
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 
for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research
The version in the Kent Academic Repository may differ from the final published version. 
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: 
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Perceval, Garon and Martin, Andrew K. and Copland, David A. and Laine, Matti and Meinzer,
Marcus  (2020) Multisession transcranial direct current stimulation facilitates verbal learning
and memory consolidation in young and older adults.   Brain and Language, 205 .    ISSN 0093-934X.

DOI

https://doi.org/10.1016/j.bandl.2020.104788

Link to record in KAR

https://kar.kent.ac.uk/80763/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/305111395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Highlights 

 Effects of multi-session (m-)tDCS on verbal associative learning were investigated 

 Active m-tDCS enhanced immediate learning in older adults  

 Active m-tDCS enhanced long-term maintenance in both age-groups. 

 Effects were most pronounced in individuals with lower baseline learning ability 

 Effects were not exclusively due to enhanced memory consolidation 
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Abstract 17 

This study investigated effects of multisession transcranial direct-current stimulation on learning 18 

and maintenance of novel memory content and scrutinised effects of baseline cognitive status and 19 

the role of multi-session tDCS on overnight memory consolidation. In a prospective, randomized, 20 

double-blind, parallel-group, sham-tDCS controlled design, 101 healthy young and older adults 21 

completed a five-day verbal associative learning paradigm while receiving multisession tDCS to the 22 

task-relevant left prefrontal cortex. In older adults, active multisession tDCS enhanced recall 23 

performance after each daily training session. Effects were maintained the next morning and during 24 

follow-up assessments (one week; three months). In young adults, multisession tDCS significantly 25 

increased long-term recall. Unlike previous findings in the motor domain, beneficial effects of 26 

multisession tDCS on cognitive learning and memory were not exclusively due to enhanced memory 27 

consolidation. Positive stimulation effects were primarily found in participants with lower baseline 28 

learning ability, suggesting that multisession tDCS may counteract memory impairment in health 29 

and disease.  30 

 31 

 32 
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1. Introduction 36 

Problems in establishing and maintaining new memories are common in healthy aging and age-37 

related disease (Kester, Benjamin, Castel, & Craik, 2002; Zacks, Hasher, & Li, 2000), reducing the 38 

quality of life and increasing the economic and social burden on aging societies on a global scale 39 

(Grady, 2012; D. C. Park & Reuter-Lorenz, 2009). Given that the proportion of elderly people in the 40 

population worldwide is expected to triple over the next 30-40 years(WHO, 2011), it is imperative to 41 

explore the effectiveness of novel interventions aimed at improving memory function in older 42 

adults. Transcranial direct current stimulation (tDCS) is one promising technique towards addressing 43 

this goal (Hsu, Juan, & Tseng, 2016; Perceval, Floel, & Meinzer, 2016; Summers, Kang, & Cauraugh, 44 

2016). TDCS involves a weak electrical current administered to target brain regions via scalp-45 

attached electrodes. Neural and behavioral effects during or immediately after a single tDCS session 46 

are mediated by short-lived modulation of the neural resting membrane potential, resulting in either 47 

enhanced or reduced neural excitability (Stagg & Nitsche, 2011). In aging, a growing number of 48 

proof-of-concept studies have demonstrated that single session tDCS can temporarily improve 49 

behavioral and brain function or even restore performance levels to those of young controls (for 50 

reviews see (Hsu et al., 2016; Perceval et al., 2016; Summers et al., 2016)).  51 

However, to achieve longer-lasting behavioral and neural effects, tDCS needs to be administered 52 

over several days or weeks (i.e., multisession tDCS) and combined with behavioral training. Such 53 

protocols promote adaptive neuroplasticity via mechanisms similar to long-term potentiation (Cirillo 54 

et al., 2017). In young individuals, multisession tDCS has resulted in long-lasting (i.e., weeks to 55 

months) improvement of motor or cognitive learning (Cohen Kadosh, Soskic, Iuculano, Kanai, & 56 

Walsh, 2010; Dockery, Hueckel-Weng, Birbaumer, & Plewnia, 2009; Hilgenstock, Weiss, Huonker, & 57 

Witte, 2016; Meinzer, Jahnigen, et al., 2014; Reis et al., 2009). Moreover, enhanced behavioral 58 

treatment effects have been demonstrated in different patient populations (Allman et al., 2016; 59 

Manenti et al., 2016; Meinzer, Darkow, Lindenberg, & Floel, 2016). In aging, multisession tDCS 60 



studies that employed working memory training (Jones, Stephens, Alam, Bikson, & Berryhill, 2015; 61 

Stephens & Berryhill, 2016) or other cognitive training paradigms (Antonenko et al., 2017; S. H. Park, 62 

Seo, Kim, & Ko, 2014) have also demonstrated an improvement in specifically trained cognitive 63 

functions and provided preliminary evidence for enhanced transfer effects to untrained cognitive 64 

functions; but see Nilsson et al. (2017).  65 

We expanded on these promising findings by training 101 healthy young and older adults on a verbal 66 

associative learning paradigm in a prospective, double-blind, sham-tDCS controlled study to address 67 

the following issues: (1) Because little is known about the time course of learning facilitation by 68 

multi-session tDCS, this was investigated across multiple time points (i.e., daily during the training 69 

period; 24 hrs, one week and three months later). (2) Multisession tDCS has been suggested to 70 

specifically affect memory consolidation (Reis et al., 2015). However, this has only been 71 

demonstrated in young individuals and by using procedural motor learning task. Here we probed 72 

whether the same mechanism explains potential cognitive multisession tDCS effects in young and 73 

older adults by investigating learning ability before and after each daily learning session. (3) Because 74 

several previous cross-sectional tDCS studies have shown that baseline cognitive ability can affect 75 

stimulation effectiveness (Berryhill & Jones, 2012; Learmonth, Thut, Benwell, & Harvey, 2015; 76 

Meinzer, Lindenberg, Antonenko, Flaisch, & Flöel, 2013) we included this factor in our analyses. We 77 

hypothesized that individuals with lower baseline ability would benefit most from the stimulation. 78 

(4) Since some previous studies have suggested that multisession tDCS may enhance transfer to 79 

untrained tasks (Antonenko et al., 2017; Cappelletti et al., 2013; S. H. Park et al., 2014), we 80 

hypothesized that multisession tDCS would enhance transfer to tasks that share common cognitive 81 

and neural components with the trained task (e.g., verbal learning or working memory). 82 

2. MATERIALS AND METHODS 83 

2.1. Study overview: The study employed a prospective, between-subjects, double-blind, placebo 84 

(“sham-tDCS”) controlled design and was conducted at the Centre for Clinical Research at the 85 



University of Queensland. We employed an explicit learning paradigm where 41 younger adults, and 86 

60 healthy older adults were trained to learn associations between pictures of “space alien” 87 

characters (Gupta et al. 2004), their respective (non-word) names and two semantic attributes. The 88 

training was administered across five consecutive days. Participants received either active (anodal-89 

tDCS) or placebo (sham-tDCS) stimulation of the left inferior frontal gyrus. IFG-tDCS was chosen, 90 

because this montage has been shown to induce neural modulation in a larger fronto-temporal 91 

network (Meinzer et al., 2012), overlapping with brain regions relevant for verbal associative 92 

learning (Laine & Salmelin, 2010; Rodriguez-Fornells, Cunillera, Mestres-Misse, & de Diego-Balaguer, 93 

2009). 94 

Prior to the learning phase, all participants were assessed for baseline cognitive status and 95 

completed a short version of the learning paradigm. Performance on the latter, along with age and 96 

sex, was used to randomly assign participants to the stimulation groups (see below). Learned 97 

associations were probed immediately prior to (except for day1) and after each training day. This 98 

allowed us to investigate both immediate and delayed effects of active tDCS. Maintenance of 99 

learning success was assessed 24 hours, one week and three months after the end of the training. 100 

Short- and long-term transfer effects to untrained cognitive functions were assessed using a 101 

comprehensive and repeatable test battery. As baseline cognitive status predicted tDCS response in 102 

previous studies, we also investigated whether baseline learning ability would mediate tDCS effects. 103 

Blinding, adverse events and potential effects of tDCS on mood were systematically assessed. Figure 104 

1 illustrates the design of the study.  105 

2.2. Participants: Participants were right-handed, healthy native English speakers from the Brisbane 106 

metropolitan area (Young group: 25 women, 16 men, mean±SD years: 21.44±3.61; Older group: 50 107 

women, 10 men, mean±SD years: 67.05±6.00). None had previously participated in a tDCS study. 108 

Participants were excluded from the study according to standard tDCS safety criteria (e.g., if they 109 

had a history of seizures, metallic objects in the head or cardiac pacemakers, current depression or 110 



other psychiatric condition (Bikson et al., 2016)). None of the younger participants reported to be on 111 

chronic medication, except for contraceptives (females). Several older participants reported to be on 112 

chronic prescription medicine; however, medication status was comparable in the stimulation 113 

groups (sham/anodal group: antihypertensives N=9/13, lipid lowering medication N=6/7, 114 

antidiuretics N=2/3, antidiabetics n=2/1, thyroid hormone replacement N=3/6, COPD puffers: 115 

N=1/1). None of the participants reported use of recreational drugs. All participants scored within 116 

normal (age-corrected) ranges during baseline cognitive testing (Table 1). Within each age-group, 117 

participants were pairwise stratified by age, sex and baseline learning ability on a short version of 118 

the learning paradigm and randomly assigned to the stimulation groups. This procedure resulted in 119 

two stimulation groups for each age group that were comparable regarding demographic 120 

characteristics, baseline cognitive status and learning ability (Table 1). Written informed consent 121 

was obtained from each participant and the study was approved by the Human Research Ethics 122 

Committee of The University of Queensland. Participants received AUD$250 upon study completion. 123 

2.3. Cognitive Screening: To ensure normal cognitive function, all participants completed a 124 

comprehensive neuropsychological test battery comprising tests used in the Australian Imaging, 125 

Biomarker and Lifestyle Study of Ageing (Ellis et al., 2009) that are known to have good reliability 126 

and validity. Tests covered a wide range of cognitive domains including language (vocabulary, 127 

naming, and fluency), executive functions, visual-spatial processing, working memory and learning 128 

(For details please see Table 1).  129 

2.4. Experimental learning paradigm: We used an explicit verbal learning paradigm and participants 130 

were trained to learn associations between “space aliens” (Gupta et al., 2004), a non-word “name” 131 

and two semantic attributes. The training was administered across five consecutive weekdays (Mon-132 

Fri between 8 am - 4 pm, based on individual preferences but at the same time of day for individual 133 

participants). Participants were instructed to memorize the names and attributes of each alien and 134 

were informed that they would be tested using three memory tasks immediately after the training 135 



(assessing immediate after-effects of tDCS) and prior to the start of the training session on the next 136 

day (assessing long-term after-effects; from day2 on, including the day after the training ended). Our 137 

primary outcome measure was a free recall task that required written naming of each alien 138 

character. Secondary outcome measures were two recognition tasks that required a forced-choice 139 

decision between two non-word names (name recognition) or two sets of semantic attributes 140 

(attribute recognition task). To assess long-term maintenance of potential tDCS effects, the recall 141 

and recognition tasks were administered during two (one-week; three months) follow-up 142 

assessments. 143 

2.4.1. Acquisition phase: 36 color images of “space aliens” were used (see Figure 1B for an example, 144 

(Gupta et al., 2004)). The aliens varied along three dimensions: head shape (human, N=12; vertically 145 

elongated, N=12; horizontally elongated, N=12), number of arms (two, N=18; four, N=18), and type 146 

of non-human appendage (tail, N=18; head appendage, N=18, (Gupta et al., 2004)). Each space alien 147 

character was presented together with a non-word “name” (e.g., Prute) and two semantic attributes 148 

(e.g., wise and heroic). 54 five-letter legal non-words were selected from the ARC Non-Word 149 

Database (Rastle, Harrington, & Coltheart, 2002). 36 of these non-words served as the name for 150 

each alien. 18 non-words were used as distractors in the forced-choice word recognition task (see 151 

below). 108 English adjectives served as non-visual, semantic attributes (word length: 5-6 letters). 152 

From this list, 54 pairs of adjectives were created so that both words matched for semantic 153 

congruency (e.g., ‘wise - heroic’, rather than ‘wise - stupid’). 36 of these attribute pairs served as the 154 

attributes for each object. 18 pairs were used as distractors in the attribute recognition task (see 155 

below). Semantic attributes were included because semantic information has been suggested to 156 

facilitate learning (Angwin, Phua, & Copland, 2014).  157 

The daily acquisition phase comprised 8 blocks with 9 trials in each block (in total 72 trials, with each 158 

of the 36 alien, name and attribute combinations presented twice daily in a pseudo-randomised 159 

order). Each trial began with a fixation cross presented in the centre of the screen for 1500 ms, 160 



followed by the alien with its name and attributes for 8000 ms. Trials were separated by an interval 161 

of 500 ms. Participants were instructed to learn the names and attributes of each alien and were 162 

informed that they would subsequently be tested on their memory of these. During each block, the 163 

aliens and their names and attributes were presented automatically on a computer screen with 164 

white background. After each block, participants were prompted to take a short break and to press 165 

“space” to resume.  166 

2.4.2. Recall and recognition tasks: All participants completed three memory tasks immediately 167 

after each training day, prior to the start of the next acquisition phase (from day2 on) and during the 168 

three follow-up assessments (24 hrs, 1 week, 3 months). During the free recall task, all aliens were 169 

presented in random order on a white background and participants were instructed to use the 170 

computer keyboard to type the name into a space provided on the display below the image. 171 

Participants were instructed to type the whole name and to adhere to correct spelling. If they could 172 

not recall the whole name, participants were told that they could type part of the name or to take a 173 

guess at typing the whole name. If they were unable to produce a response, participants were 174 

instructed to press “enter” to continue to the next trial. The number of phonetically similar 175 

responses (e.g., “prute” rather than “proot”) was very low (old adults: N=160 across all time points; 176 

2.67/person, which is about 2% of approx. 8000 correct responses; young adults: N=51, 1.24/person, 177 

approx. 0.46% of approx. 11.000 correct responses). Therefore, only full word responses with correct 178 

spelling were scored as correct. 179 

Afterwards, participants completed two forced-choice name and attribute recognition tasks. Each 180 

recognition task comprised 36 trials and the aliens were presented on a white background with a 181 

selection of either two names or two attribute pairs at the bottom of the screen. Participants had to 182 

select the correct name or attribute pair for each alien using the left or right mouse buttons. During 183 

both recognition tasks, the distractors comprised 18 names or attributes assigned to other aliens 184 



and 18 novel names and attributes (i.e., not assigned to other aliens). There was no time limit for 185 

any of the tasks. 186 

2.5. Baseline learning ability: A short version of the explicit learning paradigm (12 different alien, 187 

word, attribute combinations) assessed baseline learning ability prior to the training. This short 188 

version of the paradigm comprised three acquisition trials, each followed immediately by free recall 189 

and name and attribute recognition trials. Learning success (# correctly recalled names) on this short 190 

version was used together with age and sex to stratify participants to the intervention groups. 191 

Although the stimulation groups did not differ in baseline learning ability (Younger: Sham, M=13.7, 192 

SD=5.58, Anodal, M=12.76, SD=7.47, p=0.65; Older: Sham, M=3.97, SD=3.83, Anodal, M=4.37, 193 

SD=4.44, p=0.71), older adults showed poorer baseline learning ability than younger adults 194 

(p<0.001).  Baseline learning ability was also considered in the statistical analysis (see below). 195 

2.6. Transfer effects: To assess potential transfer effects to untrained cognitive functions, the 196 

Cogstate computerized test battery (https://cogstate.com/) was administered immediately prior to 197 

and after the training period, as well as during the two long-term follow-up assessments. The test 198 

battery assessed a range of cognitive functions: processing speed, executive function, working 199 

memory, and verbal, visuospatial, and associative learning. It was chosen because it is repeatable, 200 

easy to administer, user-friendly, has good test-retest reliability(Cole et al., 2013), validity (Mielke et 201 

al., 2015), and is sensitive to assess change in cognitive functions that decline with age and in age-202 

related cognitive disease (D. Darby, Maruff, Collie, & McStephen, 2002; D. G. Darby et al., 2012; Lim, 203 

Ellis, et al., 2013; Lim, Jaeger, et al., 2013).  204 

2.7. Transcranial direct current stimulation: tDCS was administered using a battery-driven direct 205 

current stimulator (DC-Stimulator Plus, NeuroConn, Ilmenau, Germany). A pair of conductive rubber 206 

electrodes inserted into saline-soaked sponge pockets were used and attached to the scalp using 207 

rubber bands. The anode (5x7 cm²) was placed over the left inferior frontal gyrus (left IFG), an area 208 

crucial for language learning (Rodriguez-Fornells et al., 2009). Moreover, because the left IFG is also 209 



involved in a number of other cognitive processes like working memory (Nixon, Lazarova, Hodinott-210 

Hill, Gough, & Passingham, 2004) and semantic retrieval (Meinzer et al., 2009; Thompson-Schill, 211 

D'Esposito, Aguirre, & Farah, 1997), we hypothesized that this montage would maximize both verbal 212 

learning and potential transfer effects.  The location of the left IFG was determined using the EEG 213 

10-20 system as described previously (Meinzer et al., 2012; Meinzer et al., 2013). The cathode 214 

(10x10 cm²) was placed over the contralateral supraorbital region. The large size of the reference 215 

electrode renders the stimulation ineffective at this site without compromising the effect 216 

underneath the anode (Nitsche et al., 2007). The current was ramped up immediately prior to the 217 

acquisition phase over 10 seconds to 1 mA during both stimulation conditions. Afterwards, it 218 

remained constant for 20 min (anodal tDCS) or 40 seconds (sham-tDCS) before ramping down (over 219 

10 sec).  This protocol allows effective blinding of participants in the sham-tDCS group by inducing a 220 

similar physical sensation as in active stimulation without modulating neural activity (Gandiga, 221 

Hummel, & Cohen, 2006; Gbadeyan, Steinhauser, McMahon, & Meinzer, 2016). TDCS was 222 

administered during the acquisition phase (vs. retrieval phase) to maximize stimulation effects 223 

(Simonsmeier, Grabner, Hein, Krenz, & Schneider, 2017). Investigator blinding was achieved by the 224 

“study mode” of the DC stimulator where a predefined code triggered active or sham-tDCS. Codes 225 

were assigned by a researcher not involved in conducting the experiments. 226 

2.8 Adverse effects and blinding: Adverse effects were assessed using a self-report questionnaire 227 

developed by Brunoni et al.(Brunoni et al., 2011). Participants rated the presence and intensity of a 228 

range of possible adverse events (1=absent, 2=mild, 3=moderate, 4=severe, see Tables 2 and 3). 229 

Participant blinding was assessed at the completion of training. Participants were asked the 230 

following: “What type of stimulation do you believe you received? (a) real stimulation, (b) placebo, 231 

or fake stimulation, or (c) unsure?” 232 

2.9. Statistical analysis: Immediate and delayed effects of anodal-tDCS on recall and recognition 233 

performance over the five days of training (# correct items) and at follow-up (change scores, e.g., 234 



Change24 =Day5on-24-hrs) were analyzed using linear mixed effects models (Baayen, Davidson, & 235 

Bates, 2008; Verbeke & Molenberghs, 2000) with the lme4 package (Version 1.1.12, (Bates, Mächler, 236 

Bolker, & Walker, 2015)) in the R environment (Version 1.0.44; R Core Team 2014). Subject was 237 

modelled as a random effect using random-intercept models. The five time-points for the learning 238 

phase (TIME) for immediate effects of tDCS (i.e., after the end of each training session) were 239 

modelled as fixed effects. The analysis of delayed effects (i.e., the next morning) across the training 240 

phase comprised Days2-5 and the short-term follow-up (24 hours). Long-term follow-up effects were 241 

modelled separately based on change scores (e.g., Change24 =Day5on-24-hrs) during the follow-up 242 

time points (24 hrs, 1 week, 3 months). Transfer effects were analyzed with linear mixed effects 243 

models for each Cogstate subtest by comparing pre-post training scores and scores across the three 244 

follow-up time-points.  245 

For immediate and long-term after-effects (i.e., after training vs. the next morning), follow-up, and 246 

transfer data, the factors TIME, STIMULATION (anodal- vs. sham-tDCS), and AGEGROUP (young vs. 247 

older) served as fixed effects. Baseline learning ability (BASELINE) was included as a continuous 248 

covariate. The interactions TIME × STIMULATION assessed whether the slopes of the learning, 249 

follow-up, and transfer task curves differed between the stimulation and age-groups. The TIME × 250 

STIMULATION × BASELINE interactions assessed whether baseline learning ability influenced these 251 

effects. The TIME × STIMULATION × BASELINE × AGEGROUP interactions assessed for the impact of 252 

both baseline learning and age-group on these effects. To assess between-group differences in 253 

overnight memory decline across time, the same model was also used with change scores calculated 254 

between immediate and long-term after-effects (e.g., Change1=Day1imm–Day2long). P-values were 255 

obtained using the Satterthwaite approximation to degrees of freedom via the lmerTest Package 256 

(Version 2.0-33, (Kuznetsova, Brockhoff, & Christensen, 2015)). Unstandardized regression 257 

coefficients (B), standard errors (SE), F values and significance levels are reported for all analyses. 258 

Please note, because of the skewed sex distribution in our sample (75 women, 26 men), we also 259 



conducted an exploratory analysis that included sex as an additional co-variate in the statistical 260 

models. None of the significant effects were found to interact significantly with sex. 261 

For display purposes, we also performed a hierarchical cluster analysis (Bailey, 1994) of the 262 

continuous baseline learning data with a 2-cluster solution using Ward’s method (Ward, 1963) to 263 

generate a two-level categorical variable (Younger group: high learners, n=19; Anodal=9;  low 264 

learners, n=22; Anodal=12; Older group: high learners, n=30; Anodal=14;  low learners, n=30; 265 

Anodal=16). Figures relating to baseline learning illustrate data for these two subgroups. Detailed 266 

information about demographic and neuropsychological profiles of the groups resulting from the 2-267 

cluster solution is provided in Supplementary Tables 1+2. 268 

 A 2x2 ANOVA (STIMULATION x AGEGROUP) assessed differences between the stimulation and age 269 

groups on the neuropsychological test battery. Linear mixed models assessed differences in adverse 270 

effects between stimulation and age groups over the five training days separately for each symptom. 271 

STIMULATION, TIME (Day1-5), and AGEGROUP were included in models as fixed effects. Blinding 272 

success was evaluated using Chi2-tests. 273 

3. RESULTS 274 

3.1. Baseline Cognitive Status, Adverse Effects, and Blinding 275 

All participants performed within normal age ranges on the neuropsychological test battery.  As 276 

expected, older adults performed worse than younger adults on a number of tests (see Table 1). 277 

Within each age-group, the two stimulation groups showed comparable neuropsychological profiles 278 

(Note: a significant difference on the Trail Making Test A in the younger group did not survive 279 

correcting for multiple comparisons). TDCS was well tolerated by participants of both age groups and 280 

only mild adverse effects were reported. Across both age-groups, no differences in the degree of 281 

reported adverse events in the two stimulation groups were found (all p’s > 0.09, see Tables 2 and 282 

3), except for tingling and scalp pain sensations: participants in the anodal group reported a greater 283 



degree of tingling over time than sham (p=0.01), while participants in the sham group reported a 284 

greater degree of (mild) scalp pain (p=0.03). Age effects were also observed: the younger group 285 

reported a greater degree of headache, scalp pain, tingling, sleepiness and trouble concentrating 286 

than the older adults (p<0.001-p=0.049). A greater decrease in the degree of itching sensations over 287 

time was observed in the sham group, compared to anodal (p=0.02). Older adults in the anodal 288 

group reported a greater degree of tingling than sham (p=0.03). Participant blinding was successful. 289 

In the older group, only 23.3% of participants correctly guessed which type of stimulation they 290 

received (Incorrect: 38.3%, Unsure: 38.3%). In the young group, 39% guessed correctly (Incorrect: 291 

46.3%, Unsure: 14.6%).  There were no differences between stimulation groups concerning blinding 292 

results (Older: χ2 = 0.902, p = 0.637. Younger: χ2 = 0.75, p = 0.686).  293 

3.2. Learning Data 294 

3.2.1. Overall Sample (Young and Older Adults Combined)  295 

First, we assessed immediate or delayed stimulation effects on learning rates over the five days of 296 

training, and whether this was specific to age-group membership or baseline learning ability. 297 

3.2.2. Immediate after-effects of tDCS during the learning period (Days1-5, see Figures 2 and 3)  298 

Participants successfully learned the novel active vocabulary (TIME, B = 8.00, SE = 1.01, F(1, 396)= 299 

62.29, p<0.001). A significant TIME × STIMULATION × AGEGROUP × BASELINE interaction was 300 

observed for the free-recall task (B = -0.30, SE = 1.14, F(1, 396) = 4.70, p=0.03), suggesting a specific 301 

effect of stimulation dependent on age-group membership and baseline learning ability. 302 

Subsequently, we performed two 3-way ANOVAs for each age group independently. A significant 303 

TIME × STIMULATION × BASELINE interaction was identified in the older adults (B=-0.26, SE=0.09, 304 

F(1, 236)=7.67, p<0.01),  but not in the younger adults (B = 0.04, SE = 0.10, F(1, 160) = 0.15, p=0.70). 305 

To follow up on this interaction in older adults, we analysed the TIME × BASELINE interaction for 306 

each stimulation group independently. This interaction was stronger for the sham group (TIME × 307 



BASELINE, B = 0.64, SE = 0.07, F(1, 118)= 82.1, p<0.001) than for the group that had received anodal 308 

tDCS (TIME × BASELINE, B = 0.38, SE = 0.06, F(1, 118)= 38.83, p<0.001), suggesting that anodal tDCS 309 

weakened the impact of baseline ability on recall immediately after the end of the training. This 310 

means more pronounced benefits of anodal tDCS on learning ability were found specifically in 311 

participants with lower baseline learning scores. This effect is illustrated in Figure 3.  312 

3.2.3. Long-term after-effects of tDCS during the learning period (day2-24 hour follow-up, see 313 

Figure 2 and 3)  314 

Recall performance as assessed prior to each training day improved across the training period (TIME, 315 

B = 7.59, SE = 0.98, F(1, 391.08)= 60.14, p<0.001). A significant TIME × STIMULATION × AGEGROUP × 316 

BASELINE interaction was observed (B = -0.32, SE = 0.13, F(1, 391.17) = 5.58, p=0.02) for long-term 317 

after-effects of tDCS on free-recall. Three-way ANOVAs were computed for each age group and a 318 

significant TIME × STIMULATION × BASELINE interaction was identified in the older adults (B = -0.31, 319 

SE = 0.09, F(1, 231.11) = 10.89, p<0.01),  but not in the younger adults (B = 0.01, SE = 0.10, F(1, 160) 320 

= 0.02, p=0.89). To follow-up this interaction in the older adults, we analysed the TIME × BASELINE 321 

interaction for each stimulation group. The influence of this interaction was stronger for the sham 322 

group (TIME × BASELINE, B = 0.76, SE = 0.07, F(1, 114)= 109.04, p<0.001), than for anodal (TIME × 323 

BASELINE, B = 0.45, SE = 0.06, F(1, 117)= 61.33, p<0.001), suggesting that anodal tDCS weakened the 324 

impact of baseline ability on immediate learning. Therefore, stimulation also selectively improved 325 

learning in older adults with lower baseline ability (see Figure 3).  326 

For the older adults, there was no difference between groups in overnight decline scores across time 327 

(TIME × STIMULATION, B=0.02, SE=0.26, F(1,231.51)=0.01, p=0.93), indicating that the stimulation 328 

effects were not selectively induced by effects on overnight consolidation. Baseline learning ability 329 

did not further influence this null effect (TIME × STIMULATION × BASELINE, B=0.01, SE=0.05, 330 

F(1,230.96)=0.09, p=0.77). 331 



In summary, we show a facilitatory effect of anodal-tDCS on immediate learning for the free recall 332 

task that is specific to older adults with lower baseline learning ability. These effects were 333 

maintained during the testing session on the next day. Performance on the easier forced choice 334 

name and attributed recognition tasks improved over time (all p’s < 0.001), which demonstrates 335 

participant motivation and task compliance. No further significant effects were found for these tasks 336 

(see Supplementary Table 1).  337 

3.3. Long-term maintenance – Free recall task (Day5-3 month follow-up, see Figure 4) 338 

During the learning phase, we observed age-related differences in stimulation response on the free-339 

recall task. Therefore, to assess long-term maintenance effects, we analysed recall accuracy decline 340 

during the follow-up phase (24hrs, 1 week, 3 months) independently for young and older adults.  341 

As expected, performance declined in both age groups during the three follow-up assessments (see 342 

Figure 4A). In the older group, decline scores were comparable between the two stimulation groups 343 

(TIME × STIMULATION, B = 0.57, SE = 1.51, F(1, 113.7) = 0.14, p=0.71), and baseline learning had no 344 

effect (TIME × STIMULATION × BASELINE, B = -0.28, SE = 0.27, F(1, 113.1) = 1.12, p=0.29). This 345 

suggests that stimulation-induced gains that were observed in older individuals with lower baseline 346 

performance during the learning phase, were maintained during the follow-up.  347 

In the young group, the rate of decline was greater for the sham group than for the anodal tDCS 348 

group (TIME × STIMULATION, B = -7.78, SE = 3.41, F(1, 115) = 5.22, p=0.02). We also observed a 349 

significant TIME × STIMULATION × BASELINE interaction (B = 0.46, SE = 0.23, F(1, 115) = 43.92, 350 

p=0.049). Therefore, we inspected the effect of TIME × BASELINE in both stimulation conditions. 351 

Neither sham nor anodal stimulation resulted in a significant TIME × BASELINE interaction. For Sham, 352 

the TIME × BASELINE interaction was negative (B = -0.31, SE = 0.19, F(1, 56) = 2.49, p=0.12); for 353 

anodal stimulation the TIME × BASELINE interaction was positive (B = 0.15, SE = 0.13, F(1, 59) = 1.35, 354 

p=0.25). Therefore, stimulation differences were demonstrated at the level of the TIME × 355 



STIMULATION × BASELINE interaction, with anodal stimulation resulting in a greater effect of 356 

baseline learning on decline over time.  Overall, this suggests that even in the absence of immediate 357 

stimulation effects on learning ability, learning gains were better maintained during the follow-up 358 

assessments (i.e., 1 week, 3 months) in younger individuals with lower baseline learning scores who 359 

had received anodal-tDCS (Figure 4C).  360 

3.4. Transfer effects 361 

No baseline differences were found between active and sham stimulation groups for any of the 362 

Cogstate subtests (STIMULATION, all p = 0.06 – 1.00). Age-group membership had no further effect 363 

(STIMULATION × AGEGROUP, all p = 0.09 – 0.94). There were some significant effects of stimulation 364 

at different time points and for different tests (see Tables 4 and 5). However, none of them survived 365 

correcting for multiple comparisons. Therefore, no substantial transfer effects were observed and 366 

the stimulation groups were comparable in their performance across time on all Cogstate subtests 367 

(TIME × STIMULATION, pre vs. post: p = 0.02 – 0.93; follow-up: p = 0.01 – 0.95). Including age-group 368 

or baseline learning ability in the analysis did not further alter this outcome (TIME × STIMULATION × 369 

AGEGROUP, pre vs. post: p = 0.04 – 0.92; follow-up: p = 0.01– 0.95; TIME × STIMULATION × 370 

BASELINE, pre vs. post: p = 0.04 – 0.97; follow-up: p = 0.01 – 0.92). 371 

4. DISCUSSION 372 

This study demonstrated that multisession tDCS can improve verbal associative learning and its long-373 

term maintenance in healthy older adults. Importantly, beneficial tDCS effects were not exclusively 374 

explained by overnight consolidation. In younger individuals, no immediate effects of tDCS were 375 

found, but active tDCS reduced memory decline during the long-term follow-up sessions. In both 376 

age-groups, beneficial effects of multisession tDCS were most pronounced in individuals with lower 377 

baseline learning capacity. This shows that both short- and long-term tDCS effects are dependent on 378 

baseline cognitive status. Our result thus emphasizes that tDCS is particularly suited to improve 379 



learning and memory formation in those individuals who require such a “boost”. However, it is 380 

worth noting that multisession tDCS did not “restore” learning and memory in lower-functioning 381 

(older) adults to the level of young individuals or high-functioning older participants. Blinding was 382 

successful in both age-groups and only mild adverse effects were reported. Therefore, our study also 383 

adds to the growing literature demonstrating that positive effects of multisession tDCS on brain 384 

function can be achieved without side effects, making it an attractive tool for cognitive 385 

enhancement in advanced age (Kortteenniemi, Ali-Sisto, Wikgren, & Lehto, 2017). Unlike previous 386 

studies that reported near transfer effects to untrained materials (Antonenko et al., 2017; S. H. Park 387 

et al., 2014), such effects were absent in the present study. This highlights a task-specific effect of 388 

tDCS on brain activity elicited during learning and memory formation. Note that in a recent meta-389 

analysis by Nilsson et al. (2017) that failed to find beneficial effects of tDCS during cognitive training, 390 

the outcome measures mixed transfer and training tasks, thus being uninformative of effects on 391 

trained tasks. 392 

Overall, young and older participants in both stimulation conditions showed evidence of learning 393 

associations between the alien characters and their respective names and attributes across the five 394 

training days, but there was also substantial variability in performance within each group. 395 

Importantly, active tDCS selectively improved learning ability only in individuals with lower baseline 396 

learning performance. Although potential tDCS effects in the high-performing subgroup may have 397 

been masked by near ceiling effects on the two easier recognition tasks, learning curves were 398 

comparable (in older adults almost identical) for active and sham-tDCS even for the more difficult 399 

name recall task where there was a substantial room for improvement even in high performers. 400 

These results suggest that baseline cognitive status is an important factor in determining stimulation 401 

effectiveness (Silvanto, Muggleton, & Walsh, 2008). This is in line with previous cross-sectional 402 

research showing that tDCS effects in elderly participants are modified by factors such as baseline 403 

task performance and lateralization of brain activity (Berryhill & Jones, 2012; Learmonth et al., 2015; 404 

Meinzer et al., 2013). While it has been suggested that brains already functioning at a near optimal 405 



(“homeostatic”) level may not respond to tDCS in the same way as those with suboptimal activity 406 

(Brem, Fried, Horvath, Robertson, & Pascual-Leone, 2014; Krause, Márquez-Ruiz, & Kadosh, 2013), 407 

neural mechanisms underlying such modifying factors are not well understood, even in healthy 408 

young individuals (Hsu et al., 2016; Martin, Huang, Hunold, & Meinzer, 2017; Tseng et al., 2012). This 409 

needs to be scrutinized in future imaging studies by investigating baseline brain network structure 410 

and training-induced changes related to the facilitatory effects of multisession tDCS. 411 

Our results also demonstrate that the beneficial short-term effects of tDCS in low-performing older 412 

adults were mainly due to acute stimulation effects, which were largely maintained during the 413 

assessments on the morning of the following training day. To the best of our knowledge, only two 414 

previous studies aimed to address the temporal locus of multisession tDCS effects (Reis et al., 2015; 415 

Reis et al., 2009) with both studies testing younger individuals [Please note, only one of these 416 

studies (Reis et al. 2015) allowed investigation of true “offline” or long-term after-effects by 417 

including a training block without concurrent tDCS]. Both studies used a motor sequence learning 418 

task with concurrent tDCS and did not find immediate performance improvement. However, 419 

profound effects on memory consolidation were reported several hours after the end of the training 420 

(Reis et al., 2015) or after a period of sleep (Reis et al., 2015; Reis et al., 2009). A number of tentative 421 

explanations may explain these differences. First, memory consolidation for procedural (Reis et al., 422 

2015; Reis et al., 2009) vs. explicit episodic memory content (i.e., the present study) is supported by 423 

different neural systems (Plihal & Born, 1997). Procedural memory has been linked to basal ganglia 424 

and cortico-cerebellar networks, while episodic memory requires the hippocampus and neocortical 425 

structures relevant for specific tasks (Harand et al., 2012; Squire, 2004). There may also be 426 

differences in the optimal timing depending on the experimental context or task and other motor 427 

learning studies have demonstrated beneficial effects of tDCS when administered shortly after the 428 

end of the training (e.g., Tecchio et al. 2010; Rumpf et al. 2017). TDCS may thus act differently on 429 

different memory systems, irrespective of age, but there is also evidence for reduced (overnight) 430 

memory consolidation in advanced age (Gudberg, Wulff, & Johansen-Berg, 2015; Harand et al., 431 



2012). Moreover, only one recent study investigated the impact of multisession tDCS on learning 432 

ability using an implicit object location learning paradigm (Antonenko et al., 2017). This study also 433 

failed to find immediate stimulation effects on performance, which only became evident 434 

immediately after a three-day training period, being maintained during a one month follow-up 435 

assessment. It is worth noting that across the entire sample, tDCS did not result in immediate 436 

performance improvement in the present study, and positive effects were limited to the subgroup of 437 

low performers. As none of the previous multisession tDCS studies considered baseline cognitive 438 

status or learning ability in their analysis, potential subgroup effects may have been missed. 439 

Therefore, future studies are urgently needed to disentangle the contribution of chronological age, 440 

target memory systems, and task characteristics on the temporal dynamics of multisession tDCS 441 

response. Nonetheless, the results of our study did not provide support for the notion that tDCS 442 

exclusively acts on memory consolidation mechanisms. This is also in line with a previous study from 443 

our group that demonstrated immediate beneficial effects on verbal associative learning ability in 444 

young participants (Meinzer, Jahnigen, et al., 2014).  In contrast, no immediate effects were found in 445 

the present younger sample, which is likely explained by the design of this study. Specifically, in an 446 

attempt to keep the learning paradigm comparable for young and older adults and to account for 447 

reduced learning ability in aging, the present study used relatively few picture-name pairs (N=36) 448 

compared to our previous study (N=120; Meinzer et al. (2014)). Therefore, task demands were 449 

substantially different. Nonetheless, beneficial long-term stimulation effects in the young group 450 

were found (a) in those individuals that found the task “more challenging” (i.e., low performers) and 451 

(b) during delayed memory retrieval (i.e., the follow-up assessments). Both findings are in line with a 452 

task difficulty account that impacted multisession tDCS effects in the present study. 453 

We also observed that tDCS-induced learning gains were largely maintained for up to three months 454 

after the end of the training. This is in line with previous multisession tDCS studies in young adults 455 

demonstrating long-term beneficial stimulation effects that outlasted the end of the training for at 456 

least one week and up to one year (Cohen Kadosh et al., 2010; Dockery et al., 2009; Meinzer, 457 



Jahnigen, et al., 2014; Reis et al., 2009). In older adults, only a handful of studies combined cognitive 458 

training (Jones et al., 2015; S. H. Park et al., 2014) or learning paradigms (Antonenko et al., 2017) 459 

with multisession tDCS. These studies reported beneficial effects that were maintained for up to one 460 

month. Moreover, several multisession tDCS studies in both young (Richmond, Wolk, Chein, & Olson, 461 

2014) and older (Antonenko et al., 2017; Jones et al., 2015; S. H. Park et al., 2014; Stephens & 462 

Berryhill, 2016) individuals also reported transfer effects to untrained cognitive tasks. In the present 463 

study, we did not find evidence for any transfer effects, which suggests a rather specific impact of 464 

tDCS on brain networks activated by the associative learning task. However, it needs to be 465 

acknowledged that transfer effects in older adults were mainly found for closely related tasks (near 466 

transfer tasks), which was not tested in the present study. In addition, in comparison to learning 467 

paradigms, successful transfer may be more likely with general cognitive training approaches (S. H. 468 

Park et al., 2014). 469 

5. Conclusions 470 

We have demonstrated that multisession tDCS enhances both immediate and delayed learning in 471 

older adults with lower baseline learning ability and that these effects were maintained for up to 472 

three months. While no immediate effects were found in young adults, the rate of forgetting over 473 

time was reduced by the stimulation in this group. Future studies employing fMRI are needed to 474 

investigate the underlying neural mechanisms responsible for such enhancement, and the baseline 475 

neural characteristics predicting stimulation response in low performers. In sum, we demonstrated 476 

that multisession tDCS is a viable method for improving verbal learning and memory performance in 477 

healthy young and older individuals. The fact that these effects were mainly found in lower 478 

performing individuals opens the possibility that it may also be suited for clinical populations such as 479 

patients with mild cognitive impairment (Meinzer, Lindenberg, et al., 2014).    480 
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Table 1. Demographic and neurocognitive profiles of young and older participants in the two stimulation groups (anodal-; sham- tDCS), means ± standard 697 

deviation are reported   698 

 Younger Older Age-group 

Comparison 

 Sham-tDCS Anodal-tDCS Signif. Sham-tDCS Anodal-tDCS Signif. Signif. 

Age (yrs) 21.25 ± 3.97 21.62 ± 3.32 0.75 67.4 ± 6.08 66.7 ± 6.05 0.66 <.001* 

Sex (men/women) 8/12 8/13  6/24 4/26   

Education (yrs) 14.25 ± 1.29 14.62 ± 1.12 0.33 14.07 ± 2.36 14.17 ± 1.90 0.86 0.38 

MMSE1 29.95 ± 0.22 29.86 ± 0.36 0.33 29.47 ± 0.86 29.67 ± 0.76 0.30 0.01 

D-KEFS1 (Scaled score)      

   Semantic Fluency 44.05 ± 6.83 

(12.6 ±  2.82) 

44.19 ± 8.98 

(12.57 ± 3.31) 

0.96 

(0.98) 

44.3 ± 10.54 

(13.47 ± 3.73) 

45.67 ± 8.73 

(14.23 ± 3.22) 

0.59 

(0.40) 

0.06 

(0.64) 

   Phonemic Fluency 40.85 ± 8.69 

(11.7 ± 2.89) 

42.76 ± 10.52 

(12.05 ± 3.02) 

0.53 

(0.71) 

46.53 ± 15.03 

(13.23 ± 4.33) 

48.43 ± 11.12 

(13.80 ± 3.06) 

0.58 

(0.56) 

0.02 

(0.02) 

Boston Naming Test1# 14.20 ± 0.89 14.43 ± 1.08 0.47 14.37 ± 1.03 14.40 ± 1.16 0.91 0.76 



Trail Making Test A2 23.75 ± 6.53 19.13 ± 3.86 0.01  29.23 ± 7.75 29.53 ± 8.76 0.89 <.001* 

Trail Making Test B 49.96 ± 16.92 47.99 ± 15.80 0.70 63.28 ± 27.62 65.87 ± 19.03 0.67 <.001* 

HLVT1 (T-scores)     

   Total Recall 30.70 ± 2.47 

(57.17 ± 7.83) 

28.81 ± 4.27 

(60.00 ± 7.02) 

0.09 

(0.36) 

26.90 ± 4.71 

(47.07 ± 12.12) 

28.83 ± 4.71 

(53.92 ± 12.83) 

0.12 

(0.17) 

0.04 

(0.60) 

   Delayed Recall 11.50 ± 0.76 

(57.17 ± 5.41) 

10.62 ± 1.91 

(57.5 ± 5.28) 

0.06 

(0.88) 

9.62 ± 2.40 

(45.86 ± 11.58) 

10.10 ± 1.81 

(51.08 ± 8.32) 

0.43 

(0.19) 

<0.01 

(0.47) 

   Retention (%) 94.89 ± 9.96 89.60 ± 14.66 0.19 89.27 ± 17.30 91.53 ± 10.66 0.54 0.52 

 (51.6 ± 6.65) (48.14 ± 9.74) 0.19 (50.13 ± 8.53) (51.07 ± 6.62) 0.64 (0.44) 

D-KEFS2 (Scaled Scores)     

   Colour Naming 26.96 ± 4.83 

(10.35 ± 2.35) 

26.06 ± 3.73 

(10.71 ± 1.79) 

0.50 

(0.56) 

30.31 ± 6.24 

(10.07 ± 2.55)  

30.49 ± 5.28 

(10.87 ± 2.26) 

0.91 

(0.75) 

<.001* 

(0.35) 

   Word Reading 20.07 ± 3.20 

(11.15 ± 1.95) 

20.33 ± 4.54 

(10.95 ± 2.71) 

0.83 

(0.79) 

23.11 ± 5.18 

(10.93 ± 2.63) 

22.48 ± 3.44 

(11.23 ± 1.72) 

0.58 

(0.60) 

<0.01 

(0.94) 



   Inhibition  42.77 ± 7.88 

(11.95 ± 1.79) 

43.17 ± 7.22 

(11.81 ± 1.66) 

0.87 

(0.80) 

54.41 ± 11.92 

(12.70 ± 2.15) 

54.37 ± 10.03 

(12.53 ± 1.68) 

0.99 

(0.74) 

<.001*  

(0.05) 

          

Inhibition/Switching 

51.96 ± 10.66 

(11.20 ± 2.33) 

51.91 ± 7.47 

(11.14 ± 1.65) 

0.99 

(0.93) 

59.80 ± 13.95 

(12.53 ± 1.91) 

58.92 ± 11.33 

(12.57 ± 1.77) 

0.79 

(0.94) 

0.002* 

 (<.001*) 

RBANS        

   Figure Copy2 18.40 ± 1.67 17.67 ± 1.80 0.19 19.17 ± 1.23 18.73 ± 1.44 0.22 <0.01 

 

   Figure Copy Delay2 16.70 ± 2.00 15.29 ± 3.18 0.10 15.07 ± 3.26 14.00 ± 2.49 0.16 0.01 

   Digit Span1 11.90 ± 2.27 12.33 ± 2.61 0.58 12.07 ± 2.35 12.37 ± 2.34 0.62 0.84 

   Symbol Coding 58.95 ± 8.18 61.05 ± 9.88 0.47 48.47 ± 9.06 49.83 ± 7.48 0.53 <.001* 

   Story Memory1 18.45 ± 2.54 19.19 ± 2.42 0.35 17.83 ± 3.60 17.50 ± 2.73 0.69 0.06 

NART        

   NART Error 18.65 ± 6.63 18.67 ± 4.43 0.99 11.30 ± 6.77 11.43 ± 6.22 0.94 <.001* 

   NART IQ 112.25 ± 5.50 112.24 ± 3.71 0.99 118.38 ± 5.61 118.07 ± 5.00 0.82 <.001* 



HADS      

   Depression 2.10 ± 1.65 2.71 ± 2.45 0.36 2.40 ± 1.77 2.70 ± 2.55 0.60 0.76 

   Anxiety 5.35 ± 3.22 6.71 ± 3.54 0.21 4.80 ± 3.21 4.97 ± 3.32 0.84 0.09 

Note. MMSE, Mini Mental State Examination; D-KEFS, Delis-Kaplan Executive Function System; HVLT, Hopkins Verbal Learning Test; RBANS, 699 

Repeatable Battery for the Assessment of Neuropsychological Status; NART, National Adult Reading Test; HADS, Hospital Anxiety and Depression 700 

Scale (For a review of all tests, see Strauss et al. (2006)).1Number of correct responses. 2Response latency (seconds). #15-item version.  701 

*(p<0.05/23=p<0.002).  702 

  703 



Table 2. Adverse effects reported by younger participants in both stimulation groups (anodal-, sham-tDCS) as assessed after the end of each daily 704 
stimulation session¸ means ± standard deviation are reported   705 

Symptom StimGroup Day 1 Day 2 Day 3 Day 4 Day 5 Between-group 

comparison 

Headache Anodal 1.33 ± 0.58 1.33 ± 0.48 1.29 ± 0.56  1.24 ± 0.44  1.19 ± 0.51  p = 0.76 

 Sham 1.25 ± 0.55 1.40 ± 0.68 1.20 ± 0.41 1.20 ± 0.41 1.20 ± 0.41  

Neck pain Anodal 1.29 ± 0.56 1.19 ± 0.40 1.14 ± 0.36 1.19 ± 0.40 1.10 ± 0.30 p = 0.62 

 Sham 1.25 ± 0.55 1.10 ± 0.31 1.05 ± 0.22 1.05 ± 0.22 1.05 ± 0.22  

Scalp pain Anodal 1.10 ± 0.30 1.10 ± 0.30 1.14 ± 0.48 1.14 ± 0.36 1.10 ± 0.30 p = 0.12 

 Sham 1.30 ± 0.57 1.20 ± 0.52 1.15 ± 0.37 1.10 ± 0.31 1.15 ± 0.37  

Tingling Anodal 1.83 ± 0.10 1.93 ± 0.10 1.87 ± 0.11 1.73 ± 0.11 1.77 ± 0.11 p = 0.17 

 Sham 1.70 ± 0.10 1.57 ± 0.11 1.57 ± 0.11 1.53 ± 0.11 1.50 ± 0.11  

Itching Anodal 1.90 ± 0.77 2.05 ± 0.74 1.95 ± 0.67 2.00 ± 0.71 1.95 ± 0.67 p = 0.51  

 Sham 2.05 ± 0.95 1.80 ± 0.70 1.75 ± 0.64 1.65 ± 0.59 1.55 ± 0.61  

Burning Anodal 1.86 ± 0.91 1.95 ± 0.97 1.86 ± 0.96 1.71 ± 0.90 1.71 ± 0.85 p = 0.29 

 Sham 1.60 ± 0.75 1.70 ± 0.80 1.70 ± 0.66 1.80 ± 0.83 1.50 ± 0.69  

Sleepiness Anodal 2.19 ± 1.03 1.95 ± 1.02 2.05 ± 1.02 2.24 ± 1.00 1.62 ± 0.67 p = 0.84 

 Sham 2.35 ± 0.81 2.10 ± 0.85 1.80 ± 0.77 2.05 ± 0.76 1.90 ± 0.91  



Concentration Anodal 1.76 ± 0.70 1.38 ± 0.74 1.43 ± 0.60 1.43 ± 0.68 1.38 ± 0.74 p = 0.85 

 Sham 1.75 ± 0.72 1.40 ± 0.60 1.50 ± 0.83 1.55 ± 0.83 1.50 ± 0.83  

Mood Change Anodal 1.14 ± 0.36 1.10 ± 0.44 1.10 ± 0.30 1.10 ± 0.30 1.19 ± 0.51 p = 0.68 

 Sham 1.15 ± 0.37 1.10 ± 0.31 1.00 ± 0.00 1.10 ± 0.31 1.05 ± 0.22  

 706 
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Table 3. Adverse effects reported by older participants in both stimulation groups (anodal-, sham-tDCS) as assessed after the end of each daily stimulation 708 
session¸ means ± standard deviation are reported   709 

Symptom StimGroup Day 1 Day 2 Day 3 Day 4 Day 5 Between-group 

comparison 

Headache Anodal 1.10 ± 0.31 1.07 ± 0.25 1.10 ± 0.31 1.03 ± 0.18 1.03 ± 0.18 p = 0.99 

 Sham 1.10 ± 0.31 1.10 ± 0.40 1.07 ± 0.25 1.10 ± 0.31 1.03 ± 0.18  

Neck pain Anodal 1.17 ± 0.46 1.13 ± 0.35 1.10 ± 0.31 1.07 ± 0.25 1.10 ± 0.31 p = 0.36 

 Sham 1.07 ± 0.37 1.10 ± 0.40 1.07 ± 0.25 1.03 ± 0.18 1.03 ± 0.18  

Scalp pain Anodal 1.03 ± 0.18 1.00 ± 0.00 1.03 ± 0.18 1.00 ± 0.00 1.00 ± 0.00 p = 0.28 

 Sham 1.07 ± 0.25 1.10 ± 0.31 1.07 ± 0.25 1.00 ± 0.00 1.07 ± 0.25  

Tingling Anodal 1.83 ± 0.59 1.93 ± 0.64 1.87 ± 0.63 1.73 ± 0.69 1.77 ± 0.68 p = 0.11 

 Sham 1.70 ± 0.54 1.57 ± 0.50 1.57 ± 0.57 1.53 ± 0.51 1.50 ± 0.51  

Itching Anodal 1.50 ± 0.73 1.40 ± 0.72 1.33 ± 0.55 1.33 ± 0.61 1.37 ± 0.62 p = 0.44 

 Sham 1.33 ± 0.55 1.27 ± 0.52 1.23 ± 0.50 1.17 ± 0.38 1.20 ± 0.41  

Burning Anodal 1.20 ± 0.11 1.23 ± 0.57 1.20 ± 0.48 1.30 ± 0.65 1.13 ± 0.35 p = 0.31 

 Sham 1.47 ± 0.63 1.20 ± 0.41 1.30 ± 0.54 1.33 ± 0.48 1.30 ± 0.47  

Sleepiness Anodal 1.40 ± 0.77 1.20 ± 0.48 1.20 ± 0.48 1.13 ± 0.51 1.13 ± 0.35 p = 0.22 

 Sham 1.17 ± 0.53 1.30 ± 0.65 1.20 ± 0.48 1.27 ± 0.52 1.17 ± 0.46  



Concentration Anodal 1.30 ± 0.54 1.13 ± 0.35 1.10 ± 0.31 1.17 ± 0.46 1.03 ± 0.18 p = 0.93 

 Sham 1.10 ± 0.31 1.27 ± 0.64 1.17 ± 0.46 1.10 ± 0.31 1.03 ± 0.18  

Mood Change Anodal 1.03 ± 0.18 1.00 ± 0.00 1.10 ± 0.40 1.00 ± 0.00 1.00 ± 0.00 p = 0.10 

 Sham 1.10 ± 0.40 1.07 ± 0.37 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00  

 710 
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Table 4. Assessment of transfer effects in younger participants of both stimulation groups. Means ± standard deviation are reported 712 

  713 

 Pre-test   24 hours  1 week  3 months  

 Sham-tDCS Anodal-tDCS Sham-tDCS Anodal-tDCS Sham-tDCS Anodal-tDCS Sham-tDCS Anodal-tDCS 

International Shopping 

list1 

29.5 ± 2.61 28.24 ± 2.25 29.5 ± 3.52 28.90 ± 2.86 30.50 ± 3.03 29.24 ± 3.71 30.75 ± 3.78 30.14 ± 3.02 

Groton Maze 

Learning2 

40.75 ± 9.40 38.81 ± 9.22 35.45 ± 10.29 41.14 ± 9.75 35.05 ± 11.08 34.43 ± 7.83 32.20 ± 8.53 37.67 ± 11.23 

Detection test3 2.50 ± 0.04 2.52 ± 0.05 2.55 ± 0.07 2.53 ± 0.04*ab 2.51 ± 0.04 2.54 ± 0.07 2.51 ± 0.06 2.53 ± 0.06 

Identification test3  2.65 ± 0.04 2.67 ± 0.06 2.69 ± 0.06 2.68 ± 0.05ac 2.69 ± 0.06 2.70 ± 0.06 2.68 ± 0.06 2.69 ± 0.05 

One Card Learning4 1.06 ± 0.08 1.06 ± 0.09 1.10 ± 0.12 1.09 ± 0.12 1.08 ± 0.11 1.06 ± 0.09 1.05 ± 0.13 1.08 ± 0.11 

One Back4 1.40 ± 0.10 1.40 ± 0.15 1.36 ± 0.13 1.40 ± 0.11*b 1.41 ± 0.12 1.44 ± 0.14 1.36 ± 0.15 1.38 ± 0.13#+fg 

Two Back4 1.36 ± 0.13 1.30 ± 0.15 1.37 ± 0.16 1.31 ± 0.16 1.38 ± 0.18 1.36 ± 0.14 1.37 ± 0.20 1.38 ± 0.14 

Set Shifting2 18.40 ± 12.27 20.67 ± 10.20 20.30 ± 12.91 19.24 ± 8.23 21.30 ± 9.77 18.10 ± 8.12 22.45 ± 12.93 18.05 ± 5.90+def 

Continuous Paired 

Associative Learning2 

24.50 ± 18.71 29.57 ± 25.28 17.30 ± 27.03 25.33 ± 30.86 14.90 ± 25.58 19.33 ± 39.95 14.80 ± 25.48 18.90 ± 35.51 



Social-Emotional 

Cognition4 

1.15 ± 0.07 1.13 ± 0.07 1.16 ± 0.11 1.13 ± 0.08 1.16 ± 0.10 1.18 ± 0.10 1.14 ± 0.14 1.16 ± 0.09 

         

International Shopping 

List (Delayed Recall)1 

10.55 ± 1.82 10.48 ± 1.36 10.80 ± 1.47 10.33 ± 1.74 10.60 ± 1.50 10.48 ± 1.54 10.60 ± 1.50 10.62 ± 1.75 

Groton Maze Learning 

(Delayed Recall)2 

3.55 ± 2.74 5.14 ± 3.38 4.75 ± 2.63 6.14 ± 4.55 4.40 ± 3.07 4.52 ± 2.86 3.80 ± 2.40 4.95 ± 3.23 

1Number of correct responses. 2Number of errors.  3Speed of performance (lower score = better performance). 4Accuracy of performance (higher score = 714 

better performance).  715 

Between group analysis: *p<0.05 (Pre-test – 24 hours, Time × StimGroup); #p<0.05 (24 hours – 3 months, StimGroup), +p<0.05 (24 hours – 3 months, Time × 716 

StimGroup).   717 

Old/Young combined analysis: ap<0.05 (Pre-test – 24 hours, Time × StimGroup), bp<0.05 (Pre-test – 24 hours, Time × StimGroup × AgeGroup), cp<0.05 (Pre-718 

test – 24 hours, Time × StimGroup × Baseline), dp<0.05 (Pre-test – 24 hours, Time × StimGroup), ep<0.05 (24 hours – 3 months, Time × StimGroup × 719 

AgeGroup), fp<0.05 (24 hours – 3 months, Time × StimGroup × Baseline), gp<0.01 (24 hours – 3 months, Time × StimGroup × AgeGroup) 720 

 721 
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Table 5. Assessment of transfer effects in older participants of both stimulation groups. Means ± standard deviation are reported 723 

 Pre-test   24 hours  1 week  3 months  

 Sham-tDCS Anodal-tDCS Sham-tDCS Anodal-tDCS Sham-tDCS Anodal-tDCS Sham-tDCS Anodal-tDCS 

International Shopping 

list1 

25.61 ± 3.53 26.46 ± 2.86 27.68 ± 3.81 27.96 ± 3.60 27.66 ± 4.11 28.21 ± 3.36 28.62 ± 3.91 28.53 ± 3.15 

Groton Maze 

Learning2 

56.46 ± 16.66 54.61 ± 13.99 48.11 ± 13.93 48.67 ± 16.92 45.24 ± 17.25 44.34 ± 13.37 47.96 ± 19.80 44.47 ± 12.85 

Detection test3 2.57 ± 0.09 2.53 ± 0.09 2.58 ± 0.10 2.55 ± 0.09ab 2.57 ± 0.08 2.54 ± 0.08 2.58 ± 0.09 2.55 ± 0.09 

Identification test3  2.74 ± 0.05 2.72 ± 0.06 2.76 ± 0.09 2.72 ± 0.05ac 2.75 ± 0.05 2.72 ± 0.05 2.75 ± 0.06 2.72 ± 0.06 

One Card Learning4 1.02 ± 0.07 1.01 ± 0.10 1.02 ± 0.09 1.04 ± 0.09 1.03 ± 0.09 1.03 ± 0.08 1.04 ± 0.08 1.04 ± 0.08 

One Back4 1.37 ± 0.14 1.38 ± 0.16 1.44 ± 0.10 1.43 ± 0.11b 1.45 ± 0.13 1.43 ± 0.10 1.40 ± 0.14 1.40 ± 0.12fg 

Two Back4 1.26 ± 0.11 1.23 ± 0.09 1.27 ± 0.13 1.28 ± 0.12 1.35 ± 0.15 1.31 ± 0.13 1.30 ± 0.16 1.30 ± 0.12 

Set Shifting2 16.61 ± 10.04 14.71 ± 4.41 14.36 ± 7.46 11.70 ± 3.48 13.03 ± 5.32 11.76 ± 2.46 15.89 ± 9.44 12.77 ± 4.96def 

Continuous Paired 

Associative Learning2 

81.21 ± 45.85 76.50 ± 41.94 75.36 ± 60.63 52.74 ± 42.46 59.00 ± 43.90 50.55 ± 49.65 54.00 ± 57.53 54.23 ± 42.12 



  724 
1Number of correct responses. 2Number of errors.  3Speed of performance (lower score = better performance). 4Accuracy of performance (higher score = 725 

better performance).  726 

Old/Young combined analysis: ap<0.05 (Pre-test – 24 hours, Time × StimGroup), bp<0.05 (Pre-test – 24 hours, Time × StimGroup × AgeGroup), cp<0.05 (Pre-727 

test – 24 hours, Time × StimGroup × Baseline), dp<0.05 (Pre-test – 24 hours, Time × StimGroup), ep<0.05 (24 hours – 3 months, Time × StimGroup × 728 

AgeGroup), fp<0.05 (24 hours – 3 months, Time × StimGroup × Baseline), gp<0.01 (24 hours – 3 months, Time × StimGroup × AgeGroup) 729 

  730 

Social-Emotional 

Cognition4 

1.12 ± 0.15 1.11 ± 0.08 1.13 ± 0.16 1.16 ± 0.09 1.13 ± 0.18 1.17 ± 0.06 1.14 ± 0.17 1.16 ± 0.08 

         

International Shopping 

List (Delayed Recall)1 

8.86 ± 1.94 9.04 ± 1.64 9.61 ± 1.66 9.48 ± 2.10 8.97 ± 2.11 9.21 ± 1.92 9.62 ± 1.70 9.90 ± 1.79 

Groton Maze Learning 

(Delayed Recall)2 

9.36 ± 3.99 10.61 ± 3.65 8.58 ± 3.43 8.07 ± 3.00 8.62 ± 4.30 8.14 ± 3.59 8.23 ± 3.55 8.13 ± 3.43 



Figure Captions 731 

Figure 1. Study Design: A. Overview of training and testing sessions from day 1 to 3 month follow-732 

up. Day 1 begins with acquisition of name + object pairings and simultaneous stimulation (anodal- or 733 

sham-tDCS) and is followed by immediate recall and recognition tasks. Days 2-5 comprise delayed 734 

recall and recognition tasks. This is followed by acquisition and stimulation phases and immediate 735 

recall and recognition tasks. 24 hour to 3 month follow-ups comprise recall and recognition tasks 736 

and assessment of transfer to untrained functions using the Cogstate battery. B. Shows acquisition 737 

phase and recall and recognition tasks. During acquisition, each novel object picture is presented 738 

with the matching non-word and two semantic attributes. During recall the object picture is 739 

presented and participants are instructed to type the correct names. During the recognition tasks 740 

the object picture is presented with a choice of two nonwords/sets of attributes and participants are 741 

instructed to select the correct nonword/set of attribute. 742 

 743 

Figure 2. Learning phase in both age groups: Displays accuracy scores (# correct) for the recall task 744 

assessed immediately after the end of each daily training session (“imm”) and the morning of the 745 

next day (“del” refers to delayed after-effects of tDCS). Shown are day 1 to the 24 hour follow-up 746 

(FU) for the primary outcome measure (name recall) and the entire sample of young and older 747 

adults.  748 

 749 

Figure 3.  Learning phase older adults split by baseline learning ability:  Displays accuracy scores (# 750 

correct) for the recall task assessed immediately after the end of each daily training session (“imm”) 751 

and the morning of the next day (“del” refers to delayed after-effects of tDCS). Shown are day 1 to 752 

the 24 hour follow-up (FU) for the primary outcome measure (name recall) for older participants 753 

with high and low baseline learning ability. Data shows that tDCS-induced learning gains were more 754 



pronounced in the low performing older group that had received anodal tDCS. More pronounced 755 

learning at the end of day 5 and the short-term follow up (24 hrs) amounted to 86.7% and 75.4% 756 

respectively (Effect size d’=.64/.74; i.e., medium effect sizes). Please note, figures are for illustrative 757 

purposes only. In the main results we report baseline performance as a continuous variable.    758 

 759 

Figure 4. Displays decline scores for correctly recalled names (# correct) for the follow-up time-760 

points relative to the end of the last training day. (A) Entire sample, (B) participants with high or (C) 761 

low learning ability during the baseline assessment. Data shows that tDCS-induced learning gains in 762 

our primary outcome variable (name recall accuracy) were maintained in older low learners for up to 763 

3 months. In low performing young adults, decline rates were significantly higher for participants 764 

that had received sham compared to anodal tDCS during the training period. The more pronounced 765 

drop in performance in the low performing younger adults (drop in correct recall 24 hrs – 3 months 766 

f-u anodal/sham: 19.8±8.3/25.1±7.5) equals 26.8% (d’=.67). Figures are for illustrative purposes only. 767 

In the main results, we report baseline performance as a continuous variable.   768 

 769 
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