
A taxonomy of approaches for integrating
attack awareness in applications

Tolga Unlu
Lynsay A. Shepherd
Natalie Coull
Colin McLean

This is the accepted version of a paper published in 2020
International Conference on Cyber Security and Protection
of Digital Services (Cyber Security). The final, published
version is available via DOI:
https://doi.org/10.1109/CyberSecurity49315.2020.9138885

© 2020 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of
this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/305111216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/CyberSecurity49315.2020.9138885

A Taxonomy of Approaches for Integrating Attack
Awareness in Applications

Tolga Ünlü, Lynsay A. Shepherd, Natalie Coull, Colin McLean
Division of Cyber Security, School of Design and Informatics

Abertay University
Dundee, United Kingdom

Email: 1205365@abertay.ac.uk, lynsay.shepherd@abertay.ac.uk, n.coull@abertay.ac.uk, c.mclean@abertay.ac.uk

Abstract—Software applications are subject to an increasing
number of attacks, resulting in data breaches and financial dam-
age. Many solutions have been considered to help mitigate these
attacks, such as the integration of attack-awareness techniques. In
this paper, we propose a taxonomy illustrating how existing attack
awareness techniques can be integrated into applications. This
work provides a guide for security researchers and developers,
aiding them when choosing the approach which best fits the needs
of their application.

Index Terms—Attack Awareness, Intrusion Detection, Self-
Protection, Application Security, Binary Instrumentation, Invari-
ant Enforcement.

I. INTRODUCTION

To build applications that can cope with a continuous and
dynamic threat landscape, it is vital to empower developers
with methodologies and tools for the development of effective
defences [10]. It is also essential that these methodologies
and tools can handle the fast-paced nature of modern de-
velopment practices, such as Continuous Integration (CI) and
Continuous Delivery (CD). These practices are often applied
within a DevOps environment in which collaboration between
software development and IT operations, including security, is
encouraged [6]. If the current tools and methodologies remain
unchanged, security will be perceived as slowing down the
development process, making it less appreciated by developers
and thus leading to insecure software applications.

Organizations which utilize a DevOps culture typically have
an overarching view regarding what is deployed in their en-
vironment. However, this usually focuses on the performance
of applications, or errors caused within applications. To gain
similar insights on security-related events, it is necessary
to integrate attack awareness into an application. Otherwise,
ongoing attacks may be missed, and there is the potential for
a compromise or data breach to go unnoticed. Data breaches
can have a substantial financial and reputational impact on an
organization- according to IBM Security [25], a breach which
takes 200 days to resolve can cost a company on average $4.56
million.

This paper discusses a taxonomy of approaches regarding
how to integrate attack awareness into applications, providing
a guide for developers and security researchers. The remainder
of the paper is structured as follows: Section II describes the
need for attack aware applications. Current approaches are

described in Section III. Section IV provides an analysis of
these solutions before conclusions are drawn in Section V.

II. PROBLEM STATEMENT

Many existing applications cannot provide real-time intel-
ligence regarding their security state [31]. This lack of infor-
mation means developers do not know whether an attack has
taken place, or which parts of an application attracts the most
attention from those with malicious intentions. Integrating
attack awareness can address this knowledge gap, providing
developers with actionable insights based on the context of the
application.

Integration is generally performed by the developer or by
utilizing an agent which makes an application attack-aware
at runtime. While a fully automated approach is desirable, it
is only feasible for application components developed using
established practices and technologies [34]. Additionally, off-
the-shelf protection methods implemented by agents are lim-
ited to specific attack classes [2] [13] and known attacks [23].
A taxonomy of approaches can guide researchers and develop-
ers in their choice of an appropriate integration method, taking
into consideration the usability of the integration method.

III. RELATED WORK

Approaching intrusion detection from within an application
has been hypothesized by Sielken [27] to detect attackers that
abuse target applications without exposing anomalous behav-
ior, and by avoiding the use of detectable attack patterns. De-
tection of these attacks can be achieved by utilizing contextual
information such as the methods invoked while using a certain
application feature. There are two approaches proposed to
collect contextual application information. The first approach
regularly scans internal values of the target application, such
as the authorization level of an user, and documents any
changes of these values. The second approach embeds code
triggers directly into the target applications’ code. These can
be conditional checks such as whether a predefined option
that has been selected by a user has been modified. Work by
Kerschbaum et al. [16] provides an example of code triggers
usage to detect network-based attacks within the OpenBSD
kernel, and application-specific attacks from within Sendmail.
The AppSensor framework [31], and BlackWatch [11] are
further examples which apply the code trigger variant.

The concept of reference monitoring, as defined by Ander-
son [5], enforces an access policy upon user programs in ex-
ecution that access references such as other programs, data or
peripherals. Originally, reference monitors were implemented
at operating system (OS) level to enforce a security policy on
applications interacting with the OS kernel. However, there
are two further approaches- the reference monitor is either
embedded in an interpreter that runs the target application or
it is embedded in the target application directly [7].

Self-protecting software systems are another closely related
field of research, focusing on systems which autonomously
defend themselves against attacks, as envisioned by Kephart
and Chess [15]. Furthermore, these systems can also antici-
pate security risks and mitigate them by proactively enabling
countermeasures. In the nine dimensional taxonomy of self-
protecting software systems by Yuan and Malek [33], the
authors dedicate one dimension for research which focuses
on achieving self-protection at a specific phase within the
Software Development Lifecycle (SDLC). These phases are
classified as design, development, testing and implementation,
but are simplified in Yuan and Malek’s [33] work as self-
protection achieved at development-time and runtime.

IV. ANALYSIS

This section provides an analysis of previous research
and existing solutions, summarized in Figure 1, creating a
taxonomy of approaches for integrating attack-awareness in
applications. Based on the research in section III, the inte-
gration is performed by a developer or by an agent. In the
proposed taxonomy, it is assumed there is access to the source
code of the target application required for the developer-driven
approaches.

Developer-Driven: Developers of an application can in-
tegrate attack awareness by implementing security controls
in the target application, or by configuring existing security
controls within the target application. The main body of work
in developer-driven attack awareness is conducted manually,
and more detail is provided in subsections IV-A and IV-B.

Agent-Driven: An agent (a software component or a soft-
ware application which autonomously acts on behalf of its
user) can also be designed to integrate attack awareness.
Though the focus is on autonomous integration, the agent
can provide an interface to enable manual configuration,
generating security controls at runtime. An agent that is part
of the interpreter can provide attack awareness through the
runtime environment and thus to any application running in
this environment. Subsection IV-C describes agents integrating
attack awareness through instrumentation.

A. Manual Integration

Solutions like the AppSensor framework [31] and Black-
Watch [11] rely on the hypothesis that an attacker can be de-
tected by monitoring application-specific invariants (properties
that must always hold while the application is executed).

Application developers are therefore ideal candidates to ap-
ply this integration approach as they have specified, designed

and implemented the application, and know where to locate
security invariants in the application.

While this approach is effective against attackers targeting
the business logic of an application, it is less so when it comes
to attacks such as injection attacks, which require developers
to have expertise in their execution. This, however, is often not
the case for security expertise among developers in general as
argued by Wurster and Oorschot [32] - developers may lack
security expertise.

It is the developers responsibility to put the security controls
in place, however there is a chance that the placement is
neglected due to a lack of priority or time spent on non-
security tasks, leading to areas of the application which are
not covered. In the worst case, this approach will not be
accepted by the developers as it can be seen as an additional
effort which needs to be completed on top of others tasks [11]
[34]. Due to this issue, integration approaches should utilize
proven development techniques e.g. Kim et al. [18] utilizes
the dependency injection technique to make the integration of
attack awareness scalable and reusable. This technique is part
of modern application frameworks and while it is familiar to
many developers, it can also address the issue of accidentally
omitting areas of the application. From the perspective of
framework developers, it is suggested to build the security
controls into the framework. According to an empirical study
by Peguero et al. [20], applications using built-in security
controls derived from a framework are less susceptible to
vulnerabilities than applications where developers were re-
sponsible for implementing security controls.

B. Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a technique to sep-
arate cross-cutting concerns, such as logging and monitoring,
which are used throughout an application but which do not
represent any business functionality [17]. These cross-cutting
concerns, also referred to as aspects, are weaved in to the
target functionality of the application by intercepting function
or method calls at runtime.

Security controls can also be defined as aspects as they
are not tied to the target application’s business functionality.
Serme et al. [26] present an AOP approach on integrating input
validation controls, whereas Phung et al. [21] demonstrate
aspectized security policies which prevent malicious behaviour
in the target application.

AOP reduces the manual effort required when initially im-
plementing the security policies that are processed by aspects.
An aspect can be implemented as code in the programming
language of the target application [26] [21] but it can also be
implemented in a modeling language such as Unified Model-
ing Language (UML) [35], or in a Program Query Language
(PQL) [19]. The various implementation methods can address
the usability requirements of the different roles involved with
the development of an application. A developer may prefer to
implement an aspect as code whereas an architect may rather
implement an aspect in a modeling language. Regardless of the
role, the implementation method of choice should be usable

Integration Approaches

Runtime Environment
Instrumentation

Developer-Driven Agent-Driven

Runtime Application
Self-Protection

(RASP)
Interpreter

Instrumentation

Aspect-Oriented
Programming

Code-Level
Assertions /

Triggers
Aspect

Implementation
Policy

Implementation /
Generation

Manual
Integration Binary Instrumentation

Control-Flow
Integrity

(CFI)

Fig. 1. Developer and agent-driven approaches to integrate attack awareness into an application

for its target audience as highlighted by Viega et al. [30], to
prevent developer-induced errors and to reduce the required
expertise to implement security controls.

Instead of manually implementing an aspect from scratch, it
can also be generated using, for example, the output of a static
code analysis tool [28]. While this method seems to automate
the integration process at first, in reality it shifts the manual
effort to the usage of a tool or application which generates
the output required for the aspect generation. Whether the
integration can be fully automated depends on the degree of
automation supported by the tool or application in question.

Iraqi and Bakkali [14] developed a framework that can
learn to detect outlier behavior in method invocations without
supervision. The method invocation features required for the
learning process are implemented as a feature extractor aspect,
which demonstrates another use case for integrating attack
awareness with AOP.

C. Runtime Environment and Binary Instrumentation

The approaches analysed in the previous sections are effec-
tive when integrating security controls into a single application
at one time. However, integrating security controls from within
the runtime environment can affect any application running in
the environment. Existing solutions are based on a modified
interpreter as in ZenIDS [13] or Node RASP [1]. Another
variant is also known as a Runtime Application Self-Protection
(RASP) agent [8], a library which can be loaded by an
interpreter at runtime e.g. OpenRASP [24] or Sqreen [3].

In the ideal case, RASP agents can be deployed in a plug
and play manner, requiring only an initial configuration as
Haupert et al. [12] describes regarding the deployment of
Promon SHIELD RASP [22]. In cases where an agent does
not require any configuration or a learning phase, attacks are
detected using techniques that, e.g., combine taint-tracking
with lexical analysis [2] or that monitor common input sinks
and output sources for known malicious behavior and sig-
natures [23]. Depending on the RASP implementation, the
aforementioned techniques may only cover a limited set of
sinks and sources, and the detection of known attacks relies
on the completeness of the malicious behavior or signature
database available. As RASP solutions are platform specific by
design, it can also be the case that specific technologies used

within a target application, or the entire application, might not
be able to benefit from this integration approach.

While an instrumented runtime environment may be suitable
for applications written in interpreted languages, those writ-
ten in compiled languages require individual instrumentation.
With binary instrumentation, security controls can be inte-
grated into an applications binary code to guarantee control-
flow integrity (CFI) at runtime [4]. The effectiveness of CFI is
limited to attacks attempting to hijack the control flow of an
application, such as buffer overflows. Although it is feasible
to integrate CFI in closed source applications, many available
CFI implementations require access to source code [9], making
it impractical for legacy or third-party applications.

D. Summary

The previous subsections have shown that all attack aware-
ness approaches require some form of manual interaction,
either at the setup or configuration phase. This is particularly
pertinent for the detection of attacks against the business logic
of an application, as these are unique for every application. The
runtime environment and binary instrumentation approaches
are no exception and also require manual intervention by the
developers in the form of placing function calls which can
track authenticated users [13] or custom events [29]. As with
AOP approaches, it is then up to the agent implementation to
provide a method of specifying policies, acting on the tracked
events. This will influence how usable that method is in the
context of the application.

Although the agent-driven approach has the most potential
for automation, there are other aspects which make manual
integration worthwhile, e.g. the insertion of code triggers
can be completed in a few lines of non-fragmented code
[16]. Compared to instrumented monitoring, code triggers
are only called when they lie in the execution path of an
attack and thus cause no performance overhead during non-
malicious interactions. The code triggers are an inherent part
of the application, providing constant attack-awareness in any
environment in which the application is deployed.

The programming language can also be relevant when
choosing AOP for attack awareness integration. To implement
AOP in JavaScript, one can overwrite built-in functions, which
makes self-protection possible [21]. In contrast, PHP does not

support the same functionality for built-in functions- a lan-
guage extension must be installed first. Extension usage might
not be feasible in certain environments due to restrictions in
what can be deployed, or the lack of control over the environ-
ment. This would also be an exclusion criteria for choosing a
RASP agent in the previously described environment.

The approaches thus far focused on using attack awareness
for application protection. However, the same concept can be
utilized for security testing e.g. the insights provided by an
agent could be used for the generation of security tests. Since
the tester is an established role in modern development envi-
ronments, enhancing the capabilities of such individuals could
be a method to improve the adoption of attack awareness.

V. CONCLUSION AND FUTURE WORK

Work presented in this paper explored different methods of
including attack awareness within applications. The taxonomy
highlights that while there are a number of potential solutions,
they do not necessarily meet the needs of developers. Research
currently being undertaken by Ünlü [36] seeks to enhance the
field of attack awareness and software security. As part of this
process, the work will involve the investigation of techniques
which aim to enhance the process by which developers in-
clude attack awareness within applications. By achieving an
enhancement in the adoption of attack awareness techniques,
the proposed research will contribute to bringing application
security closer to developers by creating the necessary tools
for them. Such tools will be tailored to the needs of developers,
empowering them to build secure applications.

REFERENCES

[1] Node RASP, 2018. https://github.com/SAP/node-rasp/ (accessed Jan-
uary 18, 2020).

[2] Runtime Application Self-Protection for Node.js, 2018. https://github.
com/SAP/node-rasp/wiki (accessed January 18, 2020).

[3] Building a dynamic instrumentation agent for PHP. https://blog.sqreen.
com/dynamic-instrumentation-agent-php/ (accessed January 18, 2020),
2019.

[4] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
Flow Integrity Principles, Implementations, and Applications. ACM
Transactions on Information and System Security (TISSEC), 13(1):1–
40, 2009.

[5] James P. Anderson. Computer Security Technology Planning Study.
1972.

[6] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano.
DevOps. IEEE Software, 33(3):94–100, 2016.

[7] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security
Policy Enforcement. Technical report, Cornell University, 2003.

[8] Gartner. Runtime application self-protection (rasp), 2020.
https://www.gartner.com/en/information-technology/glossary/
runtime-application-self-protection-rasp (accessed January 18, 2020).

[9] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. Out Of Control: Overcoming Control-Flow Integrity. In 2014
IEEE Symposium on Security and Privacy, pages 575–589. IEEE, 2014.

[10] Matthew Green and Matthew Smith. Developers are Not the Enemy!:
The Need for Usable Security APIs. IEEE Security & Privacy, 14(5):40–
46, 2016.

[11] Calum Hall, Lynsay Shepherd, and Natalie Coull. BlackWatch: In-
creasing Attack Awareness within Web Applications. Future Internet,
11(2):44, 2019.

[12] Vincent Haupert, Dominik Maier, Nicolas Schneider, Julian Kirsch, and
Tilo Müller. Honey, I Shrunk Your App Security: The State of Android
App Hardening. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 69–91. Springer,
2018.

[13] Byron Hawkins and Brian Demsky. ZenIDS: Introspective Intrusion
Detection for PHP Applications. In Proceedings of the 39th International
Conference on Software Engineering, pages 232–243. IEEE Press, 2017.

[14] Omar Iraqi and Hanan El Bakkali. Application-Level Unsupervised
Outlier-Based Intrusion Detection and Prevention. Security and Com-
munication Networks, 2019.

[15] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, 2003.

[16] Florian Kerschbaum, Eugene H Spafford, and Diego Zamboni. Using In-
ternal Sensors and Embedded Detectors for Intrusion Detection. Journal
of Computer Security, 10(1-2):23–70, 2002.

[17] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Akşit and Satoshi Matsuoka, editors,
ECOOP’97 — Object-Oriented Programming, pages 220–242. Springer
Berlin Heidelberg, 1997.

[18] William Kim, Cheolmin Sky Moon, Sam Chung, Teresa Escrig, and
Barbara Endicott-Popovsky. Scalable and Reusable Attack Aware
Software. In 2012 ASE/IEEE International Conference on BioMedical
Computing (BioMedCom), pages 101–104. IEEE, 2012.

[19] Benjamin Livshits, Michael Martin, and Monica S Lam. SecuriFly:
Runtime Protection and Recovery from Web Application Vulnerabilities.
Technical Report, 2006.

[20] Ksenia Peguero, Nan Zhang, and Xiuzhen Cheng. An Empirical Study of
the Framework Impact on the Security of JavaScript Web Applications.
In Companion Proceedings of the The Web Conference 2018, pages
753–758, 2018.

[21] Phu H Phung, David Sands, and Andrey Chudnov. Lightweight Self-
Protecting JavaScript. In Proceedings of the 4th International Sympo-
sium on Information, Computer, and Communications Security, pages
47–60. ACM, 2009.

[22] Promon. Application Protection - Mobile In-App Protection —
Promon. https://promon.co/products/mobile-app-protection/ (accessed
January 18, 2020), 2020.

[23] Baidu Security. Attack Detection Capability - OpenRASP Official
Documentation - Open Source Adaptive Security Product, 2018. https:
//rasp.baidu.com/doc/usage/web.html (accessed January 18, 2020).

[24] Baidu Security. OpenRASP, 2018. https://github.com/baidu/openrasp
(accessed January 18, 2020).

[25] IBM Security. 2019 Cost of a Data Breach Report 2019, 2019. https://
www.ibm.com/downloads/cas/ZBZLY7KL (accessed January 18, 2020).

[26] Gabriel Serme, Theodoor Scholte, and Anderson Santana de Oliveira.
Enforcing input validation through aspect oriented programming. In
Data Privacy Management and Autonomous Spontaneous Security,
pages 316–332. Springer, 2013.

[27] R Sielken and A Jones. Application Intrusion Detection Systems: The
Next Step. ACM Transactions on Information and System Security, 1999.

[28] Bojan Simic and James Walden. Eliminating SQL Injection and Cross
Site Scripting using Aspect Oriented Programming. In International
Symposium on Engineering Secure Software and Systems, pages 213–
228. Springer, 2013.

[29] Sqreen. Sqreen — Track custom events, 2020. https://docs.sqreen.com/
php/custom-events/ (accessed January 18, 2020).

[30] John Viega, JT Bloch, and Pravir Chandra. Applying Aspect-Oriented
Programming to Security. Cutter IT Journal, 14(2):31–39, 2001.

[31] C. Watson, M. Coates, J. Melton, and D. Groves. Creating Attack-Aware
Software Applications with Real-Time Defenses. 24:14–18, 2011.

[32] Glenn Wurster and P. C. van Oorschot. The Developer is the Enemy.
In Proceedings of the 2008 New Security Paradigms Workshop, NSPW
’08, pages 89–97, New York, NY, USA, 2008. ACM.

[33] E. Yuan and S. Malek. A Taxonomy and Survey of Self-Protecting
Software Systems. In 2012 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pages
109–118, 2012.

[34] Jun Zhu, Bill Chu, and Heather Lipford. Detecting Privilege Escalation
Attacks through Instrumenting Web Application Source Code. In
Proceedings of the 21st ACM on Symposium on Access Control Models
and Technologies, pages 73–80. ACM, 2016.

[35] Zhi Jian Zhu and Mohammad Zulkernine. A model-based aspect-
oriented framework for building intrusion-aware software systems. In-
formation and Software Technology, 51(5):865–875, 2009.

[36] Tolga Ünlü. Designing Usable Attack Sensors to Enhance the Adoption
of Attack Awareness within Web Applications. PhD Proposal, Abertay
University, Dundee (unpublished), 2019.

