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Abstract

Visual signals, including changes in coloration and color patterns, are frequently used by animals

to convey information. During contests, body coloration and its changes can be used to assess an

opponent’s state or motivation. Communication of aggressive propensity is particularly important

in group-living animals with a stable dominance hierarchy, as the outcome of aggressive inter-

actions determines the social rank of group members. Neolamprologus pulcher is a cooperatively

breeding cichlid showing frequent within-group aggression. Both sexes exhibit two vertical black

stripes on the operculum that vary naturally in shape and darkness. During frontal threat displays

these patterns are actively exposed to the opponent, suggesting a signaling function. To investi-

gate the role of operculum stripes during contests we manipulated their darkness in computer

animated pictures of the fish. We recorded the responses in behavior and stripe darkness of test

subjects to which these animated pictures were presented. Individuals with initially darker stripes

were more aggressive against the animations and showed more operculum threat displays.

Operculum stripes of test subjects became darker after exposure to an animation exhibiting a pale

operculum than after exposure to a dark operculum animation, highlighting the role of the dark-

ness of this color pattern in opponent assessment. We conclude that (i) the black stripes on the

operculum of N. pulcher are a reliable signal of aggression and dominance, (ii) these markings play

an important role in opponent assessment, and (iii) 2D computer animations are well suited to elicit

biologically meaningful short-term aggressive responses in this widely used model system of

social evolution.
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Color patterns can be important for species recognition (Jiggins

et al. 2001; Detto et al. 2006; Pauers et al. 2008), and for signaling

individual quality and status, for example in a reproductive context

(Houde 1987; Bakker and Milinski 1993; Seehausen and van

Alphen 1998; Boughman 2001). During agonistic encounters, color

patterns are typically used to convey threat (Dawkins and Guilford

1993). Aggressive interactions are often costly, due to increased in-

jury risk and energy expenditure (Maynard Smith 1982; Neat et al.

1998, Kemp and Wiklund 2001). To avoid unnecessary costs of con-

flict escalation, a variety of signals and matching response rules have

evolved to enable assessment of the opponents’ aggressive state

(O’Connor et al. 1999; Gerald 2001; Lehtonen et al. 2015). Animals
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often use color signals to convey their fighting ability or motivation,

which can reduce the probability of costly escalation (Tibbetts

2008; Van Dyk and Evans 2008). These badges of status typically

convey information about an individual’s social and aggressive sta-

tus (Maynard Smith and Harper 2003). They are assumed to be hon-

est signals, as the receiver response would incur high costs to the

sender if cheating was detected (Tibbetts 2008). Badges of status can

change in accordance with status changes, although usually at a

slower rate than state-dependent signals (Laucht and Dale 2012;

Rhodes and Schlupp 2012). Badges of status are used for the mutual

assessment of contestants together with other signals of fighting

ability, most of which can change rapidly during contests in depend-

ence of individual state (Arnott and Elwood 2009; M€athger et al.

2009; Ligon and McGraw 2013).

Color patterns used in aggressive contexts frequently involve the

presence or modulation of melanin-based pigments. For example,

darker maned lions Panthera leo are more aggressive and sexually

more active (West 2002), and darker tawny owls Strix aluco show a

higher level of aggressiveness (Da Silva et al. 2013). Furthermore,

vertical stripe patterns are often associated with intraspecific aggres-

sion in various species (e.g., Bortolotti et al. 2006; Price et al. 2008).

In fish, quickly adjustable color patterns are frequently used in ag-

gressive contests, where they may signal either dominance or sub-

mission (Barlow 1963; De Boer 1980; Dawkins and Guilford 1993;

Beeching 1995; O’Connor et al. 1999).

Here, we report on an experimental study of the importance of

color markings in the cooperatively breeding cichlid fish

Neolamprologus pulcher. Groups of these fish consist of one domin-

ant breeding pair and up to 25 immature and mature, related and

unrelated helpers of both sexes (Groenewoud et al. 2016; Taborsky

2016). Group members often show aggressive behavior against each

other (Reddon et al. 2011; Riebli et al. 2011, 2012). The hierarchy

in N. pulcher groups is strongly size dependent (Balshine et al. 2001;

Heg et al. 2005; Stiver et al. 2008), with some additional influence

of the sex of group members (Mitchell et al. 2009). The highest level

of competition occurs among similar-sized individuals (Wong and

Balshine 2011; Ligocki et al. 2015b). In this situation, size-

independent signals of fighting propensity may be beneficial to avoid

costly escalation of fights (Arnott and Elwood 2009; Ligon 2014).

The majority of N. pulcher’s aggressive encounters are settled by dis-

playing of aggressive intent, which does not require physical contact

(restrained aggression; Taborsky 1984; Schürch and Heg 2010).

Neolamprologus pulcher exhibits two black stripes on the oper-

culum (Figure 1), which differ in size and shape between populations

along the coast of Lake Tanganyika (Duftner et al. 2007). This oper-

culum pattern is present already at the juvenile stage in both sexes.

It is involved in the recognition of familiar conspecifics (Kohda et al.

2015) and might function as a signal during aggressive interactions

(Duftner et al. 2007). Neolamprologus pulcher frequently uses fron-

tal displays during which they widely spread their opercula

(Taborsky 1984; Balzarini et al. 2014). This behavior increases the

visibility of the operculum stripes for the opponent, facilitating its

assessment. It is therefore likely that the operculum stripes convey

information about the aggressive state of an individual, or about

their rank or fighting ability (Duftner et al. 2007).

When studying the function of variable color signals, it is diffi-

cult to disentangle the effect each participant of an interaction has

on the other. To control for the opponent’s visual cues and behavior,

they can be standardized by using either mirror images (Earley et al.

2000; Balzarini et al. 2014), video playbacks (Ord et al. 2002;

Verbeek et al. 2007), or animated computer models of conspecifics

(Mehlis et al. 2008; Thünken et al. 2013; Qin et al. 2014).

Computer animated models are particularly helpful when studying

visual signals, as they can be easily modified according to the re-

spective research question (Baldauf et al. 2008; Woo and Rieucau

2011; Fischer et al. 2014; Chouinard-Thuly et al. 2017). While

three-dimensional (3D) animations can be programmed to express

complex series of behavior (Künzler and Bakker 1998; Rosenthal

2000; Gierszewski et al. 2017), 2D animations can be used for sim-

pler phenotypic alterations. For instance, stationary pictures of ani-

mals can be modified with help of editing programs and then

animated in front of a background (Baldauf et al. 2009; Woo and

Rieucau 2011; Fischer et al. 2014). Individuals of different fish spe-

cies have been shown to discriminate between pictures of different

heterospecifics or generic shapes moving in a computer animation

(Baldauf et al. 2009; Gerlai et al. 2010). For example, N. pulcher

differs in behavior when confronted with moving fish images of dif-

ferent cichlid species, as well as with moving fish images and a mov-

ing rectangle (Fischer et al. 2014). Computer animations have been

used to study agonistic behavior in a range of fish species, for ex-

ample, fighting fish Betta splendens (Allen and Nicoletto 1997;

Verbeek et al. 2007), three-spined sticklebacks Gasterosteus aculea-

tus (Mehlis et al. 2009), and N. pulcher (Fischer et al. 2014). These

studies demonstrate the potential of animations and photo editing to

Figure 1. Examples of animation images. Each stimulus picture was manipulated in 4 different steps: (A) no stripes, (B) pale stripes, (C) mean stripes, and (D) dark

stripes. For better illustration of the differences, the overall brightness of the image presented here was modified to be 3% brighter than how it was used in the

experiment.
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study the function of visual color signals in a diverse range of

species.

In the present study we aimed at elucidating whether the dark-

ness of the black operculum stripes of N. pulcher functions as signal

of aggression and dominance using standardized 2D computer ani-

mations of virtual intruders (Fischer et al. 2014). The pictures were

obtained from photographs of conspecifics, in which we modified

the darkness of the operculum stripes in four steps (dark, mean,

pale, and no stripes). The hypothesis assuming that the operculum

stripes are used to signal aggressive propensity predicts a positive

correlation between the darkness of stripes and the amount of ag-

gression displayed by an individual. In terms of opponent assess-

ment, we expected a modifying effect of the experimentally varied

operculum patterns presented by our animations on the aggression

of focal test fish. Furthermore, we expected the stripe darkness of

focal test fish to change according to the darkness level of stripes of

the animated opponents.

Materials and Methods

Experiments were conducted in August 2013. The individuals used

in this study were F1 and F2 generation laboratory-reared offspring

of wild fish, caught at the Zambian coast of Lake Tanganyika close

to Kasakalawe point. They were kept in aggregations of 10–30 indi-

viduals in tanks of either 50 L, 200 L, or 400 L, depending on num-

bers of individuals. The water temperature was kept constant at

27 6 1�C and the light regime was set to a light:dark cycle of

13:11 h. Tanks were filtered and aerated with internal biological fil-

ters, and the bottom of each tank was covered with a 2-cm sand

layer. The tanks did not contain breeding shelters to prevent fish

from reproducing. Surface shelters were provided to minimize po-

tential negative effects of aggression in the tank. All fish were fed

with commercial flake food (5 days/week) and with defrosted food

(1 day/week).

Computer animations
For preparing the animations, 10 fish (5 males and 5 females) be-

tween 40 and 45 mm standard length (SL) were haphazardly caught

from the holding tanks. To avoid effects of familiarity impairing our

results (Kohda et al. 2015), fish used to create the animations were

taken from different tanks than the test subjects. Lateral pictures

were taken in a small glass box with an Olympus SZ-11 camera

(Olympus Lens 4.5–90.0 mm 1:3.0–6.9). Fish in the pictures had a

neutral posture, with fins halfway between completely spread (an

aggressive display) and totally relaxed. The photo box was illumi-

nated with a 60 W 230 V light bulb. A Munsell color reference card

with standard white color was placed in each picture. All darkness

measurements were calculated in relation to this white standard, to

minimize variation caused by random illumination differences

(Frommen et al. 2008). The lateral pictures of the 10 fish were pro-

cessed in the CIE Lab color space (Hasting and Rubin 2012) with

the software “Adobe Photoshop CC”. We chose this color space be-

cause it transforms the image’s color data into device-independent

data, thus preventing camera-specific biases compromising the ana-

lyses (Hill et al. 1997; Sharma et al. 2005). In the CIE Lab color

space the “L” axis indicates the darkness (black¼0 to white¼100);

the “a” axis ranges from green to red (negative values indicate

green, positive red) and the “b” axis from blue to yellow (negative

values indicate blue, positive yellow; Stevens and Cuthill 2005;

Hasting and Rubin 2012). As our focus was on the darkness of the

facial stripes, we restrict our analysis to the “L” value. The L-value

of the bars was calculated as a percentage value of the white refer-

ence to correct for illumination differences.

From each original picture we obtained 4 manipulated copies, 3

with stripes of different darkness and 1 without stripes (see Figure 1

for examples). The pictures with stripes had L-values of 45 6 3 (pale

stripes), 25 6 5 (mean stripes), and 5 6 1 (dark stripes), respectively.

For the picture with no stripes, the operculum color was adjusted to

be of the same color as the surrounding head area. The values for

the “mean stripes” images were obtained by averaging the L-values

of the stripes of the 10 original pictures. After manipulation, the fish

in the picture was cut out from the background using “Adobe

Photoshop CC”. The cutouts were pasted into a 2D animation using

“Power Point 2010”, with the same olive-green background as used

in previous studies (Fischer et al. 2014; Hess et al. 2016). The size of

the cutout was standardized to 41 mm SL, which was the mean size

of the fish used for the animation images. The size of the animation

fish was kept constant, independently of the test fish size, to control

for distortion of general image characteristics, other than the oper-

culum stripes. An HP windows computer and a COMPAQ 1520

screen (32�23 cm2) were used to display the animations to the test

fish. The same screen model was successfully used by Fischer et al.

(2014) and Hess et al. (2016). During the animation, the fish image

entered the screen head first from one side and moved in a straight

line at a speed of 1.3 s/cm until exiting the frame on the opposing

side. Afterwards, the same movement was repeated in the opposite

direction. In this way, the animated fish moved back and forth on

the screen for 10 min.

Behavioral tests
A total of 28 individuals (14 males and 14 females) between 40 and

45 mm SL were haphazardly caught from the holding tanks. After

capture, a lateral picture of their head was taken under the same

conditions and with the same material as for the animation pictures,

to get a baseline reference for their operculum stripe darkness. This

baseline measure was important because N. pulcher tend to darken

slightly during handling. After taking the baseline picture, the fish

were measured, and their sex was determined by checking their

genital papilla. Then, each fish was placed into a 25 L (l�w�h:

40�25�25 cm) experimental tank. The experiment was conducted

in 6 tanks in parallel, following the procedure described in Fischer

et al. (2014). The bottom of each experimental tank was covered

with sand and the water was aerated with an air stone. A flowerpot

half served as shelter. The tanks were visually isolated from each

other using opaque partitions. Test subjects were allowed 15 h of ac-

climation time in the experimental tank before the first test started

(Fischer et al. 2014). For each test, we placed the screen outside the

tank on the short wall opposite the shelter, and let the fish acclimate

to an empty background for 10 min. After this, the animation

started and continued for 10 min. During this time, we continuously

recorded the number of aggressive behaviors. Overt aggression

refers to behaviors aimed at physical contact with the opponent,

that is, biting and ramming attempts directed toward the animation

(Balzarini et al. 2014; Fischer et al. 2014). Restrained aggression

comprised aggressive displays, that is, fin spread, operculum spread,

and fast approach (Schürch and Heg 2010; Balzarini et al. 2014;

Fischer et al. 2014). All observations were recorded using the

“Observer5.0” software (Noldus).

Each test subject was confronted once with each of the four ani-

mation types (“pale” stripes, “mean” stripes, “dark” stripes, “no”

stripes) in a random order, resulting in 112 trials in total. To exclude

that variation between stimulus fish would influence the test
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subjects’ behavior, all animations shown to an individual test subject

used manipulated images of the same stimulus fish picture. These 4

animation presentations were spread over 2 consecutive days. On

each day, 1 animation was shown in the morning and 1 in the after-

noon, with a break of 4 hours in between. Half of the subjects were

randomly assigned to receiving same-sex animation pictures, the

other half to animation images from opposite sex fish. The 5 female

animation sets (1 set equals 4 modified images of the same stimulus

fish) were used in 7 male and 7 female trials, the same was the case

for the 5 male animation sets. Thus, each animation set was used be-

tween 2 and 4 times in total. Immediately after each trial, we took a

picture of the test fish’s operculum stripes, to record potential

changes in darkness depending on the kind of animation it had

received. The photographs were taken in the same way as those for

the baseline and the animation pictures. After the picture was taken,

the fish was returned to the experimental tank.

Statistical analysis
For all statistical analyses we used the software “R”, version 3.1.2

(R Core Team 2013). Mixed models were run with the package

“lme4” (Bates et al. 2015). Model selection was done by stepwise re-

moval of non-significant terms and interactions (Engqvist 2005). All

P-values were obtained with likelihood ratio tests, which follows a

v2 distribution (for all mixed models), or F-tests (for the parametric

linear model (LM); Lu and Zhang 2010). A likelihood ratio test is

needed for model simplification when the factors used in the model

have more than 2 levels, as it gives an overall P-value for the factor’s

effect by comparing the full model to one missing the specified fac-

tor (Dalgaard 2008; Zuur et al. 2009). This step is required as P-val-

ues from the lme4 package outcome do not reflect all possible data

comparisons (Crawley 2007; Zuur et al. 2009). When needed, we

ran Tukey post-hoc tests on the models with the package

“multcomp” (Hothorn et al. 2008), and the resulting P-values were

corrected for multiple testing. If Poisson-distributed models were

over-dispersed (Bolker et al. 2009), we included an additional indi-

vidual-based random effect (Elston et al. 2001).

Color analyses
Darkness of the operculum stripes was calculated as the average L-

value of the 2 stripes’ area, with high values indicating lighter stripes

and low values darker ones. Baseline values were normally distrib-

uted, so we used parametric statistics. We analyzed differences in

baseline darkness among test fish with a LM, with sex and size of

the test fish as explanatory variables. The interaction between the

test fish’s sex and size was also included. P-values were obtained

with an F-test.

To analyze color change in response to the animations, we cre-

ated an “L difference” variable by subtracting the baseline L-values

from the L-values after the animation. On this variable, we fitted a

linear mixed model (LMM). The animation darkness level, the sex

of the test fish and that of the animation fish were set as fixed fac-

tors. Size of the test fish and order of testing (the order in which the

animations were presented within a set) were inserted as covariates.

Order of testing was not treated as a factor because we were not

interested in the differences between subsequent trials, but in the

overall time effect. The interaction between the sex of the animation

and of the test fish was also included. The identity of the test fish

and of the animation fish were set as random factors and never

excluded from the model. The use of post-animation to pre-

animation differences and the inclusion of the test fish’s identity as

random effect in the model account for different individual re-

sponses to handling. Because the residuals of the model on “L differ-

ence” values were not perfectly normally distributed according to

Q–Q plots and the dependent variable could not be transformed, we

confirmed the robustness of the P-values obtained from the model

with permutation tests with 10,000 repetitions. The permutation re-

sulted in an adjusted a-level of 0.0403. As animation type had a sig-

nificant effect on darkness change, and because we were interested

in the differences between animations, we ran Tukey post-hoc tests

on animation type to discern the differences between animations.

Finally, as the interaction between sex of the animation and of the

test fish was significant, we analyzed the results for each sex separ-

ately. For each sex, we ran 1 LMM on the difference in L-values be-

fore and after animation, with sex of the animation as fixed factor,

and identity of the test fish and of the animation fish as random

factors.

Behavioral observation
Counts of aggressive behavior were combined into “overt aggres-

sion” and “restrained aggression”. Of the latter, operculum spread

was analyzed separately, as we hypothesized this behavior being the

aggressive display most related to the stripe darkness, resulting in

the variables “operculum spread” and “restrained aggression with-

out operculum spread”. We will refer to the second one as “re-

strained aggression” for brevity.

Generalized linear mixed effect models (GLMMs) assuming

Poisson distribution were conducted to analyze overt aggression,

operculum spreads, and restrained aggression. The animation type,

sex of the test fish and of the animation fish were set as fixed factors.

The L-value of each subject’s baseline pictures, the size of the test

fish, and trial order were inserted as covariates. We considered also

the interactions between the sex of the animation and the sex of the

test fish, and between animation type and baseline L-value. For each

model, the identities of the test fish and of the animation fish were

set as random factors. No post-hoc tests were required.

Results

Behavioral observations
Subjects with darker baseline operculum stripes showed significantly

more overt aggression and more operculum spreads (overt aggres-

sion, GLMM, v2 ¼ 6.840, P¼0.009; operculum spreads, GLMM,

v2 ¼ 4.488, P¼0.034, Figure 2, Table 1) than individuals with

lighter baseline stripes. There was no significant difference in re-

strained aggressive behavior (GLMM, v2 ¼ 0.061, P¼0.805, Table

1). Subjects did not differ significantly in aggression shown toward

the different animation types (overt aggression, GLMM, v2¼1.032,

P¼0.793; operculum spreads, GLMM, v2¼0.153, P¼0.985; re-

strained aggression, GLMM, v2¼1.943, P¼0.584, Table 1).

The size of focal subjects was significantly related to aggression,

with smaller subjects attacking the presented animation more often

(overt aggression, GLMM, v2¼10.058, P¼0.002), and showing

more operculum spreads (GLMM, v2¼6.463, P¼0.011). However,

they did not differ from bigger fish in restrained aggression

(GLMM, v2¼0.516, P¼0.473, Table 1).

There was a positive, non-significant trend for females to engage

in more overt aggression against the animated display than males

(GLMM, v2¼3.237, P¼0.072, Table 1), but not in operculum

spreads or other restrained aggressive behaviors (GLMM, P>0.37,

Table 1). Overall, restrained aggression showed a significant order
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effect, with subjects being more aggressive in the first test than in

the others (GLMM, v2¼9.939, P¼0.002). This effect was not sig-

nificant in overt aggression (GLMM, v2¼2.796, P¼0.095, Table

1) and operculum spreads (GLMM, v2¼2.373, P¼0.123, Table 1).

The other covariates did not have a significant effect on the subjects’

behavior (all P>0.12, Table 1).

Stripe darkness
The darkness of operculum stripes in the presented animation

caused a significant response in the darkness of the test subjects’

stripes (LMM, v2¼8.44, P¼0.038, Figure 3A and Table 2 part a),

which was apparently due to the fish showing darker operculum

color after viewing the “pale” animation (Tukey post-hoc, no stripes

vs. pale stripes, Z¼�2.634, P¼0.042; pale stripes vs. mean stripes,

Z¼2.316, P¼0.094; Table 2 part b). Furthermore, there was a sig-

nificant interaction between the sex of the test fish and that of the

animation fish (LMM, v2¼6.12, P¼0.013, Figure 3B and Table 2).

While the animation’s sex did not elicit different responses in stripe

coloration of females (LMM, v2¼0.294, P¼0.588, Figure 3B),

males became darker when shown a female animation and paler

when shown a male animation (LMM, v2¼9.161, P¼0.003). The

other explanatory variables in the model did not have a significant

effect on stripe darkness, before or after the animation (all P>0.17,

Table 2).

We found a positive, though non-significant trend for males to

exhibit a darker stripe baseline than females (LM, F¼3.501,

P¼0.073, Figure 4, Table 3). The other explanatory variables in the

model did not have a significant effect on baseline stripe darkness

(all P>0.2, Table 3).

Discussion

Our results show that the darkness of the operculum stripes of

N. pulcher reflects an individual’s aggressiveness. In particular,

stripe darkness was strongly related to overt aggressive behaviors

and the amount of operculum displays shown against the ani-

mated opponent. Furthermore, test fish responded to the stripe

darkness of animated stimulus fish by changing their own opercu-

lum stripe darkness rather than by measurable changes in their

behavior.

The relationship between operculum color and aggressive pro-

pensity showed up in the most intense form of aggression, ramming

Table 1. Behavioral responses to the animations

Overt aggression Operculum spreads Restrained aggression

(excluding Op. spreads)

v2 P v2 P v2 P

Baseline stripe darkness 6.840 0.009 4.488 0.034 0.061 0.805

Test fish size 10.058 0.002 6.463 0.011 0.516 0.473

Test fish sex 3.237 0.072 0.026 0.871 0.530 0.467

Animation fish sex 1.515 0.218 0.129 0.720 0.268 0.605

Order of testing 2.796 0.095 2.373 0.123 9.939 0.002

Animation type 1.032 0.793 0.153 0.985 1.943 0.584

Animation type � baseline stripe darkness 4.209 0.240 1.351 0.717 2.510 0.474

Animation fish sex � test fish sex 0.146 0.703 0.448 0.503 1.790 0.181

Marginal R2
GLMM 0.397 0.207 0.184

Conditional R2
GLMM 0.604 0.409 0.182

Notes: Results of GLMMs for overt aggression, operculum spreads, and restrained aggression excluding operculum spreads. P-values were obtained with likeli-

hood ratio tests. Significant P-values are in bold, non-significant trends (0.05<P>0.1) are underlined. Marginal and conditional R2 values were calculated for

each full model, following Nakagawa and Schielzeth (2013).

Figure 2. Baseline stripe darkness and aggression. The frequencies of (A) overt

aggression and (B) operculum spreads and their relationship with stripe dark-

ness (L-values; mind that the stripe darkness is decreasing from left to right).
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and biting, which involves body contact, and in the frontal display

involving the spreading of the opercula. During this behavior the

stripes are pointedly exposed to the opponent. This aggressive

behavior is energy demanding (Taborsky and Grantner 1998). Its

correlation with stripe darkness indicates that the latter may serve as

an honest signal of aggressive propensity, and thus as a badge of

status (Grafen 1990; Price et al. 2008).

Furthermore, the exposure to a simulated opponent caused a

stripe darkening in the test fish. This effect was most pronounced

when an opponent with “pale” stripes was presented. Apparently,

the test subjects were able to distinguish between animated stimuli

that differed only in the darkness of their stripes. The observation

that opponents with pale operculum stripes caused a more intense

darkening of the test subjects’ stripes than opponents with darker

markings suggests that pale individuals were perceived as repre-

senting less of a threat or as being of lower social status. Showing

darker operculum stripes to a less aggressive or subordinate indi-

vidual could convey own dominance to the opponent, which

might lead to competitive success without need for contest escal-

ation. Conflicts between opponents that differ greatly in resource

holding potential might be resolved by displays mainly based on

color signaling. Comparable effects have been described in cha-

meleons Chamaeleo calyptratus, where darkening skin coloration

signals losing and causes a decrease in aggression received (Ligon

2014). In accordance to the hypothesized signal use during fights,

our test fish did not differ in their aggressive behavior exhibited

toward the different animations. Our experimental design aimed

at disentangling the color pattern of stimulus fish from their be-

havior, to assess the response of test subjects only to the color

variation of their rivals. Accordingly, the presented opponents did

not behave coherently with the information contained in their

color signal. As the presented stimulus fish did not respond to the

test subject’s behavior, the adjustment of own color signaling

might be an appropriate response to the perceived differences in

aggressive propensity of opponents as expressed by their opercu-

lum darkness. In accordance with this interpretation, there was

an order effect in aggressive behavior, with fish attacking more

strongly the first animation of the series presented to them, than

the following ones. Neolamprologus pulcher recognizes individual

conspecifics by visual stimuli (Hert 1985; Balshine-Earn and

Lotem 1998; Kohda et al. 2015). As each set of 4 animations pre-

sented to a test subject in our experiment had been created from

the same original image, the test fish apparently habituated to

this perceived opponent, probably because the latter was not re-

sponding to their aggressive behavior.

Figure 3. Changes in stripe darkness depending on animation type and sex. (A) Changes in stripe darkness significantly differed depending on type of animation

(see results part for statistics of the full model). Animation types were “no stripes” (No), “pale stripes” (Pale), “mean stripes” (Mean), and “dark stripes” (Dark).

Asterisks indicate results of the Tukey post-hoc tests. (B) Changes in stripe darkness were dependent on sex of the test fish and of the animation fish. White dots

represent animations of female stimulus images; black dots represent animations of male stimulus images. The Y-axis represents changes in stripe darkness dif-

ference (mind that the stripe darkness is decreasing from bottom to top). Significant differences are visualized with *, while non-significant trends (0.05 <P> 0.1)

are indicated with (*).

Table 2. Change in stripe darkness after exposure to an animation

(a)

LMM model v2 P

Test fish size 0.053 0.819

Test fish sex 4.25 0.039

Animation fish sex 1.62 0.203

Order of testing 1.83 0.176

Animation type 8.44 0.038

Animation sex � test fish sex 6.12 0.013

Marginal R2
GLMM 0.074

Conditional R2
GLMM 0.52

(b)

Tukey post-hoc test on animation type Z P

No stripes vs. pale stripes �2.634 0.042

No stripes vs. mean stripes �0.344 0.986

No stripes vs. dark stripes �1.316 0.552

Pale stripes vs. mean stripes 2.316 0.094

Pale stripes vs. dark stripes 1.332 0.543

Mean stripes vs. dark stripes �0.985 0.758

Notes: (a) The results of the LMM on the change in stripe darkness after the

respective trial. P-values were obtained with a likelihood ratio tests. Marginal

and conditional R2 values were calculated for each full model, following

Nakagawa and Schielzeth (2013). (b) The results of the Tukey post-hoc test

run on animation type. Animation types are “no stripes”, “pale stripes”,

“mean stripes”, “dark stripes”. Significant P-values are depicted in bold, non-

significant trends (0.05<P> 0.1) are underlined.
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At the beginning of our experiment, males tended to have darker

stripes than females. This might suggest that males are more aggres-

sive than females. However, our results suggest the opposite, with

females tending to engage more in overt aggressive interactions than

males. Further evidence on sex differences in aggression of N.

pulcher is, thus far, ambiguous. Within groups containing helpers of

both sexes, there were no sex effects in the aggression of dominants

against subordinates (Taborsky 1985), but in groups with helpers of

only one sex, dominants tended to be more aggressive toward same-

sex subordinates (Mitchell et al. 2009). No sex differences were

identified when analyzing the personality axis of aggression

(Schürch and Heg 2010) as well as territory defense behavior under

natural conditions (Groenewoud et al. 2016). Desjardins et al.

(2006) found that females were more aggressive than males toward

conspecific intruders, while no difference was described by Zöttl et

al (2013), and Witsenburg et al. (2010) observed the opposite effect.

These divergent results point toward a strong context dependence

regarding the occurrence of sex-differences in N. pulcher aggression.

Another explanation for differences in baseline stripe darkness be-

tween sexes could be a difference in response to stress, as the stress

response is known to be connected with the sexual hormone regula-

tion axis (Handa et al. 1994; Tilbrook et al. 2000). However, hor-

monal studies on N. pulcher have so far highlighted differences in

glucocorticoid levels mainly between dominant and subordinate in-

dividuals (Ligocki et al. 2015a), rather than between sexes. Similar

differences between dominants and subordinates in stress hormone

levels have been found also in cooperatively breeding birds and

mammals, where they also appear to be independent of sex (Creel

2001). Nonetheless, we corrected for potential effects of handling

stress on the response of operculum color to the experiment by ana-

lyzing the difference in darkness before and after the experimental

trials.

It is interesting to note that in female test subjects, the operculum

stripes became darker independently of the animation’s sex, while in

males the sex of the animation influenced changes in darkness.

While males confronted with a female animation got darker stripes,

they became paler when confronted with a male animation. Thus,

N. pulcher appears to be able to differentiate between sexes based

on animated 2D pictures alone. The visual cues used to differentiate

between the sexes remain elusive, as we manipulated the darkness of

the stripes in a standardized way, not differentiating between male

and female stimuli. However, stripe darkness appears to indicate an

individual’s aggressive propensity, which is connected to its resource

holding potential (see Briffa et al. 2015). Thus, in a mating context

stripe darkness could signal individual quality, a topic which should

be investigated in future studies. Overall, the results show that the

operculum color pattern of N. pulcher carries information that

could be used in both competitive and mating contexts. This is in ac-

cordance with knowledge about other melanin-based signals (e.g.,

Barlow 1963; West 2002).

Smaller individuals showed more overt aggression and operculum

spreading than larger ones, independently of their stripe darkness.

Prima facie this seems surprising, as larger individuals are usually

more engaged in aggressive interactions and territory defense

(Taborsky and Limberger 1981; Bruintjes and Taborsky 2008; Heg

and Taborsky 2010; Groenewoud et al. 2016). However, field experi-

ments revealed context dependent defense behavior of differently sized

subordinates (Bruintjes and Taborsky 2011; Groenewoud et al.

2016), and differential responses to intruders in dependence of relative

size and rank (Ligocki et al. 2015b; Groenewoud et al. 2016), and of

resource value (O’Connor et al. 2015). In our study, smaller subjects

(overall range 40–45mm) were of similar size as the stimulus fish

image (41 mm). In the size-based hierarchy of N. pulcher groups, com-

petition is highest between similar sized individuals, and fights be-

tween similar sized individuals are more intense (Bruintjes and

Taborsky 2008; Wong and Balshine 2011).

A general problem of computer animated stimuli is that the used

visual devices are tailored to the human visual spectrum (Baldauf

et al. 2008, 2009; Chouinard-Tuly et al. 2017). However, several

fish species are tetrachromatic, being able to see in the ultraviolet

(Carleton et al. 2000; Rick et al. 2006; Baldauf et al. 2008; Nava

et al. 2011) or infrared range (Meuthen et al. 2012). Ambon damsel-

fish Pomacentrus amboinensis for example use UV facial patterns to

discern conspecifics from closely related species living in the same

habitat (Siebeck et al. 2010). It remains to be investigated whether

N. pulcher is able to perceive signals beyond the human sensitivity

range and if so, in which context this ability would be used.

However, in the present study we aimed to clarify the function of

the darkness of operculum stripes, which could hence be studied

without detailed knowledge of the color perception of this species.

In conclusion, our results reveal a clear relationship between

operculum stripe darkness and aggressiveness in N. pulcher.

Individuals with darker stripes showed more overt aggression and

operculum displays. Thus, operculum stripes function as honest

Figure 4. Sex differences in baseline stripe darkness. Baseline stripe darkness

of male and female focal individuals before presentation of the animations.

The Y-axis represents baseline stripe darkness (L-values; mind that the stripe

darkness is decreasing from bottom to top). A non-significant trend

(0.05<P>0.1) is indicated with (*).

Table 3. Baseline stripe darkness

F P

Test fish size 1.400 0.248

Test fish sex 3.501 0.073

Test fish size � test fish sex 0.669 0.421

Adjusted R2
LM 0.118

Notes: Results of the LM on baseline stripe darkness. P-values were obtained

with an F-test. A non significant trend (0.05<P> 0.1) is underlined. The ad-

justed R2 value for the full model is reported.
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signal of aggressive propensity and badge of status. Accordingly,

focal fish’s stripe darkness changed in dependence of the stimulus’

experimentally manipulated operculum stripe darkness. Finally, our

study confirms that N. pulcher reacts predictably to 2D computer

animations, and that these fish are able to discriminate between

sexes and simulated differences in aggressive state using slightly

altered images.
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The virtual lover: variable and easy guided 3D fish as innovative tool in

mate–choice experiments with sailfin mollies. II. Validation. Curr Zool

63:65–74.

Grafen A, 1990. Biological signals as handicaps. J Theor Biol 144:517–546.

Groenewoud F, Frommen JG, Josi D, Tanaka H, Jungwirth A et al., 2016.

Predation risk drives social complexity in cooperative breeders. Proc Natl

Acad Sci USA 113:4104–4109.

Handa RJ, Burgess LH, Kerr JE, O’keefe JA, 1994. Gonadal steroid hormone

receptors and sex differences in the hypothalamo–pituitary–adrenal axis.

Horm Behav 28:464–476.

Hasting G, Rubin A, 2012. Colour spaces: a review of historic and modern col-

our models. S Afr Optom 71:133–143.

Heg D, Brouwer L, Bachar Z, Taborsky M, 2005. Large group size yields

group stability in the cooperatively breeding cichlid Neolamprologus

pulcher. Behaviour 142:1615–1641.

52 Current Zoology, 2017, Vol. 63, No. 1



Heg D, Taborsky M, 2010. Helper response to experimentally manipulated

predation risk in the cooperatively breeding cichlid Neolamprologus

pulcher. PLoS ONE 5:e10784.

Hert E, 1985. Individual recognition of helpers by the breeders in the cichlid

fish Lamprologus brichardi (Poll, 1974). Z Tierpsychol 68:313–325.

Hess S, Fischer S, Taborsky B, 2016. Territorial aggression reduces vigilance

but increases aggression towards predators in a cooperatively breeding fish.

Anim Behav 113:229–235.

Hill B, Roger T, Vorhagen FW, 1997. Comparative analysis of the quantiza-

tion of color spaces on the basis of the CIELAB color-difference formula.

A.C.M. T Graphic 16:109–154.

Hothorn T, Bretz F, Westfall P, 2008. Simultaneous inference in general para-

metric models. Biometr J 50:346–363.

Houde AE, 1987. Mate choice based upon naturally occurring color–pattern

variation in a guppy population. Evolution 41:1–10.

Jiggins CD, Naisbit RE, Coe RL, Mallet J, 2001. Reproductive isolation

caused by colour pattern mimicry. Nature 411:302–305.

Kemp DJ, Wiklund C, 2001. Fighting without weaponry: a review of male–

male contest competition in butterflies. Behav Ecol Sociobiol 49:429–442.

Kohda M, Jordan LA, Hotta T, Kosaka N, Karino K et al., 2015. Facial recog-

nition in a group-living cichlid fish. PLoS ONE 10:e0142552.

Künzler R, Bakker TCM, 1998. Computer animations as a tool in the study of

mating preferences. Behaviour 135:1137–1159.

Laucht S, Dale J, 2012. Development of badges of status in captive male house

sparrows Passer domesticus in relation to the relative ornamentation of

flock-mates. Ethology 118:644–653.

Lehtonen T, Sowersby W, Gagnon K, Wong BB, 2015. Cichlid fish use color-

ation as a cue to assess the threat status of heterospecific intruders. Am Nat

186:547–552.

Ligocki IY, Earley RL, Hellmann JK, Hamilton IM, 2015a. Variation in gluco-

corticoid levels in relation to direct and third-party interactions in a social

cichlid fish. Physiol Behav 151:386–394.

Ligocki IY, Reddon AR, Hellmann JK, O’connor CM, Marsh-Rollo SE et al.,

2015b. Social status influences responses to unfamiliar conspecifics in a co-

operatively breeding fish. Behaviour 152:1821–1839.

Ligon RA, 2014. Defeated chameleons darken dynamically during dyadic dis-

putes to decrease danger from dominants. Behav Ecol Sociobiol

68:1007–1017.

Ligon RA, McGraw KJ, 2013. Chameleons communicate with complex colour

changes during contests: different body regions convey different informa-

tion. Biol Lett 9:20130892.

Lu Y, Zhang G, 2010. The equivalence between likelihood ratio test and F-test

for testing variance component in a balanced one-way random effects

model. J Stat Comput Sim 80:443–450.

M€athger LM, Shashar N, Hanlon RT, 2009. Do cephalopods communicate

using polarized light reflections from their skin? J Exp Biol 212:2133–2140.

Maynard Smith J, 1982. Evolution and the Theory of Games. Cambridge:

Cambridge University Press.

Maynard Smith J, Harper D, 2003. Animal Signals. Oxford: Oxford

University Press.

Mehlis M, Bakker TCM, Frommen JG, 2008. Smells like sib spirit: kin recog-

nition in three-spined sticklebacks Gasterosteus aculeatus is mediated by ol-

factory cues. Anim Cogn 11:643–650.

Mehlis M, Bakker TCM, Langen K, Frommen JG, 2009. Cain and Abel re-

loaded? Kin recognition and male–male aggression in three-spined stickle-

backs Gasterosteus aculeatus L. J Fish Biol 75:2154–2162.

Meuthen D, Rick IP, Thünken T, Baldauf SA, 2012. Visual prey detection by

near-infrared cues in a fish. Naturwissenschaften 99:1063–1066.

Mitchell JS, Jutzeler E, Heg D, Taborsky M, 2009. Dominant members of

cooperatively-breeding groups adjust their behaviour in response to the

sexes of their subordinates. Behaviour 146:1665–1686.

Nakagawa S, Schielzeth H, 2013. A general and simple method for obtaining

R2 from generalized linear mixed-effects models. Methods Ecol Evol

4:133–142.

Nava S, Stephen A, Hamil T, 2011. Visual detection of UV cues by adult zebra-

fish Danio rerio. J Vision 11:1–5.

Neat FC, Taylor AC, Huntingford FA, 1998. Proximate costs of fighting in

male cichlid fish: the role of injuries and energy metabolism. Anim Behav

55:875–882.

O’Connor CM, Reddon AR, Ligocki IY, Hellmann JK, Garvy KA et al., 2015.

Motivation but not body size influences territorial contest dynamics in a

wild cichlid fish. Anim Behav 107:19–29.

O’Connor K, Metcalfe N, Taylor A, 1999. Does darkening signal submission

in territorial contests between juvenile Atlantic salmon, Salmo salar? Anim

Behav 58:1269–1276.

Ord TJ, Peters RA, Evans CS, Taylor AJ, 2002. Digital video playback and vis-

ual communication in lizards. Anim Behav 63:879–890.

Pauers MJ, Kapfer JM, Fendos CE, Berg CS, 2008. Aggressive biases towards

similarly coloured males in Lake Malawi cichlid fishes. Biol Lett

4:156–159.

Price AC, Weadick CJ, Shim J, Rodd FH, 2008. Pigments, patterns, and fish

behavior. Zebrafish 5:297–307.

Qin M, Wong A, Seguin D, Gerlai R, 2014. Induction of social behavior in

zebrafish: live versus computer animated fish as stimuli. Zebrafish

11:185–197.

R Core Team. 2013. R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing. Available

from: http://www.R-project.org.

Reddon AR, Voisin MR, Menon N, Marsh-Rollo SE, Wong MYL et al., 2011.

Rules of engagement for resource contests in a social fish. Anim Behav

82:93–99.

Rhodes SB, Schlupp I, 2012. Rapid and socially induced change of a badge of

status. J Fish Biol 80:722–727.

Rick IP, Modarressie R, Bakker TCM, 2006. UV wavelengths affect female

mate choice in three-spined sticklebacks. Anim Behav 71:307–313.

Riebli T, Avgan B, Bottini A, Duc C, Taborsky M et al., 2011. Behavioural

type affects dominance and growth in staged encounters of cooperatively

breeding cichlids. Anim Behav 81:313–323.

Riebli T, Taborsky M, Chervet N, Apolloni N, Zürcher Y et al., 2012.
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