Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2020) 44: $348-355$
© TÜBİTAK
doi:10.3906/mat-1909-59

On extensions of two results due to Ramanujan

Yong Sup KIM ${ }^{1, *}$ (1) , Arjun Kummar RATHIE ${ }^{2}$ © , Richard Bruce PARIS ${ }^{3}$ (D)
${ }^{1}$ Department of Mathematics Education, Wonkwang University, Iksan, Korea
${ }^{2}$ Department of Mathematics, Vedant College of Engineering and Technology, Rajasthan Technical University, Bundi, Rajasthan, India
${ }^{3}$ Division of Computing and Mathematics, University of Abertay, Dundee, UK

Received: 23.10.2019 • Accepted/Published Online: 28.12.2019 \quad Final Version: 17.03 .2020

Abstract

The aim in this note is to provide a generalization of an interesting entry in Ramanujan's notebooks that relate sums involving the derivatives of a function $\varphi(t)$ evaluated at 0 and 1 . The generalization obtained is derived with the help of expressions for the sum of terminating ${ }_{3} F_{2}$ hypergeometric functions of argument equal to 2, recently obtained by Kim et. al. [Two results for the terminating ${ }_{3} F_{2}(2)$ with applications, Bulletin of the Korean Mathematical Society 2012; 49: 621-633]. Several special cases are given. In addition we generalize a summation formula to include integral parameter differences.

Key words: Hypergeometric series, Ramanujan's sum, sums of Hermite polynomials

1. Introduction

Two of the many interesting results stated by Ramanujan in his notebooks are the following theorems, which appear as Entry 8 [1, p. 51] and Entry 20 [1, p. 36], expressing an infinite sum of derivatives of a function $\varphi(t)$ at the origin to another infinite sum of its derivatives evaluated at $t=1$.

Entry 8. Let $\varphi(t)$ be analytic for $|t-1|<R$, where $R>1$. Suppose that a and $\varphi(t)$ are such that the order of summation in

$$
\sum_{k=0}^{\infty} \frac{2^{k}(a)_{k}}{(2 a)_{k} k!} \sum_{n=k}^{\infty} \frac{(-1)^{n}}{n!}(-n)_{k} \varphi^{(n)}(1)
$$

may be inverted. Then

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{2^{k}(a)_{k} \varphi^{(k)}(0)}{(2 a)_{k} k!}=\sum_{k=0}^{\infty} \frac{\varphi^{(2 k)}(1)}{2^{2 k}\left(a+\frac{1}{2}\right)_{k} k!} \tag{1.1}
\end{equation*}
$$

[^0]Entry 20. Let $\varphi(t)=\sum_{k=0}^{\infty} \varphi^{(k)}(1)(t-1)^{k} / k$! be analytic for $|t-1|<R$, where $R>1$. Suppose that a and b are complex parameters such that the order of summation in

$$
\sum_{k=0}^{\infty} \frac{(a)_{k}}{(b)_{k} k!} \sum_{n=k}^{\infty} \frac{(-1)^{n}}{n!}(-n)_{k} \varphi^{(n)}(1)
$$

may be inverted. Then

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(a)_{k} \varphi^{(k)}(0)}{(b)_{k} k!}=\sum_{k=0}^{\infty} \frac{(-1)^{k}(b-a)_{k}}{(b)_{k} k!} \varphi^{(k)}(1) \tag{1.2}
\end{equation*}
$$

Berndt [1] pointed out that Entry 8 can be established with the help of the results

$$
{ }_{2} F_{1}\left[\begin{array}{c}
-2 n, a \\
2 a
\end{array} ; 2\right]=\frac{\left(\frac{1}{2}\right)_{n}}{\left(a+\frac{1}{2}\right)_{n}}, \quad{ }_{2} F_{1}\left[\begin{array}{c}
-2 n-1, a \\
2 a
\end{array} ; 2\right]=0
$$

for nonnegative integer n, where $(a)_{n}=\Gamma(a+n) / \Gamma(a)$ denotes the Pochhammer symbol.
In [4], each of the above theorems was generalized. The result in (1.1) was extended by replacing the denominatorial parameter $2 a$ by $2 a+j$, where $j=0, \pm 1, \ldots, \pm 5$. The second result in (1.2) was extended by the inclusion of an additional pair of numeratorial and denominatorial parameters differing by unity to produce the following theorem.

Theorem 1.1. Let $\varphi(t)$ be analytic for $|t-1|<R$, where $R>1$. Suppose that a, b, d, and $\varphi(t)$ are such that the order of summation in

$$
\sum_{k=0}^{\infty} \frac{(a)_{k}(d+1)_{k}}{(b)_{k}(d)_{k} k!} \sum_{n=k}^{\infty} \frac{(-1)^{n}}{n!}(-n)_{k} \varphi^{(n)}(1)
$$

may be inverted. Then

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(a)_{k}(d+1)_{k}}{(b)_{k}(d)_{k}} \frac{\varphi^{(k)}(0)}{k!}=\sum_{k=0}^{\infty} \frac{(-1)^{k}(b-a-1)_{k}(f+1)_{k}}{(b)_{k}(f)_{k}} \frac{\varphi^{(k)}(1)}{k!} \tag{1.3}
\end{equation*}
$$

where $f=d(b-a-1) /(d-a)$.
This result was extended to the case where a pair of numeratorial and denominatorial parameters differs by a positive integer m to produce

$$
\sum_{k=0}^{\infty} \frac{(a)_{k}(d+m)_{k}}{(b)_{k}(d)_{k}} \frac{\varphi^{(k)}(0)}{k!}=\sum_{k=0}^{\infty} \frac{(-1)^{k}(b-a-m)_{k}}{(b)_{k}} \frac{\left(\left(\xi_{m}+1\right)\right)_{k}}{\left(\left(\xi_{m}\right)\right)_{k}} \frac{\varphi^{(k)}(1)}{k!}
$$

where the ξ_{1}, \ldots, ξ_{m} are the zeros of a certain polynomial of degree m.
In this note we shall similarly extend the result in (1.1) (when the parameter $2 a$ is replaced by $2 a+1$) by the inclusion of a pair of numeratorial and denominatorial parameters differing by unity. For this we shall
require the summations of a ${ }_{3} F_{2}$ hypergeometric function of argument equal to 2 obtained* in [3, Theorem 2]

$$
{ }_{3} F_{2}\left[\begin{array}{c}
-2 n, a, d+1 \tag{1.4}\\
2 a+1, d
\end{array} ; 2\right]=\frac{\left(\frac{1}{2}\right)_{n}}{\left(a+\frac{1}{2}\right)_{n}},
$$

and

$$
{ }_{3} F_{2}\left[\begin{array}{c}
-2 n-1, a, d+1 \tag{1.5}\\
2 a+1, d
\end{array} ; 2\right]=\frac{(1-2 a / d)}{2 a+1} \frac{\left(\frac{3}{2}\right)_{n}}{\left(a+\frac{3}{2}\right)_{n}},
$$

for nonnegative integer n. Several applications are presented in Section 3.
In the final section we generalize the result given in [1, p. 25] as Entry 9:
Entry 9. If $\operatorname{Re}(c-a)>0$, then

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(a)_{k}}{k(c)_{k}}=\psi(c)-\psi(c-a) \tag{1.6}
\end{equation*}
$$

where $\psi(x)$ denotes the logarithmic derivative of $\Gamma(x)$.
We extend this summation to include additional numeratorial and denominatorial parameters differing by positive integers. To achieve this we make use of the generalized Karlsson-Minton summation formula for a ${ }_{r+2} F_{r+1}$ hypergeometric function of unit argument.

2. Generalization of Ramanujan's result (1.1)

The result to be established in this section is given by the following theorem.

Theorem 2.1. Let $\varphi(t)$ be analytic for $|t-1|<R$, where $R>1$. Suppose that a, d, and $\varphi(t)$ are such that the order of summation in

$$
\sum_{k=0}^{\infty} \frac{2^{k}(a)_{k}(d+1)_{k}}{(2 a+1)_{k}(d)_{k} k!} \sum_{n=k}^{\infty} \frac{(-1)^{n}}{n!}(-n)_{k} \varphi^{(n)}(1)
$$

may be inverted. Then

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{2^{k}(a)_{k}(d+1)_{k} \varphi^{(k)}(0)}{(2 a+1)_{k}(d)_{k} k!}=\sum_{k=0}^{\infty} \frac{\varphi^{(2 k)}(1)}{2^{2 k}\left(a+\frac{1}{2}\right)_{k} k!}-\frac{(1-2 a / d)}{2 a+1} \sum_{k=0}^{\infty} \frac{\varphi^{(2 k+1)}(1)}{2^{2 k}\left(a+\frac{3}{2}\right)_{k} k!} \tag{2.1}
\end{equation*}
$$

Proof. Since $\varphi(t)$ is analytic for $|t-1|<R$, we have

$$
\varphi^{(k)}(0)=\sum_{n=k}^{\infty} \frac{(-1)^{n}(-n)_{k}}{n!} \varphi^{(n)}(1)
$$

[^1]by suitable differentiation of the associated Taylor series. Then
\[

$$
\begin{aligned}
S:=\sum_{k=0}^{\infty} \frac{2^{k}(a)_{k}(d+1)_{k}}{(2 a+1)_{k}(d)_{k}} \frac{\varphi^{(k)}(0)}{k!} & =\sum_{k=0}^{\infty} \frac{2^{k}(a)_{k}(d+1)_{k}}{(2 a+1)_{k}(d)_{k} k!} \sum_{n=k}^{\infty} \frac{(-1)^{n}(-n)_{k}}{n!} \varphi^{(n)}(1) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} \varphi^{(n)}(1)}{n!} \sum_{k=0}^{n} \frac{2^{k}(a)_{k}(d+1)_{k}(-n)_{k}}{(2 a+1)_{k}(d)_{k} k!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} \varphi^{(n)}(1)}{n!}{ }_{3} F_{2}\left[\begin{array}{c}
-n, a, d+1 \\
2 a+1, d
\end{array} ; 2\right]
\end{aligned}
$$
\]

upon inversion of the order of summation by hypothesis.
If we now separate the above sum into terms involving even and odd n, we obtain

$$
S=\sum_{n=0}^{\infty} \frac{\varphi^{(2 n)}(1)}{(2 n)!}{ }_{3} F_{2}\left[\begin{array}{c}
-2 n, a, d+1 \\
2 a+1, d
\end{array} ; 2\right]-\sum_{n=0}^{\infty} \frac{\varphi^{(2 n+1)}(1)}{(2 n+1)!}{ }_{3} F_{2}\left[\begin{array}{c}
-2 n-1, a, d+1 \\
2 a+1, d
\end{array} ; 2\right]
$$

Finally, using the summations in (1.4) and (1.5) and noting that $(2 n)!=2^{2 n}\left(\frac{1}{2}\right)_{n} n!,(2 n+1)!=2^{2 n}\left(\frac{3}{2}\right)_{n} n!$, we easily arrive at the right-hand side of (2.1). This completes the proof of the theorem.

When $d=2 a$ it is seen that (2.1) reduces to Ramanujan's result in (1.1).

3. Examples of Theorem 2.1

In this section, we provide some examples of different choices for the function $\varphi(t)$ appearing in (2.1). Throughout this section we let k denote a nonnegative integer.
(a) First we consider the simplest choice with $\varphi(t)=\exp (x t)$, where x is an arbitrary variable (independent of t). Then $\varphi^{(k)}(t)=x^{k} \varphi(t)$, which satisfies the conditions for the validity of (2.1). Substitution of the derivatives into (2.1) and identification of the resulting series as hypergeometric functions immediately yields

$$
e^{-x}{ }_{2} F_{2}\left[\begin{array}{c}
a, d+1 \tag{3.1}\\
2 a+1, d
\end{array} ; 2 x\right]={ }_{0} F_{1}\left[\begin{array}{c}
- \\
a+\frac{1}{2}
\end{array} ; \frac{1}{4} x^{2}\right]-\frac{(1-2 a / d) x}{2 a+1}{ }_{0} F_{1}\left[\begin{array}{c}
- \\
a+\frac{3}{2}
\end{array} ; \frac{1}{4} x^{2}\right],
$$

which is a result established by a different method in [9, Theorem 2]. In addition, it is interesting to observe that, since

$$
{ }_{0} F_{1}\left[-\frac{-}{a+\frac{1}{2}} ; \frac{1}{4} x^{2}\right]=\Gamma\left(a+\frac{1}{2}\right)\left(\frac{1}{2} x\right)^{\frac{1}{2}-a} I_{a-\frac{1}{2}}(x)
$$

where I_{ν} is the modified Bessel function of the first kind, the result (3.1) can also be written in terms of I_{ν}.
(b) If we let $\varphi(t)=\cosh (x t)$, we have $\varphi^{(2 k)}(t)=x^{2 k} \cosh (x t)$ and $\varphi^{(2 k+1)}(t)=x^{2 k+1} \sinh (x t)$. Then (2.1), after a little simplification making use of the identity

$$
(a)_{2 k}=\left(\frac{1}{2} a\right)_{k}\left(\frac{1}{2} a+\frac{1}{2}\right)_{k} 2^{2 k}
$$

and letting $d \rightarrow 2 d$, reduces to

$$
{ }_{3} F_{4}\left[\begin{array}{l}
\frac{1}{2} a, \frac{1}{2} a+\frac{1}{2}, d+1 \tag{3.2}\\
\frac{1}{2}, a+\frac{1}{2}, a+1, d
\end{array} ; x^{2}\right]=\cosh x_{0} F_{1}\left[\begin{array}{c}
- \\
a+\frac{1}{2}
\end{array} ; \frac{1}{4} x^{2}\right]-\frac{(1-a / d)}{2 a+1} x \sinh x_{0} F_{1}\left[\begin{array}{c}
- \\
a+\frac{3}{2}
\end{array} ; \frac{1}{4} x^{2}\right] .
$$

(c) If $\varphi(t)=(x-t)^{-b}$, where b is an arbitrary parameter and $x>2$, then

$$
\varphi^{(k)}(t)=\frac{(b)_{k}}{(x-t)^{b+k}}
$$

From (2.1), we therefore find

$$
\begin{aligned}
\left(\frac{x}{x-1}\right)^{-b} \sum_{k=0}^{\infty} \frac{2^{k}(a)_{k}(b)_{k}(d+1)_{k}}{(2 a+1)_{k}(d)_{k} k!} x^{-k}= & \sum_{k=0}^{\infty} \frac{2^{-2 k}(b)_{2 k}}{\left(a+\frac{1}{2}\right)_{k} k!}(x-1)^{-2 k} \\
& -\frac{(1-2 a / d)}{2 a+1} \sum_{k=0}^{\infty} \frac{2^{-2 k}(b)_{2 k+1}}{\left(a+\frac{3}{2}\right)_{k} k!}(x-1)^{-2 k-1}
\end{aligned}
$$

which yields

$$
\left.\begin{array}{rl}
\left(\frac{x}{x-1}\right)^{-b}{ }_{3} F_{2}\left[\begin{array}{c}
a, b, d+1 \\
2 a+1, d
\end{array} ; \frac{2}{x}\right.
\end{array}\right]={ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2} b, \frac{1}{2} b+\frac{1}{2} \\
a+\frac{1}{2}
\end{array} ; \frac{1}{(x-1)^{2}}\right] .
$$

If we put $z=x /(1+x)$, this last result becomes

$$
\left.\begin{array}{rl}
(1+z)^{-b}{ }_{3} F_{2} & {\left[\begin{array}{c}
a, b, d+1 \\
2 a+1, d
\end{array} \frac{2 z}{1+z}\right.}
\end{array}\right] \quad \begin{aligned}
& 2 a+1 \\
&={ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2} b, \frac{1}{2} b+\frac{1}{2} \\
a+\frac{1}{2}
\end{array} ; z^{2}\right]-\frac{(1-2 a / d) b}{2 a+1} z_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2} b+\frac{1}{2}, \frac{1}{2} b+1 \\
a+\frac{3}{2}
\end{array} ; z^{2}\right] \tag{3.3}
\end{aligned}
$$

which has been obtained by different methods in [3, Theorem 3].
(d) Finally, with $\varphi(t)=\exp \left(-x^{2} t^{2} / 4\right)$, we have [8, p. 442]

$$
\varphi^{(k)}(t)=(-1)^{k}(x / 2)^{k} e^{-x^{2} t^{2} / 4} H_{k}(x t / 2),
$$

where H_{k} is the Hermite polynomial of order k. Since $H_{2 k}(0)=(-1)^{k}(2 k)!/ k$! and $H_{2 k+1}(0)=0$, it follows from (2.1) that

$$
\begin{align*}
& e^{x^{2} / 4}{ }_{3} F_{3}\left[\begin{array}{c}
\frac{1}{2} a, \frac{1}{2} a+\frac{1}{2}, d+1 \\
a+\frac{1}{2}, a+1, d
\end{array} ;-x^{2}\right] \\
& \quad=\sum_{k=0}^{\infty} \frac{(x / 4)^{2 k}}{\left(a+\frac{1}{2}\right)_{k} k!} H_{2 k}(x / 2)+\frac{(1-a / d)}{a+\frac{1}{2}} \sum_{k=0}^{\infty} \frac{(x / 4)^{2 k+1}}{\left(a+\frac{3}{2}\right)_{k} k!} H_{2 k+1}(x / 2) \tag{3.4}
\end{align*}
$$

provided $a \neq-\frac{1}{2},-\frac{3}{2}, \ldots$, where we have put $d \rightarrow 2 d$.
The above series involving the Hermite polynomials can be expressed in terms of ${ }_{2} F_{2}$ functions since [4, Eqs. (36), (37)]

$$
\sum_{k=0}^{\infty} \frac{(x / 4)^{2 k}}{\left(a+\frac{1}{2}\right)_{k} k!} H_{2 k}(x / 2)=e^{x^{2} / 4}{ }_{2} F_{2}\left[\begin{array}{c}
\frac{1}{2} a, \frac{1}{2} a+\frac{1}{2} \\
a, a+\frac{1}{2}
\end{array} ;-x^{2}\right]
$$

$$
\sum_{k=0}^{\infty} \frac{(x / 4)^{2 k}}{\left(a+\frac{3}{2}\right)_{k} k!} H_{2 k+1}(x / 2)=x e^{x^{2} / 4}{ }_{2} F_{2}\left[\begin{array}{c}
\frac{1}{2} a+1, \frac{1}{2} a+\frac{3}{2} \\
a+\frac{3}{2}, a+2
\end{array} ;-x^{2}\right]
$$

to yield

$$
\left.{ }_{3} F_{3}\left[\begin{array}{c}
\frac{1}{2} a, \frac{1}{2} a+\frac{1}{2}, d+1 \\
a+\frac{1}{2}, a+1, d
\end{array} ;-x^{2}\right]={ }_{2} F_{2}\left[\begin{array}{c}
\frac{1}{2} a, \frac{1}{2} a+\frac{1}{2} \\
a, a+\frac{1}{2}
\end{array} ;-x^{2}\right]+\frac{x^{2}(1-a / d)}{4 a+2}{ }_{2} F_{2}\left[\begin{array}{c}
\frac{1}{2} a+1, \frac{1}{2} a+\frac{3}{2} \\
a+\frac{3}{2}, a+2
\end{array}\right]-x^{2}\right] .
$$

We remark that this last result can be derived alternatively by writing $(d+1)_{k} /(d)_{k}=1+k / d$ in the series expansion of the ${ }_{3} F_{3}$ function combined with use of the result for contiguous ${ }_{2} F_{2}$ functions [4]:

$$
{ }_{2} F_{2}\left[\begin{array}{c}
\alpha, \beta \\
\gamma, \delta
\end{array} ; z\right]-{ }_{2} F_{2}\left[\begin{array}{c}
\alpha, \beta \\
\gamma, \delta+1
\end{array} ; z\right]=\frac{\alpha \beta z}{\gamma \delta(\delta+1)}{ }_{2} F_{2}\left[\begin{array}{c}
\alpha+1, \beta+1 \\
\gamma+1, \delta+2
\end{array} ; z\right] .
$$

Finally, the representation (3.4) may be contrasted with the more general result obtained from Theorem 1 with $\varphi(t)=\exp \left(-x^{2} t^{2} / 4\right)$ given in [4, Eq. (40)] (with $x \rightarrow 2 x$ and $d \rightarrow 2 d$):

$$
e^{x^{2}}{ }_{3} F_{3}\left[\begin{array}{c}
\frac{1}{2} a, \frac{1}{2} a+\frac{1}{2}, d+1 \\
\frac{1}{2} b, \frac{1}{2} b+\frac{1}{2}, d
\end{array} ;-x^{2}\right]=\sum_{k=0}^{\infty} \frac{(b-a-1)_{k}(f+1)_{k}}{(b)_{k}(f)_{k}} x^{k} H_{k}(x)
$$

where $f=2 d(b-a-1) /(2 d-a)$.

4. Extension of the summation (1.6)

We employ the usual convention of writing the finite sequence of parameters $\left(a_{1}, \ldots, a_{p}\right)$ simply by $\left(a_{p}\right)$ and the product of p Pochhammer symbols by $\left(\left(a_{p}\right)\right)_{k} \equiv\left(a_{1}\right)_{k} \ldots\left(a_{p}\right)_{k}$. In order to derive our extension of Ramanujan's sum (1.6) we make use of the generalized Karlsson-Minton summation theorem given below.

Theorem 4.1 Let $\left(m_{r}\right)$ be a sequence of positive integers and $m:=m_{1}+\cdots+m_{r}$. The generalized KarlssonMinton summation theorem is given by [6, 7]

$$
{ }_{r+2} F_{r+1}\left[\begin{array}{cc}
a, b, & \left(d_{r}+m_{r}\right) \tag{4.1}\\
c, & \left(d_{r}\right)
\end{array}\right]=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \sum_{k=0}^{m} \frac{(-1)^{k}(a)_{k}(b)_{k} C_{k, r}}{(1+a+b-c)_{k}}
$$

provided $\Re(c-a-b)>m$.

The coefficients $C_{k, r}$ appearing in (4.1) are defined for $0 \leq k \leq m$ by

$$
\begin{equation*}
C_{k, r}=\frac{1}{\Lambda} \sum_{j=k}^{m} \sigma_{j} \mathbf{S}_{j}^{(k)}, \quad \Lambda=\left(d_{1}\right)_{m_{1}} \ldots\left(d_{r}\right)_{m_{r}} \tag{4.2}
\end{equation*}
$$

with $C_{0, r}=1, C_{m, r}=1 / \Lambda . \mathbf{S}_{j}^{(k)}$ denotes the Stirling numbers of the second kind and the $\sigma_{j}(0 \leq j \leq m)$ are generated by the relation

$$
\begin{equation*}
\left(d_{1}+x\right)_{m_{1}} \cdots\left(d_{r}+x\right)_{m_{r}}=\sum_{j=0}^{m} \sigma_{j} x^{j} \tag{4.3}
\end{equation*}
$$

In [5], an alternative representation for the coefficients $C_{k, r}$ is given as the terminating hypergeometric series of unit argument

$$
C_{k, r}=\frac{(-1)^{k}}{k!}{ }_{r+1} F_{r}\left[\begin{array}{c}
-k, \tag{4.4}\\
\left(d_{r}+m_{r}\right) \\
\left(d_{r}\right)
\end{array}\right] .
$$

When $r=1$, with $d_{1}=d, m_{1}=m$, Vandermonde's summation theorem [10, p. 243] can be used to show that

$$
\begin{equation*}
C_{k, 1}=\binom{m}{k} \frac{1}{(d)_{k}} \tag{4.5}
\end{equation*}
$$

Our extension of Ramanujan's summation in (1.6) is given by the following theorem.

Theorem 4.2 Let $\left(m_{r}\right)$ be a sequence of positive integers and $m:=m_{1}+\cdots+m_{r}$. Then, provided $\operatorname{Re}(c-a)>$ m, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(a)_{k}\left(\left(d_{r}+m_{r}\right)\right)_{k}}{(c)_{k}\left(\left(d_{r}\right)\right)_{k} k}=\psi(c)-\psi(c-a)+\sum_{k=1}^{m} \frac{(-1)^{k}(a)_{k} \Gamma(k) C_{k, r}}{(1+a-c)_{k}} \tag{4.6}
\end{equation*}
$$

where $C_{k, r}$ are the coefficients defined in (4.3) and (4.4).
Proof. We follow the method of proof given in [1, p. 25]. If we differentiate logarithmically the left-hand side of (4.1) with respect to b and then set $b=0$, making use of the simple fact that

$$
\left.\frac{d}{d x}(x)_{k}\right|_{x=0}=(k-1)!, \quad k \geq 1
$$

we immediately obtain

$$
\sum_{k=1}^{\infty} \frac{(a)_{k}\left(\left(d_{r}+m_{r}\right)\right)_{k}}{(c)_{k}\left(\left(d_{r}\right)\right)_{k} k}
$$

when $\operatorname{Re}(c-a)>m$. Proceeding in a similar manner for the right-hand side of (4.1), we obtain

$$
\psi(c)-\psi(c-a)+\sum_{k=1}^{m} \frac{(-1)^{k}(a)_{k} \Gamma(k) C_{k, r}}{(1+a-c)_{k}}
$$

This completes the proof of the theorem.
When $r=1$, the coefficients $C_{k, 1}$ are given by (4.5) and we obtain the summation

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(a)_{k}(d+m)_{k}}{(c)_{k}(d)_{k} k}=\psi(c)-\psi(c-a)+m!\sum_{k=1}^{m} \frac{(-1)^{k}(a)_{k}}{k(m-k)!(1+a-c)_{k}(d)_{k}} \tag{4.7}
\end{equation*}
$$

provided $\operatorname{Re}(c-a)>m$.

Acknowledgement:

Y. S. Kim acknowledges the support of the Wonkwang University Research Fund (2020).

References

[1] Berndt BC. Ramanujan's Notebooks. Part II. New York, NY, USA: Springer, 1987.
[2] Choi J, Rathie AK. Two formulas contiguous to a quadratic transformation due to Kummer with an application. Hacettepe Journal of Mathematics 2011; 40 (6): 885-894.
[3] Kim YS, Choi J, Rathie AK. Two results for the terminating ${ }_{3} F_{2}(2)$ with applications. Bulletin of Korean Mathematics Society 2012; 49 (3): 621-633.
[4] Kim YS, Rathie AK, Paris RB. Generalization of two theorems due to Ramanujan. Integral Transforms and Special Functions 2012; 24: 314-323.
[5] Miller AR, Paris RB. On a result related to transformations and summations of generalized hypergeometric series. Mathematical Communications 2012; 17: 205-210.
[6] Miller AR, Paris RB. Transformation formulas for the generalized hypergeometric function with integral parameter differences. Rocky Mountain Journal of Mathematics 2013; 43: 291-327.
[7] Miller AR, Srivastava HM. Karlsson-Minton summation theorems for the generalized hypergeometric series of unit argument. Integral Transforms and Special Functions 2010; 21: 603-612.
[8] Olver FWJ, Lozier DW, Boisvert RF, Clark CW (editors). NIST Handbook of Mathematical Functions. Cambridge, UK: Cambridge University Press, 2010.
[9] Rathie AK, Pogány TK. New summation formula for ${ }_{3} F_{2}\left(\frac{1}{2}\right)$ and a Kummer-type II transformation of ${ }_{2} F_{2}(x)$. Mathematical Communications 2008; 13: 63-66.
[10] Slater LJ. Generalized Hypergeometric Functions. Cambridge, UK: Cambridge University Press, 1966.

[^0]: *Correspondence: yspkim@wonkwang.ac.kr
 2010 AMS Mathematics Subject Classification: 33C15, 33C20

[^1]: *It should be noted that the right-hand side of (1.4) is independent of the parameter d.

