.

As with the spin-zero case, in order to evaluate the evolution the initial super-

oscillatory function the eigenfunction expansion (5.20) must be used. This is neces-

sary otherwise the integrand is seemingly divergent as x′ → i∞. For χ1(x, t) (5.38),

1Note that this non-propagator term is also dimensionless and not m−1 as required. These terms
will be discussed further in the conclusion to this chapter.
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C ′
−
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FIGURE 5.4: Showing how the sign of km in (5.44) affects how the con-
tour is deformed around the pole (red circle) at x′ = x − ct in the x′

plane. If km > 0, the contour is deformed into C+, if km < 0, the con-
tour is deformed into C−.

using (5.20) as the initial wavefunction (t = 0) gives:

χ1(x, t) ≈ − A√
Lπ

Ncs∑
m=0

cm

∫ ∞

−∞

2ct2eiNcsκkmx

N
(
(x− x′)2 − c2t2

)2dx′ (5.44)

With the integral in this form, we can split the integrand into a part which converges

as x′ → i∞ (km > 0) and a part which converges as x′ → −i∞ (km < 0). By splitting

the integral as described, the result is:

χ1(x, t) ≈ − A√
Lπ

( 1
2
Ncs−1∑
m=0

cm

∫
C−

2ct2eiNcsκkmx

N
(
(x− x′)2 − c2t2

)2dx′ + . . .

Ncs∑
m= 1

2
Ncs

cm

∫
C+

2ct2eiNcsκkmx

N
(
(x− x′)2 − c2t2

)2dx′
)
. (5.45)

To evaluate the integrals in (5.45) the residue theorem, for a pole of order two, must

be applied to the integrand:

I1(x
′, x, t) =

eiNcsκkmx′(
(x− x′)2 − c2t2

)2 (5.46)
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As described in the previous chapter, the pole which represents a positive energy

wavefunction is the pole at x′ = x− ct. Calculating the residue at this point gives:

Res(I1(x′, x, t), x− ct) =
1

2c2t2

(
iNcsκkm +

1

ct

)
exp

[
iNcsκkm(x− ct)

]
, (5.47)

giving the result to the integral :

∫
C+,C−

eiNcsκkmx′(
(x− x′)2 − c2t2

)2dx′ = iπ

Nc

(
iNcsκkm +

1

ct

)
exp

[
iNcsκkm(x− ct)

]
. (5.48)

From this, χ1(x, t) in the limit x′ → x− ct, is:

χ1(x, t) ≈ − A

Ncπ
√
L

( 1
2
Ncs−1∑
m=0

cm

(
iNcsκkm +

1

ct

)
exp

[
iNcsκkm(x− ct)

]
+ . . .

Ncs∑
m= 1

2
Ncs

cm

(
iNcsκkm +

1

ct

)
exp

[
iNcsκkm(x− ct)

])
(5.49)

= − A

Ncπ
√
L

Ncs∑
m=0

cm

(
iNsκkm +

1

ct

)
exp

[
iNcsκkm(x− ct)

]
(5.50)

Figure 5.5 shows that, aside at t = 0, the pole approximation is not an accurate way

of describing the evolution of the first component of the spinor χ(x, t). However, as

noted previously, the integral (5.41) is of O( 1
N
). This is not true for (5.50) which is

composed of two terms; one of O( 1
N
) and the other of order unity.

In the initial superoscillatory wavefunction, N (which is related to the number

of superoscillations) is very large. As the term that causes the inaccuracies is the one

that is of order O( 1
N
), the light-cone approximation will become more accurate the

higher the number of superoscillations there are in the initial wavefunction. By dis-

regarding the second term in (5.50), we get results similar to those of the spin-zero

wavefunction in the light-cone limit:
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FIGURE 5.5: ℜe(log(ℜe(χ1(x, t)))) for the complete wavefunction (5.38)
(orange) and for the pole approximation (5.49) (blue) for (a) t =
0.000001, (b) t = π/8, (c) t = π/4 and (d) t = π/2 for all graphs,

−π/4 ≤ x ≤ π/4 and a = 4, N = 20, c = s = A = L = 1.

Figure 5.6 shows a similar evolution to the spin-zero case; the initial wavefunc-

tion is propagated along the line x− ct.

We now evaluate χ2(x, t) in the limit x′ → x − ct, substituting the Fourier series

representation of the initial wavefunction into (5.39) and splitting the sum as per the

contours in figure 5.4 gives:

χ2(x, t) ≈
2At

πN
√
L

( 1
2
Ncs−1∑
m=0

cm

∫
C−

(x− x′)eiNcsκkmx′(
(x− x′)2 − c2t2

)2dx′ + . . .
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FIGURE 5.6: ℜe(log(ℜe(χ1(x, t)))) for the complete wavefunction (5.38)
(orange) and for the pole approximation in which the initial wave-
function term dominates over the propagator term (5.50) (blue) for (a)
t = 0.000001, (b) t = π/8, (c) t = π/4 and (d) t = π/2 for all graphs,

−π/4 ≤ x ≤ π/4 and a = 4, N = 20, c = s = A = L = 1.

Ncs∑
m= 1

2
Ncs

cm

∫
C+

(x− x′)eiNcsκkmx′(
(x− x′)2 − c2t2

)2dx′
)
. (5.51)

To evaluate the integrals in (5.51), the residue of the integrand must be determined:

I2 =
(x− x′)eiNcsκkmx′(
(x− x′)2 − c2t2

)2 (5.52)
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The residue is then:

Res(I2(x, t), x− ct) =
iNsκkme

iNcsκkm(x−ct)

4t
, (5.53)

giving the solution to the integral:

∫
C+,C−

(x− x′)eiNcsκkmx′(
(x− x′)2 − c2t2

)2 = −πNsκkme
iNcskm(x−ct)

2t
. (5.54)

Which gives χ2(x, t) as:

χ2(x, t) ≈ −Asκ√
L

( 1
2
Ncs−1∑
m=0

cmkm exp
[
iNcsκkm(x− ct)

]
+ . . .

Ncs∑
m= 1

2
Ncs

cmkm exp
[
iNcsκkm(x− ct)

])
(5.55)

Figure 5.7 shows the evolution of (5.55). It is very similar to the spin-zero wave-

function and χ1(x, t) (large N ) both in their light-cone approximations. Unlike the

first component of the Dirac spinor, the effect of the matrix operator does not result

in terms involving 1
t

. However, once again, it is not completely accurate as there is

a difference in magnitude between the two wavefunctions.

In figures 5.8 and 5.9, we show the full versions of the two components. The pole

approximations captures the same reflective symmetry about the x-axis as seen in

the eigenfunciton expansion. However, the orders of magnitude are larger in both

cases.
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FIGURE 5.7: ℜe(log(ℜe(χ1(x, t)))) for the complete wavefunction (5.38)
(orange) and for the pole approximation (blue) for (a) t = 0.000001, (b)
t = π/8, (c) t = π/4 and (d) t = π/2 for all graphs, −π/4 ≤ x ≤ π/4 and

a = 4, N = 20, c = s = A = L = 1.

5.2.2.2 The Dirac Spinor, χ(x, t), in the WKB approximation

To evaluate χ(x, t) in the WKB (N → ∞) limit, recall the large argument approxima-

tion to the modified Bessel function:

Kν(z) ≈
√

π

2z
e−z (z → ∞) (5.56)

Applying this to (5.38) and (5.39) gives the two components of the Dirac spinor in

the WKB limit:
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FIGURE 5.8: Showing the wave function χ1(x, t) in equation (5.50) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

χ1(x, t) ≈ − 1

π

∫ ∞

−∞
ψ(x′, 0)

√
π

Nc
√
(x− x′)2 − c2t2

(
Nc3t2

(x− x′)2 − c2t2
+

1√
(x− x′)2 − c2t2

)
. . .

exp
[
−Nc

√
(x− x′)2 − c2t2

]
dx′ (5.57)

χ2(x, t) ≈
1

π
Nc2t

∫ ∞

−∞
ψ(x′, 0)

√
π

Nc
√

(x− x′)2 − c2t2
(x− x′)√

(x− x′)2 − c2t2
. . .

exp
[
−Nc

√
(x− x′)2 − c2t2

]
dx′ (5.58)
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FIGURE 5.9: Showing the wave function χ2(x, t) in equation (5.55) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

(5.57) and (5.58) can both be evaluated using the saddle point method. This gives

solutions to the integral from contributions due to saddles of the phase of the expo-

nential. In order to use this method, the initial wavefunction is represented in it’s

complex momenta form:

ψ(x, 0) =
A√
L
exp

[
iNcs

∫ x

0

q(x′′)dx′′
]
, (5.59)

giving:

χ1(x, t) ≈ − A

π
√
L

∫ ∞

−∞

√
π

2Nc
√

(x− x′)2 − c2t2

(
Nc3t2

(x− x′)2 − c2t2
+

1√
(x− x′)2 − c2t2

)
. . .
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. . . exp
[
Nc
(
is

∫ x′

0

q(x′′)dx′′ −
√
(x− x′)2 − c2t2

)]
dx′ (5.60)

χ2(x, t) ≈
1

π
Nc2t

∫ ∞

−∞

√
π

2Nc
√

(x− x′)2 − c2t2
(x− x′)√

(x− x′)2 − c2t2
. . .

. . . exp
[
Nc
(
is

∫ x′

0

q(x′′)dx′′ −
√
(x− x′)2 − c2t2

)]
dx′ (5.61)

Comparing (5.60) and (5.61) to the spin-zero WKB approximation integral (4.23), the

phases in the exponentials in all cases are the same. Therefore, the contributing sad-

dles to all three integrals are the same. The derivation of the saddles was considered

in chapter 4, they are found through numeric solutions of the quartic equation:

a2κ2x4j + 2iaκ(iaκx− 1)x3j + (4iaκx+ a2k2x2 − s2a2κ2 − 1)x2j + . . .

(2x− 2iaκx2 + 2s2a2κ2x)xj + s2a2κ2c2t2 − (1 + s2a2κ2)x2 = 0 (5.62)

Solving (5.62) using the roots routine in MATLAB, gives four solutions. As de-

scribed in chapter 4, these can be split into two sets. The first set, [x2, x4], are saddles

moving forwards in time and hence, relevant to a positive energy wavefunction.

The second set, [x1, x3], are saddles moving backwards in time and therefore not of

interest in a positive energy wavefunction. Deforming the contour of integration

through the set [x2, x4] the saddle point method can be used which gives integrals in

the form: ∫
C

eνw(z)ϕ(z)dz ≈ ϕ(z0)

√
−2π

νw′′(z0)
eνw(z0) (ν → ∞) (5.63)

Denoting the phase of the exponential in (5.60) and (5.61) as:

γ(x′;x, t) = is

∫ x′

0

q(x′′)dx′′ −
√

(x− x′)2 − c2t2, (5.64)
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and the terms in brackets in (5.60) as:

µ(x′;x, t) =

(
Nc3t2

(x− x′)2 − c2t2
+

1√
(x− x′)2 − c2t2

)
(5.65)

the WKB approximations to the two components of the Dirac spinor are:

χ1(x, t) = −
∑
j

√
−A2

NcL
√

(x− xj)2 − c2t2γ′′(xj;x, t)
µ(xj;x, t) exp

[
Ncγ(xj;x, t)

]
,

(5.66)

χ2(x, t) = Nc2t
∑
j

√
−A2

NcL
√

(x− xj)2 − c2t2γ′′(xj;x, t)

(x− xj)√
(x− xj)2 − c2t2

exp
[
Ncγ(xj;x, t)

]
.

(5.67)

Figure 5.10 compares the WKB (5.66) and (5.67) to the eigenfunction expansion

(5.27) of the Dirac spinor. As with the WKB approximation of the spin-zero wave-

function, despite not being a completely accurate representation, the key features

(wall effect and ) of a superoscillatory wavefunction are captured.

The full wavefunctions are plotted in figures 5.11 and 5.12. For the most part, the

relative symmetry between the two components is maintained however for t = π/16

this is not the case in χ2(x, t). The orders of magnitude are also very different from

what was previously seen in the eigenfunction expansion. Once again, the WKB

approximation is not a good approximation to use when trying to replicate the con-

ventional oscillations. This is largely due to the fact that small x approximations

were used in the calculations which will not be valid for the regions of conventional

oscillations.

A saddle-pole derivation of the wavefunction is not provided. This is due to

the fact that, the poles in the two components of the Dirac spinor are of order two.

Therefore in order to evaluate the integral, the integrand must be mapped on to a

comparison integral which contains an exponential and a pole of order two. Unfor-

tunately, none exist and hence, such an approximation is not possible.
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FIGURE 5.10: (a) and (c) ℜe log(ℜe(χ1(x, t) for (a) the eigenfunction
expansion (5.24) and (c) the WKB approximation (5.66). (b) and (d)
ℜe log(ℜe(χ2(x, t) for (b) the eigenfunction expansion (5.26) and (c) the
WKB approximation (5.67). For all graphs 0 ≤ t ≤ π/4, −π/4 ≤ x ≤

π/4 and a = 4, N = 20, c = s = A = L = 1.

5.2.3 Analysis

As with the spin-zero superoscillatory wavefunction, the best approximation to the

eigenfunction expansion arises from the WKB approximation to the propagator. In

fact, as we will discuss, the integrals required to solve the two components of the

Dirac spinor rely on the same contributions to those of the Klein-Gordon wavefunc-

tion.

A key difference between the spin-zero and spin-half cases is at the light-cone in

which the simple pole found in chapter 4 is replaced by a pole of order 2; generally

the integral, in this limit, is also of O( 1
N
). This is where the change in the wave-

function’s spin has the most effect on the evolution however, as we have seen in
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FIGURE 5.11: Showing the wave function χ1(x, t) in equation (5.66) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

the spin-zero case and in the spin-half case, this limit does not provide an accurate

approximation to the wavefunction.

5.2.3.1 The Wall Effect

In analysing the wall effect, the phase of the exponential in both (5.66) and (5.67)

and the way in which the saddles exchange dominance is key to its appearance. The

phase of both components of the Dirac spinor is equal to that of the phase of the

spin-zero wavefunction. Therefore, the Stokes and anti-Stokes lines created will be

the same as those in chapter (4). As they are the same, only a brief description is

presented here with the majority of the detail left in chapter 4.
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FIGURE 5.12: Showing the wave function χ2(x, t) in equation (5.67) the
real parts of Ψ(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

The Stokes and anti-Stokes lines are found, numerically, by:

Stokes Line: ℜe(γ(x2;x.t)− γ(x4;x, t)) = 0

anti-Stokes Line: ℑm(γ(x2;x.t)− γ(x4;x, t)) = 0
(5.68)

With γ(xj;x, t) given by (5.64).

Along a Stokes line, the phase is purely imaginary. These lines represent points in

which the the contribution of one saddle over another is maximal; crossing a Stokes

line either causes a sub-dominant saddle disappear behind the dominant one or, if

no sub-dominant saddle is present, it will emerge once a Stokes line is crossed. An

anti-Stokes line is a line in which the phase is purely real. Along these lines, the

contribution of one saddle of another is minimal. Hence, once crossed, a dominant
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FIGURE 5.13: Anti-Stokes line (blue) for the x, t plane to the WKB ap-
proximation. Dominant saddles are in bold.

saddle become sub-dominant and vice-versa.

For the phase of both exponentials, γ(xj;x, t), the Stokes and anti-Stokes lines are

given in figure 5.13. This is the same as what was found in the spin-zero superoscil-

latory wavefunction. We can see more clearly how each component behaves either

side of this line by superimposing it onto the WKB approximations in figure 5.10:

The saddle responsible for the superoscillations is x2. This is clear from figure 5.14

in which the superoscillations persist for longer on the right hand side of the anti-

Stokes line (the side in which x2) is dominant). Despite the saddle x4 producing a

wavefunction which is conventionally oscillatory, superoscillations still persist, for a

short time, left of the anti-Stokes line. This is due to the fact that there is not a Stokes

line in the vicinity of the superoscillations. As an anti-Stokes line represents points

in which the contribution of the dominant saddle over the sub-dominant saddle is

minimal and the Stokes line represent points in which the relative dominance of the

saddles is maximal, not having a Stokes line close to the superoscillations shows

that the contributions from either saddle, especially around the anti-Stokes line, are

similar in magnitude. This is seen in the spin-zero case and is shown in figure 4.15.

As with the spin-zero case, the singularity from which anti-Stokes and Stokes lines

emerge is out of reach of the approximations used.
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FIGURE 5.14: (a) ℜe log(ℜe(χ1(x, t) in the WKB approximation
(5.66) with the anti-Stokes line (white line) superimposed. (b)
ℜe log(ℜe(χ2(x, t) in the WKB approximation (5.67) with the anti-
Stokes line (white line) superimposed. For all graphs 0 ≤ t ≤ π/4,

−π/4 ≤ x ≤ π/4 and a = 4, N = 20, c = s = A = L = 1.

5.2.3.2 Disappearance Time

The other important feature of the two components of the Dirac spinor is the dis-

appearance of the superoscillations. Again, as this is governed by the phase of the

exponentials in (5.66) and (5.67), it follows in the same way as the spin-zero case.

The disappearance of superoscillations corresponds to a time, td in which the lo-

cal wavenumber of the superoscillatory saddle, x2, decreases to a value less than or
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FIGURE 5.15: Disappearance time as a function of a in the range 4 ≤
a ≤ 1000, for both components of the Dirac spinor (5.66) and (5.67) in

the WKB approximation.

equal to that of the fastest Fourier component. To calculate this a numerical approx-

imation to the anti-Stokes line (the same used in the previous chapter) in figure 5.13

is required:

xa−s =
(0.2168− t

0.31

) 4
3
, (5.69)

By substituting this into the local wavenumber and setting the result equal to one,

the disappearance time can be determined. As the saddles are computed numeri-

cally, an analytical expression for the disappearance time is not possible. However,

we can plot the disappearance time as a function of a, the superoscillatory parame-

ter: As figure 5.15 shows, as a increases, the disappearance time decreases to a value

of td = 0.3717. For the case of the wavefunctions in (5.66) and (5.67), the disappear-

ance time is td = 0.4140 for both.

By looking a figure 5.1, it is quite clear that all three non-zero components of the

Dirac wavefunction, Ψ(x, t), have similar properties; they both have the same asym-

metrical evolution and the superoscillations seem to disappear at the same time. By

evaluating the integral over the propagator, this is found to be a correct prediction.

This can also be predicted from the KG→ D procedure.
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The best approximation to the propagator for the initial superoscillatory func-

tion is the WKB approximation, which has an exponential form. The KG → D

procedure derives the two components of the Dirac spinor, in 1 + 1 dimensions by

differentiating with respect to t and x respectively. Differentiating an exponential

does nothing to affect its argument and hence features such as the wall effect and

the disappearance of superoscillations are going to be unaffected.

The differences between the two components of the Dirac spinor and the spin-

zero wavefunction are therefore superficial and best represented by the eigenfunc-

tion expansion:

χ(x, t) =
A√
L

Ncs∑
m=0

cme
i(Ncsκkmx−W (κ)t)

⎡⎢⎣ W (κ)
Nc2

−skmκ

⎤⎥⎦ , (5.70)

The differentiation with respect to t in the first component of (5.70) pulls down the

energy of the initial wavefunction whereas, differentiation with respect to x in the

second pulls down the momentum. Doing this slightly changes the form of the

wavefunction but does nothing to change its key features.

5.3 Spin-Half Superoscillations in a Mixed-State Wave-

function

We now perform theKG→ D procedure on the mixed state wavefunction. A mixed

state is one in which the wavefunction is composed of equal amounts of positive and

negative energy. As with the positive energy spin-half wavefunction, we begin by

deriving the eigenfunction expansion before moving onto the propagator represen-

tation.
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5.3.1 Eigenfunction Expansion

Recall the spin-zero mixed state eigenfunction expansion:

ψ(x, t) =
A

2
√
L

Ncs∑
m=0

cme
iNcsκkmx cos(W (κ)t) (5.71)

To get the two components of the Dirac spinor for (5.71) we use the same matrix

operator as derived earlier in the chapter (5.13). This gives the two components of

χ(x, t) as:

χ1(x, t) = − iA

2Nc2
√
L

Ncs∑
m=0

cme
iNcsκkmx ∂

∂t

[
cos(W (κ)t)

]
(5.72)

=
iA

2Nc2
√
L

Ncs∑
m=0

cmW (κ)eiNcsκkmx sin(W (κ)t), (5.73)

χ2(x, t) = − iA

2Nc
√
L

Ncs∑
m=0

cm cos(W (κ)t)
∂

∂x

[
eiNcsκkmx

]
(5.74)

=
Asκ

2
√
L

Ncs∑
m=0

cmkme
iNcsκkmx cos(W (κ)t). (5.75)

Figure 5.16 shows how the two mixed-state components of the Dirac spinor evolve.

χ2(x, t) evolves in a manner very similar to that of the spin-zero mixed state. How-

ever, χ1(x, t), for small t, is quite different from what was seen in chapter 4. Unlike

the positive energy wavefunction in which the results were fairly independent of

spin, it would seem that it is in a mixed-state that the effect of spin is most obvious.

Again, propagator methods will employed to explain this behaviour.

Figure 5.17 and 5.18 show the full version of the wavefunction for χ1 and χ2.

As with the case for the spin-zero representation, one part of the wavefunction is

symmetric about the line y = 0 and the other is not. Which part this is (real or imag-

inary) changes between each component. This is due to the fact that (5.73) has an i

in the prefactor and (5.75) does not.

As χ1 is not superoscillatory, one might expect to be able to see detail around
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FIGURE 5.16: (a) ℜe(log(ℜe(χ1(x, t))) for the eigenfunction expansion
of the mixed state wavefunction (5.73). (b) ℜe(log(ℜe(χ2(x, t)))) for the
eigenfunction expansion of the mixed state wavefunction (5.75). For all
graphs 0 ≤ t ≤ π/4, −π/4 ≤ x ≤ π/4 and a = 4, N = 20, c = s = A =

L = 1.

x = 0 in figure 5.17 however, as seen in figure 5.16, the orders of magnitude in

the region are still very small compared to the conventional superoscillations so we

would not expect to be able to gain information from this representation.



Chapter 5. Relativistic Free Particle Superoscillations for a

Spin-Half Wavefunction
167

−0.5 0 0.5
−4

−2

0

2

4
·108

x

(a)

−0.5 0 0.5

−2

0

2

·1010

x

(b)

−0.5 0 0.5

−1

0

1
·1011

x

(c)

−0.5 0 0.5
−4

−2

0

2
·1011

x

(d)

FIGURE 5.17: Showing the wave function χ1(x, t) in equation (5.73) the
real parts of χ1(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

5.3.2 Evaluation of The Propagator

To begin the evaluation of the propagator for the mixed state, the KG → D proce-

dure is applied to the mixed-state spin-zero propagator:

∆(x− x′; t) =
1

2
Nc2t

⎧⎪⎪⎨⎪⎪⎩
J1

(
Nc
√

c2t2−(x−x′)2
)

√
c2t2−(x−x′)2

(c|t| > |x− x′|)

0 (c|t| < |x− x′|)
(5.76)

This then gives the two components to the Dirac spinor as the derivatives:

∆χ1(x, t) =
1

2
i
∂

∂t

[
t
J1
(
Nc
√
c2t2 − (x− x′)2

)√
c2t2 − (x− x′)2

]
(5.77)
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FIGURE 5.18: Showing the wave function χ2(x, t) in equation (5.75) the
real parts of χ2(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

∆χ2(x, t) =
1

2
ict

∂

∂x

[
J1
(
Nc
√
c2t2 − (x− x′)2

)√
c2t2 − (x− x′)2

]
(5.78)

As Bessel functions of the first type follow the same differentiation rules as modified

Bessel functions of the second type given by (5.37), equations (5.77) and (5.78) can

be evaluated:

∆χ1(x, t) =
1

2
i

(
Nc3t2

J2(Nc
√
c2t2 − (x− x′)2)

c2t2 − (x− x′)2
+ . . .

· · ·+
J1(Nc

√
c2t2 − (x− x′)2)√

c2t2 − (x− x′)2

)
, (5.79)
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∆χ2(x, t) = −1

2
iNc2t(x− x′)

J2(Nc
√
c2t2 − (x− x′)2)

c2t2 − (x− x′)2
. (5.80)

This takes a similar form to the positive energy propagators for the two components

of the Dirac spinor (5.38) and (5.39). To understand the two propagators more, we

begin by taking the light-cone approximation. This limit occurs when (x− x′) ≈ ct;

the argument of the Bessel functions becomes very small. This allows us to use the

following approximation to the Bessel function of the first kind:

Jν(z) ≈
zν

2νΓ(ν + 1)
(5.81)

Applying this approximation to (5.79) and (5.80) gives:

∆χ1(x, t) ≈
1

2
i
(1
8
N3c5t2 +

1

4
Nc
)
θ(|ct| − |x− x′|) (5.82)

∆χ2(x, t) ≈ −1

8
iN3c4t(x− x′)θ(|ct| − |x− x′|) (5.83)

Where θ(|ct|− |x−x′|) is the Heaviside step function which ensure the contributions

lie solely within the light-cone.

Again, we see the emergence of ’non-propagator’ terms in the first component

on the Dirac spinor. As in the previous chapter, these shall not be included in further

calculations.

(5.82) and (5.83) do not give the entire description of the approximation to the

propagator at the light-cone. For a spin-zero wavefunction, the first term of the

approximation is a delta function found by adding the light-cone approximations of

a positive and negative energy particle. The same is also found for both components

of the Dirac spinor for spin-half propagator, giving:

∆χ1(x, t) ≈ δ(x− x′ ± ct) +
1

2
i
(1
8
N3c5t2 +

1

4
Nc
)
θ(|ct| − |x− x′|) (5.84)
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∆χ2(x, t) ≈ δ(x− x′ ± ct)− 1

8
iN3c4t(x− x′)θ(|ct| − |x− x′|) (5.85)

In the spin-zero case, the WKB approximation was the same as the light-cone

approximation. As the mixed-state propagator is zero in this region, so must the

contributions from the WKB approximation. This is the same for the spin-half case.

We can now get a propagator representation for the Dirac spinor of the mixed

state wavefunction and its light-cone approximation; for χ1(x, t) we have:

χ1(x, t) =
1

2
i

∫ x+ct

x−ct

ψ(x′, 0)

(
Nc3t2

J2(Nc
√
c2t2 − (x− x′)2)

c2t2 − (x− x′)2
+ . . .

J1(Nc
√
c2t2 − (x− x′)2)√

c2t2 − (x− x′)2

)
dx′, (5.86)

and its light-cone approximation:

χ1(x, t) ≈
∫ x+ct

x−ct

ψ(x′, 0)

(
δ(x− x′ ± ct) +

1

2
i
(1
8
N3c5t2 +

1

4
Nc
))

dx′. (5.87)

As with the light-cone approximation to the positive energy propagator, (5.91) fea-

tures terms which, as t→ 0, do not form a delta function and hence, do not represent

a propagator. Collecting only the propagator terms:

χ1(x, t) ≈
∫ x+ct

x−ct

ψ(x′, 0)

(
δ(x− x′ ± ct) + i

1

16
N3c5t2

)
dx′. (5.88)

For χ2(x, t); we have:

χ2(x, t) = −1

2
iNc2t

∫ x+ct

x−ct

ψ(x′, 0)
J2(Nc

√
c2t2 − (x− x′)2)

c2t2 − (x− x′)2
dx′ (5.89)
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and its light-cone approximation:

χ2(x, t) ≈
∫ x+ct

x−ct

ψ(x′, 0)

(
δ(x− x′ ± ct)− 1

8
iN3c4t(x− x′)

)
dx′ (5.90)

We now evaluate the two light-cone approximations for the initial superoscillatory

function:

ψ(x, 0) =
A√
L

(
cos(κx) + ia sin(κx)

)Ncs

, (5.91)

beginning with the first component of the Dirac spinor:

χ1(x, t) ≈
A√
L

∫ x+ct

x−ct

(
cos(κx)+ia sin(κx)

)Ncs
(
δ(x−x′±ct)+i 1

16
N3c5t2

)
dx′. (5.92)

For the case of the spin-zero wavefunction, the second term in the integral over the

propagator was ignored in the small t limit. This will not be the case for (5.92) as the

second term is of O(t2), as opposed to O(t).

The integral over the first term is trivial, for the second term we solve:

I(x, t) =
iA

16
√
L
N3c5t2

∫ x+ct

x−ct

(
cos(κx) + ia sin(κx)

)Ncs

dx′. (5.93)

To solve (5.93) the small x approximation is used to the intial wavefunction giving:

I(x, t) =
iA

16
√
L
N3c5t2

∫ x+ct

x−ct

(1 + iaκx′)Ncsdx′. (5.94)

This can be solved using standard methods to give:

I(x, t) =
AN3c5t2

16aκ
√
L(1 +Ncs)

(
(1 + iaκ(x− ct))Ncs+1 − (1 + iaκ(x+ ct))Ncs+1

)
(5.95)

Giving the first component for the Dirac spinor of the mixed state wavefunction as:
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FIGURE 5.19: ℜe(log(ℜe(χ1(x, t)))) in the light-cone approximation
(5.96) 0 ≤ t ≤ π/4, −π/4 ≤ x ≤ π/4 and a = 4, N = 20, c = s =

A = L = 1.

χ1(x, t) =
A√
L

(
1− N3c5t2

16aκ(1 +Ncs)
(1 + iaκ(x+ ct))

)
(1 + iaκ(x+ ct))Ncs + . . .

A√
L

(
1 +

N3c5t2

16aκ(1 +Ncs)
(1 + iaκ(x− ct))

)
(1 + iaκ(x− ct))Ncs (5.96)

The most noticeable feature of figure 5.19 is that the symmetry seen in the eigen-

function expansion is not preserved. This is only seen for comparatively large val-

ues of x which is where the approximation to the initial wavefunction breaks down.

Within the region of interest, around x ∼ 0 and t ∼ 0, symmetry is preserved.

Figure 5.20 shows the full representation of the light-cone approximation to the

first component χ1(x, t). Again, it is a poor approximation to what was seen in the

eigenfunction expansion. Where as in figure 5.17, the real part was symmetric about

y = 0 in this case it is the imaginary part. The orders of magnitude are also consid-

erably different.
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FIGURE 5.20: Showing the wave function χ1(x, t) in equation (5.96) the
real parts of χ1(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.

As with the spin-zero case, the light-cone approximation to the mixed state wave-

function is composed of waves travelling almost at speed c; half moving forwards in

time the other half moving backwards. Up to the first term approximation, the spin-

zero and spin-half wavefunctions are identical. However, this ends in the second

term of the propagator in which the spin-half case is of O(t2) where as the spin-zero

case is of O(t). This means that the effects of the second term in the spin-half prop-

agator are felt more immediately than the second term in the spin-zero propagator.

This difference results from the differentiation with respect to t from the KG → D

procedure. Therefore, these differences are all a result of the change in the particle’s

spin.

The eigenfunction expansion of the first component of the Dirac spinor for a
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mixed state wave function depicted in 5.16 shows that, in what would be the su-

peroscillatory region, there are no oscillations. This effect is not picked up when

using a light-cone approximation. However, in this limit, it is shown that higher-

order terms play a greater role for the first component of the Dirac spinor as it is of

O(t2) as opposed to O(t). Due to the effect of N being large, the transition between

light-cone terms and WKB terms is very quick. Therefore, the effect of higher-order

terms is likely to be seen in the WKB approximation to the wavefunction. To cre-

ate this, we take the WKB approximations to both the positive and negative energy

wavefunctions and sum them:

χ1,mix,WKB(x, t) =
1

2
(χ1,+,WKB(x, t) + χ1,−,WKB(x, t)) (5.97)

To this point, we haven’t explicitly derived any negative energy wavefunction.

However, the derivation of the negative energy state for the first component of the

Dirac equation follows almost identically to that of the positive energy state. The

only differences are that there is a factor of −1 in front of the negative energy wave

function and the contributing saddles. In the positive energy wave function, the two

contributing saddles are x2 and x4 which, out of the four saddles which emerge from

the quartic equation that determines the saddles (5.62) both move forwards in time.

The negative energy wave function however, gets contributions from the saddles x1

and x3 which move backwards in time. As seen in figure 5.21, the WKB approxima-

tion to the mixed state shows similar results to the eigenfunction expansion as there

are no superoscillations in the region where they are usually seen. Despite some

symmetry being lost, this is predominantly for large t or x.

This is the key difference between the spin-zero and spin-half superoscillatory

wavefunctions: for one of the components of the mixed state spin-half wavefunc-

tion, the WKB approximation provides the most accurate result. Reasons for this

will be discussed later.

The full wavefunction for the WKB approximation to the first component. Clearly,



Chapter 5. Relativistic Free Particle Superoscillations for a

Spin-Half Wavefunction
175

FIGURE 5.21: ℜe(log(ℜe(χ1(x, t)))) in the light-cone approximation
(5.97) 0 ≤ t ≤ π/4, −π/4 ≤ x ≤ π/4 and a = 4, N = 20, c = s =

A = L = 1.
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FIGURE 5.22: Showing the wave function χ1(x, t) in equation (5.97) the
real parts of χ1(x, t) are shown in blue and the imaginary in orange.
With parameters: a = 4, N = 20, c = s = κ = A = L = 1, −π/4 ≤ x ≤
π/4 with times: (a) t = 0, (b) t = π/16, (c) t = π/8 and (d) t = π/4.
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as far as conventional oscillations are concerned, this is a poor representation. The

symmetry around y = 0 is not seen here and the orders of magnitude are also incor-

rect. This is to be expected however as a further x ∼ 0 approximation is required to

obtain an analytical result.

We now move onto the second component of the Dirac spinor, in which the prop-

agator, in its light-cone approximation, takes the form:

∆χ2(x, t) ≈ δ(x− x′ ± ct)− 1

8
iN3c4t(x− x′)θ(|ct| − |x− x′|) (5.98)

This takes a very similar form to the spin-zero mixed state and has the dependencies

on N and t in the second term. These can, once again be disregarded giving the

integral:

χ2(x, t) =
A√
L

∫ ∞

−∞
δ(x− x′ ± ct)

(
cos(κx′) + ia sin(κx′)

)Ncs

dx′ (5.99)

This integral can be solved to give the result:

χ2(x, t) =
A

2
√
L

((
cos(κ(x+ct))+ia sin(κ(x+ct))

)Ncs
+
(
cos(κ(x−ct))+ia sin(κ(x−ct))

)Ncs
)
.

(5.100)

Figure 5.23 is in very good agreement with the eigenfunciton expansion, figure 5.16,

especially for small t. As with the spin-zero case, it is created by the super-position

of two waves: one, the initial wavefunction, moving at speed c forwards in time and

the other, the initial wavefunction, moving at speed c backwards in time.

5.3.3 Analysis

It was found, when using approximations to the mixed-state propagator for the first

component of the Dirac spinor, that the resulting wave function was best approx-

imated by the WKB limit as opposed to the light-cone limit. This is an interesting

result because all other mixed-state approximations (the spin-zero wave function
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FIGURE 5.23: log(ℜe(χ2(x, t))) for the mixed state propagator, light-
cone approximation(4.82). For a = 4, N = 20, −π/4 ≤ x ≤ π/4 and
0.00001 ≤ t ≤ π/4. Yellow lines correspond to zeros of the wavefunc-

tion.

and the second component of the Dirac spinor) are at the light-cone. The reason for

this can be seen in the difference between the second terms of each propagator in

the light cone limit:

∆χ1(x, t) ≈ δ(x− x′ ± ct) +
1

2
i
(1
8
N3c5t2 +

1

4
Nc
)
θ(|ct| − |x− x′|) (5.101)

∆χ2(x, t) ≈ δ(x− x′ ± ct)− 1

8
iN3c4t(x− x′)θ(|ct| − |x− x′|) (5.102)

∆ϕ1(x, t) ≈ δ(x− x′ ± ct) +
1

4
N2c3tθ(|ct| − |x− x′|) (5.103)

Looking at the two propagators which produce an accurate result using the light-

cone approximation (5.102) and (5.103), their second terms are both of O(t) whereas,

(5.101) has a second term of O(t2). Therefore, the higher order terms of the mixed

state propagator of the first component of the Dirac spinor contribute at earlier times

than the higher order terms of the other two propagators. These higher order terms

can be approximated by the WKB approximation to the propagator.
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The WKB approximation to the mixed state was performed by initially calculat-

ing the positive energy wave function and the negative energy wavefunction sepa-

rately; adding these two wave functions, the mixed state is created. This involves all

four saddles calculated from the quartic (5.62). However, although all saddles were

used, only two contribute: x1 and x4. These are the two non-superoscillatory sad-

dles and hence, the resultant wavefunction does not super-oscillate. As there are no

superoscillations in this component, there is therefore no disappearance time, there

is however, a wall effect.

5.3.3.1 The Wall Effect

As with all mixed-state superoscillatory wavefunctions studied here, it is symmetric

about x = 0. However, previously we saw this was due to the two contributing

wavefunctions begin of equal magnitude but moving in opposite directions, in the

case of the first component of the Dirac spinor, the wall effect is due to the exchange

of dominance between the two contributing saddles. This is the reason why we call

this a wall effect here but not in the spin zero case.

To look at where the saddles x1 and x4 exchange dominance, Stokes and anti-

Stokes lines are constructed:

Stokes Line: ℜe(γ(x1;x.t)− γ(x4;x, t)) = 0

anti-Stokes Line: ℑm(γ(x1;x.t)− γ(x4;x, t)) = 0
(5.104)

with γ(xj;x, t) being given by:

γ(xj;x, t) = is

∫ xj

0

q(x′′)dx′′ −
√

(x− xj)2 − c2t2. (5.105)

As is shown in figure 5.24, the structure of the (x, t) plane in the super-oscillatory re-

gion for the mixed state wave function consists of a single anti-Stokes line. It is clear

how, in the WKB limit, the symmetry of the mixed state wavefunction is maintained;

the anti-Stokes line is a straight line through the origin. This is further confirmed in
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FIGURE 5.24: Anti-Stokes line (blue) for the (x, t) plane to the WKB
approximation of the mixed-state superoscillatory wavefunction (5.97).

Dominant saddles are in bold.

figure 5.25 in which the wavefunctions from each contributing saddle are shown. It

is clear that again, the overall dominance of one contribution over another changes

along the line x = 0.

As for the second component of the Dirac spinor for the mixed state wavefunc-

tion, the analysis is exactly the same as that of the spin-zero mixed-state wavefunc-

tion. It is composed of two waves: the initial wave function propagated at a speed

c moving forwards in time and the initial wavefunction, propagated at a speed c,

backwards in time. Figure 5.26 shows how these two wavefunctions create the sym-

metric (about x = 0) wavefunction seen in figure 5.23; the exchange of dominance

occurs on the line x = 0.

5.3.3.2 Disappearance Time

Unlike the first component of the Dirac spinor, the second component is, initially,

superoscillatory and these superoscillations disappear. This occurs when the local

momentum of the mixed state wavefunction decreases to a value lower than the
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FIGURE 5.25: ℜe(log(ℜe(χ1(x, t)))) for blue: the contribution from
the saddle x1 and orange: the contribution from the saddle x2. (a)
t=0.0000001, (b) t = π/8, (c) t = π/4, (d) t = π/2. For all graphs:

−π/4 ≤ x ≤ π/4 and a = 4, N = 20, c = s = A = L = 1.

fastest Fourier component along the line x = 0. The disappearance time can the be

plotted as a function of the superoscillatory parameter a.

As figure 5.27 shows, as a increases, the disappearance decreases and converges

to 0. This is different to the positive energy wavefunction in which the disappear-

ance time decreased to a finite value however, the same behaviour is seen for a

spin zero mixed wavefunction. From (5.100), the reason for the disappearance time

converging to zero can be understood: As a tends to ∞, the cos term becomes negli-

gible. As superoscillations are caused by the almost perfect destructive interference

between the cos and sin term, if one term were to drop out due to the other becoming

significantly dominant, the superoscillations would cease.
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FIGURE 5.26: Blue line: log(ℜe(χ2(x, t))) for the contribution moving
forwards in time; orange line: log(ℜe(χ2(x, t))) for the contribution
moving backwards in time. For a = 4, N = 20, −π/4 ≤ x ≤ π/4

(a): t = 0.000001; (b): t = π/16; (c): t = π/8; (d): t = π/4.
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FIGURE 5.27: Disappearance times as a function of a for the second
component of the mixed state Dirac spinor in the range 4 ≤ a ≤ 1000.
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5.4 Conclusion

The spin-half and spin-zero relativistic superoscillating free particle wavefunctions

share many similarities but also have some key differences. In general, eigenfunc-

tion expansions show that although there are differences between the two types of

wave, these are mostly superficial; features of evolution such as the wall effect and

disappearance of superoscillations are independent of spin. This is true of the pos-

itive energy wavefunctions but when the wavefunction is composed of equal parts

positive and negative energy, fundamental differences occur.

By evaluating the integral over the propagator for the positive energy wave-

function, it was again found that the WKB approximation to the propagator gave

the most accurate results. In fact, as the WKB approximation produces a propagator

that decreases exponentially with distance from the light cone and the conversion

from a spin-zero to a spin-half wavefunction is achieved through differentiation; it

is hardly surprising that the key features of the evolution are preserved under the

KG → D procedure. However, it is in the light-cone limit where differences be-

tween the spin-half and spin-zero wavefunctions are found. Under differentiation,

the first component of the Dirac spinor for the positive energy propagator produces

terms which do not go to a delta function as t tends to zero. This is not allowed to

happen in the light-cone limit because, as shown in chapter 2, it is in this limit that

this property is upheld for the full propagator. In calculating the contribution from

the light-cone, these non-propagator terms were disregarded.

When evaluating the integral over the propagator for the mixed-state wavefunc-

tion, similar inaccuracies were found in the light-cone approximation for the first

component of the Dirac spinor. In fact, it was this component which highlighted

the biggest difference between a spin-zero and spin-half superoscillatory wavefunc-

tion: for the first component of the Dirac spinor, the best approximation is found

in the WKB limit. For all other mixed state superoscillatory wave functions studied

in this thesis, the best approximation is found at the light-cone. The reason for this
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was found to be that, under differentiation with respect to time, the higher-order

components of the light-cone approximation which are usually of order O(t), were

found to be of order O(t2). This means that they now feature more strongly at early

times which is where superoscillations exist. However, by representing these higher

order terms using the WKB approximation, it was found these do not superoscillate,

this is in agreement with the eigenfunction expansion.

The light-cone approximation to the propagator, this time for a mixed state wave-

function featured ’non-propagator’ terms which were disregarded in further calcu-

lations. However, the fact that these terms arise, and the fact that they do so at the

light-cone, suggests a fundamental problem with evaluating the propagator at the

light-cone. In order for a massive particle to exist at the light-cone, it must have

an energy much greater that its rest mass. It is a fundamental principle of particle

physics that massive particles with high energies convert their energy to mass via

pair production. Therefore, the light-cone approximation should account for extra

particles. However, as a first quantised approach was used, this is not possible, as

the number of particles is declared at the beginning of the calculations and cannot

change from thereon. This is especially significant for a superoscillatory particle in

which the energy of its fastest Fourier component is equal to twice its rest mass.

Therefore in the superoscillatory region, the energy will be larger than twice the

rest mass and particle creation is highly likely. The next logical step in this sub-

ject would be to evaluate relativistic free particle quantum superoscillations using a

second-quantised approach.

Another interesting direction to take this work would be to study the m → 0

limit. For the Weyl representation of the Dirac equation, this would have an ana-

logue of superoscillations in the electromagnetic field. This phenomena has recently

been investigated by Michael Berry and Pragya Shukla [31].

For a Dirac wavefunction, application of an external magnetic reveals a gyro-

magnetic ration of g = 2 for the electron. Application of a superoscillatory mag-

netic field would cause the electron to respond with the magnetic moment it has
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got. An interesting question then arises: Are there solutions to the Dirac equation in

which the particle’s wavefunction is superoscillatory and the applied field is steady?

Although unlikely, the consequences of a positive result are profound; this would

deserve additional study.



185

Chapter 6

Conclusion

When considering the evolution of an initial superoscillatory quantum wavefunc-

tion in a relativistic framework, two separate energy states must be considered: pure

and mixed1. It was shown that, for a particle of spin zero, positive/negative energy

superoscillations evolve due to contributions in the WKB limit whereas the mixed

energy state superoscillations arise at the light-cone. However, when considering

a spin-half wavefunction, both the positve/negative energy and mixed state super-

oscillations are best explained at in the WKB limit.

We were able to study how different approximations of the wavefunction affect

the evolution of the initial superoscillatory wavefunction through the work done in

chapter 2. In this we built up a mathematical framework that describes relativistic

quantum dynamics in a first-quantised configuration.

Where possible, time-dependent problems in relativistic quantum mechanics are

solved through eigenfunction representations [103]. However, as superoscillations

have shown themselves to be too subtle a phenomenon to be explained through

such methods, an integral over the propagator representation is often employed [30]

[37]. In non-relativistic, first-quantised, quantum mechanics the propagator is well

known and its derivation taught in many undergraduate courses. However, prop-

agators in a relativistic context are often only considered in the second-quantised

representation. As this thesis is written exclusively within a first quantised frame-

work, explicit derivations of the positive, negative and mixed energy propagators

1A pure state is one that consists only of positive or negative energy.
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for the Klein-Gordon (spin zero) equation, were given as well as their behaviours at

the light-cone and in the WKB limit. Example calculations were also given in order

to demonstrate how one might apply each approximation. The non-relativistic limit

of the positive energy propagator was taken and the result was found to be equal to

that of the non-relativistic propagator.

In order to study the evolution of the initial superoscillatory wavefunction ac-

cording to the Klein-Gordon and Dirac equations, its evolution according to the

Schrödinger equation was reviewed first. This was first done in 2006 by Michael

Berry and Sandu Popescu [30] and it was this paper that formed the basis of chapter

3. When solved using the eigenfunction representation, it was found that after a

certain time, td, the superoscillations disappeared. As well as this, an asymmetri-

cal evolution was also observed and entitled the wall effect. Both these phenomena

were explained using the integral over the propagator and solving it using approxi-

mations for small x and t and application of the saddle point method. The resultant

integral was therefore given as a sum of contributions arising from saddles in the

exponential phase, which can be viewed as complex momenta.

In integrals such as the one solved here, their structure can be explained using

Stokes and anti-Stokes lines which give the points in which one saddle’s contri-

bution is maximally dominant over the other (Stokes) and points where they are

equally dominant (anti-Stokes). For the superoscillatory wavefunction studied, an

anti-Stokes line occurring at x = a for t > 1
2a2

explains both the disappearance of

the superoscillations and the wall effect. It is across this line that an exchange of

dominance between the two contributing saddles takes place. The dominant saddle

on the left hand side of the anti-Stokes line retains its superoscillatory properties for

a longer time than the dominant saddle on the right, this is what causes the wall

effect.

As the saddle (termed ’−’) dominant on the left hand side of the ’wall’ retains

its superoscillatory properties for the longest amount of time, the overall disappear-

ance time is therefore dependent on this. The time at which the local momenta of
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the saddle’s contribution falls to a value lower than that of the fastest Fourier com-

ponent therefore gives the disappearance time. It was found that the disappearance

time was weakly dependent on the superoscillatory parameter, a and independent

of the asymptotic parameter, N .

As in chapter 2, we found that the positive energy Klein-Gordon propagator re-

duced to the Schrödinger propagator in the non-relativistic limit. We would hence

expect that any superoscillatory wavefunctions solved using the positive energy

Klein-Gordon propagator will transform to those discussed in chapter 3. There-

fore, not only does the content discussed in chapter 3 provide an in-depth review of

the features of quantum superoscillatory evolution but also provides a reference for

any calculations performed using the Klein-Gordon equation.

When the eigenfunction representation of the initial superoscillatory wavefunc-

tion is solved using the positive energy Klein-Gordon equation, the wall effect is

observed and the superoscillations disappear after a certain time. However, the

wall has seemingly shifted from that produced in the Schrödinger equation and the

superoscillations disappear after a shorter amount of time. In fact, in the relativistic

case, superoscillations exist over a far smaller space and over a far shorter period

of time. This is due to the respective Compton wavelength and Compton time for

each case changes with the different values of the speed of light, c. Nonetheless,

with respect to their relative ’Compton scaling’ relativistic superoscillations seem to

disappear more quickly.

To understand how the wall effect and the disappearance of the superoscilla-

tions present themselves in a relativistic context, we again employ the integral over

a propagator representation of the wavefunction, using the positive energy free par-

ticle Klein-Gordon propagator derived in chapter 2. Due to the complexity of the

function, obtaining an analytic result requires further approximations beyond the

small x and t ones used previously. The light-cone and WKB approximations to

the propagator formulated in chapter 2 provide expressions which can be evaluated

using complex analysis. Within the light-cone approximation, contributions come
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FIGURE 6.1: Stokes lines (red), anti-Stokes lines (blue) and branch cuts
(purple) for left: non-relativistic, free-particle superoscillations and

right: relativistic, free particle superoscillations.

from residues of poles located on the light-cone whereas, the WKB approximation

provides an integrand which lends itself to being solved by the saddle point method.

Even in the WKB approximation, however, solving the saddle point condition re-

quires application of numerical methods. In contrast to the Schrödinger propagator,

which produces a quadratic saddle point condition and hence two contributing sad-

dles, the Klein-Gordon propagator produces a quartic saddle point condition which

results in four saddles. However, these four saddles can be split into two sets of

two saddles: one moving forwards in time; one moving back. Therefore, solving the

integral over the propagator for a positive energy, spin-zero, relativistic particle in

the WKB limit produces two wavefunctions, one moving forwards in time and one

moving backwards in time. By selecting only the saddles moving forwards in time

(which, in the limit c → ∞ produce the same saddles as the Schrödinger equation)

gives a reasonable approximation of the positive energy wavefunction.

Figure 6.1 shows the difference between the structure of the (x, t) plane for the

Schrödiner superoscillations and Klein-Gordon superoscillations. In the relativistic

case, in the superoscillatory region, there is one anti-Stokes line across which sad-

dles exchange dominance. The ’wall’ is therefore in a different location within the
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Klein-Gordon plane and also takes a different shape. Also, it is present for all t

whereas in the Schrödinger plane it is only seen for t > 1
2a2

.

It was shown that all superoscillatory information is contained within one of the

contributions from the two saddles. This is in contrast to the non-relativistic case

where, although one saddle takes more responsibility for superoscillation than the

other, both cause, at certain points, their respective contribution to oscillate faster

that its fastest Fourier component. Relativistically, the superoscillatory saddle is

dominant on the right hand side of the anti-Stokes line and the saddle of conven-

tional oscillation is dominant on the left. This is another difference between the

relativistic and non-relativistic superoscillations; the saddles chiefly responsible for

superoscillations are located at different sides of the wall.

Not only does the shape of the wall differ, the transition of dominance is less

abrupt in the relativistic case. This by the absence of neighbouring Stokes lines

around the relativistic wall. Therefore, superoscillations are still seen where the

non-superoscillatory saddle is dominant. However, as they are dependent on a sub-

dominant saddle, they disappear very quickly.

It is seen that the relativistic superoscillations disappear over a shorter period of

time2 than their non-relativistic counterparts. At first, it may seem that the fact that

the wall is ever-present in the Klein-Gordon plane and hence,a non-superoscillatory

contribution is present for all t. However, this only accounts for an extra t = 1/32

(for a = 4) of superoscillation. This is caused by the superoscillatory contribution

existing on the right hand side of the wall as opposed to the left, which is not the

case for non-relativistic superoscillations. As the wall is located in the half-space

x > 0, the superoscillations have less time to develop before the exchange of domi-

nance between the two saddles occur.

Positive energy superoscillations were also investigated for a spin-half particle

by using the Dirac equation. To allow for direct comparison between spin-zero

2Relative to their respective Compton time’s.
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and spin-half wavefunctions a method in which the spin-half wavefunction is de-

termined through information of the spin-zero wavefunction is used [33]. As the

method is based upon differentiation with respect to space and time of the spin-

zero wavefunction, the phase of the exponential in the WKB approximation of the

remains unchanged. Therefore, the saddles, Stokes/anti-Stokes lines, wall effect and

disappearance time are the same for both spin-zero and spin-half superoscillatory

wavefunctions. However, as is usual with spin-half wavefunctions, there are four

components. It is intrinsic to the method used to derive the spin-half wavefunctions

that the second component is zero. However, the other three are all superoscillatory

and evolve in a similar manner.

At the light-cone, contributions arise from residues of the simple poles in the

light-cone approximation to the Klein-Gordon propagator. In terms of positive en-

ergy superoscillations, this provides a poor approximation as the initial wavefunc-

tion is propagated at a speed c along the light-cone. However, it does show the

difference between the spin-zero and spin-half wavefunctions. The differentiation

required to convert a spin-zero wavefunction into its spin-half analogue does have

an effect on the propagator. Where in the spin-zero case the dominant feature was a

simple pole at the light cone, this is now a pole of order two.

Similarly to the spin-zero case, the light-cone approximation does not produce a

good representation of the positive energy wavefunction. However, it is also seen

to fail for the third component of the wavefunction. This is caused by a term which

contains a simple pole at t = 0.

For a mixed state, which in this case is a state of equal amounts of positive and

negative energy, the evolution of the superoscillations is considerably different from

the positive energy wavefunction. The superoscillations do disappear but there is

no asymmetrical evolution as seen previously. Naturally, the mixed state does not

have a non-relativistic counterpart as negative energies are a purely relativistic phe-

nomenon.

For a spin-zero wavefunction, the best approximation to the propagator for a



Chapter 6. Conclusion 191

mixed state is at the light-cone. For a mixed state, the light-cone approximation is

given by a delta function which is zero everywhere except for on the light-cone,

where it is infinite. Solving the integral over the propagator using this produces a

very accurate approximation, especially in the superoscillatory region. The resul-

tant wavefunction is a superposition of two waves: one; the initial wavefunction

propagated at a speed c along the light-cone travelling from left to right and two;

the initial wavefunction propagated at a speed c along the light-cone travelling from

right to left. It is for this reason that the evolution is symmetric around x = 0. In this

case the ’wall’ is at x = 0 but is not entirely comparable to the wall in the positive

energy wavefunction as that was caused by exchange in dominance between com-

plex momenta whereas for a mixed-energy wavefunction it is the point at which one

wavefunction starts contributing more than the other.

The disappearance time is found where the local momentum of either wavefunc-

tion reaches a value less than the fastest Fourier component along the line x = 0. The

disappearance time was found to be shorter than in the case of the positive energy

spin-zero wavefunction. It was found that the disappearance time does not con-

verge to a finite value as seen previously.

For two components (the first and the fourth) of the spin-half mixed energy

wavefunction, the evolution was very similar to that of the spin-zero; their con-

tributions were both found at the light cone and the evolution was symmetric about

the origin and the disappearance time was identical. However the third term, which

was the term that causes the light-cone approximation to fail in the spin-zero wave-

function, produced a markedly different evolution.

The third component of the spin-half mixed-energy wavefunction does not su-

peroscillate. Where superoscillations are observed in both the first and third compo-

nents (the second component is always zero), the third doesn’t oscillate at all. This

is because, unlike the other two non-zero components and the spin-zero wavefunc-

tion, the third-component is best represented by the WKB approximation not the

light-cone approximation. As explained in chapter 5, this is due to a term of O(t2)
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in the light-cone approximation. Its evolution is symmetric about the origin.

Using the WKB approximation, the contributions arise from saddles in the expo-

nential phase, these saddles are the same as seen in the positive energy wavefunc-

tions. However, as we now have both positive and negative energies in superposi-

tion, we have four saddles contributing. This is quickly reduced to two as the two

saddles responsible for superoscillation are always sub-dominant with respect to ei-

ther non-superoscillatory saddle. By calculating the Stokes and anti-Stokes lines for

the resultant wavefunction, once again, only a single anti-Stokes line is found: it is

a straight line at x = 0. This anti-Stokes line accounts for the symmetric evolution.

The only problem that remains in the treatment of relativistic superoscillations is

that of the failure of the third component of the positive energy spin-half wavefunc-

tion at the light cone. The answer is likely to exist in a second-quantised treatment of

relativistic quantum mechanics. At the light-cone, the energy of the particle is much

greater than its rest-mass and hence it is likely that other particles are produced, a

result first quantisation cannot account for. The propagator has a far stronger pres-

ence at the light-cone for a spin-half wavefunction than one of spin-zero and its

effect is felt over a larger space due the presence of a pole of order two as opposed

to the spin-zero wavefunction’s simple pole.

Using a first-quantised structure to study one dimensional free-particle relativis-

tic superoscillations provides initially surprising evolutions. However, for a positive

energy wavefunction, the results are always comparable to the previously studied

non-relativistic case. Uniquely, relativistic quantum wavefunctions have negative

energy states. In terms of superoscillation, the negative energy states evolve almost

analogously to the positive energy case however, from both come mixed-state wave-

function which are again, purely relativistic. These evolve very differently to Berry

and Popescu’s quantum superoscillations. The limit of the first quantised approach

comes at the light-cone. In this approximation, for the third component of the wave-

function, the method fails entirely. At the light-cone the wavefunction attains very

high energies such that the results of a second-quantisation (particle creation) would
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most clearly apply.

As well as the quantisation of the method used for both Dirac and Klein Gordon

superoscillations there exists the m → 0 limit poses interesting questions for both

as well. In the case of Dirac superoscillations (using its Weyl representation), the

m → 0 has an analogy of superoscillations in an electric field. As for Klein-Gordon

superoscillations, the similarity between the Klein-Gordon equation and the wave

equation appears as m → 0. As noted in the introduction, the field of optical su-

peroscillations and their use in optical superresolution is a rapidly growing area

of research which could be added to through investigation of the m → 0 limit of

Klein-Gordon superoscillations.
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Appendix A

The WKB Approximation

In general, a second order non-linear ordinary differential equation (such as the

Schrödinger or Klein-Gordon equations for a bound particle) has no solution. To

counteract this, approximation methods, such as perturbation theory, have been de-

rived. Here we describe one such method: the WKB approximation.

Derived as an approximation to the Schrödinger equation in 1926[70],[110], it as-

sumes a slowly varying potential term, V (x) and provides an accurate description

of the ℏ → 0 limit.

With regards to the material in this thesis which only concerns free particles, an

approximation which contains a potential might at first, seem inapplicable. How-

ever, as we are often looking at a local momentum, which is dependent on x and

superoscillations depend on ℏ → 0 the WKB approximation is valid. In this ap-

pendix, we derive the WKB approximation for the Klein-Gordon equation.

The one-dimensional Klein-Gordon equation for a system with potential energy

V (x) is: (
∂2

∂x2
+

((W − V (x))2 −m2c4)

c2ℏ2

)
Ψ(x) = 0, (A.1)

where W is the energy eigenvalue of the system. For a free particle (V (x) = 0) this

gives the solutions:

Ψ(x) =
A√
L
eikx (A.2)

in which k is the wave number. The WKB method specifies that, to approximate the

wavefunction, we use an ansatz solution. This takes a similar form to (A.2) except
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now k is no longer constant:

Ψ(x) ≈ ei
S(x)
ℏ , (A.3)

in which, S(x) has the expansion:

S(x) = S0(x) + ℏS1(x) + ℏ2S2(x) + . . . , (A.4)

and derivatives:
∂Ψ(x)

∂x
=
i

ℏ
S ′(x)ei

S(x)
ℏ , (A.5)

∂2Ψ(x)

∂x2
=

(
i

ℏ
S ′′(x)− 1

ℏ2
(S ′(x))2

)
ei

S(x)
ℏ , (A.6)

giving (A.1) as:

i

ℏ2
(ℏS ′′(x) + i(S ′(x))2)ei

S(x)
ℏ +

1

c2ℏ2
((W − V (x))2 −m2c4)ei

S(x)
ℏ = 0. (A.7)

Dividing (A.7) by ei
S(x)
ℏ , taking the limit ℏ → 0 and considering the first two terms

in (A.4) we get:

(S ′
0(x))

2 =
1

c2
((W − V (x))2 −m2c4) (A.8)

iℏS ′′
0 (x)− (S ′

0(x))
2 − ℏS ′

0(x)S1(x) +
1

c2
((W − V (x))2 −m2c4) = 0, (A.9)

in which (A.8) arises from the first term in (A.4) and (A.9) from the second term.

From this point on, we will write
√

(W − V (x))2 −m2c4 as k(x) as it is the momen-

tum of the wavefunction. We begin by solving (A.8):

S0(x) =
1

c

∫ x′

0

k(x)dx′. (A.10)

We use (A.10) to solve for S1(x):

(S ′
0(x))

2 =
1

c2
k(x), (A.11)
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substituting this into (A.9), the second and fourth terms cancel leaving:

iℏS ′′
0 (x) = ℏS ′

0(x)S
′
1(x), (A.12)

in terms of S1(x):

S1(x) = i

∫ x

0

S ′′
0 (x

′)

S ′
0(x

′)
dx′ = i log(k(x)) + c. (A.13)

From (A.10) and (A.13) we get the WKB wavefunction:

Ψ(x) = e
i
ℏ (S0(x)+ℏS1(x)) =

A√
k(x)

ei
∫ x
0 k(x′)dx′

. (A.14)

We now look at where (A.14) is valid, from (A.7) it is clear that the approximation

relies on the following condition holding:

|(S ′(x))2| ≫ ℏ|S ′′(x)|, (A.15)

from which it follows:

|k(x)2| ≫ ℏ|k′(x)| (A.16)

and finally: ⏐⏐⏐⏐⏐ ℏV ′(x)

2(W − V (x))k(x)

⏐⏐⏐⏐⏐≪ 1. (A.17)

In order for (A.17) to hold, V ′(x) or ℏ must be very small; the WKB approximation

depends on a slowly varying potential and ℏ → 0.
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Appendix B

Asymptotic Integration

Asymptotic integration is concerned with finding approximate solutions to integrals

of the form:

I(λ) =

∫
C

ϕ(z)eλf(z)dz, (B.1)

which, is asymptotic in the limit λ → ∞. The key concept is that as λ → ∞ the

integral, in the complex plane, becomes highly oscillatory along the imaginary axis

and contains narrow sharp peaks along the real axis. This results in only saddle

points of the phase function, f(z), contributing to the integral; at all other points,

the area under the contour is cancelled. We can therefore deform the contour, C, so

that it passes through the saddle points and makes its way down into the valley of

the complex plane. To achieve this, the contour takes the path of steepest decent1

[115] [43]. We define a saddle point as being a point in the complex plane, z0, which

is a maximum in one axis and a minimum in the other, as shown in the diagram:

The two types of asymptotic expansion we look at here show how ϕ(z) affects

the result of the integral. We first consider ϕ(z) as being completely regular in the

neighbourhood of z0. After this we consider ϕ(z) as having a simple pole in the

neighbourhood of z0.

1To be classed as a ’path of steepest decent’ the path must obey to rules: 1) That the path passes
through one of the zeros of the derivative of the phase, f(z). 2) The imaginary part of f(z) is constant
along the path.
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FIGURE B.1: Diagram showing an arbitrary function in the complex
plane with a saddle at z = z0 and its steepest descent path

B.0.1 The Saddle Point Method

We begin with our integral (B.1) and consider the case where f(z) has one saddle

point at z = z0 and ϕ(z) is regular. We now wish to map (B.1) to a comparison

integral which has the same structure of saddles as (B.1). For this, we choose the

Gaussian integral:

Igauss(λ) =

∫ ∞

−∞
e−λu2

du =

√
π

λ
(B.2)

(B.2) has a saddle point at u = 0. We now want to make the saddles in (B.1) and (B.2)

coincide. To do this we make the substitution:

−u2 = f(z)− f(z0) (B.3)

This gives us the Jacobian:

∂u

∂z
=

∂

∂z

[√
f(z)− f(z0)

]
=

f ′(z)

2
√
f(z)− f(z0)

= −f
′(z)

2u
(B.4)

From (B.3) and (B.4) we can write (B.1) as:

I(λ) = eλf(z0)
∫
C

g(u)e−λu2

du (B.5)
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where:

g(u) = −2u
ϕ(z)

f ′(z)
(B.6)

As we are interested in the neighbourhood of z0 we now expand g(u) around u = 0

which corresponds to z0 in the z-plane. We begin by Taylor-expanding f(z) around

z0:

f(z)|z→z0 ≈ f(z0) +
1

2
f ′′(z0)(z − z0)

2 (B.7)

From (B.7) we can get an expression for f ′(z):

f ′(z) = u
√
−2f ′′(z0), (B.8)

giving:

lim
u→0

g(u) = ϕ(z0)

√
−2

f ′′(z0)
. (B.9)

Substituting (B.9) into (B.5) gives:

I(λ) = ϕ(z0)

√
−2

f ′′(z0)
eλf(z0)

∫ ∞

−∞
e−λu2

du (B.10)

We have now deformed the contour, C, such that it passes through the saddle at

u = 0 and then remains on the real axis where the integrand tends to zero at ±∞.

The integral in (B.10) is now the same as (B.2) which gives our final result:

I(λ) = ϕ(z0)

√
−2π

λf ′′(z0)
eλf(z0) (B.11)

B.0.2 Uniform Asymptotic Expansions: Saddle-Pole Coalescence

We now consider integrals of the form (B.1) where ϕ(z) has a simple pole at z = β.

We consider β in the neighbourhood of z0 and allow them to coalesce. In order to

get a solution for this, we must use a different comparison integral to that of the
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saddle point method as we need to incorporate the pole:

Icomp(λ) =

∫ ∞

−∞

1

u− ib
e−λu2

= iπeλb
2

erfc
[√

λb
]

(B.12)

The first few steps in evaluating this integral are very similar to those in the saddle

point method. Using the substitution:

u2 = f(z)− f(z0) (B.13)

We map the saddles in (B.1) to those in (B.12) which occur at u = 0. Which gives the

Jacobian:
∂u

∂z
=

∂

∂z

[√
f(z)− f(z0)

]
=

f ′(z)

2
√
f(z)− f(z0)

=
f ′(z)

2u
. (B.14)

We can therefore write (B.1) as:

I(λ) = eλf(z0)
∫
C

q(u)e−λu2

du, (B.15)

q(u) = 2u
ϕ(z)

f ′(z)
, (B.16)

where q(u) incorporates the pole at z = β. In the u-plane, this pole occurs at u = ib,

where −b2 = f(β) − f(z0). We now want to extract the pole at u = ib by separating

(B.16) in to two parts; one which incorporates the pole and another, regular function,

ψ(u), which doesn’t have poles at u = ib or u = 0.

q(u) =
c−1

u− ib
+ ψ(u) (B.17)

the constant, c−1, is given by:

c−1 = lim
u→ib

[
(u− ib)q(u)

]
= lim

z→β

[
(u− ib)ϕ(z)

2u

f ′(z)

]
= ϕ−1, (B.18)
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where ϕ−1 is the residue of ϕ(z). We now look at how ψ(u) behaves in the neigh-

bourhood of u = 0, we rearrange (B.17) and take the limit as u→ 0:

ψ(0) = lim
u→0

[
q(u)− c−1

u− ib

]
= lim

z→z0

[
ϕ(z)

2u

f ′(z)
− ϕ−1

u− ib

]
, (B.19)

from (B.8) we have:

f ′(z) = u
√

−2f ′′(z0), (B.20)

giving:

ψ(0) = lim
z→z0

[
ϕ(z)

2u

f ′(z)
− ϕ−1

u− ib

]
= ϕ(z0)

√
2

f ′′(z0)
+
ϕ−1

ib
. (B.21)

We now have an expression for q(u) in the neighbourhood of u = 0:

q(u)|u→0 =
ϕ−1

u− ib
+ ϕ(z0)

√
2

f ′′(z0)
+
ϕ−1

ib
. (B.22)

Substituting (B.22) into (B.15) gives two integrals:

I1(λ) = ϕ−1

∫ ∞

−∞

1

u− ib
e−λu2

du = ϕ−1iπe
λb2erfc

[√
λb
]

(B.23)

I2(λ) =

(
ϕ(z0)

√
2

f ′′(z0)
+
ϕ−1

ib

)∫ ∞

−∞
e−λu2

du =

√
π

λ

(
ϕ(z0)

√
2

f ′′(z0)
+
ϕ−1

ib

)
(B.24)

We therefore get our final result for the saddle-pole contribution:

I(λ) = eλf(z0)

[
ϕ−1iπe

λb2erfc
[√

λb
]
+

√
π

λ

(
ϕ(z0)

√
2

f ′′(z0)
+
ϕ−1

ib

)]
(B.25)
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Appendix C

The Non-Relativistic Free Particle

Propagator

In this appendix, we present the derivation of the non-relativistic propagator (2.62).

Whereas, in chapter 2, we derived (2.62) as a limit of the Klein-Gordon propagator:

here we use a purely non-relativistic framework.

We begin with equation, (2.20), which gives the integral required to solve in order

to determine the propagator of a free particle wavefunction of energy W (k). As we

are dealing with a non-relativistic free particle, the energy in this case is:

W (k) =
ℏ2k2

2m
(C.1)

Recalling (2.20):

∆(x, t) =
1

2π

∫ ∞

−∞
ψ(x, k) exp

[
− i

W (k)

ℏ
t

]
dk (C.2)

and substituting the free-particle eigenfunction and (C.1) gives:

∆(x, t) =
1

2π

∫ ∞

−∞
exp

[(
ikx− i

ℏk2

2m
t

)]
dk (C.3)
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The integral in (C.2) can be solved using the standard integral:

∫ ∞

−∞
e−px2+qxdx =

√
π

p
e

q2

4p2 (C.4)

given by (3.323.2) in [54]. Comparing (C.4) and (C.3), the following substitutions

can be made to the variables in (C.4):

p2 =
iℏt
2m

, q = ix, x = k, (C.5)

which allow us to solve the integral in (C.4)

∫ ∞

−∞
exp

[(
ikx− i

ℏk2

2m
t

)]
dk =

√
2mπ

iℏt
exp

[
− mx2

2iℏt

]
, (C.6)

which gives the propagator as:

∆(x, t) =

√
mπ

2πiℏt
exp

[
− mx2

2iℏt

]
. (C.7)

Lastly, so that we can use (C.7) to derive a time-dependent wavefunction, we off set

x by x′ to give:

∆(x− x′, t) =

√
mπ

2πiℏt
exp

[
− m(x− x′)2

2iℏt

]
; (C.8)

the non-relativistic free-particle propagator.
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