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Abstract

Estimation of pathogenic life-history values, for instance the duration a pathogen is retained

in an insect vector (i.e., retention period) is of particular importance for understanding plant

disease epidemiology. How can we extract values for these epidemiological parameters

from conventional small-scale laboratory experiments in which transmission success is

measured in relation to durations of vector access to host plants? We provide a solution to

this problem by deriving formulae for the empirical curves that these experiments produce,

called access period response curves (i.e., transmission success vs access period). We do

this by writing simple equations for the fundamental life-cycle components of insect vectors

in the laboratory. We then infer values of epidemiological parameters by matching the theo-

retical and empirical gradients of access period response curves. Using the example of Cas-

sava brown streak virus (CBSV), which has emerged in sub-Saharan Africa and now

threatens regional food security, we illustrate the method of matching gradients. We show

how applying the method to published data produces a new understanding of CBSV through

the inference of retention period, acquisition period and inoculation period parameters. We

found that CBSV is retained for a far shorter duration in its insect vector (Bemisia tabaci

whitefly) than had previously been assumed. Our results shed light on a number of critical

factors that may be responsible for the transition of CBSV from sub- to super-threshold R0 in

sub-Saharan Africa. The method is applicable to plant pathogens in general, to supply epi-

demiological parameter estimates that are crucial for practical management of epidemics

and prediction of pandemic risk.

Author summary

Cassava brown streak virus (CBSV), which was confined to coastal East Africa and the

shores of Lake Malawi, has rapidly expanded its geographic range and now threatens

regional food security. A recent laboratory experiment, in which vector access to plants

infected with CBSV is varied, has provided plausible ranges for epidemiological parame-

ters such as pathogen retention period (i.e., the duration that the pathogen is retained by
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the vector). In this work we introduce a new computational and mathematical framework

for estimating epidemiological parameter values, instead of plausible ranges, from experi-

ments in vector access to host plants. Since long distance carriage of insect vectors occurs

within atmospheric air flows, the duration that the vector retains the pathogen (i.e., reten-

tion period) indirectly limits the scale of epidemics. Using our methods, we found that

CBSV is retained for a far shorter duration than had previously been assumed. Our meth-

ods can be applied to the many experiments in vector access to host plants that have been

conducted for numerous arthropod-transmitted plant pathogens across a range of genera.

The ensuing epidemiological parameter estimates can be used in landscape computer sim-

ulations to predict epidemic risk and the prospects for control.

Introduction

Estimation of pathogenic life-history values such as retention period for a virus in an insect

vector, is of particular importance for understanding and managing plant disease for a range

of arthropod-transmitted plant pathogens [1, 2]. Knowledge of parameter values such as reten-

tion period are conventionally derived from a set of standard plant pathology experiments,

which we refer to here as access period experiments. These experiments yield empirical

response curves for success in virus transmission as a function of the duration of time that vec-

tors are given access to individual host plants. Since long distance carriage of insect vectors

occurs within atmospheric air flows, the duration that the vector retains the pathogen (i.e.,

retention period) indirectly limits the distance of virus dispersal [3, 4]. Precise knowledge of

epidemiological parameters and retention period in particular, is therefore key to predicting

pandemic risk. There is a pressing need for methods that can infer epidemiological parameters

from the limited data that access period experiments produce. Recently, Cassava brown streak
virus (CBSV), a whitefly-transmitted Ipomovirus, has emerged as a serious threat to cassava

production in sub-Saharan Africa [5]. Because of a small, highly mutable genome, single

stranded RNA viruses like CBSV pose a continual risk as a source of emergent plant pathogens

[6]. In this paper, we outline a method for extracting estimates for epidemiological parameters

such as retention period, and we apply the method to derive estimates for CBSV.

Access period experiments have been conducted for numerous plant viruses across a range

of genera, from Ipomovirus [1] and Begomovirus [7] to the recently discovered Torradovirus
genus [8]. In access period experiments, insect-borne pathogen transmission is reproduced in

controlled laboratory settings, and the transmission success is recorded as the duration of

exposure to the pathogen is varied. Two broad types of experiment are conducted: in the first,

the experimenter varies the duration of access given to pathogen-free vectors on pathogen

infected source plants (acquisition access period, AAP) to produce access period response

curves (i.e., curves showing the probability of transmission as a function of AAP) (see defini-

tions in Fig 1A). In the second experiment, the experimenter varies the duration of access

given to pathogen-bearing vectors on pathogen free source plants (inoculation access period,

IAP) to produce inoculation response curves. Varying these durations in this way can also pro-

duce plausible ranges for epidemiological parameters such as pathogen retention period. For

example, Maruthi et al. [1] used access period experiments to conclude that CBSV is effectively

acquired within 1 hour (the basis for this conclusion was that no significant differences were

found in transmission success for acquisition periods beyond 1 hour) [1]. In addition, Maruthi

et al. concluded that CBSV has a retention period of less than 48 hours.
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A central goal in plant disease epidemiology is the prediction of epidemic risk, and,

beyond this, of the prospects for control. The goals are achieved through analyses at the

landscape scale, for which estimates of epidemiological parameters are essential, for emerg-

ing viral threats such as CBSV. In this paper, we introduce a method for the estimation of

epidemiological parameters from access period data. The method consists of first deriving

equations for vector infection dynamics as they occur in access period experiments. Solving

the equations leads to algebraic expressions for AAP and IAP curves, in which the probabil-

ity of successful transmission is related to durations of exposure of vectors to a target plant.

The algebraic expressions are then matched to empirical curves to estimate the required

parameters. We use the method to generate epidemiological parameter estimates for CBSV

from a recent access period experiment [1]. Using stochastic simulation, we conduct an ini-

tial assessment of the parameter estimates, providing predictions that can be tested

empirically.

Fig 1. Key definitions (A) and a biological description of access period experiments (B-C). Flow charts of B: the

acquisition access component, and, of C: the inoculation access component, of access period assays.

https://doi.org/10.1371/journal.pcbi.1007724.g001

PLOS COMPUTATIONAL BIOLOGY Estimating virus parameters for cassava brown streak disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007724 March 16, 2020 3 / 15

https://doi.org/10.1371/journal.pcbi.1007724.g001
https://doi.org/10.1371/journal.pcbi.1007724


Materials and methods

We describe here the typical experimental design of acquisition and inoculation assays, from

which we extract a computational and a mathematical model for vector dynamics and vector

transmission as well as a corresponding event-based, stochastic, simulation model. Initially we

demonstrate the accuracy of our methods using simulated datasets. We finish by applying the

methods to a recent CBSV dataset and provide an initial validation.

Overview of experimental setup (acquisition and inoculation assays)

The virus acquisition assay procedure [9] involves confining a cohort of virus-free insects to

an infected plant. After a fixed period of access to the infected plant (acquisition access period)

the insects are removed and assessed for infection using a direct or indirect diagnostic test. In

the direct test, the proportion of infected vectors is calculated using a molecular diagnostic test

such as RT-PCR. In the indirect test, the proportion of infected vectors is calculated by trans-

ferring the cohort of insects to a healthy plant for a fixed ‘test’ IAP. The process is performed

for a fixed acquisition access period with n repetitions, for each of a range of acquisition access

periods. In the case of the indirect test, acquisition success corresponds to the proportion of

plants from the ‘test’ IAPs that develop symptoms, or, are ELISA-positive (usually after a fixed

number of days to allow systemic infection).

The virus inoculation assay procedure involves confining a cohort of potentially virus-bear-

ing insects to a healthy plant for virus inoculation. After a fixed period of access to the healthy

plant (inoculation access period), the insects are removed, and the plant is assessed for infec-

tion. Inoculation success is evaluated as the proportion of plants showing symptoms [9], or the

proportion that are ELISA-positive. Note that for IAP experiments, since the first step involves

virus-bearing insects, it is always necessary to place healthy insects on an infected plant for a

fixed ‘test’ AAP in advance of the IAP experiment itself. The process is performed for a fixed

inoculation access period with n repetitions, for each of a range of inoculation access periods.

Mathematical modelling (vector dynamics, transmission dynamics)

AAP model. Following our overview of the acquisition access assay, the AAP model

assumes that a cohort of pathogen-free insects, with size denoted by X, are given access to a

pathogen infected host plant (Fig 1B). The pathogen-free insects acquire the virus at rate α
(per hour) becoming pathogen-bearing, with size denoted by Y. Pathogen-bearing insects lose

the pathogen at rate ν (per hour) becoming pathogen-free. We additionally allow for a rate of

death of insects (per hour), denoted f. Combining these simple processes, the probability, PX,

Y(t + δt), that there are exactly X pathogen-free and Y pathogen-bearing insects at time t plus

small time interval δt is:

Joint probability dynamics of pathogen‐free and pathogen‐bearing vectors :

PX;Yðt þ dtÞ ¼ PX;YðtÞ þ f ððX þ 1ÞPXþ1;YðtÞ � XPX;YðtÞ þ ðY þ 1ÞPX;Yþ1ðtÞ � YPX;YðtÞÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Death

dt

þnððY þ 1ÞPX� 1;Yþ1ðtÞ � YPX;YðtÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Virus loss

dt þ aððX þ 1ÞPXþ1;Y� 1ðtÞ � XPX;YðtÞÞdt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Acquisition

:

ð1Þ

IAP model. The IAP model assumes that the population of pathogen-bearing insects

from the AAP assay are given access to a healthy host plant (Fig 1C). The number of pathogen-

bearing insects are here denoted y to distinguish them from the equivalent AAP class (Y). All
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parameters are as for the AAP model, but, in addition, the pathogen-bearing insects inoculate

the pathogen into the healthy plant at rate β (per hour). Combining these processes the joint

probability, QM,N(t + δt), of exactly N pathogen-bearing insects andM plant inoculation events

at time t + δt is:

Joint dynamics of infected plants and pathogen‐bearing vectors :

QM;Nðt þ dtÞ ¼ QM;NðtÞ þ ðnþ f ÞððN þ 1ÞQM;Nþ1ðtÞ � NQM;NðtÞÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Virus loss or death

dt

þbðNQM� 1;NðtÞ � NQM;NðtÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Inoculation

dt;

ð2Þ

Note that while Eqs 1 and 2 represent mathematical models that are analysed in subsequent

sections to gain insight into the underlying dynamics, we also recast the models as event-based

processes (using a Gillespie algorithm [10]) in order to simulate epidemics with known param-

eters from which to test the methods for estimating parameters. The models are subsequently

used to estimate parameters from empirical experiments for CBSV and whitefly vectors.

Acquisition and inoculation response curves. Equations for both acquisition and inocu-

lation response curves are found by first solving the stochastic process in Eq 1. This involves

the application of a number of steps (utilizing probability generating functions and partial dif-

ferential equations: see S1 Appendix) and shows that the number of pathogen-bearing insects

after t hours of acquisition access, denoted y0(t), is binomially distributed (with n = X0 and

p(t) = αe−ft(1 − e−(α+ν)t)/(α + ν)), see Eq S1.12, S1 Appendix. When acquisition success is deter-

mined by molecular testing of individual insects, the acquisition response curve, denoted

PAAP, is then simply
y0ðtÞ
X0
¼

npðtÞ
X0
¼ pðtÞ, i.e.,

Acquisition success;with testing : PAAPðtÞ ¼
ae� ft

aþ n
ð1 � e� ðaþnÞtÞ: ð3Þ

If, instead, molecular diagnostics have not been used, the insects (including y0 pathogen-bear-

ing insects) are transferred to a healthy plant for a fixed period of inoculation access. The ensu-

ing proportion of plants that become infected is then used as a proxy for acquisition success

(cf. ‘indirect assay’, subsection “Overview of experimental setup”). In this case, y0 (cf. Eq 3) is,

on the one hand, the initial condition for the IAP process, and on the other hand, it is a func-

tion of the duration of the AAP process. For clarity, henceforth we use the general notation tA
and tI to represent distinct time variables for acquisition access duration and inoculation

access duration respectively. Solving the stochastic process in Eq 2, for y0(tA) initially patho-

gen-bearing insects, we find that the probability of plant infection is given by,

FðtI; y0ðtAÞÞ ¼ 1 �
nþ f þ be� ðbþnþf ÞtI

bþ nþ f

� �y0ðtAÞ

; ð4Þ

(S2 Appendix). As we saw (cf. Eq 3), y0(tA) is itself binomially distributed so that the acquisi-

tion response curve, denoted PAAP(tA, τ), combines the probability of plant infection, F(tI,
y0(tA)) with the binomially distributed initial condition y0(tA), i.e.,

Acquisition success; no testing : PAAPðtA; tÞ ¼
XX0

k¼0

X0

k

 !

pðtAÞ
k
ð1 � pðtAÞÞ

X0 � kFðt; kÞ: ð5Þ

Thus, the acquisition response curve is described by a single equation that represents a variable

acquisition period (duration tA) followed by a fixed inoculation period (duration tI = τ).
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Analogously, and irrespective of the use of molecular diagnostics, the inoculation response

curve, denoted PIAP(τ, tI), is described by a single equation representing fixed acquisition

period (duration tA = τ) followed by a variable inoculation period (duration tI),

Inoculation success : PIAPðt; tIÞ ¼
XX0

k¼0

X0

k

 !

pðtÞkð1 � pðtÞÞX0 � kFðtI; kÞ: ð6Þ

Details of the analysis used are presented in S3 Appendix. In summary, acquisition and inocu-

lation response curves differ only in that the acquisition period is variable in the latter but con-

stant in the former (Y(tA = τ) vs Y(tA) respectively) while inoculation period is constant in the

latter (tI = τ) but variable in the former (tI). The exception to this pattern occurs when molecu-

lar diagnostics have been used, in which case Eq 3 holds instead of Eq 5.

Combining derived and empirical curves to estimate pathogen parameters

We wish to match the solutions, PAAP(tA, τ) and PIAP(τ, tI) with corresponding empirical

curves. The task is to derive simple formulae for gradients of the curves which can then be eas-

ily compared with empirical gradients. This is achieved through differentiation of the acquisi-

tion and inoculation response curves and subsequent evaluation at tA = 0 and tI = 0,

respectively, as set out in S4 Appendix. The resulting formulae for initial slope, initial accelera-

tion and IAP asymptote (by taking the limit as tI tends to infinity) are listed in Table 1.

Examples of simulated dataset and CBSV dataset. In order to demonstrate our methods

with known data, we ran one thousand stochastic, event-based simulations with pre-defined

epidemiological parameter values, where each simulation consisted of 15 plant/vector cohort

repetitions. We calculated AAP and IAP response curves from the means of these simulations

over these sets and computed values for initial slope and initial acceleration from the overall

mean response curves. This resulted in gradient values that were equated to the formulae in

Table 1 and solved for the virus parameters. The entries in Table 1 represent a system of four

simultaneous equations in four unknowns that is straightforward to solve. We followed the

specific solution order set out in SI section 5 to produce the parameter estimates in Table 2.

The procedure that was tested using the simulated dataset was next applied to the access period

data of Maruthi et al. [1] for CBSV. Note that Maruthi et al. did not use molecular diagnostics

to confirm insect infection. Since the access period data of Maruthi et al. are somewhat noisy

(relating to the number of experimental repetitions used), we fit the general form for

acquisition success (i.e., transmission success as a function of acquisition period, Eq S3.6,

Table 1. Formulae for gradients of access period response curves. All formulae are derived from equations for acqui-

sition and inoculation response curves in S4 Appendix.

Gradient #1, initial slope Gradient #2 (see symbols/caption)

AAP� αX0 −(2f + ν + α)

AAP†

aX0 1 �
nþfþbe� ðnþfþbÞt

nþfþb

� �
−(2f + ν + α)

IAP* βX0 p(τ)
1 � 1 �

bpðtÞ
nþfþb

� �X0

Table notes AAP� refers to acquisition response curve with molecular diagnostics; AAP† refers to acquisition

response curve without molecular diagnostics; IAP* refers to inoculation response curve. Note that the inoculation

response curve does not involve molecular diagnostics. In the case of: AAP�, Gradient #2 is the ratio of initial

acceleration to initial slope; AAP†, Gradient #2 is the ratio of initial acceleration to initial slope plus scaled initial

slope (scaled by (X0 − 1)/X0); IAP*, Gradient #2 is the asymptote.

https://doi.org/10.1371/journal.pcbi.1007724.t001
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S3 Appendix) to the acquisition access period data, and the general form for inoculation suc-

cess (i.e., transmission success as a function of inoculation period, Eq S3.5, S3 Appendix) to

the inoculation access period data prior to extracting empirical values for initial slope, initial

acceleration and asymptote (i.e., the empirical gradients). Using the same proceedure that we

followed for the simulated dataset, these empirical gradients were then matched to the theoret-

ical gradients in Table 1 to produce the parameter estimates in Table 3 (i.e., we solved the

resulting simultaneous equations using the particular order of steps set out in S5 Appendix).

Validation of parameter estimates for CBSV. Maruthi et al. describe a further two

experiments involving access period arrays beyond the basic access period experiment: ‘trans-

mission’ and ‘persistence’ experiments [1]. The first was designed to assess ‘transmission’ as

the cohort size of insects is increased for fixed acquisition and inoculation access periods. In

the second experiment, ‘persistence’ of the virus in an insect vector is measured by exposing

the insects to a sequence of three plants; the original infected plant, a dummy healthy plant

and finally the success of transmission is tested on a third, healthy plant. By allowing the

insects to feed on the intermediate healthy plant (for potentially different exposure times) the

persistence of the virus in the vector could be assessed.

As an initial test of the CBSV parameter estimates, we ran dynamic simulations of both the

‘transmission’ and ‘persistence’ experiments. This involved assigning our CBSV parameter

estimates to the epidemiological parameters and reproducing the structure of these experi-

ments as event-based stochastic simulations.

Table 2. Estimates of epidemiological parameters from a simulated access period experiment.

Simulated dataset Epidemiological parameter True value Estimated value

no diagnostics Rate of virus loss, ν 0.2h−1 0.197h−1

Rate of virus acquisition, α 0.05h−1 0.055h−1

Rate of virus inoculation, β 0.033h−1 0.029h−1

with diagnostics Rate of virus loss, ν 0.2h−1 0.199h−1

Rate of virus acquisition, α 0.05h−1 0.049h−1

Rate of virus inoculation, β 0.033h−1 0.033h−1

Table notes Simulations were initiated under the assumption that in no diagnostics: no molecular diagnostics were available, and in with diagnostics: molecular

diagnostics were used. Epidemiological parameters were estimated by matching the means of 1000 simulated acquisition and inoculation response curves, with each

simulation consisting of 15 replicates of an individual plant exposed to 50 insects, in no diagnostics: to the gradients of AAP† and IAP*, and in with diagnostics: to the

gradients of AAP� and IAP* (Table 1, gradient #1-#2). Note that in both scenarios the parameter estimate for the additional death rate, f, was close to the true value

(true value 0.02h−1; estimate in A: 0.018h−1; estimate in B: 0.02h−1).

https://doi.org/10.1371/journal.pcbi.1007724.t002

Table 3. Epidemiological parameter estimates for CBSV: An application of the method of matching gradients to a

CBSV access period dataset.

CBSV dataset [1] Epidemiological parameter Estimated value

Retention period, 1

n
95mins

Acquisition period, 1

a
33mins

Inoculation period, 1

b
48h

Table notes Epidemiological parameters were estimated by matching empirical acquisition and inoculation response

curves to the AAP† and IAP* gradients (#1-#2), respectively.

https://doi.org/10.1371/journal.pcbi.1007724.t003
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Results

In this section we begin by examining the response curves that result from both computer sim-

ulation and mathematical analysis. In addition, the results of applying the formulae, which

were derived from the mathematical analysis, to the data from the computer simulations are

presented. We then present epidemiological parameter estimates that follow from the applica-

tion of the method to CBSV data. Finally, making use once again of computer simulations, the

results of preliminary testing of the CBSV estimates are presented.

The mathematical equations (Eqs 3, 5 and 6) for the access period response curves closely

match the overall mean of the stochastic simulations (Figs 2 and 3, dotted black vs solid ruby

curves). This is the case when molecular diagnostics were not used (Fig 2) and when they were

used (Fig 3). The correspondence between the theoretical and simulation results demonstrates

the accuracy of the mathematical solutions. The mathematical solutions for the access period

response curves were distilled in to formulae for curve gradients, forming a set of simultaneous

equations for the unknown epidemiological parameters when equated to the empirical gradi-

ents. We found that for acquisition response curves the gradients in which the epidemiological

parameters were expressed most simply were initial slope and the ratio of initial acceleration

to initial slope (Table 1), while for inoculation response curves they were expressed most sim-

ply in terms of the initial slope and the asymptote (Table 1). Solving the system of simulta-

neous equations results in the epidemiological parameter estimates. Comparing these

estimates with their true values for the simulated data, we find that the estimates for acquisi-

tion period, inoculation period and retention period are very accurate (Table 2). This was the

case both when we reproduced the situation in which no molecular diagnostics were available

(Table 2, no diagnostics), and when we reproduced the situation in which molecular diagnos-

tics were used (Table 2, with diagnostics). The estimates were marginally more precise when

molecular diagnostics were used than when they were not used (Table 2, with diagnostics).

Fig 2. Stochastic modelling of access period assays without molecular diagnostics. In A: acquisition response curve, in B:

inoculation response curve. In A-B gray curves indicate the 2.5th-97.5th percentile range of simulations (i.e., demarcating 95% of

simulations with darker shades of gray for percentile bands near the median). Solid ruby curves indicate the mean of simulations.

Dotted black curves show the mathematical solution (i.e., Eq 5 in A, and Eq 6 in B). Figure inset shows the correspondence

between computer simulations and mathematical solutions. Computer simulation involved reproducing the access period

experiments using event-based stochastic simulation, with the epidemiological parameters assigned the values listed in the ‘True

value’ column of Table 2. In both A and B 1000 simulations were initiated with cohorts of 50 virus-free adult vectors placed on

virus-infected plants, with 15 plant/insect cohort replicates per simulation. The fixed access period duration was 24 hours (i.e., the

inoculation access period in A, and the acquisition access period in B, was 24 hours).

https://doi.org/10.1371/journal.pcbi.1007724.g002
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We then applied the procedure to the data of Maruthi et al. [1] in which a CBSV isolate

from southern, coastal Tanzania was tested in relation to cassava host plants using insects of a

B. tabaci strain known to be of subgroup SSA1-SG1 [1]. When the procedure, i.e., the method

of matching gradients, was applied to the data of Maruthi et al. [1], the mean retention period

was found to be approximately 1.6h. In addition, we found that the mean acquisition period

was approximately 0.55h and the mean inoculation period was approximately 48h (units of

expected duration; Table 3). At first sight a 48h inoculation period appears surprisingly long,

however, in reality this is an expected value that comprises not only the length of time it takes

for inoculation processes to occur, but also the likelihood that inoculation events actually

lead to plant infection. In addition, the death rate, f, which was found to be very close to zero

(� −0.003), was set to zero here and in subsequent dynamic simulations.

Using CBSV parameter estimates (i.e., α, ν, β and f) from the access period experiment of

Maruthi et al. [1] as the basis of dynamic stochastic simulations, we generated a 2.5th-97.5th

percentile range (i.e., demarcating the 95% credible region of response curves) as a function of

acquisition period and inoculation period (Fig 4A and 4B, gray dashed curves). We found that

the datapoints [1] fell comfortably within the predicted range (Fig 4A and 4B, black circles). In

addition to the basic access period experiment, we also implemented dynamic simulation of

two additional experiments. In the first of these, a ‘transmission’ experiment, the number of

Fig 3. Stochastic modelling of access period assays with molecular diagnostics, acquisition response curve. Note

that the use of molecular diagnostics to assess insect infection affects only the acquisition access component of access

period assays, see Fig 2B for corresponding inoculation response curve. Gray curves indicate the 2.5th-97.5th

percentile range of simulations (i.e., demarcating 95% of simulations with darker shades of gray for percentile bands

near the median). Solid ruby curve indicates the mean of simulations. The black dotted curve shows the mathematical

solution (i.e., Eq 3). In addition, black dotted curves indicate the mathematical solution +/- the derived standard

deviation (see S1 Appendix for derivation of variance). Figure inset shows the correspondence between computer

simulations and the mathematical solution. For details of the simulation procedure see caption of Fig 2.

https://doi.org/10.1371/journal.pcbi.1007724.g003
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insect vectors used in the basic access period setup is varied. The dynamic simulations gener-

ated a 2.5th-97.5th percentile range for the two cohort sizes studied (Fig 4C, gray intervals) and

we found that the datapoints [1] fell within the range (Fig 4C, black circles). In the second

experiment, designed to measure ‘persistence’ of the pathogen in the vector, the duration of an

intermediate access period on a dummy plant was varied in our simulations. The dynamic

simulations generated a 2.5th-97.5th percentile range for the two intermediate periods (Fig 5,

gray dashed curves for intermediate period < 15h; gray interval on the appended x-axis i.e.,

intermediate period > 15h), and we found that the datapoints [1] exactly matched the pre-

dicted ranges (Fig 5, black circles on appended x-axis; note that the simulation percentile

ranges included only the zero value for transmission success).

It may be the case that conventional expectations of CBSV retention period governed the

choice of the intermediate feeding duration studied in [1]. Taken together, the zero datapoints

in the Maruthi et al. experiment [1], i.e., zero plants infected after 24h and 48h feeding on an

intermediate dummy plant, and the retention period estimate of 1.6h that is presented here,

show that the chosen intermediate period was long relative to the duration of persistence. In

order to propose a more plausible range of intermediate periods, and to provide a means of

empirically testing our findings, we produced credible 95% intervals for all values of the inter-

mediate period (Fig 5). We labeled several key points on the mean response curve, i.e., critical

intermediate durations at which the persistence response was 25%, 50% and 75% of the case

when no intermediate period was used (see caption of Fig 5 for exact values).

Discussion

Typically, small-scale laboratory experiments, such as experiments in vector access to host

plants, are employed to investigate epidemiological parameters such as retention period (of the

pathogen in the vector). In this paper, we have derived explicit solutions for the acquisition

and inoculation response curves that these experiments produce, which we reduced to a set of

formulae for curve gradients. The formulae, when compared with empirical gradient values,

are used to estimate epidemiological parameters. The method proved very accurate when

tested on simulated datasets (for which the true parameter values were known). To date, there

remains much to be learned concerning the detailed epidemiology of Cassava brown streak

Fig 4. An empirical test of the epidemiological parameter estimates for CBSV: Dynamic simulation vs experimental data for variable acquisition

period (A), for variable inoculation period (B), and for variable initial insect density (C). In A-C ruby curves/diamonds indicate the mean of

simulations, gray curves/intervals indicate the 2.5th and 97.5th percentiles of simulations (i.e., demarcate 95% of simulations). Black circles indicate

data-points from Maruthi et al. [1]. In A-C, dynamic simulations were implemented using the epidemiological parameter estimates for CBSV in

Table 3. For details of the simulation procedure see caption of Fig 2.

https://doi.org/10.1371/journal.pcbi.1007724.g004
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virus (CBSV) that is spreading on an east-west axis across sub-Saharan Africa, and is currently

threatening regional food security. We applied our methods to a recent CBSV access period

dataset [1] and found that CBSV is retained for a far shorter duration in its insect vector (Bemi-
sia tabaci whitefly) than had previously been assumed. We also found from dynamic simula-

tions of the access period experiments that our estimate for retention period is consistent with

the additional ‘transmission’ and ‘persistence’ experiments reported in Maruthi et al. [1].

The implications of the epidemiological parameter estimates for CBSV

For most of its known history, CBSV was confined to coastal East Africa and the shores of

Lake Malawi but more recently the virus has been undergoing a dramatic increase in geo-

graphic range [5]. In general, infectious disease epidemics depend on R0, the pathogen’s basic

reproduction number (i.e. the average number of secondary cases produced by a primary case

in a susceptible population). In particular, a condition of epidemic spread is that R0 > 1, while

epidemic fade-out occurs if R0 < 1. In epidemiological terms it is reasonable to suppose that

some component of the R0 for CBSV in sub-Saharan Africa has changed in recent decades,

and, as a consequence, the sub-threshold dynamic (i.e., where R0 < 1 outside of the confined

coastal East Africa and the shores of Lake Malawi regions), has transitioned to a dynamic of

super-threshold spread (i.e., R0 > 1). It is clear that the retention, acquisition and inoculation

periods, together with the density of whitefly are all critical components of R0. Quantifying

Fig 5. An empirical test of epidemiological parameter estimates for CBSV: Dynamic simulations vs. experimental data for

variable intermediate feeding periods. An additional experiment is described in Maruthi et al. in which insects were given access to

an intermediate feeding period on a dummy plant [1] (see methods section). Black circles indicate datapoints from [1]. Ruby curves/

diamonds indicate the mean of simulations. Gray dashed curves/gray intervals indicate the 2.5th and 97.5th percentiles of simulations.

Red crosses mark the intermediate period at which transmission success was 50% of that of no intermediate period (IPc: 0.197 prob. of

plant infection after 1.45h intermediate period), 25% of that of no intermediate period (IPcþ : 0.099 prob. of plant infection after 2.58h
intermediate period), and 75% of that of no intermediate period (IPc� : 0.296 prob. of plant infection after 0.6h intermediate period)(c.

f. prob. of plant infection was 0.394 when the intermediate period was 0h). For details of the simulation procedure see caption of Fig 2.

Note that Maruthi et al. considered intermediate periods of 24 and 48 hours (appended portions of x-axis), see S6 Appendix. At these

points the gray vertical simulated intervals consist only of the zero value for the probability of plant infection.

https://doi.org/10.1371/journal.pcbi.1007724.g005
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these epidemiological parameters is therefore an important step in understanding CBSV range

expansion.

Several observations concerning CBSV range expansion can be made using the parameter

estimates presented in this work. Firstly, the short retention period (1.6 hours) is consistent

with sub-threshold (i.e. non-epidemic) epidemiology of CBSV since it is associated with a brief

whitefly infectious period. The inoculation period is the inverse of the rate of successful inocu-
lation (per infected whitefly), which is itself composed of the rate that the virus is introduced

into the plant during feeding scaled by the probability that inoculation events lead to plant

infection. The long inoculation period (relative to retention period) reported here (48 hours cf.

1.6 hours) is another factor in sub-threshold R0. It is likely to reflect a low frequency with

which inoculation events are successful (i.e., result in plant infection). All of the parameter esti-

mates derived above are consistent with the conclusions of Maruthi et al. [1], who found that

retention period is< 48 hours, acquisition period is < 1 hour and CBSV is inoculated in a

manner that increases up to 24 hours. Our findings extend the results of Maruthi et al. [1] by

providing parameter estimates (rather than plausible ranges) that can be used for epidemiolog-

ical applications such as landscape simulation. As with Maruthi et al. [1]’s experiment, and in

spite of the constraints of a short retention period and a long inoculation period, substantial

plant infection does occur in our model of access period assays. In part, this is facilitated by

rapid acquisition of the virus when whitefly feed on infected plants (with an acquisition period

of 0.55 hours), and in part this is due to the relatively high density of whitefly used in the

experiments.

In this paper we have introduced a method of matching gradients in order to estimate epi-

demiological parameters from conventional access period experiments. The method can be

used for a wide range of plant viruses using data available in published experiments. Viruses

like CBSV do not have a latent period in their vector and are restricted to the phloem of the

host plant (i.e., ‘semi-persistent’ viruses [11]), and hence are acquired and inoculated during

feeding from phloem (as depicted in Fig 1, Eqs 1 and 2). The method can also be applied to

phloem-restricted viruses that are associated with periods of latency in the insect vector, by

extending Eqs 1 and 2 to account for latency (such viruses include ‘persistently transmitted’

viruses like cassava mosaic virus [11, 12]). Viruses that are acquired and inoculated from the

host plant’s epidermal cells by aphid vectors, however, require a different set of equations for

plant infection that take account of the central role of aphid probing in acquisition and inocu-

lation (i.e., non-persistently transmitted viruses; see Donnelly et al. [13] for a model that could

be adapted for this purpose). In order to provide a means of testing the parameter estimates it

may be useful to generate secondary predictions using dynamic simulation. In this paper we

used the estimates to predict the relationship between the probability of plant infection and

the duration of feeding on a dummy plant intermediate to a 48 hour acquisition period and a

48 hour inoculation period. Accordingly, by identifying the intermediate period at which plant

infection was 25%, 50%, and 75% of that of no intermediate period (Fig 5), we provided a pre-

dicted range that can be empirically tested.

How do our findings relate to epidemics in the field? Our results shed light on a number of

critical factors that may be responsible for the transition of CBSV from sub- to super-threshold

R0 in sub-Saharan Africa. These factors include a): pathogenic adaptation to the cassava host

such that the frequency of plant infection following inoculation is increased, b): the invasion of

novel strains of the B. tabaci whitefly having greater affinity for the cassava host, such that insect

vectors spend longer periods of time feeding from cassava phloem. CBSV like other RNA

viruses, evolves quickly [14], so that CBSV may have evolved to overcome host defences [15]. A

number of B. tabaci strains collected from cassava have been shown to vary in host preference

and range of diet [16]. This, in turn, suggests that geographic variation in B. tabaci strains [17]
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is likely to be associated with variation in B. tabaci feeding behavior [15]. In addition to these

possible factors, the increasing abundance of whitefly across Eastern sub-Saharan Africa since

the 1990s [5, 18–21] is certain to have played a key role. Notably the confirmation of re-emer-

gence of CBSD in central Uganda coincided with generally high B. tabaci populations in the

area [2]. Our results also point to the importance of infected cuttings in determining the rate of

spread of the epidemic front. The shorter the retention period, the shorter is the distance over

which the virus can be effectively carried by insects in airflows to infect the host plant. This then

suggests that long distance transmission of CBSV is likely to be dominated by human-mediated

movement of infected cuttings rather than by insect movement. However, it should be borne in

mind that even for the very briefly retained, non-persistently transmitted potyviruses there is

evidence in the literature that some long-distance air-borne dispersal does occur [22].

The critical factors that may be responsible for the transition of CBSV from sub- to super-

threshold R0 in sub-Saharan Africa will be explicitly investigated in future work using an epi-

demiological model for CBSV transmission within fields of cassava plants. By expressing R0 in

terms of the epidemiological parameter estimates presented here, the role of each factor in

CBSV’s transition from sub- to super-threshold spread (i.e., from R0 < 1 to R0 > 1) can be

assessed. In particular, the critical abundance of the whitefly vector that is needed for epidem-

ics to occur can be quantified. Ultimately, such studies will help identify those aspects of CBSV

epidemiology that are most critical to epidemic spread, and will lead to management recom-

mendations for containing the geographic range of CBSV.
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