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We demonstrate how a geometrically exact formulation of
discrete slender beams can be generalized for the efficient
simulation of complex networks of flexible beams by intro-
ducing rigid connections through special junction elements.
The numerical framework, which is based on discrete dif-
ferential geometry of framed curves in a time-discrete set-
ting for time- and history-dependent constitutive models, is
applicable to elastic and inelastic beams undergoing large
rotations with and without natural curvature and actuation.
Especially the latter two aspects make our approach a ver-
satile and efficient alternative to higher-dimensional finite
element techniques frequently used, e.g., for the simulation
of active, shape-morphing, and reconfigurable structures, as
demonstrated by a suite of examples.

1 Introduction
Recent additive manufacturing techniques have incorpo-

rated active materials into networks of flexible, slender struc-
tural elements, based on, e.g., photo-elastic materials, mag-
netic actuation, shape memory polymers, and swelling com-
posites [1, 2, 3, 4, 5, 6, 7]. This has provided a new avenue
for creating (meta-)materials with engineered properties and
time-dependent performance (coined 4D-printing). At the
same time, this new opportunity has increased the demand
for computational modeling techniques applicable to the
aforementioned systems in order to efficiently describe and
predict the mechanical response of those advanced structures
used for, e.g., multistable, reconfigurable space structures,
sensors, soft robots, and flexible electronics [8, 9, 10, 11].

Even though these structures are long and slender and
thus fall within the scope of one-dimensional (1D) structural
theories as shown, e.g., by [4] for thermo-mechanical poly-
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mers, existing modeling work primarily relies on computa-
tionally expensive two- and three-dimensional (2D and 3D,
respectively) simulations [8, 11, 12]. Here, we therefore pro-
pose a discrete beam framework for modeling networks of
flexible, slender elements undergoing large rotations, with
special emphasis on versatility in the choice of the under-
lying material constitutive behavior (including active mate-
rials and time-dependent, inelastic constitutive laws such as
those found in shape memory polymers) while also provid-
ing a computationally efficient alternative to fully-resolved
higher-dimensional models.

Geometrically exact discrete beam models were origi-
nally introduced in order to numerically solve problems in-
volving slender structures undergoing large rotations [13,
14]. Among the various improvements and extensions that
have been proposed since then (see, e.g., [15, 16, 17]), a
formulation based on discrete framed curves and discrete
parallel transport embeds the unshearability constraint and
thus allows rotations to be parametrized by a minimal set
of degrees of freedom [18, 19, 20]. This approach has
proven its versatility in a variety of applications ranging
from elastic beams [18] to inextensible elastic ribbons [21]
to viscous threads [22, 23] to viscoelastic rods [24, 25] as
well as to problems including contact, self-contact and fric-
tion [26, 27, 28].

By contrast to previous formulations that were specific
to a particular type of constitutive behavior [18, 21, 22, 23,
24,25], we recently proposed [29] a geometrically exact dis-
crete beam element formulation adapted from [18], in which
the beam kinematics is separated from the constitutive law
of the underlying base material, hence making the modular
descriptions applicable to various elastic and inelastic con-
stitutive laws, in a time-discrete framework based on vari-
ational consitutive updates [30]. Unlike, e.g., corotational
beam formulations [31, 32], our approach describes beam
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bending without the introduction of rotational degrees of
freedom but through the kinematic extraction of an effective
beam curvature from the positions of the vertices of a dis-
crete framed curve. It is for this reason (and the low-order
interpolation introduced by this discretization) that it has so
far been impossible to control rotations at vertices along the
discrete curve, which prevents the modeling of rigid connec-
tions between segments in a network or complex boundary
conditions such as clamped beams. Therefore, [29] focused
on modeling individual beams (i.e., having the topology of a
segment). Here, we show that this limitation can be circum-
vented by redistributing the degrees of freedom at the level
of one element and introducing rigid-body rotations. This
greatly extends the existing model towards taking into ac-
count rigid junctions between beams (e.g., in order to model
welded joints in beam lattices and truss metamaterials, as
shown in the numerical examples).

In order to extend the formulation and to overcome the
present limitations, one can introduce a coupling energy de-
pending on the the rigid rotation at a junction. The solution
proposed by [33] involves first finding a linear transforma-
tion at every junction and then extracting the associated fi-
nite rotation by polar decomposition – which can come with
significant computational costs. Here, by contrast, we intro-
duce a new technique based on a virtual (ghost) segment on
which a rigid rotational constraint is imposed, thus avoid-
ing least-square fitting and the use of a polar decomposi-
tion. Moreover, contrary to [33] we do not limit ourselves
to elastic rods but intend to make the framework applicable
to a wide catalog of constitutive laws (including time- and
history-dependent behavior), following the same approach
based on variational constitutive updates presented in [29].
As an added benefit, our junction elements can be connected
to other types of finite element discretizations involving ro-
tational degrees of freedom at vertices, such as the classical
corotational beam elements of [31].

In the following Section 2, we briefly summarize the
theoretical-numerical framework for modeling geometrically
exact discrete nonlinear, flexible beams with special focus on
the treatment of rotations and the extension to networks of
slender beams through the introduction of rigid junction el-
ements. Section 3 is dedicated to model validation in terms
of a quantitative comparison of our new framework with a
classical corotational beam formulation. To demonstrate the
ability of our code to predict the behavior of shape-morphing
networks, Section 4 presents selected examples of actuated
beam networks and 4D-printed structures (drawing inspira-
tion from recent work on active metamaterials and reconfig-
urable structures), before Section 5 concludes this study.

2 Theoretical-numerical framework for discrete beam
networks
Based on the discrete beam model introduced in [29],

our formulation combines a kinematic description for dis-
crete framed curves undergoing large rotations [18] with
variational constitutive updates [30] in a holistic framework.
We use the notion of parallel transport in time to parametrize

Fig. 1: Discrete beam element of index i. Portion of the
discrete line parametrized by the vector of local degrees of
freedom (xi−1,xi,xi+1,ω

i−1,ωi).

rotations locally on every segment of the discrete curve,
while adopting an updated-Lagrangian setting suitable for
large rotations. We start with a brief summary of the ap-
proach introduced in [29] for modeling geometrically exact
slender beams, only laying out those key concepts required
here for subsequent derivations and discussions. Within this
framework, we particularly demonstrate how to control rota-
tions at vertices.

2.1 Parametrization of discrete beams
In our time-discrete updated-Lagrangian approach, the

reference configuration denotes the beam configuration at the
previous time step, while the current configuration refers to
the beam in its current state (i.e., at the end of the latest time
step). Identifying by an asterisk (?) all quantities related to
the reference configuration (while all quantities carrying no
asterisk are defined in the current configuration), we describe
the centerline of a beam by a discrete line spanned by n ver-
tices at positions {(x0)?, · · · ,(xn−1)?} in the reference con-
figuration and {x0, · · · ,xn−1} in the current configuration.
Here and in the following, whenever a quantity is defined
analogously in the reference and current configuration, we
simply present one definition (and the respective other one
follows analogously by addition/removal of the asterisk).

Each pair of adjacent vertices (xk,xk+1) for k ∈ {0, n−
2} spans a segment of index k. For each segment we define
a unit tangent tk = ek/||ek|| as the normed vertex-to-vertex
vector ek = xk+1− xk, see Fig. 1. To avoid confusion, we
label all segment-based quantities with superscripts, while
vertex-based quantities are labeled with subscripts. The ori-
entation of segment k’s cross-section is captured by the ma-
terial frame (dk

1,d
k
2,d

k
3), which defines an orthonormal triad

aligned such that dk
3 = tk. This latter geometric constraint

ensures the unshearability of the discrete beam, although an
extension to shearable rods is available without major diffi-
culty [28]. As shown in [29], the change of orientation be-
tween the reference and current configurations is expressed
as a composition of rotations, viz.

dk
I = Ptk

tk
?
·R(tk

?,ω
k) · (dk

I )? for I ∈ {1,2,3}, (1)

where R(u,β) ∈ SO(3) denotes the rotation by an angle β

about unit vector u, and the angle ωk is identified as the inte-
gral of the spinning velocity (i.e., the torsional component of
the segment’s angular velocity) over the time step. (1) uses
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the parallel transport Ptk

tk
?
, which denotes a specific rotation

defined as follows. For two unit vectors v1,v2 ∈ R3, Pv2
v1 de-

notes the rotation about the vector v1× v2 which maps v1
onto v2. When the two vectors v1 and v2 are equal, Pv2

v1 is
simply the identity. Properties, explicit expressions as well
as a practical way to evaluate the parallel transport relations
were provided in [29] and are omitted here for conciseness.

With the above choice of discretization, the current con-
figuration is parametrized by the global vector of degrees of
freedom,

u = (x0, ω
0, · · · , xi−1, ω

i−1, xi, ω
i, xi+1, · · · ,ωn−2, xn−1),

(2)
containing all vertex positions xk (k = 1, . . . ,n−1) as well as
all segment spin angles ωi (i = 0, . . . ,n−2).

We define the discrete beam element of index i (i ∈
{1, · · · ,n− 2}) as the portion of a discrete line spanned
by a triad of nodes (centered at vertex i) at positions
{xi−1, xi, xi+1} in the current configuration, as illustrated in
Figure 1. With our choice of interpolation, this is the small-
est portion capturing twisting and bending strains, as shown
below. The local degrees of freedom associated with the ith
element (as shown in Figure 1) are extracted from the global
vector of degrees of freedom (2) by a connectivity matrix Ci
(whose coefficients are either 0 or 1) according to

ui = Ci ·u =
(
xi−1, xi, xi+1, ω

i−1, ω
i) . (3)

2.2 Controlling rotations at vertices
With the degrees of freedom of the discrete beam ele-

ment defined by (3), rotations unfortunately cannot be con-
trolled explicitly at vertices; this excludes the application of
clamped boundary conditions as well as rigid connections
within beam networks. Here, we overcome this limitation by
introducing a new junction element comprising two adjacent
vertices and tied to a rigid-body rotation, as sketched in Fig-
ure 2(a). As illustrated in the example, the shown element i
contains only a single (physical) segment (defined by the two
vertices i−1 and i at positions {xi−1,xi}), while the second
segment is replaced by a virtual ghost segment implementing
the rigid-body rotational constraint. Specifically, vertex i is
tied to a rigid-body rotation parametrized by a unit quater-
nion labeled qi ∈ R4 or, alternatively, by the corresponding
rotation tensor Ri ∈ SO(3) (see appendix A for details about
the parametrization of rotations and the relation between qi

and Ri).
The local degrees of freedom associated with this ele-

ment are defined as

ui =
(
xi−1, xi, ω

i−1, qi) . (4)

The orientation of the ghost segment at vertex i is controlled
by the rigid rotation parametrized by qi (the superscript i in-
dicating that the rotation is in fact a quantity pertaining to
a segment). This ghost segment is characterized by a unit

tangent t̃i, a spin angle ω̃i and a material frame (d̃i
1, d̃

i
2, d̃

i
3).

Note that we use an updated Lagrangian approach: the de-
grees of freedom qi therefore define an incremental rotation
(that parametrizes the current configuration with respect to
the reference configuration). As a result, the tangent vector
t̃i in the current configuration is obtained by applying the ro-
tation to t̃i

? in the reference configuration:

t̃i = Ri · t̃i
?. (5)

Furthermore, we observe that the composition of the rotation

Ri (applied first) with the parallel transport Pt̃i
?

t̃i that brings
back t̃i to t̃i

? (applied second) leaves t̃i
? invariant and can be

identified as the rotation of angle ω̃i about t̃i
?, so that the spin

angle ω̃i is given implicitly by the relation

R(t̃i
?, ω̃

i) = Pt̃i
?

t̃i ·Ri. (6)

Practically, vertex i serves as the endpoint of a beam, to
which one may wish to impose a boundary condition (such
as an external moment, a clamping condition or a rigid con-
nection to another beam). For the example in Figure 2(a),
a clamping boundary condition perpendicular to the (ex,ez)-
plane (with {ex,ey,ez} denoting the Cartesian basis) is ap-
plied at vertex i by choosing t̃i

? = ey, (d̃i
1)? = ez and (d̃i

2)? =
ex at the beginning of the calculation and by imposing Ri to
be the identity, i.e. qi = (1, 0, 0, 0), as an essential boundary
conditions at every time step.

Note that the relations between the local vector of de-
grees of freedom (4), the tangent vector t̃i, and the spin vec-
tor ω̃i of the ghost segment are nonlinear (especially, ω̃i de-
pends nonlinearly on qi through the implicit equation (6)).
This complicates the calculation of the conjugate forces and
of the consistent tangent matrix of the junction element in-
troduced here, as summarized in appendix B. For small time
steps and hence small increments in rotation, the current con-
figuration is close to the reference configuration, so Ri ≈ I
and t̃i · t̃i

? ≈ 1. In this case the rotation R(t̃i
?, ω̃

i) can be ap-
proximated by an infinitesimal rotation about t̃i

? writes ex-
plicitly

R(t̃i
?, ω̃

i)≈ I+ ω̃
i (t̃i

?)×, (7)

where, for any vector v, v× denotes a skew-symmetric tensor
such that v× · x = v× x for all x ∈ R3. Combined with (6),
this yields I+ ω̃i (t̃i

?)× ≈ Pt̃i
?

t̃i ·Ri, and it follows that

ω̃
i ≈ 1

2

[
Pt̃i

?

t̃i ·Ri
]

: (t̃i
?)×. (8)

The general case of Ri being a finite rotation is detailed in
appendix B. Once t̃i and ω̃i are known, the material frame
vectors (d̃i

1, d̃
i
2, d̃

i
3) in the current configuration follow from

applying (1).
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(a) (b)

Fig. 2: Rigid junctions between discrete beams. (a) A discrete beam element tied to a rigid-body rotation is realized by a
junction element consisting of only a single physical segment tied to a virtual segment parametrized by a rigid rotation Ri.
The junction element hence has degrees of freedom (xi−1,xi,ω

i−1,qi) where qi denotes the quaternion of the rigid rotation.
The angular spin ω̃i and the unit tangent t̃i of the virtual segment are reconstructed from the rotation Ri through (5) and (6).
(b) Two discrete beam elements (represented in blue and red) are rigidly connected at node k, whose rotation is parametrized
by Rk (qk). The local degrees of freedom of the two elements are respectively (xk−1,xk,ω

k−1,qk) (element in blue), and
(xk+1,xk,ω

k,qk) (element in red).

With the above junction element, a discrete beam can be
tied at one of its end vertices to a rigid-body rotation by re-
distributing its degrees of freedom: one of the two vertices of
a junction element (vertex i in Figure 2(a)) becomes the end
vertex of the beam, which effectively ties the last physical
beam segment (between vertices i− 1 and i in Figure 2(a))
to a rigid-body rotation through the ghost segment. Rigid
junctions between several discrete beams are consequently
implemented by combining several junction elements, as il-
lustrated in Figure 2(b). In addition, it is possible to con-
nect a discrete beam element to a beam element based on a
parametrization involving rotational degrees of freedom at
vertices (such as the classical corotational beam elements
of [31]).

We point out that the introduction of the ghost segment
increases the book-keeping complexity associated with the
junction elements, since the (global) ordering of vertices
must differentiate between the physical and virtual segments
(they carry different degrees of freedom and are treated dif-
ferently). The local ordering of degrees freedom within a
junction element falls in one of the two cases depicted in
Figure 2(b), depending on whether the ghost segment is
connected to the first or to the second vertex of the junc-
tion element. We close by noting that one can alternatively
parametrize rotations using pseudovectors instead of quater-
nions without changing the overall structure of the above for-
mulation.

2.3 Discrete beam strains
With elastic, vicous, and viscoelastic constitutive mod-

els in mind for subsequent applications, we choose to extract
a set of strain measures from the above beam kinematics, in-
cluding axial, flexural, and torsional strains. To this end, we
define for the ith beam element the vector of strains

Ei =
(
εi, κ

1
i , κ

2
i , τi

)
, (9)

where εi denotes the discrete axial strain, κ1
i and κ2

i are the
bending strains about the two axes defined by the material
frame, and τi denotes the torsional/twisting strain.

Specifically, for beam elements, we define the discrete
axial strain as

εi =
1
2

(
||ei−1||− li−1

0

li−1
0

+
||ei||− li

0

li
0

)
, (10)

where li
0 and li−1

0 denote the initial, undeformed lengths of
the segments spanned by, respectively, ei and ei−1. We fur-
ther define the bending strains as

κ
I
i = ki ·

di−1
I +di

I
2

for I ∈ {1,2}, (11)

with the vertex-based discrete curvature binormal ki =
2 ti−1× ti/(1+ ti−1 · ti). Finally, the discrete twisting strain
in the current configuration can be expressed as

τi = (τi)?+ω
i−ω

i−1 + γi, (12)

where γi can be calculated as the spherical area of the poly-
gon spanned by vectors (ti−1

? , ti
?, ti, ti−1). Detailed deriva-

tions of this expression for the twist (as well as all other kine-
matics) can be found in [29]. Note that the bending and twist-
ing strain measures defined above are integrated quantities,
as discussed in [29] and in the presentation of constitutive
laws below.

In the case of a junction element, εi simply represents the
axial strain in its physical segment (so that no averaging as
in (10) is required), while the virtual quantities (unit tangent,
material frame vectors, and spin angle) controlled by the ro-
tation qi enter the bending and torsional strains through (11)
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and (12) as for a regular beam element. As an example, for
the element drawn in Figure 2(a) the virtual tangent t̃i (or t̃i

?)
is used instead of ti (or ti

?), ωi is replaced by ω̃i, and the vir-
tual material frame vectors d̃i

1 (or (d̃i
1)?) and d̃i

2 (or (d̃i
2)?)

are used instead of di
1 (or (di

1)?) and di
2 (or (di

2)?).

2.4 Constitutive laws

The above beam and junction elements only define the
kinematics of the beam element, whereas the constitutive be-
havior is introduced independently through a strain energy
density (and a dissipation potential in case of time- and/or
history-dependent material behavior) in a time-discrete, vari-
ational manner. Based on the strain measures (9), we de-
fine those potentials depending on the axial, flexural, and
torsional beam strains. Here, we focus on the representa-
tive cases of linear elastic and viscoelastic constitutive laws,
while the approach is sufficiently general to extend to other
material behavior.

For a beam made of a homogeneous, isotropic, linear
elastic material with Young’s modulus E and shear modulus
µ, we define the elastic energy Wi of the ith beam element as
a function of the vector of the strain measures, which writes

Wi(Ei) =
l̃i
0
2

[
E

(
Aε

2
i + I1

(
κ1

i

l̃i
0

)2

+ I2

(
κ2

i

l̃i
0

)2
)
+µJ

(
τi

l̃i
0

)2
]
,

(13)
where A is the cross-sectional area, I1 and I2 are the area
moments of inertia (with respect to the undeformed, initial
material frame axes), and J is the torsion constant. We note
that the linear elastic constitutive law is applicable if strains
remain small (in particular |εi| � 1), so that any dependence
of A, I1, I2 and J on deformation is neglected here (for a
more general formualtion see [29]). Further note that (13)
can easily be adapted to account for eigenstrains (generated,
e.g., by thermal actuation), as will be illustrated in Section 4.
In order to capture the strain energy due to bending and tor-
sion, we have introduced the undeformed Voronoi length l̃i

0
of beam element i as the average (li−1

0 + li
0)/2 of both un-

deformed, initial segment lengths, whereas for the junction
element the undeformed Voronoi length simply represents
the undeformed, initial length of its physical segment. Note
that the bending and twisting strain measures rescaled by the
Voronoi length (i.e., κI

i/l̃i
0 for I ∈ {1,2} and τi/l̃i

0) converge
to the continuous measures of strain in the limit of a zero seg-
ment length, as discussed in [29]. For this reason, the strain
energy (13) is a function of those rescaled strains.

As an inelastic alternative, we consider slender inexten-
sible beams made of a homogeneous, isotropic standard lin-
ear viscoelastic solid with elastic moduli E1, E2 and viscosity
η. The constitutive law is modeled by defining a strain en-
ergy and a dissipation potential per beam element (confining

the description to 2D for simplicity) as, respectively,

Wi(Ei,zi) =
E1Al̃i

0
2

ε
2
i +

I1 l̃i
0

2

[
E1

(
κ1

i

l̃i
0

)2

+E2

(
κ1

i − zi

l̃i
0

)2
]
,

Di(żi) =
ηI1

2l̃i
0

(
żi

l̃i
0

)2

.

(14)
Note that we do not consider viscous effects associated
with axial strains, as beams are considered inextensible
(AL2/I1� 1, where L is the beam’s length) in our examples
(and there is no torsional strain in 2D). Internal variable zi
represents the inelastic change of the reference (integrated)
curvature of element i. The above potentials are used in a
time-incremental fashion, following the formulation of vari-
ational constitutive updates [30]. Of course, the same poten-
tials can be defined analogously in 3D, which is omitted here
for conciseness.

The complete governing equations for discrete rods are
thus obtained by combining the discrete nonlinear strain
measures (10), (11), and (12) with the above discrete con-
stitutive potentials; a detailed derivation for discrete beams
without junctions was presented in [29].

2.5 Solving (initial) boundary value problems
In the following, we solve quasistatic and dynamic (ini-

tial) boundary value problems in 2D and 3D, whose systems
of nonlinear governing equations is obtained by combining
the discrete energy and/or dissipation potentials described in
Section 2.4 with the definition of the discrete strains defined
in 2.3 in a time-discrete variational setting. The resulting
quasistatic force balance equations are solved by Newton-
Raphson iteration, while dynamic problems are solved by
an implicit time stepping scheme. For segments pertaining
to junction elements, inertia is modeled by introducing dis-
crete consistent and lumped mass matrices, following the ap-
proach of [29], with no inertia associated with the rotational
degrees of freedom of all ghost segments.

Our discrete beam model is implemented in a C++ li-
brary, which separates the beam kinematics from the base
material’s constitutive description for a versatile tool-set that
adopts the variational structure of our discrete beam formula-
tion. The modular nature of the code allows for a straightfor-
ward addition of new constitutive laws, requiring minimum
coding effort by the user. The discrete beam model yields
sparse (or banded, when only one beam is involved) stiffness
matrices and its implementation has been parallelized by re-
course to the PETSc library [34], which admits simulations
of large beam networks. The code – used for all examples
reported here – is available at github.com/lclaire/UtoBeams.

3 Validation examples
In order to validate the above discrete beam formula-

tion along with the new capability of handling beam junc-
tions (and hence truss and frame networks), we first present
simple but instructive examples, before preceding to more
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Fig. 3: Validation examples involving a single beam junction (undeformed configurations are shown in black, deformed con-
figurations in red): (a) clamped right-angled frame subjected to an out-of-plane tip displacement, (b) twisting of a windmill
structure loaded at the end of its vertical axis and attached at the end of each of its blades. The insets illustrate the (nor-
malized) force-displacement and torque-twist angle curves (in blue) in (a) and (b), respectively, together with the analytical
solutions for small deformation (in red).

complex boundary value problems to showcase the versa-
tility of the presented techniques and the impact of eigen-
strains. We select two test cases featuring rigid connections,
both shown in Figure 3: (a) an out-of-plane bending test of
a two-beam frame welded under a right angle (both beams
are of side length L), which is clamped at one end and sub-
jected to an out-of-plane displacement uz at its other end-
point; (b) a windmill-shaped network of four rigidly welded
beams, comprising three in-plane horizontal blades attached
at their ends (each of length Lb = La/2) which are connected
to a vertical beam (length La). The structure is subjected to a
twist angle τz applied at the top end of the vertical beam.

We consider linear elastic beams described by the po-
tential (13) with µ = E/3 (effectively enforcing incompress-
ibility) having symmetric cross-sections so that I1 = I2 = I.
For the frame of Figure 3a, we further take J = 2I and
AL2/I = 4.102. The torsional rigidity of the mill’s verti-
cal axis in Figure 3b is chosen to be larger than its bend-
ing rigidity by taking J = 200 I and AL2

a/I = 4.102, whereas
the blades are characterized by J = I and AL2

b/I = 102. With
this set of parameters and in the limit of small displacements,
the relation between the pulling force F and the (normal-
ized) vertical displacement of at the frame’s tip is found as
uz
L = 14

6
FL2

EI . The linear relation between the moment M and
twist τz at the mill’s tip is τz =

13
90

MLb
EI in the limit of small

twist and bending. For large displacements, unfortunately,
no analytical solutions are available for these benchmarks,
and results shown in insets of Figure 3 show significant non-
linearity (and agreement in the limit of small deformation).
For validation and a convergence study, we compare our
results to simulation results based on the well-established
corotational beam element of [31] for comparison [35]. (In
the latter formulation, rigid connections between beams, and
analogously clamped boundary conditions, are naturally en-

forced through (shared) rotational degrees of freedom explic-
itly defined at vertices for all elements.) We compute the
magnitude of the force F (in test (a)) and moment M (in test
(b)) which are measured at, respectively, an applied vertical
displacement uz/L = 1 in (a) and a twist angle τz = 1.5 of
the vertical shaft in (b). (Details about the calculation of the
moment conjugate to an imposed rotation are given in ap-
pendix C.) Comparison runs using the corotational discrete
beam element for approximately (a) 400 and (b) 1900 de-
grees of freedom. The relative error of our implementation
is calculated as

δF =
|F−Fcorotational|

Fcorotational
, δM =

|M−Mcorotational|
Mcorotational

. (15)

Figure 4 demonstrates the convergence of our results to-
wards the corotational solution with an increasing number
of degrees of freedom, n. Nearly linear convergence is ob-
served for the two cases (with a slightly sub-linear scaling in
case (b)). Note that this is due to our particular choice for
the error estimate (15); in [29] quadratic convergence was
observed for problems involving combined bending and tor-
sion using a discrete version of the L2-norm. We do not use
the discrete L2-norm in this study because of the difference
in the order of interpolation between our formulation and the
corotational beam elements.

A fair comparison of computational costs with existing
schemes is challenging due to differences in code architec-
ture and performance scaling as well as solver algorithms
(besides any such efficiency metric being specific to a bound-
ary value problem). Here and in the following, we there-
fore refrain from presenting cost metrics and instead report
the number of degrees of freedom used in simulations, as
the computational costs scale to first order linearly with the
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Fig. 4: Convergence of the force/torque conjugate to the ap-
plied displacement/twist angle as defined in Figure 3. Re-
sults are obtained from the discrete beam implementation
with n degrees of freedom, errors are computed against
the analogous results predicted with the corotational beam
model of [31] with about (a) 400 and (b) 1900 degrees of
freedom.

number of degrees of freedom. Figure 4, e.g., demonstrates
how accuracy is gained with decreasing efficiency (errors are
computed relative to high-fidelity corotational beam simula-
tions with (a) 400 and (b) 1900 degrees of freedom).

4 Shape-morphing and inelastic networks of slender
beams and ribbons
Numerous shape-changing mechanisms have been ex-

ploited in recent years for the design of active and recon-
figurable structures, including single-member actuation [36,
37], selective or cooperative buckling [38, 39, 40, 41, 12] and
activation of natural curvature or axial eigenstrains [42, 43,
44, 4, 12]. In practice, such mechanisms can be actuated by
purely mechanical devices [39, 40, 41] as well as by multi-
physics coupling such as, e.g., thermo-mechanical effects,
photo-elasticity, and electro-mechanical coupling [42,43,44,
4,12]. Experimental advances call for simulation techniques
that describe and predict such complex structural responses,
and we here demonstrate the suitability of our computational
framework to investigate different actuation mechanisms in
shape-changing networks of slender beams. Specifically,
we investigate (i) the time evolution of a viscoelastic 2D
network, (ii) the activation of natural curvature in shape-
changing elastomeric networks, (iii) the cooperative buck-
ling of a square beam lattice subjected to axial extension due
to swelling, and (iv) the self-assembly of 3D ribbon struc-
tures by compressive buckling.

4.1 Viscoelastic membrane

0.1 0.2 0.3 0.4

-1.0

-0.5

0.5

4.2e-4

-1.4e-4

0.0003
0.0002
0.0001
0.0

axial strain

Fig. 5: Time evolution of a viscoelastic hexagonal planar
truss clamped along its upper boundary and initially pulled
down, calculated with three segments per beam. The dimen-
sionless vertical displacement of the midpoint of the lower
boundary is plotted as a function of time. Insets show the de-
formed configurations at the three times t ∈ {0s,0.01s,0.2s};
the value of the axial strains within the discrete beam ele-
ments is shown by the color map (note that all strains remain
small).

We begin by simulating the time evolution of a network
of slender beams with a time-dependent material behavior.
We study the dynamics of a planar hexagonal truss (consist-
ing of identical, rigidly welded beams of lengths L) clamped
along its upper boundary and initially pulled down by ap-
plying a vertical displacement at the midpoint of its lower
boundary, as shown in the insets in Figure 5. The beams are
made of a standard viscoelastic material approximated by the
potentials (14) with a relaxation time tr = η/E2 ≈ 0.00334s
and a contrast in moduli E2 = 0.3E1. We consider slender,
quasi-inextensible beams with I1 = I2 = I and AL2/I = 102

and the density ρ is chosen such that the typical time scale
of elastic bending oscillations for a single beam of length
L amounts to te =

√
ρA/(E1IL−4) ≈ 0.00139s, so that the

Deborah number (for single beam oscillations) is approxi-
mately De = tr/te ≈ 2.4.

The time evolution of the vertical displacement w(t) of
the midpoint of the lower boundary is plotted in Figure 5.
The truss is initially held in its deformed configuration for
5 seconds (shown in the first inset in Figure 5), before being
released at the beginning of the dynamic simulation (t = 0s).
The truss displays under-damped oscillations before return-
ing to its undeformed configuration (shown in the last inset in
Figure 5), with viscous damping being well captured in the
simulation. The axial strains in the segments remain small as
expected, given the high ratio of axial to bending stiffness.

7



4.2 Activation of natural curvature
Shape memory polymers (SMPs) have the ability to

change their shape when activated by an external stimulus
such as heating, exposure to light, a chemical reaction, or a
mechanical stimulus [45]. Structures made of SMPs can be
designed to have several equilibrium shapes which are de-
fined during the programming (or shape-fixing) process and
typically include a temporary equilibrium shape and a per-
manent shape that is recovered upon activation. Remark-
able examples are self-folding structures which consist of
thin sheets with an as-designed natural curvature [46, 47,
48], used, e.g., to generate self-folding origami achieved
through the careful design of fold locations and a control
sequence [49]. Inspired by this concept, we show that our
numerical framework can be used to predict the complex
topology evolution of assemblies of beams or wires made
of SMPs (also termed 4D rods in [4]) used as flexural, tor-
sional, and extensional actuators in the design of morphing
structures [42, 43, 44].

A discrete beam with natural curvatures κ1
0, κ2

0 (along
the material directors d1 and d2, respectively) is mod-
eled [50] by modifying the bending contribution of the dis-
crete elastic potential (13) according to

Wi(Ei) =
l̃i
0
2

[
EAε

2
i +EI1

(
κ1

i

l̃i
0
−κ

1
0

)2

+EI2

(
κ2

i

l̃i
0
−κ

2
0

)2
]

+
l̃i
0
2

[
µJ
(

τi

l̃i
0

)2
]
.

(16)
With this modified potential, we utilize the discrete

beam and junction elements to simulate the experiments
of [43], featuring a 2D truss that shrinks when the natural
curvature in selected regions of the horizontal beams (viz., in
those regions close to beam junctions) is activated, as shown
in Figure 6. We define the natural curvature along the hori-
zontal beams as (κ0

1,κ
0
2) = (0,κ0/L) where d1 = ey, d2 = ez,

L denotes the horizontal beams’ lengths, and we assign the fi-
nal non-dimensional natural curvature κ0 =±14.31. Starting
with an undeformed configuration, we solve for quasistatic
equilibrium in the presence of natural curvature. The thus
obtained switchable patterns, illustrated in Figure 6(a), can
be used as a building block to produce various shapes upon
tesselation, such as the example of the ETH logo from [43],
here reproduced in Figure 6(b). In our simulations, we use
homogeneous, isotropic, linear elastic beams with I1 = I2 =
I, AL2/I = 102, which are discretized into 10 (60) segments
per beam for the vertical (horizontal) struts.

In an extension of the above concept, we demonstrate
how storing natural curvature in the out-of-plane direction of
a planar square lattice can be used to achieve coordinated 3D
actuation and to result in, e.g., in-plane shrinkage, reducing
the structures footprint as shown in Figure 7. We here define
the natural curvature as (κ0

1,κ
0
2) = (0,κ0/L) where L denotes

the length of each beam.
The beams aligned with ex are defined with d1 = ez,

d2 = −ey, and d3 = t = ex, whereas all beams aligned with

(a)

(b)

Fig. 6: Programmable elastomeric structure changing its
shape upon thermal activation, which was demonstrated
experimentally by [43]: the segments with positive non-
dimensional natural curvature κ0 = 14.31 are highlighted in
green (while segments with κ0 = −14.31 are colored in or-
ange). Shown are the initial undeformed configuration (with-
out natural curvature) and final equilibrium solution (with
natural curvature) of (a) a single building block and (b) of a
tesselation of building blocks into the ETH logo.

ey are defined with d1 = ez, d2 = ex, and d3 = t = ey.
We use the same constitutive behavior for all beams as in
the previous example and conduct simulations with 30 seg-
ments per beam. The predicted actuation mechanism, shown
in Figure 7, illustrates the potential of out-of-plane natural
curvature for applications from reconfigurable structures to
robotics. Our discrete beam framework is hence beneficial
to explore the design space by varying, e.g., the geometry,
natural curvature, and orientation of the material frames.

4.3 Cooperative buckling under axial expansion
Unlike in the natural curvature-based examples above,

shape-changing structures have also been reported in which
cooperative buckling of (axially confined) beams is achieved
by activating beams to elongate. For example, recent exper-
iments by [12] exploited electrochemistry to induce a shape
change in a square-shaped planar lattice whose Si-coated
beams swell upon voltage-induced lithiation, leading to com-
pressive axial eigenstrains. Due to pinned beam junctions
(realized experimentally by stiff out-of-plane columns sup-
porting each junction), the axial eigenstrains lead to cooper-
ative buckling into a pattern reminiscent of that studied pre-
viously by [3].

We use our discrete beam framework to simulate the
structural behavior of such a square lattice (lying in the ex-
ey-plane) upon actuation. For this planar lattice we define
the initial material frame orientation by d1 = ez for each
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Fig. 7: Shape-changing programmable structure made of a square lattice with out-of-plane natural curvature κ0: the segments
with positive (respectively, negative) natural curvature are highlighted in green (respectively, orange) with curvatures κ0 = 0,
κ0 =±2.815, and κ0 =±5.745 (from left to right).
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Fig. 8: Cooperative buckling under constraint axial expan-
sion. A square truss lattice (whose junctions are pinned)
buckles under a compressive axial pre-strain. tThe unde-
formed configuration (in gray) and deformed configuration
for ε0 = 0.03 (in red) are shown, obtained from simulations
with two small initial imperfections and computed with 10
segments per beam. The orientation of the initial imperfec-
tions (small moments Mz = 0.1EI/L) are indicated by black
arrows. In example (a) one axial moment is applied, in ex-
ample (b) two axial moments of opposite senses are applied.
(c) Results for the amplitude τz of the nodal rotations in a
homogeneously buckled lattice as obtained from our frame-
work (blue dots) are compared to the solution of the continu-
ous equations for a single beam by continuation (red line) as
a function of the eigenstrain ε0.

beam in the lattice. To prevent out-of-plane buckling and
torsion, we assume beams whose cross-section extends sig-
nificantly more in the ez-direction, taking I2 = J = 103 I1. As
in experiments, the lattice junctions are pinned (to mimic the
constraint by pillars on a fixed substrate), and the beams are
weakly extensible with AL2/I1 = 1.25 · 103. We impose an

axial eigenstrain ε0 by modifying the axial contribution to the
discrete elastic potential (13), analogous to (16), resulting in

Wi(Ei) =
l̃i
0
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EA(εi− ε0)
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(
κ2

i

l̃i
0

)2
]

+
l̃i
0
2
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τi

l̃i
0

)2
]
.

(17)
To initiate buckling, we introduce a small perturbation

moment Mz at one of the lattice’s junctions, as schemati-
cally shown in Figure 8(a). When the axial eigenstrain ε0
increases, the beams cooperatively buckle, forming a regu-
lar pattern involving a rotation ±τz of the welded joints, as
shown in red in Figure 8(a). We measure the amplitude τz of
the rotation at nodes as a function of the eigenstrain ε0, and
we compare it with a prediction obtained by solving the con-
tinuous equations for a single pinned-pinned slender beam
under axial expansion by continuation [51], showing good
agreement in Figure 8(c). The difference with the continu-
ous prediction near the bifurcation point is attributed to the
small perturbation introduced in the simulations.

When more complex or spatially distributed initial im-
perfections are present, non-periodic buckling patterns can
arise that involve homogeneous domains separated by do-
main walls [12]. This is demonstrated here within our
simulation framework by applying an initial imperfection
that is incompatible with the regular pattern. Specifically,
we impose external moments of opposite senses at two se-
lected junctions in the lattice, as schematically shown in Fig-
ure 8(b). Two distinct domains featuring opposite orienta-
tions of the pattern appear, separated by an interface (pic-
tured as the shaded cells in Figure 8(b)), reproducing the ex-
perimental observation of domain formation in [12].

4.4 Compressive buckling of anisotropic beams
A novel manufacturing and deployment technique for

complex 3D structures was proposed in recent years [8, 39],
which exploits the self-assembly (i.e., the pop-up) of initially
flat, multi-layered thin stuctures made of slender filaments,
attached to a pre-strained substrate. By a careful selection of
the in-plane geometry of the different layers, the position of
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Fig. 9: Simulation of a pop-up structure demonstrated experimentally by [39]: an assembly of slender ribbons buckles
under an equi-biaxial compression of 0%, 20%, 40% and 60% (respectively from left to right) induced through a pre-
stretched substrate. Results were calculated using 10 discrete beam segments per each individual ribbon’s segment. The two
independent layers 1 and 2 are plotted in red and blue, respectively.

4-nodes shell elements, Yan et al. 2016

discrete beam elements

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

Fig. 10: Maximum rescaled out-of-plane displacement uz/L
of each leayer’s apex as a function of the applied equi-biaxial
compressive strain magnitude |ε| for the two layers pictured
in Figure 9. Compared are results from discrete beam simu-
lations with 10 segments per beam (continuous curves in red
and blue correspond to layers 1 and 2, respectively) and 2D
shell elements from [39] (red and blue dots).

the bonding sites, and the level of pre-strain in the substrate,
a variety of 3D shapes has been presented. Existing model-
ing work of the deformation of such slender filaments dur-
ing assembly relies primarily on shell elements [40], which
implies computationally expensive simulations compared to
using a 1D beam formulation. Here, we show that our nu-
merical framework is suitable for the analysis of such pop-up
structures at a reduced computational cost.

As a representative example, we simulate the assembly
process of the two-layer structure pictured in Figure 9 and
originally described by [39]. The two independent layers
(drawn in red and blue) consist of slender wires bonded at
their free ends to a pre-stretched substrate. The identical
cross-sections of all wires are thin (with a width-to-thickness
aspect ratio of approximately 10), which is why we model
them as inextensible Euler-Bernoulli beams with anisotropic
cross-sections (I2 = 0.01I1, A= 100πI1/L2 and a torsion con-
stant J = 0.04I1). A progressive release of the pre-strain in
the substrate yields a compressive equi-biaxial strain induced
into the structures through the bonding sites, leading to out-
of-plane buckling of the two layers, as shown in Figure 9.
In order to capture buckling in the simulations, we apply a
set of small vertical forces of amplitude f = 10−2EI1/L2 at
the center of the cross on the blue layer and at the junctions
between the six branches of the star on the red layer. For a
quantitative assessment of the simulation accuracy, we plot
the maximal (normalized) out-of-plane displacement uz/L of

each layer’s apex (see Figure 10) as a function of the pre-
strain amplitude |ε|. Results of our discrete beam simula-
tion are similar to those of [39] who used shell elements
(of significantly higher resolution than the 1D elements em-
ployed here). Note that an in-depth quantitative compari-
son with a shell model falls into the scope of assessing the
range of validity of beam theory when modeling ribbons,
which is beyond the scope of the present work. Our aim
is to show that the present approach is well suited for the
study of such shape-morphing structures. Whether a model
based on beams, shells, plates, ribbons, or a full 3D rep-
resentation is sufficiently accurate and reasonably efficient,
depends on the particular problem at hand (but is indepen-
dent of the accuracy of the discrete beam formulation pre-
sented here). We note that in this specific example, a ribbon
model [52,53] could possibly have achieved higher accuracy
but would have required a specific re-implementation [21].
Since the aspect ratio of the cross-section is moderate, our
simulation based on the discrete beam description provides
a satisfactory and efficient alternative. In addition, naturally
curved ribbons [41] could be described by extending our ap-
proach to a ribbon model such as the one proposed by [54].

5 Conclusions
We have presented a theoretical framework and its nu-

merical realization for describing slender beam networks in
a geometrically exact fashion, while accounting for large ro-
tations. The setup is applicable to both elastic and inelastic
as well as time-dependent base material constitutive laws.
Based on the discrete beam description of [29], we here in-
troduced a new approach to model rigid junctions between
segments, and we extended the framework to account for
anicotropic cross-sections (relevant for the modeling of rib-
bons), natural curvature and twist, as well as axial eigen-
strains. We demonstrated the applicability of our discrete
beam formulation to concepts of shape-morphing structures,
including shape-changing elastomeric networks triggered by
a change in natural curvature, the cooperative buckling of a
truss lattices, and the self-assembly of 3D ribbon structures
by compressive buckling. Of course, the model and code can
be enriched in various directions, e.g., by integrating con-
tact, friction, or more advanced 1D models for ribbons. As
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we believe that our numerical framework will be a useful
tool for designers and researchers within the emergent field
of 4D printing and active/adaptive structures to explore the
available design space and actuation mechanisms, an open-
source version of our code – used for all examples reported
here – is available at github.com/lclaire/UtoBeams.
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A Parametrization of rigid body rotations
As discussed in Section 2.2, the strain measures required

in a junction element are expressed by means of the rigid-
body rotation at the junction, which is parametrized by a
quaternion q. With this parametrization, we need to compute
the variations of the associated rotation tensor R(q) to calcu-
late internal forces and the consistent stiffness matrix of the
junction element (the latter is required for implicit solvers,
such as the Newton-Raphson solver used for all quasistatic
boundary value problems in this study).

The quaternion q parametrizing the rotation writes

q = a+b i+ c j+d k (18)

with (a,b,c,d) ∈ R4, and i, j,k being the fundamental
quaternion units. The associated unit quaternion is defined
as

q(q) =
q
|q|

= a+b i+ c j+d k, (19)

where |q|= a2 +b
2
+c2 +d

2
. The components of the corre-

sponding rotation tensor in the Cartesian reference frame are
obtained as

R(q) =a2 +b2− c2−d2 2bc−2ad 2ac+2bd
2bc+2ad a2−b2 + c2−d2 2cd−2ab
−2ac+2bd 2cd +2ab a2−b2− c2 +d2

 .
(20)

Note that, when the rotation is the identity, the corresponding
quaternion is given by (a,b,c,d) = (1,0,0,0).

In order to derive the residual force vector and stiffness
matrix used in the numerical scheme, we need explicit ex-
pressions for the first and second variations of the various ge-
ometric quantities involved in the calculation of the strains.
Variations of segments, unit tangent vectors, holonomy, ma-
terial frame vectors and the binormal vector were provided
in [29]. Here, we complement the description by calculating
the first and second variations of the rotation R for infinites-
imal perturbations of the degrees of freedom stored in the
quaternion q, defined by (19) and (20). Since R depends on
the unit quaternion q(q) through (20), the variations of R in-
volve the variations of q. For an infinitesimal perturbation of
q, denoted δq, the first variation writes

δq =
I4−q⊗q
|q|

·δq, (21)

where I4 is the identity on vectors in R4. The second varia-
tion for a unit quaternion can be expressed in a similar way,
given two infinitesimal perturbations of q, denoted δq1 and

δq2, as

δ
2q =− (q ·δq1)δq2 +(q ·δq2)δq1 +(δq2 ·δq1)q

|q|3

+3
(q ·δq1)(q ·δq2)q

|q|5
.

(22)

Finally, the first and second variations of the rotation tensor
write, respectively,

δR=
∂R
∂q
·δq and δ

2R=
∂2R
∂q2 ·δq+

∂R
∂q
·δ2q, (23)

where the components of ∂R/∂q and ∂2R/∂q2 are found by
differentiating (20) with respect to the components of q. Fi-
nally, we introduce a basis for quaternions as (q̂k)k∈{1,2,3,4} ∈
R4 defined as

q̂1 = (1,0,0,0), q̂2 = (0,1,0,0),
q̂3 = (0,0,1,0), q̂4 = (0,0,0,1),

(24)

which will be used for projection in the following two sec-
tions.

B Spin angle at a ghost segment
The spin angle at a ghost segment is implicitly defined

by Eq. (6). Here, we provide an explicit expression for this
angle and for its variations (required for the calculation of
internal forces and consistent tangent matrices of a junc-
tion element), assuming that the rotation at a ghost segment,
parametrized by qi, is finite (i.e., when the current configu-
ration is far from the reference configuration); the other case
is discussed in Section 2.2.

If t̃i 6= t̃i
? , we define the binormal unit vector

bi =
t̃i
?× t̃i

|t̃i
?× t̃i|

. (25)

Note that Ri ·bi is in the plane spanned by bi and t̃i×bi, and
its coordinates in this basis are

bi ·Ri ·bi = cos ω̃
i and (t̃i×bi) ·Ri ·bi = sin ω̃

i. (26)

We define the two scalar-valued functions fi and gi as
fi(qi) = bi ·Ri ·bi and gi(qi) = (t̃i×bi) ·Ri ·bi such that the
spin angle ω̃i is calculated using the 2-argument arc-tangent
function with cos ω̃i = fi(qi) and sin ω̃i = gi(qi).

A special case occurs when the rotation parametrized
by qi is finite and t̃i = t̃i

?. This implies that qi represents a
rotation about t̃i

? and the parallel transport in (6) equals the
identity, i.e., R(t̃i

?, ω̃
i) = Ri. Further, writing qi = a+ b i+
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c j+d k for the unit quaternion associated with qi, according
to (19), the rotation angle ω̃i is characterized by

cos ω̃
i = a and sin ω̃

i =
√

b2 + c2 +d2. (27)

In this case we define the two scalar-valued functions
f̃i(qi) = qi · q̂1 and g̃i(qi) =

√
∑

4
l=2(q

i · q̂l)2, using the ba-
sis for quaternions introduced in (24), and we calculate the
spin angle ω̃i using the 2-argument arc-tangent function with
cos ω̃i = f̃i(qi) and sin ω̃i = g̃i(qi).

Again, we present variations to complete the calculation
of internal forces and consistent tangents. The case when the
current configuration is close to the reference configurations
is straightforward; differentiating (8) yields

δω̃
i =

1
2

[(
DPt̃i

?

t̃i ·δq
)
·Ri +Pt̃i

?

t̃i ·
(
DRi ·δq

)]
: (t̃i

?)×. (28)

An expression for δRi = DRi · δq is found by differentiat-
ing (20), and the variation of the parallel transport relation
writes [29]

DPt̃i
?

t̃i ·δq =
((

δRi · t̃i
?

)
· t̃i

?

)
1+
((

δRi · t̃i
?

)
× t̃i

?

)
× . (29)

When the rotation Ri is finite, the first variation δω̃i is
found, using (26), as

δω̃
i =−

(
D fi(qi) ·δq

)
gi(qi)+

(
Dgi(qi) ·δq

)
fi(qi), (30)

or, using (27), as

δω̃
i =−

(
D f̃i(qi) ·δq

)
g̃i(qi)+

(
Dg̃i(qi) ·δq

)
f̃i(qi). (31)

C Applying and measuring a moment at a junction
Since rotations are not explicit degrees of freedom at

vertices as, e.g., in corotational beam elements, we here de-
rive an explicit expression for the generalized forces associ-
ated with a moment M about an axis u, measured or applied
at a beam junction whose rotation is parametrized by q. Let
us define the unit vectors v⊥1 and v⊥2 such that (u,v⊥1 ,v

⊥
2 )

is an orthonormal basis. The components of the generalized
nodal force vector F at the junction are related to M by

Fk = M Dθu · q̂k, (32)

where (q̂k)k∈{1,2,3,4} is the basis for quaternions introduced
in (24), and θu(qi) is characterized by

cosθu =
(

R(q) ·v⊥1
)
·v⊥1 , sinθu =

(
R(q) ·v⊥1

)
·v⊥2 .

(33)
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