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Abstract
Aims/hypothesis Abnormal serum IGF-1 levels are associated with an increased risk of type 2 diabetes and cardiovascular
disease. However, the causal role of IGF-1 levels within the normal range in cardiometabolic disease remains unclear. We
employed Mendelian randomisation to explore the associations between genetically predicted serum IGF-1 levels and cardio-
metabolic diseases.
Methods Serum IGF-1 levels were predicted using 416 SNPs associated with IGF-1 levels among 358,072 individuals in UK
Biobank. Genetic association estimates for the outcomes were obtained from consortia of type 2 diabetes (74,124 cases, 824,006
controls), coronary artery disease (60,801 cases, 123,504 controls), heart failure (47,309 cases, 930,014 controls), atrial fibril-
lation (65,446 cases, 522,744 controls), and ischaemic stroke (60,341 cases, 454,450 controls).
Results Genetic predisposition to elevated serum IGF-1 levels was associated with higher risk of type 2 diabetes and coronary
artery disease. The OR (95% CI) per SD increment in IGF-1 level was 1.14 (1.05, 1.24) for type 2 diabetes and 1.09 (1.02, 1.16)
for coronary artery disease. The association between IGF-1 and coronary artery disease was attenuated after adjustment for type 2
diabetes (OR 1.06 [95% CI 1.00, 1.13]), suggesting that the association may be partly mediated via type 2 diabetes. There was
limited evidence of associations between IGF-1 levels and heart failure, atrial fibrillation and ischaemic stroke.
Conclusions/interpretation This study found evidence that increased IGF-1 levels may be causally associated with higher risk of
type 2 diabetes.
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Abbreviations
AFGen Atrial Fibrillation Consortium
DIAGRAM Diabetes Genetics Replication and Meta-

analysis

GWAS Genome-wide association study
IVW Inverse-variance weighted
MR Mendelian randomisation
PRESSO Pleiotropy Residual Sum and Outlier

Introduction

IGF-1 is a polypeptide hormone that is structurally similar to
proinsulin. IGF-1 is synthesised primarily in the liver upon
stimulation by growth hormone and is a key mediator of
growth hormone-stimulated growth and other anabolic activ-
ities in many cells and tissues [1]. Both pathological excess, as
in acromegaly, and deficiency of IGF-1 are associated with
glucose intolerance, insulin resistance and increased risk of
type 2 diabetes and cardiovascular morbidity and mortality
[1, 2]. However, the effects of high serum IGF-1 levels within
the normal range on cardiometabolic diseases remains
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unclear. Several observational studies [3–15], although not all
[16–19], have reported the association of either low or high
circulating total IGF-1 levels with type 2 diabetes and differ-
ent cardiovascular diseases. Nevertheless, because underlying
disease may influence IGF-1 levels, and observational studies
are vulnerable to confounding, causality cannot be inferred
based on available data.

Mendelian randomisation (MR) is a method to address
causality in observational studies using one or multiple genet-
ic variants affecting the risk factor as a genetic instrument for
the effect of the risk factor on disease. Here, we used the MR
design to investigate the associations of long-term increased
IGF-1 levels with type 2 diabetes and major cardiovascular
diseases. In secondary analyses, we explored the associations
of genetically predicted IGF-1 levels with components of the
metabolic syndrome. Given the important role of IGF-1 in
growth, we also assessed the association of genetically
predicted IGF-1 levels with height, as a positive control.

Methods

Genetic instrument for IGF-1 Instrumental variables for serum
IGF-1 levels were selected from a genome-wide association
study (GWAS) of 358,072 European-descent individuals in
UK Biobank [20]. Among the genome-wide significant
(p < 5 × 10−8) SNPs identified in that GWAS, we selected
416 SNPs after exclusion of correlated SNPs based on a

linkage disequilibrium threshold of R2 <0.01. The SNPs were
estimated to explain 9.4% of the variance in IGF-1 levels, and
the F statistic was 80.9. In UK Biobank the mean (range) age
of participants is 56.5 (37–73) years, the mean (SD) IGF-1
concentration is 21.4 (5.7) nmol/l and the IGF-1 concentration
in the first and ninth decile is 14.2 nmol/l and 28.4 nmol/l,
respectively.

Outcome data sources Summary-level data for the genetic
associations with the outcomes were obtained from meta-
analyses of GWASs [21–33] or UK Biobank for BP. We used
the largest publicly available GWAS dataset for each expo-
sure, except for the glycaemic traits where the largest GWAS
dataset [34] only included 29 of the 416 SNPs for IGF-1.
Information on the data sources is provided in Table 1. In
brief, for the cardiometabolic diseases, we used data from
the Atrial Fibrillation Consortium (AFGen) [26, 27], the
Coronary Artery Disease Genome-wide Replication and
Meta-analysis plus The Coronary Artery Disease Genetics
consortium [24], the Diabetes Genetics Replication and
Meta-analysis (DIAGRAM) consortium [21, 22], the Heart
Failure Molecular Epidemiology for Therapeutic Targets
(HERMES) consortium [28] and the MEGASTROKE
consortium [25]. For atrial fibrillation and type 2 diabetes,
we additionally used data from the FinnGen consortium
[23], which had no sample overlap with the AFGen and
DIAGRAM consortia. However, some studies in the
FinnGen consortium were part of the other consortia and
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therefore not used for other outcomes. For SNPs that were
unavailable in the outcome dataset, proxy SNPs in linkage
disequilibrium (R2 ≥ 0.8) with the IGF-1-associated SNPs
were used when available. Most GWASs adjusted for sex
and genetic principal components. Summary statistics for the
SNPs related to IGF-1 levels and the corresponding statistics
for the cardiometabolic diseases are presented in electronic
supplementary material (ESM) Tables 1–5. All studies includ-
ed in the GWASs had been approved by an ethical review
committee, and participants provided informed consent. This
MR study was approved by the Swedish Ethical Review
Authority.

Statistical analysis The MR estimates were obtained using the
inverse-variance weighted (IVW) method under a multiplica-
tive random-effects model. The I2 statistic was used to assess
heterogeneity between the estimates obtained from individual
SNPs. Sensitivity analyses using the weighted median [35],
MR Pleiotropy Residual Sum and Outlier (PRESSO) [36] and
MR-Egger [35] methods were conducted. The weighted medi-
an method provides a valid estimate if at least 50% of the
weight originates from non-pleiotropic SNPs. The MR-
PRESSOmethod andMR-Egger method can adjust for poten-
tial outliers and directional pleiotropy, respectively. To
address possible pleiotropy with other members of the IGF

Table 1 Data sources for the
outcomes Outcome No. of

cases
No. of
controls

Population No. of SNPs
used for
IGF-1

Consortium

Cardiometabolic disease

Type 2 diabetes 74,124 824,006 European 416 DIAGRAM [21]

Type 2 diabetesa 26,676 132,532 European 416 DIAGRAM [22]

Type 2 diabetesa 11,006 82,655 European 393 FinnGen [23]

Coronary artery
disease

60,801 123,504 Mixed 408 CARDIoGRAMplusC4D
[24]

Atrial fibrillation 65,446 522,744 Mixed 416 AFGen (2018 dataset) [26]

Atrial fibrillationa 17,931 115,142 Mixed 416 AFGen (2017 dataset) [27]

Atrial fibrillationa 7244 56,378 European 393 FinnGen [23]

Heart failure 47,309 930,014 European 413 HERMES [28]

Ischaemic stroke 60,341 454,450 Mixed 398 MEGASTROKE [25]

Glycaemic traitsb

Fasting glucose NA 46,186 European 297 MAGIC [29]

Fasting insulin NA 38,238 European 298 MAGIC [29]

HOMA-IR NA 46,187 European 297 MAGIC [29]

Serum lipidsb

HDL-cholesterol NA 187,167 Mixed 296 GLGC [30]

LDL-cholesterol NA 173,083 Mixed 296 GLGC [30]

Total cholesterol NA 187,365 Mixed 296 GLGC [30]

Triacylglycerols NA 177,861 Mixed 296 GLGC [30]

BPb

Systolic BP NA 317,754 European 414 UK Biobank (Neale Lab)

Diastolic BP NA 317,756 European 414 UK Biobank (Neale Lab)

Body compositionb

BMI NA 339,224 Mixed 297 GIANT [31]

Waist circumference NA 224,459 European 297 GIANT [32]

WHR NA 224,459 European 297 GIANT [32]

Height NA 253,288 European 296 GIANT [33]

a This data source did not have participant overlap with the data source for the exposure (IGF-1 levels) and was
used as a supplementary analysis
b Summary association estimates for these outcomes were obtained through the MR-Base platform (database
version 0.2.0, 17 December 2017) [40]

CARDIoGRAMplusC4D, Coronary Artery Disease Genome-wide Replication and Meta-analysis plus The
Coronary Artery Disease Genetics; GIANT, Genetic Investigation of Anthropometric Traits; GLGC, Global
Lipids Genetics Consortium; HERMES, Heart Failure Molecular Epidemiology for Therapeutic Targets;
MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium
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axis, we conducted a sensitivity analysis excluding three SNPs
in the IGFBP3 or IGF2 gene regions. Multivariable MR anal-
ysis was used to evaluate the direct effect of IGF-1 levels on
cardiometabolic diseases not mediated by fasting insulin
levels, insulin resistance or height. This analysis was carried
out to assess whether any association between IGF-1 and the
cardiometabolic diseases could be mediated by those factors.
Multivariable MR analysis [37] was also used to estimate the
direct effect of IGF-1 levels on coronary artery disease not
mediated via type 2 diabetes.

Due to partial sample overlap in the data source for IGF-1
and the largest GWASs for type 2 diabetes [21] and atrial
fibrillation [26], we performed a supplementary analysis using
data from previous smaller GWASs for these outcomes [22,
27] and the FinnGen consortium [23] that did not include UK
Biobank. The heart failure dataset also included UK Biobank
participants but no other large and publicly available GWAS
dataset without UK Biobank was available, and the FINRISK
study from the FinnGen consortiumwere included in the heart
failure GWAS. There was no sample overlap for the data
source for IGF-1 and the datasets for coronary artery disease
and ischaemic stroke.

All presented results are expressed per SD increase in IGF-
1 levels (equivalent to about 5.7 nmol/l in UK Biobank). The
statistical analyses were performed using the mrrobust pack-
age in Stata [38], the MendelianRandomization package in R
[39] and the MR-Base platform [40].

Results

Cardiometabolic diseases Genetically predicted IGF-1 levels
were positively associated with type 2 diabetes and coronary
artery disease in the primary (IVW) analysis (Fig. 1). The OR
(95% CI) per SD increase in genetically predicted IGF-1
levels was 1.14 (1.05, 1.24) for type 2 diabetes and 1.09
(1.02, 1.16) for coronary artery disease. The association with
type 2 diabetes was confirmed when using data from a smaller
dataset from the DIAGRAM consortium that did not include
UK Biobank (OR 1.13 [95% CI 1.03, 1.25]) and in the
FinnGen consortium (OR 1.20 [95% CI 1.08, 1.34]).
Furthermore, the association between genetically predicted
IGF-1 levels and type 2 diabetes was consistent in sensitivity
analyses based on the weighted median and MR-PRESSO
methods (Fig. 1). The OR estimate for type 2 diabetes did
not change after exclusion of three SNPs in the IGFBP3 or
IGF2 gene regions. The MR-Egger analysis showed no indi-
cation of directional pleiotropy (p for intercept = 0.464). The
association between IGF-1 and coronary artery disease
persisted in the MR-PRESSO analysis but not in the weighted
median and MR-Egger analyses; however, the precision was
low in the MR-Egger analysis and there was no evidence of
directional pleiotropy (p for intercept = 0.116) (Fig. 1).

Exclusion of the three SNPs in the IGFBP3 or IGF2 gene
regions did not essentially alter the results for coronary artery
disease (OR 1.10 [95% CI 1.03, 1.17]).

There was no strong evidence for associations between
IGF-1 levels and heart failure (OR 1.01 [95% CI 0.97,
1.06]), atrial fibrillation (OR 1.03 [95% CI 0.97, 1.08]) or
ischaemic stroke (OR 1.03 [95% CI 0.98, 1.08]) (Fig. 1).
For atrial fibrillation, the OR was 1.05 (95% CI 0.98, 1.13)
when using a smaller GWAS dataset from the AFGen that did
not include UK Biobank, and the OR was 0.92 (95% CI 0.82,
1.04) in the FinnGen consortium. For subtypes of ischaemic
stroke, the ORs (95% CIs) were 0.93 (0.83, 1.04) for large
artery stroke, 1.10 (0.99, 1.06) for small vessel stroke and 1.06
(0.96, 1.16) for cardioembolic stroke.

Components of the metabolic syndrome and height There
was strong or suggestive evidence that genetically higher
IGF-1 levels were associated with higher fasting glucose
(p = 6.96 × 10−3) and insulin (p = 6.31 × 10−5) levels,
increased insulin resistance (p = 6.63 × 10−5), higher diastolic
BP (p = 0.016), lower total cholesterol (p = 0.021) and triacyl-
glycerol (p = 1.31 × 10−3) levels and higher height (p = 6.46 ×
10−4) in the primary analysis (Fig. 2). The most consistent
associations across sensitivity analyses were with fasting insu-
lin levels, insulin resistance and height (Fig. 2).

Direct effects of IGF-1 The associations of genetically predict-
ed IGF-1 levels with type 2 diabetes and coronary artery
disease were similar after adjustment for insulin levels (ESM
Table 6) or insulin resistance (ESM Table 7), whereas adjust-
ment for height resulted in somewhat stronger associations
(ESM Table 8). The lack of associations with the other
outcomes persisted after adjustment for insulin levels, insulin
resistance and height (ESM Tables 6–8). The association
between genetically predicted IGF-1 levels and coronary
artery disease was attenuated after adjustment for type 2
diabetes (OR 1.06 [95% CI 1.00, 1.13], p = 0.063).

Discussion

ThisMR study showed that genetically higher IGF-1 levels were
associated with increased risk of type 2 diabetes and coronary
artery disease, though results for coronary artery disease were not
consistent across all sensitivity analyses. Genetically higher IGF-
1 levels were additionally associated with some components of
the metabolic syndrome, the most robust association being with
fasting insulin and insulin resistance.

Our findings are in line with the results of two nested case–
control studies, which demonstrated that high IGF-1 levels were
associated with a statistically significant [10] or a suggestive [15]
increased risk of type 2 diabetes. Another nested case–control
study found that high levels of free IGF-1 were associated with
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higher risk of type 2 diabetes in individuals with insulin levels
above the median, but with lower risk in individuals with insulin
levels below the median [41]. However, a null association
between IGF-1 levels and type 2 diabetes has also been reported
[9, 18] and a cohort study of 615 participants showed that the 51
participants who developed impaired glucose tolerance or type 2
diabetes during a follow-up period of 4.5 years had lower IGF-1
levels compared with those who did not develop impaired
glucose tolerance [5]. The reason for these conflicting results is
unclear. Nevertheless, the relatively small sample sizes (ranging
from around 50 to 800 cases) in previous studies and potential
reverse causality, whereby the disease process caused changes in
IGF-1 levels several years before the clinical diagnosis of type 2
diabetes, may have resulted in null or spurious findings.

Our findings for IGF-1 levels and cardiovascular disease
corroborate those of some but not all observational studies. In a
cohort study of 2901 Swedish men (including 589 incident
cardiovascular events), both high (>80th percentile) and low
(<20th percentile) IGF-1 levels were associated with increased
risk of any cardiovascular event, and high but not low IGF-1
levels were associated with a statistically significant higher risk
of coronary artery disease [12]. Similarly, in a nested case–
control study of US women (245 myocardial infarction cases
and 490 matched controls), the multivariable-adjusted RR
(95% CI) of myocardial infarction was 2.09 (1.17, 3.72) and
1.46 (0.79, 2.72) for the third and fourth highest quartile of
IGF-1 levels, respectively, when compared with the bottom

quartile [8]. IGF-1 levels were also positively associated with
coronary artery disease in a cross-sectional study of 6773
German adults [9]. In contrast, some other cross-sectional and
nested case–control studies (including 57–374 cases) reported
that elevated IGF-1 levels were associated with lower prevalence
or incidence of coronary artery disease [3, 4, 11], heart failure [6],
atrial fibrillation [13] and ischaemic stroke [7, 14]. Other cross-
sectional and nested case–control studies showed a null associa-
tion between IGF-1 levels and coronary artery disease (167–
1013 cases) [16, 17, 19] and cerebrovascular events (273 cases)
[12]. The inconsistent results might reflect small sample sizes in
most previous studies, reverse causality or residual confounding.

The main strength of this study is the MR design, which
reduced confounding and reverse causation bias. Another
strength is the large sample sizes for both the data source (UK
Biobank) used to derive the genetic associationwith IGF-1 levels
and for the data sources used for genetic associations with the
outcomes. This, along with the strong genetic instrument for
serum IGF-1 levels, resulted in high precision of the results in
the primary analyses. The estimates obtained from the MR-
Egger analysis were imprecise and should be interpreted with
caution. A further strength is that a large number of SNPs was
available as instrumental variables for IGF-1 levels. We could
therefore conduct several sensitivity analyses to evaluate pleiot-
ropy. A limitation of this study is that the genetic instrument was
for total IGF-1 levels rather than the free and bioavailable IGF-1
fraction, which may be more strongly associated with type 2
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Fig. 1 Associations between genetically predicted IGF-1 levels and type 2 diabetes and cardiovascular diseases
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diabetes and cardiovascular diseases. Another shortcoming is
that we could not investigate whether there is a U- or J-shaped
relationship between IGF-1 levels and cardiometabolic diseases

and insulin resistance, as suggested by a few observational stud-
ies [12, 42]. However, confounding by height might have result-
ed in non-linear associations in those studies.
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Fig. 2 Associations between genetically predicted IGF-1 levels and components of themetabolic syndrome and height. Log indicates natural logarithmic
transformed levels (loge)
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In this study, we found that the association between geneti-
cally predicted serum IGF-1 levels and type 2 diabetes was
partially attenuated after adjustment for fasting insulin levels or
insulin resistance through multivariable MR analysis. This
suggests that elevated IGF-1 levels may increase the risk of type
2 diabetes in part through insulin resistance. Further research is
needed to understand other possible mechanisms underlying the
association between IGF-1 and type 2 diabetes. The association
between IGF-1 levels and coronary artery disease appeared to be
mediated, at least partly, via type 2 diabetes.

Evidence indicates that IGF-1 levels may bemodified bymilk
and protein intake [43–47]. A meta-analysis of eight randomised
controlled trials showed a statistically significant 13.8 ng/ml
(equivalent to about 1.8 nmol/l) difference in IGF-1 levels when
comparing the milk intervention group with the control group
[44]. Furthermore, several randomised controlled trials have
demonstrated that increased dietary protein intake or whey
protein (one of the two proteins in milk) supplementation
increase circulating IGF-1 levels [45–47]. Intake of protein,
particularly from animal sources, has been found to be positively
associated with type 2 diabetes risk in observational studies [48].
Additionally, evidence from experimental, observational and
MR studies indicates that high circulating levels of branched-
chain amino acids, found in high levels in for example whey
protein, increase the risk of type 2 diabetes [49].

Conclusions This MR study found evidence of a causal asso-
ciation between increased IGF-1 levels within the normal
range and higher risk of type 2 diabetes. This finding may
have public health and clinical implications as IGF-1 levels
may be modified by milk and protein intake [43–47].
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