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ABSTRACT This paper presents a quadruple-band indoor base station antenna for 2G/3G/4G/5G mobile
communications, which covers multiple frequency bands of 0.8 — 0.96 GHz, 1.7 — 2.7 GHz, 3.3 - 3.8 GHz
and 4.8 — 5.8 GHz and has a compact size with its overall dimensions of 204 x 175 x 39 mm?>. The
lower frequency bands over 0.8 — 0.96 GHz and 1.7 — 2.7 GHz are achieved through the combination
of an asymmetrical dipole antenna and parasitic patches. A stepped-impedance feeding structure is used
to improve the impedance matching of the dipole antenna over these two frequency bands. Meanwhile,
the feeding structure also introduces an extra resonant frequency band of 3.3 — 3.8 GHz. By adding an
additional small T-shaped patch, the higher resonant frequency band at 5 GHz is obtained. The parallel
surrogate model-assisted hybrid differential evolution for antenna optimization (PSADEA) is employed to
optimize the overall quadruple-band performance. We have fabricated and tested the final optimized antenna
whose average gain is about 5.4 dBi at 0.8 — 0.96 GHz, 8.1 dBi at 1.7 — 2.7 GHz, 8.5 dBi at 3.3 — 3.8 GHz
and 8.1 dBi at 4.8 — 5.0 GHz respectively. The proposed antenna has high efficiency and is of low cost and
low profile, which makes it an excellent candidate for 2G/3G/4G/5G base station antenna systems.

INDEX TERMS 2G/3G/4G/5G, base station antenna, compact antennas, optimization method, quadruple-

band antennas.

I. INTRODUCTION

The performance of mobile wireless communication systems
would be degraded in indoor environments, undergrounds
and tunnels. Special indoor base station antennas are required
for these areas in order to improve the quality and perfor-
mance of mobile communication systems [1]. In particular,
multiband antennas with a relatively compact dimension that
can cover 2G, 3G and 4G frequency bands (0.8 — 0.96 GHz
and 1.7 — 2.7 GHz) are preferred for many indoor base sta-
tions. With the rapid growth of communication data capacity,
the fifth-generation (5G) communication systems are being
deployed from this year (2019) in many countries. Since
2016, the band from 3.4 — 3.8 GHz has been allocated for 5G
trials in European Union (EU). China’s Ministry of Industry
and Information Technology (MIIT) announced that 3.3 —3.4
(indoor only), 3.4 — 3.6 and 4.8 — 5.0 GHz bands were
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allocated for 5G services in 2017 [2]. Considering the extra
5G bands, it may bring significant challenges in designing the
next-generation indoor base station antennas. For example, it
will increase the complexity and physical dimension of the
antenna after adding the 5G bands in together with the well-
developed 2G/3G/4G band coverage. Therefore, a compact
multiband antenna with wide frequency bands is preferred
for base station applications to support 2G, 3G, 4G and 5G
communication systems simultaneously without increasing
the overall size and number of antennas. In other words, the
new indoor base station antenna is required to cover the
frequency bands of 0.8 — 0.96, 1.7 — 2.7, 3.3 — 3.8 and
4.8 — 5.0 GHz with a compact size and low profile.

In the last twenty years, a large number of base station
antennas with different structures have been investigated and
proposed. Compared with monopole antennas, dipole anten-
nas are more attractive for base stations, because it is easier
to provide dual-polarization (e.g., crossed dipole), which
can increase system capacity and combating the issue of
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multipath fading [3]. A number of broadband dual-polarized
dipole antennas have been developed for 2G/3G/4G sys-
tems operating in the band 1.71 — 2.69 GHz [4]-[10]. The
broadband performance can be achieved by many meth-
ods, such as making slots on the radiating patch [4], [5],
adding parasitic elements [5], [6], using shared-dipole struc-
ture [7], [8], or applying better feeding methods [9], [10].
In fact, multiband antennas could perform better than
wideband antennas due to in-band interference for such
applications. Therefore, many dual-broadband antennas
have been proposed to cover both 0.8 — 0.96 GHz and
1.7 -2.7 GHz [11]-[16]. To achieve the dual-band character-
istics, the first way is to share an element for the lower band
and upper band [11]; the second way is to use the different
elements for the lower band and upper band which is often
used for base station [12]-[16]. The second way is easier to
adjust the down-tilt angles in the lower band and upper band,
but the structure will become more complicated compared
with the first way. At the moment, very few published papers
have reported the triple-band base station antennas for 5G due
to the design complexity [17].

To obtain the desired performance, antenna optimization
is often an essential step. However, optimizers in existing
commercial electromagnetic (EM) simulation tools have dif-
ficulties to achieve the desired performance for this antenna
because of the complexity of the structure. Therefore, the par-
allel surrogate model-assisted differential evolution method
for antenna synthesis (PSADEA) [18] is selected to opti-
mize this antenna. PSADEA is the state-of-the-art in the
SADEA algorithm family [18]-[21], while the first genera-
tion SADEA method [20] already showed clear advantages
over popular antenna optimization methods and tools [22].

Compared to standard global optimization methods,
the SADEA algorithm family is able to obtain better design
quality and offers 3 to 20 times efficiency improvement
[20]-[22]. The primary features in the SADEA algorithm
family include differential evolution (DE) algorithm as the
global search engine, Gaussian process as the machine
learning technique for surrogate modeling and the surro-
gate model-aware evolutionary search framework [23] as
the model management method. PSADEA is distinct from
other SADEA versions through the complementary adop-
tion of multiple DE mutation operators and reinforcement
learning techniques to achieve an additional 1.5 to 3 times
efficiency improvement and higher design solution quality
even in the sequential mode [18], [19]. However, the whole
base station antenna involves more than 40 design parameters
and more than 10 specifications. Thus the time spent on
Gaussian process surrogate modeling in PSADEA becomes
long. To address this problem, design knowledge is used
to separate the design parameters, and PSADEA is used to
focus on 19 design parameters. A successful design is finally
obtained.

Furthermore, in this paper, a compact quadruple-
band indoor base station antenna is proposed. It covers
0.8 — 096 GHz, 1.7 — 2.7 GHz, 3.3 — 3.8 GHz and
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4.8 — 5.0 GHz simultaneously, which means that it can
support 2G/3G/4G/5G systems at the same time. Meanwhile,
through the folded stepped impedance feeding structure,
the antenna has a compact size, especially the height, which
is only 204 x 175 x 39 mm?3. In addition, the radome of the
antenna is also considered for practical applications.

The paper is organized as follows: Section II describes
the geometry, components and fabrication of the proposed
antenna. Section III illuminates the evolution of the proposed
antenna. The measurement process and results are shown in
Section I'V. The conclusion is drawn in Section V.

Il. ANTENNA STRUCTURE

The outer structure of the proposed antenna is shown in Fig. 1,
which is made of polyvinyl chloride (PVC) box (with rel-
ative permittivity &, = 3) and an aluminum reflector. The
thicknesses of the PVC box and aluminum reflector are 2 mm
and 1 mm respectively. Fig. 2 illustrates the inner structure of
the proposed antenna, which looks complicated but is based
on dipole antenna (to be discussed in next section). Twenty-
one blue PVC cylinders are applied to support the aluminum
structure and provide the essential gap distance between the
different components. They also provide a robust structure
of the antenna. In order to have a better understanding of the
inner structure, it can be divided into four layers and four bent
metal strips, as shown in Fig. 3. The first layer consists of
three metal patches and two metal strips, which are parasitic
and used to increase the bandwidth of the first and second
band. The second layer includes three metal patches and one
feeding structure; the third layer includes one metal patch and
one feeding structure. For these two layers, the metal patches
are concatenated to the feeding structures through trapezoid
aluminum to form a whole. The height of the two trapezoids
is different. Therefore, it can control the gap distance between
the two layers. The second layer and third layer are the main
components of the proposed antenna. They are two arms
of a dipole antenna with the feeding structure. The feeding
structure is connected to a 50 2 coaxial cable. The outer of
the coaxial cable is connected to the feeding structure of the
second layer, and the inner of the coaxial cable is connected to
the feeding structure of the third layer. Normally, the feeding

Bw1

os}
PVC box 5

119

| —— Coaxial cable il

(a) (b) (c)

FIGURE 1. The outer structure of the proposed antenna. (a) Front view.
(b) Back view. (c) Side view.
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Coaxial cable

FIGURE 2. The inner structure of the proposed antenna. (a) Front view
(without box). (b) Back view (without reflector). (c) Side view (without
box and reflector). (d) Side view (without box and reflector).

structure is perpendicular to the dipole antenna. However,
in this design, the feeding structure is folded and is made par-
allel to the dipole to minimize the height of the whole antenna.
In addition, both ends of the long metal patch in the second
layer are bent by 90 degrees to increase the coupling between
the first layer and the second layer. The fourth layer is a small
T-shaped patch, which is employed to introduce a resonant
frequency for the higher frequency band. It is welded to the
inner of the coaxial cable through a piece of aluminum. All
the four layers are fabricated with 0.8 mm aluminum. The
four metal strips are fixed to the reflector by screws and nuts.
They are also bent to minimize the height of the antenna. The
two thin bent metal strips are made of 0.8 mm aluminum and
the two thick bent metal strips are made of 1.2 mm aluminum.
In this design, we choose to use aluminum instead of copper
due to its low cost, lightweight and highly malleable. The
PVC box and cylinders are printed by 3D-Printing technol-
ogy. Meanwhile, all the aluminum structures are cut by a
laser-cutting machine. The detailed dimensions of the pro-
posed antenna are presented in Table 1 which are optimized
dimensions as we will discuss later.

Ill. EVOLUTION OF THE PROPOSED ANTENNA
The general evolution process includes two stages. The first
stage is to cover the three lower bands up to 3.8 GHz. The
design process is systematic, and some design parameters can
be obtained as follows.

Initially, Antenna 1 was a simple dipole antenna. The two
arms of the dipole antenna were made different to achieve
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FIGURE 3. The detailed structure of the proposed antenna. (a) First layer.
(b) Second layer. (c) Third layer. (d) Fourth layer. (e) Side and front view of
the thin bent metal strip. (f) Side and front view of the thick bent metal
strip.

Back view Front view Back view

(a) (b)

Front view

Front view Back view

() (d)

Front view Back view

FIGURE 4. The evolution of the dual-band antenna. (a) Front and back
view of antenna 1. (b) Front and back view of antenna 2. (c) Front and
back view of antenna 3. (d) Front and back view of dual-band antenna.

more resonant frequencies. Then, the stepped impedance
feeding structure was used to feed the antenna as shown
in Fig. 4. As mentioned before, the feeding structure was
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TABLE 1. Dimensions of the proposed antenna.

S, (dB)

-20

e

) 0

Value Parame  Value Value
Parameter Parameter
(mm) ter (mm) (mm)
BI1 204 Mwl 50 TI1 17
BI2 185 Mil 33.5 Twl 8.6
Bwl 175 Mw2 118.4 TI2 10.8
Bw2 160 MI2 20 Tw2 12.1
Brl 5 Mw3 62 TI3 15.2
Bhl 39 Mi3 24 Tw3 6.5
Rwl 170.6 Mw4 50 T4 9.6
RI1 200 Mil4 75 Tw4 19.9
H1 34 Mw5 28 TIS 8.5
H2 15.2 MIS 4 TwS 7.4
H3 1.6 Sl 12.7 Tl6 3.8
H4 1.7 Swl 7 Two6 17.9
H5 4.8 S12 7 T17 8.8
Fl1 43.5 Sw2 11.9 Tw7 343
Fwl 80 S13 27.2 Tw8 7
F12 114 Sw3 7 C12 23
Fw2 3 S14 9 CI3 26.3
Fgl 23 Sw4 13 Cg4 24.33
Fg3 22.5 S15 12.7 Cwl 2.7
Frl 1.7 Sw5 7 LI2 23
Fr2 2 Sl6 9.4 Lg4 21.8
Awl 1 Swo6 14.9 Li4 27.9
All 54 S17 4.8 Lwl 13.8
Aw2 11.9 Sw7 7
Al2 3.7 Sw8 24.9
~
A
V
= ]
°
w b
— — Antenna 1 1
- Antenna 2
—-—Antenna 3 4
—— Dual-band antenna
v 5 6

Frequency (GHz)

FIGURE 5. The reflection coefficient of the four reference antennas.

folded to minimize the height of the antenna. The perfor-
mance of Antenna 1 is shown in Fig. 5. It is apparent that
Antenna 1 has many resonant frequencies, but the band-
width is narrow. To widen the bandwidth, three aluminum
patches were added on the top of the dipole and fixed by the
PVC cylinders. They help to widen the bandwidth through
coupling between the dipole and three aluminum patches.
Therefore, the frequency band 1.7 — 2.7 GHz was achieved.
The reflection coefficient of Antenna 2 shows no resonant
frequency between 0.8 - 0.96 GHz. As aresult, two thick bent
metal strips and two thin bent metal strips were introduced to
solve this problem, as shown in Fig. 4. However, as shown
in Fig. 5, the bandwidth of the first band was not wide
enough to cover 0.8 — 0.96 GHz for S1; < —10 dB. Another
two metal strips were introduced to widen the bandwidth.
In the end, a dual-band antenna was achieved, which covers
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FIGURE 6. The reflection coefficient of the dual-band antenna.

0.8 — 0.96 GHz and 1.7 — 2.7 GHz, as shown in Fig. 6.
It is easy to find there are two resonant frequencies between
3 and 4 GHz. This means it is possible to realize the band
3.3 — 3.8 GHz through impedance matching. The stepped
impedance feeding structure was applied to feed the antenna
for the lower frequency band, and it can be used to radiate for
the higher frequency band. According to the theory of half-
wavelength dipole, the most sensitive parameter for the band
3.3-3.8 GHzis Tw4 as shown in Fig. 7. Fig. 8 illuminates that
the resistance becomes smaller, and the impedance matching
for the band 3.3 — 3.8 GHz becomes better with the increase
of Tw4. After few steps of manual tuning, the triple-band
performance was achieved as shown in Fig. 9.

-20

S,, (dB)

— Tw4=14
——Tw4=16 1
— Tw4=18
— Tw4=20
— Tw4=22 1
— Tw4=24

50 L I ! 1 I
1 2 3 4 5 6

Frequency (GHz)

-30 [

40 |

FIGURE 7. The reflection coefficient of the Tw4 with different length.

S-Parameters [Impedance View]

FIGURE 8. The effect of the Tw4 with different length in Smith chart.
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S, (dB)
T
B

20| 1

251 4

30 | | -
—— Triple-band antenna

.35 L 1 1 I L
1! 2 3 4 5 6

Frequency (GHz)

FIGURE 9. The reflection coefficient of the triple-band antenna.

The goal of the second stage is to keep the current per-
formance of the three bands at lower frequency ranges and
introduce a new resonant frequency for the higher band.
Hence, a small T-shaped aluminum patch was put on the top
of the feeding structure, and it was soldered with the coaxial
cable by a small piece of aluminium. The performance of the
antenna is shown in Fig. 10. Then, the task becomes optimiz-
ing parameters of the small T-shaped patch and the feeding
structure (third layer) to achieve the desired performance of

all bands.
0 i
iieia's
10 ﬂ N &

S, (dB)

(— Triple-band antenna |

1 2 3 4 5 6
Frequency (GHz)

FIGURE 10. The reflection coefficient of the triple-band antenna plus
small T-shaped patch.

This optimization task is difficult and the widely used local
optimizers (e.g., Trust Region Framework in CST Microwave
Studio) were firstly employed, but the results were far from
satisfactory. Existing global optimizers (e.g., particle swarm
optimization) are estimated to cost prohibitive time without a
guarantee of success. Therefore, as said in Section I, the state-
of-the-art method, PSADEA [1], was used. By using design
knowledge to ignore many design parameters for the three
bands at lower frequency ranges, the number of critical design
parameters were reduced to 19 (T11, Twl, T12, Tw2, T13, Tw3,
T4, Tw4, T15, TwS, Tl6, Tw6, T17, Tw7, Tw8, Awl, All,
Aw?2 and Al2). They were optimized to adjust the coupling
between the T-shaped patch resonator and the feeding struc-
ture of the antenna. The optimization goal is the minimization
of the maximum return loss in the newly introduced band
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(4.8 — 5.0 GHz) subject to having a maximum return loss
of less than or equal to —10 dB in the existing bands (i.e.
0.8 = 0.96 GHz, 1.7 — 2.7 GHz and 3.3 — 3.8 GHz). After
three days’ optimization, PSADEA produced a design with
the frequency response shown in Fig. 11, which has met the
return loss requirement across all the four bands for sub —
6 GHz 5G operations that is, it covers 0.8 — 0.96, 1.7 — 2.7,
3.3-3.8and 4.8 - 5.0 GHz.

%/ T WV {
@ 20
.| T ?
30 ﬂ o
T™ i Quadruple-band antenna
|

35 L I 1 1
1 2 3 4 5 6

Frequency (GHz)

FIGURE 11. The reflection coefficient of the quadruple-band antenna.

IV. THE PROPOSED ANTENNA RESULTS

In order to verify the simulation results, the proposed
quadruple-band indoor base station antenna was fabricated
and measured, as shown in Fig. 12. The simulation results
were obtained using CST microwave studio. Fig. 13 depicts
the setup of the measurement; it is accomplished in an ane-
choic chamber using a Vector Network Analyzer (VNA).
Finally, the measurement results of the reflection coefficient,
gain and radiation pattern are obtained. The antenna radiation
efficiency was obtained using a reverberation chamber.

FIGURE 12. A prototype of the proposed antenna. (a) Outer view. (b)
Inner view.

Fig. 14 illuminates the simulated and measured reflection
coefficient. It shows a good agreement between the simu-
lated and measured results. For VSWR < 2, the measured
impedance fractional bandwidths are 22% (0.77 — 0.96 GHz),
71.8% (1.32 — 2.8 GHz), 21.6% (3.3 — 4.1 GHz) and 4.3%
(4.79 — 5.0 GHz) for B1, B2, B3 and B4 respectively.

The simulated and measured realized gains are shown
in Fig. 15, where a good agreement between them is observed.
The average gain for each band is 5.4 dBi (0.8 — 0.96 GHz),
8.1 dBi (1.7 - 2.7 GHz), 8.5 dBi (3.3 — 3.8 GHz) and 8.1 dBi
(4.8 — 5.0 GHz), respectively.
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FIGURE 14. The simulated and measured reflection coefficient of the
proposed quadruple-band antenna.

Fig. 16 shows the simulated and measured efficiency of
the proposed antenna. The overall measured efficiency is over
80%, which is less than the simulated efficiency, which likely
due to dielectric loss larger than the one used for simulation.

Fig. 17 depicts the simulated and measured co- and cross-
polarized radiation pattern at the start and stop frequencies of
each band in H-plane (YOZ plane) and V-plane (XOZ plane).
The measured radiation patterns are in good agreement with
the simulated ones. For the higher frequency band, the radi-
ation patterns have some distortions. However, for indoor

.

Y

-

A

}

2+ ‘ -
} —=— Simulated

-4+ ®  Measured| B
% | | . L |

1 2 3 4 5 6
Frequency (GHz)

iy
-
ﬁfc‘
1l

Realized Gain (dB)
n

~L

FIGURE 15. The simulated and measured maximum gain of the proposed
quadruple-band antenna.
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0.8

o
=

Total efficiency
o
g

02 B
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—e— Measured
00 1 1 1 1 1

1 2 3 4 5 6
Frequency (GHz)

FIGURE 16. The simulated and measured total efficiency of the proposed
quadruple-band antenna.

antennas, the radiation pattern requirement is not strictly for
the broadside radiation.

Table 2 illuminates the comparison of several multi-band
antennas with the proposed antenna. Most of the refer-
ence antennas were designed for 2G/3G/4G systems; only
one antenna includes the 5G band [17]. It is apparent that
the proposed antenna has a relatively small size, especially
the height. Meanwhile, it is also the only antenna that covers

TABLE 2. Comparison of several multi-band antennas with the proposed antenna.

Bandwidth (% Gain (dBi
Reference Freﬁléency bér];d (MHz) LB ( O%B LB ¢ UB) Dimensions (mm?®)
[15] 800-960 1700 —2700 18 (VSWR<15) 46 (VSWR<IL)5) 4.6 8.7 220 x 220 x 42
[16] 790 -960  1710-2170 194 (VSWR<15) 237 (VSWR<L)5) 9.5 9 255 x 255 %130
[17] 700 -960 1700 — 3000 31.3 (VSWR<2) 553 (VSWR<2) 5.5 8 220 x 220 x 100
3300 — 3800 14 (VSWR<2) 5.5
[24] 780 —-1100 1580 —2620 34 (VSWR<2) 495 (VSWR<2) 7 8 220 x 220 x 57
[25] 800-980 1540 —2860 20 (VSWR<2) 60 (VSWR<2) 8 8 360 x 280 x 45
[26] 790-960  1710-2170 19.4 (VSWR<1.5) 23.7 (VSWR<L.5) 9.3 9 255 x 255 x 71
Proposed 770 - 960 1320 — 2800 22 (VSWR<2) 718 (VSWR<2) 5.4 8.1 204 x 175 x 39
3300 — 4100 4790 — 5000 21.6 (VSWR<2) 43 (VSWR<2) 8.5 8.1
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FIGURE 17. The simulated and measured co- and cross-polarized radiation pattern. (a) H-plane (YOZ plane). (b) V-plane (XOZ plane).

the four bands used for 2G/3G/4G/5G systems with a good
performance.

V. CONCLUSION
A compact quadruple-band indoor base station antenna for
2G/3G/4G/5G systems has been designed, optimized, fabri-
cated and measured. It covers four wide bands from 0.8 to
0.96 GHz, 1.7 to 2.7 GHz, 3.3 to 3.8 GHz and 4.8 to 5.0 GHz
respectively. A plastic case and support frame were fabricated
for the antenna to realize a sturdy structure. An asymmet-
rical dipole antenna and parasitic patches were employed
for the lower resonant frequency bands ranging from
0.8 t0 0.96 GHz and 1.7 to 2.7 GHz. The stepped impedance

151356

feeding structure was used to feed the dipole antenna and
meanwhile acted as a radiator for the high frequency band
of 3.3 — 3.8 GHz. In addition, a higher resonant frequency
has been introduced by a small T-shaped patch to cover
4.8 —5.0 GHz. The PSADEA method was chosen to optimize
19 critical design parameters to adjust the coupling between
the small T-shaped patch and stepped impedance feeding
structure. Thus, the proposed quadruple-band performance
with VSWR < 2 over the frequency band of interest has been
obtained. The proposed antenna has achieved low cost and
lightweight through aluminum and PVC material manufac-
turing procedures. It also has a low profile, good performance
and sturdy structure simultaneously We believe that the
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proposed design will be an excellent candidate for
2G/3G/4G/5G base station antenna systems. For future
work, the lower band could be further extended to cover
0.7 — 0.96 GHz to make the antenna suitable for worldwide

(20]

[21]

B. Liu, H. Aliakbarian, Z. Ma, G. A. E. Vandenbosch, G. Gielen, and
P. Excell, “An efficient method for antenna design optimization based on
evolutionary computation and machine learning techniques,” IEEE Trans.
Antennas Propag., vol. 62, no. 1, pp. 7-18, Jan. 2014.

B. Liu, S. Koziel, and N. Ali, “SADEA-II: A generalized method for

applications.
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