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Highlight: Native hemiparasitic vine as novel biocontrol is more effective on smaller 

invasive shrubs and shows strong promise for biodiversity protection. 
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Abstract 

Few studies have examined how parasite impact is affected by host size. In a glasshouse 

experiment, we investigated the impact of the Australian native hemiparasitic vine, Cassytha 

pubescens, on a major invasive shrub, Ulex europaeus, of different sizes. Infected plants had 

significantly lower total, shoot and root biomass, but the parasite’s impact was more severe 

on small than large hosts. When infected small but not large hosts had significantly lower 

nodule biomass. Irrespective of size, infection significantly decreased host shoot/root ratio, 

predawn and midday quantum yields, maximum electron transport rates and carbon isotope 

composition, and host nodule biomass g–1 root biomass significantly increased in response to 

infection. Infection did not affect host foliar nitrogen concentration or midday shoot water 

potential. Parasite biomass was significantly lower on small relative to large hosts, but was 

similar g–1 host total biomass. Parasite stem nitrogen, phosphorous and potassium 

concentration were significantly greater when C. pubescens was growing on small than large 

hosts. Our results clearly show that C. pubescens strongly decreases performance of this 

major invasive shrub, especially when hosts are small. This suggests that C. pubescens could 

be used most effectively as a native biocontrol when deployed on smaller hosts. 

Key-words: Alien species, biocontrol, biomass, carbon isotope, chronic photoinhibition, 

holoparasite, nitrogen, parasitic plants, plant invasions, weed 
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Introduction 

Parasitic plants play important ecological roles in many natural ecosystems (Press and 

Phoenix, 2005). For instance, they can directly influence nutrient cycling through the 

production of high quality litter fall and or indirectly by promoting the presence of N 

mineralising bacteria (Bardgett et al., 2006; Quested et al., 2008). More recently, some native 

parasitic plants are showing promise in helping protect biodiversity by having a greater 

impact on invasive than native hosts. For example, in China, the native annual holoparasitic 

vine Cuscuta chinensis has been found to negatively affect performance of invasive but not 

that of congeneric native hosts (Li et al., 2012). Also, in Australia, the native hemiparasitic 

vine Cassytha pubescens has been found to strongly affect health of major invasive 

leguminous shrubs but not that of the native hosts studied (Prider et al., 2009; Shen et al., 

2010; Prider et al., 2011; Cirocco et al., 2018). This differential effect may be underpinned 

by: 1) parasite haustoria connecting more effectively to the vasculature of invasive hosts 

and/or 2) invasive hosts being more effective at acquiring resources than native hosts, with 

both mechanisms resulting in increased parasite resource supply, growth and subsequent 

impact on hosts (Cameron et al., 2006; Cameron and Seel, 2007; Rümer et al., 2007; Li et al., 

2012). 

Other host traits may also influence the degree of parasite impact, such as host size. Parasitic 

plants are likely to encounter hosts of different sizes in nature. One might expect that small 

plants will have lower resource reserves and uptake, and thus supply to parasites, thereby 

supporting a lower parasite load than larger hosts (Li et al., 2015). The end result may be that 

a smaller parasite has the same impact on a small host as a larger parasite on a large host 

(Cirocco et al., 2016a). If resource removal is the main mechanism by which the parasite 

impacts host growth, then following infection it should take longer for a parasite to have a 

significant effect on a large host than a small one. However, studies of parasite effects on 

hosts of different sizes are difficult because controlling for host size can only be achieved in 

host-parasite systems that lend themselves to glasshouse type studies. This enables other 

potentially confounding factors such as host age or dispersal vectors affecting parasite load to 

be controlled.  

Thus, there are very few, if any, studies that have investigated the influence of a parasite on 

hosts of different sizes. Studies that have used host defoliation (as a proxy for herbivory) 

offer indirect insights into the response of hosts of different sizes to infection. One study 
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found that irrespective of whether the perennial C3 grass Elymus nutans was clipped or not, 

the perennial root hemiparsaite Pedicularis kansuensis had no effect on host growth, despite 

the fact that parasite growth was lower on the smaller, clipped hosts (Sui et al., 2015). 

Similarly, the impact of parasites on host growth was found not to be affected by clipping for 

the C4 perennial grass Schizachyrium scoparium and the parasite Pedicularis canadensis 

(Van Hoveln et al., 2011), or for the annual root hemiparasite Odontites litoralis ssp. litoralis 

on the perennial grasses Puccinellia phryganodes and Agrostis stolonifera (Niemelä et al., 

2008). 

Host size can also be manipulated by changing light supply. In a field study, Borowicz and 

Armstrong (2012) found that although plant community biomass was lower in shaded plots, 

the relative negative impact of P. canadensis on host biomass was similar in both sun and 

shade, and light had no effect on parasite growth. Cirocco et al. (2016a) found that although 

the host U. europaeus was smaller in low than high light treatments, the relative impact of 

infection with C. pubescens was the same in both light conditions. Despite the above 

examples, to the best of our knowledge there have been no studies that have directly 

controlled for host size at the commencement of infection.  

Here we investigated the impact of a native perennial hemiparasitic vine (Cassytha 

pubescens) on the invasive perennial leguminous shrub (Ulex europaeus), using hosts of 

different sizes but of the same age. We hypothesized that the impact of the parasite would be 

more severe on small than on larger hosts. To assess host responses to infection we measured 

a number of host traits including growth, photosynthesis, nodulation, water and nutrient 

status. We also predicted that growth of C. pubescens would be greater on larger hosts, but 

that parasite load (i.e. parasite biomass g dwt host-1 biomass) would be similar regardless of 

host size. 

Materials and methods 

Study species 

Ulex europaeus L. (Fabaceae) is an evergreen perennial spiny shrub that can reach 1.5–4 m in 

height and live for around 20–30 years (Tarayre et al., 2007). It can access nitrogen both 

directly from the soil and via associations with Bradyrhizobia (Rodriguez-Echeverria, 2010). 

Ulex europaeus can produce thousands of seeds per annum that may remain viable in the soil 

for decades (Hill et al., 2001; Parsons and Cuthbertson, 2001). It is native to Western Europe 

but has been introduced to all continents and has become a major invasive weed in many 
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parts of the world including Australia (see Hornoy et al., 2013). Indeed, U. europaeus is on 

the world’s 100 worst invasive alien species list (Lowe et al., 2000). Cassytha pubescens R. 

Br. (Lauraceae) is a perennial hemiparasitic vine (approximately 0.5–1.5 mm in diameter) 

native to Australia that attaches to host stems (Weber, 1981; Kokubugata et al., 2012). It 

forms numerous ellipsoid haustoria (2–3 × 1–2.5 mm) that connect to the host xylem, 

removing water and nutrients (McLuckie, 1924; Weber, 1981). C. pubescens does not 

seemingly show host preference but is typically found infecting perennial species (McLuckie, 

1924) including both native and major invasive shrubs such as U. europaeus. 

Experimental set-up 

In early December 2016, seeds of Ulex europaeus were collected from mature plants located 

in Engelbrook Reserve (Mt Lofty Ranges of South Australia: 35°01’17”S; 138°45’60”E). In 

late May 2017, to cue germination they were immersed in near boiling water and allowed to 

cool over a 24 h period. Seeds were then sown in 0.22 litre tubes (5 seeds per tube thinned to 

one per tube after germination) containing Mt Compass sand (pH ~ 4.75). After six months, 

individual seedlings were transplanted into 1.65 litre pots containing the same soil medium. 

Plants were selected based on height and allocated into two treatments (small or large) which 

were approx. 19 cm and 37.5 cm tall, respectively. Height of experimental plants was 

measured again following the completion of the infection process (Supplementary Fig. S1). 

There were 20 small and 20 large U. europaeus which were randomly assigned to infection 

treatments (10 infected and 10 uninfected in each height treatment) with the native parasite C. 

pubescens. Plants were infected using the technique of Shen et al. (2010). In brief, this 

involved placing pots with infected Cytisus scoparius adjacent to potential hosts. Being a 

vine with indeterminate growth the parasite coiled around and attached to the stems of these 

nearby plants. Once the haustoria were fully developed on the stem(s) of newly infected 

individuals the connection from the donor plant was severed. The synchronous infection 

process was initiated in mid-December 2017 and was completed by early March 2018 

(approx. 2.75 months in duration).  

The experiment was conducted in an evaporatively cooled glasshouse at The University of 

Adelaide (Supplementary Figs S2, S3). Small (S) and large (L) uninfected (–) and infected 

(+) plants were randomly allocated into 10 blocks with each block containing one of each 

treatment combination (e.g. Block 1=S1–, S1+, L1– and L1+). At this stage plant height was 

measured again as mentioned and was significantly different between small and large plants 
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(Supplementary Fig. S1). All experimental plants were well-watered and supplied with liquid 

fertiliser (Nitrosol: Rural Research Ltd, Auckland, New Zealand; NPK 8:3:6) monthly as per 

the manufacturers recommended dosage. Plants within blocks were re-randomised fortnightly 

to negate any small light differences within the glasshouse. Treatments (infection × size) ran 

from March 2018 to July 2018 (approx. 4.5 months), after which plants were harvested. Near 

experiment end, (12 days prior to harvesting) height of plants was measured again 

(Supplementary Fig. S1). 

Host and parasite photosynthetic performance and water potential (Ψ) 

Predawn light-use efficiency (Fv/Fm) and rapid light response curves (RLCs) of U. europaeus 

and C. pubescens were measured using a MINI-PAM chlorophyll fluorometer (Walz, 

Effeltrich, Germany) fitted with a leaf-clip (2030–B, Walz, Effeltrich, Germany). Plants for 

RLCs were exposed to natural light for around 1.5 h prior to commencing measurements. As 

RLCs are made up of eight light steps generated by the unit, plants were measured in a 

shaded area (near darkness: PPFD approx. 0–20 μmol m ̶ 2 s ̶ 1) to prevent external light 

contributions during measurement. RLCs were conducted between 11.00–13.00 h on a sunny 

day. Light-use efficiency (ΦPSII) of U. europaeus and C. pubescens was also recorded at the 

sixth light step of the RLCs as a proxy for midday ΦPSII (PPFD for host and parasite = 984 

μmol m ̶ 2 s ̶ 1 ± 7, n=48). From the RLCs, the maximum rate of electron transport (ETRmax) of 

host and parasite was calculated via regression automatically by the WinControl–3 software 

(Ver. 3.25; Walz). Fv/Fm was measured 133 days after treatments had been imposed (DAT) 

and ΦPSII and ETRmax were measured 132 DAT. Ulex europaeus measurements were made on 

a single spine from each uninfected plant, and single spines from infected shoots on infected 

plants (n=8). Measurements on C. pubescens were made 15 cm from the growing tip of the 

parasite (n=8). Blocks 9 and 10 were not included in all measurements (except comparison 

between host and parasite water potentials) as these plants appeared sub-optimal due to an 

insect pest. 

Midday water potentials (Ψ) of U. europaeus and C. pubescens were made with a 

Scholander-type pressure chamber with digital output (PMS Instrument Company, Albany, 

OR). Shoots of uninfected plants and infected shoots of infected plants were cut and 

immediately placed into the chamber and water potential was recorded when xylem sap first 

appeared. Parasite stem (15 cm from growing tip) was measured as per above immediately 

before or after Ψ of its corresponding host was determined. Host water potentials were 
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measured between 140–142 DAT (Blocks 1–8; n=8). Because of time constraints associated 

with measuring hosts and subsequent harvesting for biomass, less replicates were used for 

comparing between host and parasite water potentials. Water potentials for parasite:host 

comparison were made 142–145 DAT (Blocks 7–10: n=4). All Ψ measurements were made 

between 12.00–14.00 h on sunny or mostly sunny days. 

Host and parasite biomass, 13C and nutrient status  

Following water potential measurements, a destructive harvest of above-ground U. europaeus 

including C. pubescens when present was conducted 140–142 DAT (n=8). Below-ground 

material (including nodules) was harvested as soon as possible after aboveground biomass at 

143-152 DAT. All plant material was oven-dried at 60 °C for 7 d. Carbon isotope 

composition (δ13C) and nitrogen (N) concentration of harvested oven-dried spines from 

uninfected and infected U. europaeus and parasite stems (n=8: i.e. Blocks 1–8) were 

determined with an IsoPrime isotope ratio mass spectrometer (GV Instruments, Manchester, 

UK) and Isotope CUBE Elemental Analyser (Elementar Analysensysteme, Hanau, Germany) 

(Flinders Analytical). Inductively coupled plasma spectroscopy (Cuming Smith British 

Petroleum Soil and Plant Laboratory, Western Australia) was used to measure elemental 

nutrient concentration of oven-dried host and parasite material.  

Statistical analysis 

The variances of the data were homogeneous unless otherwise stated. Full factorial two-way 

ANOVA was performed on host data. Where no infection × size interaction was detected, 

independent effects of either infection or size were considered. For example, an independent 

infection effect compared uninfected plants (small and large uninfected plants pooled) with 

infected plants (small and large infected plants pooled). Independent size effect compared 

(small plants uninfected and infected plants pooled) with large plants (large uninfected and 

infected plants pooled). One way ANOVA was used to test the effect of host size on parasite 

parameters.  df, F and sum of square values for host and parasite paramters are presented in 

Supplementary Tables S1 and S2, respectively. All data were analysed using JMP Ver. 4.0.3 

(SAS Institute Inc., 2000) and α=0.05. 
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Results 

Host and parasite biomass and photosynthetic performance 

The significant negative effect of infection on host total biomass was more severe for small 

plants than large ones (infection × size interaction, Table 1). Total biomass of small and large 

infected plants was 88% and 65% lower, respectively, than uninfected plants (Fig. 1A). The 

infection × size interactions for host shoot and root biomass were marginally significant 

(Table 1). These marginally significant effects were confirmed by the conservative Tukey 

HSD pairwise comparison test detecting significant differences among treatments for both 

shoot and root biomass, and should not be ignored (Facelli and Facelli, 2002). Shoot biomass 

of infected small and large plants were 88% and 69% lower than that of uninfected plants, 

respectively (Fig. 1B). Infection significantly decreased root biomass of small and large 

plants by 86% and 54%, respectively (Fig. 1C). Parasite total biomass was significantly 

affected by size of U. europaeus (P<0.0001; data log transformed for homoscedasticity). 

Parasite total biomass on large hosts was approximately 60% greater than that growing on 

small hosts (Fig. 1D). However, size of U. europaeus did not significantly affect parasite 

biomass on a g–1 host total biomass basis (P=0.631; Fig. 1E).  

Regarding other host growth measures, infection significantly decreased S/R by 22% (no 

interaction: Tables 1, 2). Infection significantly decreased nodule biomass of small plants but 

not that of large ones (infection × size interaction, Table 1). Nodule biomass of small and 

large infected plants was 75% and 37% lower, respectively, than uninfected plants (Table 2). 

There was no infection × size interaction found for host nodule biomass g–1 host root 

biomass, but this parameter was independently affected by infection (Table 1). In this case, 

infection significantly increased nodule biomass g–1 host root biomass by 44% (Table 2). 

<Table 1 here> 

<Fig. 1. here> 

<Table 2 here> 

There were no interactions between infection status and host size for Fv/Fm, ΦPSII or ETRmax 

of U. europaeus but they were all independently affected by infection (Table 1; Fig. 2A, C, 

F). Host Fv/Fm, ΦPSII and ETRmax were 8%, 15% and 27% lower, respectively, than for 

uninfected plants (Fig. 2B, D, G). There was also an independent effect of size on ΦPSII of U. 

europaeus with large plants having 13% lower ΦPSII than small plants (Table 1; Fig. 2E). Size 
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of the host had no influence on Fv/Fm (P=0.382), ΦPSII (P=0.293) or ETRmax (P=0.470) of C. 

pubescens (Fig. 3A, B). 

<Fig. 2. here> 

<Table 2 here> 

<Fig. 3. here> 

Host and parasite Ψ, δ13C and nutrient-status 

There was no infection × size interaction detected for Ψ of U. europaeus, however there was 

an independent effect of host size on this parameter (Tables 1, 2). Water potential of small 

plants was 13% less negative than that of large plants (Table 2). Water potential (MPa) of C. 

pubescens was not affected by host size (P=0.865) and was –1.54 ± 0.089 and –1.57 ± 0.176, 

on small and large infected hosts, respectively. There was no significant difference between 

Ψ (MPa) of infected plants –1.43 ± 0.081 and parasite –1.55 ± 0.092, regardless of host size 

(species effect: F1, 11=1.40; P=0.262, n=8). 

Regarding δ13C of U. europaeus, no interaction was found between infection × size, but this 

host parameter was independently affected by both infection and size (Tables 1, 2). δ13C of 

U. europaeus significantly decreased as a result of infection (Table 2). On average, δ13C of 

small U. europaeus was significantly lower than that of large U. europaeus (Table 2). δ13C 

(‰) of C. pubescens was not affected by host size (P=0.303) and was –28.8 ± 0.245 and –

28.5 ± 0.166 on small and large hosts, respectively. However, δ13C was significantly different 

between host and parasite (F1, 28=314; P<0.0001). δ13C (‰) of infected U. europaeus (–32.3 

± 0.196) was significantly lower relative to that of C. pubescens (–28.7 ± 0.149), regardless 

of host size (n=16). There were no significant treatment effects found for foliar tissue N 

concentration of U. europaeus (Table 1; Fig. 4A). However, an infection × size interaction 

was found for host Fe concentration (Table 1). Infection significantly increased Fe of small 

plants by 75%, whereas the parasite had no effect on Fe concentration of large plants (Fig. 

4B). Host size significantly affected the concentration of nitrogen (P=0.002), phosphorous 

(P=0.010) and potassium (P=0.0002) in the parasite. Nitrogen, phosphorous and potassium 

concentration in parasite stems on small hosts were 16%, 36% and 27% higher, respectively, 

than those supported by large hosts (Fig. 4C, D, E). 

<Fig. 4. here> 
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Discussion 

Supporting our hypothesis, plants infected with C. pubescens had significantly lower growth 

and nodulation than uninfected U. europaeus, but the effects were greater when hosts were 

small. Small hosts also supported significantly less parasite biomass than larger hosts, 

although parasite biomass g dwt host-1 was similar for both size treatments. 

Total and shoot biomass of infected, small U. europeaus were both 88% lower than for 

uninfected plants, whereas the differences for large infected plants were 65% and 69%, 

respectively. Similarly, Li et al. (2015) found that the effect of Cuscuta australis on host total 

biomass was significantly greater for younger Bidens pilosa than for older hosts. We also 

found that host root biomass was significantly lower when infected with C. pubescens, but 

also more severely so for small plants (86%) than large plants (54%). Again, a similar result 

was reported by Li et al. (2015), where root biomass of young (but not older hosts) was 

significantly lower than for uninfected B. pilosa. We found that infection significantly 

diminished growth of large plants (albeit less severely), whereas Li et al. (2015) found that 

infection had no significant effect on growth measures of oldest (largest) B. pilosa. This 

discrepancy between findings may be due to the parasite negatively affecting photosynthetic 

performance of both small and large hosts in our study, whereas in Li et al. (2015) the 

parasite only affected photosynthesis of younger plants. It might also be due to plants in our 

experiment being infected for nearly 4 times longer than those in Li et al. (2015). Here, the 

stronger infection effect on small plants may be due to small plants having higher water 

availability and water potential, making it less difficult for the parasite to extract resources. 

Indeed, soil in pots containing small plants retained water for longer (pers. obs.), small plants 

were more profligate in their water-use (as indicated by significantly lower δ13C, size effect, 

Table 1) and had significantly higher Ψ than large plants (Table 2). All of the above would 

have facilitated removal of resources by the parasite. Parasite stems were significantly 

enriched in nutrients when growing on small rather than large hosts (Fig. 4C, D, E). This is 

supported by earlier work in which C. pubescens more severely affected growth of U. 

europaeus in high relative to low water conditions (Cirocco et al., 2016b). The stronger effect 

on small plants may also have been due to smaller plants having lower resource acquisition 

and initial reserves than large hosts, resulting in greater sensitivity to infection. 

Large hosts supported twice as much total parasite biomass as small ones. Li et al. (2015) 

also found that parasite biomass significantly increased with increasing age and, size of B. 
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pilosa. It is likely that larger hosts would have a greater capacity for resource supply to the 

parasite, explaining why parasites in both studies grew more on larger plants (Li et al., 2015). 

Nutrient and water supply is likely to be a major determinant of growth, particularly in 

parasitic vines with indeterminate growth like Cassytha and Cuscuta. This is further 

supported by the fact that parasite biomass g dwt host–1 was similar for both the small and 

large hosts in our study (Fig. 1E). By contrast, Li et al. (2015) found that Cuscuta australis 

biomass g dwt host–1 was significantly higher on younger than older (larger sized) hosts. This 

was likely due to the lack of any significant effect of the parasite on host biomass of older B. 

pilosa. In our study, one might expect parasite biomass g dwt host–1 to be higher on large 

plants as their biomass was less affected by infection. The fact that this was not the case may 

be due to large plants having significantly lower Ψ thereby making it more difficult for the 

parasite to extract resoucres. There is a possibility that the parasite might be able to adjust its 

resource acquisition depending on host size (Kabiri et al., 2017), or a combination of both 

host and parsite regulation of resource transfer explaining our finding.  

As with host growth, C. pubescens had a greater impact on nodule biomass of small hosts. 

This contrasts with the results of Cirocco et al. (2016b) who found that although the parasite 

more severely affected growth of U. europaeus in high (HW) relative to low water (LW) 

conditions, host nodule biomass was similarly impacted, irrespective of water supply. In 

another study we found that growth and nodule biomass of U. europaeus were both 

negatively affected by C. pubescens regardless of N supply (Cirocco et al., 2017). Studies 

have found that parasitic plants affect host nodulation in some cases but not others (e.g. 

Tennakoon et al., 1997; Gao et al., 2019; Sui et al., 2019). Here, nodule biomass of small 

hosts may have been lower simply because there was less root biomass as a result of 

infection.  

Nodule biomass (Nod) g–1 host root dwt was significantly increased by infection, regardless 

of host size. By contrast, Cirocco et al. (2016b) found that U. europaeus infected with C. 

pubescens had significantly lower Nod g–1 host root dwt than uninfected plants. On the other 

hand, Cirocco et al. (2017) found no difference between Nod g–1 host root dwt of infected 

and uninfected plants. It is unclear why these results differ. Here, although no interaction was 

found, Nod g–1 host root dwt was almost twice as high in small hosts as in large ones (Table 

2). The higher Nod g–1 host root dwt of the small hosts may have resulted in higher rates of 

N-fixation g–1 root biomass in response to N removal by the parasite (Fig. 4C). This 

presumably greater engagement with rhizobia could lower soil pH around the host roots, 
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leading to increased mobility of iron (Tang et al., 1999; Houmani et al., 2015). This may 

explain the 75% higher iron concentration in spines of small hosts relative to large hosts and 

uninfected plants (Fig. 4B). Similarly, significant increases in iron and aluminium of U. 

europaeus in response to C. pubescens have been consistently found across three sites in the 

field (Cirocco et al., 2018). 

The effects of C. pubescens on host growth and nodulation may in part be explained by 

significant infection effects on host photosynthesis (proxy: ETRmax), irrespective of host size 

(Fig. 2G). Cassytha pubescens has also previously been reported to negatively affect 

photosynthesis of a number of invasive hosts, including U. europaeus (Prider et al., 2009; 

Shen et al., 2010; Cirocco et al., 2016a; Cirocco et al., 2017; Cirocco et al., 2018). By 

contrast, Li et al. (2015) found that Cuscuta australis significantly affected photosynthesis of 

young hosts but not that of older ones. Examples from other systems generally show that 

holoparasites (e.g. Orobanche, Cuscuta) can increase or decrease host photosynthesis while 

hemiparasites decrease (e.g. Striga) or have no discernible effect on this process (Johnson 

and Choinski, 1993; Seel and Press, 1996; Watling and Press, 2001; Hwangbo et al., 2003; 

Reblin et al., 2006). Host photosynthesis decreasing in response to infection is typically 

attributed to parasite-induced nitrogen and or stomatal limitations (Taylor et al., 1996; Chen 

et al., 2011; Jokinen and Irving, 2019). In our study, it is not clear why photosynthesis was 

lower in infected plants as host Ψ and nitrogen-status were unaffected by infection. Also, 

infected plants had significantly lower δ13C than uninfected plants (Table 2) suggesting that 

infection did not trigger a decrease in host stomatal conductance.  

Lower rates of host photosynthesis resulting from infection would have led to an increase in 

the ratio of PPFD to photosynthesis, thereby creating conditions of excess light (Demmig-

Adams and Adams, 1992). Prolonged plant exposure to excess light can result in chronic 

photoinhibition as indicated by decreases in Fv/Fm (Demmig-Adams and Adams, 2006). Here, 

host Fv/Fm was significantly lower than that of uninfected plants, regardless of host size. C. 

pubescens also significantly decreased Fv/Fm of U. europaeus both in the field and 

irrespective of water availability in the glasshouse (Cirocco et al., 2016b, 2018). In 

glasshouse but not field conditions, C. pubescens significantly decreased Fv/Fm of the 

invasive host Cytisus scoparius (Prider et al., 2009; Shen et al., 2010). However, this native 

parasite has not been found to affect Fv/Fm of any native hosts studied so far (Prider et al., 

2009; Cirocco et al., 2015). Significant declines in Fv/Fm can translate into strong decreases 

in host C over time (Gurney et al., 2002) and thus, along with effects on maximum rates of 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/eraa140/5809316 by guest on 06 April 2020



Acc
ep

te
d 

M
an

us
cr

ipt

 

14 
 

photosynthesis, may also explain why infection decreased growth and nodulation of both 

small and large hosts. 

As mentioned, infected U.europaeus had significantly lower δ13C than uninfected plants, 

regardless of host size. Similar results have been reported for this host in both field and 

glasshouse experiments (Cirocco et al., 2016b, 2018). However, the difference between δ13C 

of infected and uninfected U. europaeus in the current study was twice that (1.2‰) for small 

plants as for large ones (0.5‰). These findings suggest that U. europaeus, particularly, when 

small, is more profligate in its water-use. This response may be triggered by higher soil water 

availability due to the smaller size of plants, and may compensate to some degree for 

resource removal by the parasite. δ13C of C. pubescens was also significantly higher than that 

of the host, irrespective of size, as similarly found for Cirocco et al. (2016b, 2018). By 

contrast, Scalon and Wright (2015) found that mistletoes typically maintain lower δ13C than 

their hosts, particularly in warmer environments. The higher δ13C of C. pubescens suggests 

that the parasite is more conservative in its water-use than its host which may be a 

consequence of being leafless and having much lower stomatal density than hosts. It might 

also signal a degree of parasite heterotrophy (Cernusak et al., 2004).  

Conclusion 

In line with our hypothesis, C. pubescens had a greater impact on total, shoot, root and nodule 

biomass of small plants relative to large ones. The stronger infection effects on small hosts 

could be explained by small plants having higher water availability thereby enabling greater 

removal of resources by the parasite. Although parasite stems on small hosts were nutrient 

enriched relative to those on large hosts, parasite biomass g dwt host–1 of small plants was no 

different from that of large plants. Parasite growth on small hosts was possibly constrained by 

infection effects on host roots and nodules (likely restricting resource acquisition) despite 

them having almost double the nodules g–1 roots of large infected hosts. Thus, as predicted, 

parasite growth seems tightly regulated by host growth. In addition, effects on physiological 

processes (e.g. photosynthesis) may in part also help explain why hosts of both sizes were 

affected by infection. Future studies should include investigating the effect of this native 

parasite on hosts of different sizes in a natural setting. For example, a thicket of U. europaeus 

very large in size may support very large parasite biomass (Supplementary Fig. S4) and the 

associated impact of C. pubescens may be similar to that of smaller parasite on smaller 

plants. However, it may take longer for the parasite to exert a negative effect on large plants 
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which in part may also explain why they were more tolerant to infection in our study. Our 

data continue to support the potential-use of this novel native biocontrol and that it could be 

particularly effective when invasive shrubs are smaller in size. For applied purposes this may 

entail targeting parasite deployment on invasive shrubs either soon after germination or 

following mechanical pruning. Plant invasions are one of the major threats to global 

biodiversity (Vilà et al., 2011). If successful, C. pubescens could be used to help mitigate the 

devastating economic and environmental impacts of invasive shrubs and play a key role in 

biodiversity protection. 
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Table 1. P-values for independent effects of infection with C. pubescens (I), size of U. 

europaeus and their interaction (I × S) on total, shoot and root biomass, shoot/root ratio 

(S/R), nodule biomass (Nod), Nod g–1 host root biomass, predawn and midday quantum 

yields (Fv/Fm, ΦPSII), maximum electron transport rates (ETRmax), midday water potential (Ψ), 

carbon isotope composition (δ13C), foliar nitrogen (N) and iron (Fe) concentration of U. 

europaeus 

 Total Shoot Root S/R Nod Nod 

g–1 

root 

Fv/F

m 

ΦPSI

I 

ETRm

ax 

Ψ δ13C N Fe 

I <0.00

01 

<0.00

01 

<0.00

01 

0.02

0 

<0.00

01 

0.01

3 

0.000

4 

0.02

6 

0.003 0.77

9 

0.000

7 

0.92

5 

0.001 

S <0.00

01 

<0.00

01 

0.000

5 

0.19

3 

0.011 0.10

5 

0.172 0.04

1 

0.113 0.04

3 

0.002 0.22

8 

0.039 

I 

×

 

S 

0.053 0.066 0.068 0.55

9 

0.029 0.66

2 

0.832 0.39

4 

0.415 0.23

5 

0.184 0.74

2 

0.000

5 

 

Significant and marginally significant effects are in bold; df, F and sum of square values are 

presented in Supplementary Table S1. Total, shoot, root and Nod biomass (square root 

transformed); ETRmax, Nod g–1 host root biomass and Fe (log transformed) to achieve 

homoscedasticity. 
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Table 2. Shoot/root ratio (S/R), nodule biomass (Nod; g dwt), Nod g-1 host root biomass, 

midday water potential (Ψ; MPa) and carbon isotope values (δ13C; ‰) of small (S) or large 

(L) U. europaeus either uninfected (minus) or infected (plus) with C. pubescens  

 S/R Nod Nod g-1 root Ψ δ13C 

Treatment      

S– 3.09 ± 0.319 0.487 ± 

0.057a 

0.049 ± 0.004 −1.44 ± 0.082 −31.6 ± 0.223 

S+ 2.59 ± 0.301 0.120 ± 

0.018b 

0.100 ± 0.020 −1.30 ± 0.094 −32.8 ± 0.240 

L– 2.89 ± 0.169 0.511 ± 

0.050a 

0.039 ± 0.003 −1.53 ± 0.105 −31.2 ± 0.285 

L+ 2.07 ± 0.258 0.323 ± 

0.061a 

0.058 ± 0.007 −1.62 ± 0.105 −31.7 ± 0.141 

Infection      

– 2.99 ± 

0.176a 

N/A 0.044 ± 

0.003a 

−1.48 ± 0.056 −31.4 ± 

0.185a 

+ 2.33 ± 

0.203b 

N/A 0.079 ± 

0.011b 

−1.43 ± 0.067 −32.3 ± 

0.196b 

Size      

S 2.84 ± 0.222 N/A 0.074 ± 0.012 −1.37 ± 

0.063a 

−32.2 ± 

0.220a 

L 2.48 ± 0.183 N/A 0.049 ± 0.004 −1.58 ± 

0.073b 

−31.4 ± 

0.170b 

 

Data are means (± 1 SE), Treatments: n=8, Infection or Size n=16 and different letters 

(vertically) signify significant difference. Significant infection × size interaction for nodule 

biomass, independent infection effect on S/R, Nod g-1 root and δ13C and significant 

independent size effect on Ψ and δ13C. 
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Fig. 1. Total (A) shoot (B) and root (C) biomass of small and large U. europaeus either 

uninfected (white bars) or infected (light grey bars) with C. pubescens. Total parasite biomass 

(D) and parasite biomass per unit total host biomass (E) for C. pubescens when infecting 

either small or large U. europaeus. Data are means (±1 SE), different letters signify 

significant differences and n=8. 

Fig. 2. (A) Predawn (Fv/Fm) and (C) midday quantum yield (ΦPSII) and (F) maximum electron 

transport rate (ETRmax) of small and large U. europaeus either uninfected (white bar) or 

infected (light grey bar) with C. pubescens. Independent effect of infection on (B) predawn 

and (D) midday quantum yield and (G) maximum electron transport rate of U. europaeus. 

Independent effect of size on (E) midday quantum yield of host (dotted bars). Data are means 

(±1 SE), different letters signify significant differences, (A, C, F) n=8 and (B, D, E) n=16. 

Fig. 3. (A) Predawn (Fv/Fm) and (B) midday quantum yield (ΦPSII) and (C) maximum 

electron transport rate (ETRmax) of C. pubescens when infecting small or large U. europaeus. 

Data are means (±1 SE), no significant differences and n=8. 

Fig. 4. Spine nitrogen (A) and iron (B) concentration of small or large U. europaeus when 

uninfected (white bar) or infected (light grey bar) with C. pubescens. (C) Nitrogen, (D) 

phosphorous and (E) potassium concentration of stems of C. pubescens when infecting small 

or large U. europaeus. Data are means (±1 SE), different letters signify significant 

differences, (A, C) n=8 and (B, D, E) n=4. 
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