
Labelled network capture generation for
anomaly detection

Maël Nogues
David Brosset
Hanan Hindy
Xavier Bellekens
Yvon Kermarrec

This is the Author Accepted Manuscript of a conference
paper published in Foundations and practice of security:
12th International Symposium, FPS 2019, Toulouse,
France, November 5–7, 2019, Revised Selected Papers

The final authenticated version is available online at
Springer via
https://doi.org/10.1007/978-3-030-45371-8_7

https://doi.org/10.1007/978-3-030-45371-8_7

Labelled Network Capture Generation For
Anomaly Detection

Maël Nogues1, David Brosset1,2, Hanan Hindy3, Xavier Bellekens4, and Yvon
Kermarrec1,5

1 Chair of Naval Cyber Defence??, École Navale - CC 600, F29240 Brest Cedex 9,
France

2 Naval Academy Research Institute, École Navale - CC 600, F29240 Brest Cedex 9,
France

3 Division of Cyber-Security, Abertay University, Dundee, United-Kingdom
4 Department of Electronic and Electrical Engineering, University of Strathclyde,

Glasgow, United-Kingdom
5 Institut Mines-Télécom Atlantique, Lab-STICC CNRS UMR 6285, F-29238 Brest,

France

Abstract. In the race to simplify man-machine interactions and main-
tenance processes, hardware is increasingly interconnected. With more
connected devices than ever, in our homes and workplaces, the attack
surface is increasing tremendously. To detect this growing flow of cyber-
attacks, machine learning based intrusion detection systems are being
deployed at an unprecedented pace. In turn, these require a constant
feed of data to learn and differentiate normal traffic from abnormal traf-
fic. Unfortunately, there is a lack of learning datasets available. In this
paper, we present a software platform generating fully labelled datasets
for data analysis and anomaly detection.

Keywords: Network Traffic Generation · Data Analysis · Intrusion De-
tection Systems · Cyber Security · Network Security

1 Introduction

As our lives are ever more connected, from our smartphones to our homes,
the attack surface increases exponentially. These attacks generally influence the
working state of the systems, often triggering their detection. To describe cyber-
attacks, models defining the paths they take to reach their target through differ-
ent networks are often used. However, to train and test these attack recognition
models, real or simulated data is needed. The data, generally consisting of net-
work capture, must be sufficiently documented and reflect the reality of network
exchanges. Leading to the classification of well-formatted datasets with defined
classes for each flow through the scenarios of these captures.

?? Funded and supported by École Navale, IMT Atlantique, Naval Group, Thales and
ENSTA Bretagne

2 M. Nogues et al.

Network captures available on the Internet are often provided without com-
plementary information other than the context in which they were generated.
Therefore, the exact content of these network captures is absent. Hence, users
can only infer the classifications of the packets they contain.

Moreover, network captures are often transformed into CSV formatted datasets
for intrusion detection systems. The most used dataset according to the taxon-
omy presented by Hindy et al. [4] is the KDD’99 dataset, generated for the
information discovery and data mining tool competition [2] of KDD-CUP 1999.
However, this dataset remains generic, does not contain IP addresses and lacks
lot of key information defining an attack path and threat vectors. In addition,
dating back to 1999, the dataset contains attacks that are outdated and not
complex enough to reflect modern attacks. Al Tobi and Duncan also identi-
fied a number of errors in the dataset in [1]. The main concern raised in their
manuscript is the dissimilarity between the number of attacks initially published
by DARPA and KDD’99.

To this end, this paper presents a software platform to generate network
traffic scenarios using a combination of real and/or virtual hosts. The platform
automatically generates network capture in a reliable manner, with the property
to identify and tag packets to the corresponding action.

The remainder of the paper is organized as follows; Section 2 presents a survey
of network traffic generation tools and associated network captures. The platform
to generate network captures is presented in Section 3. Section 4 provides a
description and analysis of the results obtained and finally Section 5 concludes
the paper and presents future work.

2 Background

This section describes related work as well as different captures and existing
network traces available on the Internet.

2.1 Network capture generation

To the best knowledge of the authors, there is no software able to generate la-
belled packet captures based on specific scenarios. However, there exists network
simulators and packet generators. Neither the simulators nor the packet gener-
ators are able to generate scenarios for the networks they emulate. Hence, this
work is complementary to existing solutions and provides a large range of solu-
tions to increase the flexibility and accuracy of dataset generation for machine
learning based intrusion detection systems.

Three software for generating network traffic in different ways have been
analysed, Swing [12], Sourcesonoff [11] and the network traffic generation tool
of "Realistic Global Cyber Environment" [5]. In this subsection, their different
features and network traffic generation are reviewed.

Labelled Network Capture Generation For Anomaly Detection 3

Swing Vishwanath et al. presented Swing, a network generator based on traf-
fic captures [12]. Swing allows you to explore different options, recreating the
capture through different parameters. Swing can be used to generate network
captures for network capacity planning, broadband router design, queue man-
agement rule design, or bandwidth estimation. Despite the flexibility that allows
exploring network parameters, scenarios are not explicitly defined.

Sourcesonoff This software is focused on accurate traffic generation and in-
cludes multiple protocols. The software is based on ON/OFF sources that allow
the random generation of packets while following a well-defined distribution. It is
developed in C and contains several different distributions to vary the generations
of packets. The uniform distribution is based on the Linux functions drand48()
and random(), with corrections to ensure perfect uniformity across all intervals.
The Normal or Gaussian distribution is calculated using the Box-Muller trans-
formation. Knuth’s algorithm is used for Poisson distribution. Pareto, Weibull
and Exponential distributions use a uniform distribution transformation. An ad-
ditional pseudo-distribution is available: the Constant distribution. In this case,
all generated values are equal to a user-defined constant. This method allows the
user to generate more predictive behaviour. Factor multiplication allows users
to convert randomly generated values into bytes and nanoseconds. Distributions
can be limited by user-defined minimum and maximum values. Once converted,
the data is used for communication in the network. The data flows can be param-
eterised by the user to refine the behaviour of the software for its use. Different
sets of sources can work at the same time to produce more traffic consistent
with the traffic seen on the Internet. Each set of sources will then be associated
with its own distribution and parameters to allow greater control over the data
generated to the user.

Traffic Generation for the Realistic Global Cyber Environment The
traffic generation tool that has been developed for the Realistic Global Cyber
Environment (RGCE) is an Internet traffic simulation tool. It allows control of
the traffic generation from a central point of the network while generating packets
on different machines through this same network. This tool allows the generation
of tailored traffic. RGCE use a complete simulation approach of network clients
consisting of a hierarchical network of nodes forming a tree in which each node
represents a client on the network.

The nodes are divided into several levels, each of which has a different role.
The root node is the King, serving as a bridge between the network and the user
interface of the tool. The user interface works through a web server.

The Slavemaster nodes represent network routers. They know the entire sub-
net and can be chained to create a tree of arbitrary depth. When they receive a
message from the root node, if the message is destined for the Slavemaster it is
then broadcast to all its children nodes, however, if the message is destined to
one of its sub-nodes, then it sends the message in the direction of that sub-node.

4 M. Nogues et al.

The Botmaster nodes are the leaves of the tree. They represent the host
machines of the system and can execute one or more Bots allowing to generate
traffic on the network. Botmasters receive messages from the network traffic
generation Bots and their status, passing them to the root node (King) to update
the user interface. The Bots, meanwhile, are responsible for generating network
traffic. Each Bot is responsible for generating a particular type of traffic (e.g.,
HTTPBot generates HTTP traffic). If a Bot encounters an error, it sends a
notification to its Botmaster to send to the King to update the user interface.

2.2 Online Network Captures

Network captures can be found online, mostly provided as raw captures or pro-
cessed such as KDD’99. However, network captures almost never come with
well-defined protocols allowing users to understand the scenarios at hand and
the action taken by the generators. This subsection explores two processed packet
capture, the KDD’99 dataset and the UNSW-NB15 dataset. For the purpose
of this manuscript, all network captures that does not come with a scenario de-
scribing its generation has an equivalent value. It seems then reasonable to limit
ourselves to the most commonly used.

KDD’99 KDD’99 is a dataset provided by the University of California Irvine
(UCI) for the third international knowledge discovery contest and data mining
tools. The goal of the competition was to build a network intrusion detection
system, based on a predictive model capable of distinguishing between “bad"
connections, called intrusions or attacks, and “good" connections, called normal.
The dataset contains a standard set of data to audit, including a number of
simulated intrusions in a military network environment.

A list of the different attacks contained in this dataset is presented in table 1.

Type dos u2r r2l probe

Attacks

back
land

neptune
pod
smurf

teardrop

buffer_overflow
loadmodule

perl
rootkit

ftp_write
guess_passwd

imap
multihop

phf
spy

warezclient
warezmaster

ipsweep
nmap

portsweep
satan

Table 1. Attack list of the dataset from KDD’99

This dataset contains attacks of several different types that are:

– Denial of Service (DoS) Attack: An attack in which the attacker makes a
computing resource or memory busy or full disabling him from handling
legitimate requests, or denying legitimate users access to a machine.

Labelled Network Capture Generation For Anomaly Detection 5

– Privilege Elevation Attack (U2R): is an exploit class in which the attacker
first accesses a normal user account on the system (e.g. through a dictionary
attack, or social engineering) and exploits one or more vulnerabilities of the
system to gain privileged access (root) on the system.

– Local Network Infiltration Attack (R2L): Occurs when an attacker has the
ability to send packets to a machine on the network, but does not have an
account on that machine, exploiting a vulnerability to obtain a local access
as a user of a machine.

– Network Discovery Attack (Probe): is an attempt to collect information on
a computer network for the purpose of circumventing security checks.

As aforementioned, KDD’99 no longer represents the current scene of cyber
attacks found on the Internet. It remains , however, one of the most used datasets
for detection of intrusions [4].

The features that have been chosen for KDD’99 are presented in the ta-
ble 2 [1]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

du
ra
ti
on

pr
ot
oc
ol
_
ty
pe

se
rv
ic
e

fla
g

sr
c_

by
te
s

ds
t_

by
te
s

la
nd

w
ro
ng

_
fr
ag
m
en
t

ur
ge
nt

ho
t

nu
m
_
fa
ile

d_
lo
gi
ns

lo
gg
ed

_
in

nu
m
_
co
m
pr
om

is
ed

ro
ot
_
sh
el
l

su
_
at
te
m
pt
ed

nu
m
_
ro
ot

nu
m
_
fil
e_

cr
ea
ti
on

s
nu

m
_
sh
el
ls

nu
m
_
ac
ce
ss
_
fil
es

nu
m
_
ou

tb
ou

nd
_
cm

ds
is
_
ho

st
_
lo
gi
n

is
_
gu

es
t_

lo
gi
n

co
un

t
sr
v_

co
un

t
se
rr
or
_
ra
te

sr
v_

se
rr
or
_
ra
te

re
rr
or
_
ra
te

sr
v_

re
rr
or
_
ra
te

sa
m
e_

sr
v_

ra
te

di
ff_

sr
v_

ra
te

sr
v_

di
ff_

ho
st
_
ra
te

ds
t_

ho
st
_
co
un

t
ds
t_

ho
st
_
sr
v_

co
un

t
ds
t_

ho
st
_
sa
m
e_

sr
v_

ra
te

ds
t_

ho
st
_
di
ff_

sr
v_

ra
te

ds
t_

ho
st
_
sa
m
e_

sr
c_

po
rt
_
ra
te

ds
t_

ho
st
_
sr
v_

di
ff_

ho
st
_
ra
te

ds
t_

ho
st
_
se
rr
or
_
ra
te

ds
t_

ho
st
_
sr
v_

se
rr
or
_
ra
te

ds
t_

ho
st
_
re
rr
or
_
ra
te

ds
t_

ho
st
_
sr
v_

re
rr
or
_
ra
te

Basic features
(Total : 9)

Content features
(Total : 13)

Time-based features
(Total : 9)

Connection-based features
(Total : 10)

Table 2. Features of KDD’99 [1]

The KDD’99 dataset is a transformation of a network trace generated by
DARPA in 1998. This transformation was performed using the intrusion de-
tection system Bro and deletes 5 essential information6 to be able to link the
records obtained from their sources in the trace of DARPA. In this transfor-
mation, ICMP packets are treated differently than other packets. Indeed, each
ICMP packet is treated as an entire connection (so-called stateless) whereas the
UDP and TCP connections consist of a sequence of packets exchanged between
2 machines (called stateful).

Many of KDD’99 ’s critics come from the network trace from which it was
made, DARPA. Indeed, this network trace has a large number of attacks that are
detectable using only the time to live (TTL) field in the headers of the packets.
This over-representation of an attack characteristic can cause intrusion detection
patterns, trained with this dataset, to increase detection bias.
6 the start time of the connection, the source IP address, the source port, the desti-
nation IP address and the destination port

6 M. Nogues et al.

According to A. M. Al Tobi and I. Duncan [1] the processing of KDD’99 has
introduced additional errors. For example, the resulting dataset contains more
TCP traffic, less ICMP traffic, and less UDP traffic than the DARPA network
trace from which it is made.

To solve some of KDD’99 issues, M. Tavallaee et. al. present a new dataset
based on KDD’99, called NSL-KDD [10], in their article [9].

UNSW-NB15 The Australian Centre for Cyber Security (ACCS) has gener-
ated a new dataset named UNSW-NB15 presented in [6], simulating a modern
environment allowing to generate network traffic resembling a modern traffic
and containing a large variety of recent attacks, especially low-profile intrusions
that may be difficult to detect and that do not exist in the KDD’99 dataset.

The UNSW-NB15 dataset was created using the IXIA PerfectStormOne tool,
owned by the ACCS Cyber Range, using CVE services to retrieve information
about the latest types of attacks used and discovered in cyberspace. CVE ser-
vices are a kind of public dictionary of security vulnerabilities disclosed on var-
ious systems and applications that are accessible via the Internet. With this
tool, researchers were able to generate more than 100 GB of data usable by
intrusion detection systems. This data was retrieved by the network trace cap-
ture tool tcpdump deployed on one of the routers used in the network exchanges
generation.

The configuration of the IXIA PerfectStorm tool for generating the UNSW-
NB15 dataset is detailed in figure 1.

For this dataset, the tool virtualises three servers. Servers 1 and 3 are set to
generate basic network traffic, while Server 2 generates malicious and abnormal
activity in the network. The servers are connected to the user machines via two
routers. These routers are connected to a firewall that is configured to pass traffic
from one router to another, whether normal or abnormal. Then they recovered
the traffic generated by the IXIA PerfectStormOne tool thanks to tcpdump,
installed on router 1, to save the data in an exploitable format. Finally, the
IXIA PerfectStormOne tool is used here to generate and corrupt normal traffic
with recent attacks thanks to its link with online CVE services.

This dataset thus proposes nine different types of attacks, representing the
different methods of attacks existing in the cyberspace.

A study was conducted to evaluate the performance of the dataset UNSW-
NB15 [7]. In this study, the dataset was divided into two parts, one for learning
and the other for testing classifications. These two parts were evaluated sta-
tistically, on the correlation of characteristics and finally on the complexity of
the dataset. The results were then compared to those of the KDD’99 dataset,
particularly in terms of accuracy complexity and false alarm rate. The results of
the evaluation show that the KDD’99 dataset shows better results in false alarm
rates. This is due to the lack of diversity of attacks and the over-representation
of certain data characteristics in these attacks. In conclusion, the UNSW-NB15
dataset is more complex than the KDD’99 dataset because of the different types
of modern attacks it uses.

Labelled Network Capture Generation For Anomaly Detection 7

Fig. 1. Configuration of the IXIA PerfectStormOne tool for the dataset generation
(inspired by [6])

Moustafa and Slay have thus been able to generate a synthetic network
dataset, modern enough to answer current network analysis issues as shown by
Moustafa et al. in the article [8], thanks to the tool IXIA PerfectStromOne using
these nine types of attacks and by translating the network traces obtained in 49
characteristics that were extracted using tools of network activity audits such as
Argus and intrusion detection systems such as Bro. They have shown that the
KDD’99 and NSL-KDD datasets do not represent modern network traffic that
contains modern, low-impact attacks on network traces.

3 Network captures generation platform

The goal of the platform presented within this manuscript is to allow the creation
of replicable network captures based on pre-defined scenarios, from which one
can easily extract sets of training data for IDS or for research.

For now this platform is still a proof of concept that aims to show that it
is possible to create training datasets that are already labelled, for IDS and
research, almost completely automatically. And that the generated datasets are
easily reproducible thanks to their adjunct scenario file.

Figure 2 presents a schema of the operating principle of the platform.

8 M. Nogues et al.

Scenario Generator

config.json

- Number of VMs
- Services
- Start & End date
- Attacks

CSVs Crontabs Virtual Machines

Tshark Virtual Machine

Packet capture file

Fig. 2. Creations of the packet captures through the platform

3.1 Design and Implementation

This section describes the operating principles of the network capture generation
platform from a software design perspective.

Description The platform is based on a python implementation of the model
developed, abstracting the concepts to be represented in the network (i.e., the
virtual machines, the actions they perform, their services, the host machines,
and their behaviours).

This platform allows to randomly generate scenarios of normal uses of a
network using parameters specified by the user. Making it possible to create
experiments with their protocols very simply. Once generated, the scenarios are
transposed to the real and virtual hosts for the deployment and dataset gen-
eration phase. The deployed hosts are configured to be assigned to a crontab
generated by the algorithm adding it to the list of devices to be listened to for
the network capture.

After the capture, the platform transforms the PCAP file to a CSV before
adding the labels to the newly generated dataset. The labels are added auto-
matically thanks to the crontab files generated by the platform that can be
correlated to the packets in the CSV file. This automatic labelling of the gen-
erated dataset is the main contribution of this manuscript as it allows for the
production of ready to use datasets for data analysis or data mining without
the hassle of labelling datasets manually. These datasets could also be used for
training anomaly detection models.

Modelling of the program For the network capture generation platform, the
network model used in this platform presents networks as a number of machines

Labelled Network Capture Generation For Anomaly Detection 9

(virtualised in this implementation) and VLANs that allows for the creation of
a complex network.

The virtual machines were modelled with their IP and MAC addresses, the
enabled services, their behaviours (to simulate a user’s choice of actions), and
the actions they will perform during the generation. The services are identified
with a name and relate to commands.

The actions are made from the commands available in the services, these
commands have a list of different parameters in which the actions choose the
final command to execute, the actions also have a time stamp defining when the
command will be executed during the experiment.

Special virtual machines are also defined in the model, called "hacker". These
virtual machines are different from the others as no services are executed, how-
ever, a list of commands with parameters are used to attack the legitimate virtual
machines in the network.

Generating the scenarios The program uses a configuration file in JSON for-
mat. Listing 1.1 provides an example of the configuration, to define the services
available for virtual machines, the number of virtual machines per configuration
group, the number of configuration group changes, the prefix of the IP addresses
to be used (e.g. "192.168.10."), the start date of the experiment, the end date
of the experiment, the maximum number of actions per machine virtual, and
attack commands available to the attacker.

By varying these parameters, the behaviour of the machines can be modified
on the simulated network and thus the network traces that are recovered during
the experiments.

1 {
2 "network " : {
3 "number_of_vms " : 2 ,
4 "number_of_changes " : 1 ,
5 " p r e f i x e " : " 192 . 1 68 . 1 0 . " ,
6 " s e r v i c e s " : [{
7 "name" : " sshd " ,
8 "commands " : [{
9 "name" : " ssh " ,

10 "parameters " : [" tes ter@&ip "]
11 }]
12 }]
13 } ,
14 " experiment " : {
15 " start_date " : "2018−08−02 13 :00" ,
16 "end_date " : "2018−08−02 17 :00" ,
17 "max_actions_per_vm " : 500
18 } ,
19 "hacker " : {
20 " at tacks " : [{
21 "name" : "nmap" ,
22 "parameters " : ["−T0 −sV −−top−por t s 5 &ip "]

10 M. Nogues et al.

23 }]
24 }
25 }

Listing 1.1. Configuration file example

To generate random behaviours of virtual machines, a list of virtual machines
are generated (with their IP and MAC addresses, and their available services).
From this list, configuration groups are created. Hosts in a configuration group
are available at the same time during the experiment. The configuration group
further allows defining the interactions between the machines, randomly choose
the services to contact and the time of contact.

The definition of the configuration group is essential to the working of the
platform. A misconfiguration in the file would essentially render the trace in-
effective, hence, limitations were implemented to ensure appropriate hosts are
contacted at appropriate times.

3.2 Generating the attacks

This section describes the existing attack tools and algorithms. The attacks used
by the attacker during the experiments are also presented in this section.

Attacks To test the resilience of networks, a large number of tools exist. Nmap
is undoubtedly the best-known tool for network discovery. Nmap has many pos-
sibilities to identify enabled services on a computer and identify open ports.
Combined with the Nmap Scripting Engine (NSE), many vulnerabilities can be
exploited directly by Nmap.

Other tools such as Metasploit were also used in this study. Metasploit is a
framework for the development and execution of exploits and can execute attacks
against remote machines. Metasploit features a commercial version, as well as,
various other projects related to the framework. Among the most important, the
Opcode database and The shellcode archive.

The platform also uses OpenVAS, which is a framework of different services
and vulnerability scanning tools focusing on effective vulnerability management.
The framework is used to execute a set of scheduled attacks on one or more
machines and draw a detailed report of the vulnerabilities of the machines tested.

Malicious User The generation of cyber attacks, in the network capture, is
achieved through the integration of a virtual machine executing a set of attacks
on the simulated network. The attacker host has a pre-defined IP and MAC
address and is generated last.

The attacker’s behaviour uses predefined commands from a list of attacks
provided in the configuration file. These attacks are executed by the attacker’s
virtual machine, targeting randomly selected virtual machines from the list of
all the virtual machines on the network.

Labelled Network Capture Generation For Anomaly Detection 11

The commands available for the attacker are those included by default on the
Kali Linux distribution that is used as a base operating system. In particular,
the commands used by the attacker are defined in the config.json configuration
file.

4 Experiments

To test the network experiment generation platform, 3 experiments were con-
ducted with different attacker behaviors:

– An attacker scans the entire network on all ports.
– An attacker scans the network looking for an SSH server and then connects

to it by forcing the password of the root user.
– A very cautious attacker uses long interval settings to scan without raising

suspicion of intrusion detection systems.

Several categorizations of attackers exist in the scientific literature. The tax-
onomy, proposed by SLN Hald and JM Pedersen, presents 8 different types of
attackers namely; Script Kiddies, Cyber-Punks, Insiders, Petty thieves, Gray
Hats, Professional Criminals, Hacktivists and Nation states [3]. According to
this taxonomy, the first attacker of the list is the equivalent of a Script Kiddie,
the second attacker is the equivalent of a Petty thieve and the last striker is seen
as a Professional criminal.

A Windows 10 version 1803 machine with an i7-4720HQ processor and 20GB
of RAM was used to host these experiments. As this platform is a proof of
concept, the test network was kept simple with 1 network in which 5 virtual
machines, one being the attacker, were communicating.

Virtual machines in the test network are Arch Linux virtual machines, up
to date at the time of the experiments. They include SSH, FTP, and HTTP
services through the openssh, inetutils, and apache packages. The machine lis-
tening to the network is an Arch Linux virtual machine that is also up to date
and contains the wireshark-cli package to use the tshark command to retrieve
the packets transmitted over the network. Finally, the attacking machine is the
virtual machine provided by the Kali Linux website for the VirtualBox platform.

The network capture files contains 22 different IP addresses including the
16 IP addresses belonging to the virtual machines that make up the observed
network, the IP address of the machine running the network capture, the IP
address of the machine running the attacks on the network, the 2 broadcast
IP addresses (255.255.255.255/24 and 0.0.0.0/24) and 2 operating IP addresses
(224.0.0.252/24 and 224.0.0.22/24).

The most used ports by the network machines are ports 21, 22 and 80 cor-
responding to the ports used by the services chosen to use for this experiment
(FTP, SSH and Apache). Port 5355 is also used as it corresponds to the LLMNR
protocol allowing for name resolution on the local network.

12 M. Nogues et al.

4.1 Experiment 1: Script Kiddie

During the experiment with the attacker repeatedly scanning the entire network,
a total of 1,724,531 packets were collected over a period of 4 hours. The average
size of these packets is 69 bytes. Such a low average packet size is due to the
network scan as discovery packets are fairly small.

A total of 790 034 packets exchanged between the hacker and other machines
(IP address 192.168.10.48/24). It, therefore, represents more than 48% of the
packet exchanges of the network capture.

Figure 3 presents the normal traffic compared to the attacker’s traffic.

Fig. 3. Number of packages per minute over the duration of the experiments

4.2 Experiment 2: Petty thief

During the experiment with the attacker repeatedly scanning the network for a
machine with port 22 open, a total of 514,308 packets were collected over a period
of 4 hours. The average size of the packets obtained during this experiment is of
123 bytes.

The attacking machine did numerous recognition through Nmap. It is the
one that communicates the most within the network trace with a total of 146
936 packets exchanged (IP address 192.168.10.210/24). It, therefore, represents
more than 34% of the packet exchanges of the network capture.

The attacker, while focusing on a particular service, participates less in the
network trace as it only represents 34% of the trace whereas in the previous
experience it represented 48% .

This attacker could also represent a beginner using scripts, but with a specific
goal that is to connect in ssh on machines whose port 22 is open. Figure 4 presents
the normal traffic compared to the attacker’s traffic.

Labelled Network Capture Generation For Anomaly Detection 13

Fig. 4. Number of packages per minute over the duration of the experiments

4.3 Experiment 3: Professional criminal

During the experiment with the attacker scanning the network very cautiously,
a total of 123,626 packets were collected over a period of 4 hours. The packets
obtained by this experiment have an average size of 99 bytes.

The attacking machine having made very cautiously its recognition with the
command Nmap and the good parameters of time, it is the one communicating
least in the network trace with a total of 832 packets exchanged (IP address
192.168.10.147/24). It, therefore, represents less than 1% of packet exchanges of
the network capture.

When these results are compared with the previous ones, it is noticed that
the cautious attacker is much quieter than the others. This attacker could go
unnoticed if it wasn’t known that he was in the network trying to discover
the computers that are accessible. Indeed, with a participation of 1% in the
network trace, this attack could appear as a machine little talkative to an external
observer. He therefore represents an attacker who knows exactly what he is doing
and who is very organized. Figure 5 presents the normal traffic compared to the
attacker’s traffic.

4.4 Results analysis

To fully understand the impact of the different behaviors of attackers on the gen-
erated data, Figure 6 explores the difference in the number of packets exchanged
per minute at the same time of the different experiments.

It can be pointed out that the attacker scanning the entire network generates
a lot more packets than the other two attackers. Packets are grouped into peaks
of activity, synonymous with wild recognition and noisy attack.

14 M. Nogues et al.

Fig. 5. Number of packages per minute over the duration of the experiments

Attacker scanning cautiously does not change the packet line of its network
trace, remaining relatively flat. This shows that this attack technique is rather
difficult to spot in a network trace because it does not stand out from the rest
of the supposedly normal traffic.

The different experiments performed show that the network traffic generation
platform allows the creation of specific attacker’s comportment which can be
used to generate any kind of specific threats to get datasets representing them.

This approach of the generation allows for an easy automation of the transfor-
mation process, from network capture files to a readable format for any machine
learning algorithm, as it is possible to relate all packets from the network cap-
ture files to its sources from the files containing the scenarios, generated by the
platform.

5 Conclusion

The results obtained show that the proposed solution is able to generate perti-
nent network datasets. Traffic is clearly identified, unlike many datasets avail-
able. The tool developed makes it easy and quick to configure complex scenarios.
The traces produced by the tool are also realistic as they are generated from fully
fleshed systems.

The modelling of the types of attackers is achieved through relatively simple
actions. The randomness of the scenario generation makes the attacker’s actions
disparate and could therefore affects the quality of the generated network traces,
however, several differences can be observed in the network traces when the
behaviour of the attacker is changed making the solution modular and flexible.

Future work include the move from a purely random behaviour to a simu-
lated behaviour, managed by a multi-agent system, for example. the network

Labelled Network Capture Generation For Anomaly Detection 15

Fig. 6. Number of packages per minute over the duration of the experiments

trace generation platform could also be improved by integrating communica-
tion functions with other machines and virtual machine management functions
to simplify the use of the virtual machine solution, enabling load balancing on
several machines of the different virtual machines as well as manage the config-
uration of the different virtual machines necessary for the experiment requested
automatically.

References

1. Al Tobi, A.M., Duncan, I.: KDD 1999 generation faults: a review and
analysis. Journal of Cyber Security Technology pp. 1–37 (Sep 2018).
https://doi.org/10.1080/23742917.2018.1518061, https://www.tandfonline.com/
doi/full/10.1080/23742917.2018.1518061

2. Bay, S.D., Hettich, S.: UCI KDD Cup 1999. University of California, Irvine, School
of Information and Computer Sciences (1999), https://archive.ics.uci.edu/
ml/machine-learning-databases/kddcup99-mld/kddcup99.html

3. Hald, S.L.N., Pedersen, J.M.: An Updated Taxonomy for Characterizing Hackers
According to Their Threat Properties. In: 2012 14th International Conference on
Advanced Communication Technology. pp. 81–86. IEEE (2012)

4. Hindy, H., Brosset, D., Bayne, E., Seeam, A., Tachtatzis, C., Atkinson, R.,
Bellekens, X.: A Taxonomy and Survey of Intrusion Detection System Design
Techniques, Network Threats and Datasets. arXiv:1806.03517 [cs] (Jun 2018),
http://arxiv.org/abs/1806.03517, arXiv: 1806.03517

5. Kokkonen, T., Hämäläinen, T., Silokunnas, M., Siltanen, J., Zolotukhin, M.,
Neijonen, M.: Analysis of Approaches to Internet Traffic Generation for Cy-
ber Security Research and Exercise. In: Balandin, S., Andreev, S., Kouch-
eryavy, Y. (eds.) Internet of Things, Smart Spaces, and Next Generation Net-
works and Systems, vol. 9247, pp. 254–267. Springer International Publish-
ing, Cham (2015). https://doi.org/10.1007/978-3-319-23126-623, http://link.
springer.com/10.1007/978-3-319-23126-6_23

https://doi.org/10.1080/23742917.2018.1518061
https://www.tandfonline.com/doi/full/10.1080/23742917.2018.1518061
https://www.tandfonline.com/doi/full/10.1080/23742917.2018.1518061
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup99.html
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup99.html
http://arxiv.org/abs/1806.03517
https://doi.org/10.1007/978-3-319-23126-6_23
http://link.springer.com/10.1007/978-3-319-23126-6_23
http://link.springer.com/10.1007/978-3-319-23126-6_23

16 M. Nogues et al.

6. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: 2015 Military Commu-
nications and Information Systems Conference (MilCIS). pp. 1–6. IEEE, Canberra,
Australia (Nov 2015). https://doi.org/10/gf234f, http://ieeexplore.ieee.org/
document/7348942/

7. Moustafa, N., Slay, J.: The evaluation of Network Anomaly Detection Systems:
Statistical analysis of the UNSW-NB15 data set and the comparison with the
KDD99 data set. Information Security Journal: A Global Perspective 25(1-3),
18–31 (Apr 2016). https://doi.org/10/gfz6v4, http://www.tandfonline.com/doi/
full/10.1080/19393555.2015.1125974

8. Moustafa, N., Slay, J., Creech, G.: Novel Geometric Area Analysis Technique for
Anomaly Detection using Trapezoidal Area Estimation on Large-Scale Networks.
IEEE Transactions on Big Data pp. 1–1 (2017). https://doi.org/10/gf234h, http:
//ieeexplore.ieee.org/document/7948715/

9. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD
CUP 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for
Security and Defense Applications. pp. 1–6. IEEE, Ottawa, ON, Canada (Jul 2009).
https://doi.org/10/c9qtzd, http://ieeexplore.ieee.org/document/5356528/

10. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: NSL-KDD | Datasets | Re-
search | Canadian Institute for Cybersecurity | UNB (Jul 2009), https://www.
unb.ca/cic/datasets/nsl.html

11. Varet, A., Larrieu, N.: How to generate realistic network traffic ? In: IEEE
COMPSAC 2014, 38th Annual International Computers, Software & Applica-
tions Conference. p. pp xxxx. Väster\a as, Sweden (2014), https://hal-enac.
archives-ouvertes.fr/hal-00973913

12. Vishwanath, K., Vahdat, A.: Swing: Realistic and Responsive Network Traf-
fic Generation. IEEE/ACM Transactions on Networking 17(3), 712–725 (Jun
2009). https://doi.org/10.1109/TNET.2009.2020830, http://ieeexplore.ieee.
org/document/4914755/

https://doi.org/10/gf234f
http://ieeexplore.ieee.org/document/7348942/
http://ieeexplore.ieee.org/document/7348942/
https://doi.org/10/gfz6v4
http://www.tandfonline.com/doi/full/10.1080/19393555.2015.1125974
http://www.tandfonline.com/doi/full/10.1080/19393555.2015.1125974
https://doi.org/10/gf234h
http://ieeexplore.ieee.org/document/7948715/
http://ieeexplore.ieee.org/document/7948715/
https://doi.org/10/c9qtzd
http://ieeexplore.ieee.org/document/5356528/
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://hal-enac.archives-ouvertes.fr/hal-00973913
https://hal-enac.archives-ouvertes.fr/hal-00973913
https://doi.org/10.1109/TNET.2009.2020830
http://ieeexplore.ieee.org/document/4914755/
http://ieeexplore.ieee.org/document/4914755/

	Labelled Network Capture Generation For Anomaly Detection

