
© 2019 The Authors. Journal of Field Robotics Published by Wiley Periodicals, Inc.

J Field Robotics. 2020;37:225–245. wileyonlinelibrary.com/journal/rob | 225

Received: 15 August 2018 | Revised: 2 May 2019 | Accepted: 21 May 2019

DOI: 10.1002/rob.21888

R EGU LAR AR T I C L E

A field‐tested robotic harvesting system for iceberg lettuce

Simon Birrell | Josie Hughes | Julia Y. Cai | Fumiya Iida

Department of Engineering, University of

Cambridge, Cambridge, UK

Correspondence

Josie Hughes, Department of Engineering,

University of Cambridge, Cambridge, CB2

1PZ, UK.

Email: jaeh2@cam.ac.uk

Funding information

Engineering and Physical Sciences Research

Council, Grant/Award Number: EP/L015889/

1; G's Growers, Grant/Award Number: DTP

icase; Royal Society, Grant/Award Number:

TA160113; Royal Society ERA Foundation

Translation Award, Grant/Award Number:

TA160113; EPSRC Doctoral Training Program

ICASE Award, Grant/Award Number:

RG84492; EPSRC Small Partnership Award,

Grant/Award Number: RG86264; BBSRC

Small Partnership Grant, Grant/Award

Number: RG81275

Abstract

Agriculture provides an unique opportunity for the development of robotic systems;

robots must be developed which can operate in harsh conditions and in highly

uncertain and unknown environments. One particular challenge is performing

manipulation for autonomous robotic harvesting. This paper describes recent and

current work to automate the harvesting of iceberg lettuce. Unlike many other

produce, iceberg is challenging to harvest as the crop is easily damaged by handling

and is very hard to detect visually. A platform called Vegebot has been developed to

enable the iterative development and field testing of the solution, which comprises of

a vision system, custom end effector and software. To address the harvesting

challenges posed by iceberg lettuce a bespoke vision and learning system has been

developed which uses two integrated convolutional neural networks to achieve

classification and localization. A custom end effector has been developed to allow

damage free harvesting. To allow this end effector to achieve repeatable and

consistent harvesting, a control method using force feedback allows detection of the

ground. The system has been tested in the field, with experimental evidence gained

which demonstrates the success of the vision system to localize and classify the

lettuce, and the full integrated system to harvest lettuce. This study demonstrates

how existing state‐of‐the art vision approaches can be applied to agricultural robotics,

and mechanical systems can be developed which leverage the environmental

constraints imposed in such environments.
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1 | INTRODUCTION

The story of agriculture is one of increasing automation. Crops are

planted, weeded, and harvested with ever decreasing direct human

involvement, reducing labor costs, and improving yield. However, every

fruit or vegetable is different, and solutions for a single crop can vary

from country to country and even company to company. While some

crops such as wheat or potatoes have long been harvested mechanically

at scale, many others such kiwi fruit (Scarfe, Flemmer, Bakker, &

Flemmer, 2009), cucumbers (Van Henten et al., 2002), citrus fruit

(Harrell, Adsit, Munilla, & Slaughter, 1990), strawberries (Hayashi et al.,

2010), broccoli (Kusumam, Krajnik, Pearson, Cielniak, & Duckett, 2016),

grapes (Luo et al., 2016; Monta, Kondo, & Shibano, 1995), and many

others (Bac, van Henten, Hemming, & Edan, 2014) have resisted

commercial automation. Agricultural robotics presents unique chal-

lenges compared to robotics in the more common factory environments

(Oetomo, Billingsley, & Reid, 2009). Agricultural environments are

unstructured, intrinsically uncertain, harsh on mechanical equipment
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(Reddy, Reddy, Pranavadithya, & Kumar, 2016) and have high variability

over weather conditions, locations, and time. Autonomous agricultural

systems must be flexible and adaptive (Edan, Han, & Kondo, 2009;

Hajjaj & Sahari, 2016) to cope. Harvesting and other crop manipulation

tasks (Hughes, Scimeca, Ifrim, Maiolino, & Iida, 2018; Kemp, Edsinger, &

Torres‐Jara, 2007), are particularly challenging (Bac et al., 2014) along

all these dimensions.

Iceberg lettuce is an example of a crop that is still harvested by

hand using a handheld knife, and presents two main challenges to

automation. First, visually identifying the vegetable’s location and

suitability for harvesting in what appears to be a sea of green leaves is

hard even for humans (Figure 1a). Any solution must be robust to the

variation in individual lettuces, with their appearance varying greatly

over weather conditions, maturity and surrounding vegetation.

Second, in a terrain with an uneven ground the lettuce stem must

be cut cleanly at a specified height to meet commercial standards,

while the lettuce head can easily be damaged by unpractised handling.

A lettuce harvesting solution should therefore incorporate a high‐
precision, high force cutting mechanism while being capable of

handling the vegetable delicately. There is a growing need for

automated, robotic iceberg lettuce harvesting due to increasing

uncertainty in the reliability of labor and to allow for more flexible,

“on‐demand” harvesting of lettuce (Bechar & Vigneault, 2016).

This study investigates automating the harvesting of iceberg

lettuce with three key research goals. First, how vision systems

can be developed using off‐the‐shelf convolutional neural net-

works (CNNs) as opposed to hand‐tailored computer vision

pipelines, with pragmatic architectural adjustments made to

allow for the data sets available. Secondly, how mechanical

systems can be developed to work within the operational

constraints imposed by the agricultural environment. Finally,

how field robots can be developed to allow rapid integration and

hence testing in the field.

This paper describes the results to date of the Vegebot project,

where a lettuce harvesting robot has been developed using an

approach of rapid iterative design, prototyping, and field testing. Two

key methods are described for automating the harvesting of the

iceberg lettuce under challenging and uncertain field conditions.

First, the lettuces are localized and classified using a data‐driven
approach. This is implemented using two CNNs, the architecture

being shaped by the data sets available. Using this method in field

tests, a visual‐based localization success of 91% in field tests was

achieved, and the crop accurately classified. Second, the lettuces are

harvested with a custom‐designed end effector that incorporates a

camera, pneumatics, a belt drive, and a soft gripper. The end effector

cuts the lettuce stems efficiently while grasping the lettuce head in a

way that avoids damage. As the ground is uneven and its depth hard

to detect under the foliage, a force‐feedback control system is used

to detect when the end effector has reached the correct position to

make the cut and achieve a consistent cutting height.

Following a review of the state of the art in crop harvesting,

Section 3 defines the problem posed by iceberg lettuce harvesting and

outlines the overall system that was developed. Section 4 focuses on

the details of the two harvesting methods developed: the vision

system and end effector. The field tests and experimental results are

detailed in Section 5 and the paper concludes with a discussion and

conclusion that suggests the application of the techniques and

approaches in this study to other agricultural challenges.

2 | STATE OF THE ART

There is prior work on vision techniques for agriculture. Many of

the examples in the literature are from before the use of CNNs in

the late 2000s, and so use a wide variety of hand‐crafted features.

The detection of volunteer potato plants was performed using

adaptive Bayesian classification of Canny Edge Detectors among

other features (Nieuwenhuizen, Hofstee, & Van Henten, 2010).

Broad‐leaved dock detection (a weeding task) was performed

using a texture‐based approach, where image tiles were subjected

to a Fourier analysis (Evert et al., 2011; weeding is a similar task

to harvesting, just with less concern for the fate of the extracted

plant). An alternative approach to weed detection used wavelet

features of near infrared (NIR) imagery (Scarfe et al., 2009),

subsequently passed to a principle component analysis (PCA)

component and a k‐means classifier (Kiani, Azimifar, & Kamgar,

F IGURE 1 (a) The challenging localization and classification problem posed by the lettuce field. (b) The existing harvesting method [Color
figure can be viewed at wileyonlinelibrary.com]
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2010). Grapes have also been detected with Canny Edge filters,

using decision trees as the classification mechanism (Berenstein,

Shahar, Shapiro, & Edan, 2010). Foliage detection on the same

project required a separate algorithm. Grapes were classified on

another project using the AdaBoost framework, which combined

the results of four weak classifiers into one strong one (Luo et al.,

2016). Radicchios have been detected by thresholding hue

saturation luminance images and applying particle filters (Foglia

& Reina, 2006). Cucumbers were detected using NIR photography

at two positions 5 cm apart, to give stereoscopic depth informa-

tion (Van Henten et al., 2006) and classified for maturity by

estimating their weight from the perceived volume (Van Henten

et al., 2002). A more recent experiment detected broccoli heads

using an RGB‐D sensor had the disadvantage that the robot had to

move a tent across the field to prevent interference from outdoor

light. Point clouds were clustered from the depth information,

outliers were removed, and viewpoint feature histograms con-

structed. A support vector machine performed the actual

classification of the broccoli heads (Kusumam et al., 2016). The

use of vision to provide control through methods including visual

servoing has also been shown to increase positional accuracy

when harvesting citrus fruit (Mehta & Burks, 2014; Mehta,

MacKunis, & Burks, 2016).

These solutions are not appropriate for iceberg lettuce. Color

cues as used in (Berenstein et al., 2010; Cubero, Alegre, Aleixos, &

Blasco, 2015; Foglia & Reina, 2006) are less useful because the

lettuces appear to be a “sea of green.” Depth cues, as used in

Kusumam et al. (2016) and Rajendra et al. (2008) also provide limited

information because the plants and their leaves overlap and the

heads are often hidden.

Similarly, there are a number of existing autonomous harvesting

systems. Harvesting is a challenging task to automate and a recent review

came to the gloomy conclusion that almost no progress had been made in

the past 30 years (Bac et al., 2014). Many research projects have been

performed, but little has filtered through into the commercial world. The

more successful projects include a harvester for apples (Silwal et al.,

2017) using a suction method, rice harvesting using custom harvesting

systems (Kurita, Iida, Cho, & Suguri, 2017), and a sweet pepper harvesting

system (Bac et al., 2017). There has also been significant work in the

development of autonomous weeding or grading systems including a

sugar beet classifying system (Lottes, Hörferlin, Sander, & Stachniss,

2017) and a grape pruning system (Botterill et al., 2017). There are a

number of patents specifically relating to the harvesting of iceberg lettuce

(Ottaway, 1996, 2009; Shepardson & Pollock, 1974); however, these

have not been demonstrated under field conditions and do not clearly

demonstrate how selective plant harvesting is possible. These previous

approaches include using a belt‐driven band saw‐type mechanisms or

water jet cutting. These approaches have limitations, most notably that

the outer leaves of the lettuce can be easily damaged when harvesting

and there is a lack of reliability in stem cutting height and quality.

3 | PROBLEM DEFINITION AND SYSTEM
ARCHITECTURE

3.1 | Problem

The lettuces to be harvested must be both localized (their position

detected) and classified according to their suitability for picking. For

a mature lettuce, using the custom end effector, the lettuce head

center must be localized to within approximately 2 cm of the ground‐
truth position. The identified classes should include at a minimum (a)

harvest‐ready lettuces (which may be picked immediately), (b)

immature lettuces (which can be returned to later), and (c) infected

lettuces (which should not be touched with the end effector so as to

avoid spreading the infection). The vision system should operate

under varying weather and lighting conditions.

Once a harvest‐ready lettuce has been identified it must be cut to

supermarket standards. This is currently performed by a human

worker with a knife. The worker tilts the head of the lettuce and then

uses a high impulse maneuver to cut the stem of the lettuce. The

lettuce is then bagged and placed on a harvesting rig (see Figure 1b).

There is a high degree of dexterity and accuracy required to achieve a

supermarket‐quality cut. The lettuce must have a stem of the correct

length (1–2mm protruding), and it must be clean, with minimal

browning and have no damage to outer leaves. Additionally, if outer

leaves remain after harvesting, these should be removed, which has

proved to be a challenging manipulation problem in itself (Hughes

et al., 2018). If the lettuce falls outside these requirements, it is not

accepted by supermarkets. A lettuce worker can harvest a lettuce in

under 10 s, which sets the benchmark for a robotic harvesting system.

TABLE 1 Conditions for the design and development of a lettuce harvesting system determined by the agricultural environment

Parameters Specification Influence on design

Environment Width of lettuce lanes 2 Determines width of platform

Spacing between lettuce 30 cm Determines maximum size of end effector

Height of lettuce plants 30 cm Determines of height of platform

Diameter of lettuce 20 cm Determines size of end effector

Diameter of lettuce stem Approximately 30mm Determined blade specification

Robot Generator power 240 V, 2 kW Sufficient to power all systems

Compressor air pressure 8 bar Sufficient for pneumatics

Vegebot dimensions 2m x 0.6 m x 0.5m Fits within lettuce lanes
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There are also a number of constraints arising for the agricultural

environment, which dictate the form factor and design decisions, and

these are summarized in Table 1.

3.2 | System architecture

The system developed for autonomous iceberg lettuce harvesting

(Vegebot) is shown in Figure 2. Vegebot comprises a laptop computer

running control software, a standard six‐degree‐of‐freedom (DOF)

UR10 robot arm, two cameras, and a custom end effector, all housed

on a mobile platform for field testing. A block diagram showing the

integration of the system is shown in Figure 3.

Vegebot contains two cameras: an overhead camera positioned

approximately 2m above the ground and another end‐effector camera

mounted inside the end effector. Both are ordinary, low‐cost USB

webcams and stream video to the control laptop. Together, these

allow Vegebot to detect (localize and classify) lettuces, and to move

the end effector into position. There are additional sensors built into

the robot arm: the standard joint encoders and a force‐feedback sensor

that records the force and torque being applied to the end effector.

The UR10 arm provides a wide range of movements, and provides

force and torque information allowing force feedback to be

implemented. A commercial implementation would likely have

simpler arms each with an end effector, all operating in parallel (for

an example of such a system, see Scarfe et al., 2009). The control

laptop controls the end effector using two digital I/O lines routed

through the UR10 arm. These switch the two pneumatic actuators on

and off, the blade actuator causing the blade to slice through the

lettuce stalk and retract, while the gripper actuator causes the soft

gripper to grasp and release the target lettuce.

The mobile platform supports the above hardware items and is

moved manually around the field. The system is powered by a

generator, which provides sufficient power to meet the peak

demands of the system. An air compressor is used to enable

actuation of the pneumatic systems. The generator and compressor

can sit on the Vegebot to allow the system to be completely mobile.

The software architecture is shown in Figure B1a and detailed in

Appendix B. The web‐based user interface is shown in Figure B1b.

3.2.1 | Control and processes

The processes for training and operating Vegebot can be analyzed at

three levels (see Figure 4). At the highest level, the learning cycle, data

sets are gathered for the initial training of the vision system,

harvesting is performed and additional data are gathered. As soon as

enough new data are gathered to merit it, the system can be

retrained. In this way, the accuracy and generalization abilities of the

Vegebot can in principle be improved as images are obtained from

new fields and under different weather conditions. The testing of

these improvements is the subject of a future paper.

The harvesting session outlines the structure of the work in the

field. First the Vegebot is moved along the lettuce lanes (seen in Figure

2) to bring approximately 10 lettuces within the robot’s workspace

and field of view. The current iteration of Vegebot is simply manually

pushed into position. Next, the Vegebot is optionally calibrated, using

the method described in Section 4.1.3. Calibration is always performed

at the start of a session and then on an as‐needed basis as discrepancy

F IGURE 2 The Vegebot harvesting

system, shown undergoing field
experiments [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Block diagram of the robotic
lettuce harvester system developed
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between the lettuce position inferred by the overhead camera and

that detected by the end‐effector camera increases.

Next, the vision system detects lettuces in the video feed from the

overhead camera. A human then selects a lettuce by clicking on the user

interface. This was a manual process during the experiments for the

sake of safety. Selection could be automated with a trivial modification.

The pick sequence then begins, with the lettuce being picked and placed

onto the platform. Once the reachable lettuces have been picked, the

Vegebot can either be moved to a new position or the session finished.

The pick sequence is fully automated and comprises seven

stages. First, the end‐effector approaches the pregrasp position, a

point centered approximately 10 cm over the inferred top of the

lettuce, based on the localization predictions from the overhead

camera. Because of the rugged nature of the environment and the

impacts received by the Vegebot, this prediction is inevitably

inaccurate to a greater or lesser degree. At this point, the camera

in the end effector takes over to fine‐tune the end‐effector position
to be directly over the center of the lettuce. The end effector then

descends vertically down over the lettuce until the force‐feedback
sensor registers the upward force of the ground resisting the

downward trajectory. The soft gripper is then activated and grasps

the lettuce. Next, the blade actuator is activated and the blade

moves horizontally and cuts through the lettuce stalk. Still grasping

the lettuce, the end effector then lifts vertically to the same height

as the pregrasp position, clearing it from contact with the

surrounding lettuces. The arm then moves the end effector to a

convenient place position where the soft gripper is deactivated and

the lettuce is released.

The following section addresses key the harvesting methods

which have been implemented to allow robust and reliable harvesting

F IGURE 4 Processes for training and operation of the Vegebot, showing the key processes in green. The trajectory diagram for the lowest
level pick sequence is shown in Figure 14 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Obtaining data for the data set showing the user holding a webcamera to capture data sets at different heights [Color figure can

be viewed at wileyonlinelibrary.com]

BIRRELL ET AL. | 229



in the agriculture environment (and are shown in green boxes in

Figure 4).

4 | HARVESTING METHODS

4.1 | Lettuce localization and classification

The visual lettuce detection process comprises both localization

(discovering where the lettuce is relative to the robot) and classification

(determining whether the lettuce is a suitable candidate for being

harvested). Lettuces heads are variable in appearance and are typically

partially or wholly occluded by their own leaves and by leaves of

neighboring lettuces. The outdoor lighting conditions also vary

drastically with different weather, including very different levels of

brightness and contrast. The lettuces need to be classified as “harvest

ready” (for immediate picking), “immature” (for picking at a later date),

or “infected” (to be avoided and reported). Additionally, the localization

system must transform the viewpoint coordinates of the lettuce into

robot‐centric coordinates for picking in the face of very rugged physical

conditions. All these operations must be performed in close to real time

given that Vegebot uses localization information dynamically to fine‐
tune the trajectory of its end effector.

In principle, any of the latest deep‐learning based object detectors

could fulfill this function. Candidates such as YOLOv3 and Faster R‐
CNN (Redmon & Farhadi, 2018; Ren, He, Girshick, & Sun, 2015) can

both provide object bounding boxes and class labels in real time (Ren

et al., 2015). In this case, YOLOv3 was chosen as it gave the fastest

detection times and its principal disadvantage (poor performance on

very small close‐together objects) was irrelevant in this use case. Fast

detection times on a laptop implied the possibility of later re‐
implementing the algorithm on more modest, embedded hardware.

With a large enough detection data set, rich in examples of all

lettuce categories, there would be little more to do. In the present

project there were only two data sets available. The first was a

detection data set gathered by one of the authors (see Figure 5), with

images captured by a webcam and bounding boxes and class labels

F IGURE 6 The vision system pipeline showing the two stages of convolutional neural network. First, the lettuces are localized using one

network. A second network using both the lettuces localized from the first network and presegmented lettuce images from a classification data
set is used [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Development of lettuce harvesting end effectors. (a) Two‐handed approach with one hand to hold the lettuce, one hand with

knife, (b) rotary DC motor cutting mechanisms, (c) linear actuator knife‐powered mechanism, and (d) pneumatic cutter chosen as the best
mechanism [Color figure can be viewed at wileyonlinelibrary.com]
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added manually. This data set (detailed in Table 2) was rich in

positional data but the less common classes such as “infected” were

underrepresented. The second data set originated from a previous

student project (Nagrani, 20151) in lettuce classification and was rich

in examples of all classes, but had no useful positional information, all

lettuces being in the center of each image.

Ideally, a more extensive detection database would have been

gathered from multiple fields and stages of the crop cycle, to fully

represent the position and location of exemplars of all classes.

Alternatively, the existing classification images could have been

inserted over other backgrounds to produce an artificial training set

for detection. This latter strategy runs the risk of the network

F IGURE 8 The final end effector developed, showing the belt drive mechanisms and dual pneumatic actuator system [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 9 The force‐feedback method, allowing a repeatable height between the ground and the knife to be achieved [Color figure can be
viewed at wileyonlinelibrary.com]

1http://mi.eng.cam.ac.uk/projects/lettuce/
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learning to detect artefacts in the synthetic images, rather than

genuinely localizing the vegetables based on natural visual cues.

Instead, the solution chosen was to divide the pipeline into two

networks (see Figure 6), each trained by one of the existing data

sets. The first network, a YOLOv3 object detector would be used

simply to discover the presence and location of lettuces (the

number of classes being reduced to a single “lettuce” class) and

output their bounding boxes. Narrow bounding boxes, likely

caused by lettuces at the edge of the viewport and out of reach

of the arm, are rejected as candidates. Each of the remaining

F IGURE 10 (a) The requirements for successfully lettuce harvesting determined by the physical end effector. The lettuce center must be
detected within a distance such that the lettuce is fully within the footprint of the end effector when cutting. (b) The distribution of accuracy of
the lettuce localization system for the two different cameras used, with images from sub‐data sets C and E, respectively [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 11 Localization performance with varying brightness and image contrast. The precision and recall are given in both cases. The
images below show the contrast and brightness enhancement added applied to a typical image in the test data set [Color figure can be viewed at

wileyonlinelibrary.com]
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F IGURE 12 Examples of the localization system working on different lettuce and with camera setups with different heights and angles and
showing usage on different crops and different fields demonstrating robustness. Blue bounding boxes indicate the entire head of lettuce could

be seen, green indicate where only part of the head is visible [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 13 (a) Accuracy of the classification network with changes in image brightness and image contrast. (b) The confusion matrix
showing the classification performance of lettuce [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 14 End‐effector trajectories when undergoing the field experiments. It shows all trajectories centered on cutting (at 0 s) and an
example representative trajectory. The vertical divisions correspond to the different stages of the pick sequence from Figure 4 [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 15 Examples of harvested lettuce showing some with an ideal cut, unwanted outer leaves and damaged outer leaves [Color figure
can be viewed at wileyonlinelibrary.com]

F IGURE 16 Distribution of the cycle times, leaves to remove, and extra cuts required for the various lettuce harvesting experiments [Color

figure can be viewed at wileyonlinelibrary.com]
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bounded boxes is then cropped (adding a small margin round the

outside of the bounding box to provide more visual information to

the next stage) and then a second Darknet Object Classification

Network was applied to each. Finally, bounding boxes predicted by

the first stage and the class labels predicted by the second stage

are merged. Although requiring a two‐stage network, this

approach offers greater performance of both localization and

classification. The architecture has been chosen to achieve the

best performance with the data sets available and given the

information content of those data sets.

There is an additional advantage to using a two‐stage network.

Images input to YOLO are resized from 1,920 × 1,080 to a resolution

of 320 × 320. This is still enough visual information to distinguish,

say, a man from a dog, but may not be enough to determine whether

one of the 10 lettuces visible in the overhead camera is infected or

not. By first detecting the bounding boxes and then cropping each

lettuce from the original 1,920 × 1,080 image before resizing to

224 × 224, much more visual information on each lettuce is available

for the classification network. This improves the likelihood of a

correct classification on images from the overhead camera.

Predictions on the network took 0.082 s for localization in the

first stage and 0.013 s classification time for each detected lettuce

passed to the second stage. Assuming 10 candidate lettuces per

image the total time for localization and classification on the current

hardware is approximately 0.212 s, slower than a single YOLO object

detection network would be, but still sufficiently fast for real‐time

adjustments. The end‐effector camera typically has only one lettuce

in view during fine‐tuning, reducing the detection time to 0.095 s.

The harvesting time is somewhat longer, and thus this is not the time

limiting step. The pipeline processes images from both overhead and

end‐effector cameras. The overhead camera provides candidates for

picking and the end‐effector camera is used to fine‐tune the

approach of the end effector to the desired lettuce.

The two‐stage network uses the existing data sets to maximum

advantage and provides better classification by maintaining a higher

resolution on the images of individual lettuces.

4.1.1 | Localization data set

Training a deep CNN object detector requires a large amount of data.

The data set also needed to be a good representation of the real

scenarios the Vegebot would encounter. Since there was no existing

data set suitable for the propose of this project, a new lettuce

localization data set was collected, labeled, and assembled. Images

were collected from three different sources: images taken by the

overhead camera on the Vegebot platform, images taken directly

with a camera, and extracted images from videos taken by mobile

phones and webcams. Figure 5 shows the process of obtaining

images from the field using a webcam.

Images were divided into five sub‐data sets (A, B, C, D, and E)

according to the characteristics of the images and corresponding

to the different field experiments in which they were obtained.

This allowed better tracking of the data set to make sure the

assembled data set was well balanced. Figure 6 shows some

sample images from each of the five data sets. The images cover

different weather conditions, camera heights, lettuce fields,

lettuce layouts, lettuce maturity, and image qualities, since these

are factors that can vary during lettuce harvesting. Table 2 gives a

detailed overview for each subset including the number of images,

number of lettuces per image, camera heights, weather conditions,

and image quality. Image quality refers to the subjectively

evaluated blurriness of the images.

The images were labeled manually in square bounding boxes

using the VoTT Visual Object Tagging Tool (Vott, 2018). The lettuce

images were labeled such that center of the bounding box is the

geometrical center of the corresponding lettuce and the dimensions

of the bounding box are 10% larger than the lettuce head. Only the

lettuces whose heads are fully included in the image were labeled.

The data set was randomly separated into training (70%), validation

(20%), and test (10%) sets, where the validation set is used for

hyperparameter tuning and the test set is only used for benchmark-

ing the final performance.

Even though only lettuces that were fully visible within the

image were labeled, the YOLO algorithm was robust enough to

detect lettuces at the edges as well. Classifying these partial

lettuces would have increased the complexity of the problem

unnecessarily. Practically, these lettuces were likely to be out of

the reach of the Vegebot robot arm and therefore they were

rejected from the detected candidates. There were also cases

where lettuces were blocked by weeds, the Vegebot itself or other

obstacles, which led to narrow bounding boxes instead of square

ones. Lettuce rejection algorithms were implemented to reject

such candidates. A candidate was rejected if it met either of the

following criteria:

TABLE 2 Details of the different sub‐data sets used to create the localization data set including the number of lettuce and conditions in
which the images were taken

Sub‐data set Number of images Number of lettuce per image Camera height from ground (m)

Weather

conditions

Image

quality

A 157 7–10 ≈1.8 Cloudy/sunny Medium

B 209 8–14 ≈2 Sunny High

C 117 3–6 ≈1 Cloudy Medium

D 131 4–11 ≈1.2 Cloudy/rainy Low

E 891 1 ≈0.3 Cloudy/sunny/rainy High
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• Rejection of nonsquare bounding boxes which are on the edges of

the images

l
w

d margin margin
L W

1.15 and where
75

.> < =
+

• Rejection of narrow bounding boxes

l
w

1.4,>

where w and l are the lengths of the bounding box edges, with w

being the longer of the two. L and W are the width and height of the

overall image, and d is the distance between the bounding box and

the edge of the image.

The localization network was based on the YOLOv3 architecture

and was trained with a batch size of 64, subdivision of 8, and 10,000

iterations. The network was trained on a PC with a 4.5 GHz Intel i7‐
7700k CPU and an nVidia 1080Ti GeForce GTX GPU. Training took

around 12 hr. Pretrained weights based on ImageNet were used. No

data augmentation was applied: This could improve localization

performance and remains for future work.

4.1.2 | Classification data set

The goal of the classification network is to pick out the harvest‐ready
(i.e., mature and healthy) lettuces among all the lettuces recognized

from the previous localization step. Immature and infected lettuces

should be left in the field. False‐negative localization results can be

hazardous: Reaching for a nonlettuce object can damage the robot

(if the object is a rock) as well as the object itself (if the object is a

human hand or robot part). Adding a negative “background” class

acted as an additional filter to prevent false positives: By explicitly

labeling edge cases as not being lettuces, the classification network’s

performance improved.

The images were labeled by one of the authors with assistance

provided by cultivation experts to allow labeling and classification of

the data set. Figure 6 shows sample images from each of the four

classes. Table 3 is an overview of the size of the data set. The 665

images were randomly separated into training (87.5%) and test

(12.5%) sets.2 A higher portion of images were allocated to the

training set deliberately due to the limitation of the images available.

The classification network used was the standard object classifier

supplied with Darknet, with no transfer learning (the use of

pretrained weights would likely increase performance further). The

batch size was 64, the subdivision was 4, and the network was

trained to 260 iterations. The training was on the same hardware as

the localization network and took 2 hr.

4.1.3 | Calibration and end‐effector positioning

The first approach tried on the positioning problem was the classic

one of modeling the robot and its coordinate systems, calibrating

the camera parameters, and then transforming the target center

pixel of the lettuce (the center of the bounding box) to a position in

3D space and finally using inverse kinematics to move the arm as

required. The problem encountered was that the system worked

well in the lab, but would fail once subjected to knocks and bumps in

the field. Even small deviations in the position of the overhead

camera would mean that the robot might incorrectly locate its

target by up to 10 cm.

A different approach was therefore attempted, where the robot

could self‐calibrate the transformation from viewport pixels to arm

position, using Aruco markers positioned on the top of the end

effector. An occasional self‐calibration would be sufficient to reset

the transformation, for example, after moving the platform. Calibra-

tion also resets the target location of the lettuce center within the

viewport of the end‐effector camera. We assume the platform is kept

approximately level with reference to the field due to the tracks in

which them Vegebot moves. Further details of the final calibration

procedure can be found in appendix.

4.2 | Force feedback‐driven harvesting

The lettuce harvester has been designed to achieve reliable, efficient

harvesting of lettuce with minimal damage to the lettuce. To meet

supermarket specifications, the lettuce stem should be cut with a

single consistent straight cut such that there is approximately 2mm

of stem. The outer leaves of the lettuce should also be removed

where possible. A UR10 6‐DOF arm is used to provide movement of

a custom end effector which has been specifically designed for

lettuce harvesting. The UR10 arm is mounted on a mobile base which

can be moved along the rows of lettuce.

The picking sequence (Figure 4 “pick sequence”) demonstrates

how there are two stages to the physical cutting aspect of the

harvesting procedure. To minimize the damage to the lettuce and

also achieve a clean cut a method where the end effector is made of

two mechanisms has been used. First, a soft clamping method is used

to hold the lettuce throughout cutting and when lifting. Secondly, a

cutting mechanism is required to cut the stem of the lettuce at a

given height. The cutting mechanism requires force (≈20N) to cut

through the stem and outer leaves, while also requiring height

adjustability and also a straight linear cut.

TABLE 3 Classification data set, showing the number of each type
of lettuce in the data set

Lettuce

class

Harvest

ready Immature Infected Background Total

Number of

images

181 149 121 214 665

2The Darknet classifier has no separate validation data set; the experimenter chooses the

length of training based on periodically evaluating against the test set. For the robustness

evaluation below, fresh data was used.
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4.2.1 | End‐effector design

To achieve sufficient cutting force to cut the stem, a high impact,

straight cut is required at the base of the lettuce. A number of

different mechanisms were tested to determine which could achieve

sufficient force and quality of cut: soft gripper and knife hand,

pneumatic actuation, belt drive, and rotary chopping. Figure 7 shows

the different mechanisms considered.

The two‐handed approach lacked sufficient cutting force and

required a high level of coordination between the two arms. A rotary

electric motor approach lacked the force to reliably cut the stem and

led to the mechanism having to hack at the stem. Although the linear

actuator approach provided sufficient force, the speed was low,

leading to poor cut quality. The pneumatic cutting mechanics

provides a high power‐to‐weight ratio, making it highly suited for

this application where a fast clean cut is required. Although there is

no position control, pneumatic actuation allows for easy to

implement cut/open control.

The soft gripping mechanism has a single moving gripper and a

fixed gripper lined with foam. Similar to other harvesting end

effectors (De‐An, Jidong, Wei, Ying, & Yu, 2011; Foglia & Reina,

2006), a pneumatic actuator is used to control the gripper as this can

be used to provide controllable compliance by varying the air

pressure such that the lettuce is held but not damaged with simple

open/close control

The end effector developed is shown in Figure 8, with the design

parameters given in Table 4. The end effector used only two

actuators, one for grasping and one for cutting to enable simple

control. A timing belt system was used to transfer the linear motion

from a single actuator to both sides of the blade to allow smooth

movement. This allows the actuator to be mounted above the height

of the lettuce, such that when cutting it does not interfere. The belt

drive system allows for the height of the cutting mechanism to be

easily altered by changing the height of the cutting mechanism.

4.2.2 | Force‐feedback control

A key challenge to successful harvesting was reliably cutting the lettuce

stalk at the correct height in an environment which is highly varying,

uncertain, and unknown. To achieve this, the ground was used as a fixed

reference point and the stem was assumed to be a fixed distance above

the surface. Using force feedback from the joints of the UR10 robot

arm, the end effector is lowered toward the ground, enveloping the

lettuce, until a given force was achieved and contact with the ground

could be assumed. The cutting height relative to the ground can be

adjusted by manually varying the height of the cutting mechanism. A

force threshold, T , was found by experimentally determining what force

is required for the end effector to interact with the ground, that is, when

it overcomes the resistive force of the leaves and other ground reaction

forces, FR. The force threshold was experimentally determined to be

60N to ensure all leaves were pushed away from the lettuce head and

the end effector was in contact and level with the ground. This approach

is summarized in Figure 9.

This approach helped push out the outer leaves of the lettuce which

interfered with the cutting mechanism. This also allows the end effector

to self‐level on the ground, and provided stability and consistency. Small

“feet” were added to the end effector to allow stability to be achieved

and prevent it from pressing too low into the ground. This approach

allows the system to adapt to different field conditions, for example,

different soil heights relative to the tractor track heights.

Once fully positioned, the lettuce is grasped and the cutting

takes place. Each of the pneumatic actuators is controlled by a

valve which has two position controls. Two digital outputs from

the UR10 end effector are used to control the valves. After the

correct height is achieved using force feedback, cutting is

triggered by first actuating the grabbing mechanism so the lettuce

is held in a fixed place. The cutter pneumatic system is then

actuated so the blade cuts the stem of the lettuce. The arm can

then be lifted, with the knife released and then the grabber

retracted to release the lettuce.

Besides these two challenges, an additional one was that the weight

of the end effector was at the limit of the payload ability of the UR10.

This restricted the arm to moving more slowly than would otherwise be

necessary. This will be discussed in the experimental results.

5 | FIELD EXPERIMENT RESULTS

Ten experimental sessions were carried out in the harvesting seasons

in 2016–2018 in lettuce fields in Cambridgeshire, UK, in varying

weather conditions and across many (over 10) different fields. In

these field trips, the system was developed and tested3.Field

experiments were undertaken to test the performance of the

localization and classification system in isolation from the harvester.

The entire system was also integrated to test the full functioning of

the system in conjunction with its physical harvesting abilities. In this

TABLE 4 Specification of the end‐effector developed

End‐effector parameters Specification

Weight 8 kg

Height 45 cm

Width 45 cm

Depth 30 cm

Gripper pneumatic actuator

specification

1MPa, bore 10mm, stroke

15 cm

Cutter pneumatic actuator

specification

1.5MPa, bore 15mm, stroke

20 cm

Timing belt 5.08 mm pitch, 203 cm length,

20mm width

Length of travel of blade 200mm

Cutting knife length 250mm

Inner area to encapsulate

lettuce

25 cm × 25 cm

3These were in collaboration with a major agricultural company, G’s Growers.
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section, the localization and classification is presented for both

individual and system level tests, after which the harvesting system

results are presented.

At the beginning of each experimental session, the Vegebot was

assembled at the start of a lettuce lane. Typically, a three person

crew participated, one operating the control laptop, one observer,

and one checking and resolving any physical issues and enabling the

air compressor when required.

5.1 | Localization

In order for a lettuce to be successfully picked, the center of the end

effector must be placed with a tolerance, D, of the true center of the

lettuce. The tolerance, D, which is determined by the mechanical

design of the end effector is approximately 2 cm for average sized

lettuce (approximately 15–20 cm diameter). For successful harvest-

ing, the localization system must predict the center of the lettuce,

such that the absolute difference from the ground truth, DΔ is less

than the tolerance ( D DΔ < ). In practice, for a given camera height

the threshold was specified in pixels, calculated taking into account

the scale of the image. This threshold is illustrated by Figure 10a.

To test the ability of the system to localize lettuce heads with

sufficient accuracy to allow success harvesting, images taken with

both low‐level and high‐level cameras were used (approximately 30

and 170 cm above the crop, respectively). The difference between

the detected and ground truth of the lettuce center was found. The

distributions of the accuracy in the localization performance of the

two cameras is shown in Figure 10b.

In the field, the lighting and weather conditions may vary

significantly. To test robustness to different lighting conditions, the

test subsets of data sets A‐E in Figure 6 were artificially modified

with image processing (using ImageEnhance brightness and Ima-

geEnhance contrast functions in the Python Willow library) to

different levels of brightness and contrast, producing six times

(7,200) the original number of test images (1,200). The localization

system was then tested on this set of images (Figure 11). The

precision and recall were then found. The system showed a high

robustness to changes in image brightness (the most likely changing

field conditions), with minimal changes in precision and recall. For the

variation in image contrast, although the precision remained high, the

recall dropped significantly for high changes in contrast. It is likely

that using data augmentation techniques on the original training data

set would have improved this.

Figure 12 shows some examples of the localization results. Figure

12a–c shows the robustness at different camera heights, different

angles (12d), and different parts of the field (middle and edges). The

system was able to avoid detecting weed (12a,c), human feet (12a,b)

as well as lettuces that fail to form lettuce heads (12b). Figure 12b

also shows that the lettuce rejection algorithm is able to effectively

reject lettuces which are on the edge of the image. Localization was

also effective at different heights (ranging from 20 cm to 170 cm) and

with the camera tilted by up to 45°.

When integrated into the full system, the overall performance of

the localization system could be tested in harvesting trials. The

success rate (number of correctly identified lettuce over total

number of lettuce observed) and false‐positive detections were

recorded. The results from this overall system results include over 60

individual lettuce harvesting experiments, where the localization

results of all lettuce that could be visible observed by the system

were recorded. The results are shown in Table 5.

5.2 | Classification

Robustness and accuracy of the classification system is critical for

avoiding infected or damaged crops which could infect the harvesting

system. By skipping immature heads and avoiding unnecessary

harvesting the efficiency of the harvester can be maximized. To test

the robustness of the system, the same images from the localization

experiments (modified for brightness and contrast) were passed to

the classification network and the accuracy recorded. The results are

shown in Figure 13a. For classification, the network showed greatest

robustness to contrast as opposed to brightness variations; this could

be because the training data showed greater variation in contrast as

opposed to brightness. Images taken in bright sunlight were high

contrast rather than high brightness and there were no late‐night
images in the data set to train for low brightness. Judicious data

augmentation before training should improve performance.

To understand the classification decisions made by the network a

confusion matrix of the field tests has been generated and is shown

in Figure 13b. The diagonal shows the correctly classified lettuce,

showing that the classification performs adequately for identifying

background, infected and harvest‐ready lettuce. Identifying infected

lettuce is crucial for avoiding contamination and further work should

be undertaken to further improve the classification.

The network struggles to separate harvest‐ready and immature

lettuces. One of the reasons is that the boundary between harvest‐
ready and immature lettuces is very vague and changes accordingly

to current market requirements, and thus creating a meaningful data

set is challenging. The classification data set was labeled under the

rules that a “harvest‐ready” lettuce head is around 18 cm in diameter,

which for the majority of the time is the harvesting requirement. On

the day of the field test, there was a change in harvesting

specification: lettuces that would normally be treated as “immature”

and left in the field were also harvested, which explains why many of

the “immature” predictions got corrected to “harvest‐ready.”
When entire system tests of the Vegebot were later ran in the

field, the system provide 100% accuracy when classifying lettuce.

TABLE 5 Overall system harvesting tests showing the localization
performance

Metric Result Definition

Lettuce localization success 91.0% Number of detected qualified

Number of real qualified

False‐positive detection 1.5% Number of false qualified

Number of real qualified
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Although a reasonable number of experiments were ran (69), the

number of nonideal (i.e., diseased or immature) lettuce in this

experiment was low, so there was little variation in the classification

of lettuce seen.

5.3 | Harvesting performance

The final field tests were performed in May 2018 at a lettuce field in

Cambridgeshire, UK. These final tests followed on from over 10

previous visits to the field with well over 300 lettuce harvested. The

Vegebot was positioned at the start of a lettuce lane, the lettuces

within the viewport of the overhead camera were detected and picks

attempted. Once attempts had been made to pick all feasible lettuces,

the platform was moved forward down the lane to the next unpicked

rows. Each lettuce position, and false positives or negatives were

recorded, together with the number and trajectory of all pick attempts.

Finally, each lettuce was inspected for damage, in particular for the

stalk being cut too close to the lettuce body. In total, 69 lettuces were

detected by the vision system, 60 were in range of the robot arm and

harvesting attempted with 31 lettuce harvested successfully. A video

of the Vegebot in operation was recorded.4

5.3.1 | End‐effector trajectory

During the final field experiments, 69 qualified lettuces were

detected by the vision system. Of these, attempts were made to

pick 60, the remainder being out of range of the robot arm. Thirty‐
one pick attempts were successful, with 29 failures, almost entirely

due to the weight of the end effector causing mechanical failures on

the arm which made attempting harvesting impossible.

The 31 successful trajectories of the end effector are shown in

gray in Figure 14, with a representative trajectory highlighted in

black. This representative trajectory shows a single experiment

which reflects the desired trajectory and demonstrates the different

parts of the harvesting process. The breakdown of the time series

into the processes from Figure 4 is shown. The X, Y, and Z

coordinates are shown with respect to the base of robot platform,

with X pointing forwards in the direction of travel, Y pointing to the

left, and Z pointing up.

With the exception of the grasp‐cut section, all of the other

trajectory sections were slowed considerably by the burden of the

end effector weight on the robot arm. This led to an average cycle

time of 31.7 s. Critically, the rate‐limiting step, the grasping and

cutting, required only 2 s. Thus, using a lighter end effector, for

example, constructing from a lighter material such as carbon fiber,

or using a stronger arm could lead to a significantly lower cycle

time.

The trajectories clearly show the impact of the force feedback,

with the robot arm descending in the Z axis at a consistent rate until

the force threshold is met. This shows that the end height of arm

varies considerably for different lettuce, showing how using force

feedback allows a consistent height to be achieved. There is also

slight variability in the X and Y axis close to when the force threshold

is reached as the end‐effector self‐levels on the ground.

5.3.2 | Overall harvesting performance metrics

The results of the field experiments are shown in Table 6.

Considering all the harvesting attempts, the detachment success if

found to be 52% (31 out of 60 lettuces correctly identified, excluding

false positives). However, in 28 cases, the harvesting failure was due

to practical restrictions (weight of the arm, practical workspace of

the robot arm, and the range of the overhead camera viewport), such

that it was physically not possible to pick some lettuce. If the

limitations of the arm are ignored, and the denominator reflects only

those lettuces within the practical workspace, then the detachment

TABLE 6 Overall system performance in the harvesting tests. Total lettuces attempted considers only lettuces within restrictions imposed by

arm strength

Metric Result Definition

Total ground‐truth lettuces 69

Total lettuces detected 61 (1 false positive)

Total lettuces attempted 32

Total lettuces detached 31

Detachment success 97% Number of successfully picked qualified

Number of detected qualified

Harvest success 88% (Lettuce localization success) × (detachment success)

Cycle time 31.7 s, 2=σ 32.6 Complete cycle time from lettuce to next

Damage rate 38% Number of lettuce harvested in unsaleable condition

Total number harvested

Leaves to be removed 0.75, 2=σ 1.42 Average leaves to be removed to achieve scalability

Total lettuces attempted 69

4https://youtu.be/UR-7LBdI7Z4
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success rises to 97% (31 out of 32). In other words, with one

exception, if the arm could reach the lettuce, the end effector could

pick it. Although this is a considerable exception, it could be simply

achieved by using a robot arm with increased torque output.

Examples of the harvested lettuce are shown in Figure 15,

showing high‐quality cuts and also showing those with unwanted

outer leaves or damage. The distribution of the lettuces which

required extra leaves to be removed, extra cutting attempts and the

cycle time is shown in Figure 16. The cycle time varies greatly

depending on how far the arm needs to travel from lettuce to lettuce,

exacerbated by end‐effector weight slowing the movements. In a few

cases, one extra leaf needed to be removed (manually) to achieve

supermarket perfection. Additionally, in some cases extra cuts were

required. This was often due to the leaves of the lettuce and

movement of the lettuce head within the cutting area. Additionally,

the cuts were generally a little too close to the body to be acceptable

in the current market.

The average cycle time was 31.7 s, with a variance of 32.6 s.

Again, this value was largely due to the limitations of the arm and the

weight of the end effector. Of the trajectory sections in Figure 14, all

but the short grasp‐cut section (2 s) have their speed limited by the

arm’s payload capacity. A much reduced cycle time should be

achievable with a stronger arm or lighter end effector. In addition,

around a quarter of the cycle time is taken by the fine‐tuning of the

end‐effector position. Any improvements to the accuracy of the

overhead camera localization would further reduce the overall cycle

time.

Reducing the damage rate (38%) will require further experi-

mentation. Supermarket chains, the largest wholesale lettuce buyers,

have strict standards for the length of the cut stalk to improve the

vegetable’s appearance in packaging. According to these standards,

esthetic rather than relevant to the lettuce’s suitability for eating or

not, the end effector often missed the ideal length, cutting in most

cases slightly too close to the lettuce head. Of the 32 picks, only two

actually resulted in inedible lettuces. Improvement can probably be

made by refining the force‐feedback mechanism and perhaps

introducing field‐dependent depth calibration at the start of each

session. This remains for future work.

Again, buyer standards dictate that a packaged lettuce should not

have too many superfluous leaves in the packaging. At present, a human

harvester will deftly remove a few leaves after each pick before passing

the lettuce onto the harvesting rig. The end effector left the picked

lettuce with an average of 0.75 additional leaves that are undesirable by

these standards. These would have to be removed further down the

production chain by hand, or in an automated fashion.

It is worth noting that both the metrics for damage rate and

leaves to be removed could be substantially improved by permitting a

greater range of appearance of the vegetable on supermarket

shelves. Until the robot improves, this suggests a dual pricing

strategy, with a higher price paid by the consumer for a “perfect”

hand‐picked lettuce and a lower price for a more variable but quite

edible robot‐picked one.

6 | DISCUSSION

There is much remaining work required to achieve an iceberg lettuce

harvester for commercial operation. Existing challenges include visual

analysis, precise manipulator control, harvesting rig development, and

reduction of the overall cycle time and costs. In this study the focus

was not to develop a commercial product, but to demonstrate proof‐
of‐concept experiments which provide research outcomes which can

aid future development of agricultural robotics systems not only for

iceberg lettuce, but many other crops. This section discusses the

design rationale behind the development process and in particular the

visual processing strategies which were chosen and how these

approaches can be used to aid future work in this field.

The final prototype of Vegebot is a result of more than 15

iterations and on‐site field tests which were carried out in the UK

harvest seasons (July–September) between 2016 and 2018, and also

countless lab based experiments. In each iteration, new software and

hardware redesigns were tested in the field, data gathered, and

results compared. The development approach adopted was to

produce a modular system to enable rapid integration and testing

of the architecture systematically. Frequent field tests were used to

provide feedback and to identifying the improvements required. As a

consequence of this approach, the physical design changed radically

from week to week (see Figure 7). This process was kept grounded by

the use of standard harvesting metrics (Bac et al., 2014) to monitor

progress. The authors believe that this iterative approach is more

likely to yield robust, field‐worthy robots than careful upfront design

based on an idealized version of the problem.

As an example of the approach taken, the available visual data

sets of lettuces were not ideally suited for an optimal vision system.

Two separate data sets, one for localization and one for classification,

were both of reasonable quality in themselves but in an ideal world

would have been combined into one integrated whole. Rather than

spend time and resources gathering yet another data set to replace

them, the Vegebots neural networks were quickly adapted to make

use of what was available. This enabled the robot to detect lettuces

correctly, solving the problem for the time being and allowing work

on the overall system to continue. With future iterations and online

data‐gathering this architecture could be simplified once again into a

single, fully‐integrated CNN architecture.

It is noteworthy that a vision system based on a standard CNN

architecture was able to achieve the localization results that it did,

given the difficulty of the task for a human harvester. Many of the

previous harvesting robots detailed in Section 2 required vision

systems carefully tailored to the fruit or vegetable in question (e.g.,

detecting color or depth). For example, broccoli heads are detected

using an elaborate pipeline of RGB‐D sensors, point clouds, and

feature extraction in Kusumam et al. (2016) and radicchios using hand‐
crafted features and particle filters in Foglia and Reina (2006). CNNs,

together with some rapid and informal data gathering, proved “good

enough” for the nontrivial localization of iceberg and may turn out to

be sufficient for other crops (Kamilaris & Prenafeta‐Boldú, 2018).
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Considering the mechanical development, by making field testing

central to the project, the robot design naturally adapted itself to real‐
world commercial conditions. Vegebot operates in the same fields and

along the same lane layout as human harvesters. Neither the

environment nor the crop itself was altered in any way to facilitate

the automated harvesting. By contrast, solutions using water knives

require careful selection of the crop variety and modifications to the

way they are planted (Simon, 2017). Vegebot‐derived solutions could be

gradually deployed alongside existing methods, rather than requiring

major changes to existing practices. The control and calibration

software was repeatedly simplified to provide a solution that worked

robustly in the field. Sensors were stripped out, not added. Complex

algorithms to model in 3D and determine the optimal cutting position

were replaced with mechanical legs that provided force feedback from

the ground, giving the robot a simple signal on when to cut. A design

change was considered an improvement whenever a mechanical feature

or software module was eliminated. In the long term, this preference for

simplicity over sophisticated solutions may prove limiting, yet Vegebot

has already achieved important results. The use of standard metrics as

proposed by Bac et al. (2014) kept the project on track and focused on

steady, incremental improvements. The authors feeling is that the

iterative, simple approach can yield yet many more dividends before

being exhausted.

As the project stands, the damage rate, caused by cutting the

lettuce stem too short, is too high for supermarket standards, although

the harvested vegetables were perfectly edible. The most recent

sample size of 69 lettuces was enough to confirm this as the next

problem to address (hundreds of lettuces had been harvested over

previous iterations). Future versions of Vegebot will need to address

and improve the damage rate, perhaps with visual feedback from the

harvested lettuces dynamically adjusting the force threshold at which

the cut is made. In parallel, the end effector needs to be made lighter

to achieve a human‐level cycle time, possibly by manufacturing with

carbon fiber, or by using an alternative, stronger cartesian arm design.

In summary, the adaptation of CNNs to pre‐existing data sets and

the use of simple, low‐sensory, environmental feedback may prove

useful in other harvesting projects. The authors key recommendation

would be rapid iteration with radically different hardware designs,

testing in the field as often as possible and relentlessly simplifying

and using the standard metrics to stay on track.

7 | CONCLUSIONS

This paper presented a proof‐of‐concept platform called Vegebot

that demonstrated an automated and potentially autonomous

approach to harvesting iceberg lettuces. The vision system,

mechanics, and control strategy were described and the experi-

mental results detailed.

The goals of the project were to achieve a robust localization and

classification, to achieve a cycle time comparable to humans and to

avoid damage to harvested lettuces. The localization and classifica-

tion were reasonably robust, as demonstrated by a localization

success of 91% and a classification accuracy of 82% when tested on a

significant test data set. The average cycle time on Vegebot (31.7 s)

was restricted by the weight of the end effector and thus currently

slower than humans, but could be easily improved in subsequent

versions made from lighter materials. Although the harvest success

rate was high (88.2%) the damage rate was poor (38%). The sample

size of 60 lettuce demonstrates potential and identifies that future

work is required to reduce the damage rate. Further optimization is

required to meet supermarket standards.

In comparison with other work in this study ecosystem, we have

demonstrated a number of new approaches and techniques for

agricultural robotics. In using a two‐stage CNN we have used an “out‐
of‐the box” learning system for a specific agricultural problem as

opposed to creating a bespoke system for this particular problem.

This is different from many state‐of‐the‐art solutions (Berenstein

et al., 2010; Ren et al., 2015). We have also explored how this

approach can make best use of the available data sets and can

implement full data collection, training, and testing. Additionally, in

the development of the mechanical components of the harvesting

system we have shown how the environmental constraints can be

exploited. This has been shown to help achieve a consistent cutting

height. This use of the environment, and designing mechanical

systems to work within an existing agricultural environment, is

different to many other approaches. This presents an approach to

achieve robustness in challenging agricultural environments.

While the immediate future would appear to be robot arms

attached to harvesting rigs, an autonomous Vegebot is also a distinct

possibility. While its capacity would clearly be more limited, it would

have agility in the sense of responding quickly to sudden spikes in

demand. Marshaling a human team and a harvesting rig can be difficult

at short notice and may be overkill for unexpected but smaller orders,

whereas an autonomous Vegebot could be conveniently sent into the

field to fulfill them. Outside of harvesting time, it could also be used for

data gathering. The vision and learning system in combination with the

end‐effector system provides the potential for selective plant harvest-

ing. This could increase crop and harvesting efficiency.

Agriculture is an industry where margins are low; cost efficiency

and time efficiency are key. To make the presented approach viable,

the cycle time would need to be reduce to that comparable to humans.

However, using a robotic system would enable certain advantages

such as a more flexible work force and nighttime operation. The

techniques and approaches here have been applied to iceberg lettuce;

however, the concepts could be applied to other harvesting and

robotic agriculture situations. Further work to investigate wider

applicability, and developing a more universal harvesting system would

increase both commercial and research impact.
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APPENDIX A: INDEX TO MULTIMEDIA
EXTENSIONS

Extension
Media
type Description

1 Image Overhead view of lettuces

2 Image A lettuce harvesting rig with workers

3 Image The Vegebot lettuce harvesting robot

4 Image Block diagram of Vegebot

5 Image Process diagram of Vegebot

6 Image Scientist gathering data in lettuce field—two

photos

7 Image Image pipeline of Vegebot

8 Image Four photos of four end effectors

9 Image Labelled photo of final end effector

10 Image Diagram of how end effector works

11 Image Overhead diagram of end effector positioning

over lettuce

12 Image Distribution diagram

13 Image Two line graphs with photos below

14 Image Four photos of lettuces with bounding boxes

15 Image Line graph

16 Image Confusion matrix

17 Image Diagram of trajectories

18 Image Five photos of lettuces

19 Image Three distribution graphs

20 Image Software architecture

21 Image User interface

22 Image Calibration diagram

APPENDIX B: SOFTWARE

The software (see Figure B1a) was written on the kinetic release of

robot operating system (ROS). Custom ROS modules for Vegebot

were written in Python and are bundled as the package vegebot5:

• vegebot_commander: This node is responsible for receiving user

commands from the web‐based user interface front‐end and either

executing them or passing them to the appropriate node.

• lettuce_detect: This node encapsulates the code that classifies and

localizes lettuces from a 2D image. It calls the two deep neural

networks running on Darknet.

• lettuce_sampler: This node supplies sample 2D lettuce imagery for

testing purposes when not in the field.

• vegebot_msgs: This node defines the custom ROS messages used

for internode communication, including lettuce hypotheses.

• vegebot_webserver: This node serves the HTML front‐end user

interface to the robot operator.

• vegebot_run: This module contains the 3D model of the Vegebot

(in URDF format) and the scripts for launching the entirety of the

software under different conditions.

Standard ROS hardware drivers (universal_robot, ur_modern, and

usb_cam) are used to drive the UR10 arm and the webcams. A

standard installation of Darknet (Redmon, 2013) with YOLOv3 was

accelerated by CUDA drivers version 9 to provide image detection

services. The HTML user interface (see Figure B1b) can be operated

on the same control laptop or remotely, via an onboard WiFi router.

The two cameras stream live video to the user interface and

bounding boxes and classes for the detected lettuces are overlaid.

The position of the calibration marker is also shown. The roslib.js

library provides an interactive 3D model of the robot which displays

the real robot’s movements. The force feedback on the end effector

is shown by three bar graphs to the left of the display. Detected

lettuces are added dynamically as menu items to the screen, using

the d3.js library. The operator can test individual actions (such as

“move to pregrasp position”) or simply select a detected lettuce and

instruct Vegebot to pick and place it.

APPENDIX C: CALIBRATION DETAILS

The full calibration sequence was as follows and is summarized in

Figure C1.

1. Manually position the end effector over any lettuce X using

standard UR10 controls.

2. Manually raise the end effector vertically until approximately

10 cm clear of the lettuce.

5https://bitbucket.org/robotlux/vegebot/src/master/
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3. Trigger automatic calibration:

(a) The center pixel of the bounding box for lettuce X in the end‐
effector camera is recorded as the target center pixel for

fine‐tuning (the camera is not centered in the end effector for

space reasons)

(b) The calibration records the vertical position of the end

effector (Z axis in ROS) and assumes this to be the height of

the plane containing all future “pregrasp” positions.

(c) The end effector then moves to three positions at the edges

of the viewport, in the same horizontal plane. Each position is

recorded in terms of the X, Y, Z of the end effector in the

robot arm’s coordinate frame and in terms of the u,v center

pixel of the detected Aruco marker.

The three calibration positions define a horizontal plane with

respect to the ground, around 10 cm over the tops of the lettuces.

Given any pixel u,v in the viewport, the corresponding x, y, z in the

horizontal plane can be found by linear interpolation between these

three points. The UR10’s built‐in inverse kinematics were then used

to move the end effector into position in the “approach pregrasp

position” phase of the pick sequence (see Figure 4). For further

details of the calculations, see Appendix C.

This rough positioning proved robust enough to move the end

effector into the pregrasp position, but not to exactly center it

accurately over the top of the lettuce. At this point, the end effector

“fine‐tunes” the position using a simple visual servoing method. The

bounding box of the target lettuce is now visible in the end‐effector
video feed (see Figure B1b, right‐hand video feed for an example),

the center point is calculated and then the arm is moved in the

horizontal plane (along the X and Y axes) until this center point

coincides roughly with the target pixel recorded in Step 3a of the

calibration sequence. The end effector is now positioned over the

center of the target lettuce and can then descend vertically.

While the full calibration sequence involves human input to

position the end effector over a sample lettuce, the resampling of the

horizontal plane itself is automatic and could be triggered without

human intervention on an as‐needed basis, for instance when the

‘fine‐tuning’ phase of the trajectory starts to take too long or to fail.

The calibration procedure is always undertaken when the

Vegebot is positioned at the start of a lettuce lane. When the

F IGURE B1 (a) The software architecture of Vegebot showing the structure and various packages used. (b) The web‐based user interface
for Vegebot

F IGURE C1 Calibration method,
showing how position and camera

coordinates are gained from three
positions to allow a mapping from camera
to real‐world coordinates to be achieved
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platform is manually moved between harvesting sessions, there is a

human decision (see Figure 4) on whether recalibration is required, if

for example the change in terrain has caused the relative position of

the platform to the field to change. This can be seen in the increasing

amount of time taken to fine‐tune the end‐effector position.

Long term, this process would be automated. Three calibration

points in robot space (see Figure C1) are found (P1, P2, P3) and their

equivalent viewpoint coordinate are found in the camera space (C1,

C2, C3). Any viewpoint coordinate, Ct (ut , vt) can be expressed as the

sum of two vectors:

C aC bC C C C

C C C

C C C

, where ,

,

.

t

t t

2 3 2 2 1

3 3 1

1

= + = −

= −

= −

(C1)

The values of a and b can be found as

b
v v

v v
t t 2 2

3 3 2 2
=

− /

/

ū ū

ū ū
(C2)

and

a
v b

.3 3

2
=

− ū

ū
(C3)

This allows an equivalent point in robot space to be found as

P P P

aP bP .
t t 1

2 3

= −

= +
(C4)

Such that the point Ct transformed into robot space can be

calculated by

P P aP bP .t 1 2 3= + + (C5)
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